幂函数概念
幂函数知识点笔记总结
![幂函数知识点笔记总结](https://img.taocdn.com/s3/m/60368cae534de518964bcf84b9d528ea80c72f68.png)
幂函数知识点笔记总结一、基本概念1. 幂函数的定义幂函数是指以底数为自变量,指数为常数的函数,一般形式为 f(x) = a*x^n,其中a为常数,n为整数。
特殊情况下,指数可以是分数或负数。
2. 幂函数的图像特征当底数为正数且指数为正整数时,幂函数为增函数,图像从左下到右上逐渐上升;当底数为正数且指数为负整数时,幂函数为减函数,图像从左上到右下逐渐下降;当底数为负数且指数为奇数时,幂函数为增减函数,图像在原点对称;当底数为负数且指数为偶数时,幂函数为非定义域。
3. 幂函数的定义域和值域幂函数的定义域为实数集合R,值域取决于底数a的正负和指数n的奇偶性,可以是整个实数集合、正实数集合或负实数集合。
4. 幂函数的奇偶性当指数n为奇数时,幂函数为奇函数,具有原点对称性;当指数n为偶数时,幂函数为偶函数,具有y轴对称性。
二、函数性质1. 增减性当指数n为正数时,幂函数为增函数,图像从左下到右上逐渐上升;当指数n为负数时,幂函数为减函数,图像从左上到右下逐渐下降。
2. 奇偶性当指数n为奇数时,幂函数为奇函数,具有原点对称性;当指数n为偶数时,幂函数为偶函数,具有y轴对称性。
3. 定义域和值域幂函数的定义域为实数集合R,值域取决于底数a的正负和指数n的奇偶性。
4. 图像特征底数为正数且指数为正整数时,幂函数为增函数;底数为正数且指数为负整数时,幂函数为减函数;底数为负数且指数为奇数时,幂函数为增减函数;底数为负数且指数为偶数时,幂函数为非定义域。
5. 渐近线当底数a为正数且指数n为正数时,幂函数的渐近线为y=0(x轴);当底数a为正数且指数n为负数时,幂函数的渐近线为x=0(y轴);其他情况下,幂函数没有渐近线。
三、常见变形1. 幂函数的平移对于幂函数f(x) = a*x^n,当a>0时,平移y轴时,可以通过加减常数来实现;当a<0时,平移x轴时,也可以通过加减常数来实现。
2. 幂函数的伸缩对于幂函数 f(x) = a*x^n,当a>0时,伸缩x轴时,可以通过系数a来实现;当a<0时,伸缩y轴时,也可以通过系数a来实现。
幂函数知识点高一必修一
![幂函数知识点高一必修一](https://img.taocdn.com/s3/m/a1f5af44854769eae009581b6bd97f192279bf3e.png)
幂函数知识点高一必修一幂函数是高中数学中的一个重要概念,它在解决实际问题和理论推导中都有广泛应用。
在高一必修一的数学课程中,学生将首次接触到幂函数的概念和相关知识。
本文将从定义、性质、图像和应用等方面进行介绍,帮助学生更好地理解和掌握幂函数。
一、幂函数的定义幂函数是形如$f(x)=x^a$的函数,其中$x$是自变量,$a$是常数且$a$可以为有理数、整数或实数。
当$a$为有理数时,幂函数的定义域是实数集;当$a$为整数时,幂函数的定义域可以是正实数集、负实数集或者零;当$a$为实数时,幂函数的定义域可以是正实数集和零集。
二、幂函数的性质1. 定义域:幂函数的定义域取决于指数的取值范围,通常为实数集或者特定的数集。
2. 奇偶性:当指数$a$为整数且为偶数时,幂函数是偶函数;当指数$a$为整数且为奇数时,幂函数是奇函数;当指数$a$为实数且为非整数时,幂函数既不是奇函数也不是偶函数。
3. 单调性:当指数$a>0$时,幂函数是增函数;当指数$a<0$时,幂函数是减函数。
4. 对称轴:当指数$a$为整数且为偶数时,幂函数的对称轴为$y$轴;当指数$a$为整数且为奇数时,幂函数没有对称轴。
三、幂函数的图像根据幂函数的性质可以推断出其图像的一些特点。
1. 当指数$a>1$时,幂函数的图像在原点左侧逐渐趋近于$x$轴且斜率逐渐增大;在原点右侧逐渐上升但斜率趋于0。
2. 当指数$a=1$时,幂函数的图像为直线$y=x$。
3. 当指数$0<a<1$时,幂函数的图像在整个定义域上单调递减,并且在$x$轴上趋于无穷。
4. 当指数$a=0$时,幂函数的图像为常数函数$y=1$。
5. 当指数$a<0$时,幂函数的图像在整个定义域上单调递减,但在$x$轴右侧逐渐趋近于0。
综上所述,幂函数的图像呈现出不同的形态和趋势,具体取决于指数的取值范围。
四、幂函数的应用幂函数在实际问题中有广泛的应用,尤其在自然科学和工程技术领域。
幂函数的概念与性质
![幂函数的概念与性质](https://img.taocdn.com/s3/m/6222086e905f804d2b160b4e767f5acfa0c78376.png)
幂函数的概念与性质在数学中,幂函数是一种常见而重要的函数类型。
它是一种形如f(x) = x^n的函数,其中n是常数,x是自变量,而f(x)则是因变量。
幂函数的性质取决于n的值,下面将详细介绍幂函数的概念与性质。
一、幂函数的定义幂函数是一类特殊的单变量函数,其定义为f(x) = x^n,其中n是常数,x是自变量。
在这个函数中,自变量x的值经过幂指数n的运算而得到新的函数值f(x)。
当幂函数的指数n为正数时,函数图像会呈现出不同的特点。
例如当n为2时,幂函数为f(x) = x^2,它代表了二次函数的图像,是一个开口向上的抛物线。
当n为3时,幂函数为f(x) = x^3,它代表了一个呈现出S形曲线的三次函数。
同理,幂函数的指数n为负数时,函数图像也会呈现出不同的形状。
二、幂函数的性质1. 定义域和值域:幂函数的定义域为实数集R,除非指数n为分数时会有例外。
对于n为整数的幂函数,其值域为非负实数集R+;当n 为奇数时,幂函数的值域为整个实数集R。
2. 对称性:当幂函数的指数n为偶数时,函数图像关于y轴具有对称性。
当幂函数的指数n为奇数时,函数图像关于原点具有对称性。
3. 单调性:幂函数的单调性与指数n的正负性有关。
当n为正数时,幂函数是递增的;当n为负数时,幂函数是递减的。
4. 极限性质:幂函数具有一些特殊的极限性质。
当n大于0时,随着x趋于正无穷或负无穷,幂函数的值趋于正无穷;当n小于0时,随着x趋于正无穷或负无穷,幂函数的值趋于零。
5. 奇偶性:幂函数的奇偶性与指数n的奇偶性一致。
当n为偶数时,幂函数为偶函数;当n为奇数时,幂函数为奇函数。
6. 渐近线:幂函数的图像可以存在水平渐近线、斜渐近线和铅直渐近线。
具体的渐近线取决于指数n的正负和奇偶性。
7. 凸凹性:当指数n大于1时,幂函数的图像为凸函数;当指数n小于1时,幂函数的图像为凹函数。
综上所述,幂函数是一种常用且重要的函数类型,其性质与指数n的值密切相关。
幂函数
![幂函数](https://img.taocdn.com/s3/m/5ec768ee910ef12d2af9e753.png)
幂函数本词条需要补充更多的参考资料。
百度百科所有内容均应列出参考资料以供查证。
欢迎您协助编辑改善该词条。
百科名片幂函数一般地,形如y=x^a(a为常数)的函数,即以底数为自变量,幂为因变量,指数为常量的函数称为幂函数。
目录概念性质特性定义域和值域特殊性图象特别说明编辑本段概念形如y=x^a(a为常数)的函数,即以底数为自变量,幂为因变量,指数为常量的函数称为幂函数。
当a取非零的有理数时是比较容易理解的,而对于a 取无理数时,初学者则不大容易理解了。
因此,在初等函数里,我们不要求掌握指数为无理数的问题,只需接受它作为一个已知事实即可,因为这涉及到实数连续性的极为深刻的知识。
编辑本段性质所有的幂函数在(0,+∞)上都有各自的定义,并且图像都过点(1,1)。
(1)当a>0时,幂函数y=x^a有下列性质:a、图像都通过点(1,1)(0,0) ;b、在第一象限内,函数值随x的增大而增大;c、在第一象限内,a>1时,图像开口向上;0<a<1时,图像开口向右;d、函数的图像通过原点,并且在区间[0,+∞)上是增函数。
(2)当a<0时,幂函数y=x^a有下列性质:a、图像都通过点(1,1);b、在第一象限内,函数值随x的增大而减小,图像开口向上;c、在第一象限内,当x从右趋于原点时,图象在y 轴上方趋向于原点时,图像在y轴右方无限逼近y 轴,当x趋于+∞时,图象在x轴上方无限地逼近x 轴[1]。
(3)当a=0时,幂函数y=x^a有下列性质:a、y=x^0是直线y=1去掉一点(0,1)它的图像不是直线。
编辑本段特性对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:首先我们知道如果a=p/q,且p/q为既约分数(即p、q互质),q和p都是整数,则x^(p/q)=q次根号下(x 的p次方),如果q是奇数,函数的定义域是R,如果q 是偶数,函数的定义域是[0,+∞)。
当指数a是负整数时,设a=-k,则y=1/(x^k),显然x≠0,函数的定义域是(-∞,0)∪(0,+∞)。
幂函数的概念与性质
![幂函数的概念与性质](https://img.taocdn.com/s3/m/62bfd0aadc88d0d233d4b14e852458fb770b38c2.png)
幂函数的概念与性质幂函数是高中数学中的重要概念之一,它在数学领域拥有广泛的应用。
本文将介绍幂函数的基本概念和性质,帮助读者更好地理解和应用这一数学工具。
一、幂函数的概念幂函数是指形如f(x)=ax^n的函数,其中a和n为常数,n为指数。
其中,a称为底数,n称为指数。
这里要注意的是,底数a必须大于0且不等于1,指数n可以是任意实数。
幂函数在底数和指数的选择上具有很大的灵活性。
当n为正整数时,幂函数表现为递增或递减的特点,如f(x)=2x^3,其图像为一个开口向上的曲线;当n为负整数时,幂函数则表现为递减或递增的特点,如f(x)=\frac{1}{2}x^{-2},其图像为一个开口向下的曲线;当n为小数或分数时,幂函数则表现出递增或递减的平缓特点,如f(x)=\sqrt{x},其图像为一条从原点开始向右上方延伸的曲线。
二、幂函数的性质1. 定义域和值域:幂函数的定义域为实数集,即该幂函数对于任意实数x都有定义。
值域则根据底数a和指数n的取值情况而定。
2. 奇偶性:当指数n为偶数时,幂函数是对称于y轴的偶函数,即f(x)=f(-x);当指数n为奇数时,幂函数则是关于原点对称的奇函数,即f(x)=-f(-x)。
3. 单调性:当指数n为正数时,幂函数是递增的;当指数n为负数时,幂函数则是递减的。
4. 渐近线:当指数n为正数时,幂函数的图像在x轴的右侧将趋近于正无穷,即具有一条水平渐近线y=0;当指数n为负数时,幂函数的图像在x轴的右侧将趋近于正0,其图像也会具有一条水平渐近线y=0。
5. 极值点:幂函数在底数为正且指数为正偶数时,不存在极值点;在底数为正且指数为负偶数时,幂函数存在一个局部极大值点;在底数为负且指数为任意实数时,幂函数既不具有极小值也不具有极大值。
6. 对称轴:幂函数的对称轴一般位于y轴,并且是关于y轴对称的。
当指数n为奇数时,幂函数的对称轴位于原点。
7. 特殊性质:当底数a是自然常数e(约等于2.71828)时,所得到的幂函数称为自然指数函数,常用符号为f(x)=e^x。
幂函数
![幂函数](https://img.taocdn.com/s3/m/2bf782f2ba0d4a7302763a1b.png)
m 2 + m − 1 = 2, −1 ± 13 ⇒m= . 2 2 m + 2m ≠ 0
4 ) 若f ( x ) 为幂函数, m 2 + 2m = 1,∴ m = −1 ± 2. (
,
+2
= 1,∴ m = − 1 ±
2 5 − 2 5 3 5
(2).213,.233 0 0 (4).2 0.5 ,0.4 0.3 0
【解析】 (1 ) 0 .8 > 3 0 .7 3 ( 2) . 21 3 < 0 . 23 3 0 (3) . 1 > 3 . 8 4 [ 介值: , 0 1] ( 4) . 2 0
0 .5 2 5 − 2 5 3 5
主要内容
一、幂函数的概念 二、幂函数的图像与性质 三、幂的大小比较 四、综合问题
一、幂函数的概念
的函数叫做幂函数,其中x是自变量, 形如 y = xa 的函数叫做幂函数,其中x是自变量, a 是常数且 a ∈ R 。
a
定义域: 定义域:使 x
有意义的实数的集合。 有意义的实数的集合。
注意: 不是幂函数。 注意:y = kx a + b 不是幂函数。
> ( − 1 .4 )
< 0 .4
0 .3
[ 介值: 0.3 或 0.4 0.5 ] 0.2
四、综合问题
2010·安徽蚌埠质检 安徽蚌埠质检) 6 (2010·安徽蚌埠质检)
已知幂函数f ( x) = x a的部分对应值如下表:
x
f (x)
1
1 2
2 2
1
则不等式f ( x ) ≤ 2的解集是( A.{x − 4 ≤ x ≤ 4} C. x − 2 ≤ x ≤ 2
高一幂函数
![高一幂函数](https://img.taocdn.com/s3/m/5c1ad89327fff705cc1755270722192e4536582b.png)
高一幂函数一、幂函数的概念及基本性质幂函数是指形式为y=x^a(a是常数且不等于0)的函数。
其中,x 是自变量,a是指数,y是因变量。
1.幂函数的定义域:幂函数的定义域为实数集R。
2.幂函数的增减性:当a>0时,随着x的增大,幂函数也增大;当a<0时,随着x的增大,幂函数减小。
3.幂函数的奇偶性:当a为奇数时,幂函数是奇函数;当a为偶数时,幂函数是偶函数。
4.幂函数的图像:当a>1时,幂函数呈现指数增长的图像;当0<a<1时,幂函数图像逐渐下降;当a<0时,幂函数图像在x轴正半轴上下震荡。
二、幂函数的图像特点1.幂函数的图像关于y轴对称,除了x=0处,幂函数的图像只能在第一象限和第三象限中存在。
2.幂函数的图像在x轴上的唯一零点是x=0,当a>0时,y=0是幂函数的水平渐近线;当a<0时,幂函数没有水平渐近线。
3.幂函数的图像的特点还包括:在定义域内,随着a的增大,幂函数的曲线变得越来越陡峭,斜率越大,也越接近于坐标轴。
三、幂函数的应用实例幂函数在实际生活中有许多应用,如下所示:1.货币贬值:幂函数可以用来描述货币贬值的情况。
假设初始时某国家的货币价值为100,每年贬值5%,则可以用幂函数y=100(1-0.05)^x来表示货币价值随时间的变化,其中x表示年份,y表示货币价值。
2.物种数量变化:幂函数可以用来描述物种数量随时间的变化。
假设某种细菌在细菌培养皿中繁殖,每小时繁殖数量为原来的3倍,可以用幂函数y=2^x来表示细菌数量随时间的变化,其中x表示时间(小时),y表示细菌的数量。
3.电子产品价格变化:幂函数可以用来描述电子产品价格随时间的变化。
以手机为例,假设某款手机初始价格为3000元,每年价格下降20%,则可以用幂函数y=3000(1-0.2)^x来表示手机价格随时间的变化,其中x表示年份,y表示手机价格。
四、幂函数与其他函数的关系1.幂函数与线性函数的关系:幂函数和线性函数是两种不同的函数形式。
幂函数的基本概念与性质
![幂函数的基本概念与性质](https://img.taocdn.com/s3/m/6f6eb17c590216fc700abb68a98271fe900eaf67.png)
幂函数的基本概念与性质幂函数是数学中一类重要的函数类型,其表示形式为$f(x) = ax^b$,其中a和b为常数,且b是实数。
幂函数的基本概念包括定义域、值域、图像特征等,而幂函数的性质则涉及到增减性、奇偶性、最值和渐近线等方面。
本文将详细探讨幂函数的基本概念与性质,以帮助读者更好地理解这一函数类型。
一、幂函数的基本概念1. 定义域:幂函数的定义域为所有使得底数$x$的幂指数$b$合法的实数。
通常来说,当$b$为有理数时,定义域为全体实数;若$b$为无理数,定义域则需根据具体情况进行讨论。
2. 值域:幂函数的值域根据幂指数$b$的正负以及常数$a$的正负可以得到不同的结果。
当$b$为正数时,如果$a$也为正数,则值域为全体正实数;若$a$为负数,则值域为全体负实数。
当$b$为负数时,根据奇偶性的不同,值域也有所不同。
3. 图像特征:幂函数的图像特征主要与幂指数$b$的正负、常数$a$的正负以及其他可能的变化因素有关。
当$b$为正数时,幂函数呈现递增趋势,且随着$b$的增大,图像会更加陡峭;当$b$为负数时,幂函数会呈现递减趋势,且随着$b$的增大,图像会更加平缓。
二、幂函数的性质1. 增减性:当幂函数的幂指数$b$为正数时,函数是递增的,即随着自变量$x$的增大,函数值$f(x)$也随之增大。
相反,当$b$为负数时,函数是递减的,即随着自变量$x$的增大,函数值$f(x)$会减小。
2. 奇偶性:幂函数的奇偶性取决于底数$x$的幂指数$b$的奇偶性。
当$b$为偶数时,函数是偶函数,即$f(-x) = f(x)$;当$b$为奇数时,函数是奇函数,即$f(-x) = -f(x)$。
3. 最值:当幂函数的幂指数$b$为正数时,最小值为函数的定义域中最小的值,最大值为正无穷。
当幂指数$b$为负数时,最小值为负无穷,最大值为函数的定义域中最小的值。
同时,最值的具体取值还与常数$a$的正负有关。
4. 渐近线:当幂函数的幂指数$b$大于1时,函数的图像会趋近于$y=0$的水平渐近线;当幂指数$b$小于1时,函数的图像会趋近于$x$轴的正半轴。
大一高数幂函数知识点归纳
![大一高数幂函数知识点归纳](https://img.taocdn.com/s3/m/1c6640249a6648d7c1c708a1284ac850ad0204a7.png)
大一高数幂函数知识点归纳幂函数是大一高数中重要的概念之一,它在数学和科学领域具有广泛的应用。
在本文中,将对大一高数幂函数的知识点进行归纳总结,以帮助读者更好地理解和掌握这一内容。
一、幂函数的定义幂函数是指形如f(x) = x^n的函数,其中x为自变量,n为常数指数。
幂函数的特点是自变量x的幂次,它决定了函数的增长趋势和性质。
幂函数可以分为正幂函数和负幂函数两种情况。
正幂函数:当指数n为正数时,幂函数随着x的增大而增大,随着x的减小而减小。
例如,f(x) = x^2是一个正幂函数,其图像为开口向上的抛物线。
负幂函数:当指数n为负数时,幂函数随着x的增大而减小,随着x的减小而增大。
例如,f(x) = x^(-2)是一个负幂函数,其图像为开口向下的抛物线。
二、幂函数的性质1. 定义域和值域:对于幂函数f(x) = x^n,当n为正数时,定义域是整个实数集;当n为负数时,定义域是正实数集。
值域在正幂函数和负幂函数的情况下有所不同。
2. 奇偶性:当指数n为偶数时,幂函数是关于y轴对称的偶函数;当指数n为奇数时,幂函数是关于原点对称的奇函数。
3. 单调性:正幂函数在定义域上是递增的,负幂函数在定义域上是递减的。
4. 零点:当幂函数中的指数n为正数时,零点为x=0;当指数n为负数时,零点不存在。
5. 渐近线:对于正幂函数和负幂函数,它们都有y轴作为渐近线。
当幂函数的指数n为正数时,还可能有x轴作为渐近线。
三、幂函数的图像1. 正幂函数的图像:正幂函数在定义域上为开口向上的抛物线,图像越接近x轴,增长速度越慢。
当指数n越大时,抛物线的开口越窄。
2. 负幂函数的图像:负幂函数在定义域上为开口向下的抛物线,图像越接近x轴,减小速度越慢。
当指数n越小时,抛物线的开口越窄。
四、幂函数的应用1. 物理学中的应用:幂函数在物理学中具有广泛的应用,例如在力学中描述物体的抛体运动、空气阻力、电子流强度与电位差的关系等。
通过研究幂函数的性质和图像,可以帮助我们更好地理解这些物理现象。
幂函数 知识点总结
![幂函数 知识点总结](https://img.taocdn.com/s3/m/8fa97ac385868762caaedd3383c4bb4cf6ecb74d.png)
幂函数知识点总结一、幂函数的基本概念1.1 定义幂函数是指以自变量 x 为底数的常数次幂,形式为 y = ax^n,其中 a 为非零实数,n 为实数。
其中,底数 a 称为幂函数的底数,指数 n 称为幂函数的指数。
1.2 定义域和值域幂函数的定义域为全体实数集 R,即 x 可以取任意实数值;而值域则受底数 a 和指数 n 的影响而不同。
当 n 为正数时,值域为全体正实数集 R^+;当 n 为负数时,值域为正实数集R^+,并且x ≠ 0;当 n 为零时,值域为全体实数集 R。
1.3 奇偶性当指数 n 为偶数时,幂函数关于 y 轴对称;当指数 n 为奇数时,幂函数关于原点对称。
1.4 增减性当指数 n 大于 1 时,幂函数在定义域上是增函数;当指数 n 大于 0 且小于 1 时,幂函数在定义域上是减函数。
二、幂函数图像的特点2.1 当底数 a 大于 1 时当底数 a 大于 1 时,幂函数的值域为正实数集 R^+。
图像呈现出从左下方无穷趋近于 x 轴,经过原点后逐渐上升并趋近于正无穷的趋势。
2.2 当底数 0 < a < 1 时当底数 0 < a < 1 时,幂函数的值域同样为正实数集 R^+。
图像呈现出从左下方无穷趋近于x 轴,经过原点后逐渐下降并趋近于 0 的趋势。
2.3 当底数 a 小于 0 时当底数 a 小于 0 时,则根据指数 n 的奇偶性和正负性来确定图像的性质。
当指数 n 为正偶数时,图像同样呈现出从左下方无穷趋近于 x 轴,经过原点后逐渐上升并趋近于正无穷的趋势;当指数 n 为正奇数时,图像同样呈现从左上方无穷趋近于 x 轴,经过原点后逐渐下降并趋近于负无穷的趋势。
2.4 特殊情况当底数 a 等于 1 时,幂函数的图像表现为一条平行于 x 轴的直线 y = 1;当底数 a 等于 -1 时,根据指数 n 的奇偶性不同,图像分别为一条平行于 x 轴的直线 y = -1 和关于 y 轴对称的抛物线。
高中数学,幂函数知识点及题型
![高中数学,幂函数知识点及题型](https://img.taocdn.com/s3/m/ba86cf719b89680203d825b0.png)
第七节幂函数❖基础知识1.幂函数的概念一般地,形如y=xα(α∈R)的函数称为幂函数,其中底数x是自变量,α为常数.幂函数的特征(1)自变量x处在幂底数的位置,幂指数α为常数;(2)xα的系数为1;(3)只有一项.2.五种常见幂函数的图象与性质函数特征性质y=x y=x2y=x3y=x12y=x-1图象定义域R R R{x|x≥0}{x|x≠0} 值域R{y|y≥0}R{y|y≥0}{y|y≠0} 奇偶性奇偶奇非奇非偶奇单调性增(-∞,0)减,(0,+∞)增增增(-∞,0)和(0,+∞)减公共点(1,1) ❖常用结论对于形如f(x)=x nm(其中m∈N*,n∈Z,m与n互质)的幂函数:(1)当n为偶数时,f(x)为偶函数,图象关于y轴对称;(2)当m,n都为奇数时,f(x)为奇函数,图象关于原点对称;(3)当m为偶数时,x>0(或x≥0),f(x)是非奇非偶函数,图象只在第一象限(或第一象限及原点处).考点一幂函数的图象与性质[典例](1)(2019·赣州阶段测试)幂函数y=f(x)的图象经过点(3,33),则f(x)是()A.偶函数,且在(0,+∞)上是增函数B .偶函数,且在(0,+∞)上是减函数C .奇函数,且在(0,+∞)上是增函数D .非奇非偶函数,且在(0,+∞)上是减函数 (2)已知幂函数f (x )=(n 2+2n -2)x23-n n (n ∈Z)的图象关于y 轴对称,且在(0,+∞)上是减函数,则n 的值为( )A .-3B .1C .2D .1或2[解析](1)设f (x )=x α,将点(3,33)代入f (x )=x α,解得α=13,所以f (x )=x 13,可知函数f (x )是奇函数,且在(0,+∞)上是增函数,故选C. (2)∵幂函数f (x )=(n 2+2n -2)x23-n n在(0,+∞)上是减函数,∴⎩⎪⎨⎪⎧n 2+2n -2=1,n 2-3n <0,∴n =1, 又n =1时,f (x )=x -2的图象关于y 轴对称,故n =1.[答案] (1)C (2)B[解题技法] 幂函数y =x α的主要性质及解题策略(1)幂函数在(0,+∞)内都有定义,幂函数的图象都过定点(1,1).(2)当α>0时,幂函数的图象经过点(1,1)和(0,0),且在(0,+∞)内单调递增;当α<0时,幂函数的图象经过点(1,1),且在(0,+∞)内单调递减.(3)当α为奇数时,幂函数为奇函数;当α为偶数时,幂函数为偶函数.(4)幂函数的性质因幂指数大于零、等于零或小于零而不同,解题中要善于根据幂指数的符号和其他性质确定幂函数的解析式、参数取值等.[题组训练]1.[口诀第3、4、5句]下列函数中,既是偶函数,又在区间(0,+∞)上单调递减的为( )A .y =x -4 B .y =x -1 C .y =x 2D .y =x 13解析:选A 函数y =x -4为偶函数,且在区间(0,+∞)上单调递减;函数y =x -1为奇函数,且在区间(0,+∞)上单调递减;函数y =x 2为偶函数,且在区间(0,+∞)上单调递增;函数y =x 13为奇函数,且在区间(0,+∞)上单调递增.2.[口诀第2、3、4句]已知当x ∈(0,1)时,函数y =x p 的图象在直线y =x 的上方,则p 的取值范围是________.解析:当p >0时,根据题意知p <1,所以0<p <1;当p =0时,函数为y =1(x ≠0),符合题意;当p <0时,函数y =x p 的图象过点(1,1),在(0,+∞)上为减函数,符合题意.综上所述,p 的取值范围是(-∞,1).答案:(-∞,1)考点二 比较幂值大小[典例] 若a =⎝⎛⎭⎫1223,b =⎝⎛⎭⎫1523,c =⎝⎛⎭⎫1213,则a ,b ,c 的大小关系是( ) A .a <b <c B .c <a <b C .b <c <aD .b <a <c[解析] 因为y =x 23在第一象限内是增函数,所以a =⎝⎛⎭⎫1223>b =⎝⎛⎭⎫1523,因为y =⎝⎛⎭⎫12x 是减函数,所以a =⎝⎛⎭⎫1223<c =⎝⎛⎭⎫1213,所以b <a <c . [答案] D[题组训练]1.若a =⎝⎛⎭⎫3525,b =⎝⎛⎭⎫2535,c =⎝⎛⎭⎫2525,则a ,b ,c 的大小关系是( ) A .a >b >c B .a >c >b C .c >a >bD .b >c >a解析:选B 因为y =x 25在第一象限内为增函数,所以a =⎝⎛⎭⎫3525>c =⎝⎛⎭⎫2525,因为y =⎝⎛⎭⎫25x 是减函数,所以c =⎝⎛⎭⎫2525>b =⎝⎛⎭⎫2535,所以a >c >b . 2.若(a +1)12<(3-2a )12,则实数a 的取值范围是________. 解析:易知函数y =x 12的定义域为[0,+∞),在定义域内为增函数,所以⎩⎪⎨⎪⎧a +1≥0,3-2a ≥0,a +1<3-2a ,解得-1≤a <23.答案:⎣⎡⎭⎫-1,23 [课时跟踪检测]1.若幂函数y =f (x )的图象过点(4,2),则f (8)的值为( )A .4 B. 2 C .2 2D .1解析:选C 设f (x )=x n ,由条件知f (4)=2,所以2=4n ,n =12,所以f (x )=x 12,f (8)=812=2 2.2.若幂函数f (x )=x k 在(0,+∞)上是减函数,则k 可能是( )A .1B .2 C.12D .-1解析:选D 由幂函数的性质得k <0,故选D. 3.已知幂函数f (x )=(m 2-3m +3)x m+1为偶函数,则m =( ) A .1 B .2 C .1或2D .3解析:选A ∵函数f (x )为幂函数,∴m 2-3m +3=1,即m 2-3m +2=0,解得m =1或m =2.当m =1时,幂函数f (x )=x 2为偶函数,满足条件;当m =2时,幂函数f (x )=x 3为奇函数,不满足条件.故选A.4.(2018·邢台期末)已知幂函数f (x )的图象过点⎝⎛⎭⎫2,14,则函数g (x )=f (x )+x24的最小值为( ) A .1 B .2 C .4D .6解析:选A 设幂函数f (x )=x α.∵f (x )的图象过点⎝⎛⎭⎫2,14,∴2α=14,解得α=-2. ∴函数f (x )=x -2,其中x ≠0. ∴函数g (x )=f (x )+x 24=x -2+x 24=1x 2+x 24≥21x 2·x 24=1, 当且仅当x =±2时,g (x )取得最小值1. 5.(2019·安徽名校联考)幂函数y =x |m -1|与y =x 23-m m (m ∈Z)在(0,+∞)上都是增函数,则满足条件的整数m 的值为( )A .0B .1和2C .2D .0和3解析:选C 由题意可得⎩⎪⎨⎪⎧|m -1|>0,3m -m 2>0,m ∈Z ,解得m =2.6.已知a =345,b =425,c =1215,则a ,b ,c 的大小关系为( )A .b <a <cB .a <b <cC .c <b <aD .c <a <b解析:选C 因为a =8115,b =1615,c =1215,由幂函数y =x 15在(0,+∞)上为增函数,知a >b >c ,故选C.7.设x =0.20.3,y =0.30.2,z =0.30.3,则x ,y ,z 的大小关系为( )A .x <z <yB .y <x <zC .y <z <xD .z <y <x解析:选A 由函数y =0.3x 在R 上单调递减,可得y >z .由函数y =x 0.3在(0,+∞)上单调递增,可得x <z .所以x <z <y .8.已知幂函数f (x )=(m -1)2x242-+m m 在(0,+∞)上单调递增,函数g (x )=2x -k ,当x ∈[1,2)时,记f (x ),g (x )的值域分别为集合A ,B ,若A ∪B =A ,则实数k 的取值范围是( )A .(0,1)B .[0,1)C .(0,1]D .[0,1]解析:选D ∵f (x )是幂函数,∴(m -1)2=1,解得m =2或m =0.若m =2,则f (x )=x -2在(0,+∞)上单调递减,不满足条件.若m =0,则f (x )=x 2在(0,+∞)上单调递增,满足条件,即f (x )=x 2.当x ∈[1,2)时,f (x )∈[1,4),即A =[1,4);当x ∈[1,2)时,g (x )∈[2-k,4-k ),即B =[2-k,4-k ).∵A ∪B =A ,∴B ⊆A ,∴2-k ≥1且4-k ≤4,解得0≤k ≤1.9.若f (x )是幂函数,且满足f (9)f (3)=2,则f ⎝⎛⎭⎫19=________. 解析:设f (x )=x α,∵f (9)f (3)=9α3α=3α=2,∴f ⎝⎛⎭⎫19=⎝⎛⎭⎫19α=⎝⎛⎭⎫132α=132α=122=14. 答案:1410.已知函数f (x )=(m 2-m -5)x m 是幂函数,且在(0,+∞)上为增函数,则实数m 的值是________. 解析:由f (x )=(m 2-m -5)x m 是幂函数⇒m 2-m -5=1⇒m =-2或m =3.又f (x )在(0,+∞)上是增函数,所以m =3. 答案:311.当0<x <1时,f (x )=x 2,g (x )=x 12,h (x )=x -2,则f (x ),g (x ),h (x )的大小关系是________________. 解析:分别作出y =f (x ),y =g (x ),y =h (x )的图象如图所示,可知h (x )>g (x )>f (x ).答案:h (x )>g (x )>f (x )12.(2019·银川模拟)已知幂函数f (x )=x12-,若f (a +1)<f (10-2a ),则a 的取值范围是________.解析:由题意得,幂函数f (x )=x -12的定义域为(0,+∞),且函数f (x )在(0,+∞)上单调递减,由f (a+1)<f (10-2a ),得⎩⎪⎨⎪⎧a +1>10-2a ,a +1>0,10-2a >0,解得3<a <5.答案:(3,5)13.已知幂函数f (x )=x()21-+m m (m ∈N *)的图象经过点(2,2).(1)试确定m 的值;(2)求满足条件f (2-a )>f (a -1)的实数a 的取值范围. 解:(1)∵幂函数f (x )的图象经过点(2,2),∴2=2()21-+m m ,即212=2()21-+m m .∴m 2+m =2,解得m =1或m =-2. 又∵m ∈N *,∴m =1. (2)由(1)知f (x )=x 12,则函数的定义域为[0,+∞),并且在定义域上为增函数. 由f (2-a )>f (a -1),得⎩⎪⎨⎪⎧2-a ≥0,a -1≥0,2-a >a -1,解得1≤a <32.∴a 的取值范围为⎣⎡⎭⎫1,32.。
幂函数的概念
![幂函数的概念](https://img.taocdn.com/s3/m/9f9ce5dd9f3143323968011ca300a6c30d22f148.png)
幂函数的概念幂函数一直是数学家们认为最有价值的函数之一。
它可以被用来解决几何问题、求解等式以及更复杂的问题。
学习幂函数的概念有助于人们更好地理解数学,并有助于求解难题。
幂函数是一个特定的函数,其定义是:当一个变量x的值被幂指数次幂,而这个次幂是另一个变量y,则称x的次幂为y的x次幂函数,即:y=x^n,其中n为一个常数。
幂函数可以用来解决几何问题。
例如,求解三角形的周长:首先要计算三条边的长度,然后把它们带入到幂函数中,以计算出三角形的周长。
这可以通过解三等式来完成,而不是简单地把边加起来。
幂函数也可以用来求解等式。
例如,用幂函数来解一元二次方程,当用x表示一元二次方程中的未知量时,可以把公式写成y=ax^2+bx+c的形式,再根据a、b、c的数值来算出x的值。
幂函数主要用来解决一些有关数学模型的更复杂的问题。
例如,幂函数可以用来解决有关经济发展的问题,即有关实际经济增长情况和预测经济增长情况有关的问题。
可以根据公式来模拟实际经济增长情况,然后根据实际情况来调整方程系数以更准确地预测未来的情况。
幂函数还可以用来解决复杂的统计和结构分析问题,如复杂的分类模型分析。
例如,使用幂函数来确定一个复杂的分类模型的结果,它的形状可以是高斯分布,也可以是二次变换。
根据这个模型,就可以得出结论和预测。
学习幂函数的概念有助于人们更好地理解数学,从而有助于求解难题。
它可以用来解决几何问题、求解等式和模拟复杂的统计和结构分析问题等。
它也可以用来解决一些有关经济发展方面的问题,如有关预测未来经济发展情况的问题。
虽然学习幂函数有很多益处,但也有一些潜在的风险。
如果使用的不当,它可能会导致得出的结论不准确。
因此,在使用幂函数时,要仔细分析它的假设,确保它的准确性。
总之,学习幂函数的概念有助于人们更好地理解数学,从而有助于求解难题。
它可以帮助解决复杂的几何问题、求解等式以及模拟复杂的统计和结构分析问题。
幂函数的使用也可以有助于预测未来的经济发展情况。
幂函数知识点
![幂函数知识点](https://img.taocdn.com/s3/m/c2044d09bf23482fb4daa58da0116c175e0e1e7e.png)
幂函数知识点1. 幂函数定义幂函数是形如 \(y = x^n\) 的函数,其中 \(n\) 是实数。
当 \(n\) 为正整数时,幂函数的图像是一系列经过原点的点,且随着 \(n\) 的增加,曲线逐渐趋于平坦。
2. 幂函数的图像特征- 当 \(n > 1\) 时,幂函数在 \(x > 0\) 区域内单调递增。
- 当 \(0 < n < 1\) 时,幂函数在 \(x > 0\) 区域内单调递减。
- 当 \(n\) 为负整数时,幂函数在 \(x > 0\) 区域内表现为周期函数,周期为 \(4\pi\)。
- 当 \(n = 0\) 时,函数退化为常数函数 \(y = 1\)。
3. 幂函数的性质- 奇次幂函数是奇函数,即 \(y(-x) = -y(x)\)。
- 偶次幂函数是偶函数,即 \(y(-x) = y(x)\)。
- 幂函数的导数是 \(y' = n \cdot x^{n-1}\)。
- 幂函数的积分是 \(\int x^n dx = \frac{x^{n+1}}{n+1} + C\),其中 \(C\) 是积分常数。
4. 幂函数的应用- 在物理学中,幂函数常用于描述物体的速度与加速度的关系。
- 在经济学中,幂函数可以用来模拟市场需求与价格的关系。
- 在工程学中,幂函数用于描述材料的强度与应力的关系。
5. 特殊幂函数- 指数函数 \(y = a^x\) 是幂函数的一种特殊形式,其中 \(a\) 是正实数且 \(a \neq 1\)。
- 对数函数 \(y = \log_a x\) 也是幂函数的一种特殊形式,其中\(a\) 是正实数且 \(a \neq 1\)。
6. 幂函数的运算法则- 幂的乘法:\(x^m \cdot x^n = x^{m+n}\)- 幂的除法:\(x^m / x^n = x^{m-n}\)- 幂的幂:\((x^m)^n = x^{m \cdot n}\)7. 幂函数的极限- 当 \(x \to 0\) 时,\(x^n\) 的极限取决于 \(n\) 的值。
什么是幂函数
![什么是幂函数](https://img.taocdn.com/s3/m/255ac268f6ec4afe04a1b0717fd5360cba1a8d92.png)
什么是幂函数幂函数是用来计算一个数的两个幂次幂之间的关系。
幂函数是数学中的一个重要的基础函数,是解决现代数学中一些问题的主要工具,它为很多数学问题的解决提供了可靠的数据工具。
幂函数可以定义为两个幂的值之间的函数关系。
其定义如下:幂函数是一个数组的幂函数。
由于其性质的特殊性:定义中的“值”可以是一组在该数组中的所有值而不是任意值,因此具有“幂”的性质,即任意数以一个幂次来表示它。
1.幂函数是微积分的基本概念之一,在高中数学中被广泛地应用。
通常的幂函数的定义为:幂函数有一个幂的值,当第个幂的次幂满足下列条件时,它是幂函数:幂的次幂必须满足下述三个条件:对于整数幂函数,求一个幂的次幂,只需将这个幂除以整数;对于偶数幂函数,求一个幂的次幂,只需将这个幂除以偶数;对于实数幂函数,求每个实数的次幂,只需将实数进行分类化处理。
对于二次函数和二次不等式,也要通过幂函数来求解。
幂函数是微积分等其他基本性质应用与研究的基础。
通过研究这些应用与研究成果,可以将微积分中所涉及到多种性质和问题用一定形状不同图形展现出来,并能利用这些图形进行灵活地、富有创造性地解决问题。
2.幂函数是在一些具有实际意义的数学问题中使用的。
比如,分数问题,可以用“幂次幂”来表示分数。
同样,我们也可以用幂次的形式表示分数。
这就是幂函数在实际应用中的一个很好的例子。
再比如,关于二进制问题,也可以用幂函数进行研究。
例如,一个二进制数字x是它原来长度的二倍,它原数值x=4。
在这种情况下,它就是幂函数y=4 x。
3.幂函数对数组幂的函数关系,是许多微积分算法及其应用中的基本工具,它使我们对一些基本复杂的问题能够更灵活、更精确地求解。
幂次幂函数包含了两个相反的函数:它可以表示为与函数F相比,幂函数F的幂函数也有一些区别:例如,函数F中有一个幂函数formula_1和一个幂函数formula_2没有严格的定义,通常情况下,函数F可以分为两类:整数近似型函数F等式;不等式F和函数F是一个完全不等式,若F和F分别有且F1和F2分别有且F22无》具有而且F22有且F24有而F25无并不是无限不等式。
数学高一上册知识点幂函数
![数学高一上册知识点幂函数](https://img.taocdn.com/s3/m/26a592d418e8b8f67c1cfad6195f312b3169eb33.png)
数学高一上册知识点幂函数幂函数是高中数学中的重要知识点之一,在高一上册的数学学习中,幂函数的概念和性质需要我们深入理解和掌握。
本文将围绕幂函数的定义、图像特征、基本性质以及幂函数的应用方面展开讨论。
一、幂函数的定义对于任意的实数a(a>0且a≠1)和实数b(b是任意实数),幂函数可以表示为 y=a^b。
其中,a被称为底数,b被称为指数。
幂函数的定义域一般为实数集。
二、幂函数的图像特征1. 当底数a>1时,随着指数b的增大,幂函数的增长速度也增大;当指数b<0时,幂函数的函数值趋于0,且在x轴的正半轴上递减。
2. 当0<a<1时,随着指数b的增大,幂函数的增长速度减小;当指数b<0时,幂函数的函数值趋于∞,且在x轴的正半轴上递增。
3. 当a=-1时,幂函数的图像为下凸函数,并且在x轴的奇数倍根处与x轴相切;在x轴的偶数倍根处,幂函数与x轴相交。
4. 当a=-1且b是奇数时,幂函数的图像在整个定义域上均与x轴相交;当b是偶数时,幂函数的图像在负半轴与x轴相交,在整个定义域上与x轴相切。
5. 当a<0且a≠-1时,幂函数的图像与a>0时的情况相似,但在定义域内有对称性。
三、幂函数的基本性质1. 幂函数的奇偶性:当指数b为奇数时,幂函数关于y轴对称;当指数b为偶数时,幂函数关于原点对称。
2. 幂函数的单调性:当底数a>0且a≠1时,幂函数随着指数b的增大,在定义域内递增或递减;当底数a<0时,幂函数在定义域内具有单调性,方向由指数的奇偶性决定。
3. 幂函数的零点和极限:当指数b>0时,幂函数的零点只有一个,即x=0;当指数b<0时,幂函数在x趋于0时函数值趋近于∞或者趋近于0。
四、幂函数的应用幂函数在实际问题中有许多应用。
例如,金融领域的复利计算、物理学中的指数增长模型、生物学中的细胞分裂等等。
幂函数的特性使得它在描述和解决这些问题时具有较高的准确性和实用性。
数学高中幂函数知识点总结
![数学高中幂函数知识点总结](https://img.taocdn.com/s3/m/10e830ceb8d528ea81c758f5f61fb7360b4c2bbf.png)
数学高中幂函数知识点总结一、幂函数的定义幂函数是形如y = ax^b (a ≠ 0)的函数,其中a、b为常数且b为实数。
当b为自然数时,叫做指数函数;当b为整数时,叫做整数幂函数。
二、幂函数的基本性质1、幂函数的定义域:要求x的b次幂在任何实数范围内都有定义,即x∈R。
2、幂函数的值域:当b为正数时,a为正值时,y的取值范围是(0,+∞);当b为正数时,a为负值时,y的取值范围是(-∞,0);当b为负数时,函数图象经过第二象限,y的取值范围是(0,+∞),a的正负对y的取值范围没有影响。
3、幂函数的奇偶性:b为偶数时,函数图象关于y轴对称;b为奇数时,函数图象关于原点对称。
4、幂函数的单调性:在定义域内,当b>0时,a>0时y随x增大而增大;当b>0时,a<0时y随x增大而减小。
5、幂函数的图象:a) b>0时,a>1时的函数图象是上凸的抛物线,a<1时的函数图象是下凸的抛物线;b) b<0时,a>0时的函数图象是一条破折线;c) b=1时,函数图像是一条直线。
6、幂函数的增长性:a) 当a>1,b>0时,y随x增大而增大;b) 当0<a<1,b>0时,y随x增大而减小;c) 当a>0,b<0时,y随x增大而减小。
三、幂函数的运算性质1、乘法运算:幂函数y=ax^m和y=bx^n的乘积是幂函数y=abx^(m+n)。
2、除法运算:幂函数y=ax^m和y=bx^n的商是幂函数y=(a/b)x^(m-n)。
(b≠0)3、幂函数的乘方:(ax^m)^n = a^nx^(m*n)。
四、幂函数的应用1、指数增长和指数衰减:指数增长是指幂函数的指数大于1且底数大于1时,函数值随自变量的增大而呈指数增长;指数衰减是指幂函数的指数大于1且底数小于1时,函数值随自变量的增大而呈指数衰减。
2、复利问题:利息的计算通过年限n^{'}m即可直接得到m*n倍经过以上的总结,我们对高中幂函数的相关知识有了更深入的了解。
幂函数的概念与性质
![幂函数的概念与性质](https://img.taocdn.com/s3/m/2189bdbfc9d376eeaeaad1f34693daef5ef713af.png)
幂函数的概念与性质幂函数是数学中常见的一类函数,其形式为f(x) = ax^n,其中a和n分别表示常数,x表示自变量。
本文将探讨幂函数的概念以及其性质。
1. 幂函数的定义幂函数是指以自变量的某个幂为指数的函数。
其中,a表示比例常数,n表示幂指数。
幂函数可以表示为f(x) = ax^n,其中a和n为常数。
2. 幂函数的例子幂函数的例子包括二次函数、三次函数、平方根函数等。
例如,二次函数f(x) = ax^2、三次函数f(x) = ax^3以及平方根函数f(x) = ax^(1/2)等都属于幂函数。
3. 幂函数的性质(1)定义域和值域:对于幂函数f(x) = ax^n,定义域取决于幂指数n的奇偶性和基数a的正负性。
当n为偶数时,定义域可以是全体实数;当n为奇数时,如果a为正数,定义域也是全体实数,如果a为负数,则定义域为负实数,因为负数的奇次方不能得到实数结果。
对于值域,当n为奇数时,值域为全体实数;当n为偶数时,若a为正数,值域为非负实数,若a为负数,值域为非正实数。
(2)奇偶性:幂函数在n为奇数时具有奇函数的特点,即f(-x) = -f(x),在n为偶数时则没有这个性质。
(3)单调性:当n为正数时,幂函数在定义域上是递增的;当n 为负数时,幂函数在定义域上是递减的。
(4)图像:幂函数的图像可以是直线、抛物线、半圆等形状,具体形状取决于幂指数n的值。
通过对幂函数的定义和性质的分析,我们可以更好地理解和应用幂函数。
幂函数在数学中具有广泛的应用,被用于描述自然界的现象、建模和解决实际问题等。
深入理解幂函数的概念和性质有助于我们更好地掌握数学知识,并在实际应用中灵活运用。
总结起来,幂函数是一类常见的函数形式,包括了二次函数、三次函数、平方根函数等。
通过对幂函数的定义和性质的研究,我们了解到它们的定义域、值域、奇偶性、单调性和图像等特点。
深入理解幂函数有助于我们更好地应用它们解决实际问题,同时也对我们的数学思维能力的发展起到推动作用。
幂函数知识点总结
![幂函数知识点总结](https://img.taocdn.com/s3/m/35bd392b15791711cc7931b765ce0508763275bd.png)
幂函数知识点总结幂函数是高中数学中的一个重要概念,它在数学的各个领域中都有着广泛的应用。
从初中开始,我们就接触到了简单的幂函数,随着学习的深入,我们逐渐掌握了更多关于幂函数的知识。
在本文中,我们将对幂函数的相关概念、性质和应用进行总结和探讨。
1. 幂函数的定义和表示方式幂函数是指以一个常数为底数,自变量为指数的函数。
一般表示为:f(x) = a^x,其中a为常数,x为自变量,f(x)为函数值。
2. 幂函数的基本性质2.1 幂函数的奇偶性与增减性:当底数a为正数且不等于1时,幂函数f(x) = a^x在定义域内是奇函数;当底数a为负数时,幂函数f(x) = a^x是偶函数。
当底数a大于1时,幂函数是增函数,当底数a在(0,1)之间时,幂函数是减函数。
2.2 幂函数的单调性:当底数大于1时,幂函数是递增的;当底数小于1时,幂函数是递减的。
2.3 幂函数的相关性质:a^0=1,a^1=a,a^m * a^n = a^(m+n),(a^m)^n = a^(m*n),(a^m)/(a^n)=a^(m-n),(a/b)^n=a^n/b^n。
3. 幂函数图像和特征幂函数的图像具有一些独特的特征,这在解析题或者问题求解时具有重要意义。
3.1 幂函数的渐近线:当底数大于1时,幂函数的图像在y轴上有一个水平渐近线;当底数小于1时,幂函数的图像在x轴上有一个水平渐近线。
3.2 幂函数的特殊点:当底数大于1时,幂函数的图像经过点(0,1);当底数小于1时,幂函数的图像经过点(0,1)和点(1,a)。
3.3 幂函数的拐点:当幂函数的底数a大于1时,图像经过点(1,a)并且有一个拐点;当底数a小于1时,图像经过点(1,a)但没有拐点。
4. 幂函数的应用幂函数在实际问题的解决中有着广泛的应用,以下是一些典型的应用场景:4.1 音乐和声音强度的计算:声音的强度与音源与听者距离的幂函数关系密切,通过对幂函数的建模和计算,可以获得声音强度的变化规律。
总结幂函数知识点
![总结幂函数知识点](https://img.taocdn.com/s3/m/d60a0b5058eef8c75fbfc77da26925c52cc591e4.png)
总结幂函数知识点在此文中,我们将对幂函数的基本概念、性质及应用进行详细的介绍和总结。
一、幂函数的基本概念1. 幂函数的定义幂函数是指形如y=ax^n (a≠0, n为实数)的函数,其中x为自变量,y为因变量,a为常数,n为幂次。
当n为正整数时,称为整数幂函数;当n为负整数时,称为分式幂函数;当n为零时,称为常函数。
2. 幂函数的图像(1)当n为正整数时,幂函数y=x^n(n>1)的图像为开口朝上的抛物线,n为偶数时,图像在第一象限为开口向上的抛物线,n为奇数时,图像在第三象限为开口向上的抛物线。
(2)当n为负整数时,幂函数y=x^n(n<0)的图像为经过点(1,1)的单调递减且对称于y轴的曲线。
(3)当n为零时,幂函数y=x^0的图像为一条水平直线y=1。
3. 幂函数的定义域幂函数y=ax^n(n为实数)的定义域为全体实数集合R。
4. 幂函数的值域(1)当n为正偶数时,幂函数y=ax^n的值域为[0,+∞);(2)当n为正奇数时,幂函数y=ax^n的值域为(-∞,+∞);(3)当-n为偶数时,幂函数y=ax^n的值域为(0,+∞);(4)当-n为奇数时,幂函数y=ax^n的值域为(-∞,0)。
二、幂函数的性质1. 增减性质对于幂函数y=ax^n,当a>0且n为正偶数时,函数在定义域上为增函数;当a<0且n为正偶数时,函数在定义域上为减函数;当a>0且n为正奇数时,函数在定义域上为减函数;当a<0且n为正奇数时,函数在定义域上为增函数。
2. 奇偶性质当n为偶数时,幂函数y=x^n为偶函数;当n为奇数时,幂函数y=x^n为奇函数。
3. 单调性质当n为正整数时,幂函数y=x^n在定义域上为单调递增函数或单调递减函数。
4. 对称性质当n为偶数时,幂函数y=x^n关于y轴对称;当n为奇数时,幂函数y=x^n关于原点对称。
5. 渐近性质幂函数y=ax^n的图像与x轴无渐近线,当a>0时,图像与y轴无渐近线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例3 :比较下列各组数的大小
练习:如果函数
f (x) = (m2-m-1) x m 是幂函数,
求实数m的值。
m= -1 或 m= 2
小结
一. 定 义 二. 图 象 三. 性 质 四. 应 用
y x2 y x3
1
y x2
R R
x0
y0
R
偶函数 奇函数
(0,0),(1,1)
增函数 (0,0),(1,1)
y 0 非奇非偶 增函数 (0,0),(1,1)
y x1 x 0 y 0 奇函数
(1,1)
一般幂函数的性质:
★幂函数的定义域、奇偶性,单调性,
α 因函数式中 的不同而各异.
★所有的幂函数在(0,+∞)都有定义,并且函数 图象都通过点(1,1).
y
3
x
3
a
,
(4)如果一个正方形场地的面积为S,那么这个正方形的
s 边长a
1
2,
这里S是a的函数;
1
y x2
(5)如果人ts内骑车行进了1km,那么他骑车的平均速度
t v 1 km/ s, 这里v是t的函数.
y
1
x
若将它们的自变量全部用x来表示,函数值用y来表
示,则它们的函数关系式将是:
y
x
定义
哪几个是幂函数
2.已知幂函数y f (x)的图象过点(2, 2),
试求出这个函数的解析式.
解 : 设所求幂函数为y x ,
因为函数过点(2,
2), 所以
2
2
,
所以 log 2
2
log 2
1
22
1 2
1
故所的图象:
yx
y x2 y x3
1
y x2
y x1
f (x1) f (x2)
(
x1 x2
x1 x2 x1 x2
x1 x2) ( x1 x2) x1 x2
方法技巧:分子有理化
因为x1x2, x1, x2 [0,],所以x1 x2 0, x1 x20,
所以f (x1) f (x2),即幂函数f (x) x在[0,]上的增函数.
x … -3 -2 -1 0 1 2 3 …
y x … -3 -2 -1 0 1 2 3 …
y x2 … 9 4 1 0 1 4 9 …
y x3 … -27 -8 -1 0 1 8 27 …
1
y x2 … \ \ \ 0 1 2 3 …
y x1
…
1 1 32
-1
\
1
1 1…
23
作出下列函数的图象:
看看未知数x是指数还是底数
指数函数
幂函数
例1:
判断下列函数是否为幂函数.
(1) y=x4
1 (2) y x2
1
(4) y x 2
(5) y=2x2
(3) y= -x2
(6) y=x3+2
P87练习
这个是幂函数
这个是幂函数
1.在函数y x2 , y 2x, y x2 x, y 1中,
高中数学必修 ①人教版A
§2.3幂函数
问题引入
我们先看几个具体问题:
(1) 如果张红购买了每千克1元的蔬菜w千克,那么她需
要支付p=w元,这里p是w的函数; y x
(2) 如果正方形的边长为a,那么正方形的面积
这里S是a的函数;
y x2
S
2
a
,
(3) 如果立方体的边长为a,那么立方体的体积V
这里V是a函数;
y x2 y x3
(-2,4)
4
(2,4)
3
yx
2
(-1,1)
1
(1,1)
1
y x2
-4
-2
(-1,-1)
-1
-2
-3
2
4
6
从图象能得出他 们的性质吗?
几个幂函数的性质:
y x y x2
1
y x3 y x2 y x1
定义域 值域 奇偶性 单调性 公共点
yx R
R
奇函数 增函数 (0,0),(1,1)
★如果α>0,则幂函数的图象过点(0,0),(1,1) 并在(0,+∞)上为增函数.
★如果α<0,则幂函数的图象过点(1,1),并在 (0,+∞)上为减函数.
★当α为奇数时,幂函数为奇函数,
★当α为偶数时,幂函数为偶函数.
例2.证明幂函数f (x) x在[0,]上是增函数.
证明: 任取 x1, x2 [0,],且 x1x2,则
一般地,函数y x 叫做幂函数,其中x是自变量,
是常量.
几点说明:
1、y x中x 前面的系数为1,并且后面没为常数项.
2、 定义域没有固定, 与的值有关.
幂函数与指数函数的对比
式子 a
指数函数: y=a x 底数
名称 x
指数
y
幂值
幂函数: y= x a 指数
底数
幂值
判断一个函数是幂函数还是指数函数切入点