福州备战中考数学专题训练---反比例函数的综合题分类

合集下载

备考2024年中考数学二轮复习-函数_反比例函数_反比例函数系数k的几何意义-综合题专训及答案

备考2024年中考数学二轮复习-函数_反比例函数_反比例函数系数k的几何意义-综合题专训及答案

备考2024年中考数学二轮复习-函数_反比例函数_反比例函数系数k的几何意义-综合题专训及答案反比例函数系数k的几何意义综合题专训1、(2019盘锦.中考真卷) 如图,四边形ABCD是矩形,点A在第四象限y1=﹣的图象上,点B在第一象限y2=的图象上,AB交x轴于点E,点C与点D在y轴上,AD=,S矩形OCBE= S矩形ODAE.(1)求点B的坐标.(2)若点P在x轴上,S△BPE=3,求直线BP的解析式.2、(2019镇江.中考真卷) 如图,点和点是反比例函数图象上的两点,一次函数的图象经过点,与轴交于点,与轴交于点,过点作轴,垂足为,连接 .已知与的面积满足 .(1)=,=;(2)已知点在线段上,当时,求点的坐标.3、(2018常州.中考真卷) 如图,已知点A在反比例函数y= (x>0)的图象上,过点A作AC⊥x轴,垂足是C,AC=OC.一次函数y=kx+b的图象经过点A,与y轴的正半轴交于点B.(1)求点A的坐标;(2)若四边形ABOC的面积是3,求一次函数y=kx+b的表达式.4、(2017兴化.中考模拟) 已知点A(1,2)、点 B在双曲线y= (x>0)上,过B作BC⊥x轴于点C,如图,P是y轴上一点,(1)求k的值及△PBC的面积;(2)设点M(x1,y1)、N(x2,y2)(x2>x1>0)是双曲线y= (x>0)上的任意两点,s= ,t= ,试判断s与t 的大小关系,并说明理由.5、(2018深圳.中考模拟) 如图,在平面直角坐标系中,直线AB与x轴交于点B,与y轴交于点A,与反比例函数y= 的图象在第二象限交于点C,CE⊥x轴,垂足为点E,tan∠ABO= ,OB=4,OE=2.(1)求反比例函数的解析式;(2)若点D是反比例函数图象在第四象限上的点,过点D作DF⊥y轴,垂足为点F,连接OD、BF.如果S△BAF=4S△DFO,求点D的坐标.6、(2018河南.中考模拟) 如图,点P是反比例函数y= (k>0)图象在第一象限上的一个动点,过P作x轴的垂线,垂足为M,若△POM的面积为2.(1)求反比例函数的解析式;(2)若点B坐标为(0,﹣2),点A为直线y=x与反比例函数y= (k>0)图象在第一象限上的交点,连接AB,过A作AC⊥y 轴于点C,若△ABC与△POM相似,求点P的坐标.7、(2017黄冈.中考模拟) 如图,正方形OABC的面积为9,点O为坐标原点,点B在函数y= (k>0,x>0)的图象上点P(m,n)是函数图象上任意一点,过点P分别作x轴y轴的垂线,垂足分别为E,F.并设矩形OEPF和正方形OABC不重合的部分的面积为S.(1)求k的值;(2)当S= 时,求P点的坐标;(3)写出S关于m的关系式.8、(2017黄冈.中考模拟) 反比例函数y= 在第一象限的图象如图所示,过点A(1,0)作x轴的垂线,交反比例函数y= 的图象于点M,△AOM的面积为3.(1)求反比例函数的解析式;(2)设点B的坐标为(t,0),其中t>1.若以AB为一边的正方形有一个顶点在反比例函数y= 的图象上,求t的值.9、(2020辽宁.中考模拟) 如图,已知∠AOB=90°,∠OAB=30°,反比例函数的图象过点,反比例函数的图象过点A.(1)求和的值.(2)过点B作BC∥x轴,与双曲线交于点C.求△OAC的面积.10、(2017湖北.中考真卷) 如图,∠AOB=90°,反比例函数y=﹣(x<0)的图象过点A(﹣1,a),反比例函数y= (k>0,x>0)的图象过点B,且AB∥x轴.(1)求a和k的值;(2)过点B作MN∥OA,交x轴于点M,交y轴于点N,交双曲线y= 于另一点,求△OBC的面积.11、(2018株洲.中考真卷) 如图,已知函数的图象与一次函数的图象相交不同的点A、B,过点A作AD⊥轴于点D,连接AO,其中点A的横坐标为,△AOD的面积为2.(1)求的值及 =4时的值;(2)记表示为不超过的最大整数,例如:,,设 ,若,求值12、(2017常德.中考真卷) 如图,已知反比例函数y= 的图象经过点A(4,m),AB⊥x轴,且△AOB的面积为2.(1)求k和m的值;(2)若点C(x,y)也在反比例函数y= 的图象上,当﹣3≤x≤﹣1时,求函数值y的取值范围.13、(2018深圳.中考模拟) 如图,直线y=3x与双曲线y= (k≠0,且x>0)交于点A,点A的横坐标是1.(1)求点A的坐标及双曲线的解析式;(2)点B是双曲线上一点,且点B的纵坐标是1,连接OB,AB,求△AOB的面积.14、(2018广州.中考真卷) 设P(x,0)是x轴上的一个动点,它与原点的距离为。

中考压轴题-反比例函数综合(八大题型+解题方法)—冲刺2024年中考数学考点(全国通用)(解析版)

中考压轴题-反比例函数综合(八大题型+解题方法)—冲刺2024年中考数学考点(全国通用)(解析版)

中考压轴题反比例函数综合(八大题型+解题方法)1.求交点坐标联立反比例函数与一次函数图象的解析式进行求解,特别地,反比例函数与正比例函数图象的两个交点关于原点对称.2.结合图象比较函数值的大小如图,一次函数y=k1x+b与反比例函数图象交于A,B 两点,过点A,B分别作y 轴的平行线,连同y 轴,将平面分为I,Ⅱ,Ⅲ,IV 四部分,在I,Ⅲ区域内,y₁<y₂,自变量的取值范围为x<x B或0<x<x A;在Ⅱ,IV区域内,y1>y₂,自变量的取值范围为x B<x<0或x>x A.3.反比例函数系数k的几何意义及常用面积模型目录:题型1:反比例函数与几何的解答证明 题型2:存在性问题题型3:反比例函数的代数综合 题型4:动态问题、新定义综合 题型5:定值问题 题型6:取值范围问题 题型7:最值问题题型8:情景探究题(含以实际生活为背景题)题型1:反比例函数与几何的解答证明1.(2024·湖南株洲·一模)如图,在平面直角坐标系xOy 中,矩形OABC 的边OA 在x 轴上,OC 在y 轴上,4OA =,2OC =(不与B ,C 重合),反比例函数()0,0k y k x x=>>的图像经过点D ,且与AB 交于点E ,连接OD ,OE ,DE .(1)若点D 的横坐标为1. ①求k 的值;②点P 在x 轴上,当ODE 的面积等于ODP 的面积时,试求点P 的坐标; (2)延长ED 交y 轴于点F ,连接AC ,判断四边形AEFC 的形状 【答案】(1)①2;②15,04⎛⎫ ⎪⎝⎭或15,04⎛⎫− ⎪⎝⎭(2)四边形AEFC 是平行四边形,理由见解析【分析】(1)①根据矩形的性质得到90BCO B AOC ∠=∠=∠=︒,得()1,2D ,把()1,2D 代入()0,0ky k x x=>>即可得到结论;②由D ,E 都在反比例函数ky x =的图像上,得到1COD AOE S S ==△△,根据三角形的面积公式得到1111315241243222224ODE S =⨯−⨯⨯−⨯⨯−⨯⨯=△,设(),0P x ,根据三角形的面积公式列方程即可得到结论;(2)连接AC ,根据题意得到,22k D ⎛⎫ ⎪⎝⎭,4,4k E ⎛⎫ ⎪⎝⎭,设EF 的函数解析式为y ax b =+,解方程得到84k OF +=,求得24kCF OF AE =−==,根据平行四边形的判定定理即可得到结论.【解析】(1)解:①∵四边形ABCO 是矩形,4OA =, ∴90BCO B AOC ∠=∠=∠=︒,4BC OA ==, ∵2OC =,点D 的横坐标为1, ∴()1,2D ,2AB OC ==,∵反比例函数()0,0ky k x x =>>的图像经过点D ,∴122k =⨯=, ∴k 的值为2; ②∵()1,2D ,∴1CD =,∵D ,E 都在反比例函数2y x =的图像上,∴1COD AOE S S ==△△,∴111422AOE S OA AE AE==⋅=⨯△,∴12AE =,∴13222BE AB AE =−=−=, ∴1111315241243222224ODES =⨯−⨯⨯−⨯⨯−⨯⨯=△,∵点P 在x 轴上,ODE 的面积等于ODP 的面积, 设(),0P x ,∴115224ODP S x =⨯⨯=△, 解得:154x =或154x =−,∴点P 的坐标为15,04⎛⎫ ⎪⎝⎭或15,04⎛⎫− ⎪⎝⎭;(2)四边形AEFC AEFC 是平行四边形. 理由:连接AC ,∵4OA =,2OC =,D ,E 都在反比例函数()0,0ky k x x =>>的图像上,∴,22k D ⎛⎫ ⎪⎝⎭,4,4k E ⎛⎫⎪⎝⎭,设EF 的函数解析式为:y ax b =+,∴2244k a b k a b ⎧⨯+=⎪⎪⎨⎪+=⎪⎩,解得:1284a kb ⎧=−⎪⎪⎨+⎪=⎪⎩, ∴EF 的函数解析式为:1824k y x +=−+, 当0x =时,得:84ky +=,∴84k OF +=, ∴24kCF OF AE =−==,又∵CF AE ∥,∴四边形AEFC 是平行四边形.【点睛】本题是反比例函数与几何的综合,考查待定系数法确定解析式,反比例函数图像上的点的坐标的特征,矩形的性质,平行四边形的判定,三角形的面积等知识点.掌握反比例函数图像上的点的坐标的特征,矩形的性质是解题的关键.题型2:存在性问题2.(2024·四川成都·二模)如图①,O 为坐标原点,点B 在x 轴的正半轴上,四边形OACB 是平行四边形,4sin 5AOB ∠=,反比例函数(0)ky k x =>在第一象限内的图象经过点A ,与BC 交于点F .(1)若10OA =,求反比例函数解析式;(2)若点F 为BC 的中点,且AOF 的面积12S =,求OA 的长和点C 的坐标;(3)在(2)中的条件下,过点F 作EF OB ∥,交OA 于点E (如图②),点P 为直线EF 上的一个动点,连接PA ,PO .是否存在这样的点P ,使以P 、O 、A 为顶点的三角形是直角三角形?若存在,请直接写出所有点P 的坐标;若不存在,请说明理由. 【答案】(1)48(0)y x x =>C(3)存在,满足条件的点P 或(或或(【分析】(1)先过点A 作AH OB ⊥,根据4sin 5AOB ∠=,10OA =,求出AH 和OH 的值,从而得出A 点坐标,再把它代入反比例函数中,求出k 的值,即可求出反比例函数的解析式; (2)先设(0)OA a a =>,过点F 作FM x ⊥轴于M ,根据4sin 5AOB ∠=,得出45AH a =,35OH a=,求出AOHS △的值,根据12AOF S =△,求出平行四边形AOBC 的面积,根据F 为BC 的中点,求出6OBF S =△,根据12BF a =,FBM AOB ∠=∠,得出12BMFS BM FM =⋅,23650FOM S a =+△,再根据点A ,F 都在k y x =的图象上,12AOHSk=,求出a ,最后根据AOBC S OB AH =⋅平行四边形,得出OB AC ==C 的坐标;(3)分别根据当90APO ∠=︒时,在OA 的两侧各有一点P ,得出1P ,2P ;当90PAO ∠=︒时,求出3P ;当90POA ∠=︒时,求出4P 即可.【解析】(1)解:过点A 作AH OB ⊥于H ,4sin 5AOB ∠=,10OA =,8AH ∴=,6OH =,A ∴点坐标为(6,8),根据题意得:86k=,可得:48k =,∴反比例函数解析式:48(0)y x x =>;(2)设(0)OA a a =>,过点F 作FM x ⊥轴于M ,过点C 作CN x ⊥轴于点N , 由平行四边形性质可证得OH BN =,4sin 5AOB ∠=,45AH a ∴=,35OH a=, 2143625525AOHS a a a ∴=⋅⋅=△,12AOF S =△,24AOBC S ∴=平行四边形,F 为BC 的中点,6OBFS∴=,12BF a=,FBM AOB ∠=∠,25FM a ∴=,310BM a =,2112332251050BMF S BM FM a a a ∴=⋅=⋅⋅=△,23650FOMOBFBMFSSSa ∴=+=+,点A ,F 都在ky x =的图象上,12AOH FOM S S k ∴==△△,∴226362550a a =+,a ∴OA ∴=AH ∴=OH =24AOBC S OB AH =⋅=平行四边形,OB AC ∴==ON OB OH ∴=+=C ∴;(3)由(2)可知A ,B 0),F .存在三种情况:当90APO ∠=︒时,在OA 的两侧各有一点P ,如图,设PF 交OA 于点J ,则J此时,AJ PJ OJ ==,P ∴,(P ',当90PAO ∠=︒时,如图,过点A 作AK OB ⊥于点K ,交PF 于点L .由AKO PLA △∽△,可得PLP ,当90POA ∠=︒时,同理可得(P .综上所述,满足条件的点P 的坐标为或(或或(.【点睛】此题考查了反比例函数的综合,用到的知识点是三角函数、平行四边形、反比例函数、三角形的面积等,解题的关键是数形结合思想的运用.3.(2024·广东湛江·一模)【建立模型】(1)如图1,点B 是线段CD 上的一点,AC BC ⊥,AB BE ⊥,ED BD ⊥,垂足分别为C ,B ,D ,AB BE =.求证:ACB BDE ≌;【类比迁移】(2)如图2,点()3,A a −在反比例函数3y x=图象上,连接OA ,将OA 绕点O 逆时针旋转90︒到OB ,若反比例函数k y x =经过点B .求反比例函数ky x=的解析式; 【拓展延伸】(3)如图3抛物线223y x x +−与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于C 点,已知点()0,1Q −,连接AQ ,抛物线上是否存在点M ,便得45MAQ ∠=︒,若存在,求出点M 的横坐标.【答案】(1)见解析;(2)3y x =−;(3)M 的坐标为39,24⎛⎫ ⎪⎝⎭或()1,4−−.【分析】(1)根据题意得出90C D ABE ︒∠=∠=∠=,A EBD ∠=∠,证明()AAS ACB BDE ≌,即可得证;(2)如图2,分别过点A ,B 作AC x ⊥轴,BD x ⊥轴,垂足分别为C ,D .求解()3,1A −−,1AC =,3OC =.利用ACO ODB ≌△△,可得()1,3B −;由反比例函数ky x =经过点()1,3B −,可得3k =−,可得答案;(3)如图3,当M 点位于x 轴上方,且45MAQ ∠=︒,过点Q 作QD AQ ⊥,交MA 于点D ,过点D 作DE y⊥轴于点E .证明AQO QDE ≌,可得AO QE =,OQ DE =,可得()1,2D ,求解1322AM y x =+:,令2132322x x x +=+−, 可得M 的坐标为39,24⎛⎫ ⎪⎝⎭;如图,当M 点位于x 轴下方,且45MAQ ∠=︒,同理可得()1,4D −−,AM 为26y x =−−.由22623x x x −−=+−,可得M 的坐标是()1,4−−.【解析】证明:(1)如图,∵AC BC ⊥,AB BE ⊥,ED BD ⊥, ∴90C D ABE ︒∠=∠=∠=,∴90,90ABC A ABC EBD ∠+∠=︒∠+∠=︒, ∴A EBD ∠=∠, 又∵AB BE =, ∴()AAS ACB BDE ≌.(2)①如图2,分别过点A ,B 作AC x ⊥轴,BD x ⊥轴,垂足分别为C ,D .将()3,A a −代入3y x =得:1a =−,∴()3,1A −−,1AC =,3OC =.同(1)可得ACO ODB ≌△△, ∴1OD AC ==,3BD OC ==, ∴()1,3B −,∵反比例函数ky x =经过点()1,3B −,∴3k =−, ∴3y x =−;(3)存在;如图3,当M 点位于x 轴上方,且45MAQ ∠=︒,过点Q 作QD AQ ⊥,交MA 于点D ,过点D 作DE y ⊥轴于点E .∵45MAQ ∠=︒,QD AQ ⊥, ∴45MAQ ADQ ∠=∠=︒, ∴AQ QD =,∵DE y ⊥轴,QD AQ ⊥,∴90AQO EQD EQD QDE ∠+∠=∠+∠=︒,90AOQ QED ∠=∠=︒, ∴AQO QDE ∠=∠, ∵AQ QD =, ∴AQO QDE ≌, ∴AO QE =,OQ DE =,令2230y x x =+−=,得13x =−,21x =,∴3AO QE ==,又()0,1Q −,∴1OQ DE ==, ∴()1,2D ,设AM 为y kx b =+,则230k b k b +=⎧⎨−+=⎩,,解得:1232k b ⎧=⎪⎪⎨⎪=⎪⎩,∴1322AM y x =+: 令2132322x x x +=+−,得132x =,23x =−(舍去), 当32x =时,233923224y ⎛⎫=+⨯−= ⎪⎝⎭, ∴39,24M ⎛⎫⎪⎝⎭;如图,当M 点位于x 轴下方,且45MAQ ∠=︒,同理可得()1,4D −−,AM 为26y x =−−.由22623x x x −−=+−,得11x =−,23x =−(舍去)∴当=1x −时,()()212134y =−+⨯−−=−,∴()1,4M −−.综上:M 的坐标为39,24⎛⎫⎪⎝⎭或()1,4−−.【点睛】本题考查的是全等三角形的判定与性质,反比例函数的应用,二次函数的性质,一元二次方程的解法,熟练的利用类比的方法解题是关键.题型3:反比例函数的代数综合4.(2024·湖南长沙·一模)若一次函数y mx n =+与反比例函数ky x=同时经过点(),P x y 则称二次函数2y mx nx k +=-为一次函数与反比例函数的“共享函数”,称点P 为共享点.(1)判断21y x =−与3y x=是否存在“共享函数”,如果存在,请说明理由;(2)已知:整数m ,n ,t 满足条件8t n m <<,并且一次函数()122=+++y n x m 与反比例函数2024y x=存在“共享函数”()()2102024y m t x m t x ++−=-,求m 的值.(3)若一次函数y x m =+和反比例函数213m y x+=在自变量x 的值满足的6m x m ≤≤+的情况下.其“共享函数”的最小值为3,求其“共享函数”的解析式.【答案】(1)3,22P ⎛⎫ ⎪⎝⎭或()1,3P −−,见解析 (2)2(3)2429y x x =+−或(29155y x x −−−=【分析】(1)判断21y x =−与3y x =是否有交点,计算即可;(2)根据定义,12210n m tm m t +=+⎧⎨+=−⎩,得到39869n m n t +⎧=⎪⎪⎨+⎪=⎪⎩,结合8t n m <<,构造不等式组解答即可. (3)根据定义,得“共享函数”为()22225131324m m y x mx m x ⎛⎫+−+=+−− ⎪⎝⎭=结合6m x m ≤≤+,“共享函数”的最小值为3,分类计算即可.本题考查了新定义,解方程组,解不等式组,抛物线的增减性,熟练掌握定义,抛物线的增减性是解题的关键.【解析】(1)21y x =−与3y x =存在“共享函数”,理由如下:根据题意,得213y x y x =−⎧⎪⎨=⎪⎩,解得322x y ⎧=⎪⎨⎪=⎩,13x y =−⎧⎨=−⎩,故函数同时经过3,22P ⎛⎫ ⎪⎝⎭或()1,3P −−, 故21y x =−与3y x =存在“共享函数”.(2)∵一次函数()122=+++y n x m 与反比例函数2024y x =存在“共享函数”()()2102024y m t x m t x ++−=-,∴12210n m tm m t +=+⎧⎨+=−⎩,解得39869n m n t +⎧=⎪⎪⎨+⎪=⎪⎩, ∵8t n m <<, ∴82489869n n m n n +⎧=⎪⎪⎨+⎪⎪⎩<>,解得24n 6<<, ∴327n +9<<, ∴339n +1<<,∴13m <<, ∵m 是整数, ∴2m =.(3)根据定义,得一次函数y x m =+和反比例函数213m y x +=的“共享函数”为 ()22225131324m m y x mx m x ⎛⎫+−+=+−− ⎪⎝⎭=,∵()22225131324m m y x mx m x ⎛⎫+−+=+−− ⎪⎝⎭=.∴抛物线开口向上,对称轴为直线2mx =−,函数有最小值25134m −−,且点与对称轴的距离越大,函数值越大,∵6m x m ≤≤+,当62mx m =−+≥时,即4m ≤−时,∵11622m m m m ⎛⎫⎛⎫−−+−− ⎪ ⎪⎝⎭⎝⎭>, ∴6x m =+时,函数取得最小值,且为2225613182324m m y m m m ⎛⎫=++−−=++ ⎪⎝⎭,又函数有最小值3,∴218233m m ++=,解得99m m =−=−故9m =− ∴“共享函数”为(29155y x x −−−=当2m x m =−≤时,即0m ≥时,∵11622m m m m ⎛⎫⎛⎫−−+−− ⎪ ⎪⎝⎭⎝⎭<, ∴x m =时,函数取得最小值,且为2225131324m m y m m ⎛⎫=+−−=− ⎪⎝⎭,又函数有最小值3,∴2133m −=,解得4,4m m ==−(舍去); 故4m =,∴“共享函数”为2429y x x =+−; 当62mm m −+<<时,即40m −<<时,∴2mx =−时,函数取得最小值,且为25134m y =−−,又函数有最小值3,∴251334m −−=, 方程无解,综上所述,一次函数y x m =+和反比例函数213m y x += 的“共享函数”为2429y x x =+−或(29155y x x −−−=5.(2024·江苏南京·模拟预测)若一次函数y mx n =+与反比例函数ky x=同时经过点(,)P x y 则称二次函数2y mx nx k =+−为一次函数与反比例函数的“共享函数”,称点P 为共享点.(1)判断21y x =−与3y x=是否存在“共享函数”,如果存在,请求出“共享点”.如果不存在,请说明理由; (2)已知:整数m ,n ,t 满足条件8t n m <<,并且一次函数(1)22y n x m =+++与反比例函数2024y x=存在“共享函数” 2()(10)2024y m t x m t x =++−−,求m 的值.(3)若一次函数y x m =+和反比例函数213m y x+=在自变量x 的值满足的6m x m ≤≤+的情况下.其“共享函数”的最小值为3,求其“共享函数”的解析式.【答案】(1)点P 的坐标为:3(2,2)或(1,3)−−;(2)2m =(3)222(13)(9(155y x mx m x x =+−+=+−−+或2429y x x =+−.【分析】(1)联立21y x =−与3y x =并整理得:2230x x −−=,即可求解;(2)由题意得12210n m t m m t +=+⎧⎨+=−⎩,解得39869n m n t +⎧=⎪⎪⎨+⎪=⎪⎩,而8t n m <<,故624n <<,则9327n <+<,故13m <<,m 是整数,故2m =;(3)①当162m m +≤−时,即4m ≤−,6x m =+,函数取得最小值,即22(6)(6)133m m m m +++−−=,即可求解;②当162m m m <−<+,即40m −<<,函数在12x m=−处取得最小值,即22211()13322m m m −−−−=,即可求解;③当0m ≥时,函数在x m =处,取得最小值,即可求解. 【解析】(1)解:(1)21y x =−与3y x =存在“共享函数”,理由如下:联立21y x =−与3y x =并整理得:2230x x −−=,解得:32x =或1−, 故点P 的坐标为:3(2,2)或(1,3)−−;(2)解:一次函数(1)22y n x m =+++与反比例函数2024y x =存在“共享函数”2()(10)2024y m t x m t x =++−−,依据“共享函数”的定义得: 12210n m tm m t +=+⎧⎨+=−⎩,解得:39869n m n t +⎧=⎪⎪⎨+⎪=⎪⎩, 8t n m <<,∴8698249n n n n +⎧<⎪⎪⎨+⎪<⎪⎩, 解得:624n <<;9327n ∴<+<, 13m ∴<<,m 是整数,2m ∴=;(3)解:由y x m =+和反比例函数213m y x +=得:“共享函数”的解析式为22(13)y x mx m =+−+, 函数的对称轴为:12x m=−; ①当162m m+≤−时,即4m ≤−, 6x m =+,函数取得最小值,即22(6)(6)133m m m m +++−−=,解得9m =−9−②当162m m m <−<+,即40m −<<, 函数在12x m =−处取得最小值,即22211()13322m m m −−−−=,无解;③当0m ≥时,函数在x m =处,取得最小值,即222133m m m +−−=,解得:4m =±(舍去4)−,综上,9m =−4,故“共享函数”的解析式为222(13)(9(155y x mx m x x =+−+=+−−+或2429y x x =+−.【点睛】本题是一道二次函数的综合题,主要考查了一次函数与反比例函数的性质,一次函数与反比例函数图象上点的坐标的特征,二次函数的性质,一元一次不等式组的解法,一元二次方程的解法.本题是阅读型题目,理解题干中的定义并熟练应用是解题的关键.6.(2024·湖南长沙·模拟预测)我们规定:若二次函数2y ax bx c =++(a ,b ,c 为常数,且0a ≠)与x 轴的两个交点的横坐标1x ,2x 满足122x x =−,则称该二次函数为“强基函数”,其中点()1,0x ,()2,0x 称为该“强基函数”的一对“基点”.(1)判断:下列函数中,为“强基函数”的是______(仅填序号).①228y x x =−−;②21y x x =++.(2)已知二次函数()2221y x t x t t =−+++为“强基函数”,求:当12x −≤≤时,函数22391y x tx t =+++的最大值.(3)已知直线1y x =−+与x 轴交于点C ,与双曲线()20y x x=−<交于点A ,点B 的坐标为()3,0−.若点()1,0x ,()2,0x 是某“强基函数”的一对“基点”,()12,P x x 位于ACB △内部.①求1x 的取值范围;②若1x 为整数,是否存在满足条件的“强基函数”2y x bx c =++?若存在,请求出该“强基函数”的解析式;若不存在,请说明理由. 【答案】(1)① (2)当23t =−时函数最大值为8或当13t =−时函数最大值为4;(3)①1x 的取值范围是:120x −<<或110x −<<;②21122y x x =+−【分析】(1)根据抛物线与x 轴的交点情况的判定方法分别判定①与②与x 轴的交点情况,再求解交点坐标,结合新定义,从而可得答案; (2)由()22210y x t x t t =−+++=时,可得1x t=,21x t =+,或11x t =+,2x t=,当122x x =−时,根据新定义可得23t =−或13t =−,再分情况求解函数的最大值即可;(3))①先得到点A 、B 、C 的坐标,然后分122x x =−或212x x =−两种情况,列出关于1x 的不等式组,然后解不等式组即可;②根据1x 为整数,先求出1x 的值,然后根据二次函数的交点式直接得到二次函数的解析式即可.【解析】(1)解:①∵228y x x =−−; ∴()()2Δ2418432360=−−⨯⨯−=+=>,∴抛物线与x 轴有两个交点,∵228=0x x −−,∴14x =,22x =−,∴122x x =−,∴228y x x =−−是“强基函数” ②∵21y x x =++, ∴214111430∆=−⨯⨯=−=−<,∴抛物线与x 轴没有交点,∴21y x x =++不是“强基函数” 故答案为:①; (2)∵二次函数()2221y x t x t t=−+++为“强基函数”,∴()()22Δ21410t t t ⎡⎤=−+−+=>⎣⎦,∵()22210y x t x t t =−+++=时, ∴1x t=,21x t =+,或11x t =+,2x t=,当122x x =−时,∴()21t t =−+或12t t +=−,解得:23t =−或13t =−,当23t =−时,函数为225y x x =−+,如图,∵12x −≤≤,此时当=1x −时,函数最大值为1258y =++=; 当13t =−时,函数为22y x x =−+,如图,∵12x −≤≤,此时当=1x −或2x =时,函数最大值为1124y =++=;(3)①联立()201y x x y x ⎧=−<⎪⎨⎪=−+⎩,解得:12x y =−⎧⎨=⎩, ∴点A 的坐标为:()1,2−,把0y =代入 1y x =−+得:10x −+=, 解得:1x =,∴点C 的坐标为()1,0, 设直线AB 为1y kx b =+,∴11302k b k b −+=⎧⎨−+=⎩,解得:113k b =⎧⎨=⎩,∴直线AB 的解析式为:3y x =+, ∵点()1,0x ,()2,0x 是某“强基函数”的一对“基点”, ()12,P x x 位于ACB △内部.当122x x =−时, ∴111,2P x x ⎛⎫− ⎪⎝⎭, ∴点P 在直线2xy =−上,∵点111,2P x x ⎛⎫− ⎪⎝⎭位于以A 、B 、C 三点所构成的三角形内部,如图,∴1111103212x x x x x ⎧⎪<⎪⎪−+⎨⎪⎪−−+⎪⎩<<, 解得:120x −<<;当212x x =−时,∵P 点坐标为()11,2x x −,∴点P 在直线2y x =−上,∵点P 位于以A 、B 、C 三点所构成的三角形内部,如图,∴1111102321x x x x x <⎧⎪−<+⎨⎪−<−+⎩,解得:110x −<<;综上分析可知,1x 的取值范围是:120x −<<或110x −<<;②存在;理由如下:∵1x 为整数,∴当120x −<<时,11x =−,∴此时212x =,此时,“强基函数”的一对“基点”为()1,0−,1,02⎛⎫ ⎪⎝⎭, ∴“强基函数”为()21111222y x x x x ⎛⎫=+−=+− ⎪⎝⎭; 当110x −<<时,则没有符合条件的整数1x 的值,不存在符合条件的“强基函数”; 综上,“强基函数”为21122y x x =+−. 【点睛】本题考查的是一次函数,反比例函数,二次函数的综合应用,新定义的含义,本题难度大,灵活应用各知识点,理解新定义的含义是解题的关键.题型4:动态问题、新定义综合7.(2024·山东济南·一模)如图1,直线14y ax =+经过点()2,0A ,交反比例函数2k y x=的图象于点()1,B m −,点P 为第二象限内反比例函数图象上的一个动点.(1)求反比例函数2y 的表达式;(2)过点P 作PC x ∥轴交直线AB 于点C ,连接AP ,BP ,若ACP △的面积是BPC △面积的2倍,请求出点P 坐标;(3)平面上任意一点(),Q x y ,沿射线BA Q ',点Q '怡好在反比例函数2k y x=的图象上;①请写出Q 点纵坐标y 关于Q 点横坐标x 的函数关系式3y =______;②定义}{()()min ,a a b a b b a b ⎧≤⎪=⎨>⎪⎩,则函数{}13min ,Y y y =的最大值为______. 【答案】(1)26y x =−(2)点P 坐标为1,122⎛⎫− ⎪⎝⎭或3,42⎛⎫− ⎪⎝⎭ (3)①3621y x =−++;②8【分析】本题考查了反比例函数与一次函数的交点问题,坐标与图形,解题的关键是运用分类讨论的思想.(1)先根据点()2,0A 求出1y 的解析式,然后求出点B 的坐标,最后将点B 的坐标代入2y 中,求出k ,即可求解;(2)分两种情况讨论:当点P 在AB 下方时,当点P 在AB 上方时,结合“若ACP △的面积是BPC △面积的2倍”,求出点C 的坐标,将点C 的纵坐标代入反比例函数解析式,即可求解;(3)①根据题意可得:(),Q x y 向右平移1个单位,再向下平移2个单位得到点Q ',则()1,2Q x y +'−,将其代入26y x =−中,即可求解;②分为:当{}131min ,Y y y y ==时,13y y ≤;当{}133min ,Y y y y ==时,13y y >;分别解不等式即可求解.【解析】(1)解:直线14y ax =+经过点()2,0A ,,∴240x +=, 解得:2a =−,∴124y x =−+,点()1,B m −在直线124y x =−+上,∴()2146m =−⨯−+=,∴()1,6B −,∴166k =−⨯=−, ∴26y x =−;(2)①当点P 在AB 下方时,2ACP BPC S S =,∴:2:1AC BC =,过点C 作CH x ⊥轴于点H ,过点B 作BR x ⊥轴于点R ,∴23AC CH AB BR ==, ∴23C B y y =,()1,6B −,∴4C y =,把4C y =代入26y x =−中, 得:32C x =−, ∴3,42P ⎛⎫− ⎪⎝⎭; ②当点P 在AB 上方时,2ACP BPC S S =,∴:1:1AB BC =,∴B 为AC 的中点,()2,0A ,()1,6B −,∴()4,12C −,把12y =代入26y x =−中,得:12x =−, ∴1,122P ⎛⎫− ⎪⎝⎭,综上所述,点P 的坐标为1,122⎛⎫− ⎪⎝⎭或3,42⎛⎫− ⎪⎝⎭;(3)① 由(),Q x y ,沿射线BA Q ', 得:(),Q x y 向右平移1个单位,再向下平移2个单位得到点Q ',∴()1,2Q x y +'−,点()1,2Q x y +'−恰好在反比例函数26y x =−的图象上, ∴621y x −=−+, ∴3621y x =−++;②a .当{}131min ,Y y y y ==时,13y y ≤, 即62421x x −+≤−++, 当1x >−时,()()()2141621x x x x −+++≤−++,解得:2x ≥或2x ≤−(舍去),∴2x =时,函数{}131min ,Y y y y ==有最大值,最大值为2240−⨯+=;当1x <−时,()()()2141621x x x x −+++≥−++,解得:21x −≤<−,∴2x =−时,函数{}131min ,Y y y y ==有最大值,最大值为()2248−⨯−+=;b .当{}133min ,Y y y y ==时,13y y >, 即62421x x −+>−++,当1x >−时,()()()2141621x x x x −+++>−++,解得:2x >或<2x −(舍去), ∴362021y >−+=+,即0Y >;当1x <−时,()()()2141621x x x x −+++<−++,解得:2<<1x −−,∴328y <<,即28Y <<;综上所述,函数{}13min ,Y y y =的最大值为8,故答案为:8.8.(2024·四川成都·一模)如图,矩形OABC 交反比例函数k y x=于点D ,已知点()0,4A ,点()2,0C −,2ACD S =△.(1)求k 的值;(2)若过点D 的直线分别交x 轴,y 轴于R ,Q 两点,2DRDQ =,求该直线的解析式; (3)若四边形有一个内角为60︒,且有一条对角线平分一个内角,则称这个四边形为“角分四边形”.已知点P在y 轴负半轴上运动,点Q 在x 轴正半轴上运动,若四边形ACPQ 为“角分四边形”,求点P 与点Q 的坐标.【答案】(1)4k =−;(2)26y x =+或22y x =−+;(3)(()020P ,,Q ,−或 ()()04320P ,,−或()()040P ,,Q −【分析】(1)利用面积及矩形的性质,用待定系数法即可求解;(2)分两种情况讨论求解:R 在x 轴正半轴上和在负半轴上两种情况分别求解即可;(3)分三种情况:当AO 平分CAQ ∠,60CPQ ∠=︒时,当CO 平分ACP ∠,60CPQ ∠=︒时,当CO 平分ACP ∠,60AQP ∠=︒时,分别结合图形求解. 【解析】(1)解:2ACD S =△, 即122AD OA ⨯⨯=, ()0,4A ,1422AD ∴⨯=,1AD ∴=,()1,4D ∴−, 41k∴=−,4k ∴=−;(2)①如图,当2DR DQ =时,13DQ RQ =,AD OR ,13DQ AD RQ OR ∴==,1AD =,3OR ∴=,()3,0R ∴−,设直线RQ 为11y k x b =+, 把()3,0R −,()1,4D −代入11y k x b =+,得1111304k b k b −+=⎧⎨−+=⎩,解得1126k b =⎧⎨=⎩,直线RQ 为26y x =+,②如图,当2DR DQ =时,1DQ RQ =,AD OR ,1DQ AD RQ OR ∴==,1AD =,1OR ∴=,()1,0R ∴,设直线RQ 为22y k x b =+,把()1,0R ,()1,4D −代入22y k x b =+,得222204k b k b +=⎧⎨−+=⎩,解得2222k b =−⎧⎨=⎩,直线RQ 为22y x =−+,综上所述,直线RQ 的表达式为26y x =+或22y x =−+;(3)解:①当AO 平分CAQ ∠,60CPQ ∠=︒时,CAO QAO AO AOAOC AOQ ∠=∠⎧⎪=⎨⎪∠=⎩,()ASA AOC AOQ ∴≌, CO QO ∴=即AP 垂直平分CQ ,()2,0Q ∴,60CPQ ∠=︒,30CPO ∴∠=︒,tan30OC OP ∴===︒,(0,P ∴−,②当CO 平分ACP ∠,60CPQ ∠=︒时,同理ACO PCO ≌,得4OA OP ==,()0,4P ∴−,PC == 作CM PQ ⊥于M ,60CPQ ∠=︒,1cos602PM PC ∴=⨯︒==sin60CM PC =⨯︒== 90POQ CMQ ,PQO PQO ∠=∠=︒∠=∠,CMQ POQ ∴∽,MQ CM OQ OP ∴=,即MQ OQ =,)2222OQ OP PQ MQ +==② ,联立①,②,解得32OQ =或32OQ =(舍),()32,0Q ∴,③当CO 平分ACP ∠,60AQP ∠=︒时,同理 ACO PCO ≌,得4OA OP ==,AC CP = 同理ACQ PCQ ≌,得AQ PQ =∴APQ 是等边三角形()0,4P ∴−,8AP AQ PQ ,===OQ =, ()Q ∴,综上所述,P 、Q 的坐标为(()0,,2,0P Q −或 ()()0,4,32,0P Q −或()()0,4,P Q −.【点睛】此题是反比例函数综合题,主要考查了待定系数法,解直角三角形,求一次函数解析式,相似三角形的性质和判定,正确作出辅助线,解方程组,灵活运用待定系数法求函数解析式是解本题的关键. 题型5:定值问题9.(2024·山东济南·模拟预测)如图①,已知点()1,0A −,()0,2B −,ABCD Y 的边AD 与y 轴交于点E ,且E 为AD 的中点,双曲线k y x=经过C 、D 两点.(1)求k 的值;(2)点P 在双曲线k y x=上,点Q 在y 轴上,若以点A 、B 、P 、Q 为顶点的四边形是平行四边形,直接写出满足要求的所有点Q 的坐标;(3)以线段AB 为对角线作正方形AFBH (如图③),点T 是边AF 上一动点,M 是HT 的中点,MN HT ⊥,交AB 于N ,当点T 在AF 上运动时,MN HT 的值是否发生改变?若改变,求出其变化范围:若不改变,请求出其值,并给出你的证明.【答案】(1)4k =(2)()0,6或()0,2或()0,6− (3)12MN HT =,其值不发生改变,证明见解析【分析】(1)根据中点坐标公式可得,1D x =,设()1,D t ,由平行四边形对角线中点坐标相同可知()2,2C t −,再根据反比例函数的性质求出t 的值即可;(2)由(1)知4k =可知反比例函数的解析式为4y x =,再由点P 在双曲线4y x =上,点Q 在y 轴上,设()0,Q q ,4P p p ⎛⎫ ⎪⎝⎭,,再分以AB 为边和以AB 为对角线两种情况求出x 的值,故可得出P 、Q 的坐标;(3)连NH 、NT 、NF ,易证NF NH NT ==,故NTF NFT AHN ∠=∠=∠,90TNH TAH ∠=∠=︒,12MN HT =由此即可得出结论.【解析】(1)解:∵()1,0A −,E 为AD 中点且点E 在y 轴上,1D x ∴=, 设()1,D t ,()C m n ,,∵四边形ABCD 是平行四边形,∴AC BD 、的中点坐标相同, ∴101222022m t n +−⎧=⎪⎪⎨−+⎪=⎪⎩, ∴22m n t ==−,()22C t ∴−,,∵C 、D 都在反比例函数4y x =的图象上,()22k t t ∴==−,4t ∴=, 4k ∴=;(2)解:由(1)知4k =,∴反比例函数的解析式为4y x =,点P 在双曲线4x 上,点Q 在y 轴上,∴设()0,Q q ,4P p p ⎛⎫ ⎪⎝⎭,,①当AB 为边时:如图1,若ABPQ 为平行四边形,则1002240422p q p −++⎧=⎪⎪⎨−⎪−=⎪⎩,解得16p q =⎧⎨=⎩,此时()11,4P ,()10,6Q ;如图2,若ABQP 为平行四边形,则1002242022p q p −++⎧=⎪⎪⎨−+⎪+=⎪⎩,解得16p q =−⎧⎨=−⎩,此时()21,4P −−,()20,6Q −;②如图3,当AB 为对角线时,则010*******p q p +−+⎧=⎪⎪⎨+⎪−=⎪⎩解得12p q =−⎧⎨=⎩,()31,4P ∴−−,()30,2Q ;综上所述,满足题意的Q 的坐标为()0,6或()0,2或()0,6−;(3)解:12MN HT =,其值不发生改变,证明如下: 如图4,连NH 、NT 、NF ,∵M 是HT 的中点,MN HT ⊥,∴MN 是线段HT 的垂直平分线,NT NH ∴=,四边形AFBH 是正方形,45ABF ABH ∴∠=∠=︒,在BFN 与BHN △中,BF BH NBF NBH BN BN =⎧⎪∠=∠⎨⎪=⎩,()SAS BFN BHN ∴≌,NF NH NT ∴==,BFN BHN ∠=∠,∵90BFA BHA ==︒∠∠,NTF NFT AHN ∴∠=∠=∠,∵180ATN NTF ∠+∠=︒,∴180ATN AHN ∠+∠=︒,∴3601809090TNH ∠=︒−︒−︒=︒.12MN HT ∴=, ∴12MN HT =.三角形的判定与性质、全等三角形的判定与性质等相关知识,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造全等三角形解决问题.10.(2024·山东济南·二模)如图①,已知点(1,0)A −,(0,2)B −,ABCD Y 的边AD 与y 轴交于点E ,且E 为AD 的中点,双曲线k y x=经过C 、D 两点.(1)求k 的值;(2)点P 在双曲线k y x=上,点Q 在y 轴上,若以点A 、B 、P 、Q 为顶点的四边形是平行四边形,直接写出满足要求的所有点Q 的坐标;(3)以线段AB 为对角线作正方形AFBH (如图③),点T 是边AF 上一动点,M 是HT 的中点,MN HT ⊥,交AB 于N ,当点T 在AF 上运动时,MN HT的值是否发生改变?若改变,求出其变化范围:若不改变,请求出其值,并给出你的证明.【答案】(1)4k =(2)1(0,6)Q ,2(0,6)Q −,3(0,2)Q(3)结论:MN HT 的值不发生改变,12MN HT =证明见解析【分析】(1)设(1,)D t ,由DC AB ∥,可知(2,2)C t −,再根据反比例函数的性质求出t 的值即可;(2)由(1)知4k =可知反比例函数的解析式为4y x =,再由点P 在双曲线4y x =上,点Q 在y 轴上,设(0,)Q y ,4(,)P x x ,再分以AB 为边和以AB 为对角线两种情况求出x 的值,故可得出P 、Q 的坐标;(3)连NH 、NT 、NF ,易证NF NH NT ==,故NTF NFT AHN ∠=∠=∠,90TNH TAH ∠=∠=︒,12MN HT =由此即可得出结论.【解析】(1)解:(1,0)A −,(0,2)B −,E 为AD 中点, 1D x ∴=,设(1,)D t ,又DC AB ∥,(2,2)C t ∴−,24t t ∴=−,4t ∴=,4k ∴=;(2)解:由(1)知4k =,∴反比例函数的解析式为4y x =,点P 在双曲线4x 上,点Q 在y 轴上,∴设(0,)Q y ,4(,)P x x , ①当AB 为边时:如图1,若ABPQ 为平行四边形,则102x −+=,解得1x =,此时1(1,4)P ,1(0,6)Q ;如图2,若ABQP 为平行四边形,则122x −=, 解得=1x −,此时2(1,4)P −−,2(0,6)Q −;②如图3,当AB 为对角线时,AP BQ =,且AP BQ ∥; ∴122x −=,解得=1x −,3(1,4)P ∴−−,3(0,2)Q ;故1(1,4)P ,1(0,6)Q ;2(1,4)P −−,2(0,6)Q −;3(1,4)P −−,3(0,2)Q ;(3) 解:结论:MNHT 的值不发生改变,理由:如图4,连NH 、NT 、NF ,MN 是线段HT 的垂直平分线,NT NH ∴=,四边形AFBH 是正方形,ABF ABH ∴∠=∠,在BFN 与BHN △中,BF BH ABF ABH BN BN =⎧⎪∠=∠⎨⎪=⎩,()BFN BHN SAS ∴≌,NF NH NT ∴==, NTF NFT AHN ∴∠=∠=∠,四边形ATNH 中,180ATN NTF ∠+∠=︒,而NTF NFT AHN ∠=∠=∠,所以,180ATN AHN ∠+∠=︒,所以,四边形ATNH 内角和为360︒,所以3601809090TNH ∠=︒−︒−︒=︒.12MN HT ∴=, ∴12MN HT =.【点睛】此题是反比例函数综合题,主要考查了待定系数法求反比例函数的解析式、正方形的性质、等腰三角形的判定与性质、全等三角形的判定与性质等相关知识,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造全等三角形解决问题.题型6:取值范围问题11.(2024·江苏宿迁·二模)中国象棋棋盘上双方的分界处称为“楚河汉界”,以“楚河汉界”比喻双方对垒的分界线.在平面直角坐标系中,为了对两个图形进行分界,对“楚河汉界线”给出如下定义:点()11,P x y 是图形1G 上的任意一点,点()22,Q x y 是图形2G 上的任意一点,若存在直线()0l y kx b k =+≠∶满足11y kx b ≤+且22y kx b ≥+,则直线(0)y k b k =+≠就是图形1G 与2G 的“楚河汉界线”.例如:如图1,直线4l y x =−−∶是函数6(0)y x x=<的图像与正方形OABC 的一条“楚河汉界线”.(1)在直线①2y x =−,②41y x =−,③23y x =−+,④31y x =−−中,是图1函数6(0)y x x=<的图像与正方形OABC 的“楚河汉界线”的有______;(填序号) (2)如图2,第一象限的等腰直角EDF 的两腰分别与坐标轴平行,直角顶点D 的坐标是()2,1,EDF 与O 的“楚河汉界线”有且只有一条,求出此“楚河汉界线”的表达式;(3)正方形1111D C B A 的一边在y 轴上,其他三边都在y 轴的右侧,点(2,)M t 是此正方形的中心,若存在直线2y x b =−+是函数2)304(2y x x x =−++≤≤的图像与正方形1111D C B A 的“楚河汉界线”,求t 的取值范围.【答案】(1)①④;(2)25y x =−+;(3)7t ≤−或9t ≥.【分析】(1)根据定义,结合图象,可判断出直线为3y x =−或31y x =−−与双曲线6(0)y x x =<及正方形ABCD最多有一个公共点,即可求解;(2)先作出以原点O 为圆心且经过EDF 的顶点D 的圆,再过点D 作O 的切线,求出该直线的解析式即可;(3)先由抛物线与直线组成方程组,则该方程组有唯一一组解,再考虑直线与正方形有唯一公共点的情形,数形结合,分类讨论,求出t【解析】(1)解:如图,从图可知,2y x =−与双曲线6(0)y x x =<和正方形OABC 只有一个公共点,31y x =−−与双曲线6(0)y x x =<和正方形OABC 没有公共点,41y x =−、23y x =−+不在双曲线6(0)y x x =<及正方形ABCD 之间, 根据“楚河汉界线”定义可知,直线2y x =−,31y x =−−是双曲线6(0)y x x =<与正方形OABC 的“楚河汉界线”, 故答案为:①④;(2)解:如图,连接OD ,以O 为圆心,OD 长为半径作O ,作DG x ⊥轴于点G ,过点D 作O 的切线DM ,则MD OD ⊥,∵MD OD ⊥,DG x ⊥轴, ∴90ODM OGD ∠=∠=︒, ∴90MOD OMD ∠+∠=︒, ∵90MOD DOG ∠+∠=︒, ∴OMD DOG ∠=∠, ∴tan tan OMD DOG ∠=∠, ∵()2,1D ,∴1DG =,2OG =,∴1tan tan 2DG OMD DOG OG ∠=∠==,OG ==∵tan ODOMD DM ∠=,∴12=,∴1122MN DM ∴==⨯=∴5OM =,∴()0,5M ,设直线MD 的解析式为y mx n =+,把()0,5M 、()2,1D 代入得,521n m n =⎧⎨+=⎩,解得25m n =−⎧⎨=⎩,∴25y x =−+,∴EDF 与O 的“楚河汉界线”为25y x =−+; (3)解:由2223y x b y x x =−+⎧⎨=−++⎩得,2430x x b −+−=, ∵直线与抛物线有唯一公共点, ∴0=,∴164120b −+=,解得7b =, ∴此时的“楚河汉界线”为27y x =−+,当正方形1111D C B A 在直线27y x =−+上方时,如图,∵点()2,M t 是此正方形的中心,∴顶点()10,2A t −,∵顶点()10,2A t −不能在直线27y x =−+下方,得27t −≥,解得9t ≥;当正方形1111D C B A 在直线27y x =−下方时,如图,对于抛物线223y x x =−++,当0x =时,3y =;当4x =时,5y =−; ∴直线23y x =−+恰好经过点()0,3和点()4,5−;对于直线23y x =−+,当4x =时,5y =−,由()12,2C t +不能在直线23y x =−+上方,得25t ≤−+, 解得7t ≤−;综上所述,7t ≤−或9t ≥.【点睛】此题考查了一次函数、正方形的性质、三角函数、一次函数的应用、二元二次方程组,一元二次方程的根的判别式等知识,解题的关键是理解题意,灵活运用所学知识解决问题,学会用分类讨论的思想思考问题.题型7:最值问题12.(2024·辽宁·一模)【发现问题】随着时代的发展,在现代城市设计中,有许多街道是设计的相互垂直或平行的,因此往往不能沿直线行走到目的地,只能按直角拐弯的方式行走.我们可以按照街道的垂直和平行方向建立平面直角坐标系xOy ,对两点()11,A x y 和()22,B x y ,用以下方式定义两点间的“折线距离”:()1212,d A B x x y y =−+−.【提出问题】(1)①已知点()4,1A ,则(),d O A =______;②函数()2630y x x =+−≤≤的图象如图1,B 是图象上一点,若(),5d O B =,则点B 的坐标为______; (2)函数()30y x x=>的图象如图2,该函数图象上是否存在点C ,使(),2d O C =?若存在,求出其坐标;若不存在,请说明理由; 【拓展运用】(3)已知函数()21460y x x x =−+≥和函数()2231y x x =+≥−的图象如图3,D 是函数1y 图象上的一点,E是函数2y 图象上的一点,当(),d O D 和(),d O E 分别取到最小值的时候,请求出(),d D E 的值.【答案】(1)①5;②()14,(2)不存在,理由见解析(3)()15,4d D E =【分析】本题在新定义下考查了一次方程和分式方程的解法,二次函数的最值,关键是紧靠定义来构造方程和函数.(1)①代入定义中的公式求; ②设出函数()2630y x x =+−≤≤的图象上点B 的坐标,通过(),5d O B =建立方程,解方程;(2)设出函数()30y x x =>的图象上点C 的坐标,通过(),2d O C =建立方程,看方程解的情况;(3)设出函数()21460y x x x =−+≥的图象上点D 的坐标,将()d O D ,表示成函数,利用二次函数的性质求函数最值,可求得点D 的坐标;设出函数()2231y x x =+≥−的图象上点E 的坐标,利用一次函数的性质,可求得点E 的坐标;再按定义求得(),d D E 的值即可.【解析】 解:(1)①∵点()4,1A ,点()00O ,,∴()40105d O A =−+−=,;故答案为:5; ②设点()26B x x +,,∵(),5d O B =, ∴265x x ++=,∵30x −≤≤, ∴265x x −++=, ∴=1x −, ∴点()14B ,.故答案为:()14,; (2)不存在,理由如下:设点3C m m ⎛⎫ ⎪⎝⎭,, ∵(),2d O C =,∴32m m +=,∵0m >, ∴32m m +=,∴2230m m −+=,∵80∆=−<,∴此方程没有实数根, ∴不存在符合条件的点C ;(3)设点D 为()246n nn −+,,∴()246d O D n n n =+−+,,∵0n ≥,()2246220n n n −+=−+>,∴()222315463624d O D n n n n n n ⎛⎫=+−+=−+=−+⎪⎝⎭,, ∴当32n =时,()d O D ,最小,最小值为154,此时点D 坐标为3924⎛⎫ ⎪⎝⎭,. 设点E 为()23e e +,,∴()23d O Ee e =++,,当10e −≤<时,()233d O Ee e e =−++=+,,∴当1e =−时,()d O E ,最小,最小值为2;当0e ≥时,()2333d O Ee e e =++=+,,∴当0e =时,()d O E ,最小,最小值为3;∴此时点E 坐标为()11−,.∴()395515,1124244d D E =−−+−=+=.13.(2024·四川成都·模拟预测)如图,在平面直角坐标系中,已知直线132y x =−与反比例函数ky x=的图象交于点()8,Q t ,与y 轴交于点R ,动直线()08x m m =<<与反比例函数的图象交于点K ,与直线QR 交于点T .(1)求t 的值及反比例函数的表达式;(2)当m 为何值时,RKT △的面积最大,且最大值为多少? (3)如图2,ABCO 的顶点C 在反比例函数()0ky x x=>的图象上,点P 为反比例函数图象上一动点,过点P 作MN x ∥轴交OC 于点N ,交AB 于点M .当点P 的纵坐标为2,点C 的横坐标为1且8OA =时,求PNPM的值.【答案】(1)1t =,反比例函数的表达式为8y x =; (2)当3m =时,RKT △的面积最大,且最大值为254;(3)1517PN PM =【分析】(1)将()8,Q t 代入直线132y x =−,求出t 的值,再将点Q 的坐标代入反比例函数,求出k 的值,即可得到反比例函数解析式;(2)设8,K m m ⎛⎫ ⎪⎝⎭,1,32T m m ⎛⎫− ⎪⎝⎭,则81813322KT m m m m ⎛⎫=−−=−+ ⎪⎝⎭,进而表示出 RKT RTKQTKS SS=+△()2125344m =−−+,结合二次函数的性质,即可求出最值;(3)先求出P 、C 两点的坐标,再利用待定系数法求出直线OC 的解析式,进而得到点N 的坐标,得出PN的长,然后利用平行四边形的性质,得出PM 的长,即可求出PNPM 的值.【解析】(1)解:()8,Q t 在直线132y x =−上,18312t ∴=⨯−=,()8,1Q ∴,()8,1Q 在反比例函数ky x =上,818k ∴=⨯=,。

中考数学专题训练---反比例函数的综合题分类含详细答案

中考数学专题训练---反比例函数的综合题分类含详细答案

一、反比例函数真题与模拟题分类汇编(难题易错题)1.如图,已知点D在反比例函数y= 的图象上,过点D作x轴的平行线交y轴于点B (0,3).过点A(5,0)的直线y=kx+b与y轴于点C,且BD=OC,tan∠OAC= .(1)求反比例函数y= 和直线y=kx+b的解析式;(2)连接CD,试判断线段AC与线段CD的关系,并说明理由;(3)点E为x轴上点A右侧的一点,且AE=OC,连接BE交直线CA与点M,求∠BMC的度数.【答案】(1)解:∵A(5,0),∴OA=5.∵,∴,解得OC=2,∴C(0,﹣2),∴BD=OC=2,∵B(0,3),BD∥x轴,∴D(﹣2,3),∴m=﹣2×3=﹣6,∴,设直线AC关系式为y=kx+b,∵过A(5,0),C(0,﹣2),∴,解得,∴;(2)解:∵B(0,3),C(0,﹣2),∴BC=5=OA,在△OAC和△BCD中∴△OAC≌△BCD(SAS),∴AC=CD,∴∠OAC=∠BCD,∴∠BCD+∠BCA=∠OAC+∠BCA=90°,∴AC⊥CD;(3)解:∠BMC=45°.如图,连接AD,∵AE=OC,BD=OC,AE=BD,∴BD∥x轴,∴四边形AEBD为平行四边形,∴AD∥BM,∴∠BMC=∠DAC,∵△OAC≌△BCD,∴AC=CD,∵AC⊥CD,∴△ACD为等腰直角三角形,∴∠BMC=∠DAC=45°.【解析】【分析】(1)由正切定义可求C坐标,进而由BD=OC求出D坐标,求出反比例函数解析式;由A、C求出直线解析式;(2)由条件可判定△OAC≌△BCD,得出AC=CD,∠OAC=∠BCD,进而AC⊥CD;(3)由已知可得AE=OC,BD=OC,得出AE=BD,再加平行得四边形AEBD为平行四边形,推出△OAC≌△BCD,∴AC=CD,∵AC⊥CD,∴△ACD为等腰直角三角形,∴∠BMC=∠DAC=45°.2.如图直角坐标系中,矩形ABCD的边BC在x轴上,点B,D的坐标分别为B(1,0),D(3,3).(1)点C的坐标________;(2)若反比例函数y= (k≠0)的图象经过直线AC上的点E,且点E的坐标为(2,m),求m的值及反比例函数的解析式;(3)若(2)中的反比例函数的图象与CD相交于点F,连接EF,在直线AB上找一点P,使得S△PEF= S△CEF,求点P的坐标.【答案】(1)(3,0)(2)解:∵AB=CD=3,OB=1,∴A的坐标为(1,3),又C(3,0),设直线AC的解析式为y=ax+b,则,解得:,∴直线AC的解析式为y=﹣ x+ .∵点E(2,m)在直线AC上,∴m=﹣ ×2+ = ,∴点E(2,).∵反比例函数y= 的图象经过点E,∴k=2× =3,∴反比例函数的解析式为y=(3)解:延长FC至M,使CM= CF,连接EM,则S△EFM= S△EFC, M(3,﹣0.5).在y= 中,当x=3时,y=1,∴F(3,1).过点M作直线MP∥EF交直线AB于P,则S△PEF=S△MEF.设直线EF的解析式为y=a'x+b',∴,解得,∴y=﹣ x+ .设直线PM的解析式为y=﹣ x+c,代入M(3,﹣0.5),得:c=1,∴y=﹣ x+1.当x=1时,y=0.5,∴点P(1,0.5).同理可得点P(1,3.5).∴点P坐标为(1,0.5)或(1,3.5).【解析】【解答】解:(1)∵D(3,3),∴OC=3,∴C(3,0).故答案为(3,0);【分析】(1)由D的横坐标为3,得到线段OC=3,即可确定出C的坐标;(2)由矩形的对边相等,得到AB=CD,由D的纵坐标确定出CD的长,即为AB的长,再由B的坐标确定出OB的长,再由A为第一象限角,确定出A的坐标,由A与C的坐标确定出直线AC的解析式,将E坐标代入直线AC解析式中,求出m的值,确定出E的坐标,代入反比例解析式中求出k的值,即可确定出反比例解析式;(3)延长FC至M,使CM=CF,连接EM,则S△EFM=S△EFC, M(3,﹣0.5).求出F(3,1),过点M作直线MP∥EF交直线AB于P,利用平行线间的距离处处相等得到高相等,再利用同底等高得到S△PEF=S△MEF.此时直线EF与直线PM的斜率相同,由F的横坐标与C横坐标相同求出F 的横坐标,代入反比例解析式中,确定出F坐标,由E与F坐标确定出直线EF斜率,即为直线PM的斜率,再由M坐标,确定出直线PM解析式,由P横坐标与B横坐标相同,将B横坐标代入直线PM解析式中求出y的值,即为P的纵坐标,进而确定出此时P的坐标.3.已知:O是坐标原点,P(m,n)(m>0)是函数y= (k>0)上的点,过点P作直线PA⊥OP于P,直线PA与x轴的正半轴交于点A(a,0)(a>m).设△OPA的面积为s,且s=1+ .(1)当n=1时,求点A的坐标;(2)若OP=AP,求k的值;(3)设n是小于20的整数,且k≠ ,求OP2的最小值.【答案】(1)解:过点P作PQ⊥x轴于Q,则PQ=n,OQ=m,当n=1时,s= ,∴a= = .(2)解:解法一:∵OP=AP,PA⊥OP,∴△OPA是等腰直角三角形.∴m=n= .∴1+ = •an.即n4﹣4n2+4=0,∴k2﹣4k+4=0,∴k=2.解法二:∵OP=AP,PA⊥OP,∴△OPA是等腰直角三角形.∴m=n.设△OPQ的面积为s1则:s1= ∴•mn= (1+ ),即:n4﹣4n2+4=0,∴k2﹣4k+4=0,∴k=2.(3)解:解法一:∵PA⊥OP,PQ⊥OA,∴△OPQ∽△OAP.设:△OPQ的面积为s1,则 =即: = 化简得:化简得:2n4+2k2﹣kn4﹣4k=0(k﹣2)(2k﹣n4)=0,∴k=2或k= (舍去),∴当n是小于20的整数时,k=2.∵OP2=n2+m2=n2+ 又m>0,k=2,∴n是大于0且小于20的整数.当n=1时,OP2=5,当n=2时,OP2=5,当n=3时,OP2=32+ =9+ = ,当n是大于3且小于20的整数时,即当n=4、5、6…19时,OP2的值分别是:42+ 、52+ 、62+ …192+ ,∵192+ >182+ >32+ >5,∴OP2的最小值是5.【解析】【分析】(1)利用△OPA面积定义构建关于a的方程,求出A的坐标;(2)由已知OP=AP,PA⊥OP,可得△OPA是等腰直角三角形,由其面积构建关于n的方程,转化为k的方程,求出k;(3)利用相似三角形的面积比等于相似比的平方构建关于k的方程,最值问题的基本解决方法就是函数思想,利用勾股定理用m、n的代数式表达OP2,,在n的范围内求出OP2的最值.4.平面直角坐标系xOy中,点A、B分别在函数y1= (x>0)与y2=﹣(x<0)的图象上,A、B的横坐标分别为a、b.(1)若AB∥x轴,求△OAB的面积;(2)若△OAB是以AB为底边的等腰三角形,且a+b≠0,求ab的值;(3)作边长为2的正方形ACDE,使AC∥x轴,点D在点A的左上方,那么,对大于或等于3的任意实数a,CD边与函数y1= (x>0)的图象都有交点,请说明理由.【答案】(1)解:由题意知,点A(a,),B(b,﹣),∵AB∥x轴,∴,∴a=﹣b;∴AB=a﹣b=2a,∴S△OAB= •2a• =3(2)解:由(1)知,点A(a,),B(b,﹣),∴OA2=a2+()2, OB2=b2+(﹣)2,∵△OAB是以AB为底边的等腰三角形,∴OA=OB,∴OA2=OB2,∴a2+()2=b2+(﹣)2,∴a2﹣b2=()2﹣()2,∴(a+b)(a﹣b)=( + )(﹣)= ,∵a>0,b<0,∴ab<0,a﹣b≠0,∵a+b≠0,∴1= ,∴ab=3(舍)或ab=﹣3,即:ab的值为﹣3;(3)解:对大于或等于3的任意实数a,CD边与函数y1= (x>0)的图象都有交点.理由:如图,∵a≥3,AC=2,∴直线CD在y轴右侧且平行于y轴,∴直线CD一定与函数y1= (x>0)的图象有交点,∵四边形ACDE是边长为2的正方形,且点D在点A(a,)的左上方,∴C(a﹣2,),∴D(a﹣2, +2),设直线CD与函数y1= (x>0)相交于点F,∴F(a﹣2,),∴FC= ﹣ = ,∴2﹣FC=2﹣ = ,∵a≥3,∴a﹣2>0,a﹣3≥0,∴≥0,∴2﹣FC≥0,∴FC≤2,∴点F在线段CD上,即:对大于或等于3的任意实数a,CD边与函数y1= (x>0)的图象都有交点.【解析】【分析】(1)先判断出a=﹣b,即可得出AB=2a,再利用三角形的面积公式即可得出结论;(2)利用等腰三角形的两腰相等建立方程求解即可得出结论;(3)先判断出直线CD和函数y1= (x>0)必有交点,根据点A的坐标确定出点C,F的坐标,进而得出FC,再判断FC与2的大小即可.5.平面直角坐标系xOy中,已知函数y1= (x>0)与y2=﹣(x<0)的图象如图所示,点A、B是函数y1= (x>0)图象上的两点,点P是y2=﹣(x<0)的图象上的一点,且AP∥x轴,点Q是x轴上一点,设点A、B的横坐标分别为m、n(m≠n).(1)求△APQ的面积;(2)若△APQ是等腰直角三角形,求点Q的坐标;(3)若△OAB是以AB为底的等腰三角形,求mn的值.【答案】(1)解:过点P、A、Q分别作PM x轴交x轴于点M,PN x轴交x轴于点N,QR AP轴交AP轴于点R,则四边形APMN、四边形PMQR、四边形ARQN是矩形,如图所示:∵点A的横坐标为m,且在函数上,AP∥x轴,且点P在函数上,∴点A(m, ),点P(-m, ),∴MN=m-(-m)=2m,PM= ,∴S矩形PMNA=2m╳ =8,∵四边形PMQR、四边形ARQN是矩形,∴S△PQM=S△PRQ, S△ANQ=S△ARQ,∴S△APQ=S△PRQ+ S△ARQ= S矩形PMNA=4(2)解:当PQ x轴时,则PQ=,,AP=2m,∵PQ=AP∴2m= ,∴m=∴ ,当PQ=AQ时,则(3)解:∵△OAB是以AB为底的等腰三角形,∴OA=OB,∵A(m, ),B(n, ),∴∴mn=4.【解析】【分析】(1)过点P、A、Q分别作PM ⊥ x轴交x轴于点M,PN ⊥ x轴交x轴于点N,QR ⊥ AP轴交AP轴于点R,则四边形APMN、四边形PMQR、四边形ARQN是矩形,根据点A的横坐标为m,利用函数解析式表示出点A的坐标和点P的坐标,最后用三角形的面积公式即可得出结论。

福州中考数学压轴题专题复习—反比例函数的综合

福州中考数学压轴题专题复习—反比例函数的综合

一、反比例函数真题与模拟题分类汇编(难题易错题)1.在平面直角坐标系内,双曲线:y= (x>0)分别与直线OA:y=x和直线AB:y=﹣x+10,交于C,D两点,并且OC=3BD.(1)求出双曲线的解析式;(2)连结CD,求四边形OCDB的面积.【答案】(1)解:过点A、C、D作x轴的垂线,垂足分别是M、E、F,∴∠AMO=∠CEO=∠DFB=90°,∵直线OA:y=x和直线AB:y=﹣x+10,∴∠AOB=∠ABO=45°,∴△CEO∽△DEB∴= =3,设D(10﹣m,m),其中m>0,∴C(3m,3m),∵点C、D在双曲线上,∴9m2=m(10﹣m),解得:m=1或m=0(舍去)∴C(3,3),∴k=9,∴双曲线y= (x>0)(2)解:由(1)可知D(9,1),C(3,3),B(10,0),∴OE=3,EF=6,DF=1,BF=1,∴S四边形OCDB=S△OCE+S梯形CDFE+S△DFB= ×3×3+ ×(1+3)×6+ ×1×1=17,∴四边形OCDB的面积是17【解析】【分析】(1)过点A、C、D作x轴的垂线,垂足分别是M、E、F,由直线y=x和y=﹣x+10可知∠AOB=∠ABO=45°,证明△CEO∽△DEB,从而可知 = =3,然后设设D(10﹣m,m),其中m>0,从而可知C的坐标为(3m,3m),利用C、D在反比例函数图象上列出方程即可求出m的值.(2)求分别求出△OCE、△DFB△、梯形CDFE的面积即可求出答案.2.如图,已知一次函数y= x+b的图象与反比例函数y= (x<0)的图象交于点A(﹣1,2)和点B,点C在y轴上.(1)当△ABC的周长最小时,求点C的坐标;(2)当 x+b<时,请直接写出x的取值范围.【答案】(1)解:作点A关于y轴的对称点A′,连接A′B交y轴于点C,此时点C即是所求,如图所示.∵反比例函数y= (x<0)的图象过点A(﹣1,2),∴k=﹣1×2=﹣2,∴反比例函数解析式为y=﹣(x<0);∵一次函数y= x+b的图象过点A(﹣1,2),∴2=﹣ +b,解得:b= ,∴一次函数解析式为y= x+ .联立一次函数解析式与反比例函数解析式成方程组:,解得:,或,∴点A的坐标为(﹣1,2)、点B的坐标为(﹣4,).∵点A′与点A关于y轴对称,∴点A′的坐标为(1,2),设直线A′B的解析式为y=mx+n,则有,解得:,∴直线A′B的解析式为y= x+ .令y= x+ 中x=0,则y= ,∴点C的坐标为(0,)(2)解:观察函数图象,发现:当x<﹣4或﹣1<x<0时,一次函数图象在反比例函数图象下方,∴当 x+ <﹣时,x的取值范围为x<﹣4或﹣1<x<0【解析】【分析】(1)作点A关于y轴的对称点A′,连接A′B交y轴于点C,此时点C即是所求.由点A为一次函数与反比例函数的交点,利用待定系数法和反比例函数图象点的坐标特征即可求出一次函数与反比例函数解析式,联立两函数解析式成方程组,解方程组即可求出点A、B的坐标,再根据点A′与点A关于y轴对称,求出点A′的坐标,设出直线A′B的解析式为y=mx+n,结合点的坐标利用待定系数法即可求出直线A′B的解析式,令直线A′B解析式中x为0,求出y的值,即可得出结论;(2)根据两函数图象的上下关系结合点A、B的坐标,即可得出不等式的解集.3.一次函数y=ax+b(a≠0)的图象与反比例函数y= (k≠0)的图象相交于A,B两点,与y轴交于点C,与x轴交于点D,点D的坐标为(﹣1,0),点A的横坐标是1,tan∠CDO=2.过点B作BH⊥y轴交y轴于H,连接AH.(1)求一次函数和反比例函数的解析式;(2)求△ABH面积.【答案】(1)解:∵点D的坐标为(﹣1,0),tan∠CDO=2,∴CO=2,即C(0,2),把C(0,2),D(﹣1,0)代入y=ax+b可得,,解得,∴一次函数解析式为y=2x+2,∵点A的横坐标是1,∴当x=1时,y=4,即A(1,4),把A(1,4)代入反比例函数y= ,可得k=4,∴反比例函数解析式为y=(2)解:解方程组,可得或,∴B(﹣2,﹣2),又∵A(1,4),BH⊥y轴,∴△ABH面积= ×2×(4+2)=6.【解析】【分析】(1)先由tan∠CDO=2可求出C坐标,再把D点坐标代入直线解析式,可求出一次函数解析式,再由直线解析式求出A坐标,代入双曲线解析式,可求出双曲线解析式;(2)△ABH面积可以BH为底,高=y A-y B=4-(-2)=6.4.抛物线y= +x+m的顶点在直线y=x+3上,过点F(﹣2,2)的直线交该抛物线于点M、N两点(点M在点N的左边),MA⊥x轴于点A,NB⊥x轴于点B.(1)先通过配方求抛物线的顶点坐标(坐标可用含m的代数式表示),再求m的值;(2)设点N的横坐标为a,试用含a的代数式表示点N的纵坐标,并说明NF=NB;(3)若射线NM交x轴于点P,且PA•PB= ,求点M的坐标.【答案】(1)解:y= x2+x+m= (x+2)2+(m﹣1)∴顶点坐标为(﹣2,m﹣1)∵顶点在直线y=x+3上,∴﹣2+3=m﹣1,得m=2;(2)解:过点F作FC⊥NB于点C,∵点N在抛物线上,∴点N的纵坐标为: a2+a+2,即点N(a, a2+a+2)在Rt△FCN中,FC=a+2,NC=NB﹣CB= a2+a,∴NF2=NC2+FC2=( a2+a)2+(a+2)2,=( a2+a)2+(a2+4a)+4,而NB2=( a2+a+2)2,=( a2+a)2+(a2+4a)+4∴NF2=NB2,NF=NB(3)解:连接AF、BF,由NF=NB,得∠NFB=∠NBF,由(2)的思路知,MF=MA,∴∠MAF=∠MFA,∵MA⊥x轴,NB⊥x轴,∴MA∥NB,∴∠AMF+∠BNF=180°∵△MAF和△NFB的内角总和为360°,∴2∠MAF+2∠NBF=180°,∠MAF+∠NBF=90°,∵∠MAB+∠NBA=180°,∴∠FBA+∠FAB=90°,又∵∠FAB+∠MAF=90°,∴∠FBA=∠MAF=∠MFA,又∵∠FPA=∠BPF,∴△PFA∽△PBF,∴ = ,PF2=PA×PB= ,过点F作FG⊥x轴于点G,在Rt△PFG中,PG= = ,∴PO=PG+GO= ,∴P(﹣,0)设直线PF:y=kx+b,把点F(﹣2,2)、点P(﹣,0)代入y=kx+b,解得k= ,b= ,∴直线PF:y= x+ ,解方程 x2+x+2= x+ ,得x=﹣3或x=2(不合题意,舍去),当x=﹣3时,y= ,∴M(﹣3,).【解析】【分析】(1)利用配方法将二次函数化成顶点式,写出顶点坐标,由顶点再直线y=x+3上,建立方程求出m的值。

中考数学《反比例函数》专项复习综合练习题-附含答案

中考数学《反比例函数》专项复习综合练习题-附含答案

中考数学《反比例函数》专项复习综合练习题-附含答案一、单选题1.已知反比例函数y=- 12x,则()A.y随x的增大而增大B.当x>-3且x≠0时,y>4C.图象位于一、三象限D.当y<-3时,0<x<42.甲、乙、丙三位同学分别正确指出了某一个函数的一个性质.甲:函数图象经过第一象限;乙:函数图象经过第三象限;丙:每第一个象限内 y值随x值的增大而减小.根据他们的描述这个函数表达式可能是()A.y=2x B.y= 2x C.y=﹣1xD.y=2x23.反比例函数y=kx(k>0)在第一象限内的图象如图,点M是图象上一点 MP垂直x轴于点P 如果△MOP 的面积为1 那么k的值是( )A.1 B.2 C.4 D.√24.如图,反比例函数y=kx(x<0)交边长为10的等边△ OAB的两边于C、D两点,OC=3BD,则k的值()A.−9√3B.9√3C.-10√3D.10√35.抛物线y=ax2+bx+c图象如图所示,则一次函数y=﹣bx﹣4ac+b2与反比例函数y= a+b+cx在同一坐标系内的图象大致为()A.B.C.D.√3 6.如图,点D是▱OABC内一点,AD与x轴平行,BD与y轴平行,BD=√3∠BDC=120°S△BCD=92 (x<0)的图象经过C、D两点,则k的值是()若反比例函数y=kxA.−6√3B.-6 C.−12√3D.-127.如图,已知在平面直角坐标系xOy中,O是坐标原点,点A是函数y=1(x<0)图象上一点,AO的延长x(x>0 k是不等于0的常数)的图象于点C,点A关于y轴的对称点为A′,点C关于x 线交函数y=k2x轴的对称点为C′,交于x轴于点B 连结AB AA′、 A′C′.若△ABC的面积等于6,则由线段AC CC′C′A′ A′A所围成的图形的面积等于()A.8 B.10 C.3√10D.4√68.如图,反比例函数y=kx与一次函数y=kx﹣k+2在同一直角坐标系中的图象相交于A B两点其中A(﹣1 3)直线y=kx﹣k+2与坐标轴分别交于C D两点下列说法:①k<0;②点B的坐标为(3 ﹣1);③当x<﹣1时kx <kx﹣k+2;④tan∠OCD=﹣1k其中正确的是()A.①③B.①②④C.①③④D.①②③④二、填空题9.已知反比例函数y=﹣2x若y≤1,则自变量x的取值范围是.10.在平面直角坐标系中若一条平行于x轴的直线l分别交双曲线y=﹣6x 和y= 2x于A B两点 P是x轴上的任意一点,则△ABP的面积等于11.如图,在平面直角坐标系中正方形ABCD的面积为20 顶点A在y轴上顶点C在x轴上顶点D在双曲线y=kx(x>0)的图象上边CD交y轴于点E 若CE=ED,则k的值为.12.如图,点 P 是反比例函数图象上的一点 过点 P 向 x 轴作垂线 垂足为 M 连结 PO 若阴影部分面积为 6 ,则这个反比例函数的关系式是 .13.如图,已知A ( 12 y 1) B (2 y 2)为反比例函数y = 1x 图象上的两点 动点P (x 0)在x 轴正半轴上运动 当线段AP 与线段BP 之差达到最大时 点P 的坐标是 .三、解答题14.如图,反比例函数y =kx (x >0)的图像分别交正方形OABC 的边AB 、BC 于点D 、E 若A 点坐标为(1,0) 若△ODE 是等边三角形 求k 的值.15.某水果生产基地在气温较低时 用装有恒温系统的大棚栽培一种新品种水果 如图是试验阶段的某天恒温系统从开启到关闭后 大棚内的温度y(℃)与时间x(ℎ)之间的函数关系 其中线段AB 、BC 表示恒温系统开启后阶段 双曲线的一部分CD 表示恒温系统关闭阶段........... 请根据图中信息解答下列问题:(1)这个恒温系统设定的恒定温度为多少℃;(2)求全天的温度y(℃)与时间x(ℎ)之间的函数表达式;(3)若大棚内的温度低于10℃时 蔬菜会受到伤害.问:这天内恒温系统最多可以关闭多少小时 才能避免水果生长受到影响?16.如图,已知点A在反比函数y=kx(k<0)的图象上点B在直线y=x−3的图象上点B的纵坐标为-1 AB⊥x轴且S△OAB=4.(1)求点A的坐标和k的值;(2)若点P在反比例函数y=kx(k<0)的图象上点Q在直线y=x−3的图象上P、Q两点关于y轴对称设点P的坐标为(m,n)求nm +mn的值.17.如图,点A在反比例函数y=kx(x>0)的图象上AB⊥x轴于点B AB的垂直平分线PD交双曲线与点P.(1)若点A的坐标为(1 8),则点P的坐标为.(2)若AP⊥BP点A的横坐标为m.①求k与m之间的关系式;②连接OA OP若△AOP的面积为6 求k的值.18.如图,一次函数y=k1x+b与反比例函数y=k2x的图象交于A(2 m) B(n ﹣2)两点.过点B作BC⊥x轴垂足为C 且S△ABC=5.(1)求一次函数与反比例函数的解析式;(2)根据所给条件请直接写出不等式k1x+b>k2x的解集;(3)若P(p y1) Q(﹣2 y2)是函数y=k2x 图象上的两点且y1≥y2求实数p的取值范围.答案1.D 2.B 3.B 4.A 5.D 6.C 7.B 8.C9.x ≤﹣2或x >0 10.4 11.4 12.y =−12x 13.(52, 0)14.解:由题意可得△OAD ≅△OCE 设AD =x ,则:DB =EB =1−x 因为OD 2=x 2+1 且△ODE 是等边三角形所以 x 2+1=(1−x)2+(1−x)2 x 1=2+√3 x 2=2−√3 2+√3>1舍去 所以x =2−√3则K =1∗(2−√3)=2−√315.(1)解:设线段AB 表达式为y =kx +b(k ≠0) ∵线段AB 过点(0,10) (2,14)∴{b =102k +b =14解得{b =10k =2∴线段AB 的表达式为:y =2x +10(0≤x ≤5) 当x =5时 y =2×5+10=20 ∴恒定温度为:20℃; (2)解:由(1)可知:线段AB 的表达式为:y =2x +10(0≤x ≤5) B 坐标为(5,20) ∴根据图象可知线段BC 的表达式为:y =20(5<x ≤10)设双曲线CD 解析式为:y =m x(m ≠0)∵C(10,20)∴可得:m10=20 解得:m =200∴双曲线CD 的解析式为:y =200x(10<x ≤24)∴y 关于x 的函数表达式为:y ={2x +10(0≤x ≤5)20(5<x ≤10)200x (10<x ≤24);(3)解:把y =10代入y =200x中得10=200x解得:x =20∴20−10=10(小时)∴恒温系统最多可以关闭10小时. 16.(1)解:由题意B(2,−1)∵12×2×AB =4 ∴AB =4∵AB//y 轴∴A(2,−5)∵A(2,−5)在y =kx 的图象上 ∴k =−10.(2)解:设P(m ,−10m ),则Q(−m ,−10m ) ∵点Q 在y =x −3上∴−10m=−m −3 整理得:m 2+3m −10=0 解得m =−5或2 当m =−5 n =2时 n m +m n =−2910 当m =2 n =−5时 nm +m n=−2910故n m +m n=−2910.17.(1)(2 4)(2)解:①由题意得 点A 的纵坐标为km 即AB =km ∵PD 垂直平分AB ∴PA =PB ∵AP ⊥BP∴△PAB 是等腰直角三角形 ∴∠PAB =∠PBA =45° ∵PD ⊥AB∴△DAP 和△DBP 是等腰直角三角形 ∴DA =DB =DP =k2m ∴P (m +k2m ,k 2m )将P (m +k2m ,k2m )代入y =kx 可得:(m +k2m )⋅k2m =k 整理得:k =2m 2;②过点P 作PC ⊥x 轴于点C ,则四边形PABC 是梯形∵S △AOB =S △POC =k2 ∴S △AOE =S 四边形PEBC ∴S △AOP =S 梯形PABC =6 ∴(k 2m +k m )⋅k2m2=6 整理得:k 2=16m 2∵k =2m 2 ∴k 2=8k解得:k =8或k =0(舍去) ∴k =8.18.(1)把 A(2,m) B(n ,−2) 代入 y =k 2x得: k 2=2m =−2n即m=−n则A(2,−n)过A作AE⊥x轴于E过B作BF⊥y轴于F延长AE、BF交于D ∵A(2,−n)B(n,−2)∴BD=2−n AD=−n+2BC=|−2|=2∵SΔABC=12·BC·BD∴12×2×(2−n)=5解得:n=−3即A(2,3)B(−3,−2)把A(2,3)代入y=k2x得:k2=6即反比例函数的解析式是y=6x;把A(2,3)B(−3,−2)代入y=k1x+b得:{3=2k1+b−2=−3k1+b解得:k1=1b=1即一次函数的解析式是y=x+1;(2)∵A(2,3)B(−3,−2)∴不等式k1x+b>k2x的解集是−3<x<0或x>2;(3)分为两种情况:当点P在第三象限时要使y1⩾y2实数p的取值范围是p⩽−2当点P在第一象限时要使y1⩾y2实数p的取值范围是p>0即P的取值范围是p⩽−2或p>0。

中考数学《反比例函数》专项复习综合练习题-附带答案

中考数学《反比例函数》专项复习综合练习题-附带答案

中考数学《反比例函数》专项复习综合练习题-附带答案一、单选题1.已知函数y=kx的图象经过点(2,3 ),下列说法正确的是()A.y随x的增大而增大B.函数的图象只在第一象限C.当x<0时必y<0D.点(-2 -3)不在此函数的图象上2.点A(x1, y1) B(x2, y2) C(x3, y3)在反比例函数y=πx的图象上,若x1<x2<0<x3,则y1 y2 y3的大小关系是()A.y1>y2>y3B.y3>y2>y1C.y2>y1>y3D.y3>y1>y23.研究发现近视镜的度数y(度)与镜片焦距x(米)成反比例函数关系小明佩戴的400度近视镜片的焦距为0.25米经过一段时间的矫正治疗加之注意用眼健康现在镜片焦距为0.5米,则小明的近视镜度数可以调整为()A.200度B.250度C.300度D.500度4.如图,点M为反比例函数y=1x上的一点过点M作x轴 y轴的垂线分别交直线y=-x+b于C D 两点若直线y=-x+b分别与x轴 y轴相交于点A、B,则AD·BC的值是()A.3 B.2 √2C.2 D.√55.如图,在菱形OABC中,点A的坐标为(10,0),对角线OB、AC相交于点D,OB⋅AC=160 .双曲线y=kx(x>0)经过点D,交BC的延长线于点E,则过点E的双曲线表达式为()A.y=20x B.y=24xC.y=28xD.y=32x6.如图,已知一次函数y 1=kx+b 的图象与反比例函数y 2= 4x 的图象交于(2 m )和(n ﹣1)两点 观察图象 下列判断正确的是( )A .当x >2时 y 1<y 2B .当x <2时 y 1<y 2C .当x >n 时 y 1<y 2D .当x <n 时 y 1<y 27.如图,在函数y 1=k1x (x <0)和y 2=k2x (x >0)的图象上 分别有A 、B 两点 若AB ∥x 轴 交y 轴于点C 且OA ⊥OB S △AOC =32 S △BOC =272,则线段AB 的长度是( )A .8B .9C .10D .118.如图,直线y= √3 x ﹣6分别交x 轴 y 轴于A B M 是反比例函数y= kx (x >0)的图象上位于直线上方的一点 MC ∥x 轴交AB 于C MD ⊥MC 交AB 于D AC •BD=4 √3 ,则k 的值为( )A .﹣3B .﹣4C .﹣5D .﹣6二、填空题9.当n= 时 函数y=2x n ﹣1是反比例函数.(k<0)的图象上,则y1,y2,y3的从小10.若点A(−3,y1),B(−1,y2),C(2,y3)都在反比例函数y=kx到大的关系是.有一个关于x的函数不论x取何值 y的解析式总是取y1、y2、y3中11.已知函数y1=x y2=x2和y3=1x的值的较小的一个,则y的最大值等于12.如图,已知函数y=−3与y=ax2+bx+c(a>0 b>0)的图象相交于点P 且点P的纵坐标为1,则关于x=0的解是x的方程ax2+bx+3x(k>0)与长方形OABC在第一象限相交于D、E两点 OA=2 OC=4 连结OD、13.如图,反比例函数y=kxOE、DE.记△OAD、△OCE的面积分别为S1、S2.填空:①点B坐标为;②S1S2(填“>”、“<”、“=”);三、解答题14.如图,根据小孔成像的科学原理当像距(小孔到像的距离)和物高(蜡烛火焰高度)不变时火焰的像高y(单位:cm)是物距(小孔到蜡烛的距离)x(单位:cm)的反比例函数当x=6时y=2.(1)求y 关于x 的函数解析式.(2)若火焰的像高为3cm 求小孔到蜡烛的距离.15.某学校的自动饮水机 开机加热时水温每分钟上升20℃ 水温到100℃时停止加热.此后水温开始下降.水温y(℃)与开机通电时间x(min)成反比例关系.若水温在20℃时接通电源.一段时间内 水温y 与通电时间x 之间的函数关系如图所示.(1)水温从20℃加热到100℃ 需要 min ;(2)求水温下降过程中 y 与x 的函数关系式 并写出自变量取值范围; (3)如果上午8点接通电源 那么8:20之前 不低于80℃的时间有多少? 16.如图,在平面直角坐标系xOy 中 一次函数y1=ax+b (a b 为常数 且a ≠0)与反比例函数y2 = mx (m为常数 且m ≠0)的图象交于点A (-2 1)、B (1 n ).(1)求反比例函数和一次函数的解析式; (2)连结OA 、OB 求△AOB 的面积;(3)直接写出当y 1<y 2<0时 自变量x 的取值范围.17.你吃过拉面吗?实际上在做拉面的过程中就渗透着数学知识:一定体积的面团做成拉面 面条的总长度y (m )是面条的粗细(横截面积)S (mm 2)的反比例函数 其图象如图所示.(1)写出y与S的函数关系式:.(2)当面条粗 1.6mm 2时面条总长度是 m.18.如图,在平面直角坐标系xOy中已知四边形DOBC是矩形且D(0 4) B(6 0).若反比例函数y=k1(x>0)的图象经过线段OC的中点A 交DC于点E 交BC于点F.设直线EF的表达式为y=k2x+b.x(1)求反比例函数和直线EF的表达式;(2)求△OEF的面积;(3)请结合图象直接写出不等式k2x+b-k1>0的解集.x参考答案1.C2.D3.A4.C5.D6.D7.C8.A9.010.y3<y1<y211.112.x=﹣3 y=113.(4 2);=14.(1)解:由题意设:y=kx把x=6y=2代入得k=6×2=12∴y关于x的函数解析式为:y=12x;(2)解:把y=3代入y=12x得x=4∴小孔到蜡烛的距离为4cm.15.(1)4(2)解:如图设函数解析式为y=kx代入点(4,100)可得∴y=400 x当y=20时x=40020=20∴水温下降过程中y与x的函数关系式是y=400x(4⩽x⩽20)(3)解:由计算可知水温从20∘C开始加热到100∘C再冷却到20∘C 需4+20=24分钟水温从20∘C加热到80∘C所需要时间为:80−2020=3(分钟)令y =80,则x =40080=5∴水温不低于80∘C 的时间为5−3=2(分钟) 答:不低于80∘C 的时间有2分钟. 16.(1)解:∵A (-2 1)∴将A 坐标代入反比例函数解析式y 2= mx 中 得m=-2 ∴反比例函数解析式为y=- 2x ; 将B 坐标代入y=- 2x 得n=-2 ∴B 坐标(1 -2)将A 与B 坐标代入一次函数解析式中 得 {−2a +b =1a +b =−2解得a=-1 b=-1∴一次函数解析式为y 1=-x-1 (2)解:设直线AB 与y 轴交于点C 令x=0 得y=-1 ∴点C 坐标(0 -1)∴S △AOB =S △AOC +S △COB = 12 ×1×2+ 12 ×1×1= 32 ;(3)解:由图象可得 当y 1<y 2<0时 自变量x 的取值范围x >1.17.(1)y= 128S(2)8018.(1)∵四边形DOBC 是矩形 且D (0 4) B (6 0) ∴C 点坐标为(6 4) ∵点A 为线段OC 的中点 ∴A 点坐标为(3 2) ∴k 1=3×2=6∴反比例函数解析式为y= 6x ;把x=6代入y= 6x 得y=1,则F 点的坐标为(6 1) 把y=4代入y= 6x 得x= 32 ,则E 点坐标为( 32 4) 把F 、E 的坐标代入y=k 2x+b 得 {6k 2+b =132k 2+b =4 解得 {k 2=−23b =5∴直线EF 的解析式为y=- 23 x+5;(2)△OEF 的面积=S 矩形BCDO -S △ODE -S △OBF -S △CEF= 4×6−12×4×32−12×6×1−12×(6−32)×(4−1) = 454 .(3)结合函数图象 写出直线在反比例函数图象上方所对应的自变量的范围 即可得到不等式k 2x +b -k 1x >0的解因为E 点坐标为( 324) F 点的坐标为(6 1),则k 2x +b - k1x>0解是: 32<x<6。

福建专版2020年中考数学复习提分专练03一次函数反比例函数综合问题

福建专版2020年中考数学复习提分专练03一次函数反比例函数综合问题

提分专练(三)一次函数、反比例函数综合问题|类型1|一次函数、反比例函数与线段、三角形x+4上,则使△ABC是直1.[2016·泉州]如图T3-1,已知点A(-8,0),B(2,0),点C在直线y=-34角三角形的点C的个数为()图T3-1A.1B.2C.3D.4(x>0)图象上的一条动线2.[2019·福建名校联合模拟]如图T3-2,线段AB是两个端点在y=2x段,且AB=1.若A,B的横坐标分别为a,b,则[1-(b-a)2](a2b2+4)的值是()图T3-2A.1B.2C.3D.43.[2019·厦门质检]在平面直角坐标系xOy中,直线y=x与双曲线y=x(k>0,x>0)交于点A.x过点A作AC⊥x轴于点C,过双曲线上另一点B作BD⊥x轴于点D,作BE⊥AC于点E,连接AB.若OD=3OC,则tan∠ABE= .(x>0)的图象,点C的坐标为4.[2019·莆田仙游东屏中学二模]如图T3-3是反比例函数y=9x图象上一点,点B是x轴正半轴上一点,当△ABC是等腰直角三角形(0,2).若点A是函数y=9x时,点B的坐标为.图T3-3的图象经过第一象限内的一点5.[2019·南平适应性检测]如图T3-4,已知反比例函数y=xxA(n,4),过点A作AB⊥x轴于点B,且△AOB的面积为2.(1)求m和n的值;(2)若一次函数y=kx+2的图象经过点A,并且与x轴相交于点C,求线段AC的长.图T3-4(x>0,k>0),图象上的两点6.[2019·泉州质检]在平面直角坐标系中,已知反比例函数y=xx(n,3n),(n+1,2n).(1)求n的值;(x>0,k>0)的图象上, (2)如图T3-5,直线l为正比例函数y=x的图象,点A在反比例函数y=xx过点A作AB⊥l于点B,过点B作BC⊥x轴于点C,过点A作AD⊥BC于点D.记△BOC的面积为S1,△ABD的面积为S2,求S1-S2的值.图T3-5|类型2|一次函数、反比例函数与四边形7.[2018·泉州质检]如图T3-6,反比例函数y=x的图象经过正方形ABCD的顶点A和中心E,x若点D的坐标为(-1,0),则k的值为 ()图T3-6A.2B.-2C.12D.-128.[2019·眉山]如图T3-7,反比例函数y=xx(x>0)的图象经过矩形OABC对角线的交点M,分别交AB,BC于点D,E.若四边形ODBE的面积为12,则k的值为.图T3-79.[2019·广州]如图T3-8,在平面直角坐标系xOy中,菱形ABCD的对角线AC与BD交于点P(-1,2),AB⊥x轴于点E,正比例函数y=mx的图象与反比例函数y=x-3x的图象相交于A,P两点.图T3-8(1)求m,n的值与点A的坐标;(2)求证:△CPD∽△AEO;(3)求sin∠CDB的值.10.[2016·莆田]如图T3-9,反比例函数y=x(x>0)的图象与直线y=x交于点M,∠AMB=90°,x其两边分别与两坐标轴的正半轴交于点A,B,四边形OAMB的面积为6.(1)求k的值.(x>0)的图象上,若点P的横坐标为3,∠EPF=90°,其两边分别与x (2)点P在反比例函数y=xx轴的正半轴,直线y=x交于点E,F,问是否存在点E,使得PE=PF?若存在,求出点E的坐标;若不存在,请说明理由.图T3-9【参考答案】 1.C [解析]如图,①当∠A 为直角时,过点A 作垂直于x 轴的直线与直线y=-34x +4的交点为W (-8,10);②当∠B 为直角时,过点B 作垂直于x 轴的直线与直线y=-34x +4的交点为S (2,2.5); ③若∠C 为直角,则点C 在以线段AB 为直径的圆与直线y=-34x +4的交点处.设E 为AB 的中点,过点E 作垂直于x 轴的直线与直线y=-34x +4的交点为F -3,254,则EF=254,∵直线y=-34x +4与x 轴的交点M 为163,0,∴EM=253,MF=√(253)2+(254) 2=12512.∵E 到直线y=-34x +4的距离d=253×25412512=5,以AB 为直径的圆的半径为5,∴圆与直线y=-34x +4恰好有一个交点. ∴直线y=-34x +4上有一点C 满足∠ACB=90°.综上所述,使△ABC 是直角三角形的点C 的个数为3.故选C . 2.D [解析]∵A a ,2x ,B b ,2x ,∴(a -b )2+2x−2x 2=1, 整理得:a 2b 2(a -b )2+4(a -b )2-a 2b 2=0,∴[1-(b -a )2](a 2b 2+4)=4.故选D . 3.13 [解析]∵直线y=x 过点A , ∴可设A (a ,a ),∵AC ⊥x 轴于点C ,BD ⊥x 轴于点D ,OD=3OC , ∴B 点横坐标为3a.∵双曲线y=xx (k>0,x>0)过点A ,点B , ∴B 点纵坐标为x ·x 3x =13a , ∴B 3a ,13a .在Rt △ABE 中,∵∠AEB=90°,BE=3a -a=2a ,AE=a -13a=23a ,∴tan ∠ABE=xx xx =23x 2x =13.故答案为:13.4.(4,0)或52,0或(-1+√10,0) [解析](1)当∠CAB=90°时,如图①,作AE ⊥x 轴于E 点,作AD ⊥y 轴于D 点,则∠DAE=90°.∵∠DAE=∠CAB=90°,∴∠DAC=∠EAB , 在△ADC 和△AEB 中:∵{∠xxx =∠xxx =90°,∠xxx =∠xxx ,xx =xx , ∴△ADC ≌△AEB , ∴AD=AE ,BE=CD ,则A 的横坐标与纵坐标相等,设A 的坐标是(a ,a ),代入函数解析式得:a=9x ,解得:a=3或-3(舍去).则A 的坐标是(3,3). ∴OD=3,CD=OD -OC=3-2=1, ∴BE=CD=1,OB=OE +BE=3+1=4, 则B 的坐标是(4,0);(2)当∠ACB=90°时,如图②,作AD ⊥y 轴于D.∵∠ACB=90°, ∴∠ACD +∠BCO=90°, 又∵∠ACD +∠CAD=90°,∴∠CAD=∠BCO. 在△ACD 和△CBO 中, ∵{∠xxx =∠xxx ,∠xxx =∠xxx ,xx =xx , ∴△ACD ≌△CBO , ∴AD=OC=2,则点A 的横坐标是2,把x=2代入y=9x得:y=92,∴OD=92,CD=OD -OC=92-2=52,∴OB=CD=52,则B 的坐标是52,0;(3)当∠ABC=90°时,如图③,作AD ⊥x 轴,同(2)可以证得:△OBC ≌△DAB , ∴BD=OC=2,OB=AD , 设OB=AD=x , 则OD=x +2,则A 的坐标是(x +2,x ),代入y=9x ,得:x=9x +2,解得:x=-1+√10或-1-√10(舍去), 则B 的坐标是(-1+√10,0). 故B 的坐标是(4,0)或52,0或(-1+√10,0).5.解:(1)由点A (n ,4),AB ⊥x 轴于点B ,且点A 在第一象限内,得AB=4,OB=n , 所以S △AOB =12AB ·OB=12×4n=2n , 由S △AOB =2,得n=1, 所以A (1,4),把A (1,4)的坐标代入y=xx 中,得m=4; (2)由直线y=kx +2过点A (1,4),得k=2, 所以一次函数的解析式为y=2x +2. 令y=0,得x=-1.所以点C 的坐标为(-1,0), 由(1)可知OB=1,所以BC=2,在Rt △ABC 中,AC=√xx 2+xx 2=√42+22=2√5.6.解:(1)∵反比例函数y=x x(x>0,k>0)图象上的两点(n ,3n ),(n +1,2n ), ∴n ·3n=(n +1)·2n ,解得n=2或n=0(舍去), ∴n 的值为2;(2)易求反比例函数解析式为y=12x , 设B (m ,m ), ∵OC=BC=m ,∴△OBC 为等腰直角三角形. ∴∠OBC=45°, ∵AB ⊥OB , ∴∠ABO=90°, ∴∠ABC=45°,∴△ABD 为等腰直角三角形, 设BD=AD=t ,则A (m +t ,m -t ).∵A (m +t ,m -t )在反比例函数y=12x 的图象上,∴(m +t )(m -t )=12, 即m 2-t 2=12,∴S 1-S 2=12m 2-12t 2=12×12=6. 7.B8.4 [解析]由题意得:E ,M ,D 位于反比例函数图象上,则S △OCE =12|k|,S △OAD =12|k|,过点M 作MG ⊥y 轴于点G ,作MN ⊥x 轴于点N ,则S 矩形ONMG =|k|, 又∵M 为矩形OABC 对角线的交点,∴S 矩形OABC =4S 矩形ONMG =4|k|, ∵函数图象在第一象限,∴k>0,则x 2+x2+12=4k , ∴k=4.9.解:(1)将点P (-1,2)的坐标代入y=mx , 得:2=-m , 解得m=-2,∴正比例函数解析式为y=-2x ; 将点P (-1,2)的坐标代入y=x -3x, 得:2=-(n -3),解得:n=1, ∴反比例函数解析式为y=-2x .解方程组{x =-2x ,x =-2x ,得{x 1=-1,x 1=2,{x 2=1,x 2=-2,∴点A 的坐标为(1,-2). (2)证明:∵四边形ABCD 是菱形, ∴AC ⊥BD ,AB ∥CD ,∴∠CPD=90°,∠DCP=∠BAP , 即∠DCP=∠OAE. ∵AB ⊥x 轴,∴∠AEO=∠CPD=90°, ∴△CPD ∽△AEO.(3)∵点A 的坐标为(1,-2), ∴AE=2,OE=1,AO=√xx 2+xx 2=√5.∵△CPD ∽△AEO , ∴∠CDP=∠AOE ,∴sin ∠CDB=sin ∠AOE=xx xx =√5=2√55.10.解:(1)如图①,过点M 作MC ⊥x 轴于点C ,MD ⊥y 轴于点D ,则∠MCA=∠MDB=90°,∠AMC=∠BMD ,MC=MD , ∴△AMC ≌△BMD , ∴S 四边形OCMD =S 四边形OAMB =6, ∴k=6.(2)存在点E ,使得PE=PF. 由题意,得点P 的坐标为(3,2).①如图②,过点P 作PG ⊥x 轴于点G ,过点F 作FH ⊥PG 于点H ,交y 轴于点K.∵∠PGE=∠FHP=90°,∠EPG=∠PFH,PE=PF,∴△PGE≌△FHP,∴FH=PG=2.则FK=OK=3-2=1,GE=HP=2-1=1,∴OE=OG+GE=3+1=4,∴E(4,0);②如图③,过点P作PG0⊥x轴于点G0,过点F作FH0⊥PG0于点H0,交y轴于点K0.∵∠PG0E=∠FH0P=90°,∠EPG0=∠PFH0,PE=PF,∴△PG0E≌△FH0P,∴FH0=PG0=2.则FK0=OK0=3+2=5,G0E=H0P=5-2=3,∴OE=OG0+G0E=3+3=6,∴E(6,0).综上所述,存在点E(4,0)或(6,0),使得PE=PF.。

最新备战中考数学专题练习(全国通用)-反比例函数系数K的几何意义(含答案)

最新备战中考数学专题练习(全国通用)-反比例函数系数K的几何意义(含答案)

备战中考数学专题练习(全国通用)-反比例函数系数K的几何意义(含答案)一、单选题1.位于第一象限的点E在反比例函数y= 的图象上,点F在x轴的正半轴上,O是坐标原点.若EO=EF,△EOF的面积等于2,则k=()A. 4B. 2C. 1D. ﹣22.如图,正方形ABOC的边长为2,反比例函数y=的图象过点A,则k的值是()A. 2B. ﹣2C. 4D. ﹣43.如图,点A,B是双曲线y= 上的点,分别经过A,B两点向x轴、y轴作垂线段,若S阴影=1,则S1+S2=()A. 2B. 3C. 4D. 54.如图,两个反比例函数和的图象分别是l1和l2.设点P在l1上,PC⊥x轴,垂足为C,交l2于点A,PD⊥y轴,垂足为D,交l2于点B,则三角形PAB的面积为( )A. 3B. 4C.D. 55.如图,等腰三角形ABC的顶点A在原点,顶点B在x轴的正半轴上,顶点C在函数y= (x>0)的图象上运动,且AC=BC,则△ABC的面积大小变化情况是()A. 一直不变B. 先增大后减小C. 先减小后增大D. 先增大后不变6.在反比例函数y=(k>0)的图象中,阴影部分的面积不等于k的是()A. B.C. D.7.如图,A、B是双曲线上的点,A、B两点的横坐标分别是a、3a,线段AB 的延长线交x轴于点C,若S△AOC=6,则k的值为()A. 2B. 3C. 4D. 68.如图,P1、P2、P3是双曲线上的三点.过这三点分别作y轴的垂线,得到三个三角形P1A10,P2A20,P3A30,设它们的面积分别是S1、S2、S3,则()A. S1<S2<S3B. S2<S1<S3C. S1<S3<S2D. S1=S2=S39.如图,直线y=x−2与双曲线y=(k>0)在第一象限内的交点为R,与x轴的交点为P,与y轴的交点为Q;作RM⊥x轴于点M,若△OPQ与△PRM的面积是4:1,则k等于( )A. B. C. 2 D. 3二、填空题10.如图,点A为反比例函数y= 图象上一点,过A做AB⊥x轴于点B,连接OA则△ABO的面积为4,k=________.11.如图,A是反比例函数图象上一点,过点A作AB⊥y轴于点B,点P在x轴上,△ABP面积为2,则这个反比例函数的解析式为________.12.如图,反比例函数y=在第一象限的图象上有两点A,B,它们的横坐标分别是2,6,则△AOB的面积是________ .13.如图,反比例函数y=图象上有一点P,PA⊥x轴于点A,点B在y轴的负半轴上,若△PAB 的面积为4,则k=________14.如图,点A在函数y= (x>0)的图象上,点B在函数y= (x>0)的图象上,点C在x轴上.若AB∥x轴,则△ABC的面积为________.三、解答题15.如图,正方形ABOC的边长为2,反比例函数过点A ,求k的值.16.已知y=y1+y2,若y1与x﹣1成正比例,y2与x+1成反比例,当x=0时,y=﹣5;当x=2时,y=1.(1)求y与x的函数关系式;(2)求当x=﹣2时,y的值.17.如图,在直角坐标系中,O为坐标原点.已知反比例函数y=(k>0)的图象经过点A (2,m),过点A作AB⊥x轴于点B,且△AOB的面积为.(1)求k和m的值;(2)求当x≥1时函数值y的取值范围.四、综合题18.在平面直角坐标系中,点A(﹣3,4)关于y轴的对称点为点B,连接AB,反比例函数y= (x>0)的图像经过点B,过点B作BC⊥x轴于点C,点P是该反比例函数图像上任意一点,过点P作PD⊥x轴于点D,点Q是线段AB上任意一点,连接OQ、CQ.(1)点B的坐标是________;k的值为________(2)判断△QDC与△POD的面积是否相等,并说明理由.19.在数学活动课上,老师提出了一个问题,希望同学们进行探究.在平面直角坐标系中,若一次函数的图象与x轴交于点A,与y轴交于点B,与反比例函数的图象交于C、D两点,则AD和BC有怎样的数量关系?同学们通过合作讨论,逐渐完成了对问题的探究.(1)小勇说:我们可以从特殊入手,取进行研究(如图①),此时我发现AD=BC.小攀说:在图①中,分别从点C、D两点向两条坐标轴作垂线,根据所学知识可以知道有两个图形的面积是相等的,并能求出确定的值,而且在图②中,此时,这一结论仍然成立,即________ 的面积=________ 的面积,此面积的值为________ .小高说:我还发现,在图①或图②中连接某两个已知点,得到的线段与AD和BC都相等,这条线段是________ .请完成以上填空;(2)请结合以上三位同学的讨论,对图②所示的情况下,证明AD=BC;小峰突然提出一个问题:通过刚才的证明,我们可以知道当直线与双曲线的两个交点都在第一象限时,总是成立的,但我发现当k的取值不同时,这两个交点有可能在不同象限,结论还成立吗?(3)请你结合小峰提出的问题,在图③中画出示意图,并判断结论是否成立.若成立,请写出证明过程;若不成立,请说明理由.答案解析部分一、单选题1.【答案】B【考点】反比例函数系数k的几何意义【解析】【解答】解:因为位于第一象限的点E在反比例函数y= 的图象上,点F在x轴的正半轴上,O是坐标原点.若EO=EF,△EOF的面积等于2,所以,解得:xy=2,所以:k=2,故答案为:B【分析】抓住已知条件,根据△EOF的面积等于2,建立关于xy的方程,求出xy的值即可。

备战中考数学专题复习反比例函数的综合题

备战中考数学专题复习反比例函数的综合题

备战中考数学专题复习反比例函数的综合题一、反比例函数1.如图,在平面直角坐标系中,菱形ABCD的顶点C与原点O重合,点B在y轴的正半轴上,点A在反比例函数y= (k>0,x>0)的图象上,点D的坐标为(,2).(1)求k的值;(2)若将菱形ABCD沿x轴正方向平移,当菱形的一个顶点恰好落在函数y= (k>0,x >0)的图象上时,求菱形ABCD平移的距离.【答案】(1)解:作DE⊥BO,DF⊥x轴于点F,∵点D的坐标为(,2),∴DO=AD=3,∴A点坐标为:(,5),∴k=5 ;(2)解:∵将菱形ABCD向右平移,使点D落在反比例函数y= (x>0)的图象上D′,∴DF=D′F′=2,∴D′点的纵坐标为2,设点D′(x,2)∴2= ,解得x= ,∴FF′=OF′﹣OF= ﹣ = ,∴菱形ABCD平移的距离为,同理,将菱形ABCD向右平移,使点B落在反比例函数y= (x>0)的图象上,菱形ABCD平移的距离为,综上,当菱形ABCD平移的距离为或时,菱形的一个顶点恰好落在函数图象上.【解析】【分析】(1)根据菱形的性质和D的坐标即可求出A的坐标,代入求出即可;(2)B和D可能落在反比例函数的图象上,根据平移求出即可.2.如图,在平面直角坐标系中,反比例函数y= 的图象与一次函数y=ax+b的图象交于点A(﹣2,3)和点B(m,﹣2).(1)求反比例函数和一次函数的解析式;(2)直线x=1上有一点P,反比例函数图象上有一点Q,若以A、B、P、Q为顶点的四边形是以AB为边的平行四边形,直接写出点Q的坐标.【答案】(1)解:∵点A(﹣2,3)在反比例函数y= 的图形上,∴k=﹣2×3=﹣6,∴反比例函数的解析式为y=﹣,∵点B在反比例函数y=﹣的图形上,∴﹣2m=﹣6,∴m=3,∴B(3,﹣2),∵点A,B在直线y=ax+b的图象上,∴,∴,∴一次函数的解析式为y=﹣x+1(2)解:∵以A、B、P、Q为顶点的四边形是以AB为边的平行四边形,∴AB=PQ,AB∥PQ,设直线PQ的解析式为y=﹣x+c,设点Q(n,﹣),∴﹣ =﹣n+c,∴c=n﹣,∴直线PQ的解析式为y=﹣x+n﹣,∴P(1,n﹣﹣1),∴PQ2=(n﹣1)2+(n﹣﹣1+ )2=2(n﹣1)2,∵A(﹣2,3).B(3,﹣2),∴AB2=50,∵AB=PQ,∴50=2(n﹣1)2,∴n=﹣4或6,∴Q(﹣4. )或(6,﹣1)【解析】【分析】(1)先利用待定系数法求出反比例函数解析式,进而求出点B的坐标,再用待定系数法求出直线解析式;(2)先判断出AB=PQ,AB∥PQ,设出点Q的坐标,进而得出点P的坐标,即可求出PQ,最后用PQ=AB建立方程即可得出结论.3.已知点A,B分别是x轴、y轴上的动点,点C,D是某个函数图象上的点,当四边形ABCD(A,B,C,D各点依次排列)为正方形时,我们称这个正方形为此函数图象的“伴侣正方形”.例如:在图1中,正方形ABCD是一次函数y=x+1图象的其中一个“伴侣正方形”.(1)如图1,若某函数是一次函数y=x+1,求它的图象的所有“伴侣正方形”的边长;(2)如图2,若某函数是反比例函数(k>0),它的图象的“伴侣正方形”为ABCD,点D(2,m)(m<2)在反比例函数图象上,求m的值及反比例函数的解析式;(3)如图3,若某函数是二次函数y=ax2+c(a≠0),它的图象的“伴侣正方形”为ABCD,C,D中的一个点坐标为(3,4),请你直接写出该二次函数的解析式.【答案】(1)解:(I)当点A在x轴正半轴、点B在y轴负半轴上时:正方形ABCD的边长为.(II)当点A在x轴负半轴、点B在y轴正半轴上时:设正方形边长为a,易得3a= ,解得a= ,此时正方形的边长为.∴所求“伴侣正方形”的边长为或(2)解:如图,作DE⊥x轴,CF⊥y轴,垂足分别为点E、F,易证△ADE≌△BAO≌△CBF.∵点D的坐标为(2,m),m<2,∴DE=OA=BF=m,∴OB=AE=CF=2﹣m.∴OF=BF+OB=2,∴点C的坐标为(2﹣m,2).∴2m=2(2﹣m),解得m=1.∴反比例函数的解析式为y=(3)解:实际情况是抛物线开口向上的两种情况中,另一个点都在(3,4)的左侧,而开口向下时,另一点都在(3,4)的右侧,与上述解析明显不符合a、当点A在x轴正半轴上,点B在y轴正半轴上,点C坐标为(3,4)时:另外一个顶点为(4,1),对应的函数解析式是y=﹣ x2+ ;b、当点A在x 轴正半轴上,点 B在 y轴正半轴上,点D 坐标为(3,4)时:不存在,c、当点A 在 x 轴正半轴上,点 B在 y轴负半轴上,点C 坐标为(3,4)时:不存在d、当点A在x 轴正半轴上,点B在y轴负半轴上,点D坐标为(3,4)时:另外一个顶点C为(﹣1,3),对应的函数的解析式是y= x2+ ;e、当点A在x轴负半轴上,点B在y轴负半轴上,点C坐标为(3,4)时,另一个顶点D的坐标是(7,﹣3)时,对应的函数解析式是y=﹣ x2+ ;f、当点A在x轴负半轴上,点B在y轴负半轴上,点C坐标为(3,4)时,另一个顶点D 的坐标是(﹣4,7)时,对应的抛物线为y= x2+ ;故二次函数的解析式分别为:y= x2+ 或y=﹣ x2+ 或y=﹣ x2+ 或y= x2+【解析】【分析】(1)先正确地画出图形,再利用正方形的性质确定相关点的坐标从而计算正方形的边长.(2)因为ABCD为正方形,所以可作垂线得到等腰直角三角形,利用点D(2,m)的坐标表示出点C的坐标,可求出m的值,即可得到反比例函数的解析式.(3)由抛物线开口既可能向上,也可能向下.当抛物线开口向上时,正方形的另一个顶点也是在抛物线上,这个点既可能在点(3,4)的左边,也可能在点(3,4)的右边,过点(3,4)向x轴作垂线,利用全等三角形确定线段的长即可确定抛物线上另一个点的坐标;当抛物线开口向下时也是一样地分为两种情况来讨论,即可得到所求的结论.4.如图、在矩形OABC中,,双曲线与矩形两边BC,AB 分别交于E,F两点.(1)如图一,若E是BC中点,求点F的坐标;(2)如图二,若将沿直线EF对折,点B恰好落在x轴上的点D处,求k的值. 【答案】(1)解:矩形OABC中,,,E是BC中点,点 .点E在双曲线上,..点F的横坐标为4,且在双曲线上,,即点;(2)解:过点E做轴于H点,点点, ., .,,,∽ .,,.,,.【解析】【分析】(1)根据E点坐标求出k的值,而后把F点的横坐标代入反比例函数解析式求出纵坐标;(2)过点E做轴于H点,根据∽,分别用k 表示出DF、AF、AD长度,根据勾股定理构造出关于k的方程.5.如图,反比例函数的图象与一次函数y=kx+5(k为常数,且k≠0)的图象交于A (﹣2,b),B两点.(1)求一次函数的表达式;(2)若将直线AB向下平移m(m>0)个单位长度后与反比例函数的图象有且只有一个公共点,求m的值.【答案】(1)解:把A(﹣2,b)代入,得b=﹣ =4,所以A点坐标为(﹣2,4),把A(﹣2,4)代入y=kx+5,得﹣2k+5=4,解得k= ,所以一次函数解析式为y= x+5;(2)解:将直线AB向下平移m(m>0)个单位长度得直线解析式为y= x+5﹣m,根据题意方程组只有一组解,消去y得﹣ = x+5﹣m,整理得 x2﹣(m﹣5)x+8=0,△=(m﹣5)2﹣4× ×8=0,解得m=9或m=1,即m的值为1或9.【解析】【分析】(1)先利用反比例函数解析式求出b=4,得到A点坐标为(-2,4),然后把A点坐标代入y=kx+5中求出k,从而得到一次函数解析式;(2)由于将直线AB向下平移m(m>0)个单位长度得直线解析式为y=,又与反比例函数有且只有一个公共点,可组成方程组,且只有一组解,然后消去y得到关于x的一元二次方程,再根据判别式=0得到关于m的方程,最后解方程求出m的值.6.在平面直角坐标系xOy中,反比例函数的图象经过点A(1,4),B(m,n).(1)求反比例函数的解析式;(2)若二次函数的图象经过点B,求代数式的值;(3)若反比例函数的图象与二次函数的图象只有一个交点,且该交点在直线y=x的下方,结合函数图象,求a的取值范围.【答案】(1)解:将A(1,4)代入函数y=得:k=4反比例函数y=的解析式是(2)解:∵B(m,n)在反比例函数y=上,∴mn=4,又二次函数y=(x-1)2的图象经过点 B(m,n),∴即n-1=m2-2m∴(3)解:由反比例函数的解析式为,令y=x,可得x2=4,解得x=±2.∴反比例函数的图象与直线y=x交于点(2,2),(-2,-2).如图,当二次函数y=a(x-1)2的图象经过点(2,2)时,可得a=2;当二次函数y=a(x-1)2的图象经过点(-2,-2)时,可得a=- .∵二次函数y=a(x-1)2图象的顶点为(1,0),∴由图象可知,符合题意的a的取值范围是0<a<2或a<- .【解析】【分析】(1)只需将点A的坐标代入反比例函数的解析式就可得出答案。

福州市初中数学反比例函数知识点总复习

福州市初中数学反比例函数知识点总复习

福州市初中数学反比例函数知识点总复习一、选择题1.如图,在平面直角坐标系中,点B在第一象限,BA⊥x轴于点A,反比例函数y=kx (x>0)的图象与线段AB相交于点C,且C是线段AB的中点,若△OAB的面积为3,则k的值为()A.13B.1 C.2 D.3【答案】D 【解析】【分析】连接OC,如图,利用三角形面积公式得到S△AOC=12S△OAB=32,再根据反比例函数系数k的几何意义得到12|k|=32,然后利用反比例函数的性质确定k的值.【详解】连接OC,如图,∵BA⊥x轴于点A,C是线段AB的中点,∴S△AOC=12S△OAB=32,而S△AOC=12|k|,∴12|k|=32,而k>0,∴k=3.故选:D.【点睛】此题考查反比例函数系数k 的几何意义,解题关键在于掌握在反比例函数y=kx图象中任取一点,过这一个点向x 轴和y 轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.2.在同一直角坐标系中,函数y=k(x -1)与y=(0)kk x<的大致图象是 A . B . C . D .【答案】B 【解析】 【分析】 【详解】解:k<0时,y=(0)kk x<的图象位于二、四象限, y=k(x -1)的图象经过第一、二、四象限, 观察可知B 选项符合题意, 故选B.3.下列函数中,当x >0时,函数值y 随自变量x 的增大而减小的是( ) A .y =x 2 B .y =xC .y =x+1D .1y x=【答案】D 【解析】 【分析】需根据函数的性质得出函数的增减性,即可求出当x >0时,y 随x 的增大而减小的函数. 【详解】解:A 、y =x 2是二次函数,开口向上,对称轴是y 轴,当x >0时,y 随x 的增大而增大,错误;B 、y =x 是一次函数k =1>0,y 随x 的增大而增大,错误;C 、y =x+1是一次函数k =1>0,y 随x 的增大而减小,错误;D 、1y x=是反比例函数,图象无语一三象限,在每个象限y 随x 的增大而减小,正确; 故选D . 【点睛】本题综合考查了二次函数、一次函数、反比例函数的性质,熟练掌握函数的性质是解题的关键.4.已知点()11,A y -、()22,B y -都在双曲线32my x+=上,且12y y >,则m 的取值范围是( ) A .0m < B .0m >C .32m >-D .32m <-【答案】D 【解析】 【分析】根据已知得3+2m <0,从而得出m 的取值范围. 【详解】∵点()11,A y -、()22,B y -两点在双曲线32my x+=上,且y 1>y 2, ∴3+2m <0,∴32m <-, 故选:D . 【点睛】本题考查了反比例函数图象上点的坐标特征,当k >0时,该函数图象位于第一、三象限,当k <0时,函数图象位于第二、四象限.5.在平面直角坐标系xoy 中,函数()20y x x =<的图象与直线1l :()103y x b b =+<交于点A ,与直线2l :x b =交于点B ,直线1l 与2l 交于点C ,记函数()20y x x=<的图象在点A 、B 之间的部分与线段AC ,线段BC 围城的区域(不含边界)为W ,当4233b -≤≤-时,区域W 的整点个数为( ) A .3个 B .2个 C .1个 D .没有 【答案】D 【解析】 【分析】根据解析式画出函数图象,根据图形W 得到整点个数进行选择. 【详解】∵()20y x x=<,过整点(-1,-2),(-2,-1), 当b=43-时,如图:区域W 内没有整点,当b=23-时,区域W 内没有整点,∴4233b -≤≤-时图形W 增大过程中,图形内没有整点, 故选:D. 【点睛】此题考查函数图象,根据函数解析式正确画出图象是解题的关键.6.已知点()1,3M -在双曲线ky x=上,则下列各点一定在该双曲线上的是( ) A .()3,1- B .()1,3--C .()1,3D .()3,1【答案】A 【解析】 【分析】先求出k=-3,再依次判断各点的横纵坐标乘积,等于-3即是在该双曲线上,否则不在. 【详解】∵点()1,3M -在双曲线ky x=上, ∴133k =-⨯=-,∵3(1)3⨯-=-, ∴点(3,-1)在该双曲线上, ∵(1)(3)13313-⨯-=⨯=⨯=,∴点()1,3--、()1,3、()3,1均不在该双曲线上, 故选:A. 【点睛】此题考查反比例函数解析式,正确计算k 值是解题的关键.7.如图,在x 轴的上方,直角∠BOA 绕原点O 按顺时针方向旋转.若∠BOA 的两边分别与函数1y x=-、2y x =的图象交于B 、A 两点,则∠OAB 大小的变化趋势为( )A .逐渐变小B .逐渐变大C .时大时小D .保持不变【答案】D 【解析】 【分析】如图,作辅助线;首先证明△BEO ∽△OFA ,,得到BE OE OF AF =;设B 为(a ,1a-),A 为(b ,2b ),得到OE=-a ,EB=1a-,OF=b ,AF=2b ,进而得到222a b =,此为解决问题的关键性结论;运用三角函数的定义证明知tan ∠OAB=22为定值,即可解决问题. 【详解】解:分别过B 和A 作BE ⊥x 轴于点E ,AF ⊥x 轴于点F , 则△BEO ∽△OFA , ∴BE OEOF AF=, 设点B 为(a ,1a-),A 为(b ,2b ),则OE=-a ,EB=1a-,OF=b ,AF=2b ,可代入比例式求得222a b =,即222a b =, 根据勾股定理可得:OB=22221OE EB a a +=+,OA=22224OF AF b b +=+, ∴tan ∠OAB=2222222212244b a OB a b OA b b bb++==++=222214()24b b b b ++=2∴∠OAB 大小是一个定值,因此∠OAB 的大小保持不变. 故选D【点睛】该题主要考查了反比例函数图象上点的坐标特征、相似三角形的判定等知识点及其应用问题;解题的方法是作辅助线,将分散的条件集中;解题的关键是灵活运用相似三角形的判定等知识点来分析、判断、推理或解答.8.若函数2m y x+=的图象在其象限内y 的值随x 值的增大而增大,则m 的取值范围是( ) A .m >﹣2 B .m <﹣2 C .m >2 D .m <2【答案】B 【解析】 【分析】根据反比例函数的性质,可得m+2<0,从而得出m 的取值范围. 【详解】∵函数2m y x+=的图象在其象限内y 的值随x 值的增大而增大, ∴m+2<0, 解得m <-2. 故选B .9.如图,ABDC Y 的顶点,A B 的坐标分别是()(), 0,3 1, 0A B -,顶点,C D 在双曲线ky x =上,边BD 交y 轴于点E ,且四边形ACDE 的面积是ABE ∆面积的3倍,则k 的值为:( )A .6-B .4-C .3-D .12-【答案】A 【解析】 【分析】过D 作DF//y 轴,过C 作//CF x 轴,交点为F ,利用平行四边形的性质证明,DCF ABO ∆≅∆利用平移写好,C D 的坐标,由四边形ACDE 的面积是ABE ∆面积的3倍,得到2,DB BE =利用中点坐标公式求横坐标,再利用反比例函数写D 的坐标,列方程求解k . 【详解】解:过D 作DF//y 轴,过C 作//CF x 轴,交点为F , 则,CF DF ⊥ABDC QY ,,CDF BAO ∴∠∠的两边互相平行,,AB DC = CDF BAO ∴∠=∠, 90,DFC BOA ∠=∠=︒Q ,DCF ABO ∴∆≅∆ ,,CF BO DF AO ∴==设(,),k C m m由()(), 0,3 1, 0A B -结合平移可得:(1,3)kD m m++, Q 四边形ACDE 的面积是ABE ∆面积的3倍,11()322BD BE DE CA h h BE ∴+=⨯⨯, ,,BD BE h h AC BD ==Q3DE AC BE ∴+=, 4,DE BD BE BE ∴++= 2,DB BE ∴=(1,3),(1,0),0,E kD m B x m++=Q ∴ 由中点坐标公式知:110,2m ++= 2m ∴=- ,(1,)1kD m m ++Q ,3212k k ∴=+-+-, 6.k ∴=- 故选A .【点睛】本题考查的是反比例函数的图像与性质,平行四边形的性质,平移性质,中点坐标公式,掌握以上知识点是解题关键.10.如图,在平面直角坐标系中,菱形ABCD 在第一象限内,边BC 与x 轴平行,A ,B 两点的纵坐标分别为4,2,反比例函数y kx=(x >0)的图象经过A ,B 两点,若菱形ABCD 的面积为5k 的值为( )A .2B .3C .4D .6【答案】C 【解析】 【分析】过点A 作x 轴的垂线,交CB 的延长线于点E ,根据A ,B 两点的纵坐标分别为4,2,可得出横坐标,即可求得AE ,BE 的长,根据菱形的面积为25,求得AE 的长,在Rt △AEB 中,即可得出k 的值. 【详解】过点A 作x 轴的垂线,交CB 的延长线于点E ,∵A ,B 两点在反比例函数y kx=(x >0)的图象,且纵坐标分别为4,2, ∴A (4k,4),B (2k ,2),∴AE =2,BE 12=k 14-k 14=k ,∵菱形ABCD 的面积为5 ∴BC×AE =5BC 5=∴AB =BC 5=在Rt △AEB 中,BE 22AB AE =-=1∴14k =1, ∴k =4. 故选:C . 【点睛】本题考查了菱形的性质以及反比例函数图象上点的坐标特征,熟记菱形的面积公式是解题的关键.11.函数y =1-kx与y =2x 的图象没有交点,则k 的取值范围是( ) A .k<0 B .k<1C .k>0D .k>1【答案】D 【解析】 【分析】由于两个函数没有交点,那么联立两函数解析式所得的方程无解.由此可求出k 的取值范围. 【详解】令1-k x =2x ,化简得:x 2=1-2k ;由于两函数无交点,因此1-2k<0,即k >1. 故选D . 【点睛】函数图象交点坐标为两函数解析式组成的方程组的解.如果两函数无交点,那么联立两函数解析式所得的方程(组)无解.12.如图,已知点A ,B 分别在反比例函数12y x =-和2ky x=的图象上,若点A 是线段OB 的中点,则k 的值为( ).A .8-B .8C .2-D .4-【答案】A 【解析】 【分析】设A (a ,b ),则B (2a ,2b ),将点A 、B 分别代入所在的双曲线解析式进行解答即可. 【详解】解:设A(a,b),则B(2a,2b),∵点A在反比例函数12yx=-的图象上,∴ab=−2;∵B点在反比例函数2kyx=的图象上,∴k=2a•2b=4ab=−8.故选:A.【点睛】本题考查了反比例函数图象上点的坐标特征,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.13.若A(-3,y1)、B(-1,y2)、C(1,y3)三点都在反比例函数y=kx(k>0)的图象上,则y1、y2、y3的大小关系是()A. y1>y2>y3B. y3>y1>y2C. y3>y2>y1D. y2>y1>y3【答案】B【解析】【分析】反比例函数y=kx(k>0)的图象在一、三象限,根据反比例函数的性质,在每个象限内y随x的增大而减小,而A(-3,y1)、B(-1,y2)在第三象限双曲线上的点,可得y2<y1<0,C(1,y3)在第一象限双曲线上的点y3>0,于是对y1、y2、y3的大小关系做出判断.【详解】∵反比例函数y=kx(k>0)的图象在一、三象限,∴在每个象限内y随x的增大而减小,∵A(-3,y1)、B(-1,y2)在第三象限双曲线上,∴y2<y1<0,∵C(1,y3)在第一象限双曲线上,∴y3>0,∴y3>y1>y2,故选:B.【点睛】此题考查反比例函数的图象和性质,解题关键在于当k>0,时,在每个象限内y随x的增大而减小;当k<0时,y随x的增大而增大,注意“在每个象限内”的意义,这种类型题目用图象法比较直观得出答案.14.如图,若直线2y x n =-+与y 轴交于点B ,与双曲线()20y x x=-<交于点(),1A m ,则AOB V 的面积为( )A .6B .5C .3D .1.5【答案】C【解析】【分析】 先根据题意求出A 点坐标,再求出一次函数解析式,从而求出B 点坐标,则问题可解.【详解】解:由已知直线2y x n =-+与y 轴交于点B ,与双曲线()20y x x =-<交于点(),1A m ∴21m=-则m=-2 把A (-2,1)代入到2y x n =-+,得()122n =-⨯-+∴n=-3∴23y x =--则点B (0,-3)∴AOB V 的面积为132=32⨯⨯ 故应选:C【点睛】本题考查的是反比例函数与一次函数的综合问题,解题关键是根据题意应用数形结合思想.15.当0x <时,反比例函数2y x=-的图象( ) A .在第一象限,y 随x 的增大而减小 B .在第二象限,y 随x 的增大而增大C .在第三象限,y 随x 的增大而减小D .在第四象限,y 随x 的增大而减小 【答案】B【解析】【分析】反比例函数2y x=-中的20k =-<,图像分布在第二、四象限;利用0x <判断即可. 【详解】 解:Q 反比例函数2y x=-中的20k =-<, ∴该反比例函数的图像分布在第二、四象限;又0x <Q ,∴图象在第二象限且y 随x 的增大而增大.故选:B .【点睛】 本题主要考查的是反比例函数的性质,对于反比例函数()0k y k x=≠,(1)0k >,反比例函数图像分布在一、三象限;(2)k 0< ,反比例函数图像分布在第二、四象限内.16.在函数()0k y k x=<的图象上有()11,A y ,()21,B y -,()32,B y -三个点,则下列各式中正确的是( ) A .123y y y <<B .132y y y <<C .321y y y <<D .231y y y <<【答案】B【解析】【分析】根据反比例函数图象上点的坐标特征得到11y k ⨯=,21y k -⨯=,32y k -⨯=,然后计算出1y 、2y 、3y 的值再比较大小即可.【详解】 解:(0)k y k x=<Q 的图象上有1(1,)A y 、2(1,)B y -、3(2,)C y -三个点, 11y k ∴⨯=,21y k -⨯=,32y k -⨯=, 1y k ∴=,2y k =-,312y k =-, 而k 0<,132y y y ∴<<.故选:B .【点睛】 本题考查了反比例函数图象上点的坐标特征:反比例函数k y x=(k 为常数,且0k ≠)的图象是双曲线,图象上的点(),x y 的横纵坐标的积是定值k ,即xy k =.17.若点A(﹣4,y1)、B(﹣2,y2)、C(2,y3)都在反比例函数1yx=-的图象上,则y1、y2、y3的大小关系是( )A.y1>y2>y3B.y3>y2>y1C.y2>y1>y3D.y1>y3>y2【答案】C【解析】【分析】根据反比例函数图象上点的坐标特征求出y1、y2、y3的值,比较后即可得出结论.【详解】∵点A(﹣4,y1)、B(﹣2,y2)、C(2,y3)都在反比例函数1yx=-的图象上,∴111 44y=-=-,21122y=-=-,312y=-,又∵﹣12<14<12,∴y3<y1<y2,故选C.【点睛】本题考查了反比例函数图象上点的坐标特征,反比例函数值的大小比较,熟知反比例函数图象上的点的坐标满足反比例函数的解析式是解题的关键.18.已知反比例函数y=﹣8x,下列结论:①图象必经过(﹣2,4);②图象在二,四象限内;③y随x的增大而增大;④当x>﹣1时,则y>8.其中错误的结论有()个A.3 B.2 C.1 D.0【答案】B【解析】【分析】根据反比例函数的性质,逐一进行判断即可得答案.【详解】①当x=﹣2时,y=4,即图象必经过点(﹣2,4);②k=﹣8<0,图象在第二、四象限内;③k=﹣8<0,每一象限内,y随x的增大而增大,错误;④k=﹣8<0,每一象限内,y随x的增大而增大,若0>x>﹣1,﹣y>8,故④错误,故选B.【点睛】本题考查了反比例函数的性质,熟练掌握反比例函数的性质是解题关键.19.如图,A 、C 是函数1y x=的图象上任意两点,过点A 作y 轴的垂线,垂足为B ,过点C 作y 轴的垂线,垂足为D .记Rt AOB ∆的面积为1S ,Rt COD ∆的面积为2S ,则1S 和2S 的大小关系是( )A .12S S >B .12S S <C .12=S SD .由A 、C 两点的位置确定【答案】C【解析】【分析】 根据双曲线的图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S 的关系即S=12k|. 【详解】由题意得:S 1=S 2=12|k|=12. 故选:C .【点睛】本题主要考查了反比例函数y =k x中k 的几何意义,即图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S 的关系即S=12|k|,是经常考查的一个知识点;这里体现了数形结合的思想.20.如图,矩形ABCD 的边AB 在x 轴上,反比例函数k y x=(0)k ≠的图象过D 点和边BC 的中点E ,连接DE ,若CDE ∆的面积是1,则k 的值是( )A.4 B.3 C.25D.2【答案】A【解析】【分析】设E的坐标是(m,n),k=mn,则C的坐标是(m,2n),求得D的坐标,然后根据三角形的面积公式求得mn的值,即k的值.【详解】解:设E的坐标是(m,n),k=mn,则C的坐标是(m,2n),在y=mnx中,令y=2n,解得:x=2m,∵S△CDE=1,∴12|n|•|m-2m|=1,即12n×2m=1,∴mn=4.∴k=4.故选:A.【点睛】本题考查了待定系数法求函数的解析式,利用mn表示出三角形的面积是关键.。

福建省2024九年级数学下册第26章反比例函数素养集训1.反比例函数图象和性质的八种应用题型课件新

福建省2024九年级数学下册第26章反比例函数素养集训1.反比例函数图象和性质的八种应用题型课件新

目录
(2)若点P(m,n)在该反比例函数图象上,且它到y轴的距离小 于3,请根据图象直接写出n的取值范围. 解:n的取值范围为n>2或n<-2.
返回 目录
10.如图,在平面直角坐标系中,直线y1=k1x+b与双曲
线y2=
k2 x
相交于A(-2,3),B(m,-2)两点.
(1)求直线和双曲线对应的函数解析式;
返回 目录
8.如图,在平面直角坐标系中,矩形OABC的两边OC,OA
分别在坐标轴上,且OA=2,OC=4,连接OB.反比例函
数y=
k1 x
(x>0)的图象经过线段OB的中点D,并与AB,BC
分别交于点E,F.一次函数y=k2x+b的图象经过E,F两
点.
(1)分别求出一次函数和反比例
函数的解析式;
返回 目录
12 ×4×4-
1 2
×(4-2)×1=7.
【点方法】根据关于某条直线对称的两个点的连
线被这条直线垂直平分,可得点E的坐标,进而可
求直线l′的解析式,由函数解析式得点的坐标,转
化为线段长度,运用作差法求面积. 返回 目录
4.如图,点A(m,4)在反比例函数y=
k x
(x > 0) 的 图 象 上 ,
所以 AB=2,CD=23.
返回 目录
(2)对于任意点A(a,b),判断线段AB和CD的大小关系,并
证明.
解:AB>CD.证明如下: 由题意,得 Aa,1a,B3a,1a,Ca,3a,Da3,3a, 所以 AB=2a, CD=23a. 由 a>0,得 2a>23a.所以 AB>CD.
返回 目录
6. 【2023·广安】如图,一次函数y=kx+ 9(k为常数,k≠0)的 图象与反比例函数y=mx (m为常数,m≠0)4的图象在第一象限 交于点A(1,n),与x轴交于点B(-3,0).

福建福州市九年级数学下册第二十六章《反比例函数》阶段练习(含答案解析)

福建福州市九年级数学下册第二十六章《反比例函数》阶段练习(含答案解析)

一、选择题1.正比例函数1y 的图像与反比例函数2y 的图像相交于点(2,4)A ,下列说法正确的是( )A .反比例函数2y 的解析式是28y x =-B .两个函数图像的另一个交点坐标为(2,4)C .当2x <-或02x <<时,12y y <D .正比例函数1y 与反比例函数2y 都随x 的增大而增大2.已知()()()112233,,,,,A x y B x y C x y 是反比例函数2y x=上的三点,若123x x x <<,213y y y <<,则下列关系式不正确的是 ( ) A .120x x < B .130x x < C .230x x <D .120x x +< 3.在同一直角坐标系中,反比例函数y =ab x与一次函数y =ax+b 的图象可能是( ) A . B .C .D .4.已知0k >,函数y kx k =+和函数k y x=在同一坐标系内的图象大致是( ) A . B .C .D .5.如图,反比例函数k y x=的图像经过平行四边形ABCD 的顶点C ,D ,若点A 、点B 、点C 的坐标分别为()3,0,()0,4,(),a b ,且7.5a b +=,则k 的值是( )A .7.5B .9C .10D .126.如图,△ABC 的三个顶点分别为A (1,2),B (2,5),C (6,1).若函数在第一象限内的图像与△ABC 有交点,则的取值范围是A .2≤≤B .6≤≤10C .2≤≤6D .2≤≤7.已知电压U 、电流I 、电阻R 三者之间的关系式为:U IR =(或者U I R=),实际生活中,由于给定已知量不同,因此会有不同的可能图象,图象不可能是( ) A . B .C .D .8.如图,已知正比例函数y 1=x 与反比例函数y 2=9x 的图像交于A 、C 两点,AB ⊥x 轴,垂足为B , CD ⊥x 轴,垂足为D .给出下列结论:①四边形ABCD 是平行四边形,其面积为18;②AC =32;③当-3≤x<0或x≥3时,y 1≥y 2;④当x 逐渐增大时,y 1随x 的增大而增大,y 2随x 的增大而减小.其中正确的结论有( )A .①④B .①③④C .①③D .①②④ 9.若函数5y x =与1y x =+的图像交于点(),A a b ,则11a b -的值为 ( ) A .15- B .15 C .5- D .510.如图,函数y =kx (k >0)与函数2y x=的图象相交于A ,C 两点,过A 作AB ⊥y 轴于B ,连结BC ,则三角形ABC 的面积为( )A .1B .2C .k 2D .2k 211.已知二次函数2y ax bx c =++的图象如图,则一次函数y ax bc =+与反比例函数abc y x=在平面直角坐标系中的图象可能是( ).A .B .C .D .12.在函数()0k y k x=<的图象上有()11,A y ,()21,B y -,()32,B y -三个点,则下列各式中正确的是( ) A .123y y y << B .132y y y << C .321y y y << D .231y y y <<13.给出下列函数:①y =﹣3x +2:②y =3x ;③y =﹣5x:④y =3x ,上述函数中符合条件“当x >1时,函数值y 随自变量x 增大而增大”的是( )A .①③B .③④C .②④D .②③ 14.在平面直角坐标系中,对于不在坐标轴上的任意一点P (x ,y ),我们把的P '(1x ,1y )称为点P 的“倒影点”.直线y =﹣2x +1上有两点A 、B ,它们的倒影点A '、B '均在反比例函数y k x=的图象上,若AB 5=k 的值为( )A .83-B .43-C .5D .1015.对于反比例函数5y x=-,下列说法中不正确的是( ) A .图象经过点(1,5)- B .当0x >时,y 的值随x 的值的增大而增大C .图像分布在第二、四象限D .若点11()A x y ,,22()B x y ,都在图像上,且12x x <,则12y y <.二、填空题 16.已知函数3(2)m y m x -=-是反比例函数,则m =_________.17.如图,△OA 1B 1,△A 1A 2B 2,△A 2A 3B 3,…是分别以A 1,A 2,A 3,…为直角顶点,一条直角边在x 轴正半轴上的等腰直角三角形,其斜边的中点C 1(x 1,y 1),C 2(x 2,y 2),C 3(x 3,y 3),…均在反比例函数y =4x(x >0)的图象上,则y 1+y 2+…+y 100的值为_____.18.函数25(1)n y n x -=+是反比例函数,且图象位于第二、四象限内,则n =____. 19.下列y 关于x 的函数中,y 随x 的增大而增大的有_____.(填序号)①y =﹣2x+1,②y 1x=,③y =(x+2)2+1(x >0),④y =﹣2(x ﹣3)2﹣1(x <0) 20.以正方形ABCD 两条对角线的交点O 为坐标原点,建立如图所示的平面直角坐标系,双曲线y=3x经过点D ,则正方形ABCD 的面积是_____.21.反比例函数2(0)m y x x+=<的图象如图所示,则m 的取值范围为__________.22.若点A (﹣4,y 1),B (﹣2,y 2)都在反比例函数1y x =-的图象上,则y 1,y 2的大小关系是y 1_____y 2.23.已知点(1,),(3,)A a B b 都在反比例函数4y x=的图像上,则,a b 的大小关系为____.(用“<”连接) 24.已知y =y 1+y 2,y 1与x 成正比例、y 2与x 成反比例,且当x =1时,y =4,当x =2时,y =5,则当x =4时,y 的值是_______.25.如图,点A 是反比例函数y =k x(k >0,x >0)图象上一点,B 、C 在x 轴上,且AC ⊥BC ,D 为AB 的中点,DC 的延长线交y 轴于E ,连接BE ,若△BCE 的面积为8,则k 的值为_____.26.如图,菱形ABCD 顶点A 在函数y=4x(x>0)的图像上,函数y=k x (k>4,x>0)的图象关于直线AC 对称,且经过点B 、D 两点,若AB=4,∠ADC=150°,则k=______。

【初三数学】福州市九年级数学下(人教版)第二十六章《反比例函数》单元综合练习卷(解析版)

【初三数学】福州市九年级数学下(人教版)第二十六章《反比例函数》单元综合练习卷(解析版)

人教版九年级数学下册26.1 反比例函数同步练习一、选择题1.已知反比例函数y=-,当-2<x<-1时,y的取值范围是()A. B. C. D.2.已知反比例函数y=,下列结论不正确的是()A. 图象经过点B. 图象在第二、四象限C. 当时,y随着x的增大而增大D. 当时,3.在同一平面直角坐标系中,函数y=mx+m(m≠0)与y=(m≠0)的图象可能是()A. B.C. D.4.若点(-3,y1),(-2,y2),(2,y3)都在反比例函数y=的图象上,则()A. B. C. D.5.已知反比例函数y=-,下列结论:①图象必经过(-2,4);②图象在二,四象限内;③y随x的增大而增大;④当x>-1时,则y>8.其中错误的结论有()个A. 3B. 2C. 1D. 06.已知反比例函数y=的图象过点A(1,-2),则k的值为()A. 1B. 2C.D.7.下列函数关系式中属于反比例函数的是()A. B. C. D.8.如图,点P是x轴正半轴上的一个动点,过点P作PQ⊥x轴交双曲线y=(x>0)于点Q,连结OQ,当点P沿x轴的正方向运动时,Rt△QOP的面积()A. 保持不变B. 逐渐减少C. 逐渐增大D. 无法确定二、填空题9.已知反比例函数y=的图象经过点(-3,-1),则k=______.10.在反比例函数y=图象的每一支上,y都随x的增大而减小,则k的取值范围是______.11.点(a-2,y1)、(a+3,y2)在反比例函数>的图象上,若y1<y2,则a的取值范围是______ .12.函数y1=x与y2=的图象如图所示,下列关于函数y=y1+y2的结论:①函数的图象关于原点中心对称;②当x<2时,y随x的增大而减小;③当x>0时,函数的图象最低点的坐标是(2,4),其中所有正确结论的序号是______.13.如图,P为反比例函数的图象上的点,过P分别向x轴和y轴引垂线,它们与两条坐标轴围成的矩形面积为2,这个反比例函数解析式为______.三、计算题14.已知y+1是x的反比例函数,当x=3时,y=7.(1)写出y与x的函数关系式;(2)求当x=7时y的值.15.如图,已知直线y=-2x经过点P(-2,m),点P关于y轴的对称点P′在反比例函数()的图象上.(1)求m的值;(2)直接写出点P′的坐标;(3)求反比例函数的解析式.答案和解析1.【答案】C【解析】解:∵当x=-2时,y=-=5;当x=-1时,y=-=10,∴5<y<10.故选:C.2.【答案】D【解析】解:A、把(-2,1)代入解析式得:左边=右边,故本选项正确;B、因为-2<0,图象在第二、四象限,故本选项正确;C、当x<0,且k<0,y随x的增大而增大,故本选项正确;D、在第三象限时,当x>-1时,y>2,故本选项错误.故选:D.3.【答案】D【解析】解:A、由反比例函数图象得m<0,则一次函数图象经过第二、三、四象限,所以A选项错误;B、由反比例函数图象得m>0,则一次函数图象经过第一、二、三象限,所以B 选项错误;C、由反比例函数图象得m<0,则一次函数图象经过第二、三、四象限,所以C 选项错误;D、由反比例函数图象得m<0,则一次函数图象经过第一、二、三象限,所以D选项正确.故选D.4.【答案】C【解析】解:∵k=3>0,∴图象在一、三象限,∵x1<x2,∴y2<y1<0,∵x3>0,∴y3>0,∴y2<y1<y3,故答案为:y3>y1>y2.5.【答案】B【解析】解:①当x=-2时,y=4,即图象必经过点(-2,4);②k=-8<0,图象在第二、四象限内;③k=-8<0,每一象限内,y随x的增大而增大,并不是在x所有取值范围内,y 都随x的增大而增大,错误;④k=-8<0,每一象限内,y随x的增大而增大,若0>x>-1,y>8,但若x>0,y<0,故④错误,故选:B.6.【答案】C解:∵反比例函数y=的图象过点A(1,-2),∴-2=,解得k=-2.故选C.7.【答案】B【解析】解:A、该函数是正比例函数,故本选项错误;B、该函数符合反比例函数的定义,故本选项正确;C、该函数是二次函数,故本选项错误;D、该函数是一次函数,故本选项错误;故选:B.8.【答案】A【解析】解:∵PQ⊥x轴,点Q在y=(x>0)上,=.∴S△QOP故选A.9.【答案】3【解析】解:∵反比例函数y=的图象经过点(-3,-1),∴-1=,解得,k=3,故答案为:3.10.【答案】k>【解析】解:∵在反比例函数y=图象的每一支上,y都随x的增大而减小,∴3k-1>0,∴k>,故答案为:k.11.【答案】-3<a<2【解析】解:∵点(a-2,y1)、(a+3,y2)在反比例函数的图象上,∴y1=,y2=,∵y1<y2,∴->0,∵k>0,∴(a+3)×(a-2)<0,解得:-3<a<2.故答案为:-3<a<2.12.【答案】①③【解析】解:①由图象可以看出函数图象上的每一个点都可以找到关于原点对称的点,故正确;②在每个象限内,不同自变量的取值,函数值的变化是不同的,故错误;③y=x+人教版九年级下册数学第二十六章反比例函数单元测试题(有答案)一.选择题(共10小题,满分40分,每小题4分)1.已知反比例函数y=的图象上,那么下列各点中,在此图象上的是()A.(3,4)B.(﹣2,6)C.(﹣2,﹣6)D.(﹣3,﹣4)2.若点A(1,y1)和点B(2,y2)是反比例函数y=﹣图象上的两点,则y1和y2的大小关系是()A.y1<y2B.y1=y2C.y1>y2D.无法确定3.已知y=(m+1)x m+2是反比例函数,则函数的图象在()A.第一、二象限B.第三、四象限C.第一、三象限D.第二、四象限4.已知一次函数y=kx﹣1和反比例函数y=,则这两个函数在同一平面直角坐标系中的图象可能是()A.B.C.D.5.一司机驾驶汽车从甲地去乙地,他以80千米/时的平均速度用了6小时到达目的地,当他按原路匀速返回时,汽车的速度v(千米/时)与时间t(小时)的函数关系为()A.v=B.v+t=480C.v=D.v=6.如果等腰三角形的面积为10,底边长为x,底边上的高为y,则y与x的函数关系式为()A.y=B.y=C.y=D.y=7.反比例函数的图象经过点P(3,﹣4),则这个反比例函数的解析式为()A.B.C.D.8.如图,在平面直角坐标系中,正方形ABCD的顶点A的坐标为(﹣1,1),点B在x轴正半轴上,点D在第三象限的双曲线y=上,过点C作CE∥x轴交双曲线于点E,连接BE,则△BCE的面积为()A.5B.6C.7D.89.如图,在菱形ABOC中,∠A=60°,它的一个顶点在反比例函数的图象上,若将菱形向下平移1个单位,点A恰好落在函数图象上,则反比例函数的解析式为()A.B.C.D.y=﹣10.如图,菱形ABCD的顶点A在x轴的正半轴上,边CD所在直线过点O,对角线BD∥x轴交AC于点M,双曲线y=过点B且与AC交于点N,如果AN=3CN,S=,△NBC 那么k的值为()A.8B.9C.10D.12二.填空题(共4小题,满分20分,每小题5分)11.已知A(1,y1),B(2,y2)两点在双曲线y=上,且y1>y2,则m的取值范围是.12.如图,点M(2,m)是函数y=x与y=的图象在第一象限内的交点,则k的值为.13.把一个长、宽、高分别为3cm,2cm,1cm的长方体铜块铸成一个圆柱体铜块,则该圆柱体铜块的底面积s(cm2)与高h(cm)之间的函数关系式为.14.如图,Rt△ABC的直角边BC在x轴负半轴上,斜边AC上的中线BD的反向延长线交y轴负半轴于点E,反比例函数y=﹣(x<0)的图象过点A,则△BEC的面积是.三.解答题(共9小题,满分90分)15.(8分)如图,在平面直角坐标系xOy中,矩形OABC的顶点A,B在反比例函数y=﹣(k>0,x>0)的图象上,纵坐标分别为1和3,求k的值.16.(8分)如图,一次函数y1=﹣x+2的图象与反比例函数y2=(k≠0)的图象分别交于第二、四象限的A,B两点,点A的横坐标为﹣1.(1)求反比例函数的表达式;(2)根据图象回答:当x取何值时,y1<y2.请直接写出答案:.17.(8分)如图,在平面直角坐标系xOy中,函数y=(x>0)的图象经过点A,作AC ⊥x轴于点C.(1)求k的值;(2)直线y=ax+b(a≠0)图象经过点A交x轴于点B,且OB=2AC.求a的值.18.(8分)如图,直线y=﹣x+1与反比例函数y=的图象相交于点A、B,过点A作AC ⊥x轴,垂足为点C(﹣2,0),连接AC、BC.(1)求反比例函数的解析式;(2)求S;△ABC(3)利用函数图象直接写出关于x的不等式﹣x+1<的解集.19.(10分)如图所示,直线AB与双曲线y=交于A,B两点,直线AB与x、y坐标轴分别交于C,D两点,连接OA,若OA=2,tan∠AOC=,B(﹣3,m)(1)分别求一次函数与反比例函数式.(2)连接OB,在x轴上求点P的坐标,△AOP的面积等于△AOB的面积.20.(10分)如图,在平面直角坐标系中,一次函数y1=ax+b(a≠0)的图象与反比例函数y2=(k≠0)的图象交于A、C两点,与x轴交于点D,过点A作AB⊥x轴于点B,点O是线BD的中点,AD=2,cos∠ADB=.(1)求该反比例函数和一次函数的解析式;(2)直接写出当x为何值时,y1≥y2.21.(12分)如图,一次函数y =ax +b (a ≠0)的图象与反比例函数y =的图象交于A 、B 两点,与x 轴交于点C ,与y 轴交于点D ,已知OA =2,点B 的坐标是(m ,﹣4).(1)求反比例函数和一次函数的解析式;(2)若点E 在坐标轴上,且使得S △AED =2S △AOB ,求点E 的坐标.22.(12分)已知平面直角坐标系xOy 中,O 是坐标原点,点A (2,5)在反比例函数y =的图象上,过点A 的直线y =x +b 交x 轴于点B .(1)求反比例函数解析式;(2)求△OAB 的面积.23.(14分)如图,一次函数y=﹣2x+8与函数y=(x>0)的图象交于A(m,6),B (n,2)两点,AC⊥y轴于C,BD⊥x轴于D(1)求k的值;(2)根据图象直接写出﹣2x+8﹣<0的x的取值范围;(3)P是线段AB上的一点,连接PC,PD,若△PCA和△PDB面积相等,求点P坐标.人教版九年级下册数学《第二十六章反比例函数》单元测试题参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.【解答】解:A.把x=3代入y=得:y==﹣4,即A项错误,B.把x=﹣2代入y=得:y==6,即B项正确,C.把x=﹣2代入y=得:y==6,即C项错误,D.把x=﹣3代入y=得:y==4,即D项错误,故选:B.2.【解答】解:∵点A(1,y1)和点B(2,y2)是反比例函数y=﹣图象上的两点又∵反比例函数y=﹣在x>0时,y随着x的增大而增大,且1<2,∴y1<y2,故选:A.3.【解答】解:依题意有m+2=﹣1,解得m=﹣3,因而函数是y=,故函数经过第二、四象限.故选:D.4.【解答】解:当k>0时,直线从左往右上升,双曲线分别在第一、三象限;∵一次函数y=kx﹣1与y轴交于负半轴,∴D选项正确,故选:D.5.【解答】解:由于以80千米/时的平均速度用了6小时到达目的地,那么路程为80×6=480千米,∴汽车的速度v(千米/时)与时间t(小时)的函数关系为v=.故选:A.6.【解答】解:∵等腰三角形的面积为10,底边长为x,底边上的高为y,∴xy=10,∴y与x的函数关系式为:y=.故选:C.7.【解答】解:∵反比例函数的图象经过点P(3,﹣4),∴k=﹣4×3=﹣12,∴反比例函数解析式为y=﹣.故选:B.8.【解答】解:过D作GH⊥x轴,过A作AG⊥GH,过B作BM⊥HC于M,设D(x,),∵四边形ABCD是正方形,∴AD=CD=BC,∠ADC=∠DCB=90°,易得△AGD≌△DHC≌△CMB(AAS),∴AG=DH=﹣x﹣1,∴DG=BM,∵GQ=1,DQ=﹣,DH=AG=﹣x﹣1,由QG+DQ=BM=DQ+DH得:1﹣=﹣1﹣x﹣,解得x=﹣2,∴D(﹣2,﹣3),CH=DG=BM=1﹣=4,∵AG=DH=﹣1﹣x=1,∴点E的纵坐标为﹣4,当y=﹣4时,x=﹣,∴E(﹣,﹣4),∴EH=2﹣=,∴CE=CH﹣HE=4﹣=,∴S=CE•BM=××4=7;△CEB故选:C.9.【解答】解:过点C作CD⊥x轴于D,如图,设菱形的边长为a,在Rt△CDO中,OD=a•cos60°=a,CD=a•sin60°=a,则C(﹣a,a),∴A(﹣a﹣a,a)∵点A向下平移1个单位的点为(﹣a﹣a,a﹣1),即(﹣a,a﹣1),则,解得.故反比例函数解析式是:.故选:C.10.【解答】解:设CN=a,BM=b,则AN=3a,设N(x,3a),B(x+b,2a),则,解得:ax=3,∵N在双曲线y=上,∴k =3ax =3×3=9,故选:B .二.填空题(共4小题,满分20分,每小题5分)11.【解答】解:∵A (1,y 1),B (2,y 2)两点在双曲线y =上, ∴y 1=m +3,y 2=∵y 1>y 2,∴m +3>∴m >﹣3故答案为:m >﹣312.【解答】解:∵点M (2,m )是函数y =x 与y =的图象在第一象限内的交点, ∴解得k =4故答案为:413.【解答】解:由题意可得:sh =3×2×1,则s =.故答案为:s =.14.【解答】解:连接AE ,OA ,如图,∵D 为AC 的中点,∴S △AED =S △CED ,S △ABD =S △CBD ,∴S △BCE =S △ABE ,∵S △ABE =S △AOB =×|﹣2|=1,∴△BEC 的面积为1.故答案为1.三.解答题(共9小题,满分90分)15.【解答】解:作AD⊥x轴于D,作BE⊥AD于E,如图,设A(k,1),B(,3)∵A、B点的纵坐标分别为1和3,∴AD=1,DE=3,∴AE=2,∵四边形AOCB为矩形,∴∠OAB=90°,∵∠BAE+∠OAD=90°,∠OAD+∠AOD=90°,∴∠BAE=∠AOD,∴Rt△ABE∽Rt△OAD,∴=,即=,解得k=或k=﹣(舍去)即k的值为.16.【解答】解:(1)把x=﹣1代入一次函数y1=﹣x+2得:y1=﹣1+2=3,即点A的坐标为:(﹣1,3),把点A(﹣1,3)代入反比例函数y2=得:3=,解得:k=﹣3,即反比例函数为y2=﹣,(2)一次函数y=﹣x+2与反比例函数y=﹣联立得:,解得:或,即点A的坐标为:(﹣1,3),点B的坐标为:(3,﹣1),由图象可知:当﹣1<x<0或x>3时,y1<y2,故答案为:﹣1<x<0或x>3.17.【解答】解:(1)∵函数y=(x>0)的图象经过点A(2,2),∴k=2×2=4;(2)∵OB=2AC,AC=2,∴OB=4.分两种情况:①如果B(﹣4,0).∵直线y=ax+b(a≠0)图象经过点A交x轴于点B,∴,解得;②如果B(4,0).∵直线y=ax+b(a≠0)图象经过点A交x轴于点B,∴,解得.综上,所求a的值为或﹣1.18.【解答】解:(1)把x=﹣2代入y=﹣x+1,得y=2+1=3,∴A(﹣2,3),∵反比例函数y=的图象过点A,∴k=﹣2×3=﹣6,∴反比例函数的解析式为y=﹣;(2)由,解得,或,∴B(3,﹣2),=×3×5=7.5;∴S△ABC(3)由图象可知,当﹣2<x<0或x>3时,直线y=﹣x+1落在双曲线y=的下方,所以关于x的不等式﹣x+1<的解集是﹣2<x<0或x>3.19.【解答】解:(1)过A作AE⊥OC与E,∵tan∠AOC=,∴设AE=2x,OE=3x,∴AO==x=2,∴x=2,∴AE=4,OE=6,∴A(﹣6,4),∴线AB与双曲线y=交于A,B两点,∴k=﹣6×4=﹣3m,∴k=﹣24,m=8,∴反比例函数式为y=﹣,B(﹣3,8),设一次函数的解析式为y=kx+b,∴,解得:,∴一次函数的解析式为y=x+12;(2)设P(n,0),∵△AOP的面积等于△AOB的面积,∴|n|×4=(4+8)×3,∴n=±9,∴P(9,0)或(﹣9,0).20.【解答】解:(1)∵在Rt△ABD中,∠ABD=90°,AD=2,cos∠ADB=,∴BD=AD•cos∠ADB=2×=2,由勾股定理得,AB===4,∵点O是线段BD的中点,∴点A的坐标为(1,4),点D的坐标为(﹣1,0).把A(1,4)代入y2=,得反比例函数的解析式为:y2=.把A(1,4),D(﹣1,0)代入y1=ax+b,得,解得,∴一次函数解析式为y1=2x+2;(2)由,解得,或,∴C(﹣2,﹣2).由图象可知,当﹣2≤x<0或x≥1时,一次函数y1=ax+b(a≠0)的图象在反比例函数y2=(k≠0)图象的上方,∴当﹣2≤x<0或x≥1时,y1≥y2.21.【解答】解:(1)如图,作AH⊥x轴于H.在Rt△AOH中,∵OA=2,tan∠AOH=,∴AH =2,OH =4,∴A (﹣4,2),∵A (﹣4,2)在y =的图象上,∴k =﹣8,∵B (m ,﹣4),在y =﹣的图象上上,∴m =2,把A 、B 坐标代入y =kx +b ,则,解得,∴反比例函数的解析式为y =﹣,一次函数的解析式为y =﹣x ﹣2.(2)由y =﹣x ﹣2,令x =0,则y =﹣2;令y =0,则x =﹣2,∴D (0,﹣2),C (﹣2,0),∴S △AOB =S △AOD +S △BOD =×2×(4+2)=6,若点E 在x 轴上,设E (x ,0),则DE =|y ﹣(﹣2)|.由S △AED =2S △AOB ,可得×|y ﹣(﹣2)|×(4+2)=2×6.解得x =2或﹣6,∴点E 的坐标为(2,0)或(﹣6,0);若点E 在y 轴上,设E (0,y ),则CE =|x ﹣(﹣2)|.由S △AED =2S △AOB ,可得×|x ﹣(﹣2)|×4=2×6.解得y =4或﹣8,∴点E 的坐标为(0,4)或(0,﹣8);综上所述,点E 的坐标为(2,0)或(﹣6,0)或(0,4)或(0,﹣8).22.【解答】解:(1)∵点A(2,5)在反比例函数y=的图象上,∴k=2×5=10∴反比例函数解析式:y=,(2)∵点A在直线y=x+b上,∴5=2+b∴b=3∴一次函数解析式y=x+3∵直线y=x+b交x轴于点B∴点B(﹣3,0)=×3×5=∴S△AOB23.【解答】解:(1)∵一次函数y=﹣2x+8的图象经过A(m,6),B(n,2)两点,∴﹣2m+8=6,﹣2n+8=2,解得:m=1,n=3,∵函数y=(x>0的图象经过A(m,6),B(n,2)两点,∴k=6,(2)﹣2x+8﹣<0,即﹣2x+8<,由图象可知:x的取值范围为0<x<1或x>3,(3)设直线y=﹣2x+8上点P的坐标为(x,﹣2x+8).由△PCA和△PDB面积相等,×AC×|y A﹣y P|=×BD×|x B﹣x p|,即×1×[6﹣(﹣2x+8)]=×2×(3﹣x),解得:x=2,则y=﹣2x+8=4,∴点P的坐标为(2,4).人教版数学九年级下册第二十六章反比例函数章末专题训练含答案人教版数学九年级下册第二十六章反比例函数章末专题训练一、选择题1.某反比例函数的图象过点,则此反比例函数解析式为 CA. B. C. D.2.下列式子中,y是x的反比例函数的是 DA. B. C. D.3.已知某种品牌电脑的显示器的寿命大约为2×104小时,这种显示器工作的天数为d(天),平均每天工作的时间为t(小时),那么能正确表示d与t之间的函数关系的图象是( C )A. B.C. D.4.若点A(﹣2,3)在反比例函数y=的图象上,则k的值是( A )A.﹣6 B.﹣2 C.2 D.65.某村耕地总面积为50公顷,且该村人均耕地面积y(单位:公顷/人)与总人口x(单位:人)的函数图象如图26-2-2所示,则下列说法正确的是( D )图26-2-2A.该村人均耕地面积随总人口的增多而增多B.该村人均耕地面积y与总人口x成正比例C.若该村人均耕地面积为2公顷,则总人口有100人D.当该村总人口为50人时,人均耕地面积为1公顷6.如图,已知点A在反比例函数上,轴,垂足为点C,且的面积为4,则此反比例函数的表达式为 CA.B.C.D.7.下列关系中,两个量之间为反比例函数关系的是 DA. 正方形的面积S与边长a的关系B. 正方形的周长l与边长a的关系C. 矩形的长为a,宽为20,其面积S与a的关系D. 矩形的面积为40,长a与宽b之间的关系8. 函数y=-与y=2x的图象没有交点,则k的取值范围是( D )A. k<0B. k<1C. k>0D. k>19.在对物体做功一定的情况下,力F(牛)与此物体在力的方向上移动的距离s(米)成反比例函数关系,其图象如图所示.P(5,1)在图象上,则当力达到10牛时,物体在力的方向上移动的距离是( A )A.0.5米 B.5米 C.1米 D.0.2米10.在一个可以改变体积的密闭容器内装有一定质量的某种气体,当改变容器的体积时,气体的密度也会随之改变,密度ρ(单位:kg/m3)与体积V(单位:m3)之间满足函数解析式ρ=kV(k为常数,k≠0),其图象如图26-2-4所示,则k的值为( A )图26-2-4A.9 B.-9 C.4 D.-4二、填空题11.若函数的图象经过点,点,写出一个符合条件的函数表达式______ .【答案】12.函数是y关于x的反比例函数,则______.【答案】313.如图,点A,B是双曲线y=上的点,分别经过A,B两点向x轴、y轴作垂线段,若S阴影=1,则S1+S2=.【答案】414.已知反比例函数y=K/X的图象经过点(﹣3,﹣1),则k= .【答案】315.如图,在中,,,点C在OA上,,的圆心P在线段BC上,且与边AB,AO都相切若反比例函数的图象经过圆心P,则 ______ .【答案】三、解答题16.如图,在四边形OABC中,,∠,点A,B的坐标分别为,,点D为AB上一点,且,双曲线经过点D,交BC于点E求双曲线的解析式;求四边形ODBE的面积.解:作轴于M,作轴于N,如图,点A,B的坐标分别为,,,,,,∽,,即,,,,点坐标为,把代入得新人教版九年级数学下册《第26章反比例函数》单元测试卷(解析版)一.选择题(共8小题,满分24分,每小题3分)1.已知反比例函数y=﹣,下列结论中不正确的是()A.图象必经过点(﹣3,2)B.图象位于第二、四象限C.若x<﹣2,则0<y<3D.在每一个象限内,y随x值的增大而减小2.若点(x1,y1)、(x2,y2)、(x3,y3)都是反比例函数y=的图象上的点,并且x1<0<x2<x3,则下列各式中正确的是()A.y1<y3<y2B.y2<y3<y1C.y3<y2<y1D.y1<y2<y3 3.反比例函数y=(k≠0)的图象如图所示,若点A(x1,y1)、B(x2,y2)、C(x3,y3)是这个函数图象上的三点,且x1>x2>0>x3,则y1、y2、y3的大小关系()A.y3<y1<y2B.y2<y1<y3C.y3<y2<y1D.y1<y2<y3 4.如图,已知直线y=k1x(k1≠0)与反比例函数y=(k2≠0)的图象交于M,N两点.若点M的坐标是(1,2),则点N的坐标是()A.(﹣1,﹣2)B.(﹣1,2)C.(1,﹣2)D.(﹣2,﹣1)5.若反比例函数的图象经过点A(,﹣2),则一次函数y=﹣kx+k与在同一坐标系中的大致图象是()A.B.C.D.6.已知点A(x1,y1),(x2,y2)是反比例函数y=图象上的点,若x1>0>x2,则一定成立的是()A.y1>y2>0B.y1>0>y2C.0>y1>y2D.y2>0>y1 7.在下图中,反比例函数的图象大致是()A.B.C.D.8.若点(﹣2,y1),(﹣1,y2),(3,y3)在双曲线y=(k<0)上,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y3<y2<y1C.y2<y1<y3D.y3<y1<y2二.填空题(共8小题,满分24分,每小题3分)9.写一个反比例函数的解析式,使它的图象在第一、三象限:.10.若点A(3,﹣4)、B(﹣2,m)在同一个反比例函数的图象上,则m的值为.11.双曲线y=在每个象限内,函数值y随x的增大而增大,则m的取值范围是.12.如图,点A(m,2),B(n,2)分别是反比例函数y=﹣,y=在x轴上方的图象上的点,点P是x轴上的动点,则PA+PB的最小值为.13.如图,在△AOB中,∠AOB=90°,点A的坐标为(4,2),BO=4,反比例函数y=的图象经过点B,则k的值为.14.某蓄水池的排水管的平均排水量为每小时8立方米,6小时可以将满池水全部排空.现在排水量为平均每小时Q立方米,那么将满池水排空所需要的时间为t(小时),写出时间t(小时)与Q之间的函数表达式.15.反比例函数y=的图象经过点(﹣3,2),则k的值为.16.如图,已知双曲线经过直角三角形OAB斜边OA的中点D,且与直角边AB相交于点C.若点A的坐标为(﹣6,4),则△AOC的面积为.三.解答题(共3小题)17.已知变量y与x成反比例函数关系,并且当x=2时,y=﹣3.(1)求y与x之间的函数关系式;(2)求当y=2时,x的值.18.如图,过点P(2,)作x轴的平行线交y轴于点A,交双曲线于点N,作PM⊥AN交双曲线于点M,连接AM,若PN=4.(1)求k的值;(2)设直线MN解析式为y=ax+b,求不等式的解集.19.如图1,点P为∠MON的平分线上一点,以P为顶点的角的两边分别与射线OM,ON交于A,B两点,如果∠APB绕点P旋转时始终满足OA•OB=OP2,我们就把∠APB叫做∠MON的智慧角.(1)如图2,已知∠MON=90°,点P为∠MON的平分线上一点,以P为顶点的角的两边分别与射线OM,ON交于A,B两点,且∠APB=135°.求证:∠APB是∠MON的智慧角.(2)如图1,已知∠MON=α(0°<α<90°),OP=2.若∠APB是∠MON 的智慧角,连结AB,用含α的式子分别表示∠APB的度数和△AOB的面积.(3)如图3,C是函数y=(x>0)图象上的一个动点,过C的直线CD分别交x轴和y轴于A,B两点,且满足BC=2CA,请求出∠AOB的智慧角∠APB 的顶点P的坐标.2019年春新人教版九年级数学下册《第26章反比例函数》单元测试卷参考答案与试题解析一.选择题(共8小题,满分24分,每小题3分)1.已知反比例函数y=﹣,下列结论中不正确的是()A.图象必经过点(﹣3,2)B.图象位于第二、四象限C.若x<﹣2,则0<y<3D.在每一个象限内,y随x值的增大而减小【分析】根据反比例函数的性质进行选择即可.【解答】解:A、图象必经过点(﹣3,2),故A正确;B、图象位于第二、四象限,故B正确;C、若x<﹣2,则y<3,故C正确;D、在每一个象限内,y随x值的增大而增大,故D正确;故选:D.【点评】本题考查了反比例函数的选择,掌握反比例函数的性质是解题的关键.2.若点(x1,y1)、(x2,y2)、(x3,y3)都是反比例函数y=的图象上的点,并且x1<0<x2<x3,则下列各式中正确的是()A.y1<y3<y2B.y2<y3<y1C.y3<y2<y1D.y1<y2<y3【分析】首先确定反比例函数的系数与0的大小关系,然后根据题意画出图形,再根据其增减性解答即可.【解答】解:∵﹣a2﹣1<0,∴反比例函数图象位于二、四象限,如图在每个象限内,y随x的增大而增大,∵x1<0<x2<x3,∴y2<y3<y1.故选:B.【点评】本题考查了由反比例函数图象的性质判断函数图象上点的函数值的大小,同学们要灵活掌握.3.反比例函数y=(k≠0)的图象如图所示,若点A(x1,y1)、B(x2,y2)、C(x3,y3)是这个函数图象上的三点,且x1>x2>0>x3,则y1、y2、y3的大小关系()A.y3<y1<y2B.y2<y1<y3C.y3<y2<y1D.y1<y2<y3【分析】由反比例函数图象可知,当x<0或x>0时,y随x的增大而增大,由此进行判断.【解答】解:由反比例函数的增减性可知,当x>0时,y随x的增大而增大,∴当x1>x2>0时,则0>y1>y2,又C(x3,y3)在第二象限,y3>0,∴y2<y1<y3,故选B.【点评】本题考查了反比例函数图象上点的坐标特点.关键是根据反比例函数的增减性解题.4.如图,已知直线y=k1x(k1≠0)与反比例函数y=(k2≠0)的图象交于M,N两点.若点M的坐标是(1,2),则点N的坐标是()A.(﹣1,﹣2)B.(﹣1,2)C.(1,﹣2)D.(﹣2,﹣1)【分析】直接利用正比例函数的性质得出M,N两点关于原点对称,进而得出答案.【解答】解:∵直线y=k1x(k1≠0)与反比例函数y=(k2≠0)的图象交于M,N两点,∴M,N两点关于原点对称,∵点M的坐标是(1,2),∴点N的坐标是(﹣1,﹣2).故选:A.【点评】此题主要考查了反比例函数与一次函数的交点问题,正确得出M,N两点位置关系是解题关键.5.若反比例函数的图象经过点A(,﹣2),则一次函数y=﹣kx+k与在同一坐标系中的大致图象是()A.B.C.D.【分析】首先利用待定系数法算出反比例函数k的值,再根据k的值确定反比例函数所在象限,根据k的值确定一次函数解析式,根据一次函数解析式确定一次函数图象所在象限,即可选出答案.【解答】解:∵反比例函数的图象经过点A(,﹣2),∴k=×(﹣2)=﹣1,∴反比例函数解析式为:y=﹣,∴图象过第二、四象限,∵k=﹣1,∴一次函数y=x﹣1,∴图象经过第一、三、四象限,联立两函数解析式可得:﹣=x﹣1,则x2﹣x+1=0,∵△=1﹣4<0,∴两函数图象无交点,故选:D.【点评】此题主要考查了待定系数法求反比例函数解析式,以及一次函数与反比例函数图象的性质,关键是根据k的值正确确定函数图象所在象限.6.已知点A(x1,y1),(x2,y2)是反比例函数y=图象上的点,若x1>0>x2,则一定成立的是()A.y1>y2>0B.y1>0>y2C.0>y1>y2D.y2>0>y1【分析】反比例函数y=(k≠0,k为常数)中,当k>0时,双曲线在第一,三象限,在每个象限内,y随x的增大而减小判定则可.【解答】解:∵k=2>0,∴函数为减函数,又∵x1>0>x2,∴A,B两点不在同一象限内,∴y2<0<y1;故选:B.【点评】本题考查了由反比例函数图象的性质判断函数图象上点的坐标特征,同学们应重点掌握.7.在下图中,反比例函数的图象大致是()A.B.C.D.【分析】由于y=,比例系数2>0,根据反比例函数的性质,可得图象在第一和第三象限.【解答】解:∵k=2,可根据k>0,反比例函数图象在第一、三象限;∴在每个象限内,y随x的增大而减小.故选:D.【点评】本题考查了反比例函数图象的性质:①k<0,反比例函数图象在第二、四象限,在每个象限内,y随x的增大而增大;②k>0,反比例函数图象在第一、三象限,在每个象限内,y随x的增大而减小.8.若点(﹣2,y1),(﹣1,y2),(3,y3)在双曲线y=(k<0)上,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y3<y2<y1C.y2<y1<y3D.y3<y1<y2【分析】先分清各点所在的象限,再利用各自的象限内利用反比例函数的增减性解决问题.【解答】解:∵点(﹣2,y1),(﹣1,y2),(3,y3)在双曲线y=(k<0)上,∴(﹣2,y1),(﹣1,y2)分布在第二象限,(3,y3)在第四象限,每个象限内,y随x的增大而增大,∴y3<y1<y2.故选:D.【点评】此题主要考查了反比例函数的性质,正确掌握反比例函数增减性是解题关键,注意:反比例函数的增减性要在各自的象限内.二.填空题(共8小题,满分24分,每小题3分)9.写一个反比例函数的解析式,使它的图象在第一、三象限:.【分析】反比例函数y=(k是常数,k≠0)的图象在第一,三象限,则k>0,符合上述条件的k的一个值可以是1.(正数即可,答案不唯一)【解答】解:∵反比例函数的图象在一、三象限,∴k>0,只要是大于0的所有实数都可以.例如:2.故答案为:y=等.【点评】此题主要考查了反比例函数图象的性质:(1)k>0时,图象是位于一、三象限;(2)k<0时,图象是位于二、四象限.10.若点A(3,﹣4)、B(﹣2,m)在同一个反比例函数的图象上,则m的值为6.【分析】设反比例函数解析式为y=,根据反比例函数图象上点的坐标特征得到k=3×(﹣4)=﹣2m,然后解关于m的方程即可.【解答】解:设反比例函数解析式为y=,根据题意得k=3×(﹣4)=﹣2m,解得m=6.故答案为6.【点评】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.11.双曲线y=在每个象限内,函数值y随x的增大而增大,则m的取值范围是m<1.【分析】根据反比例函数的单调性结合反比例函数的性质,可得出关于m的一元一次不等式,解不等式即可得出结论.【解答】解:∵双曲线y=在每个象限内,函数值y随x的增大而增大,∴m﹣1<0,解得:m<1.故答案为:m<1.【点评】本题考查了反比例函数的性质以及解一元一次不等式,解题的关键是找出关于m的一元一次不等式.本题属于基础题,难度不大,解决该题型题目时,根据反比例函数的单调性结合反比例函数的性质找出反比例系数k的取值范围是关键.12.如图,点A(m,2),B(n,2)分别是反比例函数y=﹣,y=在x轴上方的图象上的点,点P是x轴上的动点,则PA+PB的最小值为5.【分析】作A关于x轴的对称点C,连接BC,交x轴于P,则P即为使PA+PB 有最小值的点,根据轴对称的性质求得C的坐标,然后求得BC即可.【解答】解:∵点A(m,2),B(n,2)分别是反比例函数y=﹣,y=在x轴上方的图象上的点,∴2=﹣,解得m=﹣2,2=,解得n=1,∴A(﹣2,2),B(1,2),作A关于x轴的对称点C,连接BC,交x轴于P,则P即为使PA+PB有最小值的点,此时PA+PB=BC;∴C(﹣2,﹣2),∴BC==5;∴PA+PB的最小值为5;故答案为5.【点评】本题考查了反比例函数图象上点的坐标特征,轴对称﹣最短路线问题,勾股定理的应用等,熟练掌握轴对称的性质是解题的关键.13.如图,在△AOB中,∠AOB=90°,点A的坐标为(4,2),BO=4,反比例函数y=的图象经过点B,则k的值为﹣32.【分析】根据∠AOB=90°,先过点A作AC⊥x轴,过点B作BD⊥x轴,构造相似三角形,再利用相似三角形的对应边成比例,列出比例式进行计算,求得点B的坐标,进而得出k的值.【解答】解:过点A作AC⊥x轴,过点B作BD⊥x轴,垂足分别为C、D,则∠OCA=∠BDO=90°,∴∠DBO+∠BOD=90°,∵∠AOB=90°,∴∠AOC+∠BOD=90°,∴∠DBO=∠AOC,∴△DBO∽△COA,∴==,∵点A的坐标为(4,2),∴AC=2,OC=4,∴AO==2,∴==即BD=8,DO=4,∴B(﹣4,8),∵反比例函数y=的图象经过点B,∴k的值为﹣4×8=﹣32.故答案为﹣32【点评】本题主要考查了反比例函数图象上点的坐标特征以及相似三角形,注意:反比例函数图象上的点(x,y)的横、纵坐标的积是定值k,即xy=k,这是解决问题的关键.14.某蓄水池的排水管的平均排水量为每小时8立方米,6小时可以将满池水全部排空.现在排水量为平均每小时Q立方米,那么将满池水排空所需要的时间为t(小时),写出时间t(小时)与Q之间的函数表达式t=.【分析】根据蓄水量=每小时排水量×排水时间,即可算出该蓄水池的蓄水总量,再由防水时间=蓄水总量÷每小时的排水量即可得出时间t(小时)与Q之间的函数表达式.【解答】解:∵某蓄水池的排水管的平均排水量为每小时8立方米,6小时可以将满池水全部排空,∴该水池的蓄水量为8×6=48(立方米),∵Qt=48,∴t=.故答案为:t=.【点评】本题考查了根据实际问题列出反比例函数关系式,解题的关键是根据数量关系列出t关于Q的函数关系式.本题属于基础题,难度不大,解决该题型题目时,根据数量关系列出函数关系式是关键.15.反比例函数y=的图象经过点(﹣3,2),则k的值为﹣6.【分析】把(﹣3,2)代入函数解析式即可求k的值.。

福建省福州市数学中考复习第三章函数第三节反比例函数及其应用同步训练

福建省福州市数学中考复习第三章函数第三节反比例函数及其应用同步训练

第三节 反比例函数及其应用姓名:________ 班级:________ 限时:______分钟1.(2018·徐州)如果点(3,-4)在反比例函数y =kx 的图象上,那么下列各点中,在此图象上的点是( ) A .(3,4)B .(-2,-6)C .(-2,6)D .(-3,-4)2.(2017·镇江)a 、b 是实数,点A(2,a)、B(3,b)在反比例函数y =-2x 的图象上,则( ) A .a<b<0B .b<a<0C .a<0<bD .b<0<a3.(2018·龙岩质检)在同一直角坐标系中,函数y =kx和y =kx +1的大致图象可能是( )4.(2018·临沂)如图,正比例函数y 1=k 1x 与反比例函数y 2=k 2x 的图象相交于A 、B 两点,其中点A 的横坐标为1,当y 1<y 2时,x 的取值范围是( )A .x <1或x >1B .-1<x <0或x >1C.-1<x<0或0<x<1 D.x<-1或0<x<15.(2018·天津)若点A(x1,-6),B(x2,-2),C(x3,2)在反比例函数y=12x的图象上,则x 1,x2,x3的大小关系是( )A.x1<x2<x3B.x2<x1<x3C.x2<x3<x1D.x3<x2<x16.(2018·嘉兴)如图,点C在反比例函数y=kx(x>0)的图象上,过点C的直线与x轴,y轴分别交于点A,B,且AB=BC,△AOB的面积为1,则k的值为( )A.1 B.2 C.3 D.4 7.(2018·莆田质检)如图,点A,B分别在反比例函数y=1x(x>0),y=ax(x<0)的图象上,若OA⊥OB,OBOA=2,则a的值为( )A.-4 B.4 C.-2 D.28.(2018·郴州)如图,A,B是反比例函数y=4x在第一象限内的图象上的两点,且A,B两点的横坐标分别是2和4,则△AOB的面积是( )A .4B .3C .2D .19.(2018·重庆B 卷)如图,菱形ABCD 的边AD⊥y 轴,垂足为点E ,顶点A 在第二象限,顶点B 在y 轴的正半轴上,反比例函数y =kx (k≠0,x >0)的图象同时经过顶点C ,D.若点C 的横坐标为5,BE =3DE ,则k 的值为( )A.52B .3C.154D .510.(2018·云南省卷)已知点P(a ,b)在反比例函数y =2x 的图象上,则ab =________.11.(2018·宜宾)已知:点P(m ,n)在直线y =-x +2上,也在双曲线y =-1x 上,则m 2+n 2的值为________.12.(2018·陕西)若一个反比例函数的图象经过点A(m ,m)和B(2m ,-1),则这个反比例函数的表达式为________.13.(2018·随州)如图,一次函数y =x -2的图象与反比例函数y =kx (k >0)的图象相交于A 、B 两点,与x 轴交于点C ,若tan ∠AOC=13,则k 的值为________.14.(2018·衢州)如图,点A ,B 是反比例函数y =kx (x >0)图象上的两点,过点A ,B 分别作AC⊥x 轴于点C ,BD⊥x 轴于点D ,连接OA ,BC ,已知点C(2,0),BD =2,S △BCD =3,则S △AOC =________.15.(2018·漳州质检)如图,双曲线y =kx (x >0)经过A ,B 两点,若点A 的横坐标为1,∠OAB=90°,且OA =AB ,则k 的值为________.16 .(2018·盐城)如图,点D 为矩形OABC 的AB 边的中点,反比例函数y =kx (x >0)的图象经过点D ,交BC 边于点E.若△BDE 的面积为1,则k =________.17.(2018·南平质检)如图,反比例函数y =kx(k≠0)与一次函数y =ax +b (b≠0)相交于点A(1,3),B(c,-1).(Ⅰ)求反比例函数与一次函数的解析式;(Ⅱ)在反比例函数图象上存在点C,使△AOC为等腰三角形,这样的点有几个,请直接写出一个以AC为底边的等腰三角形顶点C的坐标.18.(2018·山西)如图,一次函数y1=k1x+b(k1≠0)的图象分别与x轴、y轴相交于点A、B,与反比例函数y2=k2x(k2≠0)的图象相交于点C(-4,-2),D(2,4).(1)求一次函数和反比例函数的表达式;(2)当x为何值时,y1>0;(3)当x为何值时,y1<y2,请直接写出x的取值范围.19.(2018·泰安)如图,矩形ABCD 的两边AD 、AB 的长分别为3、8,E 是DC 的中点,反比例函数y =mx的图象经过点E ,与AB 交于点F.(1)若点B 的坐标为(-6,0),求m 的值及图象经过A 、E 两点的一次函数的表达式; (2)若AF -AE =2,求反比例函数的表达式.20.(2018·杭州)设一次函数y =kx +b(k ,b 是常数,k≠0)的图象过A(1,3),B(-1,-1)两点. (1)求该一次函数的表达式;(2)若点(2a +2,a 2)在一次函数图象上,求a 的值;(3)已知点C(x 1,y 1),D(x 2,y 2)在该一次函数图象上,设m =(x 1-x 2)(y 1-y 2),判断反比例函数y =m +1x 的图象所在的象限,说明理由.21.(2018·凉州区)如图,一次函数y =x +4的图象与反比例函数y =kx(k 为常数且k≠0)的图象交于A(-1,a),B两点,与x轴交于点C.(1)求此反比例函数的表达式;(2)若点P在x轴上,且S△ACP =32S△BOC,求点P的坐标.22.(2018·湘潭)如图,点M在函数y=3x(x>0)的图象上,过点M分别作x轴和y轴的平行线交函数y=1x(x>0)的图象于点B、C.(1)若点M的坐标为(1,3).①求B、C两点的坐标;②求直线BC对应的函数解析式;(2)求△BMC的面积.23.(2018·江西)如图,反比例函数y=kx(k≠0)的图象与正比例函数y=2x的图象相交于A(1,a),B两点,点C在第四象限,CA∥y轴,∠ABC=90°.(1)求k的值及点B的坐标;(2)求tan C的值.1.(2018·泉州质检)如图,反比例函数y =kx 的图象经过正方形ABCD 的顶点A 和中心E ,若点D 的坐标为(-1,0),则k 的值为( )A .2B .-2 C.12D .-122.(2018·福州质检)如图,直线y 1=-43x 与双曲线y 2=kx 交于A ,B 两点,点C 在x 轴上,连接AC ,BC ,若∠ACB=90°,△ABC 的面积为10,则k 的值是______.3.(2018·宁德质检)如图,点A ,D 在反比例函数y =mx (m <0)的图象上,点B ,C 在反比例函数y =nx (n >0)的图象上,若AB∥CD∥x 轴,AC∥y 轴,且AB =4,AC =3,CD =2,则n =________.4.(2018·荆门)如图,在平面直角坐标系xOy 中,函数y =kx(k >0,x >0)的图象经过菱形OACD 的顶点D 和边AC 的中点E ,若菱形OACD 的边长为3,则k 的值为______.5.(2018·安徽)如图,正比例函数y =kx 与反比例函数y =6x 的图象有一个交点A(2,m),AB⊥x 轴于点B ,平移直线y =kx ,使其经过点B ,得到直线l .则直线l 对应的函数表达式是________.6. (2018·厦门质检)已知点A ,B 在反比例函数y =6x (x >0)的图象上,且横坐标分别为m ,n ,过点A ,B 分别向y 轴、x 轴作垂线段,两条垂线段交于点C ,过点A ,B 分别作AD⊥x 轴于D ,BE⊥y 轴于E.(1)若m =6,n =1,求点C 的坐标;(2)若m(n -2)=3,当点C 在直线DE 上时,求n 的值.7.(2018·北京)在平面直角坐标系xOy中,函数y=kx(x>0)的图象G经过点A(4,1),直线l:y=14x+b与图象G交于点B,与y轴交于点C.(1)求k的值;(2)横、纵坐标都是整数的点叫做整点,记图象G在点A,B之间的部分与线段OA,OC,BC围成的区域(不含边界)为W.①当b=-1时,直接写出区域W内的整点个数;②若区域W内恰有4个整点,结合函数图象,求b的取值范围.参考答案【基础训练】1.C 2.A 3.A 4.D 5.B 6.D 7.A 8.B 9.C 10.2 11.6 12.y =4x 13.3 14.5 15.1+5216.417.解: (Ⅰ)把A(1,3)代入y =kx (k≠0)中得,k =3×1=3,∴反比例函数的解析式为y =3x ,把B(c ,-1)代入y =3x 中,得c =-3,把A(1,3),B(-3,-1)代入y =ax +b 中,得 ⎩⎨⎧a +b =3,-3a +b =-1,∴⎩⎨⎧a =1,b =2. ∴一次函数的解析式为y =x +2.(Ⅱ)如解图,这样的点有4个,以AC 为底边的有C 1(1,3),C 2(3,1)或C 3(-3,-1)或C 4(-1,-3).18.解: ∵一次函数y 1=k 1x +b(k≠0)的图象经过点C(-4,-2),D(2,4), ∴⎩⎨⎧-4k 1+b =-22k 1+b =4,解得⎩⎨⎧k 1=1,b =2, ∴一次函数的表达式为y 1=x +2;∵反比例函数y 2=k 2x (k≠0)的图象经过点D(2,4),∴4=k 22,∴k 2=8,∴反比例函数的表达式为y 2=8x.(2)由y 1>0,得x +2>0, ∴x>-2,∴当x >-2时,y 1>0.(3)x <-4或0<x <2.19.解: (1)∵B(-6,0),AD =3,AB =8,E 为CD 的中点,∴E(-3,4),A(-6,8). ∵反比例函数图象过点E(-3,4),∴m=-3×4=-12. 设图象经过A 、E 两点的一次函数表达式为:y =kx +b(k≠0),∴⎩⎨⎧-6k +b =8,-3k +b =4, 解得⎩⎨⎧k =-43,b =0.∴y=-43x.(2)∵AD=3,DE =4,∴AE=5. ∵AF-AE =2,∴AF=7,∴BF=1.设E 点坐标为(a ,4),则F 点坐标为(a -3,1). ∵E,F 两点在y =mx 的图象上,∴4a =a -3,解得a =-1,∴E(-1,4),∴m=-4,∴y=-4x.20.解: (1)将A(1,3),B(-1,-1)代入y =kx +b 中,得出⎩⎨⎧k +b =3,-k +b =-1, ,解得⎩⎨⎧k =2,b =1.∴一次函数的表达式为y =2x +1. (2)∵点(2a +2,a 2)在该一次函数图象上, ∴ a 2=2(2a +2)+1,∴a 2-4a -5=0, 解得a 1=5,a 2=-1.(3)由题意知, y 1-y 2=(2x 1+1)-(2x 2+1)=2(x 1-x 2), ∴m=(x 1-x 2)(y 1-y 2)=2(x 1-x 2)2≥0,∴m+1≥1>0, ∴反比例函数y =m +1x的图象在第一、三象限. 21.解: (1)把点A(-1,a)代入y =x +4,得a =3, ∴A(-1,3).把A(-1,3)代入反比例函数y =kx ,得k =-3.∴反比例函数的表达式为y =-3x.(2)联立两个函数表达式:⎩⎨⎧y =x +4,y =-3x ,解得⎩⎨⎧x =-1,y =3,或⎩⎨⎧x =-3,y =1.∴点B 的坐标为(-3,1). 当y =x +4=0时,得x =-4, ∴点C(-4,0). 设点P 的坐标为(x ,0). ∵S △ACP =32S △BOC ,∴12×3×|x-(-4)|=32×12×4×1, 解得x 1=-6,x 2=-2. ∴点P(-6,0)或(-2,0).22.解: (1)①∵点M 的坐标为(1,3),且B 、C 在函数y =1x (x >0)的图象上,∴点C 横坐标为1,纵坐标为1, 点B 纵坐标为3,横坐标为13,即点C 坐标为(1,1),点B 坐标为(13,3).②设直线BC 对应函数解析式为y =kx +b(k≠0),把B 、C 点坐标分别代入得⎩⎨⎧1=k +b ,3=13k +b ,解得⎩⎨⎧k =-3,b =4.∴直线BC 对应的函数解析式为:y =-3x +4. (2)设点M 的坐标为(a ,b), ∵点M 在函数y =3x (x >0)的图象上,∴ab=3.易知点C 坐标为(a ,1a ),B 点坐标为(1b ,b),∴BM=a -1b =ab -1b ,MC =b -1a =ab -1a ,∴S △BMC =12·ab -1b ·ab -1a =12×(ab -1)2ab =23.23.解: (1)把A(1,a)代入y =2x ,得a =2,则A(1,2), 把A(1,2)代入y =kx ,得k =1×2=2,∴反比例函数的解析式为y =2x,联立方程⎩⎨⎧y =2x ,y =2x ,得⎩⎨⎧x =1,y =2,或⎩⎨⎧x =-1,y =-2,, ∴B 点坐标为(-1,-2); (2)设AC 与x 轴交于点D ,Rt △ABC 中,∠ABC=90°, ∴∠C+∠A=90°Rt △AOD 中,∠A+∠AOD=90°, ∴∠C=∠AOD, ∴tan C =ADOD =2.【拔高训练】1.B 2.-6 3.83 4.2 5 5.y =32x -36.解: (1)∵当m =6时,y =66=1,又∵n=1,∴C(1,1).(2)∵点A ,B 的横坐标分别为m ,n ,∴A(m,6m ),B(n ,6n )(m >0,n >0).∴D(m,0),E(0,6n ),C(n ,6m).设直线DE 对应的函数表达式为y =kx +b(k≠0), 把D(m ,0),E(0,6n )分别代入表达式,可得y =-6mn x +6n .∵点C 在直线DE 上,∴把C(n ,6m )代入y =-6mn x +6n ,化简得m =2n.把m =2n 代入m(n -2)=3,得2n(n -2)=3. 解得n =2±102.∵n>0,∴n=2+102. 7.(1)解:∵点A(4,1)在y =kx (x>0)的图象上.∴k4=1, ∴k=4.(2)① 3个.(1,0),(2,0),(3,0).②a .当直线过(4,0)时:14×4+b =0,解得b =-1,b .当直线过(5,0)时:14×5+b =0,解得b =-54,11第7题解图①c .当直线过(1,2)时:14×1+b =2,解得b =74,d .当直线过(1,3)时:14×1+b =3,解得b =114第7题解图②∴综上所述:-54≤b<-1或74<b≤114.。

福建省9市中考数学 专题6 函数的图像与性质精品试题分类解析汇编

福建省9市中考数学 专题6 函数的图像与性质精品试题分类解析汇编

福建省9市中考数学 专题6 函数的图像与性质精品试题分类解析汇编一、选择题1.(福建福州4分)如图是我们学过的反比例函数图象,它的函数解析式可能是A 、2y x =B 、4y x =C 、3y x=-D 、12y x =【答案】B 。

【考点】反比例函数的图象。

【分析】根据图象可知:函数是反比例函数,且k >0,选项B 的k =4>0,符合条件。

故选B 。

2.(福建漳州3分)如图,P (x ,y)是反比例函数y = 3x 的图象在第一象限分支上的一个动点,PA⊥x 轴于点A ,PB⊥y 轴于点B ,随着自变量x 的增大,矩形OAPB 的 面积A .不变B .增大C .减小D .无法确定【答案】A 。

【考点】反比例函数系数k 的几何意义。

【分析】因为过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S 是个定值,即S=12|k|,所以随着x 的逐渐增大,矩形OAPB 的面积将不变。

故选A 。

3.(福建三明4分)下列4个点,不在..反比例函数y =-6x 图象上的是A 、(2,﹣3)B 、(﹣3,2)C 、(3,﹣2)D 、(3,2)【答案】D 。

【考点】反比例函数图象上点的坐标特征,曲线上点的坐标与方程的关系。

【分析】原式可化为:xy=﹣6,所以只要点的横坐标与纵坐标的积等于﹣6,就在函数图象上:A 、2×(﹣3)=﹣6,符合条件;B 、(﹣3)×2=﹣6,符合条件;C 、3×(﹣2)=﹣6,符合条件;D 、3×2=6,不符合条件。

故选D 。

4.(福建龙岩4分)下列图象中,能反映函数y 随x 增大而减小的是xyODx yOCxyOBxy OA【答案】D 。

【考点】一次、二次、反比例函数图象的增减性。

【分析】A :直线y 随x 增大而增大,选项错误;B :抛物线在对称轴左边y 随x 增大而减小,右边y 随x 增大而增大,选项错误; C :双曲线分别在两个象限内y 随x 增大而增大,选项错误; D 、直线y 随x 增大而减小,选项正确。

【初三数学】福州市九年级数学下(人教版)第二十六章《反比例函数》单元综合练习卷(含答案)

【初三数学】福州市九年级数学下(人教版)第二十六章《反比例函数》单元综合练习卷(含答案)

人教版九年级数学下册《第二十六章 反比例函数》单元测试题(有答案)一、选择题(本大题共10小题,每小题3分,共30分) 1.下列各点中,在函数y =-6x 图象上的是( )A .(-2,-4)B .(2,3)C .(-1,6) D.⎝⎛⎭⎫-12,3 2.已知点P ⎝⎛⎭⎫-12,2在反比例函数y =kx (k ≠0)的图象上,则k 的值是( ) A .-12B .2C .1D .-13.若双曲线y =kx 的图象经过第二、四象限,则k 的取值范围是( )A .k >0B .k <0C .k ≠0D .不存在4.已知三角形的面积一定,则它的底边a 上的高h 与底边a 之间的函数关系的图象大致是( )A B C D5.已知反比例函数y =kx (k ≠0)的图象经过点(2,5),若点(1,n )在反比例函数的图象上,则n 等于( )A .10B .5C .2 D.1106.关于反比例函数y =4x 的图象,下列说法正确的是( )A .必经过点(1,1)B .两个分支分布在第二、四象限C .两个分支关于x 轴成轴对称D .两个分支关于原点成中心对称7.函数y =2x 与函数y =-1x在同一坐标系中的大致图象是( )8.在同一直角坐标系下,直线y =x +1与双曲线y =1x 的交点的个数为( )A .0个B .1个C .2个D .不能确定9.已知反比例函数y =ax (a ≠0)的图象,在每一象限内,y 的值随x 值的增大而减小,则一次函数y =-ax +a 的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限10.如图26-1,直线l 和双曲线y =kx (k >0)交于A ,B 两点,P 是线段AB 上的点(不与A ,B 重合),过点A ,B ,P 分别向x 轴作垂线,垂足分别是C ,D ,E ,连接OA ,OB ,OP ,设△AOC 面积是S 1,△BOD 面积是S 2,△POE 面积是S 3,则( )A .S 1<S 2<S 3B .S 1>S 2>S 3C .S 1=S 2>S 3D .S 1=S 2<S 3图26-1 图26-2二、填空题(本大题共6小题,每小题4分,共24分)11.如图26-2所示的曲线是一个反比例函数图象的一支,点A 在此曲线上,则该反比例函数的解析式为______________.12.在反比例函数y =k -2013x 图象的每一支曲线上,y 都随x 的增大而减小,则k 的取值范围是______________.13.图26-3是一个反比例函数图象的一部分,点A (1,10),B (10,1)是它的端点.此函数的解析式为____________,自变量x 的取值范围为____________.图26-314.反比例函数y =(m -2)x 2m+1的函数值为13时,自变量x 的值是____________.15.l 1是反比例函数y =kx 在第一象限内的图象,且过点A (2,1),l 2与l 1关于x 轴对称,那么图象l 2的函数解析式为____________(x >0).16.反比例函数y =kx 的图象与一次函数y =2x +1的图象的一个交点是(1,k ),则反比例函数的解析式是__________.三、解答题(一)(本大题共3小题,每小题6分,共18分)17.对于反比例函数y =7x ,请写出至少三条与其相关的正确结论.例如:反比例函数经过点(1,7).18.在某一电路中,保持电压不变,电流I (单位:A)与电阻R (单位:Ω)成反比例,当电阻R =5 Ω时,电流I =2 A.(1)求I 与R 之间的函数关系式; (2)当电流为20 A 时,电阻应是多少?19.反比例函数y =kx的图象经过点A (2,3).(1)求这个函数的解析式;(2)请判断点B (1,6)是否在这个反比例函数的图象上,并说明理由.四、解答题(二)(本大题共3小题,每小题7分,共21分)20.如图26-4,一次函数y 1=kx +b 的图象与反比例函数y 2=mx 的图象相交于点A (2,3)和点B ,与x 轴相交于点C (8,0),求这两个函数的解析式.图26-421.某空调厂的装配车间原计划用2个月时间(每月以30天计算),每天组装150台空调.(1)从组装空调开始,每天组装的台数m (单位:台/天)与生产的时间t (单位:天)之间有怎样的函数关系?(2)由于气温提前升高,厂家决定将这批空调提前十天上市,那么装配车间每天至少要组装多少台空调?22.点P (1,a )在反比例函数y =kx 的图象上,它关于y 轴的对称点在一次函数y =2x +4的图象上,求此反比例函数的解析式.五、解答题(三)(本大题共3小题,每小题9分,共27分)23.已知图26-5中的曲线为函数y =m -5x (m 为常数)图象的一支.(1)求常数m 的取值范围;(2)若该函数的图象与正比例函数y =2x 的图象在第一象限的交点为A (2,n ),求点A 的坐标及反比例函数的解析式.图26-524.如图26-6,在平面直角坐标系中,O 为原点,一次函数与反比例函数的图象相交于A (2,1),B (-1,-2)两点,与x 轴交于点C .(1)分别求反比例函数和一次函数的解析式(关系式); (2)连接OA ,求△AOC 的面积.图26-625.某商场出售一批进价为2元的贺卡,在市场营销中发现此商品的日销售单价x (单位:元)与日销售量y (单位:个)之间有如下关系:(1)(2)设经营此贺卡的销售利润为W元,求出W与x之间的函数关系式.若物价局规定此贺卡的单价最高不能超过10元,请你求出当日销售单价x定为多少时,才能获得最大日销售利润?第二十六章单元测试题参考答案1.C 2.D 3.B 4.D 5.A 6.D 7.B 8.C 9.C10.D 解析:点A ,B 在反比例函数的图象上,所以S 1=S 2,设PE 与双曲线相交于点F ,则△FOE 的面积=S 1=S 2,显然S 3>S △FOE ,所以S 1=S 2<S 3.11.y =3x 12.k >2013 13.y =10x1≤x ≤1014.-9 解析:由2m +1=-1,可得m =-1,即y =-3x ,当y =13时,x =-9.15.y =-2x人教版初中数学九年级下册第二十六章《反比例函数》单元测试解析板一、选择题(共10小题,每小题分,共0分) 1.反比例函数y =(k 为非零常数)的图象在其所在象限内,y 的值随x 值的增大而增大,那么函数y =x 的图象经过第几象限( ) A . 一、二 B . 一、三 C . 二、三 D . 二、四2.蓄电池的电压为定值,使用此电源时,电流I (A)与电阻R (Ω)成反比例,其函数图象如图所示,则电流I 与电阻R 之间的函数关系式为( )A .I =B .I =C .I =D .I =3.日常生活中有许多现象应用了反比例函数,下列现象:①购买同一商品,买的越多,花钱越多;②百米赛跑时,用时越短,成绩越好;③把浴盆放满水,水流越大,用时越短;④从网上下载同一文件,网速越快,用时越少.其中符合反比例关系的现象有()A.1个B.2个C.3个D.4个4.下列问题中,两个变量成反比例的是()A.长方形的周长确定,它的长与宽B.长方形的长确定,它的周长与宽C.长方形的面积确定,它的长与宽D.长方形的长确定,它的面积与宽5.)函数y=(a-2)是反比例函数,则a的值是()A.1或-1B.-2C.2D.2或-26.下列函数在每一个象限内y随x的增大而增大的是()A.y=-x+1B.y=x2-1C.y=D.y=2x7.若反比例函数y=的图象经过点(1,4),则它的图象也一定经过的点是()A.(-1,-4)B.(1,-4)C.(4,-1)D.(-1,4)8.已知反比例函数的图象经过点P(a,a),则这个函数的图象位于()A.第一、三象限B.第二、三象限C.第二、四象限D.第三、四象限9.一块砖所受的重力为14.7 N,它的长、宽、高分别为20 cm、10 cm、5 cm,将砖平放时对地面的压强是()A.735PaB.753PaC.73.5PaD.75.3Pa10.当三角形的面积一定时,三角形的底和底边上的高是()A.正比例函数B.反比例函数C.一次函数D.二次函数分卷II二、填空题(共10小题,每小题分,共0分)11.如图,点A、B在函数y=(x>0)的图象上,过点A、B分别向x、y轴作垂线,若阴影部分图形的面积恰好等于S1,则S1+S2=__________.12.我校滨湖校区计划劈出一块面积为100 m2的长方形土地做花圃,请写出这个花圃的长y(m)与宽x(m)的函数关系式_____________________.13.)已知反比例函数y=-,下列结论:①图象必经过点(-1,2);②y随x的增大而增大;③图象在第二、四象限内;④若x>1,则y>-2.其中正确的有__________.(填序号)14.已知反比例函数y=的图象如下,则k的值可为__________.(写出满足条件的一个k 的值即可)15.某种灯的使用寿命为8 000小时,那么它可使用的天数y与平均每天使用的小时数x之间的函数关系式为________________.16.二氧化碳的密度ρ(kg/m3)关于其体积V(m3)的函数关系式如图所示,那么函数关系式是__________.17.已知反比例函数y=,当y=6时,x=__________.18.新学期开始时,有一批课本要从A城市运到B县城,如果两地路程为500米,车速为每小时x千米,从A城市到B县城所需时间为y小时,那么y与x的函数关系式是__________.19.已知反比例函数y=(b为常数且不为0 )的图象在二、四象限,则一次函数y=x+b的图象不经过第________象限.20.如图,过原点O的直线与反比例函数y=的图象相交于点A(1,3)、B(x,y),则点B的坐标为________________.三、解答题(共8小题,每小题分,共0分)21.已知一个长方体的体积是100 cm3,它的长是y cm,宽是10 cm,高是x cm.(1)写出y与x之间的函数关系式;(2)当x=2 cm时,求y的值.22.画出函数y=的图象.23.工匠制作某种金属工具要进行材料煅烧和锻造两个工序,即需要将材料烧到800 ℃,然后停止煅烧进行锻造操作,经过8 min时,材料温度降为600 ℃.煅烧时温度y(℃)与时间x(min)成一次函数关系;锻造时,温度y(℃)与时间x(min)成反比例函数关系(如图).已知该材料初始温度是32 ℃.(1)分别求出材料煅烧和锻造时y与x的函数关系式,并且写出自变量x的取值范围;(2)根据工艺要求,当材料温度低于480 ℃时,须停止操作.那么锻造的操作时间有多长?24.如图,点P是双曲线y=第二象限上的点,且P(-2,3),在这条双曲线第二象限上有点Q,且△PQO的面积为8,求点Q的坐标.25.已知反比例函数y=(k≠0,k是常数)的图象过点P(-3,5).(1)求此反比例函数的解析式;(2)在函数图象上有两点(a1,b1)和(a2,b2),若a1<a2,试判断b1与b2的大小关系.26.k为何值时,y=(k2+k)是反比例函数.27.如图,Rt△ABO的顶点O在坐标原点,点B在x轴上,∠ABO=90°,∠AOB=30°,OB=2,反比例函数y=(x>0)的图象经过OA的中点C,交AB于点D.(1)求反比例函数的关系式;(2)连接CD,求四边形CDBO的面积.28.下列函数中,哪些表示y是x的反比例函数:(1)y=;(2)y=;(3)xy=6;(4)3x+y=0;(5)x-2y=1;(6)3xy+2=0.答案解析1.【答案】D【解析】∵反比例函数y=(k为非零常数)的图象在其所在象限内,y的值随x值的增大而增大,∴k<0,∴<0,∴函数y=x的图象经过二四象限.故选D.2.【答案】A【解析】设所求函数解析式为I=,∵(4,6)在所求函数解析式上,∴k=4×6=24.故选A.3.【答案】C【解析】①购买同一商品,买的越多,花钱越多是正比例关系,故本小题错误;②百米赛跑时,用时越短,成绩越好是反比例关系,故本小题正确;③把浴盆放满水,水流越大,用时越短是反比例关系,故本小题正确;④从网上下载同一文件,网速越快,用时越少是反比例关系,故本小题正确.故选C.4.【答案】C【解析】A.长方形的周长=2×(长+宽),即长和宽的和为定值,所以根据正比例的概念应该是长和宽成正比例.故本选项错误;B.长方形的周长=2×(长+宽),所以长=周长-宽,即周长的一半长和宽的和为定值,所以根据正比例的概念应该是周长和宽成正比例.故本选项错误;C.长方形的面积=长×宽,即长和宽的乘积为定值,所以根据反比例的概念应该是长和宽成反比例;故本选项正确;D.长方形的面积=长×宽,即长和宽的乘积为定值,所以根据正比例的概念应该是长和宽成正比例;故本选项错误;故选C.5.【答案】A【解析】∵函数y=(a-2)是反比例函数,∴a2-2=-1,a-2≠0.解得a=±1.故选A.6.【答案】D【解析】A.一次函数y=-x+1中k=-1<0,y随着x的增大而减小,不符合题意;B.二次函数y=x2-1的对称轴为x=0,开口向上,当x>0时y随着x的增大而增大,不符合题意;C.反比例函数中k=1>0,在每一象限内y随着x的增大而减小,不符合题意;D.y=2x中k=2>0,y随着x的增大而增大,符合题意,故选D.7.【答案】A【解析】∵反比例函数y=的图象经过点(1,4),∴k=1×4=4,∴y=,∴函数图象上点的横、纵坐标的积是定值4,即xy=4,∴(-1,-4)在函数图象上.故选A.8.【答案】A【解析】设反比例函数解析式为y=(k≠0),∵点P(a,a)在反比例函数图象上,∴k=a2.当a≠0时,k=a2>0,反比例函数图象在第一、三象限;当a=0时,点P为原点,不可能在反比例函数图象上,故无此种情况.故选A.9.【答案】A【解析】当砖平放时,与地面的接触面积为20×10=200(cm2)=0.02(m2).所以压强P===735(Pa).故选A.10.【答案】B【解析】由于三角形面积=×底×高,所以面积一定时,底×高=定值,即底和高成反比例.三角形的底×高=三角形面积×2(定值),即三角形的底和高成反比例.故选B.11.【答案】4【解析】∵点A、B在函数y=(x>0)的图象上,∴S1+S=4,S阴影+S2=4.阴影∴S1+S2=4.12.【答案】y=【解析】根据等量关系“矩形一边长=面积÷另一边长”即可列出关系式.由题意,得y关于x的函数解析式是y=.13.【答案】①③④【解析】①当x=-1时,y=2,即图象必经过点(-1,2);②k=-2<0,每一象限内,y随x的增大而增大;③k=-2<0,图象在第二、四象限内;④k=-2<0,每一象限内,y随x的增大而增大,若x>1,则y>-2.故答案为①③④.14.【答案】3(答案不唯一,只要满足k>-2即可)【解析】根据反比例函数的图象经过的象限即可确定k的值.根据题意,可得反比例函数y=的图象在一、三象限,有k+2>0,解得k>-2.故k的值可为大于一2的实数都可以,答案不唯一.15.【答案】y=【解析】它可使用的天数=总寿命÷平均每天使用的小时数,把相关数值代入即可.∵某种灯的使用寿命为8 000小时,∴可使用的天数y与平均每天使用的小时数x之间的函数关系式为y=.16.【答案】ρ=【解析】由题意,得ρ与V成反比例函数的关系,设ρ=,根据图象信息,可得:当ρ=0.5时,V=19.8,∴k=ρV=19.8×0.5=9.9,即可得ρ=.17.【答案】【解析】当y=6时,x==.故答案为.18.【答案】y=(x>0)【解析】根据时间=路程÷速度可以列出关系式,注意时间应大于0.由题意,得y与x的函数关系式y=(x>0).19.【答案】二【解析】∵反比例函数y=(b为常数且不为0)的图象在二、四象限,∴b<0,∵一次函数y=x+b中k=1>0,b<0,∴此函数的图象经过一、三、四限,∴此函数的图象不经过第二象限.20.【答案】(-1,-3)【解析】∵点A与B关于原点对称,A(1,3),∴B点的坐标为(-1,-3).故答案是(-1,-3).21.【答案】解(1)由题意,得10xy=100,∴y=(x>0);(2)当x=2 cm时,y==5(cm).【解析】(1)长方体的体积等于=长×宽×高,把相关数值代入即可求解;(2)把x=2代入(1)的函数解析式可得y的值.22.【答案】解列表如下:描点,连线,画出函数图象,如图所示.【解析】找出部分反比例函数图象上点的坐标,列表、描点、连线即可画出反比例函数图象.23.【答案】解(1)停止加热时,设y=,由题意,得600=,解得k=4 800,当y=800时,800=,解得x=6,点B的坐标为(6,800);材料加热时,设y=ax+32,由题意,得800=6a+32,解得a=128,所以,材料加热时,y与x的函数关系式为y=128x+32(0≤x<6),停止加热进行锻造时y与x的函数关系式为y=(x≥6).(2)把y=480代入y=中,10-6=4分钟,所以锻造的操作时间为4分钟.【解析】(1)根据题意,材料煅烧时,温度y与时间x成一次函数关系,煅烧结束时,温度y 与x时间成反比例函数关系,将题中数据代入,用待定系数法可得两个函数的关系式;(2)把y=480代入y=中,求解得出答案即可.24.【答案】解作PN⊥x轴于N,QM⊥x轴于M,如图,把P(-2,3)代入y=,得k=-2×3=-6,所以反比例函数解析式为y=-,∵S△PNO=S△QOM=×|-6|=3,∴S=S△PQO=8,梯形PQMN设Q的坐标为,∴×|-2-t|=8,当×(-2-t)=8,解得t1=(舍去),t2=-6,当×(2+t)=8,解得t1=-(,t2=6(舍去),∴Q点坐标为(-6,1)或.【解析】作PN⊥x轴于N,QM⊥x轴于M,先把P点坐标代入y=,得k=6,则反比例函数解析式为y=-,根据反比例函数y=(k≠0)系数k的几何意义,得S△PNO=S△QOM=3,所以S梯形PQMN=S△PQO=8,设Q的坐标为,利用梯形的面积公式得到×|-2-t|=8,然后解两个方程求出t,再写出满足条件的Q的坐标.25.【答案】解(1)∵将P(-3,5)代入反比例函数y=(k≠0,k是常数),得5=,∴反比例函数表达式为y =-;(2)①当两点(a 1,b 1)和(a 2,b 2)在同一个分支上,由反比例人教版九年级数学下册 第二十六章 反比例函数 单元测试题(有答案) 一、选择题(每小题3分,共30分)1.在下列选项中,是反比例函数关系的为( )A.在直角三角形中,30°角所对的直角边与斜边之间的关系B.在等腰三角形中,顶角与底角之间的关系C.圆的面积与它的直径之间的关系D.面积为20的菱形,其中一条对角线与另一条对角线之间的关系 2.如图所示,反比例函数6y x=-在第二象限的图象上有两点A 、B ,它们的横坐标分别为-1、-3,直线AB 与x 轴交于点C ,则△AOC 的面积为( ) A.8B.10C.12D.24第2题图3.如图所示,已知直线y =-x +2分别与x 轴、y 轴交于A ,B 两点,与双曲线y =x交于E ,F 两点,若AB =2EF ,则k 的值是( ) A.-1B.1C.12D.344.当>0,<0时,反比例函数的图象在( )A.第一象限B.第二象限C.第三象限D.第四象限 5.已知反比例函数ky x=的图象如图所示,则二次函数2224y kx x k =-+的图象大致为( )6.若反比例函数的图象位于第二、四象限,则的值是( )A. 0B.0或1C.0或2D.47.如图所示,A 为反比例函数xk y =图象上一点,AB 垂直于x 轴交x 轴于B 点,若S △AOB=3,则k 的值为 ( ) A.6 B.3C.23 D.不能确定8.已知点、、都在反比例函数4y x=的图象上,则的大小关系是( )A.B. C.D.9.正比例函数与反比例函数1x的图象相交于A 、C 两点,AB ⊥x 轴于点B ,CD ⊥x 轴于点D (如图所示),则四边形ABCD 的面积为( ) A.1 B.32C.2D.5210.如图所示,过点C (1,2)分别作x 轴、y 轴的平行线,交直线y =-x +6于A 、B 两点,若反比例函数y=(x >0)的图象与△ABC 有公共点,则k 的取值范围是( ) A.2≤k ≤9 B.2≤k ≤8 C.2≤k ≤5D.5≤k ≤8二、填空题(每小题3分,共24分)11.已知反比例函数xky =的图象经过点A (–2,3),则当3-=x 时,y =_____. 12.点P 在反比例函数(k ≠0)的图象上,点Q (2,4)与点P 关于y 轴对称,则反比例函数的解析式为 .13.已知反比例函数x m y 33-=,当______m 时,其图象的两个分支在第一、三象限内;当______m 时,其图象在每个象限内y 随x 的增大而增大.14.若反比例函数xk y 3-=的图象位于第一、三象限内,正比例函数x k y )92(-=的图象过第二、四象限,则k 的整数值是________.15.现有一批救灾物资要从A 市运往B 市,如果两市的距离为500千米,车速为每小时千米,从A 市到B 市所需时间为小时,那么与之间的函数关系式为_________,是的________函数.16.如图所示,点A 、B 在反比例函数(k >0,x >0)的图象上,过点A 、B 作x 轴的垂线,垂足分别为M 、N ,延长线段AB 交x 轴于点C ,若OM =MN =NC ,△AOC 的面积为6,则k 的值为 . 17.已知反比例函数,则当函数值时,自变量x 的取值范围是___________.18.在同一直角坐标系中,正比例函数x k y 1=的图象与反比例函数xk y 2=的图象有公共点,则21k k 0(填“>”、“=”或“<”).三、解答题(共46分)19.(6分)已知一次函数kx y =与反比例函数xy 3=的图象都经过点A (m ,1).求: (1)正比例函数的解析式;(2)正比例函数与反比例函数的图象的另一个交点的坐标. 20.(6分)如图所示,正比例函数12y x =的图象与反比例函数ky x=(0)k ≠在第一象限的图象交于A 点,过A 点作轴的垂线,垂足为M ,已知△的面积为1.(1)求反比例函数的解析式;(2)如果B 为反比例函数在第一象限图象上的点(点B 与点A 不重合),且B 点的横坐标为1,在轴上求一点P ,使PA PB +最小.21.(6分)如图所示是某一蓄水池的排水速度h )与排完水池中的水所用的时间t (h )之间的函数关系图象.(1)请你根据图象提供的信息求出此蓄水池的蓄水量; (2)写出此函数的解析式;(3)若要6 h 排完水池中的水,那么每小时的排水量应该是多少? (4)如果每小时排水量是,那么水池中的水要用多少小时排完?22.(7分)若反比例函数xky =与一次函数42-=x y 的图象都经过点A (a ,2). (1)求反比例函数xky =的解析式; (2) 当反比例函数xky =的值大于一次函数42-=x y 的值时,求自变量x 的取值范围. 23.(7分)已知反比例函数y=(k 为常数,k ≠1).(1)其图象与正比例函数y=x 的图象的一个交点为P ,若点P 的纵坐标是2,求k 的值; (2)若在其图象的每一支上,y 随x 的增大而减小,求k 的取值范围;(3)若其图象的一支位于第二象限,在这一支上任取两点 A (x 1,y 1)、B (x 2,y 2),当y 1>y 2时,试比较x 1与x 2的大小.24.(7分)如图所示,已知直线1y x m =+与x 轴、y 轴分别交于点A 、B ,与反比例函数2k y x =(x)的图象分别交于点C 、 D ,且C 点的坐标为(1-,2).⑴分别求出直线AB 及反比例函数的解析式; ⑵求出点D 的坐标;⑶利用图象直接写出:当x 在什么范围内取值时,1y >2y .25.(7分)制作一种产品,需先将材料加热达到60 ℃后,再进行操作.设该材料温度为y(℃),从加热开始计算的时间为x(min).据了解,当该材料加热时,温度y与时间x 成一次函数关系;停止加热进行操作时,温度y与时间x成反比例关系(如图所示).已知该材料在操作加热前的温度为15 ℃,加热5 min后温度达到60 ℃.(1)分别求出将材料加热和停止加热进行操作时,y与x的函数关系式;(2)根据工艺要求,当材料的温度低于15 ℃时,须停止操作,那么从开始加热到停止操作,共经历了多少时间?第二十六章 反比例函数单元测试题参考答案1.D2.C 解析: ∵ 点A 、B 都在反比例函数的图象上,∴ A (-1,6),B (-3,2).设直线AB 的解析式为0)(y kx b k =+≠,则6,23,k b k b =-+⎧⎨=-+⎩解得2,8,k b =⎧⎨=⎩∴ 直线AB 的解析式为28y x =+,∴ C (-4,0).在△AOC 中,OC =4,OC 边上的高(即点A 到x 轴的距离)为6,∴ △AOC 的面积14612.2=⨯⨯= 点拨:在平面直角坐标系中求三角形的面积时,一般要将落在坐标轴上的一边作为底.3.D 解析:如图所示,分别过点E ,F 作EG ⊥OA ,FH ⊥OA ,再过点E 作EM ⊥FH 并延长,交y 轴于点N . 过点F 作FR ⊥y 轴于点R .∵ 直线y =-x +2分别与x 轴,y 轴的交点为A (2,0),B (0,2), ∴ △AOB 为等腰直角三角形,AB. ∵ AB =2EF ,∴ EF.∵ △EMF 为等腰直角三角形.∴ EM =FM =1. ∴ △AEG ≌△BFR . ∵ S 矩形EGON =S 矩形FHOR =k ,S △EMF =12×1×1=12,S △AOB =12×2×2=2, S 矩形MHON =S △AEG +S △BFR ,∴ S 矩形EGON +S 矩形FHOR =S △AOB -S △EMF ,即2k=2-12人教版九年级数学下册 第二十六章 反比例函数 单元测试题(有答案) 一、选择题(每小题3分,共30分)1.在下列选项中,是反比例函数关系的为( )A.在直角三角形中,30°角所对的直角边与斜边之间的关系B.在等腰三角形中,顶角与底角之间的关系C.圆的面积与它的直径之间的关系D.面积为20的菱形,其中一条对角线与另一条对角线之间的关系2.如图所示,反比例函数6yx=-在第二象限的图象上有两点A、B,它们的横坐标分别为-1、-3,直线AB与x轴交于点C,则△AOC的面积为()A.8B.10C.12D.24第2题图3.如图所示,已知直线y=-x+2分别与x轴、y轴交于A,B两点,与双曲线y=x交于E,F两点,若AB=2EF,则k的值是()A.-1B.1C.12D.344.当>0,<0时,反比例函数的图象在()A.第一象限B.第二象限C.第三象限D.第四象限5.已知反比例函数kyx=的图象如图所示,则二次函数2224y kx x k=-+的图象大致为()6.若反比例函数的图象位于第二、四象限,则的值是()A. 0B.0或1C.0或2D.47.如图所示,A为反比例函数xky=图象上一点,AB垂直于x轴交x轴于B点,若S△AOB =3,则k的值为()A.6B.3C.23D.不能确定8.已知点、、都在反比例函数4y x=的图象上,则的大小关系是( )A.B. C.D.9.正比例函数与反比例函数1x的图象相交于A 、C 两点,AB ⊥x 轴于点B ,CD ⊥x 轴于点D (如图所示),则四边形ABCD 的面积为( ) A.1 B.32C.2D.5210.如图所示,过点C (1,2)分别作x 轴、y 轴的平行线,交直线y =-x +6于A 、B 两点,若反比例函数y=(x >0)的图象与△ABC 有公共点,则k 的取值范围是( ) A.2≤k ≤9 B.2≤k ≤8 C.2≤k ≤5D.5≤k ≤8二、填空题(每小题3分,共24分)11.已知反比例函数xky =的图象经过点A (–2,3),则当3-=x 时,y =_____. 12.点P 在反比例函数(k ≠0)的图象上,点Q (2,4)与点P 关于y 轴对称,则反比例函数的解析式为 .13.已知反比例函数x m y 33-=,当______m 时,其图象的两个分支在第一、三象限内;当______m 时,其图象在每个象限内y 随x 的增大而增大.14.若反比例函数xk y 3-=的图象位于第一、三象限内,正比例函数x k y )92(-=的图象过第二、四象限,则k 的整数值是________.15.现有一批救灾物资要从A 市运往B 市,如果两市的距离为500千米,车速为每小时千米,从A 市到B 市所需时间为小时,那么与之间的函数关系式为_________,是的________函数.16.如图所示,点A 、B 在反比例函数(k >0,x >0)的图象上,过点A 、B 作x 轴的垂线,垂足分别为M 、N ,延长线段AB 交x 轴于点C ,若OM =MN =NC ,△AOC 的面积为6,则k 的值为 . 17.已知反比例函数,则当函数值时,自变量x 的取值范围是___________.18.在同一直角坐标系中,正比例函数x k y 1=的图象与反比例函数xk y 2=的图象有公共点,则21k k 0(填“>”、“=”或“<”).三、解答题(共46分)19.(6分)已知一次函数kx y =与反比例函数xy 3=的图象都经过点A (m ,1).求: (1)正比例函数的解析式;(2)正比例函数与反比例函数的图象的另一个交点的坐标. 20.(6分)如图所示,正比例函数12y x =的图象与反比例函数ky x=(0)k ≠在第一象限的图象交于A 点,过A 点作轴的垂线,垂足为M ,已知△的面积为1.(1)求反比例函数的解析式;(2)如果B 为反比例函数在第一象限图象上的点(点B 与点A 不重合),且B 点的横坐标为1,在轴上求一点P ,使PA PB +最小.21.(6分)如图所示是某一蓄水池的排水速度h )与排完水池中的水所用的时间t (h )之间的函数关系图象.(1)请你根据图象提供的信息求出此蓄水池的蓄水量;(2)写出此函数的解析式;(3)若要6 h 排完水池中的水,那么每小时的排水量应该是多少? (4)如果每小时排水量是,那么水池中的水要用多少小时排完?22.(7分)若反比例函数xky =与一次函数42-=x y 的图象都经过点A (a ,2). (1)求反比例函数xky =的解析式; (2) 当反比例函数xky =的值大于一次函数42-=x y 的值时,求自变量x 的取值范围. 23.(7分)已知反比例函数y=(k 为常数,k ≠1).(1)其图象与正比例函数y=x 的图象的一个交点为P ,若点P 的纵坐标是2,求k 的值; (2)若在其图象的每一支上,y 随x 的增大而减小,求k 的取值范围;(3)若其图象的一支位于第二象限,在这一支上任取两点 A (x 1,y 1)、B (x 2,y 2),当y 1>y 2时,试比较x 1与x 2的大小.24.(7分)如图所示,已知直线1y x m =+与x 轴、y 轴分别交于点A 、B ,与反比例函数2k y x =(x)的图象分别交于点C 、 D ,且C 点的坐标为(1-,2).⑴分别求出直线AB 及反比例函数的解析式; ⑵求出点D 的坐标;⑶利用图象直接写出:当x 在什么范围内取值时,1y >2y .25.(7分)制作一种产品,需先将材料加热达到60 ℃后,再进行操作.设该材料温度为 y (℃),从加热开始计算的时间为x (min ).据了解,当该材料加热时,温度y 与时间x 成一次函数关系;停止加热进行操作时,温度y 与时间x 成反比例关系(如图所示).已知该材料在操作加热前的温度为15 ℃,加热5 min 后温度达到60 ℃. (1)分别求出将材料加热和停止加热进行操作时,y 与x 的函数关系式;(2)根据工艺要求,当材料的温度低于15 ℃时,须停止操作,那么从开始加热到停止 操作,共经历了多少时间?第二十六章 反比例函数单元测试题参考答案1.D2.C 解析: ∵ 点A 、B 都在反比例函数的图象上,∴ A (-1,6),B (-3,2).设直线AB 的解析式为0)(y kx b k =+≠, 则6,23,k b k b =-+⎧⎨=-+⎩解得2,8,k b =⎧⎨=⎩∴ 直线AB 的解析式为28y x =+,∴ C (-4,0).在△AOC 中,OC =4,OC 边上的高(即点A 到x 轴的距离)为6,∴ △AOC 的面积14612.2=⨯⨯=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、反比例函数真题与模拟题分类汇编(难题易错题)1.如图,已知A(﹣4,),B(﹣1,2)是一次函数y=kx+b与反比例函数(m≠0,m<0)图象的两个交点,AC⊥x轴于C,BD⊥y轴于D.(1)根据图象直接回答:在第二象限内,当x取何值时,一次函数大于反比例函数的值?(2)求一次函数解析式及m的值;(3)P是线段AB上的一点,连接PC,PD,若△PCA和△PDB面积相等,求点P坐标.【答案】(1)解:当﹣4<x<﹣1时,一次函数大于反比例函数的值;(2)把A(﹣4,),B(﹣1,2)代入y=kx+b得,解得,所以一次函数解析式为y= x+ ,把B(﹣1,2)代入y= 得m=﹣1×2=﹣2;(3)解:如下图所示:设P点坐标为(t,t+ ),∵△PCA和△PDB面积相等,∴• •(t+4)= •1•(2﹣t﹣),即得t=﹣,∴P点坐标为(﹣,).【解析】【分析】(1)观察函数图象得到当﹣4<x<﹣1时,一次函数图象都在反比例函数图象上方;(2)先利用待定系数法求一次函数解析式,然后把B点坐标代入y= 可计算出m的值;(3)设P点坐标为(t, t+ ),利用三角形面积公式可得到• •(t+4)= •1•(2﹣ t﹣),解方程得到t=﹣,从而可确定P点坐标.2.如图,一次函数y=x+4的图象与反比例函数y= (k为常数,且k≠0)的图象交于A (﹣1,a),B(b,1)两点.(1)求反比例函数的表达式;(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标;(3)求△PAB的面积.【答案】(1)解:当x=﹣1时,a=x+4=3,∴点A的坐标为(﹣1,3).将点A(﹣1,3)代入y= 中,3= ,解得:k=﹣3,∴反比例函数的表达式为y=﹣(2)解:当y=b+4=1时,b=﹣3,∴点B的坐标为(﹣3,1).作点B关于x轴的对称点D,连接AD,交x轴于点P,此时PA+PB的值最小,如图所示.∵点B的坐标为(﹣3,1),∴点D的坐标为(﹣3,﹣1).设直线AD的函数表达式为y=mx+n,将点A(﹣1,3)、D(﹣3,﹣1)代入y=mx+n中,,解得:,∴直线AD的函数表达式为y=2x+5.当y=2x+5=0时,x=﹣,∴点P的坐标为(﹣,0)(3)解:S△PAB=S△ABD﹣S△BDP= ×2×2﹣ ×2× =【解析】【分析】(1)由一次函数图象上点的坐标特征可求出点A的坐标,根据点A的坐标利用待定系数法,即可求出反比例函数的表达式;(2)利用一次函数图象上点的坐标特征可求出点B的坐标,作点B关于x轴的对称点D,连接AD,交x轴于点P,此时PA+PB的值最小,由点B的坐标可得出点D的坐标,根据点A、D的坐标利用待定系数法,即可求出直线AB的函数表达式,再由一次函数图象上点的坐标特征即可求出点P的坐标;(3)根据三角形的面积公式结合S△PAB=S△ABD﹣S△BDP,即可得出结论.3.如图,反比例函数y= 的图象与一次函数y=kx+b的图象交于A、B两点,点A的坐标为(2,3n),点B的坐标为(5n+2,1).(1)求反比例函数与一次函数的表达式;(2)将一次函数y=kx+b的图象沿y轴向下平移a个单位,使平移后的图象与反比例函数y= 的图象有且只有一个交点,求a的值;(3)点E为y轴上一个动点,若S△AEB=5,则点E的坐标为________.【答案】(1)解:∵A、B在反比例函数的图象上,∴2×3n=(5n+2)×1=m,∴n=2,m=12,∴A(2,6),B(12,1),∵一次函数y=kx+b的图象经过A、B两点,∴,解得,∴反比例函数与一次函数的表达式分别为y= ,y=﹣ x+7.(2)解:设平移后的一次函数的解析式为y=﹣ x+7﹣a,由,消去y得到x2+(2a﹣14)x+24=0,由题意,△=0,(21a﹣14)2﹣4×24=0,解得a=7±2 .(3)(0,6)或(0,8)【解析】【解答】(3)设直线AB交y轴于K,则K(0,7),设E(0,m),由题意,PE=|m﹣7|.∵S△AEB=S△BEP﹣S△AEP=5,∴ ×|m﹣7|×(12﹣2)=5.∴|m﹣7|=1.∴m1=6,m2=8.∴点E的坐标为(0,6)或(0,8).故答案为(0,6)或(0,8).【分析】(1)由A、B在反比例函数的图象上,得到n,m的值和A、B的坐标,用待定系数法求出反比例函数与一次函数的表达式;(2)由将一次函数y=kx+b的图象沿y轴向下平移a个单位,得到平移后的一次函数的解析式,由平移后的图象与反比例函数的图象有且只有一个交点,得到方程组求出a的值;(3)由点E为y轴上一个动点和S△AEB=5,求出点E的坐标.4.如图,P1、P2(P2在P1的右侧)是y= (k>0)在第一象限上的两点,点A1的坐标为(2,0).(1)填空:当点P1的横坐标逐渐增大时,△P1OA1的面积将________(减小、不变、增大)(2)若△P1OA1与△P2A1A2均为等边三角形,①求反比例函数的解析式;②求出点P2的坐标,并根据图象直接写在第一象限内,当x满足什么条件时,经过点P1、P2的一次函数的函数值大于反比例函数y= 的函数值.【答案】(1)减小(2)解:①如图所示,作P1B⊥OA1于点B,∵A1的坐标为(2,0),∴OA1=2,∵△P1OA1是等边三角形,∴∠P1OA1=60°,又∵P1B⊥OA1,∴OB=BA1=1,∴P1B= ,∴P1的坐标为(1,),代入反比例函数解析式可得k= ,∴反比例函数的解析式为y= ;②如图所示,过P2作P2C⊥A1A2于点C,∵△P2A1A2为等边三角形,∴∠P2A1A2=60°,设A1C=x,则P2C= x,∴点P2的坐标为(2+x, x),代入反比例函数解析式可得(2+x) x= ,解得x1= ﹣1,x2=﹣﹣1(舍去),∴OC=2+ ﹣1= +1,P2C= (﹣1)= ﹣,∴点P2的坐标为( +1,﹣),∴当1<x< +1时,经过点P1、P2的一次函数的函数值大于反比例函数y= 的函数值【解析】【解答】解:(1)当点P1的横坐标逐渐增大时,点P1离x轴的距离变小,而OA1的长度不变,故△P1OA1的面积将减小,故答案为:减小;【分析】(1)当点P1的横坐标逐渐增大时,点P1离x轴的距离变小,而OA1的长度不变,故△P1OA1的面积将减小;(2)①由A1的坐标为(2,0),△P1OA1是等边三角形,求出P1的坐标,代入反比例函数解析式即可;②由△P2A1A2为等边三角形,求出点P2的坐标,得出结论.5.函数学习中,自变量取值范围及相应的函数值范围问题是大家关注的重点之一,请解决下面的问题.(1)分别求出当2≤x≤4时,三个函数:y=2x+1,y= ,y=2(x﹣1)2+1的最大值和最小值;(2)若y= 的值不大于2,求符合条件的x的范围;(3)若y= ,当a≤x≤2时既无最大值,又无最小值,求a的取值范围;(4)y=2(x﹣m)2+m﹣2,当2≤x≤4时有最小值为1,求m的值.【答案】(1)解:y=2x+1中k=2>0,∴y随x的增大而增大,∴当x=2时,y最小=5;当x=4时,y最大=9.∵y= 中k=2>0,∴在2≤x≤4中,y随x的增大而减小,∴当x=2时,y最大=1;当x=4时,y最小= .∵y=2(x﹣1)2+1中a=2>0,且抛物线的对称轴为x=1,∴当x=1时,y最小=1;当x=4时,y最大=19(2)解:令y= ≤2,解得:x<0或x≥1.∴符合条件的x的范围为x<0或x≥1(3)解:①当k>0时,如图得当0<x≤2时,y= 无最大值,有最小值,同理当a<0时,且a≤x<0时,y≤ 有最大值,无最小值,②当k<0时,如图得当0<x≤2时,y= 无最小值,有最大值,同理当a<0时,且a≤x<0时,y≤ 有最小值,无最大值,∴当k<0,a<0时,此时,y= 既无最大值,又无最小值,综上所述,a的取值范围是a<0(4)解:①当m<2时,有2(2﹣m)2+m﹣2=1,解得:m1=1,m2= (舍去);②当2≤m≤4时,有m﹣2=1,解得:m3=3;③当m>4时,有2(4﹣m)2+m﹣2=1,整理得:2m2﹣15m+29=0.∵△=(﹣15)2﹣4×2×29=﹣7,无解.∴m的值为1或3.①当k>0时,如图得当0<x≤2时,y= 无最大值,有最小值,同理当a<0时,且a≤x<0时,y≤ 有最大值,无最小值,②当k<0时,如图得当0<x≤2时,y= 无最小值,有最大值,同理当a<0时,且a≤x<0时,y≤ 有最小值,无最大值,∴当k<0,a<0时,此时,y= 既无最大值,又无最小值,综上所述,a的取值范围是a<0;【解析】【分析】(1)根据k=2>0结合一次函数的性质即可得出:当2≤x≤4时,y=2x+1的最大值和最小值;根据二次函数的解析式结合二次函数的性质即可得出:当2≤x≤4时,y=2(x﹣1)2+1的最大值和最小值;(2)令y= ≤2,解之即可得出x的取值范围;(3)①当k>0时,如图得当0<x≤2时,得到y= 无最大值,有最小值,同理当a<0时,且a≤x<0时,得到y≤ 有最大值,无最小值,②当k<0时,如图得当0<x≤2时,y=无最小值,有最大值,同理当a<0时,且a≤x<0时,y≤ 有最小值,无最大值,于是得到结论;(4)分m<2、2≤m≤4和m>4三种情况考虑,根据二次函数的性质结合当2≤x≤4时有最小值为1即可得出关于m的一元二次方程(一元一次方程),解之即可得出结论.6.在平面直角坐标系中,我们不妨把横坐标与纵坐标相等的点称为梦之点,例如,点(1,1),(﹣ 2,﹣ 2),(,),…,都是梦之点,显然梦之点有无数个.(1)若点P(2,b)是反比例函数 (n为常数,n≠0)的图象上的梦之点,求这个反比例函数解析式;(2)⊙O的半径是,①求出⊙O上的所有梦之点的坐标;②已知点M(m,3),点Q是(1)中反比例函数图象上异于点P的梦之点,过点Q的直线l与y轴交于点A,∠OAQ=45°.若在⊙O上存在一点N,使得直线MN∥l或MN⊥l,求出m的取值范围.【答案】(1)解:∵P(2,b)是梦之点,∴b=2∴P(2,2)将P(2,2)代入中得n=4∴反比例函数解析式是(2)解:①设⊙O上梦之点坐标是(,)∴∴=1或 =-1∴⊙O上所有梦之点坐标是(1,1)或(-1,-1)②由(1)知,异于点P的梦之点Q的坐标为(-2,-2)由已知MN∥l或MN⊥l∴直线MN为y=-x+b或y=x+b当MN为y=-x+b时,m=b-3由图可知,当直线MN平移至与⊙O相切时,且切点在第四象限时,b取得最小值,此时MN记为,其中为切点,为直线与y轴的交点∵△O 为等要直角三角形,∴O =∴O =2∴b的最小值是-2,∴m的最小值是-5当直线MN平移至与⊙O相切时,且切点在第二象限时,b取得最大值,此时MN记为,其中为切点,为直线与y轴的交点。

相关文档
最新文档