悖论大全

合集下载

悖论大集合

悖论大集合

悖论大集合(1)米堆悖论。

如果一粒米不算一堆米,两粒米不算一堆米,三粒米不算一堆米……那么照此逻辑,一万粒米也不算一堆米。

与之相对的是(2)沙丘悖论。

如果有一堆沙,拿走一颗沙这还是一堆沙,拿走两颗沙这还是一堆沙,那么,拿走n颗也算是一堆沙,所以一颗沙也叫一堆沙。

和我们的认识抵触。

(2)赌徒的谬误。

假设有一个赌徒,他在赌博中连续赢了9次,请问第10次他会输还是赢?这个问题一般有两种答案,第一,他会赢,因为很多人觉得前9次赢了,说明他运气来了,下一次要赢了。

第二,他会输,因为风水轮流转,不可能一直好运,这样才能平衡。

这和买彩票号码是一样的,有人认为要买前几次出现过的号码,觉得这是热门号码。

而有人则认为应该买其他号码,因为既然前几次是那个号码,那么后来就肯定不是了。

这种对不确定的事情以前面的结果进行推测就叫赌徒的谬误。

其实,第10次赌徒到底是输还是赢还是一件未知的事情,所谓运气楼主也不知道到底存不存在这种东西。

你们呢?觉得运气存在么?(3)怕老婆悖论。

电台举行节目,要求所有男性出场。

要求怕老婆的就站左边,不怕的站右边。

中国男性以怕老婆为荣。

于是纷纷走向左边。

只有唯一一个男性在右边。

主持人不解问他是不是不怕老婆,他说:“我老婆不让我去人多的地方。

”这下主持人犯了难。

到底他是怕老婆还是不怕呢?(4)万能溶液悖论。

(很多经典的悖论有可能大家见过就当复习吧,蹭)一位科学家的弟子好高骛远,于是有一天他非常骄傲的对老师说,我要发明一种能溶解任何东西的万能溶液。

他的老师只是轻轻的说:那你用什么容器装它呢?(5)鳄鱼悖论。

一头鳄鱼抓住了一个小孩,它对小孩妈妈说:“你猜我吃不吃他?猜对了我就不吃他。

猜错了我就吃了它。

”小孩妈妈说:“我猜你要吃了我的孩子。

”鳄鱼说:“哈哈,那我要吃了它。

”小孩妈妈说:“我猜对了那你就不应该吃他。

”鳄鱼这下糊涂了,如果还给她孩子,那他就猜错了我应该吃了它,但是我吃了他她就猜对了不应该吃他,最后鳄鱼还给了她孩子。

十大经典悖论

十大经典悖论

十大经典悖论1. 赫拉克利特的悖论:你永远无法踏进同一条河流。

这个悖论源自古希腊哲学家赫拉克利特的一句名言:“你不能踏进同一条河流,因为它的水已经不是那条水,而你自己也不是那个人。

”这句话意味着一切事物都在不断变化,一切都是瞬息万变的,不存在恒定不变的东西。

因此,即使你站在同一个地点,望着同一条河流流过,也永远无法再次踏进同一条河流。

2. 色盲悖论:我们无法知道别人的颜色感知和我们自己的感知是否相同。

这个悖论源自于我们的视觉系统确是极其复杂和奇妙的,但人的眼睛只能看见有限的颜色,而有人可能看不见某些颜色或者已存在的颜色看得更加清晰。

因此,我们无法知道别人感知到的颜色和我们自己的感知是否相同,因为不同的颜色触发不同的神经反应。

3. 辛普森悖论:相反的结果,改变了数据的组合。

这个悖论源自数据分析的一个概念,它指的是当我们观察两组数据时,看似相反的趋势却可以被数据的不同组合方式所掩盖。

例如,拥有高学历的男性相对于拥有同样学历的女性而言获得更高的薪水,但是当我们将这两组数据组合时,我们发现女性比男性还要能够获得更高的薪水。

4. 俄狄浦斯悖论:我们的预测或努力可能会导致我们所想要避免的事情的发生。

这个悖论源自神话故事俄狄浦斯王的遭遇。

俄狄浦斯王通过占卜知道自己即将杀死自己的父亲并与母亲结婚,因此为了避免这样的命运,他离开了他的家乡。

然而,在他的旅途中,他无意中杀死了一个人,并不知道该人是他父亲。

最终,他成功地解决了由此引起的谋杀案并娶了继妻。

5. 费马最后定理的悖论:一个数学悖论,宣传广泛,引起了许多人的兴趣和探索。

费马最后定理的悖论是一个数学困惑,该定理声称:$x^n+y^n=z^n$在$n$为整数,$x$、$y$、$z$之间没有公因数的情况下不可能成立,其中$n$的值应该大于2。

在300多年的时间里,许多数学家都试图证明它,但是直到1994年,一位英国数学家安德鲁·怀尔斯终于找到了一个解。

6. 伯努利悖论:即使它不太可能发生,某些事件仍然有可能发生。

悖论大集合

悖论大集合

悖论大集合悖论大集合(1)米堆悖论。

如果一粒米不算一堆米,两粒米不算一堆米,三粒米不算一堆米……那么照此逻辑,一万粒米也不算一堆米。

与之相对的是(2)沙丘悖论。

如果有一堆沙,拿走一颗沙这还是一堆沙,拿走两颗沙这还是一堆沙,那么,拿走n颗也算是一堆沙,所以一颗沙也叫一堆沙。

和我们的认识抵触。

(2)赌徒的谬误。

假设有一个赌徒,他在赌博中连续赢了9次,请问第10次他会输还是赢?这个问题一般有两种答案,第一,他会赢,因为很多人觉得前9次赢了,说明他运气来了,下一次要赢了。

第二,他会输,因为风水轮流转,不可能一直好运,这样才能平衡。

这和买彩票号码是一样的,有人认为要买前几次出现过的号码,觉得这是热门号码。

而有人则认为应该买其他号码,因为既然前几次是那个号码,那么后来就肯定不是了。

这种对不确定的事情以前面的结果进行推测就叫赌徒的谬误。

其实,第10次赌徒到底是输还是赢还是一件未知的事情,所谓运气楼主也不知道到底存不存在这种东西。

你们呢?觉得运气存在么?(3)怕老婆悖论。

电台举行节目,要求所有男性出场。

要求怕老婆的就站左边,不怕的站右边。

中国男性以怕老婆为荣。

于是纷纷走向左边。

只有唯一一个男性在右边。

主持人不解问他是不是不怕老婆,他说:“我老婆不让我去人多的地方。

”这下主持人犯了难。

到底他是怕老婆还是不怕呢?(4)万能溶液悖论。

(很多经典的悖论有可能大家见过就当复习吧,蹭)一位科学家的弟子好高骛远,于是有一天他非常骄傲的对老师说,我要发明一种能溶解任何东西的万能溶液。

他的老师只是轻轻的说:那你用什么容器装它呢?(5)鳄鱼悖论。

一头鳄鱼抓住了一个小孩,它对小孩妈妈说:“你猜我吃不吃他?猜对了我就不吃他。

猜错了我就吃了它。

”小孩妈妈说:“我猜你要吃了我的孩子。

”鳄鱼说:“哈哈,那我要吃了它。

”小孩妈妈说:“我猜对了那你就不应该吃他。

”鳄鱼这下糊涂了,如果还给她孩子,那他就猜错了我应该吃了它,但是我吃了他她就猜对了不应该吃他,最后鳄鱼还给了她孩子。

数学史上十个有趣的悖论

数学史上十个有趣的悖论

数学史上十个有趣的悖论1. 赫拉克利特悖论:你永远无法踏入同一条河流。

因为河流的水流不断更替,所以你每次接触到的都是不同的水。

2. 亚里士多德悖论:有一只鸟,如果它每天吃一只虫子就会活下去,那么它连续吃两只虫子会发生什么?它会死亡,因为它每天只需要一只虫子来维持生命。

3. 形而上学悖论:如果一个人把一艘船的每一块木头一块一块地替换掉,那么到最后是否还是同一艘船呢?4. 希尔伯特问题的悖论:是否存在一个包含所有数学真理的最终公式列表?如果是,那么这个列表将包含说真话的几句话和谎言。

但如果它不能说出哪句话是真话,哪句话是谎言,那么这个列表就不完整。

5. 斯特芬兹悖论:如果你有一个无穷的房间,房间里有一个无穷大的桶,里面装满了无穷多的球,但只有两种颜色:红和白。

你是否能用有限的步骤将球分成两堆,一堆红的,一堆白的?6. 孪生数悖论:对于任何一个素数,若将它加一或减一,它们之间的差值必定是二。

因此,两个素数之间一定有一个偶数。

7. 吉尔伯特-陶逊悖论:如果一个村庄中只有男人和小孩,那么这个村庄中一定存在一个人至少有红色头发吗?实际上是可以的,因为这个悖论只是一个错综复杂的抽象预测。

8. 无穷大悖论:如果你将自然数的所有数字分成偶数和奇数,你会发现奇数会比偶数多一些。

但是,当你将这些数字除以二,结果是每个数字都是整数,因此奇数和偶数应该在数量上相同。

9. 托勒密悖论:在托勒密的地球中心宇宙模型中,一颗星星的轨道被假定为匀速圆周运动。

这导致了一个悖论,因为我们观察到的星星的视差应该与其轨道的半径有关,但实际上并非如此。

10. 蒙提霍尔悖论:你在面前有三个门,其中一个门后面是奖品,另两个门后面没有奖品。

你选择了一个门,然后主持人打开了另一个没有奖品的门。

你是否应该更改你的选择以提高你获得奖品的机会?是的,你应该更改你的选择,因为这将让你获得奖品的机会增加到2/3。

12个经典悖论

12个经典悖论

12个经典悖论1. 赫塞尔巴赫悖论(Hilbert's paradox of the Grand Hotel):一个无限大的酒店已经满了,但是还能接纳更多的客人。

2. 巴塞尔问题(Basel problem):求和公式Σ(1/n^2)的结果等于π^2/6,这看起来与直觉相悖。

3. 伯特兰悖论(Bertrand paradox):选择一个随机的线段,然后选择一个随机的角度,使得这个线段能够成为一个等边三角形的一条边的概率是多少?4. 托尔斯泰悖论(Tolstoy's paradox):如果人类的生命是短暂的,那么人们为什么要耗费时间去做一些无意义的事情?5. 俄罗斯套娃悖论(Russian doll paradox):一个大套娃里面有一个中等大小的套娃,里面又有一个小套娃,依此类推,那么这个套娃的大小是多少?6. 巴贝尔塔斯曼悖论(Babel's paradox):如果每个人都说谎,那么谁在说谎?7. 哥德尔不完备定理(Gödel's incompleteness theorems):任何一个形式化的数学系统都无法包含所有真实陈述的完全集合。

8. 孔雀悖论(Peacock's paradox):为什么孔雀的尾巴上有如此华丽的羽毛,而不是简单的尾巴?9. 本杰明·利伯曼悖论(Benjamin Libet's paradox):我们的决定是基于神经活动的结果,那么自由意志是否存在?10. 船上的修补悖论(Ship of Theseus paradox):如果一艘船的所有部件都被逐渐替换,那么当所有部件都被替换后,这艘船还是原来的那艘船吗?11. 等待帕尔悖论(Waiting paradox):如果每一个人都等待别人先行动,那么最终谁都不会行动。

12. 赫拉克利特悖论(Heraclitus' paradox):你无法两次踏入同一条河流,因为河水在不断流动。

分享14个比较有意思的悖论

分享14个比较有意思的悖论

分享14个比较有意思的悖论1. 全能悖论The Omnipotence Paradox假如一个万能的人(例如神)制造一颗重连到他也无法举起的石头,那他还是万能的吗? 这悖论表示假如一个万能的人可以做任何的事,那他也可以限制自己做某些事,因此他就无法做任何的事,但另一方面假如他无法限制自己的能力的话,那这就会是一件他无法做的事。

2. 堆垛悖论The Sorites’ Paradox这悖论可以用沙子来解释:情况1:1,000,000粒沙子是一个丘情况2:一个丘减掉一粒沙子还是一个丘你假如一直重复这情况的话(每次都减掉一粒沙子),最后的结果会是一个丘等于一粒沙子。

一个人也许可以反驳说情况2不正确,他可以说1,000,000粒沙子不是一个丘,或他也可以说把一粒沙子拿掉就不算一个丘了,但这就必须先否定有丘的存在。

或他可以坚持一个丘就是一粒沙子。

3. 阿罗悖论The arrow paradox阿罗悖论里Zeno表示一个东西要移动时,它必须改变原本的位置。

他用一只射出的箭来举例,他说在任何时间的瞬间,箭要移动就必须到它在的位置,或到它不在的位置。

它无法到它不在的位置,因为这是一个时间的瞬间,而它无法到它在的位置因为它已经在那了。

换一句话说在任何时间的瞬间没有任何动作产生,因为瞬间就像一张照片。

这也被称作弗莱彻的悖论(fletcher’s paradox),弗莱彻是弓箭制造者。

4. 阿基里斯与乌龟的悖论Achilles & the tortoise paradox阿基里斯与乌龟的悖论里,阿基里斯与乌龟比赛。

阿基里斯让乌龟先开始100英尺。

你应该会想一个跑得很快一个跑得很慢,阿基里斯应该可以追上乌龟。

假设人的速度是乌龟的10倍,那么当人跑完那100英尺后乌龟向前跑了10英尺;当人再跑完那10英尺后乌龟又向前跑了1英尺;如此无限跑下去,人永远追不上乌龟。

所以不管阿基里斯如何追乌龟都有追不完的距离,因为乌龟到过的地方有无限的点让阿基里斯去追。

哲学上的十大悖论

哲学上的十大悖论

哲学上的十大悖论思庐哲学 2019-07-05 09:31:59悖论一.价值悖论作为生活必需品的水价值很低,奢侈品如钻石的价值却很高,但为什么水的价值比钻石低?价值悖论(也被叫做钻石与水悖论)就是一类典型的自相矛盾的例子,尽管在维持生存的价值上水要高出钻石,但是市场价水却不如钻石。

我们来试着解释一下这个悖论,当消费量较小时,两者相比水的边际效用要大于钻石,因此两者都缺少的时候,水的价值就更高。

事实上,现在我们对水的消费量往往都比较大,钻石的消费量却远没有那么大。

我们可以天天喝水喝到吐,却不能天天买钻石。

所以,大量水的边际效用小于少量钻石的边际效用。

按照边际效用学派的解释,比较钻石和水的价值并不是比较两者的总价值,而是比较每份单位的价值。

尽管水的总体价值对于人类来说再大也不为过,毕竟水是生存必需品,但是,考虑到全球的水资源足够充沛,水的边际效用也就处在相对较低水平。

另一方面,急需用水的领域一旦被满足,水就被用作不那么紧急的用途,边际效用因此递减。

所以,水的总量增加,水的总体价值就减少。

钻石的情况就不同了,不管地球上到底有多少钻石,市场上的钻石始终是少量,一颗钻石的用途比一杯水大得多得多得多。

所以钻石对于人更有价值。

钻石的价格远高于水,消费者愿意,商人也乐意,一个愿打一个愿挨。

..悖论二.祖父悖论如果你乘坐时光机回到你祖父祖母相遇之前并杀死你的祖父会发生什么?关于时间旅行最有名的悖论是科幻小说作家赫内·巴赫札维勒1943年的小说《不小心的旅行者》(《Future Times Three》)中提出的。

悖论内容如下:时间旅行者回到自己的祖父祖母结婚之前的时空,时间旅行者在该时空杀死了自己的祖父,也就是说,时间旅行者自身从未降生过;但是,如果时间旅行者从未降生,也就不能穿越时空回到以前杀死自己的祖父,如此往复。

我们假设时间旅行者的过去和现在存在因果联系,那么扰乱这种因果关系的祖父悖论看上去似乎是不可能实现的。

12个经典悖论

12个经典悖论

12个经典悖论12个经典悖论如下:1苏格拉底悖论:苏格拉底有一句名言:“我只知道一件事,那就是什么都不知道。

”2纸牌悖论:纸牌悖论就是纸牌的一面写着:“纸牌反面的句子是对的。

”而另一面却写着:“纸牌反面的句子是错的。

”3上帝万能悖论:“如果说上帝是万能的,他能否创造一块他举不起来的大石头?”4鳄鱼悖论:一条鳄鱼抢走了一个小孩,它对孩子的母亲说:“我会不会吃掉你的小孩?答对了,孩子还给你;答错了,我就吃了他。

”5老子悖论:“知者不言,言者不知。

”是一条悖论,被白居易一语道穿。

白居易在《读老子》里说道:“言者不知知者默,此语吾闻于老君。

若道老君是知者,缘何自着五千文?”6艾宾浩斯悖论:这条悖论是在研究人的记忆力时引发的。

“在记忆获得的初期,人们仅能记住不超过7个项目;但是如果经常复习,那么在一定时间之后,能记住32个项目,几乎是原来的两倍。

”7犹太人悖论:“谁是最优秀的歌手?”或者“谁是最优秀的演员?”这个悖论涉及到一个犹太人的名字,这个人物名字具有两面性,是“叛徒”还是“英雄”?8雷普索尔悖论:这个悖论是一个有关于生命与死亡之间的问题。

它的内容是:有些人声称自己看见了已经死去的人复活了,但是其他人却对此表示怀疑。

9沃森-克拉克悖论:这个悖论与专家系统有关。

专家系统并不完美:“如果专家系统是完美的,那么它就不会出错;但如果它出错了,那么它就不是完美的。

”10哈伯德悖论:这个悖论涉及到一种叫做“哈伯德氏菌”的细菌。

这种细菌可以导致肺炎,但是它也有好处:它可以使人变得更聪明。

11斯特鲁维悖论:这个悖论是有关于“真相”的问题。

它问的是:当一位侦探得到了足够的证据,可以判定他遇到的人是无辜的,但他还是继续调查下去,直到他抓到了真正的罪犯。

12凡勃伦悖论:“一般来说,距离决定速度。

但如果这个距离可以改变,那么时间就会变得不可控制。

”这条悖论探讨了空间和时间之间的关系。

16个悖论:我只知道一件事,那就是我一无所知!

16个悖论:我只知道一件事,那就是我一无所知!

16个悖论:我只知道一件事,那就是我一无所知!01、我知我无知02、二分法悖论(dichotomy paradox)03、飞矢不动(arrow paradox)04、忒修斯之船(Ship of Theseus paradox)05、上帝无所不能?06、托里拆利小号(Gabriel's Horn)07、理发师悖论(Russell's Paradox的别称)08、第二十二条军规(Catch-22)09、有趣数悖论(Interesting Number Paradox)10、饮酒悖论(drinking paradox)11、球与花瓶(Balls and Vase Problem)12、土豆悖论(potato paradox)13、生日悖论(birthday paradox)14、朋友悖论(friendship paradox)15、祖父悖论(bootstrap paradox)16、外星文明【1】我知我无知苏格拉底有句名言:“我只知道一件事,那就是我一无所知。

”这个说法本身就是悖论,展现了自我参照的表述(self-referential statement)的复杂性。

而这也是西方哲学先贤带给我们的重要启示:你得问你以为你知道的一切。

越是问东问西问长问短打破砂锅问到底,越会发现身边正有一大波悖论呼啸而过。

【2】二分法悖论(dichotomy paradox)概述:运动是不可能的。

你要到达终点,必须先到达全程的1/2处;要到达1/2处,必须先到1/4处……每当你想到达一个点,总有一个中点需要先到,因此你是永远也到不了终点的。

古希腊哲学家芝诺(Zeno)提出了一系列关于运动不可分性的哲学悖论,二分法悖论就是其中之一。

直到19世纪末,数学家们才为无限过程的问题给出了形式化的描述,类似于0.999……等于1的情境。

那么究竟我们是如何到达目的地的呢?二分法悖论只是空谷传音般放大了问题。

若想妥善解决这个问题,还得靠物质、时间和空间是否无限可分等等这些20世纪的衍生理论。

哲学上的十大悖论,没有不可能!

哲学上的十大悖论,没有不可能!

哲学上的十大悖论,没有不可能!悖论一.价值悖论作为生活必需品的水价值很低,奢侈品如钻石的价值却很高,但为什么水的价值比钻石低?价值悖论(也被叫做钻石与水悖论)就是一类典型的自相矛盾的例子,尽管在维持生存的价值上水要高出钻石,但是市场价水却不如钻石。

我们来试着解释一下这个悖论,当消费量较小时,两者相比水的边际效用要大于钻石,因此两者都缺少的时候,水的价值就更高。

事实上,现在我们对水的消费量往往都比较大,钻石的消费量却远没有那么大。

我们可以天天喝水喝到吐,却不能天天买钻石。

所以,大量水的边际效用小于少量钻石的边际效用。

按照边际效用学派的解释,比较钻石和水的价值并不是比较两者的总价值,而是比较每份单位的价值。

尽管水的总体价值对于人类来说再大也不为过,毕竟水是生存必需品,但是,考虑到全球的水资源足够充沛,水的边际效用也就处在相对较低水平。

另一方面,急需用水的领域一旦被满足,水就被用作不那么紧急的用途,边际效用因此递减。

所以,水的总量增加,水的总体价值就减少。

钻石的情况就不同了,不管地球上到底有多少钻石,市场上的钻石始终是少量,一颗钻石的用途比一杯水大得多得多得多。

所以钻石对于人更有价值。

钻石的价格远高于水,消费者愿意,商人也乐意,一个愿打一个愿挨。

悖论二.:祖父悖论如果你乘坐时光机回到你祖父祖母相遇之前并杀死你的祖父会发生什么?关于时间旅行最有名的悖论是科幻小说作家赫内·巴赫札维勒1943年的小说《不小心的旅行者》(《Future Times Three》)中提出的。

悖论内容如下:时间旅行者回到自己的祖父祖母结婚之前的时空,时间旅行者在该时空杀死了自己的祖父,也就是说,时间旅行者自身从未降生过;但是,如果时间旅行者从未降生,也就不能穿越时空回到以前杀死自己的祖父,如此往复。

我们假设时间旅行者的过去和现在存在因果联系,那么扰乱这种因果关系的祖父悖论看上去似乎是不可能实现的。

(也就杜绝了人可以任意操纵命运的可能)但是,有许多假说绕开了这种悖论,比如有人说过去无法改变,祖父一定已经在孙子的谋杀中幸存下来(如前所说);还有种可能是时间旅行者开启/进入了另一条时间线或者平行宇宙什么的,而在这个世界,时间旅行者从未诞生过。

数学十大著名悖论

数学十大著名悖论

十大数学著名悖论1. 二分法悖论概述:运动的不可分性,由古希腊哲学家芝诺提出。

每次到达一个点都需要先到达中点,形成无限过程,直到19世纪数学家解决了无限过程的问题。

脑洞:无限二分16寸芝士乳酪蛋糕却不能吃的快感,探讨物质、时间和空间的无限可分性。

2. 飞矢不动概述:箭在瞬间位置不动,暗示了时间的瞬间性。

关联到量子力学和相对论,强调运动在特定时刻的相对性。

脑洞:看到漂亮妞心动3秒,上去要电话惨遭拒绝。

咳咳,飞矢不动,我没心动。

3. 忒修斯之船概述:船上的木头逐渐替换,引发同一性的哲学争议。

讨论木头替换后船是否仍然是原来的船。

脑洞:人体细胞每七年更新一次,七年后,镜子里是另一个你。

4. 托里拆利小号概述:体积有限的物体,表面积可以无限。

源自17世纪的几何悖论,涉及到平凡的几何图形和无限的概念。

脑洞:平胸不一定能为国家省布料的时候。

5. 有趣数悖论概述:将数字的特征定义为有趣或无趣,涉及质数、斐波那契数列等。

引出无趣数概念,研究整数的有趣属性。

脑洞:n只青蛙n张嘴,2n只眼睛4n条腿,你想起数列是个什么鬼了吗?6. 球与花瓶概述:无限个球和一个花瓶进行操作,放10个球再取出1个,引发花瓶内球的数量无限和可变的讨论。

脑洞:小学奥林匹克暗袋摸球概率题终极版。

7. 土豆悖论概述:土豆的含水量和干物质之间的矛盾,涉及百分比的计算。

展示了百分比在特定情境下的谬误。

脑洞:理科生们笑到内伤。

8. 饮酒悖论概述:酒吧里的人是否都在喝酒,引出实质条件的悖论。

通过逻辑演绎表明酒吧中的每个人都在喝酒。

脑洞:一人喝酒导致全场人喝酒,数学的实质条件逻辑。

9. 理发师悖论概述:小城理发师的承诺,引出对自己刮脸的矛盾。

赫赫有名的罗素悖论,影响了数学领域的发展。

脑洞:对于不刮胡子的女理发师不成立。

10. 祖父悖论概述:通过时光机回到过去,引发关于杀死祖父的时间旅行悖论。

涉及对时间和平行宇宙的思考。

脑洞:时间旅行中的命运操纵与平行宇宙的可能性。

12个经典悖论

12个经典悖论

12个经典悖论
1. 饭后甜点悖论:人们经常在饭后选择吃甜点,尽管他们知道这可能导致体重增加和健康问题。

2. 无处不在的悖论:无处不在的悖论是指当一个系统或概念被应用于自身时,会导致悖论的出现。

例如,“这句话是假话”。

3. 雇佣者悖论:雇佣者悖论指的是雇主可能更倾向于雇佣那些经验较少或技能较低的人,因为他们相对较便宜,但实际上这可能会导致生产力的下降。

4. 过度自信悖论:过度自信悖论是指人们倾向于高估自己的能力和知识,而低估风险和挑战。

5. 购买力悖论:购买力悖论指的是当物价上涨时,人们倾向于购买更多的商品,以充分利用他们的购买力,尽管他们可能并不真正需要这些商品。

6. 资源耗竭悖论:资源耗竭悖论是指当一个系统或个体试图最大化其短期利益时,可能导致资源的过度消耗和长期的损失。

7. 投资者心理悖论:投资者心理悖论指的是投资者倾向于在市场上追求短期利润,而忽视了长期投资的价值。

8. 偏见悖论:偏见悖论是指人们倾向于根据个人经验、观点或信仰来解释和评价信息,而忽视了客观的证据和事实。

9. 社会悖论:社会悖论指的是人们在群体中表现出与其个体利益相矛盾的行为,尽管这可能导致整个群体的利益受损。

10. 时间悖论:时间悖论是指人们倾向于高估短期事件的重要性,而低估长期事件的影响。

11. 基因悖论:基因悖论指的是一些特征或行为在进化中得以保留,尽管它们可能是不利的或无效的。

12. 前瞻性悖论:前瞻性悖论是指人们在做决策时倾向于高估未来事件的重要性和概率,而低估现在的影响。

世界十大悖论

世界十大悖论

世界十大悖论 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】十大悖论1、说谎者悖论一个克里特人说:“我说这句话时正在说慌。

”然后这个克里特人问听众他上面说的是真话还是假话?这个悖论出自公元前六世纪希腊的克里特人伊壁,使得希腊人大伤脑筋,连西方的圣经《新约》也引用过这一悖论。

对克里特人“我说这句话时正在说慌”不可判其真亦不可判其伪。

2、柏拉图与苏格拉底悖论调侃他的老师:“苏格拉底老师下面的话是假话。

”苏格拉底回答说:“上面的话是对的。

”不论假设苏格拉底的话是真是假,都会引起矛盾。

3、鸡蛋的悖论先有鸡还是先有蛋?4、书名的悖论美国数学家缪灵写了一部标题为的书,问:缪灵的这本书的书名是什么?5、印度父女悖论女儿在卡片上写道:“今日下午三时之前,您将写一个‘不’字在此卡片上。

”随即女儿要求父亲判断她在卡片上写的事是否会发生;若判断会发生,则在卡片上写“是”,否则写“不”。

问:父亲是写“是”还是写“不”6、蠕虫悖论一只蠕虫从一米长的橡皮绳的一端以每秒1厘米的速度爬向另一端,橡皮绳同时均匀地以每秒1米的速度向同方向延伸,蠕虫会爬到另一端吗?蠕虫每前进1厘米,同时绳子的另一端却拉远1米,近不抵疏,怕是永远爬不到头了。

现算算看:第1秒,蠕虫爬了绳子的1/100(意为100分之1,下同),第2秒,蠕虫爬了绳子的1/200,---------,第N秒,蠕虫爬了绳子的1/N×100,前2的K次方秒,蠕虫爬的总路程占绳子全长的比例为1/100(1+1/2+1/3+-----+1/2的K次方)而1+1/2+1/3+-----+1/2的K次方=(1+1/2)+(1/3+1/4)+(1/5+1/6+1/7+1/8)+-----+(1/<2的次方+1>+1/<2的方+2>+-----+1/2的K次方)>1+1/2+(1/4+1/4)+(1/8+1/8+1/8+1/8)+-----(1/2的K次方+1/2的K次方+----+1/2的K次方)———————————∨————————共有2的次方项=1+1/2+1/2+-----+1/2=1+K/2———∨—————共有2的K次方项当K=198时,1+K/2=100,于是1/100(1+1/2+1/4+----+1/2的198次方)>1所以不超过2的198次方秒,蠕虫爬到了绳子的另一端。

十二个经典悖论

十二个经典悖论

1.鳄鱼困境一个鳄鱼偷了一个父亲的儿子,它保证如果这个父亲能猜出它要做什么,它就会将儿子还给父亲。

那么如果这个父亲猜“鳄鱼不会将儿子还给他”,那会怎样?回答:这是一个无解得问题。

如果鳄鱼不还儿子,那么父亲就猜对了,鳄鱼就违背了诺言。

如果鳄鱼将儿子还给他,那么父亲就猜错了,鳄鱼又违背了诺言。

2.祖父悖论一个人回到了过去,在他祖母能遇到祖父之前就杀了他的祖父。

这就意味着这个人的父母之中有一个不会出生;依次这个人自己也不会出生;这就意味着他没有机会进行时光旅游挥刀过去;这就意味着他的祖父依然还活着;这就意味着这个人能构思回到过去,并杀了自己的祖父。

回答:当时间旅行者改变了过去的某事的瞬间,那么平行宇宙就会被切开,这个可以由量子力学来解释。

3.沙堆悖论有一堆1,000,000颗沙粒组成的沙堆。

如果我们拿走一颗沙粒,那么还是有一堆;如果我们再拿走一颗沙粒,那么还是一堆。

如果我们就这样一次拿走一颗沙粒,那么当我们们取得只剩下一颗沙粒,那么它还是一堆吗?回答:设定一个固定的边界。

如果我们说10,000颗沙粒是一堆沙,那么少于10,000颗沙粒组成的就不能称之为一堆沙。

那么这样区分9999颗沙和10001颗沙就有点不合理。

那么就有一个解决方案了——设定一个可变的边界,但是这个边界是多少,并不需要知道。

4.全能悖论上帝能造出一个重到他自己也举不起的东西吗?如果他能,那么他不能举起这个东西,就证明他力量方面不是全能的。

如果他不能,那么不能创造出这样一个东西,就证明他在创造方面不是全能的。

回答:最普遍的回答是上帝是全能的,所以“不能举起”是毫无意义的条件。

其他的回答指出这个问题本身就是矛盾的,就像“正方形的圆”一样。

5.埃庇米尼得斯悖论埃庇米尼得斯在一首诗中写道:“克里岛的人,人人都说谎,邪恶的野兽,懒惰的胴网!”然而埃庇米尼得斯自己却是个克里岛人。

如果埃庇米尼得斯是一个克里岛人,并且是一个说谎者的话,那么他的诗中所说的“克里岛的人,人人都说谎”就是一个谎话。

10大悖论 -回复

10大悖论 -回复

10大悖论-回复什么是悖论?悖论是指一种逻辑上自相矛盾的陈述、观点、或者信念。

在许多不同领域中,有许多著名的悖论,这些悖论的存在挑战了人类的思维方式,拓宽了我们对世界的认知。

本文将讨论十个著名的悖论,并逐一回答它们背后的奥秘。

1. 鹦鹉悖论:如果我告诉你,我说的都是谎言,那你能相信我说谎了吗?这个问题看似很简单,但实际上却充满了深意。

回答这个问题需要一些哲学上的思考。

虽然鹦鹉悖论存在于日常对话中,但它触及了人类思维的边界。

当我们提出这个问题时,我们置自己于一种悖论的境地。

2. 史诗悖论:如果一直在编写一个没完没了的史诗,那史诗会不会永远写不完?史诗悖论是一种关于无限性的思考。

它暗示了时间与努力之间的关系。

编写一个史诗所需要的时间可能是无限的,但努力本身也没有真正的终点。

面对这个悖论,我们不禁思考起如何定义完成与无限。

3. 哥德尔悖论:这个命题是错误的。

哥德尔悖论涉及到数学与逻辑的领域。

这个命题在形式上是一个悖论,因为如果它是正确的,那么它本身就是错误的。

哥德尔悖论引发了对数学基础和逻辑系统的再思考。

4. 迷因悖论:这是一个迷因。

迷因悖论是一种与文化传播和信息流动有关的悖论。

如果一个迷因声称自己是一个迷因,那么它会自我引发。

这再次揭示了信息传播与其所传达的内容之间的复杂关系。

5. 悖论的悖论:这个陈述是个悖论。

悖论的悖论是在自我描述的悖论中的一个例子。

当一个悖论自称为悖论时,它引发了一种无限循环的逻辑,使我们无法确定一个陈述的真实性。

这个悖论挑战了我们对逻辑推理的认知。

6. 罗素悖论:在某个村庄中,只有那些不为自己修建房子的人才能修建屋顶。

那么,谁来修建所有的屋顶呢?罗素悖论是一个无穷延伸的循环问题。

它暗示了自指的悖论的存在。

这个悖论引发了对自我参照的问题。

7. 斯塔克悖论:这个陈述是假的。

斯塔克悖论是一个真假陈述的悖论。

如果这个陈述是真的,那么它就是假的,反之亦然。

这个悖论强调了陈述的真实性和逻辑的自洽性之间的一种矛盾。

世界十大著名悖论

世界十大著名悖论

世界十大著名悖论世界十大著名悖论,你听说过几个?悖论,指在逻辑上可以推导出互相矛盾之结论,但表面上又能自圆其说的命题或理论体系。

悖论的出现往往是因为人们对某些概念的理解认识不够深刻正确所致。

这里搜集了一些在思想史上比较著名的十大悖论,供读者思考。

(一)电车难题(The Trolley Problem)“电车难题”是伦理学领域最为知名的思想实验之一,其内容大致是:一个疯子把五个无辜的人绑在电车轨道上。

一辆失控的电车朝他们驶来,并且片刻后就要碾压到他们。

幸运的是,你可以拉一个拉杆,让电车开到另一条轨道上。

但是还有一个问题,那个疯子在那另一条轨道上也绑了一个人。

考虑以上状况,你应该拉拉杆吗?电车难题最早是由哲学家Philippa Foot提出的,用来批判伦理哲学中的主要理论,特别是功利主义。

功利主义提出的观点是,大部分道德决策都是根据“为最多的人提供最大的利益”的原则做出的。

从一个功利主义者的观点来看,明显的选择应该是拉拉杆,拯救五个人只杀死一个人。

但是功利主义的批判者认为,一旦拉了拉杆,你就成为一个不道德行为的同谋——你要为另一条轨道上单独的一个人的死负部分责任。

然而,其他人认为,你身处这种状况下就要求你要有所作为,你的不作为将会是同等的不道德。

总之,不存在完全的道德行为,这就是重点所在。

许多哲学家都用电车难题作为例子来表示现实生活中的状况经常强迫一个人违背他自己的道德准则,并且还存在着没有完全道德做法的情况。

(二)空地上的奶牛(The Cow in the field)认知论领域的一个最重要的思想实验就是“空地上的奶牛”。

它描述的是,一个农民担心自己的获奖的奶牛走丢了。

这时送奶工到了农场,他告诉农民不要担心,因为他看到那头奶牛在附件的一块空地上。

虽然农民很相信送奶工,但他还是亲自看了看,他看到了熟悉的黑白相间的形状并感到很满意。

过了一会,送奶工到那块空地上再次确认。

那头奶牛确实在那,但它躲在树林里,而且空地上还有一大张黑白相间的纸缠在树上,很明显,农民把这张纸错当成自己的奶牛了。

世界上著名的十大悖论

世界上著名的十大悖论

世界上著名的十大悖论
1、鹰和鸽子悖论:即鹰能抓住鸽子,鸽子也能抓住鹰,结果导致它们都不能抓住对方。

大家被这个悖论困惑了很久,令人费解的地方在于可以任意假设一种情况,另一种情
况会自动发生变化。

2、肯德尔悖论:表明宇宙可能不存在,即如果宇宙是有限的,它就不可能存在。


把我们带到了即使宇宙存在,它也可能不存在的极端情况。

3、拯救悖论:表明上帝不可能同时既无法拯救每个人,又要拯救他们。

4、矛盾悖论:即每一个事实都可以被武断地断定是绝对的事实,但同时都可以被现
实反驳。

5、苏格拉底的等式悖论:即苏格拉底说“凡事都可以怀疑,即我们也可以怀疑‘凡
事都可以怀疑’本身”。

这也导致了一种矛盾,即“无法怀疑”。

6、文森特·萨缪尔斯的“羊”悖论:即文森特曾经说过:“一只羊在一棵树上安家,但它同时又不在那棵树上。

”,即它既在又不在。

7、两箭悖论:指宙斯关押了两个英雄,一个英雄只有一支箭,但另一个英雄拥有足
够的箭头来杀完两个人。

但另一个英雄的箭头会在被试图最终放出时耗尽。

8、亨利·奥斯特的傻瓜悖论:他曾向上帝求助,祈求做一个傻傻的人,可以然而,
就算如此,上帝仍然不会给他一个真正的傻傻的答案,因为他无法区分真正的傻瓜和一个
假装傻瓜的人。

9、庞贝悖论:表明对于所有的可能性,它们既能被支持,又能证明自己是不可能的,因此它们都证明自己都是可能的,这又引出了深思熟虑的悖论。

10、假舌悖论:指西方神话中的假舌的悖论,即它既能说真话又能说假话。

所以,它
既具备说真话的能力,又具备说假话的能力,令人费解。

世界十大著名悖论,你知道几个

世界十大著名悖论,你知道几个

世界十大著名悖论,你知道几个下面是我为大家整理出的世界十大著名悖论。

喜欢研究逻辑的人应该对悖论有过耳闻,悖论指一般在逻辑上能够互相推翻,互相矛盾的一种结论,但是乍看之下又貌似比较合理。

1、电车难题电车难题应该是全世界最著名的悖论之一了。

它的大概内容是一个疯子把五个人绑在一个电车轨道上,而这些人都非常的无辜,一辆电车朝他们碾压过来。

这时司机可以选择改变轨道,但是另外一条轨道也被疯子绑着一个人,所以问题是司机应该改变轨道吗?2、空地上的奶牛空地上的牛奶讲的是一位农民担心自己获过奖的奶牛丢失了,所以派自己的奶工去看看奶牛在不在,奶工告诉他奶牛在附近的一块空地里,农民最后还是打算自己过去看看,他远远地看到一个黑白相间的形状在空地上,放心的走了。

但他看到的其实是一块黑白相间的布缠绕在树上,而奶牛正躲在树的后面,虽然奶牛也在空地上,但是农民说自己知道奶牛在空地上是否对呢?3、定时炸弹喜欢看有关政治电影的人可能知道这个思想实验,他讲的是假如想像一个炸弹隐藏在一个城市里,并且马上就要到倒计时了,这时候有一个羁押者知道炸弹藏在哪,除非你对他使用酷刑,他才会讲出来,问题是你是否对他使用酷刑呢?4、爱因斯坦的光线这个思想实验是由爱因斯坦在小时候想出来的,假设自己在宇宙追寻一道光线,他推理说自己如果以光速在光的旁边运动,那么他应该可以看到光线“在空间上不断震荡但停滞不前的电磁场”。

5、特修斯之船特修斯之船是一个非常古老的思想实验。

它讲的是一个在海上航行了几百年的船只,靠着不断地维修和更换部件而屹立不倒,只要一块木板或者零件坏了,就会马上更新,直到所有的部件都不是原来的了,问题是现在的船只是否还是原来的特修斯之船,还是说由原来替换下来的部件组成的船才是真正的特修斯之船?6、伽利略的重力实验伽利略的这个思想实验是为了反驳亚里士多德的自由落体取决于物体的质量的理论。

按照亚里士多德的想法,如果把一个轻的石头和一个重的石头绑在一起从楼顶丢下去,重的石头因为下落的速度快,两个石头之间的绳子会被拉直,这时轻的石头对重的石头有阻力使得整体的下落速度变慢。

十大数学悖论(完整资料).doc

十大数学悖论(完整资料).doc

【最新整理,下载后即可编辑】十大数学悖论1.理发师悖论(罗素悖论):某村只有一人理发,且该村的人都需要理发,理发师规定,给且只给村中不自己理发的人理发。

试问:理发师给不给自己理发?如果理发师给自己理发,则违背了自己的约定;如果理发师不给自己理发,那么按照他的规定,又应该给自己理发。

这样,理发师陷入了两难的境地。

2.说谎者悖论:公元前6世纪,古希腊克里特岛的哲学家伊壁门尼德斯有如此断言:“所有克里特人所说的每一句话都是谎话。

”如果这句话是真的,那么也就是说,克里特人伊壁门尼德斯说了一句真话,但是却与他的真话——所有克里特人所说的每一句话都是谎话——相悖;如果这句话不是真的,也就是说克里特人伊壁门尼德斯说了一句谎话,则真话应是:所有克里特人所说的每一句话都是真话,两者又相悖。

所以怎样也难以自圆其说,这就是著名的说谎者悖论。

:公元前4世纪,希腊哲学家又提出了一个悖论:“我现在正在说的这句话是假的。

”同上,这又是难以自圆其说!说谎者悖论至今仍困扰着数学家和逻辑学家。

说谎者悖论有许多形式。

如:我预言:“你下面要讲的话是‘不’,对不对?用‘是’或‘不是’来回答。

”又如,“我的下一句话是错(对)的,我的上一句话是对(错)的”。

3.跟无限相关的悖论:{1,2,3,4,5,…}是自然数集:{1,4,9,16,25,…}是自然数平方的数集。

这两个数集能够很容易构成一一对应,那么,在每个集合中有一样多的元素吗?4.伽利略悖论:我们都知道整体大于部分。

由线段BC上的点往顶点A连线,每一条线都会与线段DE(D点在AB上,E点在AC上)相交,因此可得DE与BC一样长,与图矛盾。

为什么?5.预料不到的考试的悖论:一位老师宣布说,在下一星期的五天内(星期一到星期五)的某一天将进行一场考试,但他又告诉班上的同学:“你们无法知道是哪一天,只有到了考试那天的早上八点钟才通知你们下午一点钟考。

你能说出为什么这场考试无法进行吗?6.电梯悖论:在一幢摩天大楼里,有一架电梯是由电脑控制运行的,它每层楼都停,且停留的时间都相同。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

老虎悖论是博弈论中一个著名的逻辑悖论。

故事国王要处决一个囚犯,但给他一个生还的机会。

囚犯被带到5扇紧闭的门前,其中一扇后面关着一只老虎。

国王对囚犯说:“你必须依次打开这些门。

我可以肯定的是,在你没有打开关着老虎的那扇门之前,你是无法知道老虎是在那扇门后。

”显然,如果囚犯有可能在打开有老虎的那扇门前知道,就证明国王在撒谎,那么就可以活命。

开门之前,囚犯进行了如下分析:假如老虎在第五扇门,那当他把前四扇门打开后都没发现老虎,那他肯定猜到老虎在第五扇门中,因国王说过不论何时他也料不到老虎在哪扇门后,那国王的说话就错了。

因此,老虎肯定不在第五扇门中。

同样道理,老虎也不在第四道门中,否则囚犯打开三道门后,只剩两道门,老虎既不在第五扇门后,那就会给他料到在第四扇门后;依次类推,老虎不存在任何一道门后;囚犯这时就不再多想,冒冒失失依次推门,结果老虎从第二扇门中跳了出来,把囚犯咬死了。

国王看见了说:“不是跟你说了老虎在哪扇门后总是出乎你的意料了吗?现在你就是万料不到了。

”悖论分析如果囚犯的推理成立,那么就算国王把老虎放在第五扇门后,也是“料想不到”,学者们争论的重点在于:这个推理究竟错在第几步?1.主张错在第一步如果第一步是正确的,那么后面几步为什么是错的?所以第一步就错了。

错在囚犯把国王的思路作为论据。

首先必须定义怎样算国王所谓的“知道”(或“意料”),如果投机猜测算的话,那国王不论怎样放都不能保证不被猜中,所以带投机成分的猜测不能算“知道”(国王为了自身利益也会这么定义),设“知道”定义为“在即有事实下的逻辑推理”,那么囚犯不仅要正确预测老虎,还要对其预测给出严格的逻辑证明才行。

本例中不考虑没有老虎的情况,即囚犯已知必有1老虎。

作为囚犯,他在每次打开一个门前都会进行逻辑推理,如果能推出老虎是在即将打开的门里就赢了,如果不能推出,他就只能打开这个门,如果打开后没有老虎就继续推理下一个门是否有老虎,依此类推。

然后,把问题从5个门简化为只有2个门,囚犯会在打开第一个门之前,对第一个门里是否有老虎做逻辑推理:由于囚犯要引用国王的思路,故须先考虑国王思路是否是会错。

A.如果相信国王是不会错的,那么你不可能推测出第一个门里有没有,因为如果推测出就说明国王会错,所以在这个前提下不可能知道。

囚犯无法推测出第一个门里有没有老虎,必然要打开第一个门。

B.如果相信国王是会错的:囚犯首先认为国王放第二个门是错的,但国王既然是会错的,他为何不会按囚犯认为错误的思路放第二个门呢?所以国王的思路就没法唯一的推测了。

囚犯失去国王的思路做论据,无法推测出第一个门里有没有老虎,必然要打开第一个门。

因此,国王应且只应放到第一个门中,则国王必胜。

推广到n个门的情况,只要国王不把老虎放到最后一个门,则国王必胜,囚犯必败。

2.主张错在第二步故事中的囚犯最后决定相信“没有老虎”。

但,国王并不知道囚犯是否会这样,所以的确不可能把老虎放在第五扇门。

如果囚犯决定相信“一定有老虎”,那么在前四扇门都没有老虎之后,第五扇门后的老虎的确就变成“可预料的”了。

既然老虎在第五扇门的话,它一定是“可预料的”,那么当你已经开了三扇空门时,情况是怎么样?我们可以试着写成逻辑式子:前提一、老虎不可预料。

前提二、老虎如果在第五扇门时,可预料。

前提三、老虎不在第五扇门时,就一定在第四扇门。

前提四、老虎如果在第四扇门时,可预料。

结论:前提互相矛盾。

请注意:这时的逻辑推理中,既然前提互相矛盾,必定有一个以上不成立,那么可能性就是以下四个其中之一、或是更多:A.老虎可预料。

B.老虎如果在第五扇门时,不可预料。

C.老虎不在第五扇门时,也不一定在第四扇门。

D.老虎如果在第四扇门时,不可预料。

二和四自身是矛盾命题,不考虑,三会导致老虎变成薛定谔的猫,也就是既存在亦非存在的状态(囚犯把老虎往前门推是错误的,因为前提中包含“已经开了三扇空门”)。

所以可能性只有一个:老虎可预料。

但若老虎可预料,那么显示国王说谎,如果国王可能说谎,那么老虎也真的有可能消失。

这时的正确结论是:国王一定说谎,但他的谎言可能是“老虎可预料”,却也可能是“根本没老虎”,囚犯只是偏心于一个可能性,结果帮国王圆谎罢了。

3.主张错在最后一步如果“不可预料”并不是一种保证,而只意味“高机率”,“有老虎”才是保证,那么情况又整个改观。

可以列成以下状况:如果囚犯连猜五次“老虎不在”,则不可预料率100%,当然是最糟的状况。

如果囚犯连猜五次“老虎在”,这时应将不可预料率一样视为100%。

假设国王随便放,因为平均猜错次数是两次,亦即猜错一次要加不可预料率50%才公平。

假设国王随便放,这时囚犯采用的策略,以:很明显了,这时国王的对应策略,如果把老虎放在失分最低的第五扇门,可能被囚犯豪赌赌中,所以把老虎放在失分次低的第二扇门会是最佳选择,只要把囚犯的猜中率压在20%以下,都可以毫无愧色说是有很高的不可预料率。

他应该从“老虎不存在”这个矛盾的结论,导出国王所谓的“不可预料”其实是指机率,再从机率上推测国王到底把老虎放在第几个门。

其他版本突击测验老师宣布下星期一至星期五其中一日之中,会有一天举行突击测验。

学生认为根本不存在突击测验。

若假设直到星期四还未举行测验,那么星期五就会举行,那就不算突击,因此星期五不会举行。

若星期三还未举行,而星期五又不会举行,星期四就会举行……如此类推,老师不可能进行突击测验。

全能悖论全能悖论是一组关于一个“全能”的个体在逻辑学上是否可能存在的悖论。

该悖论的内容是:如果任一个体是“全能”的话,那么他就一定能够制订出一个他不能履行的工作,如此他就不会是全能的;反之,若一个“全能”的个体不能够制订出一个他不能履行的工作,如此他也不会是全能的。

因此,无论他能否制订这项工作,他也不会是全能的。

伊本·鲁世德(1126–1198)是一个很早就意识到全能悖论存在的穆斯林哲学家。

简介当代,关于该悖论的一个通俗版本是:“一个全能的个体能够创造一块连他自己都搬不动的石头吗?”这个问题是难以回答的。

那个体要么能够创造一块他自己搬不动的石头,要么就不能创造一块他自己搬不动的石头。

如果他能创造这样的一块石头,那么他就会搬不动这块石头,那么他就必然不是全能的;如果他不能造这样的一块石头,那他本身就已经不是全能的了。

另有一个经典悖论与此也有相似之处,即不可抗拒的力量悖论:“如果一种不可抗拒的力量遇到了一个无法撼动的物体会怎么样”?即“矛盾”,“全能之茅与全能之盾能否共存”?对该问题的两难回答是:如果世间真有这样一种力量,那么世上就不可能有无法撼动的物体;如果世间真有一个无法撼动的物体,那么世上就不会有不可抗拒的力量。

如果承认这个两个回答中的任何一种,就势必承认不可能存在全能的个体,因此无解。

全能悖论也有许多相关的引申,如全能者是否能“化圆为方”等许多可能无解或未解的问题。

“全能”一词的含义英国哲学家彼得·积奇将该悖论中的“全能”概念作出了分类:1."Y完全全能"表示Y完全可以做任何事。

在这种意义下,Y可以做任何可以用语言表述的事物,甚至自相矛盾的事物。

也就是说,Y的能力不受人类有限的思想和知识限制。

笛卡尔关于上帝的论述中支持的就是这个概念。

从神学上看,这样做的好处是可以让上帝真正置于人类有限的知识和逻辑之上,坏处则是这种概念会使得上帝的诺言变得不可相信。

在这种意义上,全能悖论确实是一个悖论,不过在这种意义上也等于承认了这样的悖论有可能存在。

2."Y全能"表示只要X在逻辑上可能,Y就有能力做X这件事。

托马斯·阿奎那的神学看法中持有的就是这种观点。

这种意义上的全能,可以解决古典理论中关于全能的悖论,但是对于近代全能悖论是无能为力的。

例如X是“制造一个连制造者都搬不动的东西”,正如哲学家麦罗德指出的,这在逻辑上是完全可能的:一个人完全可以有建造一艘他自己都搬不动的船的能力。

很难想象为什么一个凡人可以很容易克服的逻辑壁垒,一个全能的神却做不到。

由此看来,如果说某个神是这种意义上的全能,那么这个神就难以称其为神。

3."Y全能"表示只要“Y可以做X”这个论述在逻辑上可能,Y就有能力做X这件事。

这里有一个重要的前提是,所谓的“逻辑上可能”是对Y而言的,与从其他事物的角度上看这种逻辑可能还是不可能无关。

纵观托马斯·阿奎那的著作,有的时候他持的似乎又是这个观点。

在这种意义上,麦罗德指出全能悖论已经不存在,因为“上帝制造一块他自己都搬不动的石头”这个行为在逻辑上是不可能的。

不过,这种意义上的全能却引起道德上的麻烦。

比如这类悖论:“上帝能撒谎吗?”或者“上帝能够知道他还没有发现那些事物吗?”4."Y全能"表示只要“Y可以做X”在逻辑上可能,那么Y就可以做X。

这个意义同样可以使悖论失效,但是这种意义否定了可以改变历史的能力。

此外,积奇也指出,这种意义同样使得上帝的诺言变得不可靠。

5."Y大能"表示Y不仅比任何其他的事物更有能力,并且任何事物在能力上都是不可能赶超Y的。

虽然这个意义也能消除全能悖论,但是这样上帝显然也就不是全能的了。

从意大利哲学家安瑟伦的作品中看,他似乎在指出,正是因为上帝“大能”而非“全能”,才使得上帝看起来更加“全能”。

圣奥古斯丁在上帝之城中写到:“[上帝]全能意味着他可以做他想做的任何事情。

”这里奥古斯丁所说的全能指的是,如果Y想做X,那么Y就一定能并且会去做X。

此外还有意见认为,“全能”有偶发全能和本质全能的区别。

本质全能指一个神或者其他超自然事物从根本上就是全能的,而偶发全能指神或者其他超自然事物只能在某个时候是全能的,此后又变回非全能的状态。

对全能悖论中的“全能”到底是“偶发全能”和“本质全能”的不同理解,将引起讨论方式上的重大差异。

一些哲学家坚信上帝是完全全能的,例如笛卡尔在他的《第一哲学沉思录》中就强调了这个观点。

同时,也有一些哲学家认为把神或者其他超自然事物看做要么全能,要么不全能这种想法根本就是不正确的,因为人类理解的全能本身就分为多个层次上的全能。

近代对全能悖论的研究,还注意到了语言对于全能概念表述的内在限制。

如果人类的语言不能正确的表达全能的概念,那么人类在哲学上甚至有可能不能理解全能这一概念。

对悖论的回应1.常见的哲学回应哲学家科安认为这个悖论最重要的内容是告诉我们上帝不可能是全能的。

对于全能悖论的一种通俗回答是,既然已经规定了上帝全能,那么“搬不动”一词就没有逻辑上的含义,那么悖论也就无效了。

英国哲学家C·S·刘易斯则认为,对于研究像全能这样的概念,再去讨论一个“很重,重到连上帝都搬不动的石头”是没有意义的,就好像讨论一个“方形的圆”一样。

相关文档
最新文档