高中数学经典错因正解汇总:第一章集合与常用逻辑用语
高中数学经典错因正解汇总:第一章集合与常用逻辑用语 (1)
第一章 集合与常用逻辑用语§1.1 集合的概念与运算一、知识导学1.集合:一般地,一定范围内某些确定的、不同的对象的全体构成一个集合.2.元素:集合中的每一个对象称为该集合的元素,简称元.3.子集:如果集合A 的任意一个元素都是集合B 的元素(若A a ∉则B a ∈),则称集合A 为集合B 的子集,记为A ⊆B 或B ⊇A ;如果A ⊆B ,并且A ≠B ,这时集合A 称为集合B 的真子集,记为A B 或BA.4.集合的相等:如果集合A 、B 同时满足A ⊆B 、B ⊇A ,则A=B.5.补集:设A ⊆S ,由S 中不属于A 的所有元素组成的集合称为S 的子集A 的补集,记 为 A C s .6.全集:如果集合S 包含所要研究的各个集合,这时S 可以看做一个全集,全集通常 记作U.7.交集:一般地,由所有属于集合A 且属于B 的元素构成的集合,称为A 与B 的交集, 记作A ⋂B.8.并集:一般地,由所有属于集合A 或者属于B 的元素构成的集合,称为A 与B 的并 集,记作A ⋃B.9.空集:不含任何元素的集合称为空集,记作Φ. 10.有限集:含有有限个元素的集合称为有限集. 11.无限集:含有无限个元素的集合称为无限集.12.集合的常用表示方法:列举法、描述法、图示法(Venn 图).13.常用数集的记法:自然数集记作N ,正整数集记作N +或N *,整数集记作Z ,有理数集记作Q ,实数集记作R . 二、疑难知识1.符号⊆,,⊇,,=,表示集合与集合之间的关系,其中“⊆”包括“”和“=”两种情况,同样“⊇”包括“”和“=”两种情况.符号∈,∉表示元素与集合之间的关系.要注意两类不同符号的区别.2.在判断给定对象能否构成集合时,特别要注意它的“确定性”,在表示一个集合时,要特别注意它的“互异性”、“无序性”.3.在集合运算中必须注意组成集合的元素应具备的性质.4.对由条件给出的集合要明白它所表示的意义,即元素指什么,是什么范围.用集合表示不等式(组)的解集时,要注意分辨是交集还是并集,结合数轴或文氏图的直观性帮助思维判断.空集是任何集合的子集,但因为不好用文氏图形表示,容易被忽视,如在关系式中,B=Φ易漏掉的情况.5.若集合中的元素是用坐标形式表示的,要注意满足条件的点构成的图形是什么,用数形结合法解之.6.若集合中含有参数,须对参数进行分类讨论,讨论时既不重复又不遗漏.7.在集合运算过程中要借助数轴、直角坐标平面、Venn 图等将有关集合直观地表示出来. 8.要注意集合与方程、函数、不等式、三角、几何等知识的密切联系与综合使用. 9.含有n 个元素的集合的所有子集个数为:n 2,所有真子集个数为:n2-1三、经典例题[例1] 已知集合M={y |y =x 2+1,x∈R },N={y|y =x +1,x∈R },则M∩N=( ) A .(0,1),(1,2) B .{(0,1),(1,2)} C .{y|y=1,或y=2} D .{y|y≥1}错解:求M∩N 及解方程组⎩⎨⎧+=+=112x y x y 得⎩⎨⎧==10y x 或 ⎩⎨⎧==21y x ∴选B错因:在集合概念的理解上,仅注意了构成集合元素的共同属性,而忽视了集合的元素是什么.事实上M 、N 的元素是数而不是实数对(x,y ),因此M 、N 是数集而不是点集,M 、N 分别表示函数y =x 2+1(x∈R ),y =x +1(x∈R )的值域,求M∩N 即求两函数值域的交集.正解:M={y |y =x 2+1,x∈R }={y |y ≥1}, N={y|y=x +1,x∈R }={y|y∈R }. ∴M∩N={y |y ≥1}∩{y|(y∈R)}={y |y ≥1}, ∴应选D .注:集合是由元素构成的,认识集合要从认识元素开始,要注意区分{x |y =x 2+1}、{y |y =x 2+1,x ∈R }、{(x ,y )|y =x 2+1,x ∈R },这三个集合是不同的.[例2] 已知A={x |x 2-3x +2=0},B={x |ax -2=0}且A∪B=A,求实数a 组成的集合C . 错解:由x 2-3x +2=0得x =1或2. 当x =1时,a =2, 当x =2时,a=1.错因:上述解答只注意了B 为非空集合,实际上,B=时,仍满足A∪B=A . 当a =0时,B=,符合题设,应补上,故正确答案为C={0,1,2}. 正解:∵A∪B=A ∴B A 又A={x |x 2-3x +2=0}={1,2}∴B=或{}{}21或 ∴C={0,1,2}[例3]已知m ∈A,n ∈B, 且集合A={}Z a a x x ∈=,2|,B={}Z a a x x ∈+=,12|,又C={}Z a a x x ∈+=,14|,则有: ( )A .m +n ∈A B. m +n ∈B C.m +n ∈C D. m +n 不属于A ,B ,C 中任意一个 错解:∵m ∈A ,∴m =2a ,a Z ∈,同理n =2a +1,a ∈Z, ∴m +n =4a +1,故选C 错因是上述解法缩小了m +n 的取值范围.正解:∵m ∈A, ∴设m =2a 1,a 1∈Z , 又∵n B ∈,∴n =2a 2+1,a 2∈ Z , ∴m +n =2(a 1+a 2)+1,而a 1+a 2∈ Z , ∴m +n ∈B, 故选B.[例4] 已知集合A={x|x 2-3x -10≤0},集合B={x|p +1≤x≤2p-1}.若BA ,求实数p 的取值范围.错解:由x 2-3x -10≤0得-2≤x≤5.欲使BA ,只须3351212≤≤-⇒⎩⎨⎧≤-+≤-p p p∴ p 的取值范围是-3≤p≤3.错因:上述解答忽略了"空集是任何集合的子集"这一结论,即B=时,符合题设. 正解:①当B≠时,即p +1≤2p-1p≥2.由BA 得:-2≤p+1且2p -1≤5.由-3≤p≤3. ∴ 2≤p≤3②当B=时,即p +1>2p -1p < 2.由①、②得:p≤3.点评:从以上解答应看到:解决有关A∩B=、A∪B=,A B 等集合问题易忽视空集的情况而出现漏解,这需要在解题过程中要全方位、多角度审视问题.[例5] 已知集合A={a,a +b,a +2b},B={a,ac,ac 2}.若A=B ,求c 的值.分析:要解决c 的求值问题,关键是要有方程的数学思想,此题应根据相等的两个集合元素完全相同及集合中元素的确定性、互异性,无序性建立关系式.解:分两种情况进行讨论.(1)若a +b=ac 且a +2b=ac 2,消去b 得:a +ac 2-2ac=0,a=0时,集合B 中的三元素均为零,和元素的互异性相矛盾,故a≠0. ∴c 2-2c +1=0,即c=1,但c=1时,B 中的三元素又相同,此时无解. (2)若a +b=ac 2且a +2b=ac ,消去b 得:2ac 2-ac -a=0, ∵a≠0,∴2c 2-c -1=0,即(c -1)(2c +1)=0,又c≠1,故c=-21. 点评:解决集合相等的问题易产生与互异性相矛盾的增解,这需要解题后进行检验. [例6] 设A 是实数集,满足若a∈A,则a-11∈A ,1≠a 且1∉A.⑴若2∈A,则A 中至少还有几个元素?求出这几个元素. ⑵A 能否为单元素集合?请说明理由. ⑶若a∈A,证明:1-a1∈A. ⑷求证:集合A 中至少含有三个不同的元素.解:⑴2∈A ⇒ -1∈A ⇒ 21∈A ⇒ 2∈A ∴ A 中至少还有两个元素:-1和21⑵如果A 为单元素集合,则a =a-11即12+-a a=0该方程无实数解,故在实数范围内,A 不可能是单元素集 ⑶a∈A ⇒a-11∈A ⇒ a--1111∈A ⇒111---a a ∈A ,即1-a 1∈A⑷由⑶知a∈A 时,a-11∈A, 1-a 1∈A .现在证明a,1-a 1, a -11三数互不相等.①若a=a-11,即a2-a+1=0 ,方程无解,∴a ≠a-11②若a=1-a 1,即a 2-a+1=0,方程无解∴a ≠1-a 1③若1-a 1 =a -11,即a2-a+1=0,方程无解∴1-a 1≠a-11.综上所述,集合A 中至少有三个不同的元素.点评:⑷的证明中要说明三个数互不相等,否则证明欠严谨. [例7] 设集合A={a |a =12+n ,n ∈N +},集合B={b |b =542+-k k ,k ∈N +},试证:AB .证明:任设a ∈A, 则a =12+n=(n +2)2-4(n +2)+5 (n ∈N +),∵ n∈N*,∴ n +2∈N* ∴ a∈B 故 ①显然,1{}*2,1|N n n a a A ∈+==∈,而由B={b |b =542+-k k,k ∈N +}={b |b =1)2(2+-k ,k ∈N +}知1∈B,于是A≠B②由①、② 得A B .点评:(1)判定集合间的关系,其基本方法是归结为判定元素与集合之间关系. (2)判定两集合相等,主要是根据集合相等的定义. 四、典型习题1.集合A={x|x 2-3x -10≤0,x ∈Z},B={x|2x 2-x -6>0, x ∈ Z},则A ∩B 的非空真子集的个数为( ) A .16 B .14 C .15 D .32 2.数集{1,2,x 2-3}中的x 不能取的数值的集合是( )A .{2,-2 }B .{-2,-5} C .{±2,±5} D .{5,-5}3. 若P={y|y=x 2,x∈R},Q={y|y=x 2+1,x∈R},则P∩Q 等于( ) A .P B .Q C . D .不知道4. 若P={y|y=x 2,x∈R},Q={(x ,y)|y=x 2,x∈R},则必有( ) A .P∩Q= B .P Q C .P=Q D .PQ5.若集合M ={11|<xx },N ={x |2x ≤x },则M N = ( ) A .}11|{<<-x x B .}10|{<<x x C .}01|{<<-x x D .∅6.已知集合A={x|x 2+(m +2)x +1=0,x∈R },若A∩R +=,则实数m 的取值范围是_________.7.(06高考全国II 卷)设a R∈,函数2()22.f x ax x a =--若()0f x >的解集为A ,{}|13,B x x A B φ=<<≠,求实数a 的取值范围。
高中数学第一章集合与常用逻辑用语重难点归纳(带答案)
高中数学第一章集合与常用逻辑用语重难点归纳单选题1、设集合U={1,2,3,4,5,6},A={1,3,6},B={2,3,4},则A∩(∁U B)=()A.{3}B.{1,6}C.{5,6}D.{1,3}答案:B分析:根据交集、补集的定义可求A∩(∁U B).由题设可得∁U B={1,5,6},故A∩(∁U B)={1,6},故选:B.2、已知集合P={x|1<x<4},Q={x|2<x<3},则P∩Q=()A.{x|1<x≤2}B.{x|2<x<3}C.{x|3≤x<4}D.{x|1<x<4}答案:B分析:根据集合交集定义求解.P∩Q=(1,4)∩(2,3)=(2,3)故选:B小提示:本题考查交集概念,考查基本分析求解能力,属基础题.3、已知集合S={x∈N|x≤√5},T={x∈R|x2=a2},且S∩T={1},则S∪T=()A.{1,2}B.{0,1,2}C.{-1,0,1,2}D.{-1,0,1,2,3}答案:C分析:先根据题意求出集合T,然后根据并集的概念即可求出结果.S={x∈N|x≤√5}={0,1,2},而S∩T={1},所以1∈T,则a2=1,所以T={x∈R|x2=a2}={−1,1},则S∪T={−1,0,1,2}故选:C.4、若命题“∃x0∈[−1,2],−x02+2⩾a”是假命题,则实数a的范围是()A.a>2B.a⩾2C.a>−2D.a⩽−2答案:A解析:根据命题的否定为真命题可求.若命题“∃x 0∈[−1,2],−x 02+2⩾a ”是假命题,则命题“∀x ∈[−1,2],−x 2+2<a ”是真命题,当x =0时,(−x 2+2)max =2,所以a >2.故选:A.5、已知A ={1,x,y },B ={1,x 2,2y },若A =B ,则x −y =( )A .2B .1C .14D .23答案:C分析:由两集合相等,其元素完全一样,则可求出x =0,y =0或x =1,y =0或x =12,y =14,再利用集合中元素的互异性可知x =12,y =14,则可求出答案.若A =B ,则{x =x 2y =2y 或{x =2y y =x 2,解得{x =0y =0或{x =1y =0或{x =12y =14, 由集合中元素的互异性,得{x =12y =14, 则x −y =12−14=14,故选:C .6、设a ,b 是实数,集合A ={x||x −a |<1,x ∈R},B ={x||x −b|>3,x ∈R },且A ⊆B ,则|a −b |的取值范围为( )A . [0,2]B .[0,4]C .[2,+∞)D .[4,+∞)答案:D分析:解绝对值不等式得到集合A,B ,再利用集合的包含关系得到不等式,解不等式即可得解.集合A ={x||x −a |<1,x ∈R}={x|a −1<x <a +1},B ={x||x −b |〉3,x ∈R}={x|x <b −3或x >b +3}又A ⊆B ,所以a +1≤b −3或a −1≥b +3即a−b≤−4或a−b≥4,即|a−b|≥4所以|a−b|的取值范围为[4,+∞)故选:D7、已知集合M={x∣x2+x=0},则()A.{0}∈M B.∅∈M C.−1∉M D.−1∈M答案:D分析:先求得集合M,再根据元素与集合的关系,集合与集合的关系可得选项.因为集合M={x∣x2+x=0}={0,−1},所以−1∈M,故选:D.8、已知集合A={(x,y)|x,y∈N∗,y≥x},B={(x,y)|x+y=8},则A∩B中元素的个数为()A.2B.3C.4D.6答案:C分析:采用列举法列举出A∩B中元素的即可.由题意,A∩B中的元素满足{y≥xx+y=8,且x,y∈N∗,由x+y=8≥2x,得x≤4,所以满足x+y=8的有(1,7),(2,6),(3,5),(4,4),故A∩B中元素的个数为4.故选:C.【点晴】本题主要考查集合的交集运算,考查学生对交集定义的理解,是一道容易题. 多选题9、(多选题)已知集合A={x|x2−2x=0},则有()A.∅⊆A B.−2∈A C.{0,2}⊆A D.A⊆{y|y<3}答案:ACD分析:先化简集合A={0,2},再对每一个选项分析判断得解.由题得集合A={0,2},由于空集是任何集合的子集,故A正确:因为A={0,2},所以CD正确,B错误.故选ACD.小提示:本题主要考查集合的化简,考查集合的元素与集合的关系,意在考查学生对这些知识的理解掌握水平.10、1872年德国数学家戴德金从连续性的要求出发,用有理数的“分割”来定义无理数(史称“戴德金分割”),并把实数理论建立在严格的科学基础上,从而结束了无理数被认为“无理”的时代,也结束了数学史上的第一次大危机.将有理数集Q划分为两个非空的子集M与N,且满足M∪N=Q,M∩N=∅,M中的每一个元素都小于N中的每一个元素,则称(M,N)为戴德金分割.试判断下列选项中,可能成立的是()A.M={x∈Q|x<0},N={x∈Q|x>0}满足戴德金分割B.M没有最大元素,N有一个最小元素C.M有一个最大元素,N有一个最小元素D.M没有最大元素,N也没有最小元素答案:BD分析:根据集合的定义和题目要求,分析各选项即可.对于选项A,因为M={x∈Q|x<0},N={x∈Q|x>0},M∪N={x∈Q|x≠0}≠Q,故A错误;对于选项B,设M={x∈Q|x<0},N={x∈Q|x≥0},满足戴德金分割,则M中没有最大元素,N有一个最小元素0,故B正确;对于选项C,若M有一个最大元素m,N有一个最小元素n,若m≠n,一定存在k∈(m,n)使M∪N=Q不成立;若m=n,则M∩N=∅不成立,故C错误;对于选项D,设M={x∈Q|x<√2},N={x∈Q|x≥√2},满足戴德金分割,此时M没有最大元素,N也没有最小元素,故D正确.故选:BD.11、使a∈R,|a|<4成立的充分不必要条件可以是()A.a<4B.|a|<3C.−4<a<4D.0<a<3分析:根据集合的包含关系,结合各选项一一判断即可.由|a|<4可得a的集合是(−4,4),(−∞,4),所以a<4是|a|<4成立的一个必要不充分条件;A.由(−4,4)⊂≠(−4,4),所以|a|<3是|a|<4成立的一个充分不必要条件;B.由(−3,3)⊂≠C.由(−4,4)=(−4,4),所以−4<a<4是|a|<4成立的一个充要条件;D.由(0,3)(−4,4),所以0<a<3是|a|<4成立的一个充分不必要条件;故选:BD.12、下列各组对象能构成集合的是()A.拥有手机的人B.2020年高考数学难题C.所有有理数D.小于π的正整数答案:ACD分析:根据集合元素的性质可判断.根据集合的概念,可知集合中元素的确定性,可得选项A、C、D中的元素都是确定的,故选项A、C、D能构成集合,但B选项中“难题”的标准不明确,不符合确定性,不能构成集合.故选:ACD.13、已知集合A={0,1,2},B={a,2},若B⊆A,则a=()A.0B.1C.2D.0或1或2答案:AB分析:由B⊆A,则B={0,2}或B={1,2},再根据集合相等求出参数的值;解:由B⊆A,可知B={0,2}或B={1,2},所以a=0或1.故选:AB.小提示:本题考查根据集合的包含关系求参数的值,属于基础题.14、已知全集U =Z ,定义A ⊙B ={x |a ⋅b,a ∈A,b ∈B },若A ={1,2,3},B ={−1,0,1},则∁U (A ⊙B)______.答案:{x ∈Z ||x |≥4}分析:利用集合运算的新定义和补集运算求解.全集U =Z ,定义A ⊙B ={x |a ⋅b,a ∈A,b ∈B },A ={1,2,3},B ={−1,0,1}所以A ⊙B ={−3,−2,−1,0,1,2,3},所以∁U (A ⊙B)={x||x|≥4,x ∈Z }.所以答案是:{x||x|≥4,x ∈Z }15、命题“∀x ∈R,ax 2+4ax +3>0”为真,则实数a 的范围是__________答案:[0,34) 分析:将问题转化为“不等式ax 2+4ax +3>0对x ∈R 恒成立”,由此对a 进行分类讨论求解出a 的取值范围. 由题意知:不等式ax 2+4ax +3>0对x ∈R 恒成立,当a =0时,可得3>0,恒成立满足;当a ≠0时,若不等式恒成立则需{a >0Δ=16a 2−12a <0,解得0<a <34, 所以a 的取值范围是[0,34),所以答案是:[0,34).小提示:思路点睛:形如ax 2+bx +c <0(>0)的不等式恒成立问题的分析思路:(1)先分析a =0的情况;(2)再分析a ≠0,并结合Δ与0的关系求解出参数范围;(3)综合(1)(2)求解出最终结果.16、若“x >3”是“x >a “的充分不必要条件,则实数a 的取值范围是_____.答案:a <3解析:根据充分不必要条件的含义,即可求出结果.因为“x >3”是“x >a ”的充分不必要条件, ∴a <3.所以答案是:a <3.小提示:本题考查了不等式的意义、充分、必要条件的判定方法,考查了推理能力与计算能力,属于基础题. 解答题17、若集合A ={x |x 2+ax +b =0},B ={x |x 2+cx +6=0},是否存在实数a 、b ,c ,使A ∩B ={2}且A ∪B =B ,若存在,求出a 、b ,c 的值;若不存在,说明理由.答案:存在,a =−4,b =4,c =−5分析:由A ∩B ={2},得到2∈B ,求得c =−5,再由A ∪B =B ,求得A ={2},进而列出方程组{2+2=−a 2×2=b,即可求解,得到答案.由题意,集合A ={x |x 2+ax +b =0},B ={x |x 2+cx +6=0},因为A ∩B ={2},所以2∈B ,可得4+2c +6=0,c =−5,即B ={2,3}.又因为A ∪B =B ,所以A B 且2∈A ,得A ={2}.当A ={2}时,则满足{2+2=−a 2×2=b,解得a =−4,b =4, 所以存在实数a =−4,b =4,c =−5,使A ∪B =B 且A ∩B ={2}.小提示:本题主要考查了根据集合的运算求解参数问题,其中解答中熟记的交集和并集的概念及运算,以及正确运用元素与集合的关系求解是解答的关键,着重考查了推理与运算能力,属于基础题.18、已知集合A ={x |2−a ≤x ≤2+a },B ={x|x ≤1或x ≥4}.(1)当a =3时,求A ∩B ;(2)“x ∈A ”是“x ∈∁R B ”的充分不必要条件,求实数a 的取值范围.答案:(1)A ∩B ={x|−1≤x ≤1或4≤x ≤5};(2){a|a <1}分析:(1)先求出集合A ={x |−1≤x ≤5},再求A ∩B ;(2)先求出∁R B ={x|1<x <4},用集合法分类讨论,列不等式,即可求出实数a 的取值范围.(1)当a =3时,A ={x |−1≤x ≤5}.因为B ={x|x ≤1或x ≥4},所以A ∩B ={x|−1≤x ≤1或4≤x ≤5};(2)因为B={x|x≤1或x≥4},所以∁R B={x|1<x<4}. 因为“x∈A”是“x∈∁R B”的充分不必要条件,所以A∁R B.当A=∅时,符合题意,此时有2+a<2−a,解得:a<0.当A≠∅时,要使A∁R B,只需{2+a≥2−a2+a<42−a>1,解得:0≤a<1综上:a<1.即实数a的取值范围{a|a<1}.。
高中数学部分错题分析1-集合与常用逻辑用语
高中数学部分错题分析1-集合与常用逻辑用语注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
集合与常用逻辑用语§1.1 集合的概念与运算【一】知识导学1.集合:一般地,一定范围内某些确定的、不同的对象的全体构成一个集合.2.元素:集合中的每一个对象称为该集合的元素,简称元.3.子集:如果集合A 的任意一个元素都是集合B 的元素〔假设A a ∉那么B a ∈〕,那么称集合A 为集合B 的子集,记为A ⊆B 或B ⊇A ;如果A ⊆B ,并且A ≠B ,这时集合A 称为集合B 的真子集,记为A B 或B A.4.集合的相等:如果集合A 、B 同时满足A ⊆B 、B ⊇A ,那么A =B.5.补集:设A ⊆S ,由S 中不属于A 的所有元素组成的集合称为S 的子集A 的补集,记为 A C s .6.全集:如果集合S 包含所要研究的各个集合,这时S 可以看做一个全集,全集通常记作U.7.交集:一般地,由所有属于集合A 且属于B 的元素构成的集合,称为A 与B 的交集,记作A ⋂B.8.并集:一般地,由所有属于集合A 或者属于B 的元素构成的集合,称为A 与B 的并集,记作A ⋃B.9.空集:不含任何元素的集合称为空集,记作Φ.10.有限集:含有有限个元素的集合称为有限集.11.无限集:含有无限个元素的集合称为无限集.12.集合的常用表示方法:列举法、描述法、图示法〔VENN 图〕.13.常用数集的记法:自然数集记作N ,正整数集记作N +或N *,整数集记作Z ,有理数集记作Q ,实数集记作R.【二】疑难知识导析1.符号⊆,,⊇,,=,表示集合与集合之间的关系,其中“⊆”包括“”和“=”两种情况,同样“⊇”包括“”和“=”两种情况.符号∈,∉表示元素与集合之间的关系.要注意两类不同符号的区别.2.在判断给定对象能否构成集合时,特别要注意它的“确定性”,在表示一个集合时,要特别注意它的“互异性”、“无序性”.3.在集合运算中必须注意组成集合的元素应具备的性质.4.对由条件给出的集合要明白它所表示的意义,即元素指什么,是什么范围、用集合表示不等式〔组〕的解集时,要注意分辨是交集还是并集,结合数轴或文氏图的直观性帮助思维判断、空集是任何集合的子集,但因为不好用文氏图形表示,容易被忽视,如在关系式中,B =Φ易漏掉的情况.5.假设集合中的元素是用坐标形式表示的,要注意满足条件的点构成的图形是什么,用数形结合法解之.6.假设集合中含有参数,须对参数进行分类讨论,讨论时既不重复又不遗漏.7.在集合运算过程中要借助数轴、直角坐标平面、VENN 图等将有关集合直观地表示出来.8.要注意集合与方程、函数、不等式、三角、几何等知识的密切联系与综合使用.9.含有N 个元素的集合的所有子集个数为:n 2,所有真子集个数为:n2-1【三】经典例题导讲【例1】 集合M ={Y |Y =X2+1,X ∈R },N ={Y |Y =X +1,X ∈R },那么M ∩N =〔 〕A 、〔0,1〕,〔1,2〕B 、{〔0,1〕,〔1,2〕}C 、{Y |Y =1,或Y =2}D 、{Y |Y ≥1} 错解:求M ∩N 及解方程组⎩⎨⎧+=+=112x y x y 得⎩⎨⎧==10y x 或 ⎩⎨⎧==21y x ∴选B 错因:在集合概念的理解上,仅注意了构成集合元素的共同属性,而忽视了集合的元素是什么、事实上M 、N 的元素是数而不是实数对(X ,Y ),因此M 、N 是数集而不是点集,M 、N 分别表示函数Y =X2+1(X ∈R ),Y =X +1(X ∈R )的值域,求M ∩N 即求两函数值域的交集、 正解:M ={Y |Y =X2+1,X ∈R }={Y |Y ≥1}, N ={Y |Y =X +1,X ∈R }={Y |Y ∈R }、 ∴M ∩N ={Y |Y ≥1}∩{Y |(Y ∈R )}={Y |Y ≥1}, ∴应选D 、注:集合是由元素构成的,认识集合要从认识元素开始,要注意区分{X |Y =X2+1}、{Y |Y =X2+1,X ∈R }、{(X ,Y )|Y =X2+1,X ∈R },这三个集合是不同的、【例2】 A ={X |X2-3X +2=0},B ={X |AX -2=0}且A ∪B =A ,求实数A 组成的集合C 、 错解:由X2-3X +2=0得X =1或2、当X =1时,A =2, 当X =2时,A =1、错因:上述解答只注意了B 为非空集合,实际上,B =时,仍满足A ∪B =A.当A =0时,B =,符合题设,应补上,故正确答案为C ={0,1,2}、正解:∵A ∪B =A ∴B A 又A ={X |X2-3X +2=0}={1,2}∴B =或{}{}21或 ∴C ={0,1,2} 【例3】M ∈A ,N ∈B , 且集合A ={}Z a a x x ∈=,2|,B ={}Z a a x x ∈+=,12|,又C ={}Z a a x x ∈+=,14|,那么有: 〔 〕A 、M +N ∈A B. M +N ∈B C.M +N ∈C D. M +N 不属于A ,B ,C 中任意一个错解:∵M ∈A ,∴M =2A ,A Z ∈,同理N =2A +1,A ∈Z , ∴M +N =4A +1,应选C错因是上述解法缩小了M +N 的取值范围.正解:∵M ∈A , ∴设M =2A1,A1∈Z , 又∵N B ∈,∴N =2A2+1,A2∈ Z ,∴M +N =2(A1+A2)+1,而A1+A2∈ Z , ∴M +N ∈B , 应选B.【例4】 集合A ={X |X2-3X -10≤0},集合B ={X |P +1≤X ≤2P -1}、假设BA ,求实数P 的取值范围、错解:由X2-3X -10≤0得-2≤X ≤5、 欲使B A ,只须3351212≤≤-⇒⎩⎨⎧≤-+≤-p p p∴ P 的取值范围是-3≤P ≤3.错因:上述解答忽略了"空集是任何集合的子集"这一结论,即B =时,符合题设、正解:①当B ≠时,即P +1≤2P -1P ≥2.由B A 得:-2≤P +1且2P -1≤5.由-3≤P ≤3.∴ 2≤P ≤3②当B =时,即P +1》2P -1P 《2.由①、②得:P ≤3.点评:从以上解答应看到:解决有关A ∩B =、A ∪B =,A B 等集合问题易忽视空集的情况而出现漏解,这需要在解题过程中要全方位、多角度审视问题、【例5】 集合A ={A ,A +B ,A +2B },B ={A ,AC ,AC2}、假设A =B ,求C 的值、分析:要解决C 的求值问题,关键是要有方程的数学思想,此题应根据相等的两个集合元素完全相同及集合中元素的确定性、互异性,无序性建立关系式、解:分两种情况进行讨论、〔1〕假设A +B =AC 且A +2B =AC2,消去B 得:A +AC2-2AC =0,A =0时,集合B 中的三元素均为零,和元素的互异性相矛盾,故A ≠0、∴C2-2C +1=0,即C =1,但C =1时,B 中的三元素又相同,此时无解、〔2〕假设A +B =AC2且A +2B =AC ,消去B 得:2AC2-AC -A =0,∵A ≠0,∴2C2-C -1=0,即(C -1)(2C +1)=0,又C ≠1,故C =-21、点评:解决集合相等的问题易产生与互异性相矛盾的增解,这需要解题后进行检验.【例6】 设A 是实数集,满足假设A ∈A ,那么a -11∈A ,1≠a 且1(A.⑴假设2∈A ,那么A 中至少还有几个元素?求出这几个元素.⑵A 能否为单元素集合?请说明理由.⑶假设A ∈A ,证明:1-a 1∈A.⑷求证:集合A 中至少含有三个不同的元素.解:⑴2∈A ( -1∈A ( 21∈A ( 2∈A∴ A 中至少还有两个元素:-1和21⑵如果A 为单元素集合,那么A =a -11即12+-a a =0该方程无实数解,故在实数范围内,A 不可能是单元素集⑶A ∈A ( a -11∈A (a --1111∈A (111---a a ∈A ,即1-a 1∈A ⑷由⑶知A ∈A 时,a -11∈A , 1-a 1∈A .现在证明A ,1-a 1, a -11三数互不相等.①假设A =a -11,即A2-A +1=0 ,方程无解,∴A ≠a -11②假设A =1-a 1,即A2-A +1=0,方程无解∴A ≠1-a 1③假设1-a 1 =a -11,即A2-A +1=0,方程无解∴1-a 1≠a -11.综上所述,集合A 中至少有三个不同的元素.点评:⑷的证明中要说明三个数互不相等,否那么证明欠严谨.【例7】 设集合A ={a |a =12+n ,n ∈N +},集合B ={b |b =542+-k k ,k ∈N +},试证:A B 、证明:任设a ∈A ,那么a =12+n =(n +2)2-4(n +2)+5 (n ∈N +),∵ N ∈N ×,∴ N +2∈N ×∴ A ∈B 故 ①显然,1{}*2,1|N n n a a A ∈+==∈,而由B ={b |b =542+-k k ,k ∈N +}={b |b =1)2(2+-k ,k ∈N +}知1∈B ,于是A ≠B ②由①、② 得A B 、点评:〔1〕判定集合间的关系,其基本方法是归结为判定元素与集合之间关系、〔2〕判定两集合相等,主要是根据集合相等的定义、【四】典型习题导练1、集合A ={X |X2-3X -10≤0,X ∈Z },B ={X |2X2-X -6》0, X ∈ Z },那么A ∩B 的非空真子集的个数为〔 〕A 、16B 、14C 、15D 、322、数集{1,2,X2-3}中的X 不能取的数值的集合是〔 〕A 、{2,-2 }B 、{-2,-5 }C 、{±2,±5 }D 、{5,-5}3. 假设P ={Y |Y =X2,X ∈R },Q ={Y |Y =X2+1,X ∈R },那么P ∩Q 等于〔 〕A 、PB 、QC 、D 、不知道4. 假设P ={Y |Y =X2,X ∈R },Q ={(X ,Y )|Y =X2,X ∈R },那么必有〔 〕A 、P ∩Q =B 、P QC 、P =QD 、P Q5、假设集合M ={11|<x x },N ={x |2x ≤x },那么M N = 〔 〕A 、}11|{<<-x xB 、}10|{<<x xC 、}01|{<<-x xD 、∅6.集合A ={X |X2+(M +2)X +1=0,X ∈R },假设A ∩R +=,那么实数M 的取值范围是_________、7.〔06高考全国II 卷〕设a R ∈,函数2()22.f x ax x a =--假设()0f x >的解集为A ,{}|13,B x x A B φ=<<≠,求实数a 的取值范围。
高一数学第一章集合与常用逻辑用语
高一数学第一章集合与常用逻辑用语好嘞,今天咱们聊聊高一数学的第一章,集合与常用逻辑用语。
听起来有点儿高深,但其实挺有趣的,像是一场数学的冒险。
集合这个词,听起来是不是有点像“大杂烩”?对,就是把不同的东西放到一起的感觉。
想象一下,咱们把各种水果放到一个篮子里,苹果、香蕉、橘子,统统都来了。
这就是集合。
它可以包含任何东西,比如数字、字母,甚至你最喜欢的动画角色。
把这些东西放到一起,就成了一个集合。
要是你问我,“嘿,集合里有什么?”我会说:“看你想要什么呀!我这儿有无限可能!”哈哈,没错,集合就这么简单又神奇。
然后呢,咱们得聊聊集合的运算。
听起来有点儿复杂,但其实就像打游戏一样。
咱们可以把集合进行并、交、补等操作。
并集就是把两个集合合起来,想象一下把你和朋友的零食合在一起,太完美了!交集嘛,就是找到两个集合里都存在的元素。
就好比你和朋友都是篮球迷,爱看的都是詹姆斯的比赛,那你们的共同爱好就是交集啦。
至于补集,简单来说就是集合外的那些东西。
就像你在学校里,咱们班的同学就是一个集合,而不在班里的同学就是补集。
数学可真有意思,让人忍不住想继续探索下去。
逻辑用语登场了!逻辑就像是数学的语言,表达方式别提多重要了。
有些小伙伴可能会觉得,逻辑和数学好像没什么关系,但其实是密不可分的。
想象一下,你在班级里开会,得说服大家去参加一次活动。
你要用逻辑,清晰地表达理由,才能让大家心服口服。
比如,“如果咱们去爬山,那就能锻炼身体”,这就是一个条件句。
听着就让人想动一动,对吧?逻辑用语的“如果……那么……”这种结构,让咱们表达观点时更有说服力。
除了“如果……那么……”,还有“并且”和“或者”,这两个小家伙就像是数学的调味料。
并且,表示两者同时成立,像你吃饭的时候,既要有米饭又要有菜,才能吃得饱饱的。
而“或者”就有趣多了,给你选择的自由。
就像你今天想喝可乐还是果汁,随便你,反正你都能爽一把。
用这些逻辑用语,我们可以搭建出严密的数学论证,简直就像建房子一样,一层一层的,稳稳当当。
高中数学第一章集合与常用逻辑用语知识点总结全面整理(带答案)
高中数学第一章集合与常用逻辑用语知识点总结全面整理单选题1、设x∈R,则“1<x<2”是“−2<x<2”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要答案:A分析:根据集合{x|1<x<2}是集合{x|−2<x<2}的真子集可得答案.因为集合{x|1<x<2}是集合{x|−2<x<2}的真子集,所以“1<x<2”是“−2<x<2”的充分不必要条件.故选:A小提示:名师点评本题考查充分不必要条件的判断,一般可根据如下规则判断:(1)若p是q的必要不充分条件,则q对应集合是p对应集合的真子集;(2)p是q的充分不必要条件,则p对应集合是q对应集合的真子集;(3)p是q的充分必要条件,则p对应集合与q对应集合相等;(4)p是q的既不充分又不必要条件,q对的集合与p对应集合互不包含.2、集合M={2,4,6,8,10},N={x|−1<x<6},则M∩N=()A.{2,4}B.{2,4,6}C.{2,4,6,8}D.{2,4,6,8,10}答案:A分析:根据集合的交集运算即可解出.因为M={2,4,6,8,10},N={x|−1<x<6},所以M∩N={2,4}.故选:A.3、已知集合A={x|x2−2x≤0},B={−1,0,3},则(∁R A)∩B=()A.∅B.{0,1}C.{−1,0,3}D.{−1,3}答案:D分析:先由一元二次不等式的解法求得集合A,再由集合的补集和交集运算可求得答案.因为A={x|x2−2x≤0}={x|0≤x≤2},所以∁R A={x|x<0或x>2},又B={−1,0,3},所以(∁R A)∩B={−1,3},故选:D.4、若集合U={0,1,2,3,4,5},A={0,2,4},B={3,4},则(∁U A)∩B=().A.{3}B.{5}C.{3,4,5}D.{1,3,4,5}答案:A分析:根据补集的定义和运算求出∁U A,结合交集的概念和运算即可得出结果.由题意知,∁U A={1,3,5},又B={3,4},所以(∁U A)∩B={3}.故选:A5、下列说法正确的是()A.由1,2,3组成的集合可表示为{1,2,3}或{3,2,1}B.∅与{0}是同一个集合C.集合{x|y=x2−1}与集合{y|y=x2−1}是同一个集合D.集合{x|x2+5x+6=0}与集合{x2+5x+6=0}是同一个集合答案:A分析:根据集合的定义和性质逐项判断可得答案集合中的元素具有无序性,故A正确;∅是不含任何元素的集合,{0}是含有一个元素0的集合,故B错误;集合{x|y=x2−1}=R,集合{y|y=x2−1}={y|y≥−1},故C错误;集合{x|x2+5x+6=0}={x|(x+2)(x+3)=0}中有两个元素−2,−3,集合{x2+5x+6=0}中只有一个元素,为方程x2+5x+6=0,故D错误.故选:A.6、2022年3月21日,东方航空公司MU5735航班在广西梧州市上空失联并坠毁.专家指出:飞机坠毁原因需要找到飞机自带的两部飞行记录器(黑匣子),如果两部黑匣子都被找到,那么就能形成一个初步的事故原因认定.3月23日16时30分左右,广西武警官兵找到一个黑匣子,虽其外表遭破坏,但内部存储设备完整,研究判定为驾驶员座舱录音器.则“找到驾驶员座舱录音器”是“初步事故原因认定”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件答案:C分析:因为两部黑匣子都被找到,就能形成一个初步的事故原因认定,根据充分与必要条件的定义即可判断出结果.因为两部黑匣子都被找到,就能形成一个初步的事故原因认定,则“找到驾驶员座舱录音器”不能形成“初步事故原因认定”;而形成“初步事故原因认定”则表示已经“找到驾驶员座舱录音器”,故“找到驾驶员座舱录音器”是“初步事故原因认定”的必要不充分条件,故选:C .7、若a 、b 为实数,则“ab >1”是“b >1a ”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案:D分析:利用推理判断或举特例说明命题“若ab >1,则b >1a ”和“若b >1a ,则ab >1”的真假即可作答.若ab >1成立,取a =−1,b =−2,而−2<1−1,即命题“若ab >1,则b >1a ”是假命题, 若b >1a 成立,取a =−1,b =2,而(−1)⋅2<0,即命题“若b >1a ,则ab >1”是假命题,所以“ab >1”是“b >1a ”的既不充分也不必要条件.故选:D8、下列命题中正确的是( )①∅与{0}表示同一个集合②由1,2,3组成的集合可表示为{1,2,3}或{3,2,1}③方程(x −1)2(x −2)=0的所有解的集合可表示为{1,1,2}④集合{x∣4<x<5}可以用列举法表示A.只有①和④B.只有②和③C.只有②D.以上都对答案:C分析:由集合的表示方法判断①,④;由集合中元素的特点判断②,③.解:对于①,由于“0”是元素,而“{0}”表示含0元素的集合,而ϕ不含任何元素,所以①不正确;对于②,根据集合中元素的无序性,知②正确;对于③,根据集合元素的互异性,知③错误;对于④,由于该集合为无限集、且无明显的规律性,所以不能用列举法表示,所以④不正确.综上可得只有②正确.故选:C.多选题9、已知集合A={x|ax=1},B={0,1,2},若A⊆B,则实数a可以为()A.12B.1C.0D.以上选项都不对答案:ABC解析:由子集定义得A=∅或A={1}或A={2},从而1a 不存在,1a=1,1a=2,由此能求出实数a.解:∵集合A={x|ax=1},B={0,1,2},A⊆B,∴A=∅或A={1}或A={2},∴1a 不存在,1a=1,1a=2,解得a=1,或a=1,或a=12.故选:ABC.小提示:本题主要考查集合的包含关系,属于基础题.10、以下满足{0,2,4}⊆A{0,1,2,3,4}的集合A有()A.{0,2,4}B.{0,1,3,4}C.{0,1,2,4}D.{0,1,2,3,4}答案:AC分析:直接写出符合题意要求的所有集合A ,再去选项中选正确答案.由题意可知,集合A 包含集合{0,2,4},同时又是集合{0,1,2,3,4}的真子集,则所有符合条件的集合A 为{0,2,4},{0,1,2,4},{0,2,3,4}.选项BD 均不符合要求,排除.故选:AC11、已知集合A ={x|x 2−x −6=0},B ={x|mx −1=0},A ∩B =B ,则实数m 取值为( )A .13B .−12C .−13D .0 答案:ABD解析:先求集合A ,由A ∩B =B 得B ⊆A ,然后分B =∅和B ≠∅两种情况求解即可解:由x 2−x −6=0,得x =−2或x =3,所以A ={−2,3},因为A ∩B =B ,所以B ⊆A ,当B =∅时,方程mx −1=0无解,则m =0,当B ≠∅时,即m ≠0,方程mx −1=0的解为x =1m , 因为B ⊆A ,所以1m =−2或1m =3,解得m =−12或m =13,综上m =0,或m =−12,或m =13,故选:ABD小提示:此题考查集合的交集的性质,考查由集合间的包含关系求参数的值,属于基础题12、已知关于x 的方程x 2+(m −3)x +m =0,下列结论正确的是( )A .方程x 2+(m −3)x +m =0有实数根的充要条件是m ∈{m|m <1或m >9}B .方程x 2+(m −3)x +m =0有一正一负根的充要条件是m ∈{m ∣0<m ≤1}C .方程x 2+(m −3)x +m =0有两正实数根的充要条件是m ∈{m ∣0<m ≤1}D .方程x 2+(m −3)x +m =0无实数根的必要条件是m ∈{m|m >1}答案:CD解析:根据充分条件和必要条件的定义对选项逐一判断即可.在A中,二次方程有实数根,等价于判别式Δ=(m−3)2−4m≥0,解得m≤1或m≥9,即二次方程有实数根的充要条件是m∈{m|m≤1或m≥9},故A错误;在B中,二次方程有一正一负根,等价于{(m−3)2−4m>0m<0,解得m<0,方程有一正一负根的充要条件是m∈{m|m<0},故B错误;在C中,方程有两正实数根,等价于{Δ=(m−3)2−4m≥03−m>0,m>0,解得0<m≤1,故方程有两正实数根的充要条件是m∈{m∣0<m≤1},故C正确;在D中,方程无实数根,等价于Δ=(m−3)2−4m<0得1<m<9,而{m|1<m<9}⊆{m|m>1},故m∈{m|m>1}是方程无实数根的必要条件,故D正确;故选:CD.小提示:名师点评关于充分条件和必要条件的判断,一般可根据如下规则判断:(1)若p是q的充分条件,则p可推出q,即p对应集合是q对应集合的子集;(2)若p是q的必要条件,则q可推出p,即q对应集合是p对应集合的子集;(3)若p是q的充要条件,则p,q可互推,即p对应集合与q对应集合相等.13、已知M为给定的非空集合,集合T={T1,T2,⋯,T n},其中T i≠∅,T i⊆M,且T1∪T2∪⋯∪T n=M,则称集合T是集合M的覆盖;如果除以上条件外,另有T i∩T j=∅,其中i=1,2,3,⋯,n,j=1,2,3,⋯,n,且i≠j,则称集合T是集合M的划分.对于集合A={a,b,c},下列命题错误的是()A.集合S={{a,b},{b,c}}是集合A的覆盖B.集合Q={{a},{a,b},{a,c}}是集合A的划分C.集合E={{a},{b},{c}}不是集合A的划分D.集合F={{a},{a,c}}既不是集合A的覆盖,也不是集合A的划分答案:BC分析:根据集合新定义以及集合的交、并运算,逐一判断即可.对于A,集合S={{a,b},{b,c}}满足{a,b}⊆A,{b,c}⊆A,且{a,b}∪{b,c}=A,故集合S是集合A的覆盖,选项A正确;对于B,集合Q={{a},{a,b},{a,c}}中,{a,b}∩{a,c}≠∅,不满足题目定义中“T i∩T j=∅”,故集合Q={{a},{a,b},{a,c}}不是集合A的划分,选项B错误;对于C,集合E={{a},{b},{c}}是集合A的划分,因为{a}⊆A,{b}⊆A,{c}⊆A,且{a}∪{b}∪{c}=A,{a}∩{b}=∅,{b}∩{c}=∅,{a}∩{c}=∅,满足定义中的所有要求,选项C错误;对于D,集合F={{a},{a,c}}中,{a}∪{a,c}≠A,{a}∩{a,c}≠∅,故集合F={{a},{a,c}}既不是集合A的覆盖,也不是集合A的划分,选项D正确. 故选:BC.填空题14、命题“所有无理数的平方都是有理数”的否定是__________.答案:存在一个无理数,它的平方不是有理数分析:根据全称命题的否定形式,即可求解结论.存在一个无理数,它的平方不是有理数,全称性命题的否定是先改变量词,然后否定结论,故所求的否定是“存在一个无理数,它的平方不是有理数”.所以答案是:存在一个无理数,它的平方不是有理数小提示:本题考查命题的否定形式,要注意量词之间的转化,属于基础题. 15、若命题“∀x∈(3,+∞),x>a”是真命题,则a的取值范围是__________.答案:(−∞,3]分析:根据不等式恒成立求解即可.对于任意x>3,x>a恒成立,即大于3的数恒大于a,∴a⩽3.所以答案是:(−∞,3].16、若“x>3”是“x>m”的必要不充分条件,则m的取值范围是________.答案:m>3分析:由题,“x >3”是“x >m ”的必要不充分条件,则是(3,+∞)的真子集,可得答案. 因为“x >3”是“x >m ”的必要不充分条件,所以是(3,+∞)的真子集,所以m >3,故答案为m >3.小提示:本题考查了不要不充分条件,属于基础题.解答题17、在①A ∪B =B ;②“x ∈A ”是 “x ∈B ”的充分不必要条件;③A ∩B =∅这三个条件中任选一个,补充到本题第(2)问的横线处,求解下列问题:已知集合A ={x |a −1≤x ≤a +1},B ={x |x 2−2x −3≤0}(1)当a =2时,求A ∪B ;(2)若______,求实数a 的取值范围.答案:(1)A ∪B ={x|−1≤x ≤3}(2)条件选择见解析,(−∞,−2)∪(4,+∞)分析:(1)化简集合A 与B 之后求二者的并集(2)先判断集合A 与B 的关系,再求a 的取值范围(1)当a =2时,集合A ={x|1≤x ≤3},B ={x|−1≤x ≤3},所以A ∪B ={x|−1≤x ≤3};(2)若选择①A ∪B =B ,则A ⊆B ,因为A ={x|a −1≤x ≤a +1},所以A ≠∅,又B ={x|−1≤x ≤3},所以{a −1≥−1a +1≤3,解得0≤a ≤2, 所以实数a 的取值范围是[0,2].若选择②,“x ∈A “是“x ∈B ”的充分不必要条件,则AB ,因为A ={x|a −1≤x ≤a +1},所以A ≠∅, 又B ={x|−1≤x ≤3},(),m +∞(),m +∞所以{a −1≥−1a +1≤3,解得0≤a ≤2, 所以实数a 的取值范围是[0,2].若选择③,A ∩B =∅,因为A ={x|a −1≤x ≤a +1},B ={x|−1≤x ≤3},所以a −1>3或a +1<−1,解得a >4或a <−2,所以实数a 的取值范围是(−∞,−2)∪(4,+∞).18、已知集合A ={x |x ≤−3或x ≥−1},B ={x|2m <x <m −1},且A ∪B =A ,求m 的取值范围. 答案:m ≤−2或m ≥−1分析:因为A ∪B =A ,所以B ⊆A ,分别讨论B =ϕ和B ≠ϕ两种情况然后求并集.解:因为A ∪B =A ,所以B ⊆A ,当B =ϕ时,2m ≥m −1,解得:m ≥−1;当B ≠ϕ时,{2m <m −1m −1≤−3或{2m <m −12m ≥−1解得:m ≤−2或m ∈ϕ 所以m ≤−2或m ≥−1.。
高中数学必修一第一章集合与常用逻辑用语知识点归纳总结(精华版)
(每日一练)高中数学必修一第一章集合与常用逻辑用语知识点归纳总结(精华版)单选题1、命题“∃x>1,x2≥1”的否定是()A.∃x≤1,x2≥1B.∃x≤1,x2<1C.∀x≤1,x2≥1D.∀x>1,x2<1答案:D分析:根据含有一个量词的命题的否定,可直接得出结果.命题“∃x>1,x2≥1”的否定是“∀x>1,x2<1”,故选:D.2、设集合A、B均为U的子集,如图,A∩(∁U B)表示区域()A.ⅠB.IIC.IIID.IV答案:B分析:根据交集与补集的定义可得结果.由题意可知,A∩(∁U B)表示区域II.故选:B.3、已知集合A={x|x≤1},B={x∈Z|0≤x≤4},则A∩B=()A.{x|0<x<1}B.{x|0≤x≤1}C.{x|0<x≤4}D.{0,1}答案:D分析:根据集合的交运算即可求解.由B={x∈Z|0≤x≤4}得B={0,1,2,3,4},所以A∩B={0,1},故选:D4、已知集合A={x|x2−3x−4<0},B={−4,1,3,5},则A∩B=()A.{−4,1}B.{1,5}C.{3,5}D.{1,3}答案:D分析:首先解一元二次不等式求得集合A,之后利用交集中元素的特征求得A∩B,得到结果.由x2−3x−4<0解得−1<x<4,所以A={x|−1<x<4},又因为B={−4,1,3,5},所以A∩B={1,3},故选:D.小提示:本题考查的是有关集合的问题,涉及到的知识点有利用一元二次不等式的解法求集合,集合的交运算,属于基础题目.5、若全集U=R,集合A={0,1,2,3,4,5,6},B={x|x<3},则图中阴影部分表示的集合为()A.{3,4,5,6}B.{0,1,2}C.{0,1,2,3}D.{4,5,6}答案:A分析:根据图中阴影部分表示(∁U B)∩A求解即可.由题知:图中阴影部分表示(∁U B)∩A,∁U B={x|x≥3},则(∁U B)∩A={3,4,5,6}.故选:A6、已知集合S={s|s=2n+1,n∈Z},T={t|t=4n+1,n∈Z},则S∩T=()A.∅B.S C.T D.Z答案:C分析:分析可得T⊆S,由此可得出结论.任取t∈T,则t=4n+1=2⋅(2n)+1,其中n∈Z,所以,t∈S,故T⊆S,因此,S∩T=T.故选:C.7、已知命题p:∃x∃N,e x<0(e为自然对数的底数),则命题p的否定是()A.∃x∃N,e x<0B.∃x∃N,e x>0C.∃x∃N,e x≥0D.∃x∃N,e x≥0答案:D分析:根据命题的否定的定义判断.特称命题的否定是全称命题.命题p的否定是:∃x∃N,e x≥0.故选:D.8、设甲是乙的充分不必要条件,乙是丙的充要条件,丁是丙的必要不充分条件,则甲是丁的()条件A.充分不必要B.必要不充分C.充要D.既不充分也不必要答案:A分析:记甲、乙、丙、丁各自对应的条件构成的集合分别为A,B,C,D,根据题目条件得到集合之间的关系,并推出A D,,所以甲是丁的充分不必要条件.记甲、乙、丙、丁各自对应的条件构成的集合分别为A,B,C,D,由甲是乙的充分不必要条件得,A B,由乙是丙的充要条件得,B=C,由丁是丙的必要不充分条件得,C D,所以A D,,故甲是丁的充分不必要条件.故选:A.9、已知集合A={−1,0,1},B={a+b|a∈A,b∈A},则集合B=()A.{−1,1}B.{−1,0,1}C.{−2,−1,1,2}D.{−2,−1,0,1,2}答案:D分析:根据A={−1,0,1}求解B={a+b|a∈A,b∈A}即可由题,当a∈A,b∈A时a+b最小为(−1)+(−1)=−2,最大为1+1=2,且可得(−1)+0=−1,0+0=0,0+1=1,故集合B={−2,−1,0,1,2}故选:D10、已知集合A={﹣1,0,1,2},B={x|0<x<3},则A∩B=()A.{﹣1,0,1}B.{0,1}C.{﹣1,1,2}D.{1,2}答案:D分析:根据交集的定义写出A∩B即可.集合A={﹣1,0,1,2},B={x|0<x<3},则A∩B={1,2},故选:D多选题11、若x2−x−2<0是−2<x<a的充分不必要条件,则实数a的值可以是().A.1B.2C.3D.4答案:BCD分析:根据充分必要条件得出a范围,可得选项.由x2−x−2<0得−1<x<2,因此,若x2−x−2<0是−2<x<a的充分不必要条件,则a≥2.故选:BCD.小提示:本题考查根据充分必要条件求参数的范围,属于基础题.12、使a∈R,|a|<4成立的充分不必要条件可以是()A.a<4B.|a|<3C.−4<a<4D.0<a<3答案:BD分析:根据集合的包含关系,结合各选项一一判断即可.由|a|<4可得a的集合是(−4,4),(−∞,4),所以a<4是|a|<4成立的一个必要不充分条件;A.由(−4,4)⊂≠(−4,4),所以|a|<3是|a|<4成立的一个充分不必要条件;B.由(−3,3)⊂≠C.由(−4,4)=(−4,4),所以−4<a<4是|a|<4成立的一个充要条件;D.由(0,3)(−4,4),所以0<a<3是|a|<4成立的一个充分不必要条件;故选:BD.13、已知集合A={4,a},B={1,a2},a∈R,则A∪B可能是()A.{-1,1,4}B.{1,0,4}C.{1,2,4}D.{-2,1,4}答案:BCD分析:根据集合元素的互异性讨论参数范围即可得结果.若A∪B含3个元素,则a=1或a=a2或a2=4,a=1时,不满足集合元素的互异性,a=0,a=2或a=−2时满足题意,结合选项可知,A∪B可能是{1,0,4},{1,2,4},{-2,1,4}.故选:BCD.14、(多选)下列“若p,则q”形式的命题中,p是q的必要条件的有()A.若x,y是偶数,则x+y是偶数B.若a<2,则方程x2-2x+a=0有实根C.若四边形的对角线互相垂直,则这个四边形是菱形D.若ab=0,则a=0答案:BCD分析:根据必要条件的定义逐一判断即可.A:x+y是偶数不一定能推出x,y是偶数,因为x,y可以是奇数,不符合题意;B:当方程x2-2x+a=0有实根时,则有(−2)2−4a≥0⇒a≤1,显然能推出a<2,符合题意;C:因为菱形对角线互相垂直,所以由四边形是菱形能推出四边形的对角线互相垂直,符合题意;D:显然由a=0推出ab=0,所以符合题意,故选:BCD15、对任意实数a、b、c,给出下列命题,其中真命题是()A.“a=b”是“ac=bc”的充要条件B.“a>b”是“a2>b2”的充分条件C.“a<5”是“a<3”的必要条件D.“a+5是无理数”是“a是无理数”的充要条件答案:CD分析:利用特殊值法以及充分条件、必要条件的定义可判断A、B选项的正误;利用必要条件的定义可判断C 选项的正误;利用充要条件的定义可判断D选项的正误.对于A,因为“a=b”时ac=bc成立,ac=bc且c=0时,a=b不一定成立,所以“a=b”是“ac=bc”的充分不必要条件,故A错;对于B,a=−1,b=−2,a>b时,a2<b2;a=−2,b=1,a2>b2时,a<b.所以“a>b”是“a2>b2”的既不充分也不必要条件,故B错;对于C,因为“a<3”时一定有“a<5”成立,所以“a<3”是“a<5”的必要条件,C正确;对于D“a+5是无理数”是“a是无理数”的充要条件,D正确.故选:CD.小提示:本题考查充分条件、必要条件的判断,考查了充分条件和必要条件定义的应用,考查推理能力,属于基础题.16、已知集合A ={x ∣x 2−2x −3=0},B ={x ∣ax =1},若B ⊆A ,则实数a 的可能取值( )A .0B .3C .13D .−1答案:ACD解析:由集合间的关系,按照a =0、a ≠0讨论,运算即可得解.∵集合A ={−1,3},B ={x |ax =1},B ⊆A ,当a =0时,B =∅,满足题意;当a ≠0时,B ={x |ax =1}={1a },要使B ⊆A ,则需要满足1a =−1或1a =3,解得a =−1或a =13,∴a 的值为0或−1或13.故选:ACD .17、设A ={x|x 2−8x +15=0},B ={x|ax +1=0},若A ∩B =B ,则实数a 的值可以为()A .−15B .0C .3D .−13答案:ABD分析:根据A ∩B =B ,得到B ⊆A ,然后分a =0, a ≠0讨论求解.∵A ∩B =B ,∴B ⊆A ,A ={x|x 2−8x +15=0}={3,5} ,当a =0时,B =∅,符合题意;当a ≠0时,B ={−1a } ,要使B ⊆A ,则−1a =3或−1a =5,解得a =−13或a =−15. 综上,a =0或a =−13或a =−15.故选:ABD .18、下列说法正确的是( )A .“对任意一个无理数x ,x 2也是无理数”是真命题B .“xy >0”是“x +y >0”的充要条件C .命题“∃x ∈R, x 2+1=0”的否定是“∀x ∈R ,x 2+1≠0”D .若“1<x <3”的必要不充分条件是“m −2<x <m +2”,则实数m 的取值范围是[1,3]答案:CD解析:根据命题的真假,充分必要条件,命题的否定的定义判断各选项.x =√2是无理数,x 2=2是有理数,A 错;x =−1,y =−2时,xy >0,但x +y =−3<0,不是充要条件,B 错;命题∃x ∈R,x 2+1=0的否定是:∀x ∈R,x 2+1≠0,C 正确;“1<x <3”的必要不充分条件是“m −2<x <m +2”,则{m −2≤1m +2≥3,两个等号不同时取得.解得1≤m ≤3.D 正确.故选:CD .小提示:关键点点睛:本题考查命题的真假判断,解题要求掌握的知识点较多,需要对四个选项一一判断.但求解时根据充分必要条件的定义,命题的否定的定义判断,对有些错误的命题可以举例说明其不正确.19、(多选)下列是“a <0,b <0”的必要条件的是( )A .(a +1)2+(b +3)2=0B .a +b <0C .a −b <0D .a b >0答案:BD分析:由a<0,b<0判断各个选项是否成立可得.取a=−2,b=−4,得(a+1)2+(b+3)2=2≠0,故A不是“a<0,b<0”的必要条件;由a<0,b<0,得a+b<0,故B是“a<0,b<0”的必要条件;取a=−2,b=−4,得a−b=−2−(−4)=2>0,故C不是“a<0,b<0”的必要条件;>0,故D是“a<0,b<0”的必要条件.由a<0,b<0,得ab故选:BD.20、下列关系正确的是()A.0∉∅B.∅⊆{0}C.{∅}⊆{0}D.∅{∅}答案:ABD分析:利用元素与集合之间的关系,集合与集合之间的关系判断即可.由空集的定义知:0∉∅,A正确.∅⊆{0},B正确.{∅}⊄{0},C错误.∅{∅},D正确.故选:ABD.填空题21、已知集合A={x|x<-1,或x>2},B={x|2a≤x≤a+3},若“x∃A”是“x∃B”的必要条件,则实数a的取值范围是______.答案:(-∞,-4)∃(1,+∞)分析:根据题目条件可得B ∃A ,对B 进行分类讨论求出实数a 的取值范围.因为“x ∃A ”是“x ∃B ”的必要条件,所以B ∃A ,当B =∃时满足题意,即2a >a +3,所以a >3;当B ≠∃时,{2a ≤a +3a +3<-1 或{2a ≤a +32a >2, 解得:a <-4或1<a ≤3;综上可得,实数a 的取值范围是(-∞,-4)∃(1,+∞).所以答案是:(-∞,-4)∃(1,+∞).22、设非空集合Q ⊆M ,当Q 中所有元素和为偶数时(集合为单元素时和为元素本身),称Q 是M 的偶子集,若集合M ={1,2,3,4,5,6,7},则其偶子集Q 的个数为___________.答案:63分析:对集合Q 中奇数和偶数的个数进行分类讨论,确定每种情况下集合Q 的个数,综合可得结果.集合Q 中只有2个奇数时,则集合Q 的可能情况为:{1,3}、{1,5}、{1,7}、{3,5}、{3,7}、{5,7},共6种, 若集合Q 中只有4个奇数时,则集合Q ={1,3,5,7},只有一种情况,若集合Q 中只含1个偶数,共3种情况;若集合Q 中只含2个偶数,则集合Q 可能的情况为{2,4}、{2,6}、{4,6},共3种情况;若集合Q 中只含3个偶数,则集合Q ={2,4,6},只有1种情况.因为Q 是M 的偶子集,分以下几种情况讨论:若集合Q 中的元素全为偶数,则满足条件的集合Q 的个数为7;若集合Q 中的元素全为奇数,则奇数的个数为偶数,共7种;若集合Q 中的元素是2个奇数1个偶数,共6×3=18种;若集合Q 中的元素为2个奇数2个偶数,共6×3=18种;若集合Q中的元素为2个奇数3个偶数,共6×1=6种;若集合Q中的元素为4个奇数1个偶数,共1×3=3种;若集合Q中的元素为4个奇数2个偶数,共1×3=3种;若集合Q中的元素为4个奇数3个偶数,共1种.综上所述,满足条件的集合Q的个数为7+7+18+18+6+3+3+1=63.所以答案是:63.23、若“x>3”是“x>m”的必要不充分条件,则m的取值范围是________.答案:m>3分析:由题,“x>3”是“x>m”的必要不充分条件,则(m,+∞)是(3,+∞)的真子集,可得答案. 因为“x>3”是“x>m”的必要不充分条件,所以(m,+∞)是(3,+∞)的真子集,所以m>3,故答案为m>3.小提示:本题考查了不要不充分条件,属于基础题.。
高中数学必修一第一章集合与常用逻辑用语知识点汇总(带答案)
高中数学必修一第一章集合与常用逻辑用语知识点汇总单选题1、设集合A={1,2},B={2,4,6},则A∪B=()A.{2}B.{1,2}C.{2,4,6}D.{1,2,4,6}答案:D分析:利用并集的定义可得正确的选项.A∪B={1,2,4,6},故选:D.2、已知集合M={x|x=2k+1,k∈Z},集合N={y|y=4k+3,k∈Z},则M∪N=()A.{x|x=6k+2,k∈Z}B.{x|x=4k+2,k∈Z}C.{x|x=2k+1,k∈Z}D.∅答案:C分析:通过对集合N的化简即可判定出集合关系,得到结果.因为集合M={x|x=2k+1,k∈Z},集合N={y|y=4k+3,k∈Z}={y|y=2(2k+1)+1,k∈Z},因为x∈N时,x∈M成立,所以M∪N={x|x=2k+1,k∈Z}.故选:C.3、已知集合S={x∈N|x≤√5},T={x∈R|x2=a2},且S∩T={1},则S∪T=()A.{1,2}B.{0,1,2}C.{-1,0,1,2}D.{-1,0,1,2,3}答案:C分析:先根据题意求出集合T,然后根据并集的概念即可求出结果.S={x∈N|x≤√5}={0,1,2},而S∩T={1},所以1∈T,则a2=1,所以T={x∈R|x2=a2}={−1,1},则S∪T={−1,0,1,2}故选:C.4、已知p:√x−1>2,q:m−x<0,若p是q的充分不必要条件,则m的取值范围是()A.m<3B.m>3C.m<5D.m>5答案:C分析:先求得命题p、q中x的范围,根据p是q的充分不必要条件,即可得答案.命题p:因为√x−1>2,所以x−1>4,解得x>5,命题q:x>m,因为p是q的充分不必要条件,所以m<5.故选:C5、已知集合A={x|-1<x<1},B={x|0≤x≤2},则A∪B=()A.{x|0≤x<1}B.{x|-1<x≤2}C.{x|1<x≤2}D.{x|0<x<1}答案:B分析:由集合并集的定义可得选项.解:由集合并集的定义可得A∪B={x|-1<x≤2},故选:B.6、已知集合P={x|x=2k−1,k∈N∗}和集合M={x|x=a⊕b,a∈P,b∈P},若M⊆P,则M中的运算“⊕”是()A.加法B.除法C.乘法D.减法答案:C分析:用特殊值,根据四则运算检验.若a=3,b=1,则a+b=4∉P,a−b=2∉P,ba =13∉P,因此排除ABD.故选:C.7、等比数列{a n}的公比为q,前n项和为S n,设甲:q>0,乙:{S n}是递增数列,则()A.甲是乙的充分条件但不是必要条件B.甲是乙的必要条件但不是充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件答案:B分析:当q>0时,通过举反例说明甲不是乙的充分条件;当{S n}是递增数列时,必有a n>0成立即可说明q> 0成立,则甲是乙的必要条件,即可选出答案.由题,当数列为−2,−4,−8,⋯时,满足q>0,但是{S n}不是递增数列,所以甲不是乙的充分条件.若{S n}是递增数列,则必有a n>0成立,若q>0不成立,则会出现一正一负的情况,是矛盾的,则q>0成立,所以甲是乙的必要条件.故选:B.小提示:在不成立的情况下,我们可以通过举反例说明,但是在成立的情况下,我们必须要给予其证明过程.8、设集合A={x|x2–4≤0},B={x|2x+a≤0},且A∩B={x|–2≤x≤1},则a=()A.–4B.–2C.2D.4答案:B分析:由题意首先求得集合A,B,然后结合交集的结果得到关于a的方程,求解方程即可确定实数a的值.求解二次不等式x2−4≤0可得:A={x|−2≤x≤2},}.求解一次不等式2x+a≤0可得:B={x|x≤−a2=1,解得:a=−2.由于A∩B={x|−2≤x≤1},故:−a2故选:B.小提示:本题主要考查交集的运算,不等式的解法等知识,意在考查学生的转化能力和计算求解能力.多选题9、下列条件中,为“关于x的不等式mx2−mx+1>0对∀x∈R恒成立”的充分不必要条件的有()A.0≤m<4B.0<m<2C.1<m<4D.−1<m<6答案:BC分析:对m讨论:m=0;m>0,Δ<0;m<0,结合二次函数的图象,解不等式可得m的取值范围,再由充要条件的定义判断即可.因为关于x的不等式mx2−mx+1>0对∀x∈R恒成立,当m=0时,原不等式即为1>0恒成立;当m>0时,不等式mx2−mx+1>0对∀x∈R恒成立,可得Δ<0,即m2−4m<0,解得:0<m<4.当m<0时,y=mx2−mx+1的图象开口向下,原不等式不恒成立,综上:m的取值范围为:[0,4).所以“关于x的不等式mx2−mx+1>0对∀x∈R恒成立”的充分不必要条件的有0<m<2或1<m<4.故选:BC.10、某校举办运动会,高一的两个班共有120名同学,已知参加跑步、拔河、篮球比赛的人数分别为58,38,52,同时参加跑步和拔河比赛的人数为18,同时参加拔河和篮球比赛的人数为16,同时参加跑步、拔河、篮球三项比赛的人数为12,三项比赛都不参加的人数为20,则()A.同时参加跑步和篮球比赛的人数为24B.只参加跑步比赛的人数为26C.只参加拔河比赛的人数为16D.只参加篮球比赛的人数为22答案:BCD分析:设同时参加跑步和篮球比赛的人数为x,由Venn图可得集合的元素个数关系.设同时参加跑步和篮球比赛的人数为x,由Venn图可得,58+38+52−18−16−x+12=120−20,得x=26,则只参加跑步比赛的人数为58−18−26+12=26,只参加拔河比赛的人数为38−16−18+12= 16,只参加篮球比赛的人数为52−16−26+12=22.故选:BCD.11、对于集合M,N,我们把属于集合M但不属于集合N的元素组成的集合叫作集合M与N的“差集”,记作M−N,即M−N={x|x∈M,且x∉N};把集合M与N中所有不属于M∩N的元素组成的集合叫作集合M与N的“对称差集”,记作MΔN,即MΔN={x|x∈M∪N,且x∉M∩N}.下列四个选项中,正确的有()A.若M−N=M,则M∩N=∅B.若M−N=∅,则M=NC.MΔN=(M∪N)−(M∩N)D.MΔN=(M−N)∪(N−M)答案:ACD分析:根据集合的新定义得到A正确,当M⊆N时,M−N=∅,B错误,根据定义知C正确,画出集合图形知D正确,得到答案.若M−N=M,则M∩N=∅,A正确;当M⊆N时,M−N=∅,B错误;MΔN={x|x∈M∪N,且x∉M∩N}=(M∪N)−(M∩N),C正确;MΔN和(M−N)∪(N−M)均表示集合中阴影部分,D正确.故选:ACD.填空题12、已知集合A=(1,3),B=(2,+∞),则A∩B=______.答案:(2,3)分析:利用交集定义直接求解.解:∵集合A=(1,3),B=(2,+∞),∴A∩B=(2,3).所以答案是:(2,3).13、已知集合A={−1,3,0},B={3,m2},若B⊆A,则实数m的值为__________.答案:0分析:解方程m2=0即得解.解:因为B⊆A,所以m2=−1(舍去)或m2=0,所以m=0.所以答案是:014、集合A={x|(x−1)(x2+ax+4)=0,x∈R}中所有元素之和为3,则实数a=________.答案:−4分析:由(x−1)(x2+ax+4)=0得x1+x2+x3=1−a,即可求解参数.由(x−1)(x2+ax+4)=0得x−1=0或x2+ax+4=0所以x1=1∈A,x2+ax+4=0,当Δ=a2−16=0时,x=2是方程x2+ax+4=0的根,解得a=−4,当Δ>0时,若方程x2+ax+4=0的一根为1,则a=−5,方程的另一根为4,不合题意;若1不是方程x2+ax+4=0的根,则方程两根x2+x3=−a=2,此时a=−2不满足Δ>0,舍去. 所以答案是:−4.解答题15、已知M={x|2≤x≤5},N={x|a+1≤x≤2a﹣1}.(1)若M⊆N,求实数a的取值范围;(2)若M⊇N,求实数a的取值范围.答案:(1)a∈∅(2)a≤3分析:(1)利用M⊆N,建立不等关系即可求解;(2)利用M⊇N,建立不等关系即可求解,注意当N=∅时,也成立(1)∵M⊆N,∴{a+1≤22a−1≥5,∴a∈∅;(2)①若N=∅,即a+1>2a﹣1,解得a<2时,满足M⊇N.②若N≠∅,即a≥2时,要使M⊇N成立,则{a+1≥22a−1≤5,解得1≤a≤3,此时2≤a≤3.综上a≤3.。
2023年人教版高中数学第一章集合与常用逻辑用语易错知识点总结
(名师选题)2023年人教版高中数学第一章集合与常用逻辑用语易错知识点总结单选题1、已知“命题p:∃x ∈R,使得ax 2+2x +1<0成立”为真命题,则实数a 满足( )A .[0,1)B .(-∞,1)C .[1,+∞)D .(-∞,1]答案:B分析:讨论a =0或a ≠0,当a =0时,解得x <−12,成立;当a ≠0时,只需{a >0Δ>0或a <0即可. 若a =0时,不等式ax 2+2x +1<0等价为2x +1<0,解得x <−12,结论成立.当a ≠0时,令y =ax 2+2x +1,要使ax 2+2x +1<0成立,则满足{a >0Δ>0或a <0,解得0<a <1或a <0,综上a <1, 故选:B .小提示:本题考查了根据特称命题的真假求参数的取值范围,考查了分类讨论的思想,属于基础题.2、设全集U ={1,2,3,4,5},集合M 满足∁U M ={1,3},则( )A .2∈MB .3∈MC .4∉MD .5∉M答案:A分析:先写出集合M ,然后逐项验证即可由题知M ={2,4,5},对比选项知,A 正确,BCD 错误故选:A3、若集合A ={x ∣|x |≤1,x ∈Z },则A 的子集个数为( )A .3B .4C .7D .8分析:先求得集合A,然后根据子集的个数求解即可.解:A={x∥x∣≤1,x∈Z}={−1,0,1},则A的子集个数为23=8个,故选:D.4、对与任意集合A,下列各式①∅∈{∅},②A∩A=A,③A∪∅=A,④N∈R,正确的个数是()A.1B.2C.3D.4答案:C分析:根据集合中元素与集合的关系,集合与集合的关系及交并运算可判断.易知①∅∈{∅},②A∩A=A,③A∪∅=A,正确④N∈R,不正确,应该是N⊆R故选:C.5、“a=0”是关于x的不等式ax−b≥1的解集为R的()A.充分非必要条件B.必要非充分条件C.充要条件D.非充分非必要条件答案:B分析:取a=0,b=1时可判断充分性;当不等式ax−b≥1的解集为R时,分a>0,a<0,a=0讨论可判断必要性.若a=0,取b=1时,不等式ax−b≥1⇔−1≥1,此时不等式解集为∅;},当a>0时,不等式ax−b≥1的解集为{x|x≥b+1a},当a<0时,不等式ax−b≥1的解集为{x|x≤b+1a当a=0,且b≤−1时,不等式ax−b≥1⇔−b≥1⇔b≤−1,所以,若关于x的不等式ax−b≥1的解集为R,则a=0.综上,“a=0”是关于x的不等式ax−b≥1的解集为R的必要非充分条件.6、设集合A={x|x2=1},B={x|ax=1}.若A∩B=B,则实数a的值为()A.1B.−1C.1或−1D.0或1或−1答案:D分析:对a进行分类讨论,结合B⊆A求得a的值.由题可得A={x|x2=1}={1,−1},B⊆A,当a=0时,B=∅,满足B⊆A;当a≠0时,B={1a },则1a=1或1a=−1,即a=±1.综上所述,a=0或a=±1.故选:D.7、设全集U={−2,−1,0,1,2,3},集合A={−1,2},B={x∣x2−4x+3=0},则∁U(A∪B)=()A.{1,3}B.{0,3}C.{−2,1}D.{−2,0}答案:D分析:解方程求出集合B,再由集合的运算即可得解.由题意,B={x|x2−4x+3=0}={1,3},所以A∪B={−1,1,2,3},所以∁U(A∪B)={−2,0}.故选:D.8、已知集合A={x|1x>1},则∁R A=()A.{x|x<1}B.{x|x≤0或x≥1}C.{x|x<0}∪{x|x>1}D.{x|1≤x}答案:B分析:先解不等式,求出集合A,再求出集合A的补集由1x >1,得1−xx>0,x(1−x)>0,解得0<x<1,所以A={x|0<x<1},所以∁R A={x|x≤0或x≥1}故选:B9、已知集合A={x|−1<x<1},B={x|0≤x≤2},则A∪B=()A.{x|−1<x<2}B.{x|−1<x≤2}C.{x|0≤x<1}D.{x|0≤x≤2}答案:B分析:结合题意利用并集的定义计算即可.由题意可得:A∪B={x|−1<x≤2}.故选:B.10、已知p:0<x<2,q:−1<x<3,则p是q的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分不必要条件答案:A分析:根据充分和必要条件的定义即可求解.由p:0<x<2,可得出q:−1<x<3,由q:−1<x<3,得不出p:0<x<2,所以p是q的充分而不必要条件,故选:A.11、已知集合M={x|x=2k+1,k∈Z},集合N={y|y=4k+3,k∈Z},则M∪N=()A.{x|x=6k+2,k∈Z}B.{x|x=4k+2,k∈Z}C.{x|x=2k+1,k∈Z}D.∅答案:C分析:通过对集合N的化简即可判定出集合关系,得到结果.因为集合M={x|x=2k+1,k∈Z},集合N={y|y=4k+3,k∈Z}={y|y=2(2k+1)+1,k∈Z},因为x∈N时,x∈M成立,所以M∪N={x|x=2k+1,k∈Z}.故选:C.12、已知U=R,M={x|x≤2},N={x|−1≤x≤1},则M∩∁U N=()A.{x|x<−1或1<x≤2}B.{x|1<x≤2}C.{x|x≤−1或1≤x≤2}D.{x|1≤x≤2}答案:A分析:先求∁U N,再求M∩∁U N的值.因为∁U N={x|x<−1或x>1},所以M∩C U N={x|x<−1或1<x≤2}.故选:A.双空题13、请写一个与集合知识有关的全称量词命题或存在量词命题,并写出该命题的否定.原命题:_____________________,原命题的否定:___________________________.答案:∃x∈Q,x∈Z. ∀x∈Q,x∉Z(答案不唯一)分析:根据全称量词命题或存在量词命题与该命题的否定定义填写即可.原命题:∃x∈Q,x∈Z;原命题的否定:∀x∈Q,x∉Z.14、设全集U={1,2,3,4,5,6},U的子集可表示由0,1组成的6位字符串,如{2,5}表示的是从左往右数第2个字符为1,第5个字符为1,其余均为0的6位字符串010010,并规定空集表示的字符串为000000.(1)若M={1,3,4},则∁U M表示的6位字符串为______;(2)若A={2,3},集合A∪B表示的字符串为011011,则满足条件的集合B的个数为______.答案: 010011 4分析:(1)先求出∁U M={2,5,6},然后根据字符串的定义求解即可,(2)由已知可求得A∪B={2,3,5,6},而A={2,3},从而可求出集合B(1)因为U={1,2,3,4,5,6},M={1,3,4},所以∁U M={2,5,6},所以∁U M表示的6位字符串为010011.(2)因为集合A∪B表示的字符串为011011,所以A∪B={2,3,5,6},又A={2,3},所以集合B可能为{5,6},{2,5,6},{3,5,6},{2,3,5,6},即满足条件的集合B的个数为4.所以答案是:(1)010011,(2)415、用“充分不必要”或“必要不充分”填空:(1)“x≠3”是“|x|≠3”的_____条件.(2)“个位数字是5的自然数”是“这个自然数能被5整除”的_____条件.答案:必要不充分充分不必要分析:(1)根据必要不充分条件的定义判断可得答案;(2)根据充分不必要条件的定义判断可得答案(1)因为当x=−3时,|x|=3,所以“x≠3”不能推出“|x|≠3”当|x|≠3时,可以推出x≠3,所以“x≠3”是“|x|≠3”的必要不充分条件.(2)因为个位数字是5的自然数都能被5整除,而自然数能被5整除时,其个位数字也可能为0,即“这个自然数能被5整除”不能够推出“这个自然数的个位数字为5”所以“个位数字是5的自然数”是“这个自然数能被5整除”的充分不必要条件.所以答案是:必要不充分;充分不必要16、已知全集U={2,3,5},集合A={x|x2+bx+c=0},若∁U A={2},则b=_______,c=_______.答案:−8 15分析:根据补集的结果推出集合A,可知方程x2+bx+c=0的两个实数根为3和5,利用根与系数的关系即可求得b、c.∵∁U A={2},∴A={3,5},∴方程x2+bx+c=0的两个实数根为3和5,∴b=−(3+5)=−8,c=3×5=15.所以答案是:−8;15小提示:本题考查集合补集的概念、一元二次方程,属于基础题.17、若集合A={1,2,3},B={x|x⊆A},则B=_________(用列举法表示),集合A与集合B的关系为:A____B(填入适当的符号).答案:{∅,{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}}∈分析:由集合A及集合B中元素与A的关系知B是由A集合的子集构成的集合,应用列举法写出集合B,即可得到答案因为A={1,2,3},B={x|x⊆A},所以集合B中的元素是集合A的子集:∅,{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3},所以集合B={∅,{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}},因为集合A={1,2,3}是集合B的一个元素,所以A∈B,所以答案是:{∅,{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}};∈解答题18、定义:若任意m,n∈A(m,n可以相等),都有1+mn≠0,则集合B={x|x=m+n1+mn,m,n∈A}称为集合A的生成集;(1)求集合A={3,4}的生成集B;(2)若集合A={a,2},A的生成集为B,B的子集个数为4个,求实数a的值;(3)若集合A=(−1,1),A的生成集为B,求证A=B.答案:(1)B={35,817,713}(2)a=±1或a=12(3)证明见解析分析:(1)根据新定义算出x的值即可求出B;(2)B的子集个数为4个,转化为B中有2个元素,然后列出等式即可求出a的值;(3)求出B的范围即可证明出结论(1)由题可知,(1)当m=n=3时,x=3+31+3×3=35,(2) 当m=n=4时,x=4+41+4×4=817,(3)当m=3,n=4或m=4,n=3时,x=3+41+3×4=713所以B={35,817,713}(2)(1)当m=n=2时,x=2+21+2×2=45,(2)当m=n=a时,x=a+a1+a2=2a1+a2(3)当m=2,n=a或m=a,n=2时,x=2+a1+2a B的子集个数为4个,则B中有2个元素,所以45=2a1+a2或2a1+a2=2+a1+2a或2+a1+2a=45,解得a=±1或a=12(a=2舍去),所以a=±1或a=12.(3)证明:∀m,n∈(−1,1)=A,m+n 1+mn +1=(m+1)(n+1)1+mn>0,m+n 1+mn −1=−(m−1)(n−1)1+mn<0,∴−1<m+n1+mn<1,即B=(−1,1)∴B⊆A,又A=(−1,1),所以A⊆B,所以A=B19、设p:|2x+1|<3,q:x−(2a+1)<0.(1)若a=1,且p、q均为真命题,求满足条件的实数x构成的集合;(2)若p是q的充分条件,求实数a的取值范围.答案:(1){x|−2<x<1}(2)[0,+∞)分析:(1)当a=1时,分别化简p与q,再取交集即得所求(2)p是q的充分条件,则p所表示的取值范围是q 所表示的取值范围的子集,利用集合的包含关系即可求解(1)因为p:−2<x<1,q:x−3<0,即x<3,所以p、q均为真命题,则取公共部分得实数x构成的集合为{x|−2<x<1};(2)(2)因为p是q的充分条件,且p:−2<x<1,q:x<2a+1,所以(−2,1)⊆(−∞,2a+1),所以2a+1≥1,解得a≥0,故实数a的取值范围是[0,+∞).20、已知集合A={x|x2−2x−8=0},集合B={x|x2+ax+a2−12=0}.若B∪A≠A,求实数a的取值范围. 答案:{a|−4≤a<4,a≠−2}分析:求得集合A,从反面入手,B∪A=A⇔B⊆A,然后分类讨论求得a的范围,最后再求其在R中的补集即得.若B∪A=A,则B⊆A,又∵A={x|x2−2x−8=0}={−2,4},∴集合B有以下三种情况:①当B=∅时,Δ=a2−4(a2−12)<0,即a2>16,∴a<−4或a>4,②当B是单元素集时,Δ=a2−4(a2−12)=0,∴a=−4或a=4,若a=−4,则B={2}不是A的子集,若a=4,则B={−2}⊆A,∴a=4,③当B={−2,4}时,−2、4是方程x2+ax+a2−12=0的两根,∴{−a=−2+4a2−12=−2×4,∴a=−2,综上可得,B∪A=A时,a的取值范围为a<−4或a=−2或a≥4,∴满足B∪A≠A的实数a的取值范围为{a|−4≤a<4,a≠−2}.。
高中数学知识点总结(第一章 集合与常用逻辑用语)
第一章 集合与常用逻辑用语第一节 集 合一、基础知识1.集合的有关概念(1)集合元素的三个特性:确定性、无序性、互异性.元素互异性,即集合中不能出现相同的元素,此性质常用于求解含参数的集合问题中. (2)集合的三种表示方法:列举法、描述法、图示法. (3)元素与集合的两种关系:属于,记为∈;不属于,记为∉. (4)五个特定的集合及其关系图:N *或N +表示正整数集,N 表示自然数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.2.集合间的基本关系(1)子集:一般地,对于两个集合A ,B ,如果集合A 中任意一个元素都是集合B 中的元素,则称A 是B 的子集,记作A ⊆B (或B ⊇A ).(2)真子集:如果集合A 是集合B 的子集,但集合B 中至少有一个元素不属于A ,则称A 是B 的真子集,记作A B 或B A .A B ⇔⎩⎪⎨⎪⎧A ⊆B ,A ≠B .既要说明A 中任何一个元素都属于B ,也要说明B 中存在一个元素不属于A .(3)集合相等:如果A ⊆B ,并且B ⊆A ,则A =B .两集合相等:A =B ⇔⎩⎪⎨⎪⎧A ⊆B ,A ⊇B .A 中任意一个元素都符合B 中元素的特性,B 中任意一个元素也符合A 中元素的特性.(4)空集:不含任何元素的集合.空集是任何集合A 的子集,是任何非空集合B 的真子集.记作∅.∅∈{∅},∅⊆{∅},0∉∅,0∉{∅},0∈{0},∅⊆{0}.3.集合间的基本运算(1)交集:一般地,由属于集合A且属于集合B的所有元素组成的集合,称为A与B的交集,记作A∩B,即A∩B={x|x∈A,且x∈B}.(2)并集:一般地,由所有属于集合A或属于集合B的元素组成的集合,称为A与B的并集,记作A∪B,即A∪B={x|x∈A,或x∈B}.(3)补集:对于一个集合A,由全集U中不属于集合A的所有元素组成的集合称为集合A相对于全集U的补集,简称为集合A的补集,记作∁U A,即∁U A={x|x∈U,且x∉A}.求集合A的补集的前提是“A是全集U的子集”,集合A其实是给定的条件.从全集U中取出集合A的全部元素,剩下的元素构成的集合即为∁U A.二、常用结论(1)子集的性质:A⊆A,∅⊆A,A∩B⊆A,A∩B⊆B.(2)交集的性质:A∩A=A,A∩∅=∅,A∩B=B∩A.(3)并集的性质:A∪B=B∪A,A∪B⊇A,A∪B⊇B,A∪A=A,A∪∅=∅∪A=A.(4)补集的性质:A∪∁U A=U,A∩∁U A=∅,∁U(∁U A)=A,∁A A=∅,∁A∅=A.(5)含有n个元素的集合共有2n个子集,其中有2n-1个真子集,2n-1个非空子集.(6)等价关系:A∩B=A⇔A⊆B;A∪B=A⇔A⊇B.第二节命题及其关系、充分条件与必要条件一、基础知识1.命题的概念用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.一个命题要么是真命题,要么是假命题,不能模棱两可.2.四种命题及其相互关系3.充分条件、必要条件与充要条件(1)如果p⇒q,则p是q的充分条件;①A是B的充分不必要条件是指:A⇒B且B A;②A的充分不必要条件是B是指:B⇒A且A B,在解题中要弄清它们的区别,以免出现错误.(2)如果q⇒p,则p是q的必要条件;(3)如果既有p⇒q,又有q⇒p,记作p⇔q,则p是q的充要条件.充要关系与集合的子集之间的关系设A={x|p(x)},B={x|q(x)},①若A⊆B,则p是q的充分条件,q是p的必要条件.②若A B,则p是q的充分不必要条件,q是p的必要不充分条件.③若A=B,则p是q的充要条件.二、常用结论1.四种命题中的等价关系原命题等价于逆否命题,否命题等价于逆命题,所以在命题不易证明时,往往找等价命题进行证明.2.等价转化法判断充分条件、必要条件p是q的充分不必要条件,等价于非q是非p的充分不必要条件.其他情况以此类推.第三节简单的逻辑联结词、全称量词与存在量词一、基础知识1.简单的逻辑联结词(1)命题中的“且”“或”“非”❶叫做逻辑联结词.①用联结词“且”把命题p和命题q联结起来,得到复合命题“p且q”,记作p∧q;②用联结词“或”把命题p和命题q联结起来,得到复合命题“p或q”,记作p∨q;③对命题p的结论进行否定,得到复合命题“非p”,记作非p.❷❶“且”的数学含义是几个条件同时满足,“且”在集合中的解释为“交集”;“或”的数学含义是至少满足一个条件,“或”在集合中的解释为“并集”;“非”的含义是否定,“非p”只否定p的结论,“非”在集合中的解释为“补集”.❷“命题的否定”与“否命题”的区别(1)命题的否定只是否定命题的结论,而否命题既否定其条件,也否定其结论.(2)命题的否定与原命题的真假总是相对立的,即一真一假,而否命题与原命题的真假无必然联系.(2)命题真值表:命题真假的判断口诀p∨q→见真即真,p∧q→见假即假,p与非p→真假相反.2.全称量词与存在量词3.全称命题与特称命题4.全称命题与特称命题的否定二、常用结论含逻辑联结词命题真假的等价关系(1)p∨q真⇔p,q至少一个真⇔(非p)∧(非q)假.(2)p∨q假⇔p,q均假⇔(非p)∧(非q)真.(3)p∧q真⇔p,q均真⇔(非p)∨(非q)假.(4)p∧q假⇔p,q至少一个假⇔(非p)∨(非q)真.。
高中数学必修一第一章集合与常用逻辑用语知识点汇总
(每日一练)高中数学必修一第一章集合与常用逻辑用语知识点汇总单选题1、已知x∈R,则“(x−2)(x−3)≤0成立”是“|x−2|+|x−3|=1成立”的()条件.A.充分不必要B.必要不充分C.充分必要D.既不充分也不必要答案:C分析:先证充分性,由(x−2)(x−3)≤0求出x的取值范围,再根据x的取值范围化简|x−2|+|x−3|即可,再证必要性,若|x−2|+|x−3|=1,即|x−2|+|x−3|=|(x−2)−(x−3)|,再根据绝对值的性质可知(x−2)(x−3)≤0.充分性:若(x−2)(x−3)≤0,则2≤x≤3,∴|x−2|+|x−3|=x−2+3−x=1,必要性:若|x−2|+|x−3|=1,又∵|(x−2)−(x−3)|=1,∴|x−2|+|x−3|=|(x−2)−(x−3)|,由绝对值的性质:若ab≤0,则|a|+|b|=|a−b|,∴(x−2)(x−3)≤0,所以“(x−2)(x−3)≤0成立”是“|x−2|+|x−3|=1成立”的充要条件,故选:C.2、下列结论中正确的个数是()①命题“所有的四边形都是矩形”是存在量词命题;②命题“∀x∈R,x2+1<0”是全称量词命题;③命题“∃x∈R,x2+2x+1≤0”的否定为“∀x∈R,x2+2x+1≤0”;④命题“a>b是ac2>bc2的必要条件”是真命题;A.0B.1C.2D.3答案:C分析:根据存在量词命题、全称量词命题的概念,命题的否定,必要条件的定义,分析选项,即可得答案. 对于①:命题“所有的四边形都是矩形”是全称量词命题,故①错误;对于②:命题“∀x∈R,x2+1<0”是全称量词命题;故②正确;对于③:命题p:∃x∈R,x2+2x+1≤0,则¬p:∀x∈R,x2+2x+1>0,故③错误;对于④:ac2>bc2可以推出a>b,所以a>b是ac2>bc2的必要条件,故④正确;所以正确的命题为②④,故选:C3、集合A={0,−1,a2},B={−2,a4}.若A∪B={−2,−1,0,4,16},则a=()A.±1B.±2C.±3D.±4答案:B分析:根据并集运算,结合集合的元素种类数,求得a的值.由A∪B={−2,−1,0,4,16}知,{a2=4,解得a=±2a4=16故选:B4、下列说法正确的是()A.由1,2,3组成的集合可表示为{1,2,3}或{3,2,1}B.∅与{0}是同一个集合C.集合{x|y=x2−1}与集合{y|y=x2−1}是同一个集合D.集合{x|x2+5x+6=0}与集合{x2+5x+6=0}是同一个集合答案:A分析:根据集合的定义和性质逐项判断可得答案集合中的元素具有无序性,故A正确;∅是不含任何元素的集合,{0}是含有一个元素0的集合,故B错误;集合{x|y=x2−1}=R,集合{y|y=x2−1}={y|y≥−1},故C错误;集合{x|x2+5x+6=0}={x|(x+2)(x+3)=0}中有两个元素−2,−3,集合{x2+5x+6=0}中只有一个元素,为方程x2+5x+6=0,故D错误.故选:A.5、设集合A={2,a2−a+2,1−a},若4∈A,则a的值为().A.−1,2B.−3C.−1,−3,2D.−3,2答案:D分析:由集合中元素确定性得到:a=−1,a=2或a=−3,通过检验,排除掉a=−1.由集合中元素的确定性知a2−a+2=4或1−a=4.当a2−a+2=4时,a=−1或a=2;当1−a=4时,a=−3.当a=−1时,A={2,4,2}不满足集合中元素的互异性,故a=−1舍去;当a=2时,A={2,4,−1}满足集合中元素的互异性,故a=2满足要求;当a=−3时,A={2,14,4}满足集合中元素的互异性,故a=−3满足要求.综上,a=2或a=−3.故选:D.6、对与任意集合A,下列各式①∅∈{∅},②A∩A=A,③A∪∅=A,④N∈R,正确的个数是()A.1B.2C.3D.4答案:C分析:根据集合中元素与集合的关系,集合与集合的关系及交并运算可判断.易知①∅∈{∅},②A∩A=A,③A∪∅=A,正确④N∈R,不正确,应该是N⊆R故选:C.7、设集合A={x|x2=1},B={x|ax=1}.若A∩B=B,则实数a的值为()A.1B.−1C.1或−1D.0或1或−1答案:D分析:对a进行分类讨论,结合B⊆A求得a的值.由题可得A={x|x2=1}={1,−1},B⊆A,当a=0时,B=∅,满足B⊆A;当a≠0时,B={1a },则1a=1或1a=−1,即a=±1.综上所述,a=0或a=±1.故选:D.8、设全集U={−2,−1,0,1,2,3},集合A={−1,2},B={x∣x2−4x+3=0},则∁U(A∪B)=()A.{1,3}B.{0,3}C.{−2,1}D.{−2,0}答案:D分析:解方程求出集合B,再由集合的运算即可得解.由题意,B={x|x2−4x+3=0}={1,3},所以A∪B={−1,1,2,3},所以∁U(A∪B)={−2,0}.故选:D.9、集合A={0,1,2}的非空真子集的个数为()A.5B.6C.7D.8答案:B分析:根据真子集的定义即可求解.由题意可知,集合A的非空真子集为{0},{1},{2},{0,1},{0,2},{1,2},共6个. 故选:B.10、已知集合A={x|−1<x<1},B={x|0≤x≤2},则A∪B=()A.{x|−1<x<2}B.{x|−1<x≤2}C.{x|0≤x<1}D.{x|0≤x≤2}答案:B分析:结合题意利用并集的定义计算即可.由题意可得:A∪B={x|−1<x≤2}.故选:B.多选题11、下列四个命题中正确的是()A.∅={0}3所组成的集合最多含2个元素B.由实数x,-x,|x|,√x2,−√x3C.集合{x|x2−2x+1=0}中只有一个元素∈N}是有限集D.集合{x∈N|5x答案:BCD分析:根据集合的定义和性质逐项判断可得答案.对于A,空集不含任何元素,集合{0}有一个元素0,所以∅={0}不正确;3=−x,且在x,-x,|x|中,当x>0时,|x|=x,当x<0时,|x|=−x,当对于B,由于√x2=|x|,−√x3x=0时,|x|=x=−x=0,三者中至少有两个相等,所以由集合中元素的互异性可知,该集合中最多含2个元素,故B正确;对于C,{x|x2−2x+1=0}={1},故该集合中只有一个元素,故C正确;∈N}={1,5}是有限集,故D正确.对于D,集合{x∈N|5x故选:BCD.12、已知A、B为实数集R的非空集合,则A⫋B的必要不充分条件可以是()A.A∩B=A B.A∩∁R B=∅C.∁R B⫋∁R A D.B∪∁R A=R答案:ABD分析:根据集合之间的关系和必要不充分条件的定义即可判断.解:因为A⫋B⇔∁R B⫋∁R A,所以∁R B⫋∁R A是A⫋B的充分必要条件,因为A⫋B⇒A⊆B⇔A∩B=A⇔A∩∁R B=∅⇔B∪∁R A=R,故选:ABD.13、整数集Z中,被5除所得余数为k的所有整数组成一个“类”,记为[k],即[k]={5n+k|n∈Z},其中k∈{0,1,2,3,4}.以下判断正确的是()A.2021∈[1]B.−2∈[2]C.Z=[0]∪[1]∪[2]∪[3]∪[4]D.若a−b∈[0],则整数a,b属同一类答案:ACD分析:根据题意可知,一个类即这些整数的余数相同,进而求出余数即可.对A,2021=404×5+1,即余数为1,正确;对B,−2=−1×5+3,即余数为3,错误;对C,易知,全体整数被5除的余数只能是0,1,2,3,4,正确;对D,由题意a−b能被5整除,则a,b分别被5整除的余数相同,正确.故选:ACD.14、已知p是r的充分条件而不是必要条件,q是r的充分条件,s是r的必要条件,q是s的必要条件.现有下列命题:①s是q的充要条件;②p是q的充分条件而不是必要条件;③r是q的必要条件而不是充分条件;④¬p是¬s的必要条件而不是充分条件;则正确命题序号是()A.①B.②C.③D.④答案:ABD分析:根据题设有p⇒r⇔s⇔q,但r⇏p,即知否定命题的推出关系,判断各项的正误.由题意,p⇒r⇔s⇔q,但r⇏p,故①②正确,③错误;所以,根据等价关系知:¬ s⇔¬ q⇔¬ r⇒¬ p且¬p⇏¬ r,故④正确.故选:ABD15、下列结论正确的是()A.“x2>1”是“x>1”的充分不必要条件B.设M⫋N,则“x∉M”是“x∉N”的必要不充分条件C.“a,b都是偶数”是“a+b是偶数”的充分不必要条件D.“a>1且b>1”是“a+b>2且ab>1”的充分必要条件答案:BC分析:根据不等式的性质可判断A和D;由集合之间的包含关系可判断B;由数的奇偶性可判断C.对于选项A:x2>1⇒x>1,x>1⇒x2>1,所以“x2>1”是“x>1”的必要不充分条件,故A错误;对于选项B:由MN得∁R N∁R M,则x∉N⇒x∉M,x∉M⇒x∉N,所以“x∉M”是“x∉N”的必要不充分条件,故B正确;对于选项C:由“a,b都是偶数”可以得到“a+b是偶数”,但是当“a+b是偶数”时,a,b可能都是奇数,所以“a,b都是偶数”是“a+b是偶数”的充分不必要条件,故C正确;对于选项D:“a>1,且b>1”⇒“a+b>2且ab>1”,而由“a+b>2且ab>1”⇒“a>1,且b>1”,比如a=3,b=1. 所以“a>1,且b>1”是“a+b>2且ab>1”的充分不必要条件,故D错误.2故选:BC.16、若集合A={x|x=m2+n2,m,n∈Z},则()A.1∈A B.2∈A C.3∈A D.4∈A答案:ABD解析:分别令m2+n2等于1,2,3,4,判断m,n是否为整数即可求解.对于选项A:m2+n2=1,存在m=0,n=1或m=1,n=0使得其成立,故选项A正确;对于选项B:m2+n2=2,存在m=1,n=1,使得其成立,故选项B正确;对于选项C:由m2+n2=3,可得m2≤3,n2≤3,若m2=0则n2=3可得n=±√3,n∉z,不成立;若m2=1则n2=2可得n=±√2,n∉z,不成立;若m2=3,可得n2=0,此时m=±√3,m∉z,不成立;同理交换m 与n ,也不成立,所以不存在m,n 为整数使得m 2+n 2=3成立,故选项C 不正确;对于选项D :m 2+n 2=4,此时存在m =0,n =2或m =2,n =0使得其成立,故选项D 正确,故选:ABD.17、设A ={x |x 2−9x +14=0 },B ={x |ax −1=0 },若A ∩B =B ,则实数a 的值可以为( )A .2B .12C .17D .0答案:BCD分析:先求出集合A ,再由A ∩B =B 可知B ⊆A ,由此讨论集合B 中元素的可能性,即可判断出答案. 集合A ={x|x 2−9x +14=0}={2,7},B ={x|ax −1=0},又A ∩B =B ,所以B ⊆A ,当a =0时,B =∅,符合题意,当a ≠0时,则B ={1a },所以1a =2或1a =7,解得a =12或a =17,综上所述,a =0或12或17, 故选:BCD18、已知下列说法:①命题“∃x ∈R ,x 2+1>3x ”的否定是“∀x ∈R ,x 2+1<3x ”;②命题“∀x ,y ∈R ,x 2+y 2≥0”的否定是“∃x ,y ∈R ,x 2+y 2<0”;③“a >2”是“a >5”的充分不必要条件;④命题:对任意x ∈R ,总有x 2>0.其中说法错误的是( )A.①B.②C.③D.④答案:ACD分析:①根据特称命题的否定是全称命题即可判断;②根据全称命题的否定是特称命题即可判断;③根据必要条件和充分条件的概念即可判断;④判断命题的真假.对于①,命题“∃x∈R,x2+1>3x”的否定是“∀x∈R,x2+1≤3x”,故错误;对于②,命题“∀x,y∈R,x2+y2≥0”的否定是“∃x,y∈R,x2+y2<0”,正确;对于③,“a>2”是“a>5”的必要不充分条件,故错误;对于④,当x=0时x2=0,故错误.故选:ACD.19、已知p是r的充分条件而不是必要条件,q是r的充分条件,s是r的必要条件,q是s的必要条件.下列命题中正确的是()A.s是q的充要条件B.p是q的充分条件而不是必要条件C.r是q的必要条件而不是充分条件D.¬p是¬s的必要条件而不是充分条件答案:ABD分析:根据充分不必要条件、充分条件、必要条件的定义进行求解即可.将四个条件写成:p⇒r,且r不能推出p;q⇒r;r⇒s;s⇒q,所以q⇒r⇒s,所以s⇔q,故A正确;p⇒r⇒s⇒q,q⇒r不能推出p,故B正确;r⇒s⇒q,又q⇒r,故r是q的充要条件,故C错误;由p⇒r⇒s,可得¬s⇒¬p,由s⇒q⇒r不能推出p,可得¬p不能推出¬s,故D正确.故选:ABD20、已知集合A={y|y=x2+1},集合B={(x,y)|y=x2+1},下列关系正确的是().A.(1,2)∈B B.A=B C.0∉A D.(0,0)∉B答案:ACD分析:根据集合的定义判断,注意集合中代表元形式.由已知集合A={y}y≥1}=[1,+∞),集合B是由抛物线y=x2+1上的点组成的集合,A正确,B错,C正确,D正确,故选:ACD.小提示:本题考查集合的概念,确定集合中的元素是解题关键.填空题21、已知p:x>2,q:x>1,则p是q的_______________(充分条件”、“必要条件”、“充要条件”、“既不充分也不必要条件”中选择一个填空).答案:充分条件分析:根据集合关系判断即可得答案.设命题p:x>2对应的集合为A={x|x>2},命题q:x>1对应的集合为B={x|x|x>1},因为A⊊B,所以命题p是命题q的充分条件.所以答案是:充分条件.小提示:名师点评本题考查充分不必要条件的判断,一般可根据如下规则判断:(1)若p是q的必要不充分条件,则q对应集合是p对应集合的真子集;(2)若p是q的充分不必要条件,则p对应集合是q对应集合的真子集;(3)若p是q的充分必要条件,则p对应集合与q对应集合相等;(4)若p是q的既不充分又不必要条件,则q对的集合与p对应集合互不包含.1122、若一个三角形的三边长分别为a,b,c,设p=12(a+b+c),则该三角形的面积S=√p(p−a)(p−b)(p−c),这就是著名的“秦九韶-海伦公式”若△ABC的周长为8,AB=2,则该三角形面积的最大值为___________.答案:2√2分析:计算得到p=4,c=2,a+b=6,根据均值不等式得到ab≤9,代入计算得到答案.p=12(a+b+c)=4,c=2,a+b=6,a+b=6≥2√ab,ab≤9,当a=b=3时等号成立.S=√p(p−a)(p−b)(p−c)=√8(4−a)(4−b)=√128−32(a+b)+8ab≤2√2.所以答案是:2√2.23、已知命题p:“∀x∈R,2kx2+kx−38<0恒成立”是真命题,则实数k的取值范围是___________.答案:(−3,0]分析:分k=0与k≠0两种情况讨论,结合已知条件可得出关于实数k的不等式组,由此可解得实数k的取值范围.已知命题p:“∀x∈R,2kx2+kx−38<0恒成立”是真命题.当k=0时,则有−38<0恒成立,合乎题意;当k≠0时,则有{2k<0Δ=k2+3k<0,解得−3<k<0.综上所述,实数k的取值范围是(−3,0].所以答案是:(−3,0].小提示:名师点评利用二次不等式在实数集上恒成立,可以利用以下结论来求解:设f(x)=ax2+bx+c (a≠0)①f(x)>0在R上恒成立,则{a>0Δ<0;12②f(x)<0在R上恒成立,则{a<0Δ<0;③f(x)≥0在R上恒成立,则{a>0Δ≤0;④f(x)≤0在R上恒成立,则{a<0Δ≤0.13。
高中数学必修一第一章集合与常用逻辑用语题型总结及解题方法
(每日一练)高中数学必修一第一章集合与常用逻辑用语题型总结及解题方法单选题1、已知集合A={−1,1,2,4},B={x||x−1|≤1},则A∩B=()A.{−1,2}B.{1,2}C.{1,4}D.{−1,4}答案:B分析:方法一:求出集合B后可求A∩B.[方法一]:直接法因为B={x|0≤x≤2},故A∩B={1,2},故选:B.[方法二]:【最优解】代入排除法x=−1代入集合B={x||x−1|≤1},可得2≤1,不满足,排除A、D;x=4代入集合B={x||x−1|≤1},可得3≤1,不满足,排除C.故选:B.【整体点评】方法一:直接解不等式,利用交集运算求出,是通性通法;方法二:根据选择题特征,利用特殊值代入验证,是该题的最优解.2、已知集合A={x|−1<x<1},B={x|0≤x≤2},则A∪B=()A.{x|−1<x<2}B.{x|−1<x≤2}C.{x|0≤x<1}D.{x|0≤x≤2}答案:B分析:结合题意利用并集的定义计算即可.由题意可得:A∪B={x|−1<x≤2}.故选:B.3、已知p:0<x<2,q:−1<x<3,则p是q的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分不必要条件答案:A分析:根据充分和必要条件的定义即可求解.由p:0<x<2,可得出q:−1<x<3,由q:−1<x<3,得不出p:0<x<2,所以p是q的充分而不必要条件,故选:A.4、已知U=R,M={x|x≤2},N={x|−1≤x≤1},则M∩∁U N=()A.{x|x<−1或1<x≤2}B.{x|1<x≤2}C.{x|x≤−1或1≤x≤2}D.{x|1≤x≤2}答案:A分析:先求∁U N,再求M∩∁U N的值.因为∁U N={x|x<−1或x>1},所以M∩C U N={x|x<−1或1<x≤2}.故选:A.5、已知集合P={x|x=2k−1,k∈N∗}和集合M={x|x=a⊕b,a∈P,b∈P},若M⊆P,则M中的运算“⊕”是()A.加法B.除法C.乘法D.减法答案:C分析:用特殊值,根据四则运算检验.若a=3,b=1,则a+b=4∉P,a−b=2∉P,ba =13∉P,因此排除ABD.故选:C.6、若集合A={x∣|x|≤1,x∈Z},则A的子集个数为()A.3B.4C.7D.8答案:D分析:先求得集合A,然后根据子集的个数求解即可.解:A={x∥x∣≤1,x∈Z}={−1,0,1},则A的子集个数为23=8个,故选:D.7、设全集U={−3,−2,−1,0,1,2,3},集合A={−1,0,1,2},B={−3,0,2,3},则A∩(∁U B)=()A.{−3,3}B.{0,2}C.{−1,1}D.{−3,−2,−1,1,3}答案:C分析:首先进行补集运算,然后进行交集运算即可求得集合的运算结果.由题意结合补集的定义可知:∁U B={−2,−1,1},则A∩(∁U B)={−1,1}.故选:C.小提示:本题主要考查补集运算,交集运算,属于基础题.8、已知集合M={x|x=m−56,m∈Z},N={x|x=n2−13,n∈Z},P={x|x=p2+16,p∈Z},则集合M,N,P的关系为()A.M=N=P B.M⊆N=PC.M⊆N⊈P D.M⊆N,N∩P=∅答案:B分析:对集合M,N,P中的元素通项进行通分,注意3n-2与3p+1都是表示同一类数,6m-5表示的数的集合是前者表示的数的集合的子集,即可得到结果.对于集合M={x|x=m-56,m∈Z},x=m-56=6m-56=6(m-1)+16,对于集合N={x|x=n2-13,n∈Z},x=n2-13=3n-26=3(n-1)+16,对于集合P={x|x=p2+16,p∈Z},x=p2+16=3p+16,由于集合M,N,P中元素的分母一样,只需要比较其分子即可,且m,n,p∈Z,注意到3(n-1)+1与3p+1表示的数都是3的倍数加1,6(m-1)+1表示的数是6的倍数加1,所以6(m-1)+1表示的数的集合是前者表示的数的集合的子集,所以M∈N=P.故选:B.9、集合A={x|x<−1或x≥3},B={x|ax+1≤0}若B⊆A,则实数a的取值范围是()A.[−13,1)B.[−13,1]C.(−∞,−1)∪[0,+∞)D.[−13,0)∪(0,1)答案:A分析:根据B⊆A,分B=∅和B≠∅两种情况讨论,建立不等关系即可求实数a的取值范围.解:∵B⊆A,∴①当B=∅时,即ax+1⩽0无解,此时a=0,满足题意.②当B≠∅时,即ax+1⩽0有解,当a>0时,可得x⩽−1a,要使B⊆A,则需要{a>0−1a<−1,解得0<a<1.当a<0时,可得x⩾−1a,要使B⊆A,则需要{a<0−1a⩾3,解得−13⩽a<0,综上,实数a的取值范围是[−13,1).故选:A.小提示:易错点点睛:研究集合间的关系,不要忽略讨论集合是否为∅.10、某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是()A.62%B.56%C.46%D.42%答案:C分析:记“该中学学生喜欢足球”为事件A,“该中学学生喜欢游泳”为事件B,则“该中学学生喜欢足球或游泳”为事件A+B,“该中学学生既喜欢足球又喜欢游泳”为事件A⋅B,然后根据积事件的概率公式P(A⋅B)=P(A)+ P(B)−P(A+B)可得结果.记“该中学学生喜欢足球”为事件A,“该中学学生喜欢游泳”为事件B,则“该中学学生喜欢足球或游泳”为事件A+B,“该中学学生既喜欢足球又喜欢游泳”为事件A⋅B,则P(A)=0.6,P(B)=0.82,P(A+B)=0.96,所以P(A⋅B)=P(A)+P(B)−P(A+B)=0.6+0.82−0.96=0.46所以该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例为46%.故选:C.小提示:本题考查了积事件的概率公式,属于基础题.多选题11、对任意A,B⊆R,记A⊕B={x|x∈A∪B,x∉A∩B},并称A⊕B为集合A,B的对称差.例如,若A={1,2,3},B={2,3,4},则A⊕B={1,4},下列命题中,为真命题的是()A.若A,B⊆R且A⊕B=B,则A=∅B.若A,B⊆R且A⊕B=∅,则A=BC.若A,B⊆R且A⊕B⊆A,则A⊆BD.存在A,B⊆R,使得A⊕B=∁R A⊕∁R BE.存在A,B⊆R,使得A⊕B≠B⊕A答案:ABD解析:根据新定义判断.根据定义A⊕B=[(∁R A)∩B]∪[A∩(∁R B)],A.若A⊕B=B,则∁R A∩B=B,A∩∁R B=∅,∁R A∩B=B⇒B⊆∁R A,A∩∁R B=∅⇒A⊆B,∴A=∅,A正确;B.若A⊕B=∅,则∁R A∩B=∅,A∩∁R B=∅,A∩B=A=B,B正确;C. 若A⊕B⊆A,则∁R A∩B=∅,A∩∁R B⊆A,则B⊆A,C错;D.A=B时,A⊕B=∅,(∁R A)⊕(∁R B)=∅=A⊕B,D正确;E.由定义,A⊕B=[(∁R A)∩B]∪[A∩(∁R B)]=B⊕A,E错.故选:ABD.小提示:本题考查新定义,解题关键是新定义的理解,把新定义转化为集合的交并补运算.12、(多选)下列命题的否定中,是全称量词命题且为真命题的是()<0B.所有的正方形都是矩形A.∃x∈R,x2−x+14C.∃x∈R,x2+2x+2=0D.至少有一个实数x,使x3+1=0答案:AC分析:AC.原命题的否定是全称量词命题,原命题的否定为真命题,所以该选项符合题意;B. 原命题为全称量词命题,其否定为存在量词命题. 所以该选项不符合题意;D. 原命题的否定不是真命题,所以该选项不符合题意.A.原命题的否定为:∀x∈R,x2−x+14≥0,是全称量词命题;因为x2−x+14=(x−12)2≥0,所以原命题的否定为真命题,所以该选项符合题意;B. 原命题为全称量词命题,其否定为存在量词命题. 所以该选项不符合题意;C. 原命题为存在量词命题,所以其否定为全称量词命题,对于方程x2+2x+2=0,Δ=22−8=−4<0,所以x2+2x+2>0,所以原命题为假命题,即其否定为真命题,所以该选项符合题意;.D. 原命题的否定为:对于任意实数x,都有x3+1≠0,如x=−1时,x3+1=0,所以原命题的否定不是真命题,所以该选项不符合题意.故选:AC13、(多选题)下列各组中M,P表示不同集合的是()A.M={3,-1},P={(3,-1)}B.M={(3,1)},P={(1,3)}C.M={y|y=x2+1,x∈R},P={x|x=t2+1,t∈R}D.M={y|y=x2-1,x∈R},P={(x,y)|y=x2-1,x∈R}答案:ABD分析:选项A中,M和P的代表元素不同,是不同的集合;选项B中,(3,1)与(1,3)表示不同的点,故M≠P;选项C中,解出集合M和P.选项D中,M和P的代表元素不同,是不同的集合.选项A中,M是由3,-1两个元素构成的集合,而集合P是由点(3,-1)构成的集合;选项B中,(3,1)与(1,3)表示不同的点,故M≠P;选项C中,M={y|y=x2+1,x∈R}=[1,+∞),P={x|x=t2+1,t∈R}=[1,+∞),故M=P;选项D中,M是二次函数y=x2-1,x∈R的所有因变量组成的集合,而集合P是二次函数y=x2-1,x∈R图象上所有点组成的集合.故选ABD.14、某校举办运动会,高一的两个班共有120名同学,已知参加跑步、拔河、篮球比赛的人数分别为58,38,52,同时参加跑步和拔河比赛的人数为18,同时参加拔河和篮球比赛的人数为16,同时参加跑步、拔河、篮球三项比赛的人数为12,三项比赛都不参加的人数为20,则()A.同时参加跑步和篮球比赛的人数为24B.只参加跑步比赛的人数为26C.只参加拔河比赛的人数为16D.只参加篮球比赛的人数为22答案:BCD分析:设同时参加跑步和篮球比赛的人数为x,由Venn图可得集合的元素个数关系.设同时参加跑步和篮球比赛的人数为x,由Venn图可得,58+38+52−18−16−x+12=120−20,得x= 26,则只参加跑步比赛的人数为58−18−26+12=26,只参加拔河比赛的人数为38−16−18+12=16,只参加篮球比赛的人数为52−16−26+12=22.故选:BCD.15、已知集合A={x|ax=1},B={0,1,2},若A⊆B,则实数a可以为()A.12B.1C.0D.以上选项都不对答案:ABC解析:由子集定义得A=∅或A={1}或A={2},从而1a 不存在,1a=1,1a=2,由此能求出实数a.解:∵集合A={x|ax=1},B={0,1,2},A⊆B,∴A=∅或A={1}或A={2},∴1 a 不存在,1a=1,1a=2,解得a=1,或a=1,或a=12.故选:ABC.小提示:本题主要考查集合的包含关系,属于基础题.16、已知全集为U,A,B是U的非空子集且A⊆∁U B,则下列关系一定正确的是()A.∃x∈U,x∉A且x∈B B.∀x∈A,x∉BC.∀x∈U,x∈A或x∈B D.∃x∈U,x∈A且x∈B答案:AB分析:根据给定条件画出韦恩图,再借助韦恩图逐一分析各选项判断作答.全集为U,A,B是U的非空子集且A⊆∁U B,则A,B,U的关系用韦恩图表示如图,观察图形知,∃x∈U,x∉A且x∈B,A正确;因A∩B=∅,必有∀x∈A,x∉B,B正确;若A∁U B,则(∁U A)∩(∁U B)≠∅,此时∃x∈U,x∈[(∁U A)∩(∁U B)],即x∉A且x∉B,C不正确;因A∩B=∅,则不存在x∈U满足x∈A且x∈B,D不正确.故选:AB17、下列各题中,p是q的充要条件的有()A.p:四边形是正方形;q:四边形的对角线互相垂直且平分B.p:两个三角形相似;q:两个三角形三边成比例C.p:xy>0;q:x>0,y>0D.p:x=1是一元二次方程ax2+bx+c=0的一个根;q:a+b+c=0(a≠0)答案:BD分析:根据充要条件的定义对各选项逐一进行分析讨论并判定作答.对于A,四边形是正方形则四边形的对角线互相垂直且平分成立,但四边形的对角线互相垂直且平分四边形可能是菱形,即p不是q的充要条件,A不是;对于B,两个三角形相似与两个三角形三边成比例能互相推出,即p是q的充要条件,B是;对于C,xy>0不能推出x>0,y>0,可能x<0,y<0,即p不是q的充要条件,C不是;对于D,x=1是一元二次方程ax2+bx+c=0的一个根,可得a+b+c=0,反之,当a +b +c =0时,把c =-a -b 代入方程ax 2+bx +c =0得ax 2+bx -a -b =0,即(ax +a +b )(x -1)=0,显然x =1是方程的一个根,即p 是q 的充要条件,D 是.故选:BD18、已知集合A ={x ∣1<x <2},B ={x ∣2a −3<x <a −2},下列命题正确的是A .不存在实数a 使得A =B B .存在实数a 使得A ⊆BC .当a =4时,A ⊆BD .当0⩽a ⩽4时,B ⊆AE .存在实数a 使得B ⊆A答案:AE分析:利用集合相等判断A 选项错误,由A ⊆B 建立不等式组,根据是否有解判断B 选项;a =4时求出B ,判断是否A ⊆B 可得C 错误,分B 为空集,非空集两种情况讨论可判断D 选项,由D 选项判断过程可知E 选项正确.A 选项由相等集合的概念可得{2a −3=1a −2=2 解得a =2且a =4,得此方程组无解, 故不存在实数a 使得集合A=B ,因此A 正确;B 选项由A ⊆B ,得{2a −3≤1a −2≥2 即{a ≤2a ≥4,此不等式组无解,因此B 错误; C 选项当a =4时,得B ={x ∣5<x <2}为空集,不满足A ⊆B ,因此C 错误;D 选项当2a −3≥a −2,即a ≥1时,B =∅⊆A ,符合B ⊆A ;当a <1时,要使B ⊆A ,需满足{2a −3≥1a −2≤2解得2≤a ≤4,不满足a <1,故这样的实数a 不存在,则当0≤a ≤4时B ⊆A 不正确,因此D 错误; E 选项由D 选项分析可得存在实数a 使得B ⊆A ,因此E 正确.综上AE 选项正确.故选:AE.小提示:本题主要考查了集合相等,子集的概念,考查了推理运算能力,属于中档题.19、命题“∃x∈[1,2],x2≤a”为真命题的一个充分不必要条件是()A.a≥1B.a≥4C.a≥−2D.a=4答案:BD分析:求出给定命题为真命题的a的取值集合,再确定A,B,C,D各选项所对集合哪些真包含于这个集合而得解.命题“∃x∈[1,2],x2≤a"等价于a≥1,即命题“∃x∈[1,2],x2≤a”为真命题所对集合为[1,+∞),所求的一个充分不必要条件的选项所对的集合真包含于[1,+∞),显然只有[4,+∞)[1,+∞),{4}[1,+∞),所以选项AC不符合要求,选项BD正确.故选:BD20、中国古代重要的数学著作《孙子算经》下卷有题:“今有物,不知其数,三三数之,剩二;五五数之,剩三;七七数之,剩二问:物几何?”现有如下表示:已知A={x|x=3n+2,n∈N+},B={x|x=5n+3,n∈N+},C={x|x=7n+2,n∈N+},若x∈A∩B∩C,则下列选项中符合题意的整数x为()A.8B.128C.37D.23答案:BD分析:根据给定条件对各选项逐一分析计算即可判断作答.对于A,因8=7×1+1,则8∉C,选项A错误;对于B,128=3×42+2,即128∈A;又128=5×25+3,即128∈B;而128=7×18+2,即128∈C,因此,128∈A∩B∩C,选项B正确;对于C,因37=3×12+1,则37∉A,选项C错误;对于D,23=3×7+2,即23∈A;又23=5×4+3,即23∈B;而23=7×3+2,即23∈C,因此,23∈A∩B∩C,选项D正确.故选:BD填空题21、若∀x∈R,2x2−mx+3≥0恒成立,则实数m的取值范围为________.答案:[−2√6,2√6].分析:根据命题∀x∈R,2x2−mx+3≥0恒成立,结合二次函数的图象与性质,即可求解. 由题意,命题∀x∈R,2x2−mx+3≥0恒成立,可得Δ=m2−24≤0,解得−2√6≤m≤2√6,即实数m的取值范围为[−2√6,2√6].所以答案是:[−2√6,2√6].22、已知集合A=(1,3),B=(2,+∞),则A∩B=______.答案:(2,3)分析:利用交集定义直接求解.解:∵集合A=(1,3),B=(2,+∞),∴A∩B=(2,3).所以答案是:(2,3).23、集合A={x|(x−1)(x2+ax+4)=0,x∈R}中所有元素之和为3,则实数a=________.答案:−4分析:由(x−1)(x2+ax+4)=0得x1+x2+x3=1−a,即可求解参数.由(x−1)(x2+ax+4)=0得x−1=0或x2+ax+4=0所以x1=1∈A,x2+ax+4=0,当Δ=a2−16=0时,x=2是方程x2+ax+4=0的根,解得a=−4,当Δ>0时,若方程x2+ax+4=0的一根为1,则a=−5,方程的另一根为4,不合题意;若1不是方程x2+ax+4=0的根,则方程两根x2+x3=−a=2,此时a=−2不满足Δ>0,舍去. 所以答案是:−4.。
高中数学必修第一册第1章 集合与常用逻辑用语
6 集合的3种表示方法之描述法
一般地,设A是一个集合,我们把集合A中所有具有共同特征P(x)的元素x
所组成的集合表示为{ x ∈A|P(x)},这种表示集合的方法称为描述法。
例如,我们可以把奇数集表示为{ x ∈Z| x =2k + 1(k∈Z)},
偶数集表示为{ x ∈Z| x =2k(k∈Z)};
如{x|x < −1或x > 2}
6 课堂练习
请用描述法表示下列集合:
(1)方程x 2 − 4 = 0的所有实数根组成的集合A;
(2)由大于10而小于20的所有整数组成的集合B.
解:(1)A={| x 2 − 4 = 0}
(2)B={∈Z|10 < < 20}
7 表示集合的三种方法各有什么特点?
同,那么它们就是相等的集合。{1,2,3}和{3,2,1}是
同样的集合
3 集合和元素怎么表示?它们之间有什么关系?
一般来说:用大写拉丁字母A、B、C…等表示集合
用小写拉丁字母, , …等表示元素
元素与集合的关系:
如果是是集合A的元素,那么就说属于集合A,记作∈A;
如果是不是集合A的元素,那么就说不属于集合A,记作∉A;
比如,3∈自然数集;4∉奇数集
4 常用的数集比如自然数集怎么表示?
注意写法
【自然数集】全体自然数组成的集合,0,1,2…,记作N,也叫非负整数集
【正整数集】全体正整数组成的集合,记作N*或N+;
【整数集】 全体整数组成的集合,记作Z;
【有理数集】全体有理数组成的集合,记作Q;
【实数集】 全体实数组成的集合,记作R;
确定性
对于一个给定的集合,它的元素必须是确定的。也就是说,对于
高考数学必背知识手册 第一章 集合与常用逻辑用语(公式、定理、结论图表)
第一章集合与常用逻辑用语(公式、定理、结论图表)1.集合的有关概念(1)集合元素的三大特性:确定性、无序性、互异性.(2)元素与集合的两种关系:属于,记为∈;不属于,记为∉.(3)集合的三种表示方法:列举法、描述法、图示法.(4)五个特定的集合集合自然数集正整数集整数集有理数集实数集符号N N*或N+Z Q R2.文字语言符号语言集合间的基本关系相等集合A与集合B中的所有元素都相同A=B子集集合A中任意一个元素均为集合B中的元素A⊆B真子集集合A中任意一个元素均为集合B中的元素,且集合B中至少有一个元素不是集合A中的元素BA⊂≠空集空集是任何集合的子集,是任何非空集合的真子集3.集合的基本运算集合的并集集合的交集集合的补集符号表示 A ∪BA ∩B若全集为U ,则集合A 的补集为∁U A图形表示集合表示 {x |x ∈A ,或x ∈B }{x |x ∈A ,且x ∈B }{x |x ∈U ,且x ∉A }(1)A ∩A =A ,A ∩∅=∅,A ∩B =B ∩A . (2)A ∪A =A ,A ∪∅=A ,A ∪B =B ∪A . (3)A ∩(∁U A )=∅,A ∪(∁U A )=U ,∁U (∁U A )=A . 5.常用结论(1)空集性质:①空集只有一个子集,即它的本身,∅⊆∅; ②空集是任何集合的子集(即∅⊆A ); 空集是任何非空集合的真子集(若A ≠∅,则∅A ).(2)子集个数:若有限集A 中有n 个元素,则A 的子集有2n 个,真子集有2n -1个,非空真子集有22n -个.典例1:已知集合{}2,4,8A =,{}2,3,4,6B =,则A B ⋂的子集的个数为( ) A .3 B .4 C .7 D .8【答案】B【详解】因为集合{}2,4,8A =,{}2,3,4,6B =,所以{}2,4A B =, 所以A B ⋂的子集的个数为224=个.故选B.典例2:已知集合{}2N230A x x x =∈--≤∣,则集合A 的真子集的个数为( ) A .32 B .31 C .16 D .15【答案】D【详解】由题意得{}{}{}2N230N 130,1,2,3A x x x x x =∈--≤=∈-≤≤=∣∣, 其真子集有42115-=个.故选D.(3)A ∩B =A ⇔A ⊆B ;A ∪B =A ⇔A ⊇B .(4)(∁U A )∩(∁U B )=∁U (A ∪B ),(∁U A )∪(∁U B )=∁U (A ∩B ) . 6.充分条件、必要条件与充要条件的概念若p ⇒ q ,则p 是q 的充分条件,q 是p 的必要条件 p 是q 的充分不必要条件 p ⇒ q 且q ⇏ p p 是q 的必要不充分条件 p ⇏ q 且q ⇒ pp 是q 的充要条件p ⇔ qp是q的既不充分也不必要条件p ⇏q且q ⇏p7.充分、必要条件与集合的关系设p,q成立的对象构成的集合分别为A,B.(1)p是q的充分条件⇔A⊆B,p是q的充分不必要条件⇔A B;(2)p是q的必要条件⇔B⊆A,p是q的必要不充分条件⇔B A;(3)p是q的充要条件⇔A=B.8.全称量词和存在量词量词名称常见量词符号表示全称量词所有、一切、任意、全部、每一个等∀存在量词存在一个、至少有一个、有些、某些等∃9.全称命题和特称命题名称全称命题特称命题形式语言表示对M中任意一个x,有p(x)成立M中存在元素x0,使p(x0)成立符号表示∀x∈M,p(x)∃x0∈M,p(x0)10.全称命题与特称命题的否定<知识记忆小口诀>集合平时很常用,数学概念有不同,理解集合并不难,三个要素是关键,元素确定和互译,还有无序要牢记,空集不论空不空,总有子集在其中,集合用图很方便,子交并补很明显.<解题方法与技巧>集合基本运算的方法技巧:(1)当集合是用列举法表示的数集时,可以通过列举集合的元素进行运算,也可借助Venn 图运算;(2)当集合是用不等式表示时,可运用数轴求解.对于端点处的取舍,可以单独检验.集合常与不等式,基本函数结合,常见逻辑用语常与立体几何,三角函数,数列,线性规划等结合.充要条件的两种判断方法(1)定义法:根据p⇒q,q⇒p进行判断.(2)集合法:根据使p,q成立的对象的集合之间的包含关系进行判断.充分条件、必要条件的应用,一般表现在参数问题的求解上.解题时需注意:(1)把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的关系列出关于参数的不等式(或不等式组)求解.(2)要注意区间端点值的检验.尤其是利用两个集合之间的关系求解参数的取值范围时,不等式是否能够取等号决定端点值的取舍,处理不当容易出现漏解或增解的现象.(3)数学定义都是充要条件.。
必修第一册·第一章《集合与常用逻辑用语》知识点总结
必修第一册·第一章《集合与常用逻辑用语》1.元素 把研究的对象统称为元素.(用小写字母表示:···a b c 、、) 2.集合把一些元素组成的总体叫做集合.(用大写字母表示:···A B C 、、) 3.元素的特征 确定性、互异性、无序性. ①求集合或元素时,一定要检验集合中元素的互异性. 4.元素与集合的关系 ①属于:a A ∈;②不属于:a A ∉.5.常用数集①自然数集 N (包含0和正整数) ②正整数集 *N 或+N③整数集 Z ④有理数集 Q ⑤实数集 R6.集合的分类 ①有限集;②无限集;③空集.7.集合的表示方法①列举法:把集合的所有元素一一列举出来,并用{}括起来.例如{}1,3,5,7、{}2,4,6,8⋅⋅⋅,②描述法:把集合A 中所有具有共同特征()P x 的元素x 所组成的集合表示为{}()x A P x ∈.例如{}1020x x ∈<<Z 、{}21,x x k k =+∈Z③图示法(Veen 图):用平面上封闭曲线的内部代表集合.例如8.常见集合的表示方法①方程的解集:{}230x x +=②不等式的解集:{}230x x +>③奇数集:{}21,x x n n =+∈Z ④偶数集:{}2,x x n n =∈Z⑤函数图象上的点构成的集合:(){},23x y y x =+⑥方程组的解: 或{}(1,1)①做题时,要认清集合中元素的属性(点集、数集···),以及元素的范围(x ∈N 、*N 、Z 、R ···).9.子集 集合A 中任意一个元素都是集合B 中的元素.记作:A B ⊆或B A ⊇ 读作:A 包含于B 或B 包含A①任何一个集合是它本身的子集.②若A B ⊆,且B C ⊆,则A C ⊆.10.集合相等若A B ⊆,且B A ⊆,则A B =.①若A B =,且B C =,则A C =. ②欲证A B =,只需证A B ⊆,且B A ⊆.11.真子集如果集合A 是集合B 的子集,并且B 中至少有一个元素不属于A .记作:A ⫋B 读作:A 真包含于B 或B 真包含A()2,0x y x y x y ⎧⎫+=⎧⎪⎪⎨⎨⎬-=⎩⎪⎪⎩⎭①若A ⫋B ,且B ⫋C ,则A ⫋C ②若A B ⊆,且A B ≠,则A ⫋B .③⊆和⫋用于集合和集合之间,∈和∉用于元素和集合之间.12.空集 不含任何元素的集合. 符号:∅①空集是任何集合的子集.②空集是任何非空集合的真子集.③解决有关A B =∅、A B ⊆等问题时,一定要先考虑∅ 的情况,以防漏解.13.子集个数与元素个数的关系设有限集合A 有()n n *∈N 个元素,则其子集个数是2n ,真子集个数是21n -,非空子集个数是21n -,非空真子集个数是22n -.14.交集 属于集合A 且属于集合B .(A 和B 的公共部分)记作:A B 读作:A 交B 含义:{},A B x x A x B =∈∈且①A B B A =;②A A A =;③A A ∅=∅=∅;④()A B A ⊆;⑤()A B B ⊆;⑥A B A B A ⊆⇔=.15.并集属于集合A 或属于集合B .(包含A 和B 的所有元素)记作:A B 读作:A 并B 含义:{},A B x x A x B =∈∈或①A B B A =;②A A A =;③A A A ∅=∅=;④()A A B ⊆;⑤()B A B ⊆;⑥A B A B B ⊆⇔=.16.全集 研究问题中涉及的所有元素. 符号:U17.补集 由全集U 中不属于集合A 的所有元素组成的集合.符号:A C U 含义:{}A U A C U ∉∈=χχχ,且①U A C U ∈;②Φ=U C U ;③U C U =φ;④A A C C U U =)(;⑤U A C A U=⋃; ⑥φ=⋂A C A U ;⑦)()()(B A C B C A C U U U =;⑧)()()(B A C B C A C UU U =. ⑨注意补集思想在解题中的运用,“正难则反”.18.命题可以判断真假的陈述句叫做命题.判断为真的语句是真命题;判断为假的语句是假命题.表示:“若p ,则q ”、“如果p ,那么q ”.其中p 为命题的条件,q 为命题的结论.19.充分条件与必要条件①“若p ,则q ”是真命题,即p q ⇒,则p 是q 的充分条件,q 是p 的必要条件;②“若p ,则q ”是假命题,即p q ⇒,则p 不是q 的充分条件,q 不是p 的必要条件.判断充分条件、必要条件的三种方法:①定义法:直接判断“若p ,则q ”以及“若q ,则p ”的真假;②集合法:利用集合的包含关系判断;③传递法:充分条件、必要条件、充要条件都具有传递性,若12p p ⇒,23p p ⇒,则13p p ⇒.20.充要条件如果“若p ,则q ”和“若q ,则p ”都是真命题,即既有p q ⇒,又有q p ⇒,则可记作p q ⇔,这时称p 是q 的充分必要条件,简称充要条件.充分条件、必要条件的判断:①p q ⇒且q p ⇒ p 是q 的充分不必要条件 ②p q ⇒且q p ⇒ p 是q 的必要不充分条件③p q ⇔ p 是q 的充要条件 ④p q ⇒且q p ⇒ p 是q 的既不充分也不必要条件21.全称量词 短语“所有的”“任意一个”通常叫做全称量词. 符号:∀ 含有全称量词的命题,叫做全称量词命题.“对M 中任意一个x ,()p x 成立”用符号记为:,()x M p x ∀∈22.存在量词 短语“存在一个”“至少有一个”通常叫做存在量词. 符号:∃ 含有存在量词的命题,叫做存在量词命题.“存在M 中元素的x ,()p x 成立”用符号记为:,()x M p x ∃∈23.全称量词命题和存在量词命题的否定①全称量词命题,()x M p x ∀∈的否定为:,()x M p x ∃∈⌝.②存在量词命题,()x M p x ∃∈的否定为:,()x M p x ∀∈⌝.①命题的否定的书写:既要转换量词,又要否定结论.②全称量词命题的否定是存在量词命题;存在量词命题的否定是全称量词命题.③一个命题和它的否定,只能是一真一假.【常见考法】一 集合的含义及表示1.已知集合A ={(x ,y )|x 2+y 2≤3,x ∈Z ,y ∈Z },则A 中元素的个数为( )A .9B .8C .5D .42.下列集合中,表示方程组 的解集的是( ) 31x y x y +=⎧⎨-=⎩A .{}2,1B .{}2,1x y ==C .(){}2,1D .(){}1,23.已知集合{}1,2,3,4,5A =,()(){},,,B x y x A y A x y A =∈∈-∈,则B 中所含元素的个数为( )A .4B .6C .8D .104.下列各式中,正确的个数是:①{0}{0,1,2}∈;②{0,1,2}{2,1,0}⊆;③{0,1,2}∅⊆;④{0}∅=;⑤{0,1}{(0,1)}=;⑥0{0}=.A .1B .2C .3D .4二 集合间的基本关系1.已知集合{}22A x x x =∈-≤Z ∣,{1,}B a =,若B A ⊆,则实数a 的取值集合为( ) A .{1,1,0,2}-B .{1,0,2}-C .{1,1,2}-D .{0,2}2.已知(){}ln A x y a x ==-,{}2540B x x x =-+<,若B C A U ⊆,则实数a 的取值范围为( )A .(),1-∞B .(],4-∞C .(],1-∞D .[)1,+∞3.集合,{}21,B y y x x A ==+∈,则集合B 的子集个数为 A .5 B .8 C .3 D .24.已知集合{}2|230A x N x x *=∈--<,则满足条件B ⊆A 的集合B 的个数为A .2B .3C .4D .85.已知集合{|A x y ==,集合{|}B x x a =≥,若A B ⊆,则实数a 的取值范围是( )A .(),2-∞-B .(],2-∞-C .()2+∞,D .[)2+∞,三 集合间的基本 运算 1.已知集合{}2log 1A x x =<,集合{B y y ==,则A B =( )A .()0,∞+B .[)0,2C .()0,2D .[)0,+∞ 2.已知集合{|A x x =是1~20以内的所有素数},{}8B x x =≤,则A B =( )A .{}3,5,7B .{}2,3,5,7C .{}1,2,3,5,7D .{}0,1,2,3,5,73.已知集合||32M x x =-<<∣, ,则( ) A .(2,2)M N ⋂=- B .(3,2)M N ⋂=-C .[2,)M N ⋃=-+∞D .()3,M N ⋃=-+∞103x A x Z x ⎧⎫+=∈≤⎨⎬-⎩⎭1|42x N x ⎧⎫⎪⎪⎛⎫=≤⎨⎬ ⎪⎝⎭⎪⎪⎩⎭4.设集合()(){}10A x x x a =--≥,{}1B x x a =≥-,若A B R =,则实数a 的取值范围是( )A .(),1-∞B .(],2-∞C .1, D .[)2,+∞ 5.已知集合(){}22,1A x y x y =+=,(){},1B x y x y =+=,则A B =( ) A .{}0,1 B .∅ C .(){}1,0 D .()(){}0,1,1,06.若集合M={x|x2+x-6=0},N={x|ax-1=0},且N ⊆M,则实数a 的值为7.设集合A={x|a-2≤x ≤2a+3},B={x|x2-6x+5≤0}.(1)若A ∩B=B,求实数a 的取值范围;(2)若φ=)(B C A R ,求实数a 的取值范围;四 充分条件与必要条件1.若a ∈R ,则“a =1”是“|a |=1”的( )A .充分条件B .必要条件C .既不是充分条件也不是必要条件D .无法判断2.已知,x y R ∈,则“220x y +=”是“0xy =”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件 3.设,m n R ∈,则“m n >”是 的( ) A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件4.已知,a b 为实数,则“0a >且0b >”是“0a b +>且0ab >”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5.已知 p :0≤2x -1≤1, q :(x -a )(x -a -1)≤0,若p 是q 的充分不必要条件,则实数112m n -⎛⎫< ⎪⎝⎭a 的取值范围是( )A .[0,12] B .(0,12) C .(-∞,0]∪[12,+∞) D .(-∞,0)∪(12,+∞) 6.若“3x >”是“x m >”的必要不充分条件,则m 的取值范围是________.7.已知集合{}|A x x a =<,{}2|540B x x x =-+≥,若P :“x A ∈”是Q :“x B ∈”的充分不必要条件,则实数a 的取值范围为______.8.已知命题p : ,q :B ={x |x ﹣a <0},若命题p 是q 的必要不充分条件,则a 的取值范围是_____.9.已知{}22|320,0A x x ax a a =-+>>,{}2|60B x x x =--≥,若x A ∈是x B ∈的必要不充分条件,求实数a 的取值范围.10.设集合{}2|320A x x x =++=,(){}2|10B x x m x m =+++=;(1)用列举法表示集合A ;(2)若x B ∈是x A ∈的充分条件,求实数m 的值.11.己知()2:253,:220p x q x a x a -≤-++≤.(1)若p 是真命题,求对应x 的取值范围;(2)若p 是q 的必要不充分条件,求a 的取值范围.五 全称量词与存在量词1.已知{}|12A x x =≤≤,命题“2,0x A x a ∀∈-≤”是真命题的一个充分不必要条件是( )2|01x A x x -⎧⎫=≤⎨⎬-⎩⎭A .4a ≥B .4a ≤C .5a ≥D .5a ≤2.下列命题中是全称量词命题,且为假命题的是( )A .所有能被2整除的正数都是偶数B .存在三角形的一个内角,其余弦值为C .m ∃∈R ,210x mx ++=无解D .x ∀∈N ,32x x >3.将“222x y xy +≥对任意实数,x y 恒成立”改写成符号形式为( ).A .,x y ∀∈R ,222x y xy +≥B .,x y ∃∈R ,222x y xy +≥C .0x ∀>,0y >,222x y xy +≥D .0x ∃<,0y <,222x y xy +≥ 4.已知:R p x ∃∈,220mx +≤,:R q x ∀∈,2210x mx +>﹣,若q p 为假命题,则实数m 的取值范围是( )A .{}1m m ≥B .{}1m m ≤-C .{}2m m ≤-D .{}11m m -≤≤5.若命题“∃x ∈R ,使2(1)10x a x +-+<”是假命题,则实数a 的取值范围为A .()1,3-B .[]1,3-C .()(),13,-∞-+∞ D .(][,13,)-∞-⋃+∞ 6.下列命题中,真命题的个数是( ) ① 的最小值是22;②x N ∃∈,2x x ≤;③若x A B ∈,则x A B ∈;④集合{}210A x kx x =-+=中只有一个元素的充要条件是14k =. A .1 B .2 C .3 D .47.下列叙述正确的是( )A .已知0x >,则 的最小值是2B .已知a ,b 为实数,则a b >是 的充要条件C .已知,x y R ∈,“1xy <”是“x ,y 都小于1”的必要不充分条件D .若命题p :1,x ∀>213x +>,则p 的否定是:1,x ∃>213x +≤8.命题“x R ∀∈,使20x a -≥”是真命题,则a 的范围是________.9.四个命题:①x R ∀∈,2320x x -+>恒成立;②0x Q ∃∈,202x =;③0x R ∃∈,2010x +≠;④x R ∀∈,224213x x x >-+.其中真命题为________.10.设命题P :实数x 满足,命题q :实数x 满足 若 a=3 且 q p 为真,求实数 x 的取值范围;32224y x +42x x ++11a b<12.若“p或q”为真命题,“p且q”为假命题,求m的取值范围命题p:方程x2+mx+1=0有两个不等的负实数根;命题q:方程4x2+4(m﹣2)x+1=0无实数根..。
高中数学必修一第一章集合与常用逻辑用语知识汇总笔记(带答案)
高中数学必修一第一章集合与常用逻辑用语知识汇总笔记单选题1、已知a、b、c、d∈R,则“max{a,b}+max{c,d}>0”是“max{a+c,b+d}>0”的()注:max{p,q}表示p、q之间的较大者.A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件答案:B分析:利用特殊值法、不等式的基本性质结合充分条件、必要条件的定义判断可得出结论.充分性:取a=d=1,b=c=−1,则max{a,b}+max{c,d}=max{1,−1}+max{−1,1}=1+1>0成立,但max{a+c,b+d}=max{0,0}=0,充分性不成立;必要性:设max{a+c,b+d}=a+c,则max{a,b}≥a,max{c,d}≥c,从而可得max{a,b}+max{c,d}≥a+c>0,必要性成立.因此,“max{a,b}+max{c,d}>0”是“max{a+c,b+d}>0”的必要不充分条件.故选:B.小提示:方法点睛:判断充分条件和必要条件,一般有以下几种方法:(1)定义法;(2)集合法;(3)转化法.2、命题“∃x>1,x2≥1”的否定是()A.∃x≤1,x2≥1B.∃x≤1,x2<1C.∀x≤1,x2≥1D.∀x>1,x2<1答案:D分析:根据含有一个量词的命题的否定,可直接得出结果.命题“∃x>1,x2≥1”的否定是“∀x>1,x2<1”,故选:D.3、设a,b ∈R ,A ={1,a},B ={−1,−b},若A ⊆B ,则a −b =( )A .−1B .−2C .2D .0答案:D分析:根据集合的包含关系,结合集合的性质求参数a 、b ,即可求a −b .由A ⊆B 知:A =B ,即{a =−1−b =1,得{a =−1b =−1,∴a −b =0.故选:D.4、设集合A 、B 均为U 的子集,如图,A ∩(∁U B )表示区域( )A .ⅠB .IIC .IIID .IV答案:B分析:根据交集与补集的定义可得结果.由题意可知,A ∩(∁U B )表示区域II.故选:B.5、集合A ={−1,0,1,2,3},B ={0,2,4},则图中阴影部分所表示的集合为()A .{0,2}B .{−1,1,3,4}C .{−1,0,2,4}D .{−1,0,1,2,3,4}答案:B分析:求∁(A∪B)(A ∩B)得解.解:图中阴影部分所表示的集合为∁(A∪B)(A ∩B)={−1,1,3,4}.故选:B6、已知集合A={x|x≤1},B={x∈Z|0≤x≤4},则A∩B=()A.{x|0<x<1}B.{x|0≤x≤1}C.{x|0<x≤4}D.{0,1}答案:D分析:根据集合的交运算即可求解.由B={x∈Z|0≤x≤4}得B={0,1,2,3,4},所以A∩B={0,1},故选:D7、已知a∈R,则“a>6”是“a2>36”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案:A分析:由充分条件、必要条件的定义判断即可得解.由题意,若a>6,则a2>36,故充分性成立;若a2>36,则a>6或a<−6,推不出a>6,故必要性不成立;所以“a>6”是“a2>36”的充分不必要条件.故选:A.8、已知集合A={−1,0,1,2},B={x|x2≤1},则A∩B=()A.{−1,0,1}B.{0,1}C.{−1,1}D.{0,1,2}答案:A分析:先计算集合B里的不等式,将B所代表的区间计算出来,再根据交集的定义计算即可. 不等式x2≤1,即−1≤x≤1,B=[−1,1],A={−1,0,1,2},B={x|−1≤x≤1},所以A∩B={−1,0,1};故选:A.多选题9、已知集合A={x|1<x<2},B={x|2a−3<x<a−2},下列说法正确的是()A.不存在实数a使得A=BB .当a =4时,A ⊆BC .当0≤a ≤4时,B ⊆AD .存在实数a 使得B ⊆A答案:AD分析:选项A 由集合相等列方程组验算;选项B 由a =4得B =∅,故不满足A ⊆B ;选项C 、D 通过假设B ⊆A 求出实数a 的取值范围可判定.选项A :若集合A =B ,则有{2a −3=1,a −2=2,,因为此方程组无解,所以不存在实数a 使得集合A =B ,故选项A 正确.选项B :当a =4时,B ={x |5<x <2 }=∅,不满足A ⊆B ,故选项B 错误.若B ⊆A ,则①当B =∅时,有2a −3≥a −2,a ≥1;②当B ≠∅时,有{a <1,2a −3>1,a −2<2此方程组无实数解;所以若B ⊆A ,则有a ≥1,故选项C 错误,选项D 正确.故选:AD .10、图中阴影部分用集合符号可以表示为( )A .A ∩(B ∪C )B .A ∪(B ∩C )C .A ∩∁U (B ∩C )D.(A∩B)∪(A∩C)答案:AD分析:由图可知,阴影部分是集合B与集合C的并集,再由集合A求交集,或是集A与B的交集并上集合A与C的交集,从而可得答案解:由图可知,阴影部分是集合B与集合C的并集,再由集合A求交集,或是集A与B的交集并上集合A与C 的交集,所以阴影部分用集合符号可以表示为A∩(B∪C)或(A∩B)∪(A∩C),故选:AD11、下列四个选项中正确的是()A.{∅}⊆{a,b}B.{(a,b)}={a,b}C.{a,b}⊆{b,a}D.∅⊆{0}答案:CD分析:注意到空集和由空集构成的集合的不同,可以判定AD;注意到集合元素的无序性,可以判定C;注意到集合的元素的属性不同,可以否定B.对于A选项,集合{∅}的元素是∅,集合{a,b}的元素是a,b,故没有包含关系,A选项错误;对于B选项,集合{(a,b)}的元素是点,集合{a,b}的元素是a,b,故两个集合不相等,B选项错误;对于C选项,由集合的元素的无序性可知两个集合是相等的集合,故C选项正确;对于D选项,空集是任何集合的子集,故D选项正确.故选:CD.填空题12、设α:m+1≤x≤2m+4(m∈R);β:1≤x≤3.若β是α的充分条件,则实数m的取值范围为______.答案:−1≤m≤02分析:根据给定条件可得β所对集合包含于α所对集合,再利用集合的包含关系列式作答.令α所对集合为:{x|m+1≤x≤2m+4(m∈R)},β所对集合为:{x|1≤x≤3},因β是α的充分条件,则必有{x|1≤x≤3}⊆{x|m+1≤x≤2m+4(m∈R)},于是得{m +1≤12m +4≥3,解得−12≤m ≤0, 所以实数m 的取值范围为−12≤m ≤0. 所以答案是:−12≤m ≤013、建党百年之际,影片《1921》《长津湖》《革命者》都已陆续上映,截止2021年10月底,《长津湖》票房收入已超56亿元,某市文化调查机构,在至少观看了这三部影片中的其中一部影片的市民中随机抽取了100人进行调查,得知其中观看了《1921》的有51人,观看了《长津湖》的有60人,观看了《革命者》的有50人,数据如图,则图中a =___________;b =___________;c =___________.答案: 9 8 10分析:根据韦恩图,结合看每部电影的人数可构造方程组求得结果.由题意得:{28+a +b +6=5135+a +c +6=6026+b +c +6=50 ,解得:{a =9b =8c =10.所以答案是:9;8;10.14、集合P ={x|6x−3∈Z 且x ∈Z},用列举法表示集合P =________答案:{−3,0,1,2,4,5,6,9}解析:由已知可得6x−3∈Z ,则−6≤x −3≤6,解得−3≤x ≤9且x ∈Z ,结合题意,逐个验证,即可求解.由题意,集合P ={x|6x−3∈Z 且a ∈Z},可得6x−3∈Z ,则−6≤x −3≤6, 解得−3≤x ≤9且x ∈Z ,当x =−3时,6−3−3=−1∈Z ,满足题意;当x=−2时,6−2−3=−65∉Z,不满足题意;当x=−1时,6−1−3=−32∉Z,不满足题意;当x=0时,60−3=−2∈Z,满足题意;当x=1时,61−3=−3∈Z,满足题意;当x=2时,62−3=−6∈Z,满足题意;当x=3时,63−3,此时分母为零,不满足题意;当x=4时,64−3=6∈Z,满足题意;当x=5时,65−3=3∈Z,满足题意;当x=6时,66−3=2∈Z,满足题意;当x=7时,67−3=32∉Z,不满足题意;当x=8时,68−3=65∉Z,不满足题意;当x=9时,69−3=1∈Z,满足题意;综上可得,集合P={−3,0,1,2,4,5,6,9}.所以答案是:{−3,0,1,2,4,5,6,9}.解答题15、已知集合A={x|−3≤x≤2},B={x|2m−1≤x≤m+3}.(1)当m=0时,求∁R(A∩B);(2)若A∪B=A,求实数m的取值范围.答案:(1){x|x<−1或x>2}(2)m>4或m=−1分析:(1)先求交集,再求补集,即可得到答案;(2)由集合间的基本关系可得:B⊆A,对集合B进行讨论,即可得到答案;(1)当m=0时,B={x∣−1≤x≤3},∴ A ∩B ={x ∣−1⩽x ⩽2},∴ ∁R (A ∩B)={x|x <−1或x >2}(2)∵ A ∪B =A ⇒B ⊆A ,当B =∅时,2m −1>m +3⇒m >4;当B ≠∅时,m ⩽4且{2m −1⩾−3m +3⩽2,解得:m =−1, 综上所述:m >4或m =−1。
高中数学必修一第一章集合与常用逻辑用语易错知识点总结(带答案)
高中数学必修一第一章集合与常用逻辑用语易错知识点总结单选题1、设集合M={x|0<x<4},N={x|13≤x≤5},则M∩N=()A.{x|0<x≤13}B.{x|13≤x<4}C.{x|4≤x<5}D.{x|0<x≤5}答案:B分析:根据交集定义运算即可因为M={x|0<x<4},N={x|13≤x≤5},所以M∩N={x|13≤x<4},故选:B.小提示:本题考查集合的运算,属基础题,在高考中要求不高,掌握集合的交并补的基本概念即可求解.2、下列各式中关系符号运用正确的是()A.1⊆{0,1,2}B.∅⊄{0,1,2}C.∅⊆{2,0,1}D.{1}∈{0,1,2}答案:C分析:根据元素和集合的关系,集合与集合的关系,空集的性质判断即可.根据元素和集合的关系是属于和不属于,所以选项A错误;根据集合与集合的关系是包含或不包含,所以选项D错误;根据空集是任何集合的子集,所以选项B错误,故选项C正确.故选:C.3、对与任意集合A,下列各式①∅∈{∅},②A∩A=A,③A∪∅=A,④N∈R,正确的个数是()A.1B.2C.3D.4答案:C分析:根据集合中元素与集合的关系,集合与集合的关系及交并运算可判断.易知①∅∈{∅},②A∩A=A,③A∪∅=A,正确④N∈R,不正确,应该是N⊆R故选:C.4、已知集合M={x|x=m−56,m∈Z},N={x|x=n2−13,n∈Z},P={x|x=p2+16,p∈Z},则集合M,N,P的关系为()A.M=N=P B.M⊆N=PC.M⊆N⊈P D.M⊆N,N∩P=∅答案:B分析:对集合M,N,P中的元素通项进行通分,注意3n-2与3p+1都是表示同一类数,6m-5表示的数的集合是前者表示的数的集合的子集,即可得到结果.对于集合M={x|x=m-56,m∈Z},x=m-56=6m-56=6(m-1)+16,对于集合N={x|x=n2-13,n∈Z},x=n2-13=3n-26=3(n-1)+16,对于集合P={x|x=p2+16,p∈Z},x=p2+16=3p+16,由于集合M,N,P中元素的分母一样,只需要比较其分子即可,且m,n,p∈Z,注意到3(n-1)+1与3p+1表示的数都是3的倍数加1,6(m-1)+1表示的数是6的倍数加1,所以6(m-1)+1表示的数的集合是前者表示的数的集合的子集,所以M∈N=P.故选:B.5、已知集合M={−1,0,1,2,3,4},N={1,3,5},P=M∩N,则P的真子集共有()A.2个B.3个C.4个D.8个答案:B分析:根据交集运算得集合P,再根据集合P中的元素个数,确定其真子集个数即可. 解:∵M={−1,0,1,2,3,4},N={1,3,5}∴P={1,3},P的真子集是{1},{3},∅共3个.故选:B.6、已知集合A={x|−1<x≤2},B={−2,−1,0,2,4},则(∁R A)∩B=()A.∅B.{−1,2}C.{−2,4}D.{−2,−1,4}答案:D分析:利用补集定义求出∁R A,利用交集定义能求出(∁R A)∩B.解:集合A={x|−1<x≤2},B={−2,−1,0,2,4},则∁R A={x|x≤−1或x>2},∴(∁R A)∩B={−2,−1,4}.故选:D7、设全集U={−2,−1,0,1,2,3},集合A={−1,2},B={x∣x2−4x+3=0},则∁U(A∪B)=()A.{1,3}B.{0,3}C.{−2,1}D.{−2,0}答案:D分析:解方程求出集合B,再由集合的运算即可得解.由题意,B={x|x2−4x+3=0}={1,3},所以A∪B={−1,1,2,3},所以∁U(A∪B)={−2,0}.故选:D.8、已知集合A={−1,1,2,4},B={x||x−1|≤1},则A∩B=()A.{−1,2}B.{1,2}C.{1,4}D.{−1,4}答案:B分析:方法一:求出集合B后可求A∩B.[方法一]:直接法因为B={x|0≤x≤2},故A∩B={1,2},故选:B.[方法二]:【最优解】代入排除法x=−1代入集合B={x||x−1|≤1},可得2≤1,不满足,排除A、D;x=4代入集合B={x||x−1|≤1},可得3≤1,不满足,排除C.故选:B.【整体点评】方法一:直接解不等式,利用交集运算求出,是通性通法;方法二:根据选择题特征,利用特殊值代入验证,是该题的最优解.多选题9、定义:若集合A 非空,且是集合B 的真子集,就称集合A 是集合B 的孙子集.下列集合是集合B ={1,2,3}的孙子集的是( )A .∅B .{1}C .{1,2}D .{1,2,3}答案:BC分析:根据孙子集的定义,结合各选项集合与集合B 的关系,即可确定正确选项.A :∅为集合B 的真子集,当不是非空集,不合要求;B :{1}为集合B 的真子集,且为非空集,符合要求;C :{1,2}为集合B 的真子集,且为非空集,符合要求;D :{1,2,3}为集合B 的子集,但不是真子集,不合要求.故选:BC10、已知p :x 2+x −6=0;q :ax +1=0.若p 是q 的必要不充分条件,则实数a 的值可以是()A .﹣2B .−12C .13D .−13答案:BC解析:根据集合关系将条件进行化简,利用充分条件和必要条件的定义即可得到结论.由题意得p:A ={−3,2},当a =0时,q :B =∅,当a ≠0时,q :B ={−1a },因为p 是q 的必要不充分条件,所以B A ,所以a =0时满足题意,当−1a =−3或−1a =2时,也满足题意,解得a =13或a =−12,故选:BC.小提示:本题考查利用集合间的关系判断命题间充分必要条件,属于中档题.11、命题“∃x ∈[1,2],x 2≤a ”为真命题的一个充分不必要条件是( )A .a ≥1B .a ≥4C .a ≥−2D .a =4答案:BD分析:求出给定命题为真命题的a的取值集合,再确定A,B,C,D各选项所对集合哪些真包含于这个集合而得解.命题“∃x∈[1,2],x2≤a"等价于a≥1,即命题“∃x∈[1,2],x2≤a”为真命题所对集合为[1,+∞),所求的一个充分不必要条件的选项所对的集合真包含于[1,+∞),显然只有[4,+∞)[1,+∞),{4}[1,+∞),所以选项AC不符合要求,选项BD正确.故选:BD填空题12、含有三个实数的集合可表示为{a,b,1},也可以示为{a2,a+b,0},则a2013+b2014的值为____.a答案:−1分析:根据集合相等的定义及集合中元素的互异性即可求解.解:由题意,若a=a2,则a=0或1,检验可知不满足集合中元素的互异性,所以a=a+b,则b=0,所以a2=1,则a=−1,故a2013+b2014=−1.所以答案是:−1.13、非空有限数集S满足:若a,b∈S,则必有a2,b2,ab∈S.则满足条件且含有两个元素的数集S=______.(写出一个即可)答案:{0,1}(或{−1,1})分析:设S={a,b},结合题意与集合的性质分析即可.不妨设S={a,b},根据题意有a2,ab,b2∈S所以a2,b2,ab中必有两个是相等的.若a2=b2,则a=−b,故ab=−a2,又a2=a或a2=b=−a,所以a=0(舍去)或a=1或a=−1,此时S={−1,1}.若a2=ab,则a=0,此时b2=b,故b=1,此时S={0,1}.若b2=ab,则b=0,此时a2=a,故a=1,此时S={0,1}.综上,S ={0,1}或S ={−1,1}.所以答案是:{0,1}(或{−1,1})14、若“x >3”是“x >a “的充分不必要条件,则实数a 的取值范围是_____.答案:a <3解析:根据充分不必要条件的含义,即可求出结果.因为“x >3”是“x >a ”的充分不必要条件, ∴a <3.所以答案是:a <3.小提示:本题考查了不等式的意义、充分、必要条件的判定方法,考查了推理能力与计算能力,属于基础题. 解答题15、已知a ∈R ,集合A ={x ∈R |ax 2−3x +2=0}.(1)若A 是空集,求实数a 的取值范围;(2)若集合A 中只有一个元素,求集合A ;(3)若集合A 中至少有一个元素,求实数a 的取值范围.答案:(1)(98,+∞);(2)当a =0时,A ={23};当a =98时,A ={43};(3)(−∞,98].分析:(1)根据空集,结合一元二次方程的判别式求参数范围;(2)(3)讨论a =0、a ≠0,结合集合元素个数及一元二次方程判别式求集合或参数范围.(1)若A 是空集,则关于x 的方程ax 2−3x +2=0无解,此时a ≠0,且Δ=9−8a <0,所以a >98,即实数a 的取值范围是(98,+∞).(2)当a =0时,A ={23},符合题意;当a ≠0时,关于x 的方程ax 2−3x +2=0应有两个相等的实数根,则Δ=9−8a =0,得a =98,此时A ={43},符合题意. 综上,当a =0时A ={23};当a =98时A ={43}. (3)当a =0时,A ={23},符合题意;当a ≠0时,要使关于x 的方程ax 2−3x +2=0有实数根,则Δ=9−8a ≥0,得a ≤98. 综上,若集合A 中至少有一个元素,则实数a 的取值范围为(−∞,98].。
高考数学纠错笔记-集合与常用逻辑用语
高考数学纠错笔记-集合与常用逻辑用语
专题01 集合与常用逻辑用语
易错点1 忽略集合中元素的互异性
集合中元素的特性:
(1)确定性. 一个集合中的元素必须是确定的,即一个集合一旦确定,某一个元素要么是该集合中的元素,要么不是,二者必居其一,这个特性通常被用来判断涉及的总体是否能构成集合;
(2)互异性. 集合中的元素必须是互异的.对于一个给定的集合,它的任何两个元素都是不同的.这个特性通常被用来判断集合的表示是否正确,或用来求集合中的未知元素
(3)无序性. 集合与其中元素的排列顺序无关,如a,b,c组成的集合与b,c,a组成的集合是相同的集合.这个特性通常被用来判断两个集合的关系
易错点2 误解集合间的关系致错
易错点3 忽视空集易漏解
易错点4 A是B的充分条件与A的充分条件是B的区别
易错点5 命题的否定与否命题的区别。
部编版高中数学必修一第一章集合与常用逻辑用语易错知识点总结
(名师选题)部编版高中数学必修一第一章集合与常用逻辑用语易错知识点总结单选题1、已知A是由0,m,m2﹣3m+2三个元素组成的集合,且2∈A,则实数m为()A.2B.3C.0或3D.0,2,3均可答案:B分析:由题意可知m=2或m2﹣3m+2=2,求出m再检验即可.∵2∈A,∴m=2 或m2﹣3m+2=2.当m=2时,m2﹣3m+2=4﹣6+2=0,不合题意,舍去;当m2﹣3m+2=2时,m=0或m=3,但m=0不合题意,舍去.综上可知,m=3.故选:B.2、已知集合A={−1,0,1},B={a+b|a∈A,b∈A},则集合B=()A.{−1,1}B.{−1,0,1}C.{−2,−1,1,2}D.{−2,−1,0,1,2}答案:D分析:根据A={−1,0,1}求解B={a+b|a∈A,b∈A}即可由题,当a∈A,b∈A时a+b最小为(−1)+(−1)=−2,最大为1+1=2,且可得(−1)+0=−1,0+0= 0,0+1=1,故集合B={−2,−1,0,1,2}故选:D3、若不等式|x−1|<a成立的充分条件为0<x<4,则实数a的取值范围是()A.{a∣a≥3}B.{a∣a≥1}C.{a∣a≤3}D.{a∣a≤1}答案:A分析:由已知中不等式|x−1|<a成立的充分条件是0<x<4,令不等式的解集为A,可得{x|0<x<4}⊆A,可以构造关于a的不等式组,解不等式组即可得到答案.解:∵不等式|x−1|<a成立的充分条件是0<x<4,设不等式的解集为A ,则{x |0<x <4 }⊆A ,当a ≤0时,A =∅,不满足要求;当a >0时,A ={x ∣1−a <x <1+a},若{x |0<x <4 }⊆A ,则{1−a ⩽01+a ⩾4,解得a ≥3. 故选:A.4、已知p:0<x <2,q:−1<x <3,则p 是q 的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分不必要条件答案:A分析:根据充分和必要条件的定义即可求解.由p:0<x <2,可得出q:−1<x <3,由q:−1<x <3,得不出p:0<x <2,所以p 是q 的充分而不必要条件,故选:A.5、命题“∀x <0,x 2+ax −1≥0”的否定是( )A .∃x ≥0,x 2+ax −1<0B .∃x ≥0,x 2+ax −1≥0C .∃x <0,x 2+ax −1<0D .∃x <0,x 2+ax −1≥0答案:C分析:根据全称命题的否定是特称命题判断即可.根据全称命题的否定是特称命题,所以“∀x <0,x 2+ax −1≥0”的否定是“∃x <0,x 2+ax −1<0”. 故选:C6、命题“∃x >1,x 2≥1”的否定是( )A .∃x ≤1,x 2≥1B .∃x ≤1,x 2<1C .∀x ≤1,x 2≥1D .∀x >1,x 2<1答案:D分析:根据含有一个量词的命题的否定,可直接得出结果.命题“∃x>1,x2≥1”的否定是“∀x>1,x2<1”,故选:D.7、集合M={2,4,6,8,10},N={x|−1<x<6},则M∩N=()A.{2,4}B.{2,4,6}C.{2,4,6,8}D.{2,4,6,8,10}答案:A分析:根据集合的交集运算即可解出.因为M={2,4,6,8,10},N={x|−1<x<6},所以M∩N={2,4}.故选:A.8、已知集合A={x|x2−2x≤0},B={−1,0,3},则(∁R A)∩B=()A.∅B.{0,1}C.{−1,0,3}D.{−1,3}答案:D分析:先由一元二次不等式的解法求得集合A,再由集合的补集和交集运算可求得答案.因为A={x|x2−2x≤0}={x|0≤x≤2},所以∁R A={x|x<0或x>2},又B={−1,0,3},所以(∁R A)∩B={−1,3},故选:D.多选题9、已知集合A={y|y=x2+1},集合B={(x,y)|y=x2+1},下列关系正确的是().A.(1,2)∈B B.A=B C.0∉A D.(0,0)∉B答案:ACD分析:根据集合的定义判断,注意集合中代表元形式.由已知集合A={y}y≥1}=[1,+∞),集合B是由抛物线y=x2+1上的点组成的集合,A正确,B错,C正确,D正确,故选:ACD.小提示:本题考查集合的概念,确定集合中的元素是解题关键.10、已知集合A={y|y=x2+1},集合B={x|x>2},下列关系正确的是()A.B⊆A B.A⊆B C.0∉A D.1∈A答案:ACD解析:求出集合A,利用元素与集合、集合与集合的包含关系可得出结论.∵A={y|y=x2+1}={y|y≥1},B={x|x>2},所以,B⊆A,0∉A,1∈A.故选:ACD.11、对任意实数a,b,c,下列命题中真命题是()A.a=b是ac=bc的充要条件B.“a+5是无理数”是“a是无理数”的充要条件C.a>b是a2>b2的充要条件D.a<5是a<3的必要条件答案:BD分析:利用充分条件和必要条件的定义进行判断解:∵“a=b”⇒“ac=bc”为真命题,但当c=0时,“ac=bc”⇒“a=b”为假命题,故“a=b”是“ac=bc”的充分不必要条件,故A为假命题;∵“a+5是无理数”⇒“a是无理数”为真命题,“a是无理数”⇒“a+5是无理数”也为真命题,故“a+5是无理数”是“a是无理数”的充要条件,故B为真命题;∵“a>b”⇒“a2>b2”为假命题,“a2>b2”⇒“a>b”也为假命题,故“a>b”是“a2>b2”的既不充分也不必要条件,故C为假命题;∵{a|a<3}⊊{a|a<5},故“a<5”是“a<3”的必要不充分条件,故D为真命题.故选:BD.填空题12、设P,Q为两个非空实数集合,P中含有0,2两个元素,Q中含有1,6两个元素,定义集合P+Q中的元素是a+b,其中a∈P,b∈Q,则P+Q中元素的个数是_________.答案:4分析:求得P+Q的元素,由此确定正确答案.依题意,0+1=1,0+6=6,2+1=3,2+6=8,所以P+Q共有4个元素.所以答案是:413、已知集合A={3,|a|},B={a,1},A∪B={1,2,3,−2},则a的值为______.答案:﹣2分析:根据并集运算以及集合中元素的互异性即可求出答案.解:∵A={3,|a|},B={a,1},A∪B={1,2,3,−2},∴{1,2,3,−2}={1,3,|a|,a},∴|a|=2,且a=−2,∴a=−2,所以答案是:2.。
高中数学必修一第一章集合与常用逻辑用语知识点总结归纳
(每日一练)高中数学必修一第一章集合与常用逻辑用语知识点总结归纳单选题1、已知集合A={0,1,2},B={ab|a∈A,b∈A},则集合B中元素个数为()A.2B.3C.4D.5答案:C分析:由列举法列出集合B的所有元素,即可判断;解:因为A={0,1,2},a∈A,b∈A,所以ab=0或ab=1或ab=2或ab=4,故B={ab|a∈A,b∈A}={0,1,2,4},即集合B中含有4个元素;故选:C2、已知集合A={x∈N|x≤1},B={−1,0,1,2},则A∩B的子集的个数为()A.1B.2C.3D.4答案:D分析:根据集合交集的定义,结合子集个数公式进行求解即可.由题意A∩B={0,1},因此它的子集个数为4.故选:D.3、下列元素与集合的关系中,正确的是()∉RA.−1∈N B.0∉N∗C.√3∈Q D.25答案:B分析:由N,N∗,Q,R分别表示的数集,对选项逐一判断即可.−1不属于自然数,故A错误;0不属于正整数,故B正确;√3是无理数,不属于有理数集,故C错误;2属于实数,故D错误.5故选:B.4、下列命题中正确的是()①∅与{0}表示同一个集合②由1,2,3组成的集合可表示为{1,2,3}或{3,2,1}③方程(x−1)2(x−2)=0的所有解的集合可表示为{1,1,2}④集合{x∣4<x<5}可以用列举法表示A.只有①和④B.只有②和③C.只有②D.以上都对答案:C分析:由集合的表示方法判断①,④;由集合中元素的特点判断②,③.解:对于①,由于“0”是元素,而“{0}”表示含0元素的集合,而 ϕ 不含任何元素,所以①不正确;对于②,根据集合中元素的无序性,知②正确;对于③,根据集合元素的互异性,知③错误;对于④,由于该集合为无限集、且无明显的规律性,所以不能用列举法表示,所以④不正确.综上可得只有②正确.故选:C.5、已知集合M={x|1−a<x<2a},N=(1,4),且M⊆N,则实数a的取值范围是()A .(−∞,2]B .(−∞,0]C .(−∞,13]D .[13,2]答案:C分析:按集合M 是是空集和不是空集求出a 的范围,再求其并集而得解.因M ⊆N ,而ϕ⊆N ,所以M =ϕ时,即2a ≤1−a ,则a ≤13,此时M ≠ϕ时,M ⊆N ,则{1−a <2a 1−a ≥12a ≤4 ⇒{a >13a ≤0a ≤2,无解,综上得a ≤13,即实数a 的取值范围是(−∞,13].故选:C6、下面四个命题:①∀x ∈R ,x 2-3x +2>0恒成立;②∃x ∈Q ,x 2=2;③∃x ∈R ,x 2+1=0;④∀x ∈R ,4x 2>2x -1+3x 2.其中真命题的个数为( )A .3B .2C .1D .0答案:D分析:对于①,计算判别式或配方进行判断;对于②,当x 2=2时,只能得到x 为±√2,由此可判断;对于③,方程x 2+1=0无实数解;对于④,作差可判断.解:x 2-3x +2>0,Δ=(-3)2-4×2>0,∴当x >2或x <1时,x 2-3x +2>0才成立,∴①为假命题.当且仅当x=±√2时,x2=2,∴不存在x∈Q,使得x2=2,∴②为假命题.对∀x∈R,x2+1≠0,∴③为假命题.4x2-(2x-1+3x2)=x2-2x+1=(x-1)2≥0,即当x=1时,4x2=2x-1+3x2成立,∴④为假命题.∴①②③④均为假命题.故选:D小提示:此题考查特称命题和全称命题真假的判断,特称命题要为真,只要有1个成立即可,全称命题要为假,只要有1个不成立即可,属于基础题.7、在数轴上与原点距离不大于3的点表示的数的集合是()A.{x|x≤−3或x≥3}B.{x|−3≤x≤3}C.{x|x≤−3}D.{x|x≥3}答案:B分析:在数轴上与原点距离不大于3的点表示的数的集合为|x|≤3的集合.由题意,满足|x|≤3的集合,可得:{x|−3≤x≤3},故选:B8、在下列命题中,是真命题的是()A.∃x∈R,x2+x+3=0B.∀x∈R,x2+x+2>0C.∀x∈R,x2>|x|D.已知A={a∣a=2n},B={b∣b=3m},则对于任意的n,m∈N*,都有A∩B=∅答案:B分析:可通过分别判断选项正确和错误,来进行选择/选项A,∃x∈R,x2+x+3=0,即x2+x+3=0有实数解,所以Δ=1−12=−11<0,显然此方程无实数解,故排除;选项B ,∀x ∈R ,x 2+x +2>0,x 2+x +2=(x +12)2+74≥74>0,故该选项正确;选项C ,∀x ∈R ,x 2>|x |,而当x =0时,0>0,不成立,故该选项错误,排除;选项D ,A ={a ∣a =2n },B ={b ∣b =3m },当n,m ∈N *时,当a 、b 取得6的正整数倍时,A ∩B ≠∅,所以,该选项错误,排除.故选:B.9、已知集合M ={x ∣x 2+x =0},则( )A .{0}∈MB .∅∈MC .−1∉MD .−1∈M答案:D分析:先求得集合M ,再根据元素与集合的关系,集合与集合的关系可得选项.因为集合M ={x ∣x 2+x =0}={0,−1},所以−1∈M ,故选:D.10、设a,b ∈R ,A ={1,a},B ={−1,−b},若A ⊆B ,则a −b =( )A .−1B .−2C .2D .0答案:D分析:根据集合的包含关系,结合集合的性质求参数a 、b ,即可求a −b .由A ⊆B 知:A =B ,即{a =−1−b =1,得{a =−1b =−1,∴a −b =0.故选:D.多选题11、已知A ={第一象限角},B ={锐角},C ={小于90°的角},那么A 、B 、C 关系是()A.B=A∩C B.B∪C=C C.B∩A=B D.A=B=C答案:BC解析:根据集合A,B,C中角的范围,对选项逐一分析,由此得出正确选项.对于A选项,A∩C除了锐角,还包括其它角,比如−330∘,所以A选项错误.对于B选项,锐角是小于90∘的角,故B选项正确.对于C选项,锐角是第一象限角,故C选项正确.对于D选项,A,B,C中角的范围不一样,所以D选项错误.故选:BC小提示:本小题主要考查角的范围比较,考查集合交集、并集和集合相等的概念,属于基础题.12、对于集合A,B,定义A−B={x|x∈A,x∉B},A⊕B=(A−B)∪(B−A).设M={1,2,3,4,5,6},N= {4,5,6,7,8,9,10},则M⊕N中可能含有下列元素().A.5B.6C.7D.8答案:CD分析:根据所给定义求出M−N,N−M,即可求出M⊕N,从而判断即可;解:因为M={1,2,3,4,5,6},N={4,5,6,7,8,9,10},所以M−N={1,2,3},N−M={7,8,9,10},∴M⊕N=(M−N)∪(N−M)={1,2,3,7,8,9,10}.故选:CD13、下列各题中,p是q的充要条件的有()A.p:四边形是正方形;q:四边形的对角线互相垂直且平分B.p:两个三角形相似;q:两个三角形三边成比例C.p:xy>0;q:x>0,y>0D.p:x=1是一元二次方程ax2+bx+c=0的一个根;q:a+b+c=0(a≠0)答案:BD分析:根据充要条件的定义对各选项逐一进行分析讨论并判定作答.对于A,四边形是正方形则四边形的对角线互相垂直且平分成立,但四边形的对角线互相垂直且平分四边形可能是菱形,即p不是q的充要条件,A不是;对于B,两个三角形相似与两个三角形三边成比例能互相推出,即p是q的充要条件,B是;对于C,xy>0不能推出x>0,y>0,可能x<0,y<0,即p不是q的充要条件,C不是;对于D,x=1是一元二次方程ax2+bx+c=0的一个根,可得a+b+c=0,反之,当a+b+c=0时,把c=-a-b代入方程ax2+bx+c=0得ax2+bx-a-b=0,即(ax+a+b)(x-1)=0,显然x=1是方程的一个根,即p是q的充要条件,D是.故选:BD14、已知集合A={x∈R|x2−3x−18<0},B={x∈R|x2+ax+a2−27<0},则下列命题中正确的是()A.若A=B,则a=−3B.若A⊆B,则a=−3C.若B=∅,则a≤−6或a≥6D.若B⊊A时,则−6<a≤−3或a≥6答案:ABC分析:求出集合A,根据集合包含关系,集合相等的定义和集合的概念求解判断.A={x∈R|−3<x<6},若A=B,则a=−3,且a2−27=−18,故A正确.a=−3时,A=B,故D不正确.若A⊆B,则(−3)2+a⋅(−3)+a2−27≤0且62+6a+a2−27≤0,解得a=−3,故B正确.当B=∅时,a2−4(a2−27)≤0,解得a≤−6或a≥6,故C正确.故选:ABC.15、下列选项中的两个集合相等的有( ).A .P ={x ∣x =2n ,n ∣Z },Q ={x ∣x =2(n +1),n ∣Z }B .P ={x ∣x =2n -1,n ∣N +},Q ={x ∣x =2n +1,n ∣N +}C .P ={x ∣x 2-x =0},Q ={x ∣x =1+(-1)n 2,n ∣Z }D .P ={x ∣y =x +1},Q ={(x ,y )∣y =x +1}答案:AC分析:分析各对集合元素的特征,即可判断.解:对于A :集合P ={x ∣x =2n ,n ∣Z }表示偶数集,集合Q ={x ∣x =2(n +1),n ∣Z }也表示偶数集,所以P =Q ,故A 正确; 对于B :P ={x ∣x =2n -1,n ∣N +}={1,3,5,7,∣},Q ={x ∣x =2n +1,n ∣N +}={3,5,7,9,∣},所以P ≠Q ,故B 错误;对于C :P ={x ∣x 2-x =0}={0,1},又(-1)n ={1,n 为偶数-1,n 为奇数, 所以x =1+(-1)n 2={1,n 为偶数0,n 为奇数,即Q ={x ∣x =1+(-1)n 2,n ∣Z }={0,1},所以P =Q ,故C 正确; 对于D :集合P ={x ∣y =x +1}=R 为数集,集合Q ={(x ,y )∣y =x +1}为点集,所以P ≠Q ,故D 错误;故选:AC16、1872年德国数学家戴德金从连续性的要求出发,用有理数的“分割”来定义无理数(史称“戴德金分割”),并把实数理论建立在严格的科学基础上,从而结束了无理数被认为“无理”的时代,也结束了数学史上的第一次大危机.将有理数集Q 划分为两个非空的子集M 与N ,且满足M ∪N =Q ,M ∩N =∅,M 中的每一个元素都小于N 中的每一个元素,则称(M,N )为戴德金分割.试判断下列选项中,可能成立的是( )A .M ={x ∈Q |x <0 },N ={x ∈Q |x >0 }满足戴德金分割B .M 没有最大元素,N 有一个最小元素C.M有一个最大元素,N有一个最小元素D.M没有最大元素,N也没有最小元素答案:BD分析:根据集合的定义和题目要求,分析各选项即可.对于选项A,因为M={x∈Q|x<0},N={x∈Q|x>0},M∪N={x∈Q|x≠0}≠Q,故A错误;对于选项B,设M={x∈Q|x<0},N={x∈Q|x≥0},满足戴德金分割,则M中没有最大元素,N有一个最小元素0,故B正确;对于选项C,若M有一个最大元素m,N有一个最小元素n,若m≠n,一定存在k∈(m,n)使M∪N=Q不成立;若m=n,则M∩N=∅不成立,故C错误;对于选项D,设M={x∈Q|x<√2},N={x∈Q|x≥√2},满足戴德金分割,此时M没有最大元素,N也没有最小元素,故D正确.故选:BD.17、设M、N是两个非空集合,定义M⊗N={(a,b)|a∈M,b∈N}.若P={0,1,2},Q={﹣1,1,2},则P⊗Q中元素的个数不可能是()A.9B.8C.7D.6答案:BCD分析:根据定义,直接写出P⊗Q中元素的个数.解:因为P={0,1,2},Q={﹣1,1,2},所以a有3种选法,b有3种取法,可得P⊗Q中元素为(0,−1),(0,1),(0,2),(1,−1),(1,1),(1,2),(2,−1),(2,1),(2,2).所以P⊗Q中元素的个数是9(个).故选:BCD.18、已知关于x 的方程x 2+(m −3)x +m =0,则下列说法正确的是( )A .当m =3时,方程的两个实数根之和为0B .方程无实数根的一个必要条件是m >1C .方程有两个正根的充要条件是0<m ≤1D .方程有一个正根和一个负根的充要条件是m <0答案:BCD分析:方程没有实数根,所以选项A 错误;由题得m >1,m >1是1<m <9的必要条件,所以选项B 正确;由题得0<m ≤1,所以方程有两个正根的充要条件是0<m ≤1,所以选项C 正确;由题得m <0,所以方程有一个正根和一个负根的充要条件是m <0,所以选项D 正确.对于选项A ,方程为x 2+3=0,方程没有实数根,所以选项A 错误;对于选项B ,如果方程没有实数根,则Δ=(m −3)2−4m =m 2−10m +9<0,所以1<m <9,m >1是1<m <9的必要条件,所以选项B 正确;对于选项C ,如果方程有两个正根,则{Δ=m 2−10m +9≥0−(m −3)>0m >0,所以0<m ≤1,所以方程有两个正根的充要条件是0<m ≤1,所以选项C 正确;对于选项D ,如果方程有一个正根和一个负根,则{Δ=m 2−10m +9>0m <0,所以m <0,所以方程有一个正根和一个负根的充要条件是m <0,所以选项D 正确.故选:BCD小提示:方法点睛:判断充分条件必要条件,常用的方法有:(1)定义法;(2)集合法;(3)转化法.要根据已知条件,灵活选择方法判断得解.19、下列关系正确的是( )A .0∉∅B .∅⊆{0}C .{∅}⊆{0}D .∅{∅}答案:ABD分析:利用元素与集合之间的关系,集合与集合之间的关系判断即可.由空集的定义知:0∉∅,A正确.∅⊆{0},B正确.{∅}⊄{0},C错误.∅{∅},D正确.故选:ABD.20、图中阴影部分用集合符号可以表示为()A.A∩(B∪C)B.A∪(B∩C)C.A∩∁U(B∩C)D.(A∩B)∪(A∩C)答案:AD分析:由图可知,阴影部分是集合B与集合C的并集,再由集合A求交集,或是集A与B的交集并上集合A与C的交集,从而可得答案解:由图可知,阴影部分是集合B与集合C的并集,再由集合A求交集,或是集A与B的交集并上集合A与C 的交集,所以阴影部分用集合符号可以表示为A∩(B∪C)或(A∩B)∪(A∩C),故选:AD填空题21、设非空集合Q⊆M,当Q中所有元素和为偶数时(集合为单元素时和为元素本身),称Q是M的偶子集,若集合M={1,2,3,4,5,6,7},则其偶子集Q的个数为___________.答案:63分析:对集合Q中奇数和偶数的个数进行分类讨论,确定每种情况下集合Q的个数,综合可得结果.集合Q中只有2个奇数时,则集合Q的可能情况为:{1,3}、{1,5}、{1,7}、{3,5}、{3,7}、{5,7},共6种,若集合Q中只有4个奇数时,则集合Q={1,3,5,7},只有一种情况,若集合Q中只含1个偶数,共3种情况;若集合Q中只含2个偶数,则集合Q可能的情况为{2,4}、{2,6}、{4,6},共3种情况;若集合Q中只含3个偶数,则集合Q={2,4,6},只有1种情况.因为Q是M的偶子集,分以下几种情况讨论:若集合Q中的元素全为偶数,则满足条件的集合Q的个数为7;若集合Q中的元素全为奇数,则奇数的个数为偶数,共7种;若集合Q中的元素是2个奇数1个偶数,共6×3=18种;若集合Q中的元素为2个奇数2个偶数,共6×3=18种;若集合Q中的元素为2个奇数3个偶数,共6×1=6种;若集合Q中的元素为4个奇数1个偶数,共1×3=3种;若集合Q中的元素为4个奇数2个偶数,共1×3=3种;若集合Q中的元素为4个奇数3个偶数,共1种.综上所述,满足条件的集合Q的个数为7+7+18+18+6+3+3+1=63.所以答案是:63.22、若“x>3”是“x>m”的必要不充分条件,则m的取值范围是________.答案:m>3分析:由题,“x>3”是“x>m”的必要不充分条件,则(m,+∞)是(3,+∞)的真子集,可得答案.因为“x>3”是“x>m”的必要不充分条件,所以(m,+∞)是(3,+∞)的真子集,所以m>3,故答案为m>3.小提示:本题考查了不要不充分条件,属于基础题.23、设集合A={−4,2m−1,m2},B={9,m−5,1−m},又A∩B={9},求实数m=_____.答案:−3分析:根据A∩B={9}得出2m−1=9或m2=9,再分类讨论得出实数m的值.因为A∩B={9},所以9∈A且9∈B,若2m−1=9,即m=5代入得A={−4,9,25},B={9,0,−4},∴A∩B={−4,9}不合题意;若m2=9,即m=±3.当m=3时,A={−4,5,9},B={9,−2,−2}与集合元素的互异性矛盾;当m=−3时,A={−4,−7,9},B={9,−8,4},有A∩B={9}符合题意;综上所述,m=−3.所以答案是:−3。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 集合与常用逻辑用语§1.1 集合的概念与运算一、知识导学1.集合:一般地,一定范围内某些确定的、不同的对象的全体构成一个集合.2.元素:集合中的每一个对象称为该集合的元素,简称元.3.子集:如果集合A 的任意一个元素都是集合B 的元素(若A a ∉则B a ∈),则称 集合A 为集合B 的子集,记为A ⊆B 或B ⊇A ;如果A ⊆B ,并且A ≠B ,这时集合A 称为集合B 的真子集,记为A B 或B A.4.集合的相等:如果集合A 、B 同时满足A ⊆B 、B ⊇A ,则A=B.5.补集:设A ⊆S ,由S 中不属于A 的所有元素组成的集合称为S 的子集A 的补集,记 为 A C s .6.全集:如果集合S 包含所要研究的各个集合,这时S 可以看做一个全集,全集通常 记作U.7.交集:一般地,由所有属于集合A 且属于B 的元素构成的集合,称为A 与B 的交集, 记作A ⋂B.8.并集:一般地,由所有属于集合A 或者属于B 的元素构成的集合,称为A 与B 的并 集,记作A ⋃B.9.空集:不含任何元素的集合称为空集,记作Φ.10.有限集:含有有限个元素的集合称为有限集.11.无限集:含有无限个元素的集合称为无限集.12.集合的常用表示方法:列举法、描述法、图示法(Venn 图).13.常用数集的记法:自然数集记作N ,正整数集记作N +或N *,整数集记作Z ,有理数集记作Q ,实数集记作R .二、疑难知识1.符号⊆,,⊇,,=,表示集合与集合之间的关系,其中“⊆”包括“”和“=”两种情况,同样“⊇”包括“”和“=”两种情况.符号∈,∉表示元素与集合之间的关系.要注意两类不同符号的区别.2.在判断给定对象能否构成集合时,特别要注意它的“确定性”,在表示一个集合时,要特别注意它的“互异性”、“无序性”.3.在集合运算中必须注意组成集合的元素应具备的性质.4.对由条件给出的集合要明白它所表示的意义,即元素指什么,是什么范围.用集合表示不等式(组)的解集时,要注意分辨是交集还是并集,结合数轴或文氏图的直观性帮助思维判断.空集是任何集合的子集,但因为不好用文氏图形表示,容易被忽视,如在关系式中,B =Φ易漏掉的情况.5.若集合中的元素是用坐标形式表示的,要注意满足条件的点构成的图形是什么,用数形结合法解之.6.若集合中含有参数,须对参数进行分类讨论,讨论时既不重复又不遗漏.7.在集合运算过程中要借助数轴、直角坐标平面、Venn 图等将有关集合直观地表示出来.8.要注意集合与方程、函数、不等式、三角、几何等知识的密切联系与综合使用.9.含有n 个元素的集合的所有子集个数为:n 2,所有真子集个数为:n2-1 三、经典例题[例1] 已知集合M={y |y =x 2+1,x∈R },N={y|y =x +1,x∈R },则M∩N=( )A .(0,1),(1,2)B .{(0,1),(1,2)}C .{y|y=1,或y=2}D .{y|y≥1}错解:求M∩N 及解方程组⎩⎨⎧+=+=112x y x y 得⎩⎨⎧==10y x 或 ⎩⎨⎧==21y x ∴选B错因:在集合概念的理解上,仅注意了构成集合元素的共同属性,而忽视了集合的元素是什么.事实上M 、N 的元素是数而不是实数对(x,y ),因此M 、N 是数集而不是点集,M 、N 分别表示函数y =x 2+1(x∈R ),y =x +1(x∈R )的值域,求M∩N 即求两函数值域的交集.正解:M={y |y =x 2+1,x∈R }={y |y ≥1}, N={y|y=x +1,x∈R }={y|y∈R }.∴M∩N={y |y ≥1}∩{y|(y∈R)}={y |y ≥1}, ∴应选D .注:集合是由元素构成的,认识集合要从认识元素开始,要注意区分{x |y =x 2+1}、{y |y =x2+1,x ∈R }、{(x ,y )|y =x 2+1,x ∈R },这三个集合是不同的.[例2] 已知A={x |x 2-3x +2=0},B={x |ax -2=0}且A∪B=A,求实数a 组成的集合C . 错解:由x 2-3x +2=0得x =1或2.当x =1时,a =2, 当x =2时,a=1.错因:上述解答只注意了B 为非空集合,实际上,B=时,仍满足A∪B=A .当a =0时,B=,符合题设,应补上,故正确答案为C={0,1,2}.正解:∵A∪B=A ∴B A 又A={x |x 2-3x +2=0}={1,2}∴B=或{}{}21或 ∴C={0,1,2}[例3]已知m ∈A,n ∈B, 且集合A={}Z a a x x ∈=,2|,B={}Z a a x x ∈+=,12|,又C={}Z a a x x ∈+=,14|,则有: ( )A .m +n ∈A B. m +n ∈B C.m +n ∈C D. m +n 不属于A ,B ,C 中任意一个错解:∵m ∈A ,∴m =2a ,a Z ∈,同理n =2a +1,a ∈Z, ∴m +n =4a +1,故选C错因是上述解法缩小了m +n 的取值范围.正解:∵m ∈A, ∴设m =2a 1,a 1∈Z , 又∵n B ∈,∴n =2a 2+1,a 2∈ Z ,∴m +n =2(a 1+a 2)+1,而a 1+a 2∈ Z , ∴m +n ∈B, 故选B.[例4] 已知集合A={x|x 2-3x -10≤0},集合B={x|p +1≤x≤2p-1}.若BA ,求实数p 的取值范围.错解:由x 2-3x -10≤0得-2≤x≤5. 欲使B A ,只须3351212≤≤-⇒⎩⎨⎧≤-+≤-p p p ∴ p 的取值范围是-3≤p≤3.错因:上述解答忽略了"空集是任何集合的子集"这一结论,即B=时,符合题设. 正解:①当B≠时,即p +1≤2p-1p≥2.由B A 得:-2≤p+1且2p -1≤5.由-3≤p≤3.∴ 2≤p≤3②当B=时,即p +1>2p -1p <2.由①、②得:p≤3.点评:从以上解答应看到:解决有关A∩B=、A∪B=,A B 等集合问题易忽视空集的情况而出现漏解,这需要在解题过程中要全方位、多角度审视问题.[例5] 已知集合A={a,a +b,a +2b},B={a,ac,ac 2}.若A=B ,求c 的值.分析:要解决c 的求值问题,关键是要有方程的数学思想,此题应根据相等的两个集合元素完全相同及集合中元素的确定性、互异性,无序性建立关系式.解:分两种情况进行讨论.(1)若a +b=ac 且a +2b=ac 2,消去b 得:a +ac 2-2ac=0,a=0时,集合B 中的三元素均为零,和元素的互异性相矛盾,故a≠0.∴c 2-2c +1=0,即c=1,但c=1时,B 中的三元素又相同,此时无解.(2)若a +b=ac 2且a +2b=ac ,消去b 得:2ac 2-ac -a=0,∵a≠0,∴2c 2-c -1=0,即(c -1)(2c +1)=0,又c≠1,故c=-21. 点评:解决集合相等的问题易产生与互异性相矛盾的增解,这需要解题后进行检验. [例6] 设A 是实数集,满足若a∈A,则a -11∈A ,1≠a 且1∉A. ⑴若2∈A,则A 中至少还有几个元素?求出这几个元素.⑵A 能否为单元素集合?请说明理由.⑶若a∈A,证明:1-a1∈A. ⑷求证:集合A 中至少含有三个不同的元素.解:⑴2∈A ⇒ -1∈A ⇒21∈A ⇒ 2∈A ∴ A 中至少还有两个元素:-1和21 ⑵如果A 为单元素集合,则a =a -11 即12+-a a =0该方程无实数解,故在实数范围内,A 不可能是单元素集⑶a∈A ⇒ a -11∈A ⇒ a --1111∈A ⇒111---a a ∈A ,即1-a 1∈A ⑷由⑶知a∈A 时,a-11∈A, 1-a 1∈A .现在证明a,1-a 1, a -11三数互不相等.①若a=a -11,即a2-a+1=0 ,方程无解,∴a ≠a-11 ②若a=1-a 1,即a 2-a+1=0,方程无解∴a ≠1-a1 ③若1-a 1 =a -11,即a2-a+1=0,方程无解∴1-a 1≠a -11. 综上所述,集合A 中至少有三个不同的元素.点评:⑷的证明中要说明三个数互不相等,否则证明欠严谨.[例7] 设集合A={a |a =12+n ,n ∈N +},集合B={b |b =542+-k k ,k ∈N +},试证:A B .证明:任设a ∈A,则a =12+n =(n +2)2-4(n +2)+5 (n ∈N +), ∵ n∈N*,∴ n +2∈N*∴ a∈B 故 ①显然,1{}*2,1|N n n a a A ∈+==∈,而由B={b |b =542+-k k ,k ∈N +}={b |b =1)2(2+-k ,k ∈N +}知1∈B,于是A≠B ②由①、② 得A B .点评:(1)判定集合间的关系,其基本方法是归结为判定元素与集合之间关系.(2)判定两集合相等,主要是根据集合相等的定义.四、典型习题1.集合A={x|x 2-3x -10≤0,x ∈Z},B={x|2x 2-x -6>0, x ∈ Z},则A ∩B 的非空真子集的个数为( )A .16B .14C .15D .322.数集{1,2,x 2-3}中的x 不能取的数值的集合是( )A .{2,-2 }B .{-2,-5 }C .{±2,±5 }D .{5,-5}3. 若P={y|y=x 2,x∈R},Q={y|y=x 2+1,x∈R},则P∩Q 等于( )A .PB .QC .D .不知道4. 若P={y|y=x 2,x∈R},Q={(x ,y)|y=x 2,x∈R},则必有( )A .P∩Q=B .P QC .P=QD .PQ5.若集合M ={11|<xx },N ={x |2x ≤x },则M N = ( ) A .}11|{<<-x x B .}10|{<<x xC .}01|{<<-x xD .∅6.已知集合A={x|x 2+(m +2)x +1=0,x∈R },若A∩R +=,则实数m 的取值范围是_________.7.(06高考全国II 卷)设a R ∈,函数2()22.f x ax x a =--若()0f x >的解集为A ,{}|13,B x x A B φ=<<≠ ,求实数a 的取值范围。
8.已知集合A={}012|2=++b ax x x 和B={}0|2=+-b ax x x 满足 I C A ∩B={}2,A ∩I C B={}4,I=R ,求实数a,b 的值.§1.2.常用逻辑用语一、知识导学1.逻辑联结词:“且”、“或”、 “非”分别用符号“∧”“∨”“⌝”表示.2.命题:能够判断真假的陈述句.3.简单命题:不含逻辑联结词的命题4.复合命题:由简单命题和逻辑联结词构成的命题,复合命题的基本形式:p 或q ;p 且q ;非p5.四种命题的构成:原命题:若p 则q ; 逆命题:若q 则p ;否命题:若p 则q ;逆否命题:若q 则p.6.原命题与逆否命题同真同假,是等价命题,即“若p 则q”“若q 则p ” . 7.反证法:欲证“若p 则q”,从“非q”出发,导出矛盾,从而知“若p 则非q”为假,即“若p 则q”为真 .8.充分条件与必要条件 :①pq :p 是q 的充分条件;q 是p 的必要条件; ②p q :p 是q 的充要条件 . 9.常用的全称量词:“对所有的”、“ 对任意一个”“ 对一切”“ 对每一个”“任给”等;并用符号“∀” 表示.含有全称量词的命题叫做全称命题.10.常用的存在量词:“存在一个”、“至少有一个”、“有些”、“有一个”、 “有的”、“对某个”; 并用符号“∃”表示.含有存在量词的命题叫做特称命题.二、疑难知识1.基本题型及其方法(1)由给定的复合命题指出它的形式及其构成;(2)给定两个简单命题能写出它们构成的复合命题,并能利用真值表判断复合命题的真假;(3)给定命题,能写出它的逆命题、否命题、逆否命题,并能运用四种命题的相互关系,特别是互为逆否命题的等价性判断命题的真假.注意:否命题与命题的否定是不同的.(4)判断两个命题之间的充分、必要、充要关系;方法:利用定义(5)证明p 的充要条件是q ;方法:分别证明充分性和必要性(6)反证法证题的方法及步骤:反设、归谬、结论.反证法是通过证明命题的结论的反面不成立而肯定命题的一种数学证明方法,是间接证法之一.2.全称命题与特称命题的关系:全称命题p:)(,x p M x ∈∀,它的否定p ⌝:)(,x p M x ⌝∈∃;特称命题p:)(,x p M x ∈∃,它的否定p ⌝:)(,x p M x ⌝∈∀;即全称命题的否定是特称命题,特称命题的否定是全称命题.否定一个全称命题可以通过“举反例”来说明.三、经典例题[例1] 把命题“全等三角形一定相似”写成“若p 则q ”的形式,并写出它的逆命题、否命题与逆否命题.错解:原命题可改写成:若两个三角形全等,则它们一定相似.逆命题:若两个三角形相似,则它们全等.否命题:若两个三角形不一定全等,则它们不一定相似.逆否命题:若两个三角形不一定相似,则它们不一定全等.错因:对“一定”的否定把握不准,“一定”的否定 “一定不”,在逻辑知识中求否定相当于求补集,而“不一定”含有“一定”的意思.对这些内容的学习要多与日常生活中的例子作比较,注意结合集合知识.因而否命题与逆否命题错了. 正解:否命题:若两个三角形不全等,则它们不相似.逆否命题:若两个三角形不相似,则它们不全等.[例2] 将下列命题改写成“若p 则q ”的形式,并写出否命题.a>o 时,函数y=ax+b 的值随x 值的增加而增加. 错解:原命题改为:若a>o 时,x 的值增加,则函数y=ax+b 的值也随着增加.错因:如果从字面上分析最简单的方法是将a>o 看作条件,将“随着”看作结论,而x 的值增加,y 的值也增加看作研究的对象,那么原命题改为若a>o 时,则函数y=ax+b 的值随着x 的值增加而增加,其否命题为若a ≤o 时,则函数y=ax+b 的值不随x 值的增加而增加.此题错解在注意力集中在“增加”两个字上,将x 值的增加当做条件,又不把a>o 看作前提,就变成两个条件的命题,但写否命题时又没按两个条件的规则写,所以就错了.正解:原命题改为: a>o 时,若x 的值增加,则函数y=ax+b 的值也随着增加.否命题为: a>o 时,若x 的值不增加,则函数y=ax+b 的值也不增加.原命题也可改为:当x 的值增加时,若a>o ,,则函数y=ax+b 的值也随着增加. 否命题为: 当x 增加时,若a ≤o ,则函数y=ax+b 的值不增加.[例3] 已知h>0,设命题甲为:两个实数a 、b 满足h b a 2<-,命题乙为:两个实数a 、b 满足h a <-|1且h b <-|1,那么A .甲是乙的充分但不必要条件B .甲是乙的必要但不充分条件C .甲是乙的充要条件D .甲是乙的既不充分也不必要条件错解:h b a 2<-⇔h h h b a +=<---2)1()1(⇔h a <-|1|,h b <-|1|故本题应选C.错因:(1)对充分、必要、充要条件的概念分不清,无从判断,凭猜测产生错误;(2)不能运用绝对值不等式性质作正确推理而产生错误.正解:因为,11⎪⎩⎪⎨⎧<-<-hb h a 所以,11⎩⎨⎧<-<-<-<-h b h h a h 两式相减得h b a h 22<-<- 故h b a 2<-即由命题甲成立推出命题乙成立,所以甲是乙的必要条件. 由于⎪⎩⎪⎨⎧<-<-hb h a 22 同理也可得h b a 2<-因此,命题甲成立不能确定命题乙一定成立,所以甲不是乙的充分条件,故应选B.[例4] 已知命题甲:a+b ≠4, 命题乙:a 1≠且b 3≠,则命题甲是命题乙的 .错解:由逆否命题与原命题同真同假知,若a=1且b=3则a+b=4成立,所以命题甲是命题乙的充分不必要条件.错因 :对命题的否定不正确.a 1≠且b 3≠的否定是a=1或b=3.正解:当a+b ≠4时,可选取a=1,b=5,故此时a 1≠且b 3≠不成立( a=1).同样,a 1≠,且b 3≠时,可选取a=2,b=2,a+b=4,故此时a+b=4.因此,甲是乙的既不充分也不必要条件.注:a 1≠且b 3≠为真时,必须a 1≠,b 3≠同时成立.[例5] 已知p 是r 的充分不必要条件,s 是r 的必要条件,q 是s 的必要条件,那么p 是q 成立的 ( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 分析:本题考查简易逻辑知识.因为p ⇒r ⇒s ⇒q 但r 成立不能推出p 成立,所以q p ⇒,但q 成立不能推出p 成立,所以选A解:选A[例6] 已知关于x 的一元二次方程 (m∈Z)① mx 2-4x +4=0 ② x 2-4mx +4m 2-4m -5=0求方程①和②都有整数解的充要条件.解:方程①有实根的充要条件是,04416≥⨯⨯-=∆m 解得m ≤1.方程②有实根的充要条件是0)544(41622≥---=∆m m m ,解得.45-≥m ,.145Z m m ∈≤≤-∴而故m =-1或m =0或m =1. 当m =-1时,①方程无整数解.当m=0时,②无整数解;当m=1时,①②都有整数.从而①②都有整数解m =1.反之,m =1①②都有整数解. ∴①②都有整数解的充要条件是m =1.[例7] 用反证法证明:若a 、b 、c R ∈,且122+-=b a x ,122+-=c b y ,122+-=a c z ,则x 、y 、z 中至少有一个不小于0证明: 假设x 、y 、z 均小于0,即:0122<+-=b a x ----① ;0122<+-=c b y ----② ;0122<+-=a c z ----③;①+②+③得0)1()1()1(222<-+-+-=++c b a z y x ,这与0)1()1()1(222≥-+-+-c b a 矛盾,则假设不成立, ∴x 、y 、z 中至少有一个不小于0[例8] 已知命题p :方程x 2+mx +1=0有两个不等的负根;命题q :方程4x 2+4(m -2)x +1=0无实根.若“p 或q ”为真,“p 且q ”为假,求m 的取值范围.分析:“p 或q ”为真,则命题p 、q 至少有一个为真,“p 且q ”为假,则命题p 、q 至少有一为假,因此,两命题p 、q 应一真一假,即命题p 为真,命题q 为假或命题p 为假,命题q 为真. 解: 若方程x 2+mx +1=0有两不等的负根,则⎩⎨⎧>>-=∆0042m m 解得m >2, 即命题p :m >2若方程4x 2+4(m -2)x +1=0无实根,则Δ=16(m -2)2-16=16(m 2-4m +3)<0解得:1<m <3.即q :1<m <3.因“p 或q ”为真,所以p 、q 至少有一为真,又“p 且q ”为假,所以命题p 、q 至少有一为假,因此,命题p 、q 应一真一假,即命题p 为真,命题q 为假或命题p 为假,命题q 为真. ∴⎩⎨⎧<<≤⎩⎨⎧≥≤>312312m m m m m 或或 解得:m ≥3或1<m ≤2.四、典型习题1.方程0122=++x mx 至少有一个负根,则( )A.10<<m 或0<mB.10<<mC.1<mD.1≤m2.“0232>+-x x ”是“1<x 或4>x ”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件3.三个数,,a b c 不全为0的充要条件是 ( )A.,,a b c 都不是0.B.,,a b c 中至多一个是0.C.,,a b c 中只有一个是0.D.,,a b c 中至少一个不是0.4.由命题p :6是12的约数,q :6是24的约数,构成的“p 或q ”形式的命题是:_ ___,“p 且q ”形式的命题是__ _,“非p ”形式的命题是__ _.5.若,a b R ∈,试从A.0ab =B.0a b +=C.220a b +=D.0ab >E.0a b +>F.220a b +> 中,选出适合下列条件者,用代号填空:(1)使,a b 都为0的充分条件是 ;(2)使,a b 都不为0的充分条件是 ;(3)使,a b 中至少有一个为0的充要条件是 ;(4)使,a b 中至少有一个不为0的充要条件是 .6.分别指出由下列各组命题构成的逻辑关联词“或”、“且”、“非”的真假.(1)p : 梯形有一组对边平行;q :梯形有一组对边相等.(2)p : 1是方程0342=+-x x 的解;q :3是方程0342=+-x x 的解.(3)p : 不等式0122>+-x x 解集为R ;q : 不等式1222≤+-x x 解集为. 7.命题:已知a 、b 为实数,若x 2+ax +b ≤0 有非空解集,则a 2- 4b ≥0.写出该命题的逆命题、否命题、逆否命题,并判断这些命题的真假.8.用反证法证明:若a 、b 、c 、d 均为小于1的正数,且x=4a(1-b),y=4b(1-c),z=4c(1-d),t=4d(1-a),则x 、y 、z 、t 四个数中,至少有一个不大于1.。