3-2-1 几个常用函数的导数及基本初等函数的导数公式

合集下载

1.2.1几个常用函数的导数 基本初等函数的导数公式及导数的运算法则(一)

1.2.1几个常用函数的导数 基本初等函数的导数公式及导数的运算法则(一)

[ 小组合作型]
利用导数公式求函数的导数
求下列函数的导数: 1 5 3 (1)y=x ;(2)y=x4;(3)y= x ;(4)y=3x;(5)y=log5x.
12
【精彩点拨】
首先观察函数解析式是否符合求导形式,若不符合可先将
函数解析式化为基本初等函数的求导形式.
【自主解答】
(1)y′=(x12)′=12x11.
[ 再练一题] 1 2.(1)求函数 f(x)= 在(1,1)处的导数; 3 x (2)求函数 f(x)=cos x
π 在 4,
2 处的导数. 2
1 1 1 4 1 【解】 (1)∵f′(x)= 3 ′=(x-3)′=-3x-3=- , 3 4 x 3 x 1 1 ∴f′(1)=- =-3. 3 3 1 (2)∵f′(x)=-sin x, π π 2 ∴f′ 4 =-sin 4=- 2 .
原函数 f(x)=ax f(x)=ex f(x)=logax f(x)=ln x
【答案】 0 αxα-1 cos x
导函数 f′(x)=____________ f′(x)=__________ 1 f′(x)=xln a 1 f′(x)=x
-sin x axln a ex
1.给出下列命题: 1 ①y=ln 2,则 y′=2; 1 2 ②y=x2,则 y′|x=3=-27; ③y=2x,则 y′=2xln 2; 1 ④y=log2x,则 y′=xln 2. 其中正确命题的个数为( A.1 B.2 ) C.3 D.4
π t,∴v3=cos
π 1 3=2.
∴加速度 a(t)=v′(t)=(cos t)′=-sin t.
1. 速度是路程对时间的导数, 加速度是速度对时间的导数. 2 .求函数在某定点 ( 点在函数曲线上 ) 的导数的方法步骤 是:(1)先求函数的导函数;(2)把对应点的横坐标代入导函数求 相应的导数值.

3-2-1 几个常用函数的导数及基本初等函数的导数公式

3-2-1 几个常用函数的导数及基本初等函数的导数公式

1.若y =sin x ,则y ′|x =π3 =( ) A.12B .-12 C.32D .-32 [答案] A[解析] y ′=cos x ,y ′|x =π3 =cos π3=12. 2.两曲线y =1x 与y =x 在交点处的两切线的斜率之积为________.[答案] -12[解析] 两曲线y =1x 与y =x 的交点坐标为(1,1),∴k 1=(1x )′|x =1=-1x 2|x =1=-1,k 2=(x )′|x =1=12x |x =1=12. ∴k 1·k 2=-12.3.曲线y =x 3在点(a ,a 3)(a ≠0)处的切线与x 轴,直线x =a 所围成的三角形的面积为16,则a =________.[答案] ±1[解析]因为y ′=3x 2,所以曲线在(a ,a 3)处切线斜率为3a 2,切线方程为:y -a 3=3a 2(x -a )所围成三角形如右图所示的阴影部分.切线与x 轴交于点A ⎝ ⎛⎭⎪⎫23a ,0;x =a 与x 轴交于点B (a,0);切线与直线x =a 交于点M (a ,a 3),∵S △ABM =12⎝ ⎛⎭⎪⎫a -2a 3·a 3=16,, ∴a =±1.4.求过曲线y =sin x 上的点P ⎝ ⎛⎭⎪⎫π4,22且与在这点处的切线垂直的直线方程.[解析] ∵y =sin x ,∴y ′=(sin x )′=cos x .∴y ′|x =π4=cos π4=22.∴经过这点的切线的斜率为22,从而可知适合题意的直线的斜率为- 2.∴由点斜式得适合题意的直线方程为y -22=-2(x -π4),2 2-24π=0.即2x+y-。

几个常用的基本初等函数的导数

几个常用的基本初等函数的导数

几个常用的基本初等函数的导数
在函数微积分中,初等函数极其重要。

它们的概念简单易懂,但是在运用时,
会有一定的技巧。

函数的导数则更加复杂。

下面就将对一些常用的初等函数的导数,进行解析。

一元二次、三次方程的导数:一元二次函数的导数为2x,而一元三次函数的导
数为3x^2。

正弦和余弦函数的导数:正弦函数的导数为余弦函数,反之亦然,应用的时候
的话就是用唯一的关系扣出相互的导数。

对数函数和指数函数的导数:对数函数的导数为1/x,而指数函数的导数为
a^x,a是任意的一个常数。

幂次函数的导数:幂次函数的导数为ax^(a-1),也就是说,如果原函数是x^a,那么其导数就是a*x^(a-1)。

以上就是我们对初等函数的导数进行解析。

在了解这些导数之后,可以在解决
更加复杂的函数问题时,有更好的准备,为未来的发展提供良好的基础。

希望学习互联网知识的人们,可以熟练运用这些函数导数,从而更好地解决问题。

几个常见函数的导数公式和基本初等函数的导数公式

几个常见函数的导数公式和基本初等函数的导数公式
'
f ( x ) = sin x, f ' (x ) = cos x
x '
f ( x ) = xα α ∈ Q* , f ' (x ) = αxα −1
f (x ) = c , f
'
(
(x ) = 0
)
x
x
'
x
对数函数
{
1 f ( x ) = log a x, f ( x ) = x ln a
'
1 f (x ) = ln x, f (x ) = x
x(2) y = x −3 3) y = x x ) ( )
( )
方法总结: 方法总结:把函数转化为可以直接利用导数公式的基本函数模式
y 自主迁移:求导数( ) 自主迁移:求导数(1) =
6
二、基本初等函数的导数公式
常数函数 幂函数
三角函数
指数函数
{ f (x ) = cos x , f (x ) = − sin x f ( x ) = a , f ( x ) = a ln a { f (x ) = e , f (x ) = e
( ) 幂的乘积) 结论 (x ) = αx (α ∈ Q (幂指数与自变量的α − 1 幂的乘积) )
x =x
' 1 2 1 − 1 1 1 1 −1 = = × x 2 = × x2 2 x 2 2
'
α '
α −1
*
一、几个常见函数的导数
1 y y 5 3 :(1) 例1、求导数:( ) = x (2) = 4 (3) = x 、求导数:( y ) ) x
几个常见函数的导数公式 和基本初等函数的导数公式

常用求导积分公式及不定积分基本方法

常用求导积分公式及不定积分基本方法

常用求导积分公式及不定积分基本方法常用求导公式:1.一元函数求导公式:- 反函数求导法则:若y=f(u),则u=f^(-1)(y),则有(dy)/(dx) =1/(du/dy)- 常数乘法法则:若y=kf(x),则(dy)/(dx) = kf'(x)-基本初等函数求导法则:- 常数函数求导法则:若y=c,则(dy)/(dx) = 0- 幂函数求导法则:若y=x^n,则(dy)/(dx) = nx^(n-1)- 指数函数求导法则:若y=a^x,则(dy)/(dx) = (lna) * a^x- 对数函数求导法则:若y=loga(x),则(dy)/(dx) = 1 / (xlna)- 三角函数求导法则:若y=sin(x)、cos(x)、tan(x)、cot(x)、sec(x)、csc(x),则(dy)/(dx) = cos(x)、-sin(x)、sec^2(x)、-csc^2(x)、sec(x)tan(x)、-csc(x)cot(x),对应地还有反三角函数的求导公式- 反函数求导法则:若y=f^(-1)(x),则(dy)/(dx) = 1 / (dx/dy)-两个函数的和、差、积、商求导法则:- 和、差法则:若y=u+v,则(dy)/(dx) = (du)/(dx) + (dv)/(dx),若y=u-v,则(dy)/(dx) = (du)/(dx) - (dv)/(dx)- 积法则:若y=uv,则(dy)/(dx) = u(dv)/(dx) + v(du)/(dx)- 商法则:若y=u/v,则(dy)/(dx) = (v(du)/(dx) - u(dv)/(dx))/ v^22.多元函数求导公式:-偏导数:对多元函数,其对其中其中一个自变量求导,其它自变量当作常数,即得到偏导数-偏导函数的求导法则:对偏导函数重复使用一元函数求导公式常用不定积分基本方法:1.基本初等函数的不定积分法则:- 幂函数积分法则:∫x^n dx = (1/(n+1)) * x^(n+1) + C,其中n≠-1- 指数函数与对数函数积分法则:∫a^x dx = (1/lna) * a^x + C,∫(1/x) dx = ln,x, + C-三角函数与反三角函数积分法则:- ∫sin(x) dx = -cos(x) + C,∫cos(x) dx = sin(x) + C- ∫sec^2(x) dx = tan(x) + C,∫csc^2(x) dx = -cot(x) + C- ∫sec(x)tan(x) dx = sec(x) + C,∫csc(x)cot(x) dx = -csc(x) + C- ∫(1/√(1-x^2)) dx = arcsin(x) + C,∫(1/√(1+x^2)) dx = arctan(x) + C- 反函数的不定积分法则:若F'(x) = f(x),则∫f^(-1)(x) dx =x * f^(-1)(x) - F(f^(-1)(x)) + C-特殊函数的不定积分法则:包括指数函数幂倍积分法则、二次函数积分法则等2.基本不定积分运算:- 基本线性运算:若∫f(x) dx = F(x) + C₁,∫g(x) dx = G(x) +C₂,则∫(af(x) + bg(x)) dx = aF(x) + bG(x) + C₃,其中a、b为实数- 递推公式:若∫f(x) dx = F(x) + C,则∫f(x)Ⓓ(x) dx = FⒹ(x) - ∫FⒹ(x) fⒹd(x) dx + C3. 分部积分法:设u(x)和v(x)具有连续一阶导数,根据分部积分公式,有∫u(x)v(x) dx = u(x)v(x) - ∫v(x)uⒹ(x) dx4.换元积分法(含有待定变量):设y=f(u),u=g(x),当g(x)可导、f(u)的原函数可积时5.改线积分法:将不定积分中的自变量换成关于自变量的函数。

基本初等函数导数公式大全

基本初等函数导数公式大全

基本初等函数导数公式大全基本初等函数是指常见的代数函数,包括多项式函数、指数函数、对数函数、三角函数、反三角函数以及其组合。

这些函数在数学中起着重要的作用,我们经常需要求它们的导数以解决各种问题。

下面是基本初等函数的导数公式大全:1. 多项式函数:多项式函数是由若干个幂函数组成的函数。

对于多项式函数y = aₙxⁿ + aₙ₋₁xⁿ⁻¹ + ... + a₁x + a₀,其中a₀, a₁, ..., aₙ是常数,n是非负整数,则其导数为y' =n*aₙxⁿ⁻¹ + (n-1)*aₙ₋₁xⁿ⁻² + ... + a₁。

2. 指数函数:指数函数是以底数为常数e的幂函数,其中e ≈ 2.71828。

对于指数函数y = aᵢe^(bᵢx)(其中aᵢ, bᵢ为常数),其导数为y' = bᵢaᵢe^(bᵢx)。

3. 对数函数:对数函数是指数函数的反函数。

对于对数函数y = logₐ(x),其中a为常数且a > 0且a ≠ 1,则其导数为y' = 1/(xlna)。

4. 正弦函数与余弦函数:正弦函数y = sin(x)的导数为y' = cos(x)。

余弦函数y = cos(x)的导数为y' = -sin(x)。

5. 正切函数与余切函数:正切函数y = tan(x)的导数为y' = sec²(x)。

余切函数y = cot(x)的导数为y' = -csc²(x)。

6. 反正弦函数、反余弦函数与反正切函数:反正弦函数y = arcsin(x)的导数为y' = 1/√(1-x²)。

反余弦函数y = arccos(x)的导数为y' = -1/√(1-x²)。

反正切函数y = arctan(x)的导数为y' = 1/(1+x²)。

7. 双曲正弦函数与双曲余弦函数:双曲正弦函数y = sinh(x)的导数为y' = cosh(x)。

几个常用函数的导数、基本初等函数的导数公式及导数的运算法则 课件

几个常用函数的导数、基本初等函数的导数公式及导数的运算法则  课件

【微思考】 (1)y=sinx在x=x0处的导数是多少?其几何意义是什么? 提示:y′=cosx,x=x0,f′(x0)=cosx0,几何意义是曲线 y=sinx在点(x0,y0)处的切线的斜率. (2)y=x3在(0,0)点存在切线吗?若存在,切线方程是什么? 提示:存在,y′=3x2,y′|x=0=3×02=0,所以过(0,0)点的 切线为y=0.
【解题探究】1.题(1)中抛物线x2=2y上两点P,Q的切线的斜率 等于多少? 2.题(2)中两条直线互相垂直的条件是什么? 【探究提示】1.kP=y′|x=4=4,kQ=y′|x=-2=-2. 2.两直线互相垂直的条件是斜率的乘积等于-1.
【自主解答】(1)由于P,Q为抛物线x2=2y(即y1= x2)上的点,
x3
数的导数公式? 2.在题(2)中能否直接对②应用导数公式求导,如果不能,应 该如何处理? 【探究提示】1.应用幂函数的导数公式求导,可先将原函数变 形为幂函数,再求导数. 2.不能直接用公式求导,应对函数进行变形,可变形为cos x.
【自主解答】(1)选D.因为f′(x)=(x-3)′=-3x-4,
类型二 导数的几何意义的应用 【典例2】(1)(辽宁高考)已知P,Q为抛物线x2=2y上两点,点P, Q的横坐标分别为4,-2,过P,Q分别作抛物线的切线,两切线 交于点A,则点A的纵坐标为__________. (2)已知两条曲线y=sinx,y=cosx,是否存在这两条曲线的一 个公共点,使在这一点处,两条曲线的切线互相垂直?并说明 理由.
【微思考】
(1)若函数f(x)=x3,那么f′(m)的含义是什么?
提示:f′(m)的含义是函数f(x)=x3在x=m时所对应的导数值. (2)没有公式能直接求函数f(x)= 1 的导数,是不是其导数就

几个常用函数的导数与基本初等函数的导数公式

几个常用函数的导数与基本初等函数的导数公式

几个常用函数的导数与基本初等函数的导数公式常用函数的导数公式及基本初等函数的导数公式是微积分中非常重要的知识点。

在计算导数时,这些公式能帮助我们更加方便地得到结果。

下面是常用函数的导数公式及基本初等函数的导数公式:1.常数函数:若f(x)=C,其中C为常数,则f'(x)=0。

2.幂函数:若 f(x) = x^n,其中 n 为常数,则 f'(x) = nx^(n-1)。

3.指数函数:若 f(x) = a^x,其中 a 为常数且 a > 0,a ≠ 1,则 f'(x) =ln(a) * a^x。

4.对数函数:(1) 若 f(x) = ln(x),则 f'(x) = 1/x。

(2) 对数函数的基本性质:若 f(x) = ln(g(x)),则 f'(x) =g'(x)/g(x)。

5.三角函数:(1) 若 f(x) = sin(x),则 f'(x) = cos(x)。

(2) 若 f(x) = cos(x),则 f'(x) = -sin(x)。

(3) 若 f(x) = tan(x),则 f'(x) = sec^2(x)。

(4) 若 f(x) = cot(x),则 f'(x) = -cosec^2(x)。

(5) 若 f(x) = sec(x),则 f'(x) = sec(x) * tan(x)。

(6) 若 f(x) = cosec(x),则 f'(x) = -cosec(x) * cot(x)。

6.反三角函数:包括反正弦函数(arcsin(x)或sin^(-1)(x))、反余弦函数(arccos(x)或cos^(-1)(x))和反正切函数(arctan(x)或tan^(-1)(x))等。

根据反函数的导数公式,可以得到它们的导数公式:(1) 若 f(x) = arcsin(x),则f'(x) = 1/√(1-x^2)。

考研数学微积分公式

考研数学微积分公式

考研数学微积分公式微积分是数学中的一个重要分支,用来研究变化和累积的过程。

在考研数学中,微积分是一个重要的考察点,掌握常见的微积分公式对于解题非常有帮助。

下面是一些考研数学微积分公式的详细介绍。

1.基本导数公式(1) 常数导数公式:如果常数k,那么d/dx(k) = 0。

(2) 幂函数导数公式:如果f(x) = x^n(n不等于-1,-2...),那么d/dx(f(x)) = nx^(n-1)。

(3)基本初等函数导数公式:a. 常数函数的导数:d/dx(c) = 0。

b. 正弦函数的导数:d/dx(sin(x)) = cos(x)。

c. 余弦函数的导数:d/dx(cos(x)) = -sin(x)。

d. 正切函数的导数:d/dx(tan(x)) = sec^2(x)。

e. 反正弦函数的导数:d/dx(arcsin(x)) = 1/√(1-x^2)。

f. 反余弦函数的导数:d/dx(arccos(x)) = -1/√(1-x^2)。

g. 反正切函数的导数:d/dx(arctan(x)) = 1/(1+x^2)。

(4) 乘法法则:如果f(x) = u(x)v(x),那么d/dx(f(x)) =u'(x)v(x) + u(x)v'(x)。

(5) 除法法则:如果f(x) = u(x)/v(x) (其中v(x)不等于0),那么d/dx(f(x)) = (u'(x)v(x) - u(x)v'(x))/[v(x)]^22.基本积分公式(1) 幂函数积分公式:∫x^n dx = (1/n+1)x^(n+1) + C (n不等于-1)a. 常数函数的积分:∫k dx = kx + C。

b. 正弦函数的积分:∫sin(x) dx = -cos(x) + C。

c. 余弦函数的积分:∫cos(x) dx = sin(x) + C。

d. 正切函数的积分:∫tan(x) dx = -ln,cos(x), + C。

基本初等函数导数公式

基本初等函数导数公式

基本初等函数导数公式基本初等函数导数公式还有同学记得吗?不记得的话,快来小编这里瞧瞧。

下面是由小编为大家整理的“基本初等函数导数公式”,仅供参考,欢迎大家阅读。

基本初等函数导数公式C'=0、(x^n)'=nx^(n-1)、(a^x)'=a^x*lna、(e^x)'=e^x、(loga(x))'=1/(xlna)、(lnx)'=1/x、(sinx)'=cosx、(cosx)'=-sinx。

初等函数是由基本初等函数经过有限次的四则运算和复合运算所得到的函数。

基本初等函数和初等函数在其定义区间内均为连续函数。

不是初等函数的函数,称为非初等函数,如狄利克雷函数和黎曼函数。

拓展阅读:高一数学必修一知识点总结高一数学集合有关概念集合的含义集合的中元素的三个特性:元素的确定性如:世界上最高的山元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合集合的表示:{ … } 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}集合的表示方法:列举法与描述法。

注意:常用数集及其记法:非负整数集(即自然数集) 记作:N正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R列举法:{a,b,c……}描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。

{x(R| x-3>2} ,{x| x-3>2}语言描述法:例:{不是直角三角形的三角形}Venn图:集合的分类:有限集含有有限个元素的集合无限集含有无限个元素的集合空集不含任何元素的集合例:{x|x2=-5}高一数学集合间的基本关系1.“包含”关系—子集注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。

反之: 集合A不包含于集合B,或集合B不包含集合A,记作AB或BA2.“相等”关系:A=B (5≥5,且5≤5,则5=5)实例:设 A={x|x2-1=0} B={-1,1} “元素相同则两集合相等”即:① 任何一个集合是它本身的子集。

常用函数的导数计算

常用函数的导数计算
f(x)= x
导函数
f′(x)= 0 f′(x)= 1 f′(x)= 2x f′(x)= -x12
1
f′(x)= 2 x
2.基本初等函数的导数公式
原函数
导函数
f(x)=c
f′(x)= 0
f(x)=xα(α∈Q*)
f′(x)= αxα-1
f(x)=sin x
f′(x)= cos x
f(x)=cos x
计算.
跟踪训练 3 点 P 是曲线 y=ex 上任意一点,求点 P 到直线 y =x 的最小距离. 解 根据题意设平行于直线 y=x 的直线与曲线 y= ex 相切于点(x0,y0),该切点即为与 y=x 距离最近的 点,如图.则在点(x0,y0)处的切线斜率为 1, 即 y xx0 =1.∵y′=(ex)′=ex, ∴ex0=1,得 x0=0,代入 y=ex,得 y0=1,即 P(0,1).
求 y=cos x 在 x=π3处的导数,过程如下:
y′|
x

π 3
=cosπ3
′=-sin
π3=-
3 2.
解 错误.应为 y′=-sin x,
∴y′| x π =-sin 3
π3=-
3 2.
小结 函数 f(x)在点 x0 处的导数等于 f′(x)在点 x=x0 处的函数 值.在求函数在某点处的导数时可以先利用导数公式求出导函 数,再将 x0 代入导函数求解,不能先代入后求导.
3.2.1 几个常用函数的导数
3.2.2 基本初等函数的导数公式及
导数的运算法则(一)
学习目标
1.能根据定义求函数 y=c,y=x,y=x2,y =1x的导数.
2.能利用给出的基本初等函数的导数公式求 简单函数的导数.

高等数学常用导数公式大全

高等数学常用导数公式大全

高等数学常用导数公式大全在高等数学中,导数是描述函数变化率的重要概念之一。

导数的应用十分广泛,特别是在求解极值、曲线切线以及函数图像的特征等方面具有重要作用。

本文将总结高等数学中常用的导数公式,供同学们参考使用。

常见函数的导数公式基本初等函数的导数公式1.常数函数:f(f)=f,导数为f′(f)=0。

2.幂函数:f(f)=f f,导数为f′(f)=ff f−1。

3.指数函数:f(f)=f f,导数为 $f'(x) = a^x \\ln a$。

4.对数函数:$f(x) = \\log_a x$,导数为 $f'(x) =\\frac{1}{x \\ln a}$。

5.三角函数:$f(x) = \\sin x$,导数为 $f'(x) = \\cosx$;$f(x) = \\cos x$,导数为 $f'(x) = -\\sin x$。

6.反三角函数:$f(x) = \\arcsin x$,导数为 $f'(x) =\\frac{1}{\\sqrt{1-x^2}}$;$f(x) = \\arccos x$,导数为$f'(x) = -\\frac{1}{\\sqrt{1-x^2}}$。

复合函数的导数公式1.链式法则:若f=f(f),f=f(f),则f=f(f(f))的导数为 $\\frac{dy}{dx} = \\frac{dy}{du} \\cdot \\frac{du}{dx}$。

高阶导数公式1.二阶导数:若f=f(f)的一阶导数为f′,则f″表示f′的导数,即 $y'' = \\frac{d}{dx} (f'(x))$。

隐函数求导公式1.隐函数求导:对于方程f(f,f)=0,当不能解出f对f的显式表达时,可利用隐函数求导公式,即$\\frac{dy}{dx} = - \\frac{F_x}{F_y}$。

常用函数导数总结在高等数学中,经常会遇到一些复杂函数的导数计算,下面给出一些常用函数的导数总结:1.反函数的导数计算:若f=f(f)的反函数为f=f−1(f),则f−1(f)的导数为 $\\frac{dx}{dy} =\\frac{1}{\\frac{dy}{dx}}$。

基本初等函数的导数公式及导数的运算法则

基本初等函数的导数公式及导数的运算法则

基本初等函数的导数公式及导数的运算法则导数是微积分中一个重要的概念,表示函数在其中一点上的变化率。

在求解导数时,我们可以利用一些基本初等函数的导函数公式以及导数的运算法则来简化计算。

以下是一些常用的基本初等函数的导数公式及导数的运算法则。

一、基本初等函数的导数公式1.常数函数:若f(x)=C,其中C为常数,则f'(x)=0。

2. 幂函数:若f(x) = x^n,其中n为正整数,则f'(x) = nx^(n-1)。

例如,f(x) = x^2,则f'(x) = 2x。

3. 指数函数:若f(x) = a^x,其中a为正常数且a≠1,则f'(x) = a^x ln(a)。

其中ln(x)表示以e为底的对数函数。

例如,f(x) = 2^x,则f'(x) = 2^x ln(2)。

4. 对数函数:若f(x) = logₐx,其中a为正常数且a≠1,则f'(x)= 1 / (x ln(a))。

例如,f(x) = log₂x,则f'(x) = 1 / (x ln(2))。

5. 三角函数:(1)sin(x) 的导函数为 cos(x);(2)cos(x) 的导函数为 -sin(x);(3)tan(x) 的导函数为 sec^2(x),其中 sec(x) 为secant 函数,其值等于 1 / cos(x);(4)cot(x) 的导函数为 -csc^2(x),其中 csc(x) 为 cosecant 函数,其值等于 1 / sin(x);(5)sec(x) 的导函数为 sec(x)tan(x);(6)csc(x) 的导函数为 -csc(x)cot(x)。

1.和差法则:若f(x)和g(x)都是可导函数,则(f±g)'(x)=f'(x)±g'(x)。

即和差函数的导数等于各个函数的导数之和或差。

例如,若f(x)=x^2,g(x)=x,则(f+g)'(x)=(x^2)'+x'=2x+12. 数乘法则:若f(x) 是可导函数,c 为常数,则(cf)'(x) =cf'(x)。

人教新课标版数学高二课件 3.2 第1课时 几个常用函数的导数与基本初等函数的导数公式

人教新课标版数学高二课件 3.2 第1课时 几个常用函数的导数与基本初等函数的导数公式

x=
1x=x
1 2

∴y′=
1
x
3 2
.
2
解答
(2)y=2cos22x-1. 解 ∵y=2cos22x-1=cos x, ∴y′=(cos x)′=-sin x.
解答
类型二 导数公式的应用 命题角度1 求切线方程 例2 已知点P(-1,1),点Q(2,4)是曲线y=x2上两点,是否存在与直线PQ 垂直的切线,若有,求出切线方程,若没有,请说明理由.
解答
反思与感悟 解决切线问题,关键是确定切点,要充分利用 (1)切点处的导数是切线的斜率. (2)切点在切线上. (3)切点又在曲线上这三个条件联立方程解决.
跟踪训练2 已知两条曲线y=sin x,y=cos x,是否存在这两条曲线的一 个公共点,使在这一点处两条曲线的切线互相垂直?并说明理由. 解 设存在一个公共点(x0,y0),使两曲线的切线垂直, 则在点(x0,y0)处的切线斜率分别为 k1= y' |xx0 =cos x0,k2= y' |xx0 =-sin x0. 要使两切线垂直,必须有k1k2=cos x0(-sin x0)=-1, 即sin 2x0=2,这是不可能的. 所以两条曲线不存在公共点,使在这一点处的两条切线互相垂直.
f′(x)=_α_x_α-__1
f(x)=sin x
f′(x)=_c_o_s _x_
f(x)=cos x f(x)=ax f(x)=ex
f(x)=logax f(x)=ln x
f′(x)=-__s_i_n_x_
f′(x)= axln a(a>0)
f′(x)=_ex_ 1 f′(x)=_x_ln__a_(a>0,且a≠1)
解答

课几个常用函数的导数、基本初等函数的导数公式及导数的运算法则课件(人教A选修

课几个常用函数的导数、基本初等函数的导数公式及导数的运算法则课件(人教A选修
*h'(x)
应用:在计算 复杂函数的导 数时,可以通 过链式法则将 复杂函数分解 为简单函数, 从而简化计算
过程
注意事项:在 使用链式法则 时,需要注意 函数的定义域 和值域,以及 函数的连续性
和可导性
乘积法则和商的导数法则
乘积法则:导数等于导数的乘积 商的导数法则:导数等于导数的商 复合函数的导数法则:导数等于导数的复合 反函数的导数法则:导数等于原函数的导数的倒数
04
导数的运算法则
导数的四则运算法则
加法法则:导数 相加等于导数之 和
减法法则:导数 相减等于导数之 差
乘法法则:导数 相乘等于导数之 积
除法法则:导数 相除等于导数之 商
链式法则
定义:链式法 则是导数的运 算法则之一, 用于计算复合
函数的导数
公式:若 f(x)=g(h(x)),
则 f'(x)=g'(h(x))
导数是函数在某一点的局 部线性逼近的斜率极限
02
常用函数的导数
一次函数、二次函数、幂函数的导数
一次函数:y=ax+b,导数为a
二次函数:y=ax^2+bx+c, 导数为2ax+b
幂函数:y=x^n,导数为 nx^(n-1)
指数函数和对数函数的导数
指数函数: y=a^x,其导 数为y'=a^x * ln(a)
导数的几何意义
导数是函数在某一点的切线斜率 导数是函数在某一点的瞬时变化率 导数是函数在某一点的切线斜率 导数是函数在某一点的瞬时变化率
导数的基本性质
导数是函数在某一点的切 线斜率
导数是函数在某一点的瞬 时变化率
导数是函数在某一点的局 部线性近似

知识讲解-导数的计算-基础

知识讲解-导数的计算-基础

导数的计算【学习目标】 1. 牢记几个常用函数的导数公式,并掌握其推导过程。

2. 熟记八个基本初等函数的导数公式,并能准确运用。

3. 能熟练运用四则运算的求导法则,4. 理解复合函数的结构规律,掌握求复合函数的求导法则:“由外及内,层层求导”.【要点梳理】知识点一:基本初等函数的导数公式(1)()f x C =(C 为常数),'()0f x =(2)()nf x x =(n 为有理数),1'()n f x n x-=⋅(3)()sin f x x =,'()cos f x x = (4)()cos f x x =,'()sin f x x =- (5)()xf x e =,'()xf x e =(6)()xf x a =,'()ln xf x a a =⋅(7)()ln f x x =,1'()f x x = (8)()log a f x x =,1'()log a f x e x =。

要点诠释:1.常数函数的导数为0,即C '=0(C 为常数).其几何意义是曲线()f x C =(C 为常数)在任意点处的切线平行于x 轴.2.有理数幂函数的导数等于幂指数n 与自变量的(n -1)次幂的乘积,即1()'nn x nx-=(n ∈Q ).特别地211'x x ⎛⎫=-⎪⎝⎭,=。

3.正弦函数的导数等于余弦函数,即(sin x )'=cos x .4.余弦函数的导数等于负的正弦函数,即(cos x )'=-sin x .5.指数函数的导数:()'ln xxa a a =,()'xxe e =. 6.对数函数的导数:1(log )'log a a x e x =,1(ln )'x x=. 有时也把1(log )'log a a x e x = 记作:1(log )'ln a x x a=以上常见函数的求导公式不需要证明,只需记住公式即可.知识点二:函数的和、差、积、商的导数运算法则:(1)和差的导数:[()()]''()'()f x g x f x g x ±=± (2)积的导数:[()()]''()()()'()f x g x f x g x f x g x ⋅=+(3)商的导数:2()'()()()'()[]'()[()]f x f xg x f x g x g x g x ⋅-⋅=(()0g x ≠) 要点诠释:1. 上述法则也可以简记为:(ⅰ)和(或差)的导数:()'''u v u v ±=±, 推广:1212()''''n n u u u u u u ±±±=±±±L L . (ⅱ)积的导数:()'''u v u v uv ⋅=+, 特别地:()''cu cu =(c 为常数).(ⅲ)商的导数:2'''(0)u u v uv v v v -⎛⎫=≠⎪⎝⎭, 两函数商的求导法则的特例 2()'()()()'()'(()0)()()f x f x g x f x g x g x g x g x ⎡⎤-=≠⎢⎥⎣⎦, 当()1f x =时,2211'()1'()'()'(()0)()()()g x g x g x g x g x g x g x ⎡⎤⋅-⋅==-≠⎢⎥⎣⎦. 这是一个函数倒数的求导法则.2.两函数积与商求导公式的说明(1)类比:()'''uv u v uv =+,2'''u u v uv v v -⎛⎫=⎪⎝⎭(v ≠0),注意差异,加以区分. (2)注意:'''u u v v ⎛⎫≠⎪⎝⎭且2'''u u v uv v v +⎛⎫≠ ⎪⎝⎭(v ≠0). 3.求导运算的技巧在求导数中,有些函数虽然表面形式上为函数的商或积,但在求导前利用代数或三角恒等变形可将函数先化简(可能化去了商或积),然后进行求导,可避免使用积、商的求导法则,减少运算量.知识点三:复合函数的求导法则 1.复合函数的概念对于函数[()]y f x ϕ=,令()u x ϕ=,则()y f u =是中间变量u 的函数,()u x ϕ=是自变量x 的函数,则函数[()]y f x ϕ=是自变量x 的复合函数.要点诠释: 常把()u x ϕ=称为“内层”, ()y f u =称为“外层” 。

3-2-1 几个常用函数的导数及基本初等函数的导数公式

3-2-1 几个常用函数的导数及基本初等函数的导数公式

能力拓展提升一、选择题11.已知函数f (x )=x 12,则[f (12)]′=( ) A .0 B.22 C .1 D .-22[答案] A[解析] ∵f (12)是常数,∴[f (12)]′=0. 12.给出下列结论: ①若y =1x 3,则y ′=-3x 4; ②y =3x ,则y ′=133x ;③y =log 2x ,则y ′=1x ; ④y =cos x ,则y ′=sin x . 其中正确的个数是( ) A .1 B .2 C .3 D .4[答案] A[解析] y =1x 3=x -3,y ′=-3x -4=-3x 4,故①正确;y =3x =x 13,y ′=13x-23=133x 2,故②不正确;y =log 2x ,y ′=1x ln2;故③不正确;y=cos x ,y ′=-sin x ,故④不正确.13.已知直线y =kx 是y =ln x 的切线,则k 的值为( ) A.12 B .-12 C.1e D .-1e[答案] C[解析] y ′=1x =k ,∴x =1k ,切点坐标为⎝ ⎛⎭⎪⎫1k ,1,又切点在曲线y =ln x 上,∴ln 1k =1,∴1k =e ,k =1e . 14.正弦曲线y =sin x 上切线的斜率等于12的点为( ) A .(π3,32)B .(-π3,-32)或(π3,32)C .(2k π+π3,32)D .(2k π+π3,32)或(2k π-π3,-32) [答案] D[解析] 设斜率等于12的切线与曲线的切点为P (x 0,y 0),∵y ′|x =x 0=cos x 0=12, ∴x 0=2k π+π3或2k π-π3,∴y 0=32或-32. 二、填空题15.y =10x 在(1,10)处切线的斜率为________. [答案] 10ln10[解析] y ′=10x ln10, ∴y ′|x =1=10ln10.16.抛物线y =x 2上的点到直线x -y -2=0的最短距离为________.[答案]728[解析] ∵y =x 2,∴y ′=2x ,而抛物线y =x 2与直线x -y -2=0平行的切线只有一条,即2x =1,这个切点坐标为(12,14),该点到直线的距离为d =|12-14-2|2=742=728.三、解答题17.已知曲线C :y =x 3.(1)求曲线C 上点(1,1)处的切线方程;(2)在(1)中的切线与曲线C 是否还有其他公共点? [解析] (1)∵y ′=3x 2, ∴切线斜率k =3,∴切线方程y -1=3(x -1), 即3x -y -2=0.(2)由⎩⎪⎨⎪⎧3x -y -2=0y =x3消去y 得,3x -x 3-2=0, ∴(x -1)2(x +2)=0, ∴x 1=1,x 2=-2.∴公共点为(1,1)及(-2,-8).18.已知函数y =a sin x +b 的图象过点A (0,0),B (3π2,-1),试求函数在原点处的切线方程.[解析] ∵y =a sin x +b 的图象过点A (0,0),B (3π2,-1),∴⎩⎨⎧0=a sin0+b -1=a sin 3π2+b,解得⎩⎪⎨⎪⎧a =1b =0.∴y =sin x .又∵y ′=cos x ,∴y ′|x =0=1. ∴切线方程为y =x .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基础巩固强化
一、选择题
1.设y =e 3,则y ′等于( ) A .3e 2 B .e 2
C .0
D .以上都不是
[答案] C
[解析] ∵y =e 3是一个常数,∴y ′=0.
2.(2012~2013学年度陕西宝鸡中学高二期末测试)函数y =sin x 的导数是( )
A .y =sin x
B .y =-cos x
C .y =cos x
D .y =-sin x [答案] C
[解析] ∵(sin x )′=cos x , ∴选C.
3.已知函数f (x )=x 3的切线的斜率等于3,则切线有( ) A .1条 B .2条 C .3条 D .不确定 [答案] B
[解析] ∵f ′(x )=3x 2=3,解得x =±1.切点有两个,即可得切线有两条.
4.若y =cos 2π
3,则y ′=( ) A .-3
2
B .-12
C .0 D.12
[答案] C
[解析] 常数函数的导数为0.
5.若y =ln x ,则其图象在x =2处的切线斜率是( ) A .1 B .0 C .2 D.12
[答案] D
[解析] ∵y ′=1x ,∴y ′|x =2=1
2,故图象在x =2处的切线斜率为12.
6.y =x α在x =1处切线方程为y =-4x ,则α的值为( ) A .4 B .-4 C .1 D .-1 [答案] B
[解析] y ′=(x α)′=αx α-1, 由条件知,y ′|x =1=α=-4. 二、填空题
7.曲线y =ln x 与x 轴交点处的切线方程是__________. [答案] y =x -1
[解析] ∵曲线y =ln x 与x 轴的交点为(1,0) y ′|x =1=1,∴切线的斜率为1, ∴所求切线方程为:y =x -1.
8.质点沿直线运动的路程与时间的关系是s =5
t ,则质点在t =32时的速度等于____________.
[答案] 1
80
[解析] ∵s ′=(5
t )′=(t 15
)′=15t -
45

∴质点在t =32时的速度为1
5×32-
4
5
=1
5×(25)
- 45
=180.
9.在曲线y =4
x 2上求一点P ,使得曲线在该点处的切线的倾斜角为135°,则P 点坐标为________.
[答案] (2,1)
[解析] 设P (x 0,y 0),
∵y ′=⎝ ⎛⎭
⎪⎫
4x 2′=(4x -2)′=-8x -3,tan135°=-1,
∴-8x -3
0=-1.
∴x 0=2,y 0=1. 三、解答题
10.求证双曲线y =1
x 上任意一点P 处的切线与两坐标轴围成的三角形面积为定值.
[解析] 设双曲线上任意一点P (x 0,y 0), ∵y ′=-1
x 2,
∴点P 处的切线方程y -y 0=-1
x 20(x -x 0).
令x =0,得y =y 0+1x 0
=2
x 0

令y =0,得x =x 0+x 20y 0=2x 0.
∴S△=1
2|x|·|y|=2.
∴三角形面积为定值2.。

相关文档
最新文档