人教版七年级数学上册教学课件-1.2.4绝对值 品质课件PPT
合集下载
七年级数学上册:1.2.4绝对值(共26张PPT)
绝对值
规定了原点、正方向、单位长度的直线叫做数轴.
只有符号不同的两个数互为相反数. 规定:0的相反数是0.
a
相反数
-a
知识回顾
1.正数,负数和0的大小关系怎样?
2. -(+2)= -2 . +(-2)= -2 .
-(-2)= 2 . +(+2)= 2 .
小狮距原 小鸡与小羊分别距 点多远? 原点多远?
做一做:
(1)在数轴上表示下列各数,并比较它 们的大小;
- 1.5 , - 3 , - 1 , - 5 ;
(2)求出(1)中各数的绝对值,并比 较它们的大小;
(3)你发现了什么?
解:(1)如图 -5 -4 -3 -2 -1 0 1 2 3
∴ - 5 < - 3 <- 1.5 < - 1 (2)| -1.5 | = 1.5 ; | - 3 | = 3;
∴
7ห้องสมุดไป่ตู้8
<
6 7
1、比较下列每对数的大小,并说明理由: (1)1与- 10; (2)- 0.001与0 (3)- 9与-11
解: (1)1>-10(正数大于一切负数)
(2)-0.001<0 (负数都小于零)
(3)∵|-9|=9 ,|-11|=11 9 < 11
∴-9 > -11 (两个负数比较绝对值 大的反而小)
-3 -2 -1 0 1 2 3
在数轴上,一个数所对应的点 与原点的距离叫做该数的绝对值.
+2的绝对值是2,记作 |+2| = 2; -3的绝对值是3 ,记作 |-3| = 3.
│-5│=5
A
│4│=4
B
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
规定了原点、正方向、单位长度的直线叫做数轴.
只有符号不同的两个数互为相反数. 规定:0的相反数是0.
a
相反数
-a
知识回顾
1.正数,负数和0的大小关系怎样?
2. -(+2)= -2 . +(-2)= -2 .
-(-2)= 2 . +(+2)= 2 .
小狮距原 小鸡与小羊分别距 点多远? 原点多远?
做一做:
(1)在数轴上表示下列各数,并比较它 们的大小;
- 1.5 , - 3 , - 1 , - 5 ;
(2)求出(1)中各数的绝对值,并比 较它们的大小;
(3)你发现了什么?
解:(1)如图 -5 -4 -3 -2 -1 0 1 2 3
∴ - 5 < - 3 <- 1.5 < - 1 (2)| -1.5 | = 1.5 ; | - 3 | = 3;
∴
7ห้องสมุดไป่ตู้8
<
6 7
1、比较下列每对数的大小,并说明理由: (1)1与- 10; (2)- 0.001与0 (3)- 9与-11
解: (1)1>-10(正数大于一切负数)
(2)-0.001<0 (负数都小于零)
(3)∵|-9|=9 ,|-11|=11 9 < 11
∴-9 > -11 (两个负数比较绝对值 大的反而小)
-3 -2 -1 0 1 2 3
在数轴上,一个数所对应的点 与原点的距离叫做该数的绝对值.
+2的绝对值是2,记作 |+2| = 2; -3的绝对值是3 ,记作 |-3| = 3.
│-5│=5
A
│4│=4
B
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
人教版七年级数学上册1.2.4《绝对值》课件 (13张PPT)
人民教育出版社七年级上册
1.2.4(1) 绝对值
1、数轴三要素
2、什么是互为相反数
谁离乒乓球网架远呢?
20 20
-20 -15 -10 -5 5 10 0 15 20 -20与+20在数轴上所表示的点到原点的距离都是 20个单位,距离20是-20和20的绝对值.
-20的绝对值表示-20的点到原点的距离,它的绝对值是20. -3的绝对值表示什么呢?它的绝对值是多少呢?
数轴原点表示的是0,0绝对值是0
绝对值性质:对于任意一个有理数a都有, 1、当a>0 时, |a|= _____ a ;
0 ; 2、当a=0 时, |a|= _____
3、当a<0 时, |a|= _____. -a
绝对值的代 数意义
1.填空:
1.7 |-1.7|_____ ; -4 ; -|-4|=____
-7 7
绝 对 值 发 生 器
7 7
、数轴原点右边表示的是什么数?该数的绝对值与这个数有什 么关系?
数轴原点右边表示的是正数,正数的绝对值是它本身
、数轴原点左边表示的是什么数?该数的绝对值与这个数有 什么关系?
数轴原点左边表示的是负数,负数的绝对值是它的相反数
、数轴原点表示的是什么数?该数的绝对值是多少?
1、绝对值的几何意义及表示方法 2、绝对值的代数意义 (1)一个正数的绝对值是它本身;
(2)零的绝对值是零;
(3)一个负数的绝对值是它的相反数;
1、必做题:习题1.2 第5、8题 2、选做题:绝对值评测训练
2的绝对值表示什么呢?它的绝对值是多少呢? 2 3 的绝对值表示什么呢?它的绝对值是多少呢?
2 3
-3 -2 -1
0
1.2.4(1) 绝对值
1、数轴三要素
2、什么是互为相反数
谁离乒乓球网架远呢?
20 20
-20 -15 -10 -5 5 10 0 15 20 -20与+20在数轴上所表示的点到原点的距离都是 20个单位,距离20是-20和20的绝对值.
-20的绝对值表示-20的点到原点的距离,它的绝对值是20. -3的绝对值表示什么呢?它的绝对值是多少呢?
数轴原点表示的是0,0绝对值是0
绝对值性质:对于任意一个有理数a都有, 1、当a>0 时, |a|= _____ a ;
0 ; 2、当a=0 时, |a|= _____
3、当a<0 时, |a|= _____. -a
绝对值的代 数意义
1.填空:
1.7 |-1.7|_____ ; -4 ; -|-4|=____
-7 7
绝 对 值 发 生 器
7 7
、数轴原点右边表示的是什么数?该数的绝对值与这个数有什 么关系?
数轴原点右边表示的是正数,正数的绝对值是它本身
、数轴原点左边表示的是什么数?该数的绝对值与这个数有 什么关系?
数轴原点左边表示的是负数,负数的绝对值是它的相反数
、数轴原点表示的是什么数?该数的绝对值是多少?
1、绝对值的几何意义及表示方法 2、绝对值的代数意义 (1)一个正数的绝对值是它本身;
(2)零的绝对值是零;
(3)一个负数的绝对值是它的相反数;
1、必做题:习题1.2 第5、8题 2、选做题:绝对值评测训练
2的绝对值表示什么呢?它的绝对值是多少呢? 2 3 的绝对值表示什么呢?它的绝对值是多少呢?
2 3
-3 -2 -1
0
人教版七年级数学上册 1.2.4.1 绝对值的定义及性质 教学课件(共28张PPT)
练习1:判断并改错: (1)一个数的绝对值等于本身,则这个数一定是正数; (2)一个数的绝对值等于它的相反数,则这个数一定是负数; (3)如果两个数的绝对值相等,那么这两个数一定相等; (4)如果两个数不相等,那么这两个数的绝对值一定不相等; (5)有理数的绝对值一定是非负数;
课堂精练
练习2:写出下列各数的绝对值:
人教版七年级数学上册
第一章 有理数 1.2.4.1 绝对值的定义及性质
新课导入
1. 什么是数轴?数轴定义包含哪几层含义? 2. 数轴上的点与有理数间的关系是怎样的? 3. 什么是相反数? 4. 相反数的代数意义和几何意义分别是什么?
合作探究
问题1 看图回答问题: 两辆汽车从同一处O出发,分别向东、西方向行驶10 km,到达A,B两处, 它们的行驶路线相同吗?它们的行驶路程相同吗?
6,8,3.9, 5 , 2 ,100,0 2 11
3.口答:
6 = 0=
2 = 7
-3 =
8.2 =
-1 = 3
合作探究
问题1 结合上面口答题结果,一个数的绝对值与这个数有什么 关系?你能从中发现什么规律?
(1)一个正数的绝对值是它本身; (1)若a 0,则 a a;
(2)一个负数的绝对值是它的相反数;(2)若a 0,则 a -a;
(3)0的绝对值是0.
例如:上面的问题中在数轴上表示-3的点和表示3的点到原 点的距离都是3,所以3和-3的绝对值都是3,即|-3|=|3|=3. 你能说说-2和2吗?
合作探究
-3 -2 -1 0 1 2 3 4
大象离原点4个单位长度:|4|=4. 那么两只小狗呢?
合作探究
1.-2的绝对值是____,说明数轴上表示-2的点到____的距离是 ____个长度单位. 2.-0.8的绝对值是____ .
课堂精练
练习2:写出下列各数的绝对值:
人教版七年级数学上册
第一章 有理数 1.2.4.1 绝对值的定义及性质
新课导入
1. 什么是数轴?数轴定义包含哪几层含义? 2. 数轴上的点与有理数间的关系是怎样的? 3. 什么是相反数? 4. 相反数的代数意义和几何意义分别是什么?
合作探究
问题1 看图回答问题: 两辆汽车从同一处O出发,分别向东、西方向行驶10 km,到达A,B两处, 它们的行驶路线相同吗?它们的行驶路程相同吗?
6,8,3.9, 5 , 2 ,100,0 2 11
3.口答:
6 = 0=
2 = 7
-3 =
8.2 =
-1 = 3
合作探究
问题1 结合上面口答题结果,一个数的绝对值与这个数有什么 关系?你能从中发现什么规律?
(1)一个正数的绝对值是它本身; (1)若a 0,则 a a;
(2)一个负数的绝对值是它的相反数;(2)若a 0,则 a -a;
(3)0的绝对值是0.
例如:上面的问题中在数轴上表示-3的点和表示3的点到原 点的距离都是3,所以3和-3的绝对值都是3,即|-3|=|3|=3. 你能说说-2和2吗?
合作探究
-3 -2 -1 0 1 2 3 4
大象离原点4个单位长度:|4|=4. 那么两只小狗呢?
合作探究
1.-2的绝对值是____,说明数轴上表示-2的点到____的距离是 ____个长度单位. 2.-0.8的绝对值是____ .
人教版七年级数学上册1.2.4《绝对值》 课件(共23张ppt)
课堂小结
3.不论有理数a取何值,它的绝对值总是正数或0(非负数), 即对任意有理数a,总有|a|≥0.
4.互为相反数的两个数的绝对值相等. 5.数轴上的数的排列规律是: 在数轴上表示有理数,它们从左到右的顺序,就是从 小到大的顺序,即左边的数小于右边的数.
课件PPT部编版课件统编版部编版人 教版七 年级数 学上册1.2.4《 绝对值 》 课件(共23张ppt)课件优质课课件免 费课件PPT
课件PPT部编版课件统编版部编版人 教版七 年级数 学上册1.2.4《 绝对值 》 课件(共23张ppt)课件优质课课件免 费课件PPT
课堂小结
6.有理数大小比较法则: (1)正数大于0,0大于负数,正数大于负数; (2)两个负数,绝对值大的反而小.
课件PPT部编版课件统编版部编版人 教版七 年级数 学上册1.2.4《 绝对值 》 课件(共23张ppt)课件优质课课件免 费课件PPT
21 21
77
又∵
8 <3 21 7
,即
- 8 <-3
21
7
,
∴
- 8 >- 3
21
7
.
(3)化简,得:-(-0.3)=0.3,-
1 3
=
1 3
.
1 ∵0.3< 3 ,
∴-(-0.3)<
-1 3
.
课堂练习
1.比较大小:
(1)-2_<__5,
-7 2
_>__
+
3 8
,
-0.01_>__-1;
4 (2)- 5
合作探究
一个正数的绝对值是什么?0的绝对值是什么?负数呢?
归纳:一个正数的绝对值是它本身;一个负数的绝对值是它的相反 数;0的绝对值是0.
人教版七年级上册数学课件:1.2.4绝对值(15张PPT)
2020/7/25
5
完成了解感知中的问题 时间:5分钟 要求:1、不翻书自主探究完成题目
2、不会的题目用红笔画出来
2020/7/25
6
• 1.
了解感知答案
-5 -3.5
-3 2
3
0 0.75
2
+3
-5 -4 -3 -2 -1 0 1 2 3
• 2.> > > >
2020/7/25
7
深入学习
•内容:完成深入学习的题
正数大于0, 0大于负数 ,正数大于负数。 两个负数,绝对值大的反而小。
2020/7/25
13
2020/7/25
14
•完成当堂检测
•时间:10分钟
•要求:自主完成题目,不 会的用红笔标出来
2020/7/25
15
• 重点:会比较有理数大小
• 难点:灵活选择有理数大小比较的方 法
2020/7/25
4
了解感知
•内容:请同学们带着以下问题认真阅读 课本第12页到第13页的内容:
•1、数轴上从左向右的大小顺序是怎样的?
•2、尝试总结正数、0、负数比较大小的方法。
•3、两个负数如何比较大小。
•时间:5分钟 要求:认真阅读用红笔标记
候课要求
1、准备好数学课本,练习本,直尺,铅 笔,橡皮和黑色碳素笔。 2、端正坐姿,保持安静,准备上课。
2020/7/25
1
1.2.4绝对值(2)
2
2
学习目标
1、在熟练运用绝对值的基础上掌握有理数比较大小 的两种方法。
2、通过利用数轴比较有理数大小,初步体会数形结 合思想
2020/7/25
1.2.4 绝对值 课件-人教版(2024)数学七年级上册
应 记作 |a| . (这里的数a可以是正数、负数和0). 用
0到原点的距
-5到原点的距 离是5,所以-5的 绝对值是5,记 做|-5|=5
离是0,所以0 的绝对值是0, 记做|0|=0
4到原点的距离是4, 所以4的绝对值是4, 记做|4|=4
│-5│=5 │4│=4 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
第一章 有理数 1.2.4 绝对值
回顾
知 1、什么是数轴? 识
数轴的三 要素
关 数轴是规定了原点、正方向、单位长度的直线
联
-2 -1 0 1 2
2、什么是相反数? 只有符号不同的两个数叫做互为相反数. 规定:0的相反数是0.探情究来自1 导绝入对值的概念探
究
甲、乙两辆出租车在一条东西走向的街道上行驶,
(2)原式=4.2-4.2=0
拓展
探 例4 下列关系一定成立的是
()
究 A.若|m|=|n|,则m=n
B.若|m|=n,则m=n
与 应 C.若|m|=-n,则m=n
D.若m=-n,则|m|=|n|
用 例5 如图 数轴上有四个点M,P,N,Q,若点M,N表示的数互为相反数,则图中四
个点表示的数的绝对值最大的是 ( )
;绝对值最小的数是 .
5.绝对值小于2的整数有 个,它们分别是
.
检测
课
堂 1.直接填写结果:︱+6︱= 6
,︱-1.5︱= 1.5
,|-
小 |= 结
32,︱0︱=32 0
, -︱-12︱= -12 .
与 2.如果一个数的绝对值等于10,那么这个数等于 10或-10.
检 3.如果一个数的绝对值是它本身,那么这个数一定是 非负数 测
1.2.4 绝对值 课件 人教版七年级数学上册 (16)
所以 + =_____
1
01 方法展示
总结
02
实战演练
02 实战演练
例5 若 − + + + + = ,求、、的值
练5.1 若 − + + − = ,则 + =_____
8
THANK YOU
01 方法展示
【示例2】已知 − + + = ,则 + = _____
分析:
因为 − 和 + 都是非负的,
所以两个式子只能等于_____,才可以相加为0
0
则 − =_____,
+ =_____,
0
0
则 =_____,
=_____,
4
-3
做数的绝对值,记作
01 知识解读
单步训练
原点
− 在数轴上表示_______的点到_______的距离,
-12
且距离为_______,所以
− =_______
12
12
原点
− 在数轴上表示_______的点到_______的距离,
且距离为_______,所以 −
=_______
A、±
B、
C、−
③
2018
=_____
D、
二
绝对值比较大小
目录
CONTENTS
01
方法展示
02
实战演练
01
方法展示
01 方法展示
【示例1】数轴上A、B两点表示的数分别是−、−
−的绝对值是_____,−的绝对值是_____
1
01 方法展示
总结
02
实战演练
02 实战演练
例5 若 − + + + + = ,求、、的值
练5.1 若 − + + − = ,则 + =_____
8
THANK YOU
01 方法展示
【示例2】已知 − + + = ,则 + = _____
分析:
因为 − 和 + 都是非负的,
所以两个式子只能等于_____,才可以相加为0
0
则 − =_____,
+ =_____,
0
0
则 =_____,
=_____,
4
-3
做数的绝对值,记作
01 知识解读
单步训练
原点
− 在数轴上表示_______的点到_______的距离,
-12
且距离为_______,所以
− =_______
12
12
原点
− 在数轴上表示_______的点到_______的距离,
且距离为_______,所以 −
=_______
A、±
B、
C、−
③
2018
=_____
D、
二
绝对值比较大小
目录
CONTENTS
01
方法展示
02
实战演练
01
方法展示
01 方法展示
【示例1】数轴上A、B两点表示的数分别是−、−
−的绝对值是_____,−的绝对值是_____
数学:1.2-第4课时《绝对值》课件(人教版七年级上)
关于血细胞数量的改变,下列哪项是错误的A.真性红细胞增多症可有嗜酸粒细胞增多B.分娩时可有一过性中性粒细胞增多C.器官移植排斥反应时可有淋巴细胞增多D.正常人外周血中偶尔可见到异型淋巴细胞,一般<10%E.急性传染病恢复期单核细胞增多 客户潜在贡献是指A、客户储备贷款潜在贡献B、存量贷款潜在贡献C、贸易融资核心企业因关联效应产生的贡献D、客户储备贷款潜在贡献、存量贷款潜在贡献和贸易融资核心企业因关联效应产生的贡献 某施工用机械,折旧年限为10年,年平均工作300个台班,台班折旧费800元,残值率为5%,则该施工机械的预算价格为。A.116.4万元B.120万元C.123.6万元D.252.6万元 《文物保护法》规定,一切机关、组织和个人都有依法保护文物的。A.责任B.义务C.任务D.权利 以食管超声心动图测量CO,下述哪项不是必须条件()A.环形二尖瓣瓣口B.血流层流C.无返流D.心律规则E.心率50~100次/分 中心型肺癌最重要的诊断方法是A.X线检查B.CT检查C.支气管纤维镜检D.胸腔镜E.放射性同位素扫描 符合下颌第一乳磨牙特点的是。A.面似以近中缘为底的三角形B.颊面远中缘长于近中缘C.近中颊颈嵴特别突出D.颊面似以远中缘为底的三角形E.牙根细长,分叉度小 理中丸的组成药物是A.人参、生姜、炙甘草、白术B.人参、生姜、炙甘草、大枣C.人参、干姜、炙甘草、白术D.人参、干姜、炙甘草、大枣E.人参、白术、炙甘草、大枣 列车在发车前应确认制动主管的压力,按规定每分钟漏泄不得超过千帕。 患者,男,23岁,因上呼吸道感染,剧烈咳嗽,持续发热而就诊,测体温持续在39~40℃左右一周时间,且一天内体温波动幅度不超过1℃。其热型为()A.稽留热B.弛张热C.间歇热D.不规则热E.超高热 特别洁净手术室(Ⅰ类)适合做下列哪些无菌手术A、关节置换手术B、器官移植手术C、脑外科D、心脏外科
人教版(2024)数学七年级上册1.2.4绝对值课件(共15张PPT)
一般地,数轴上表示数a的点与原点的距离 叫作数a的绝对值,记作|a| .
这里的数a可以是 正数、负数和0
例1 借助数轴求出2,4,-5,-1,-2.5,0的绝对值.
0
5
2.5 1
4 2
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
解: 表示2的点到原点的距离是2,所以2的绝对值是2; 表示4的点到原点的距离是4,所以4的绝对值是4;
本节我们继续学习有理数的相关概念!
新知学习
如图,10和-10互为相反数,在数轴上分别用A、B两点表示,可以发现:点A、B与原
点的距离都是10
B
O
A
-10到原点的距离是10, 所以-10的绝对值是10, 记做|-10|=10
-10
0
10
0到原点的距离是0,所以0 的绝对值是0,记做|0|=0
10到原点的距离是 10,所以10的绝对值 是10,记做|10|=10
44
(2)如图,数轴上的点A,B,C,D分别表示有理数a,b,c,d,这四个数中, 绝对值最小的是哪个数?
A
B
C
D
-4 -3 -2 -1 0 1 2 3
解:因为在点A,B,C,D中,点C离原点最近, 所以在有理数a,b,c,d中,c的绝对值最小.
分析:一个数的绝对值越小, 数轴上表示它的点离原点越 近;反过来,数轴上的点离 原点越近,它所表示的数的 绝对值越小
1 2
1 2
2.5 3
-3 -2 -1 0 1 2 3
距离原点为
1
Hale Waihona Puke 3、2,2.5的点分别有2个(一个正数,一个负数),如上图所示.
2.这些数字之间有什么关系?
人教版七年级数学上册课件:1.2.4 绝对值(共30张PPT)22精选优质 PPT
其中最低的是________℃,最高的是_______℃.
会求一个有理数的绝对值(重点).
A.―4 B.― C. D.4
-(-7)>-(+4)
负数的绝对值是它的相反数
③比较负数的大小.
1.数轴上表示数a的点与原点的距离叫做数a的绝对值.
在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即左边的数小于右边的数.
|4|= 4 绝对值相等的两个数相等或互为相反数, 0 A.―4 B.― C. D.4
4
|1.5|= 1.5 (10)互为相反数的两个数的绝对值相等 ( )
归纳总结: 几个非负数的和为0,则这几个数都为0. 有没有最大的有理数?有没有最小的有理数?为什么?
| 2 |= 2 , 33
|-2.5|=2.5;
正数的绝对值等于它本身
负数的绝对值等于它的相反数
知识讲解
例2 填一填 (1)绝对值等于0的是__0___, (2)绝对值等于7的正数是__7___, (3)绝对值等于7的负数是__-_7___, (4) 3的绝对值数是__3_,-3的绝对值数是_3__.
数的大小.( 难 点 )
新课导入
珠穆朗玛峰的海拔高度 为8 844.43米
吐鲁番盆地的海拔 高度为-155米
根据海拔高低, 可以得出 8844.43>-155
哪个高呢?
新课导入
-10℃、0℃、 6℃哪个温度高?
根据温度的高低,可以得出 -10<0,0<6.
知识讲解
1.借助数轴比较有理数的大小
下表给出了某地未来一周中每天的最高和最低气温
星期
一
二
三
四
五
六
日
最高气温(℃)
1.2.4 绝对值 课件 人教版七年级数学上册 (17)
0的绝对值是0.
(1)如果a>0,那么|a|=a.
(2)如果a<0,那么|a|=-a.
(3)如果a=0,那么|a|=0.
简记为
,( > 0)
|a|= −,( < 0)
0,( = 0)
用字母表示数后可以用含字母的式子表达一般规律.
思考
互为相反数的两个数的绝对值有什么关系?
-4
-3
-2
-1
0
课堂小结
绝对值的意义
数轴上表示数 a 的点与原点的距离.
绝对值
绝对值的性质
,( > 0)
|a|= −,( < 0)
0,( = 0)
谢谢聆听
这两个数. 你发现了什么?
A
-10
10
O
0
10
B
10
(1)点 A,B关于原点对称;
(2)点 A,B与原点的距离相同,都是 10.
新知探索
10 和 -10 互为相反数,在数轴上分别用点 A,B 表示
这两个数. 你发现了什么?
A
-10
10
O
0
10
B
10
一般地,数轴上表示数 a 的点与原点的距离叫作
数 a 的绝对值,记作 |a|.
(2)若 a = 0,则 | a | = 0;
(3)若 a < 0,则 | a | = -a.
例题
【教材P13】
7
例 4 (1)分别写出 1, -0.5 和 的绝对值;
4
距离为0.5
-2
-1
7
距离为
4
| 1 | = 1;
0
1
2
距离为1
人教版七年级上册数学课件—1.2.4 绝对值 (共18张PPT)
归纳
绝对值:在数轴上,表示有理数a的点 到原点的距离叫做数a的绝对值, 记作| a | .
巩固练习
根据绝对值的定义,求下列各数的
绝对值.
+4、-3、-2、0、 3 1 2
解: 4 4 4 0 0
3 3 3 2 2 2
3 1 3 1 3 1 2 22
探索下列问题
填空: (1)|3|=______;(2)|1.5|=______; (3)|-3|=______;(4)|-1.5|=______; (5)|0|=_____. 解决这些问题后,你能得到什么结论?
1.2.4 绝 对 值
活动
请两位同学到讲台前,分别向 东、西走2米.
思考: (1)他们所走的路程是否相同? (2)若向右为正,则分别如何表示他们的位置? (3)他们所走的路程远近有何关系?
动手操作
在数轴上画出一对互为相反数的 有理数的点,观察两个点的位置关 系.并请同学在讨论后说出它们的位置 关系.
( 1) 1 1
2
3
解:原式=
14 2 23 3
探究
在数轴上的点所表示的有理数有何特点?
数轴上右边的点表示的数大于左边的点 表示的数.
归纳
从数轴上可知: (1)正数大于0,0大于负数,正数大于负数; (2)两个负数绝对值大的反而小; (3)两个正数绝对值大的大.
巩固练习
例1. 比较下面各组数的大小
归纳
正有理数的绝对值是它本身; 负有理数的绝对值是它的相反数; 0的绝对值是0.即:
a a 0 | a | 0 a 0
a a 0
巩固提高
例1:求下列各数的绝对值.
7 1 , 1 , 4.75,10.5 2 10
人教版七年级数学初一上册精品课件1.2.4_绝对值.ppt
①表示数a的点到 原点 的距离叫做数a的绝 对值;正数的绝对值是 本身 ,负数的绝对 值是相反数,0的绝对值是 0 。
② _非__负__数___的绝对值等于它本身, 负数 的绝 对值等于它的相反数。 绝对值等于10的正数是 10 ,绝对值等于 2.5的数是 -2.5、+2.5 ,绝对值等于3的数 是 -3 , +3 。
• 2、Our destiny offers not only the cup of despair, but the chalice of opportunity. (Richard Nixon, American President )命运给予我们的不是失望之酒,而是机会之杯。二〇二〇年八月五日2020年8月5 日星期三
20.8.520.8.5Wednesday, August 5, 2020
• 14、 Where there is a will , there is a way . ( Thomas Edison , American inventor )有志者,事竟成。11:01:1911:01:1911:018/5/2020 11:01:19 AM
(0.3) | 1|. 3
从上面的比较,我们可以看出: ①不同符号的数比较大小,只看符号; ②相同符号的数比较大小,看符号的同时, 还要判断绝对值的大小。 同是正数时,绝对值较大的数较大, 同是负数时,绝对值较大的反而小。
• 1、Genius only means hard-working all one's life. (Mendeleyer, Russian Chemist) 天才只意味着终身不懈的努力。20.8.58.5.202011:0311:03:10Aug-2011:03
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
|5|=5 |3.5|=3.5 |-3|=3
0
5
0 3.5 -3 0
|-4.5|=4.5
-4.5
0
思考:一个数的绝对值大小与什么有关?
(与数轴上这点与原点的距离有关)
巩固应用
写出下列各数的绝对值:
(相等)
5
-8,-0.9,
2
解:
|-8|=8;
,
2
(负数和0) , 8,0.9, 0
11
|8|=8;
|-0.9|=0.9;
(2)当a是负数时,|a|=__-a;
负数的绝 对值是它
的相反数
(3)当a=0时,|a|=__0_.
0的绝对值是0
a (a ﹥ 0)
|a|= 0 (a=0)
-a (a ﹤ 0)
任务二:理解绝对值得意义
|a|≥0
任何一个有理数的绝对值都是非负数!
判断正误
a=0
Ⅰ.若a = -a,则a<0. ( × )
A
O
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
魏尔斯特拉斯
(1815.10.31—1897.2.19)
德国数学家,被誉为
“现代分析之父”
1841年开始使用,在数轴上表示一个数的点A与原点O
将数轴分成三部分,其中OA这部分的线段长度用符号
“| |”表示
小试牛刀
说一说 利用数轴上点到原点的距离口答
还有0
Ⅱ.绝对值等于它本身的数一定是正数. (× )
Ⅲ.绝对值最小的数是1. ( × )
0
Ⅳ.任何有理数的绝对值都是正数. (× )
0的绝对值是0,但0不是正数
拓展延伸
(1)若|x| = 64 ,则x =___±±__46__;
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
【方法一】
相等
任务一:探究绝对值得概念及表示
问题:数轴的点到原点距离叫什么?
自主学习:教材第11页,解决以上问题
|-3|=3
|+5|=5
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
我们把一个数在数轴上对应的点-5a3 到原点的距 离叫做这个数-5a3的绝对值,用“| -a53 |”表示.
任务一:探究绝对值得的距离分
别是(5和5)
数轴上,表示-3.5 和3.5的点到原点的 距离分别是(3.5和
3.5)
你还能找到两个数所表 示的点到原点的距离相
等吗?
5
5
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
-3.5
3.5
思考:互为相反数的点到原点的距离具有什么特点?
|0.9|=0.9;
2 =2; 11 11
5 =5 ; 22
|0|=0;
问思题考:观一察个思数考的正绝数对、值负等数于、他0本的身绝,对这值个有数什是么?特(点正?数和0)
任务二:理解绝对值得意义
若字母(a表1)示当一a是个有正理数数时,,你知|道a|a的=绝_对__值a_;正等数于的正对绝什数值本对身的是身么值绝它是吗它?本
3尺
O
3尺
-3
0
3
数形结合的数学思想
任务一:探究绝对值的概念及表示
问题:两辆汽车从同一处O出发,分别向东、西方向行 驶10 km,到达A,B两处,它们的行驶的路线相同吗? 行驶的路程相同吗?A、B两点表示的实际意义是什么?
B
10 km O
- 10
0
10 km A 10 东
任务一:探究绝对值得概念及表示
【方法二】
因为|+4|=4,|-4|=4, 所以,绝对值等于
4的数是+4和-4
因为数轴上到原点的距离 等于4个单位长度的点有 两个,如图,即表示+4 的点和表示-4的点,所以
绝对值等于4的数是4和-4
课堂小结
概念:一般地,数轴上表示数 a 的点与原 点的距离叫做数 a 的绝对值,记作|a|.
几何意义:“绝对值”是几何量“距离”的代 数表示 绝对值:
人教版·数学·七年级上册第一章
1.2.4 绝对值
情境导入---六尺巷故事
经典故事 :清康熙年间,宰相张英的老家人与邻居吴家在宅
地的问题上发生了争执,谁也不肯相让。后来张家人千里传书到京 城求救。张英收书后批诗一首云:一纸书来只为墙,让他三尺又何 妨。长城万里今犹在,不见当年秦始皇。张家人豁然开朗,退让了 三尺。吴家见状深受感动,也让出三尺,形成了一个六尺宽的巷子。
|a|=
a 一(a ﹥ 0)
0 (a=0) -a (a ﹤ 0)
懒惰象生锈一样,比操劳更能消耗身体; 经常用的钥匙,总是亮闪闪的.
——富兰克林
再见
长风破浪会有时,直挂云帆济沧海。努力,终会有所收获,功夫不负有心人。以铜为镜,可以正衣冠;以古为镜,可以知兴替;以人为镜,可以明得失。前进的路上 照自己的不足,学习更多东西,更进一步。穷则独善其身,达则兼济天下。现代社会,有很多人,钻进钱眼,不惜违法乱纪;做人,穷,也要穷的有骨气!古之立大 之才,亦必有坚忍不拔之志。想干成大事,除了勤于修炼才华和能力,更重要的是要能坚持下来。士不可以不弘毅,任重而道远。仁以为己任,不亦重乎?死而后已, 理想,脚下的路再远,也不会迷失方向。太上有立德,其次有立功,其次有立言,虽久不废,此谓不朽。任何事业,学业的基础,都要以自身品德的修炼为根基。饭 而枕之,乐亦在其中矣。不义而富且贵,于我如浮云。财富如浮云,生不带来,死不带去,真正留下的,是我们对这个世界的贡献。英雄者,胸怀大志,腹有良策, 吞吐天地之志者也英雄气概,威压八万里,体恤弱小,善德加身。老当益壮,宁移白首之心;穷且益坚,不坠青云之志老去的只是身体,心灵可以永远保持丰盛。乐 其乐;忧民之忧者,民亦忧其忧。做领导,要能体恤下属,一味打压,尽失民心。勿以恶小而为之,勿以善小而不为。越是微小的事情,越见品质。学而不知道,与 行,与不知同。知行合一,方可成就事业。以家为家,以乡为乡,以国为国,以天下为天下。若是天下人都能互相体谅,纷扰世事可以停歇。志不强者智不达,言不 越高,所需要的能力越强,相应的,逼迫自己所学的,也就越多。臣心一片磁针石,不指南方不肯休。忠心,也是很多现代人缺乏的精神。吾日三省乎吾身。为人谋 交而不信乎?传不习乎?若人人皆每日反省自身,世间又会多出多少君子。人人好公,则天下太平;人人营私,则天下大乱。给世界和身边人,多一点宽容,多一份担 为生民立命,为往圣继绝学,为万世开太平。立千古大志,乃是圣人也。丹青不知老将至,贫贱于我如浮云。淡看世间事,心情如浮云天行健,君子以自强不息。地 载物。君子,生在世间,当靠自己拼搏奋斗。博学之,审问之,慎思之,明辨之,笃行之。进学之道,一步步逼近真相,逼近更高。百学须先立志。天下大事,不立 川,有容乃大;壁立千仞,无欲则刚做人,心胸要宽广。其身正,不令而行;其身不正,虽令不从。身心端正,方可知行合一。子曰:“知者不惑,仁者不忧,勇者不惧 进者,不会把时间耗费在负性情绪上。好学近乎知,力行近乎仁,知耻近乎勇。力行善事,有羞耻之心,方可成君子。操千曲尔后晓声,观千剑尔后识器做学问和学 次的练习。第一个青春是上帝给的;第二个的青春是靠自己努力当眼泪流尽的时候,留下的应该是坚强。人总是珍惜未得到的,而遗忘了所拥有的。谁伤害过你,谁 要。重要的是谁让你重现笑容。幸运并非没有恐惧和烦恼;厄运并非没有安慰与希望。你不要一直不满人家,你应该一直检讨自己才对。不满人家,是苦了你自己。 久的一个人,而是心里没有了任何期望。要铭记在心;每一天都是一年中最完美的日子。只因幸福只是一个过往,沉溺在幸福中的人;一直不知道幸福却很短暂。一 看他贡献什么,而不应当看他取得什么。做个明媚的女子。不倾国,不倾城,只倾其所有过的生活。生活就是生下来,活下去。人生最美的是过程,最难的是相知, 幸福的是真爱,最后悔的是错过。两个人在一起能过就好好过!不能过就麻利点分开。当一个人真正觉悟的一刻,他放下追寻外在世界的财富,而开始追寻他内心世 若软弱就是自己最大的敌人。日出东海落西山,愁也一天,喜也一天。遇事不转牛角尖,人也舒坦,心也舒坦。乌云总会被驱散的,即使它笼罩了整个地球。心态便 明灯,可以照亮整个世界。生活不是单行线,一条路走不通,你可以转弯。给我一场车祸。要么失忆。要么死。有些人说:我爱你、又不是说我只爱你一个。生命太 了明天不一定能得到。删掉了关于你的一切,唯独删不掉关于你的回忆。任何事都是有可能的。所以别放弃,相信自己,你可以做到的。、相信自己,坚信自己的目 受不了的磨难与挫折,不断去努力、去奋斗,成功最终就会是你的!既然爱,为什么不说出口,有些东西失去了,就在也回不来了!对于人来说,问心无愧是最舒服 ,表明他人的成功,被人嫉妒,表明自己成功。在人之上,要把人当人;在人之下,要把自己当人。人不怕卑微,就怕失去希望,期待明天,期待阳光,人就会从卑 封存梦想去拥抱蓝天。成功需要成本,时间也是一种成本,对时间的珍惜就是对成本的节约。人只要不失去方向,就不会失去自己。过去的习惯,决定今天的你,所 决定你今天的一败涂地。让我记起容易,但让我忘记我怕我是做不到。不要跟一个人和他议论同一个圈子里的人,不管你认为他有多可靠。想象困难做出的反应,不 ,而是面对它们,同它们打交道,以一种进取的和明智的方式同它们奋斗。他不爱你,你为他挡一百颗子弹也没用。坐在电脑前,不知道做什么,却又不想关掉它。 ,让时间帮你决定。如果还是无法决定��