悖论大全
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
老虎悖论是博弈论中一个著名的逻辑悖论。
故事
国王要处决一个囚犯,但给他一个生还的机会。囚犯被带到5扇紧闭的门前,其中一扇后面关着一只老虎。国王
对囚犯说:“你必须依次打开这些门。我可以肯定的是,在你没有打开关着老虎的那扇门之前,你是无法知道老虎是在那扇门后。”显然,如果囚犯有可能在打开有老虎的那扇门前知道,就证明国王在撒谎,那么就可以活命。开门之前,囚犯进行了如下分析:假如老虎在第五扇门,那当他把前四扇门打开后都没发现老虎,那他肯定猜到老
虎在第五扇门中,因国王说过不论何时他也料不到老虎在哪扇门后,那国王的说话就错了。因此,老虎肯定不在
第五扇门中。同样道理,老虎也不在第四道门中,否则囚犯打开三道门后,只剩两道门,老虎既不在第五扇门后,那就会给他料到在第四扇门后;依次类推,老虎不存在任何一道门后;囚犯这时就不再多想,冒冒失失依次推门,结果老虎从第二扇门中跳了出来,把囚犯咬死了。国王看见了说:“不是跟你说了老虎在哪扇门后总是出乎你的意料了吗?现在你就是万料不到了。”
悖论分析
如果囚犯的推理成立,那么就算国王把老虎放在第五扇门后,也是“料想不到”,学者们争论的重点在于:这个推理究竟错在第几步?
1.主张错在第一步
如果第一步是正确的,那么后面几步为什么是错的?所以第一步就错了。错在囚犯把国王的思路作为论据。
首先必须定义怎样算国王所谓的“知道”(或“意料”),如果投机猜测算的话,那国王不论怎样放都不能保证不被猜中,所以带投机成分的猜测不能算“知道”(国王为了自身利益也会这么定义),设“知道”定义为“在即有事实下的逻辑推
理”,那么囚犯不仅要正确预测老虎,还要对其预测给出严格的逻辑证明才行。本例中不考虑没有老虎的情况,即
囚犯已知必有1老虎。作为囚犯,他在每次打开一个门前都会进行逻辑推理,如果能推出老虎是在即将打开的门
里就赢了,如果不能推出,他就只能打开这个门,如果打开后没有老虎就继续推理下一个门是否有老虎,依此类推。
然后,把问题从5个门简化为只有2个门,囚犯会在打开第一个门之前,对第一个门里是否有老虎做逻辑推理:
由于囚犯要引用国王的思路,故须先考虑国王思路是否是会错。
A.如果相信国王是不会错的,那么你不可能推测出第一个门里有没有,因为如果推测出就说明国王会错,所以在
这个前提下不可能知道。囚犯无法推测出第一个门里有没有老虎,必然要打开第一个门。
B.如果相信国王是会错的:
囚犯首先认为国王放第二个门是错的,但国王既然是会错的,他为何不会按囚犯认为错误的思路放第二个门呢?
所以国王的思路就没法唯一的推测了。囚犯失去国王的思路做论据,无法推测出第一个门里有没有老虎,必然要
打开第一个门。
因此,国王应且只应放到第一个门中,则国王必胜。
推广到n个门的情况,只要国王不把老虎放到最后一个门,则国王必胜,囚犯必败。
2.主张错在第二步
故事中的囚犯最后决定相信“没有老虎”。但,国王并不知道囚犯是否会这样,所以的确不可能把老虎放在第五扇门。如果囚犯决定相信“一定有老虎”,那么在前四扇门都没有老虎之后,第五扇门后的老虎的确就变成“可预料的”了。
既然老虎在第五扇门的话,它一定是“可预料的”,那么当你已经开了三扇空门时,情况是怎么样?我们可以试着写成逻辑式子:前提一、老虎不可预料。前提二、老虎如果在第五扇门时,可预料。前提三、老虎不在第五扇门时,就一定在第四扇门。前提四、老虎如果在第四扇门时,可预料。结论:前提互相矛盾。
请注意:这时的逻辑推理中,既然前提互相矛盾,必定有一个以上不成立,那么可能性就是以下四个其中之一、
或是更多:
A.老虎可预料。
B.老虎如果在第五扇门时,不可预料。
C.老虎不在第五扇门时,也不一定在第四扇门。
D.老虎如果在第四扇门时,不可预料。
二和四自身是矛盾命题,不考虑,三会导致老虎变成薛定谔的猫,也就是既存在亦非存在的状态(囚犯把老虎往
前门推是错误的,因为前提中包含“已经开了三扇空门”)。所以可能性只有一个:老虎可预料。但若老虎可预料,那么显示国王说谎,如果国王可能说谎,那么老虎也真的有可能消失。
这时的正确结论是:国王一定说谎,但他的谎言可能是“老虎可预料”,却也可能是“根本没老虎”,囚犯只是偏心于
一个可能性,结果帮国王圆谎罢了。
3.主张错在最后一步
如果“不可预料”并不是一种保证,而只意味“高机率”,“有老虎”才是保证,那么情况又整个改观。可以列成以下状况:
如果囚犯连猜五次“老虎不在”,则不可预料率100%,当然是最糟的状况。
如果囚犯连猜五次“老虎在”,这时应将不可预料率一样视为100%。假设国王随便放,因为平均猜错次数是两次,亦即猜错一次要加不可预料率50%才公平。
假设国王随便放,这时囚犯采用的策略,以:
很明显了,这时国王的对应策略,如果把老虎放在失分最低的第五扇门,可能被囚犯豪赌赌中,所以把老虎放在
失分次低的第二扇门会是最佳选择,只要把囚犯的猜中率压在20%以下,都可以毫无愧色说是有很高的不可预料率。
他应该从“老虎不存在”这个矛盾的结论,导出国王所谓的“不可预料”其实是指机率,再从机率上推测国王到底把老虎放在第几个门。
其他版本
突击测验
老师宣布下星期一至星期五其中一日之中,会有一天举行突击测验。学生认为根本不存在突击测验。若假设直到
星期四还未举行测验,那么星期五就会举行,那就不算突击,因此星期五不会举行。若星期三还未举行,而星期
五又不会举行,星期四就会举行……如此类推,老师不可能进行突击测验。
全能悖论
全能悖论是一组关于一个“全能”的个体在逻辑学上是否可能存在的悖论。该悖论的内容是:如果任一个体是“全能”的话,那么他就一定能够制订出一个他不能履行的工作,如此他就不会是全能的;反之,若一个“全能”的个体不能够制订出一个他不能履行的工作,如此他也不会是全能的。因此,无论他能否制订这项工作,他也不会是全能的。
伊本·鲁世德(1126–1198)是一个很早就意识到全能悖论存在的穆斯林哲学家。
简介