质粒DNA及λDNA的酶切分子生物学实验

合集下载

分子生物学实验报告

分子生物学实验报告

分子生物学实验报告重组质粒的pcr验证(目的基因的pcr扩增)姓名:xxx学号:xxx专业:xxx界别:xxx同组者:xxxx一.实验目的(1)自学掌控pcr反应的基本原理和实验技术。

(2)了解引物设计的基本要求。

1.pcr基本原理聚合酶链式反应(polymerasechainreaction),简称pcr,是一种分子生物学技术,用于在体外快速扩增dna,类似dna的细胞内复制过程:由一对引物介导,通过温度的调节,使双链dna变性为单链dna、单链dna能与引物复性(退火)成为引物-dna单链复合物、以及在dntps存在下dna聚合酶能使引物沿单链模板延伸成为双链dna(引物的延伸);这种热变性-复性-延伸的过程,就是一个pcr循环;一般通过20-30个循环之后,就可获得大量的要扩增的dna片段。

pcr技术的基本原理类似dna的天然激活过程,其特异性依赖与靶序列两端优势互补的寡核苷酸引物。

pcr由变性--淬火--延展三个基本反应步骤形成:①模板dna的变性:模板dna经加热至90~95℃左右一定时间后,使模板dna双链或经pcr扩增形成的双链dna解离,使之成为单链,以便它与引物结合,为下轮反应作准备;②模板dna与引物的淬火(复性):模板dna经冷却变性成单链后,温度降到55℃左右,引物与模板dna单链的优势互补序列接合融合;③引物的延伸:dna模板--引物结合物在taqdna聚合酶的作用下,以dntp为反应原料,靶序列为模板,按碱基互补配对与半保留复制原理,合成一条新的与模板dna链互补的复制链。

经过“变性—淬火—延展”三个过程就可以赢得代莱dna分子,而且这种崭新dna分子又可以沦为下次循环的模板。

因此,变性、淬火和延展循环反复25~30次后,即可从少量的模板dna中扩充出来大量的目的产物。

pcr引物设计的目的是为了找到一对合适的核苷酸片段,使其能有效地扩增模板dna序列,因此,引物的优劣直接关系到pcr的特异性与成功与否。

质粒检测实验报告

质粒检测实验报告

一、实验目的1. 掌握碱裂解法提取质粒DNA的原理和操作步骤。

2. 学习琼脂糖凝胶电泳技术,用于检测质粒DNA的大小和纯度。

3. 了解质粒DNA的酶切分析及其在分子生物学实验中的应用。

二、实验原理质粒是细菌染色体外的环状DNA分子,它们能够在宿主细胞中独立复制。

质粒DNA 的提取是分子生物学实验中常用的技术,用于基因克隆、基因表达分析等。

碱裂解法是一种常用的质粒DNA提取方法,其原理是利用碱处理使细菌细胞裂解,释放质粒DNA,并通过离心、洗涤等步骤纯化质粒DNA。

琼脂糖凝胶电泳是一种分离和分析DNA分子的技术。

DNA分子在琼脂糖凝胶中的泳动速度取决于其分子大小和构型。

通过比较已知分子量标准品和实验样品的泳动距离,可以确定质粒DNA的大小。

此外,酶切分析可以检测质粒DNA的序列和结构。

三、实验材料1. 仪器:离心机、凝胶电泳仪、紫外灯、微量移液器、微量离心管等。

2. 试剂:LB培养基、氯化钙、酚/氯仿/异戊醇混合物、无水乙醇、TE缓冲液、琼脂糖、DNA分子量标准品、限制性核酸内切酶等。

四、实验步骤1. 质粒DNA的提取(1)将含有pUC19质粒的大肠杆菌接种于LB培养基,37℃培养过夜。

(2)将培养物转移至微量离心管中,4000r/min离心2min,收集菌体。

(3)向菌体中加入1mL的酚/氯仿/异戊醇混合物,充分混匀,室温放置5min。

(4)12,000r/min离心5min,取上清液。

(5)向上清液中加入等体积的无水乙醇,混匀,室温放置15min。

(6)12,000r/min离心10min,弃去上清液。

(7)用70%乙醇洗涤沉淀,12,000r/min离心5min,弃去上清液。

(8)空气干燥沉淀,用50µL的TE缓冲液溶解。

2. 质粒DNA的琼脂糖凝胶电泳(1)制备琼脂糖凝胶,加入DNA分子量标准品。

(2)将质粒DNA样品和DNA分子量标准品混合,加样至琼脂糖凝胶。

(3)接通电源,进行电泳。

质粒酶切反应实验报告

质粒酶切反应实验报告

一、实验目的1. 学习并掌握质粒DNA的提取方法。

2. 掌握限制性核酸内切酶的酶切原理和操作方法。

3. 通过琼脂糖凝胶电泳分析酶切结果,鉴定质粒DNA的酶切位点。

二、实验原理质粒DNA是细菌染色体外的DNA分子,常用于基因克隆和分子生物学研究。

限制性核酸内切酶(RE)是一种可以识别并切割特定DNA序列的酶,常用于分子生物学实验中。

本实验通过提取质粒DNA,利用限制性核酸内切酶进行酶切反应,并通过琼脂糖凝胶电泳分析酶切结果,以鉴定质粒DNA的酶切位点。

三、实验材料与试剂1. 实验材料:大肠杆菌菌株(含有目的质粒)、限制性核酸内切酶、琼脂糖、DNA 分子量标准、TAE电泳缓冲液、琼脂糖凝胶电泳仪、PCR仪等。

2. 试剂:Tris-HCl缓冲液、EDTA、NaCl、蛋白酶K、SDS、酚/氯仿、异丙醇、70%乙醇等。

四、实验步骤1. 质粒DNA的提取(1)取适量大肠杆菌菌株,加入适量无菌水,用玻璃棒轻轻搅拌,制成菌悬液。

(2)向菌悬液中加入适量的Tris-HCl缓冲液、EDTA和蛋白酶K,充分混匀。

(3)将菌悬液放入65℃水浴中,孵育30分钟。

(4)向菌悬液中加入适量的SDS和酚/氯仿,充分混匀。

(5)12,000 r/min离心10分钟,取上清液。

(6)向上清液中加入等体积的异丙醇,混匀,室温静置2小时。

(7)12,000 r/min离心10分钟,弃去上清液。

(8)向沉淀中加入70%乙醇,混匀,室温静置5分钟。

(9)12,000 r/min离心10分钟,弃去上清液。

(10)将沉淀溶于适量的无菌水中,即为质粒DNA。

2. 酶切反应(1)取适量的质粒DNA,加入适量的限制性核酸内切酶,混匀。

(2)将混合液置于37℃水浴中,孵育适当时间。

(3)酶切反应结束后,加入适量的EDTA,终止反应。

3. 琼脂糖凝胶电泳分析(1)配制琼脂糖凝胶,加入适量的DNA分子量标准。

(2)将酶切反应产物加入琼脂糖凝胶孔中,进行电泳。

酶切检测实验报告

酶切检测实验报告

一、实验目的1. 理解并掌握限制性核酸内切酶(RE)的原理及其在分子生物学中的应用。

2. 掌握质粒DNA的提取方法。

3. 学习并实践质粒DNA的酶切技术。

4. 掌握琼脂糖凝胶电泳技术及其在DNA分析中的应用。

5. 分析酶切结果,鉴定目的基因。

二、实验原理限制性核酸内切酶(RE)是一类能够识别特定的DNA序列并在该序列处切割双链DNA的酶。

它们在分子生物学中具有广泛的应用,如基因克隆、基因编辑、基因表达调控等。

质粒DNA是常用的克隆载体,其提取方法主要有碱裂解法、盐析法等。

本实验采用碱裂解法提取质粒DNA。

酶切是将质粒DNA切割成大小不同的片段,通过琼脂糖凝胶电泳技术分离这些片段,从而鉴定目的基因。

琼脂糖凝胶电泳是一种常用的DNA分析技术,其原理是利用DNA分子在琼脂糖凝胶中的迁移速率差异进行分离。

在电场作用下,DNA分子带负电荷,会向正极移动。

DNA分子的大小与其迁移速率成反比,因此,通过比较不同片段的迁移距离,可以鉴定DNA片段的大小。

三、实验材料1. 质粒DNA2. 限制性核酸内切酶(RE)3. 琼脂糖凝胶4. TAE缓冲液5. DNA marker6. 电泳仪7. 显色剂8. 紫外灯四、实验步骤1. 质粒DNA提取- 将含有质粒DNA的菌液接种于含有抗生素的LB培养基中,37℃培养过夜。

- 取适量菌液,加入等体积的碱裂解液,混匀,室温放置5分钟。

- 加入等体积的异丙醇,混匀,室温放置10分钟。

- 12,000 rpm离心5分钟,弃上清。

- 加入700 μL 70%乙醇,混匀,室温放置5分钟。

- 12,000 rpm离心5分钟,弃上清。

- 加入50 μL无菌水,混匀,即得质粒DNA。

2. 酶切- 取10 μL质粒DNA,加入10 μL限制性核酸内切酶缓冲液,混匀。

- 加入1 μL限制性核酸内切酶,混匀。

- 37℃水浴反应3小时。

3. 琼脂糖凝胶电泳- 配制琼脂糖凝胶,加入适量的DNA marker。

(整理)分子实验.

(整理)分子实验.

分子生物学基础实验分子生物学实验技术已成为生物化学及分子生物学以及相关学科院系教学科研不可缺少的一部分。

为提高学生在分子生物学技术方面的动手能力,生物技术综合实验室主要开设常用而基本的分子生物学实验技术。

它的内容包括质粒DNA的制备;DNA的重组;PCR基因扩增等等。

实验一质粒DNA的小量制备一、实验原理要把一个有用的外源基因通过基因工程手段,送进细胞中去进行繁殖和表达,需要运载工具,携带外源基因进入受体细胞的这种工具就叫载体(vector)。

载体的设计和应用是DNA体外重组的重要条件。

作为基因工程的载体必须具备下列条件:(1)是一个复制子,载体有复制点才能使与它结合的外源基因复制繁殖;(2)载体在受体细胞中能大量增殖,只有高复制率才能使外源基因在受体细胞中大量扩增;(3)载体DNA链上有1到几个限制性内切酶的单一识别与切割位点,便于外源基因的插入;(4)载体具有选择性的遗传标记,如有抗四环素基因(Tc r),抗新霉素基因(Ne r)等,以此知道它是否已进入受体细胞,也可根据这个标记将受体细胞从其他细胞中分离筛选出来。

细菌质粒具备上述条件,它是基因工程中常用的载体之一。

质粒(plasmid)是一种染色体外的稳定遗传因子,大小在1~120kb之间,具有双链闭合环状结构的DNA分子,主要发现于细菌、放线菌和真菌细胞中。

质粒具有自主复制和转录能力,能使子代细胞保持它们恒定的拷贝数,可表达它携带的遗传信息。

它可独立游离在细胞质内,也可以整合到细菌染色体中,它离开宿主的细胞就不能存活,而它控制的许多生物学功能也是对宿主细胞的补偿。

质粒在细胞内的复制,一般分为两种类型:严密控制型(stringent control)和松弛控制型(relaxed control)。

前者只在细胞周期的一定阶段进行复制,染色体不复制时,它也不复制。

每个细胞内只含有1个或几个质粒分子。

后者的质粒在整个细胞周期中随时复制,在细胞里,它有许多拷贝,一般在20个以上。

《分子生物学》质粒DNA的提取与鉴定实验报告

《分子生物学》质粒DNA的提取与鉴定实验报告

《分⼦⽣物学》质粒DNA的提取与鉴定实验报告质粒DNA的提取与鉴定实验⽇期2020年5⽉14⽇室温25°C 成绩⼀、实验报告摘要【实验题⽬】质粒DNA的提取与琼脂凝胶电泳鉴定【实验⽬的】1、掌握质粒提取原理和各种试剂的作⽤。

2、掌握琼脂糖凝胶电泳原理和操作。

⼆、实验原理1、质粒:质粒是独⽴存在于染⾊体外,能⾃主复制并能稳定遗传的⼀种环装双链DNA,分布于细菌、放线菌、真菌以及⼀些动植物细胞中。

细菌质粒是应⽤最多的质粒类群,在细菌细胞内利⽤宿主细胞的复制机构复制质粒⾃⾝的DNA2、琼脂糖凝胶电泳:琼脂糖凝胶电泳是分离、鉴定和纯化DNA⽚段的标准⽅法之⼀,该技术操作简便,快速。

⽤各种浓度的琼脂糖凝胶可以分离长度为200bp⾄近50kb的DNA。

此外,直接⽤低浓度的核酸染料进⾏染⾊,可确定DNA在凝胶中的位置。

琼脂糖凝胶通常采⽤⽔平装置在强度和⽅向恒定的电场下电泳。

三、操作要点:(1)质粒DNA的提取1、收取细菌:将4mL细菌培养液分为2次加⼊2mL的塑料离⼼管(⼦弹头)内,每次以12000r/min离⼼1min(注意平衡)弃去上清液。

2、加⼊100uL⽤冰预冷的溶液I,⽤移液枪将细菌沉淀打散成为悬浮液。

(溶液I放置冰中)3、加⼊200uL溶液II,盖紧盖⼝,翻转离⼼管5次,充分混合内容物,避免振荡,将离⼼管置于冰上。

4、加⼊150uL⽤冰预冷的溶液III,盖紧盖⼝,翻转离⼼管,温和摇匀直⾄粘稠状的细菌裂解物出现,置于冰上5分钟。

(溶液放置冰中)5、⽤微量离⼼机12000r/min离⼼5分钟。

取上清液移到另⼀离⼼管。

6、加⼊等量的酚:氯仿(1:1)混合液,轻轻混匀,12000r/min离⼼7分钟,将上清液收集到新的离⼼管中。

7、加⼊2倍体积100%⼄醇沉淀DNA,轻轻混匀,1200 0r/min离⼼5分钟,弃去上清液,倒置在滤纸上⼲燥,漓尽液体。

8、⽤1m170%⼄醇洗涤DNA沉淀,按照步骤7去除上清液,空⽓⼲燥10min。

分子生物学实验报告全解(有图有真相)讲解

分子生物学实验报告全解(有图有真相)讲解

分⼦⽣物学实验报告全解(有图有真相)讲解分⼦⽣物学实验报告慕蓝有志班梦想学院⽬录实验⼀细菌的培养 (2)实验⼆质粒DNA的提取 (4)实验三琼脂糖凝胶电泳法检测DNA (7)实验四质粒DNA酶切及琼脂糖电泳分析鉴定 (9)实验五聚合酶链反应(PCR)技术体外扩增DNA (11)实验六植物基因组DNA提取、酶切及电泳分析 (14)实验七RNA分离与纯化 (17)实验⼋RT-PCR扩增⽬的基因cDNA (19)实验九质粒载体和外源DNA的连接反应 (21)实验⼗感受态细胞的制备及转化 (23)实验⼗⼀克隆的筛选和快速鉴定 (25)实验⼗⼆地⾼⾟标记的Southern杂交 (27)实验⼗三阿拉伯糖诱导绿⾊荧光蛋⽩的表达 (31)思考题 (32)分⼦实验⼼得总结 (33)实验⼀细菌的培养⼀、⽬的学习细菌的培养⽅法及培养基的配置。

⼆、原理在基因⼯程实验和分⼦⽣物学实验中,细菌是不可缺少的实验材料。

质粒的保存、增殖和转化;基因⽂库的建⽴等都离不开细菌。

特别是常⽤的⼤肠杆菌。

⼤肠杆菌是含有长约3000kb的环状染⾊体的棒状细胞。

它能在仅含碳⽔化合物和提供氮、磷和微量元素的⽆机盐的培养基上快速⽣长。

当⼤肠杆菌在培养基中培养时,其开始裂殖前,先进⼊⼀个滞后期。

然后进⼊对数⽣长期,以20~30min复制⼀代的速度增殖。

最后,当培养基中的营养成分和氧耗尽或当培养基中废物的含量达到抑制细菌的快速⽣长的浓度时,菌体密度就达到⼀个⽐较恒定的值,这⼀时期叫做细菌⽣长的饱和期。

此时菌体密度可达到1×109~2×109/mL。

培养基可以是固体的培养基,也可以是液体培养基。

实验室中最常⽤的是LB培养基。

三、实验材料、试剂与主要仪器(⼀)实验材料⼤肠杆菌(⼆)试剂1. 胰蛋⽩胨2. 酵母提取物3. 氯化钠4. 1mol/L NaOH5. 琼脂粉6. 抗⽣素(氨苄青霉素、卡那霉素等)(三)仪器1. 培养⽫2. 带帽试管3. 涂布器4. 灭菌锅5. ⽆菌操作台(含酒精灯、接种环、灭菌⽛签等)6. 恒温摇床四、操作步骤(⼀)LB培养基的配制配制每升培养基,应在950m1去离⼦⽔中加⼊:细菌培养⽤胰蛋⽩胨10g细菌培养⽤酵母提取物5gNaCl 10g摇动容器直⾄溶质完全溶解,⽤1mol/L NaOH调节pH位⾄7.0。

实验二-质粒DNA的提取及酶切

实验二-质粒DNA的提取及酶切

实验二质粒DNA的提取及酶切(8学时,6小时)一、实验目的:通过本实验学习和掌握碱裂解法提取和酶切质粒的技术与方法。

二、实验原理:碱裂解法提取质粒是根据共价闭合环状质粒DNA与线性染色体DNA之间在拓扑学上的差异而达到分离目的。

环状闭合的质粒DNA在限制性内切酶的作用下成为线状质粒DNA,内切酶能识别DNA分子中某一特定的核苷酸序列。

三、仪器、材料、试剂(一)仪器:1、恒温摇床2、台式离心机3、高压灭菌锅4、振荡器(二)材料:1、含PUC-18质粒的大肠杆菌2、乙二胺四乙酸(EDTA)3、三羟甲基氨基甲烷(Tris) 4.葡萄糖 5.氢氧化钠(NaOH) 6.十二烷基硫酸钠(SDS) 7、乙酸钾(KAc) 8、冰醋酸(HAc) 9、盐酸(HCl) 10、Tris饱和酚11、氯仿12、异戊醇13、乙醇14、胰RNA酶15、氨苄青霉素16、离心管(三)试剂:1、溶液І (pH8.0) 2、溶液Ⅱ3、溶液Ш4、TE缓冲液(pH8.0)5、0.5mol/LEDTA6、氯仿:异戊醇(V:V=24:1)7、Tris饱和酚:氯仿:异戊醇(V:V:V=25:24:1)8、70%乙醇9、胰RNA酶10、ECOR I酶四、实验步骤(一)质粒DNA的提取1、先在3mL LB液体培养基中加入3uL羧苄青霉素(终浓度50ug/mL),然后接入一个含puc-18质粒的大肠杆菌单菌落,37℃震荡培养过夜。

2、取过夜培养的菌液1mL加入1.5mL离心管中,4000r/min,倒出培养液,将所有菌体细胞收集在一个离心管中。

3、加入100µl溶液І于含菌体细胞的小指管中,旋涡震荡将细菌沉淀悬浮,室温放置10min。

4、加入200µl溶液Ⅱ(新鲜配置),轻轻混匀内容物,溶液逐渐变清亮后加入溶液Ш(千万不可用旋涡震荡器,裂解时间不超过5min)。

5、加入150µl溶液Ш(冰上预冷),盖紧管口,轻轻混匀数次。

质粒DNA及λDNA的酶切分子生物学实验

质粒DNA及λDNA的酶切分子生物学实验

质粒DNA及λDNA的酶切、连接、转化及重组子的筛选、鉴定一、实验目的1、学习和掌握限制性内切酶的特性2、掌握对重组质粒进行限制性内切酶酶切的原理和方法3、掌握利用CaCl2制备感受态细胞的方法4、学习和掌握热击法转化E.coli的原理和方法5、掌握α互补筛选法的原理6、学习用试剂盒提取重组质粒DNA的方法7、复习琼脂糖凝胶电泳的原理及方法二、实验原理:外源DNA与载体分子的连接即为DNA重组技术,这样重新组合的DNA分子叫做重组子;重组的DNA分子式在DNA连接酶的作用下,有Mg2+、ATP存在的连接缓冲系统中,将分别经限制性内切酶酶切酶切酶切酶切的载体分子和外源DNA分子连接连接连接连接起来;将重组质粒导入感受态细胞中导入感受态细胞中导入感受态细胞中导入感受态细胞中,将转化后的细胞在选择性培养基选择性培养基选择性培养基选择性培养基中培养,可以通过αααα互补筛选法互补筛选法互补筛选法互补筛选法筛选出重组子,并可通过酶切酶切酶切酶切电泳电泳电泳电泳及PCRPCRPCRPCR检验检验检验检验的方法进行重组子的鉴定;1.重组子的构建酶切时首先要了解目的基因的酶切图谱,选用的限制性内切酶不能目的基因内部有专一的识别位点,否则当用一种或两种限制性内切酶切割外源工体DNA 时不能得到完整的目的基因;其次要选择具有相应的单一酶切位点质粒或者噬菌体载体分子;常用的酶切方法有双酶切法和单酶切法两种;本实验采用单酶切法,即只用一种限制性内切酶切割目的DNA片段,酶切后的片段两端将产生相同的黏性末端或平末端,再选用同样的限制性内切酶处理载体;在构建重组子时,除了形成正常的重组子外,还可能出现目的DNA片段以相反方向插入载体分子中,或目的DNA串联后再插入载体分子中,甚至出现载体分子自连,重新环化的现象;单酶切法简单易行单是后期筛选工作比较复杂;各种限制性内切酶都有去最佳反应条件,最主要的因素是反应温度和缓冲液的组成,在双酶切体系中,限制性内切酶在使用时应遵循“先低盐后高盐,先低温后高温”的原则进行反应;要达到高效率的连接,必须酶切完全,酶切的DNA数量要适当;另外,酶切反应的规模也取决于需要酶切的DNA的量,以及相应的所需酶的量;可以适当增加酶的用量,但是最高不能超过反应总体积的10%,因为限制性核酸内切酶一般是保存在50%甘油的缓冲液中,如果酶切反应体系中甘油的含量超过5%,就会抑制酶的活性;连接反应总是紧跟酶切反应,外源DNA片段与载体分子连接的方法即DNA 分子体外重组技术主要依赖限制性核算内切酶和DNA连接酶催化完成的;DNA连接酶催化两双链DNA片段相邻的5’-磷酸和3’-OH间形成磷酸二酯键;在分子克隆中最有用的DNA连接酶是来自T4噬菌体的T4DNA连接酶,它可以连接黏性末端和平末端;连接反应时,载体DNA和外源DNA的摩尔数之比控制在1:1~3之间,可以有效地解决DNA多拷贝插入的现象;反应温度介于酶作用速率和末端结合速率之间,一般是16℃,用常用的连接时间为12-16h;2.感受态细胞的制备及质粒转化构建好的重组DNA转入感受态细胞中进行表达的现象就是转化;能进行转化的受体细胞必须是感受态细胞,即受体细胞最容易接受外源DNA片段实现转化的生理状态,它决定于受体菌的遗传特性,同时与菌龄、外界环境等因素有关;人工转化是通过人为诱导的方法使细胞具有摄取DNA的能力,或人为地将DNA导入细胞内,该过程与细菌自身的遗传控制无关,常用热击法,电穿孔法等;能否实现质粒DNA的转化还与受体细胞的遗传特性有关,所用的受体细胞一般是限制修饰系统的缺陷变异株,即不含限制性内切酶和甲基化酶的突变株;目前常用的感受态细胞制备方法有CaCl2法,制备好的感受态细胞可以加入终浓度为15%的无菌甘油,-70℃可保存半年至一年;经过CaCl2处理的细胞细胞膜通透性增加,允许外源DNA分子进入;在低温下,将携带有外源DNA片段的载体与感受态细胞混合,经过热击或电穿孔技术,使载体分子进入细胞;进入受体细胞的外源DNA分子通过复制、表达,使受体细胞出现新的遗传性状;将这些转化后的细胞在选择性培养基上培养,即可筛选出重组子;本实验以E.coliDH5α菌株为受体细胞,用CaCl2处理,使其处于感受态,然后将重组后的PUC19质粒在42℃下热击90s,实现转化;3.重组子的筛选鉴定重组DNA转化宿主细胞后,并非所有的受体细胞都能被导入重组DNA分子,一般仅有少数重组DNA分子能进入受体细胞,同时也只有极少数的受体细胞在吸纳重组DNA分子之后能良好增殖;并且它们是与其他大量未被转化的受体菌细胞混杂在一起;再者,在这些被转化的受体细胞中,除部分含有我们所期待的重组DNA分子外,另外一些还可能是由于载体自身或一个载体与多个外源DNA片段形成非期待重组DNA分子导入所致;因此必须使用各种筛选及鉴定手段区分转化子与非转化子,并从转化的细胞群体中分理出带有目的基因的重组子;本实验中采用的方法是平板筛选法电泳筛选法及PCR检测方法;抗药性筛选主要用于重组质粒DNA分子的转化子的筛选,而不含重组质粒DNA分子的受体菌则不能存活,α互补筛选法是根据菌落颜色筛选含有充足质粒的转化子;质粒PUC19携带有氨苄青霉素抗性基因Ampr,在含有氨苄青霉素平板上筛选转化子;没有导入质粒PUC19的受体细胞,在含有氨苄青霉素的平板上不生长;质粒PUC19进入E.coliDH5α后,通过α-互补作用,形成完整的β-半乳糖苷酶;在麦康凯培养基平板上,转化子利用β-半乳糖苷酶分解培养基中的乳糖产生有机酸,pH降低,培养集中的指示剂变红,转化子的菌落变红;不含质粒的E.coliDH5α,没有β-半乳糖苷酶活性,不能利用培养集中的乳糖产生有机酸,而是利用培养集中的有机碳源,不使培养基pH降低,在不含有氨苄青霉素的麦康凯培养基上形成白色菌落;重组后的载体DNA因为目的基因的插入位点在PUC19乳糖利用基因内部,不能形成α-互补作用,所以也不能利用培养集中的乳糖产生有机酸,在含有氨苄青霉素的麦康凯培养基上形成白色菌落;挑选在氨苄青霉素培养基上生长的白色菌落,通过扩增培养;因为许多菌落存在假阳性情况,在氨苄青霉素培养基上的白色菌落可能是导入的重组载体DNA 菌落,也可能是载体自连后发生突变的菌落,所以还要鉴定转化子中重组质粒DNA分子的大小,可将重组的载体DNA提取出来,进行后续的酶切、电泳检验;也以提取的重组质粒为模板,利用现有的引物,进行那个PCR扩增,检测个噢偶见的质粒是否是所期望的重组质粒;4.PCR技术PCRPolymerasechainreaction即聚合酶链式反应,其原理类似于DNA的体内复制,又叫做“体外基因扩增”;反应体系包括:模板DNA、寡核苷酸引物、Mg2+,4种脱氧核糖核酸dNTP、DNA聚合酶和合适的缓冲体系;反应基本程序包括DNA变性、引物复性及引物延伸三个基本过程;这三个反应构成一个循环,反复进行;每一轮循环扩增的产物可作为下一轮扩增反应的模板;理论上每一轮循环可使DNA数量增加一倍,反复30次,特异DNA序列片段以指数方式可扩增105~106;通过此技术可以使非常微量的DNA产生大量的PCR产物,因此这个技术是一项在体外大量生产目的基因的技术;现在普遍通用的是一种从水生嗜热杆菌中提取的TaqDNA聚合酶,而且大大提高了扩增片段的特异性、灵敏性和扩增效率;反应中用的引物有两段,一条称为上游引物或者正向引物,一条称为下游引物或者反向引物;引物的设计十分重要,在设计时应遵循以下原则:长度一般为18到24个碱基;G+C的百分含量在40%~60%;单条引物内部避免含有二级结构,避免形成引物二聚体;最好以1到2个G或C碱基开始或结束;引物的5’端可以被修饰,但是3’端绝对不能进行任何修饰,而且引物的3’端要避开密码子的第三位;模板的浓度不能太大,dNTP的浓度为2.5mmol/L,金属离子的浓度为1.5mmol/L,缓冲液为pH为7.2~8.0的Tris —HCl溶液;二、实验材料:1.菌株:E.coliDH5α2.培养基:LB培养基、麦康凯培养基加入氨苄青霉素3.试剂材料:酶切反应:DNAPUC19质粒,酶切10×buffer,HindⅢ,重蒸水,λDNA;连接反应:酶切后的DNAPUC19质粒和λDNA,连接10×buffer,T4连接酶,重蒸水;感受态细胞的制备:0.1MCaCl2转化:连接液和感受态细胞,0.1MCaCl2,冰块;重组菌的挑选、检验:试剂盒含有RnaseA的溶液Ⅰ,溶液Ⅱ,溶液Ⅲ,HBbuffer,DNAwashingbuffer,elutionbuffer,酶切后的DNAPUC19质粒,试剂盒抽提的DNA,酶切10×buffer,HindⅢ,重蒸水,琼脂糖,TAE缓冲液;上样缓冲液,EB染液;PCR检测:10×PCRbuffer,dNTP,模板,引物1,引物2,水,TaqDNA聚合酶,琼脂糖,TAE、溴化乙锭EB4.仪器器材:20、200、1000ul的枪和枪尖,1.5ml的Ep管,恒温培养箱,水浴锅,平板,三角瓶,试管,接种环,牙签,酒精灯,火柴,冰箱,离心机,电泳槽,紫外仪,PCR扩增仪三、实验步骤载体与外源片段的酶切→连接→感受态细胞的制备→质粒转化与重组子的筛选→重组子的挑取与复证→重组质粒的提取与电泳检测→PCR检测一酶切1、在两支Eppendorf管中依次加入酶切反应的各种成分,混匀,适当离心,使样品集中于管底;酶切反应各成分添加如下:2、在37℃恒温水浴锅中反应1h以上;3.分别取上述酶切样品2~5uL,与1~2uL电泳上样缓冲液混合均匀,进行琼脂糖凝胶电泳,观察酶切反应是否彻底,剩余样品可以继续酶切;4.待电泳观察酶切反应完全后,将剩余样品从恒温水浴锅中取出,置65℃恒温水浴锅中保存10~15min,终止酶切反应5.样品可以直接进行酶切反应或者保存于-20℃冰箱备用二连接1、在Eppendorf管中依次加入连接反应的各种成分,混匀,适当离心,使样品集中于管底;连接反应各成分添加如下:3、连接产物可用于转化实验;三感受态细胞的制备1、用接种环从含有E.coliDH5α的培养基平板上挑取少量灰白色E.coli菌落接种到20mlLB培养基里,37℃振荡培养过夜;实验均在无菌条件下,以防污染;2、取37℃过夜培养物,此时的培养物较浑浊,颜色变深;按1%的接种量吸取200μl转接到20mlLB培养基中,37℃振荡培养2.5~3小时;3.分别取1.5ml菌液于2个无菌的1.5mlEppendorf管中,5000rpm离心5min,弃上清液,吸干;重复收集菌体一次,使菌量增多;每支离心管中加入用冰预冷的1ml0.1mol/lCaCl,漩涡震荡使细胞悬浮混匀,冰上放置15min,4℃5000rpm离心5min;4、弃上清液,吸干后,加入100ulCaCl悬浮冰浴至使用;上述方法制好的感受态细胞置于冰上,48h之内均可用于转化,分装成2x50ul和100ul三管;四转化实验1、取制备好并摇匀后的3管感受态细胞悬液,分别作如下处理:1感受态细胞悬液50uL+pUC19质粒DNA1uL2感受态细胞悬液50uL+DH5a3感受态细胞悬液100uL+连接产物5uL2、将以上各样品管轻轻摇匀,冰浴10min,在42℃水浴中热击90s,然后迅速置于冰上2~3min,质粒已经吸附到感受态细胞的表面,此时不能剧烈振荡,以增加转化效率;3、向上述3管中分别加入450ul、450ul和900ul新鲜的LB培养基混匀后,37℃摇床培养1~2h,使受体菌恢复正常生长状态;五稀释和涂布平板1、无菌操作,将转化细胞溶液按以下操作涂布平板:⑴受体菌对照管:取50ul受体菌液分别涂布含有氨苄青霉素和不含氨苄青霉素的麦康凯培养基;⑵pUC19质粒对照组:取50ul培养液涂布于含有氨苄青霉素的麦康凯培养基;⑶重组质粒转化组:取50ul、100ul、150ul、200ul培养液分别涂布含有氨苄青霉素的麦康凯培养基2、当菌液完全被培养基吸收后大约10min倒置培养皿,于37℃恒温培养24~36h,观察菌落生长情况红白菌落法;六重组子的筛选与鉴定1、取一个含有氨苄青霉素的麦康凯培养基平板,在底部划线分成6个区域;在涂有重组质粒转化组的平板上分别选取6个单个的白色转化子,用接种针划线转接到平分成6份的含有氨苄青霉素的麦康凯培养基上;37℃过夜培养;2、在划线的6个单菌落中选取4个,分别接种到含有5ml带氨苄青霉素的LB液体培养基的试管中,37℃振荡培养过夜;七试剂盒抽提重组质粒DNA及鉴定1、分别取3ml菌液,用Omega试剂盒抽提重组质粒DNA,具体步骤见说明书;2.将pUC19质粒酶切及两组重组质粒酶切体系加入10loadingbuffer,混合均匀,进行琼脂糖凝胶电泳,电泳1h左右;1~2uL样品+1~2uLLB+1~2uL水注意事项1.本实验属于微量操作,用量极少的步骤必须严格注意吸取量的准确性并确保样品全部加入反应体系中;2.实验中所用塑料器材都必须是新的,并且经过高温灭菌,操作时打开使用,操作过程中要注意环境干净,戴手套操作,尽量减少走动,缩短Ep管开盖的时间;3.不论是酶切还是连接反应,加样的顺序应该是,先加双蒸水,其次是缓冲液和DNA,最后加酶;且前几步要把样品加到管底的侧壁上,加完后用力将其甩到管底,而酶液要在加入前从-20℃的冰箱取出,酶管放置冰上,取酶液时吸头应从表面吸取,防止由于插入过深而使吸头外壁沾染过多的酶液;取出的酶液应立即加入反应混合液的液面以下,并充分混匀;4.Ep管的盖子应盖紧,防止水浴过程中水汽进入管内,并做好标记以防样品混淆;5.转化过程要防止杂菌和其他DNA的污染,整个操作过程应在无菌条件下进行;6.电泳时使用的缓冲液最好是现配现用,以免影响电泳效果;7.制备凝胶时,应避免琼脂糖溶液在微波炉里加热时间过长,否则溶液将会暴沸蒸发,影响琼脂糖浓度;制胶时要除去气泡;拔梳子时要特别小心,以防凝胶与支持物脱离;8.上样时要小心操作,避免损坏凝胶或将样品槽底部的凝胶刺穿;也不要快速挤出吸头内的样品,避免挤出的空气将样品冲出样品孔;9.溴化乙锭是一种强烈的诱变剂,有毒性,使用含有这种染料的溶液时,应带上乳胶手套进行操作;勿将溶液滴洒在台面上,实验结束后用水彻底冲洗干净;10.紫外线对眼睛和皮肤均有伤害,对眼睛尤甚;观察电泳条带时要确保紫外光源得到适当遮蔽,并应戴好目镜或眼罩,避免皮肤直接暴露在紫外线下;11.实验中加样后应及时更换吸头,以避免试剂的污染;12.PCR反应高度灵敏,应设法避免污染,如戴一次性手套操作,使用一次性PCR管和吸头,反应加样区应与DNA模板制备区及PCR产物电泳检测区分开;13.PCR管单加样时,对于非常微量的样品一定将样品加在管壁上或者液体中,防止漏样;14.实际操作时,为了防止少加样,可以保存每次用过的枪尖,通过数枪尖知道自己加到哪一步了;五、结果与分析1、pUC19质粒DNA酶切结果目的基因与pUC19质粒载体酶切以后经过琼脂糖凝胶电泳,紫外成像如下:从左到右各泳道分别为:第1泳道:λDNA/HindIII;第2、3泳道:λDNA及λDNA/HindIII;第4、5泳道:pUC19质粒及pUC19/HindIII;第6-15泳道:第1-10组的pUC19/HindIII样品;第16泳道:pUC19/HindIII;第17泳道:λDNA/HindIII;我所在组为第9组,为第14泳道所电泳样品;对比酶切时的Marker和商业酶切质粒,可知带①为线性pUC19质粒,带②基本上为未切开的双螺旋pUC19质粒;对比带①与带②可以发现,带①的亮度和宽度仅为带②的一半左右,所以说明有三分之二的双螺旋质粒没有被切开,具体原因可能为:酶切时间短;酶活性较低;酶切反应的buffer不合适等;2、转化结果质粒转化进入感受态细胞后,在培养基上进行涂布并过夜培养,第二天观察培养基培养情况;表4平板内菌落的正确生长状况但是我们组的平板内全部有很多菌落生长,可能原因有:1.操作不当,涂布时有其他液体混入2.氨苄失活3、重组质粒的筛选与鉴定1重组质粒进行酶切以后,进行琼脂糖凝胶电泳,得成像如下图本组使用的重组质粒来自其他组从左至右各泳道分别为:第1泳道:λDNA/HindIII;第2泳道:pUC19质粒;第3-22:第1-10组的重组质粒R,R;我所在组为第9组,重组质粒为第19、20泳道;通过对比可以看出两个重组质粒连接的应该都是125bp的小片段六、实验小结1、总结与反思⑴溴化乙淀具有致癌作用,配制及使用时应带乳胶或一次性塑料手套;⑵酶切反应的所有塑料制品Eppendorf管、吸头等必须是新的,并经过高温灭菌,操作时打开使用,操作过程不要求无菌,但要注意手和空气中杂酶的污染,因此要求环境干净,戴手套操作,尽量减少走动,缩短Eppendorf管的开盖时间;⑶感受态细胞必须从纯菌种开始;从划线纯化的单菌落开始,进行活化培养,不要使用多次转接或储存在4℃的培养菌液,其目的是为了保持菌株的纯度和活力;⑷培养时间:过夜培养是一个普遍接受的概念,而且适合大部分情况;如果出现了问题,调整培养时间会有帮助:染色体断裂多,则增加培养时间;酶切出现问题,则减少培养时间;⑸菌体的彻底悬浮:如果没有彻底悬浮菌体,则残留的菌体团块在SolutionII加入后,变成一个外围几乎彻底裂解,往里不完全裂解,中间没有裂解的团块;这个团块在SolutionIII加入后,会有一部分蛋白质继续存在于溶液中,成为蛋白质残留的最大根源;⑹使用相对过量的试剂:这是适合所有核酸抽提的建议;试剂相对过量的好处是:稳定性好,纯度高,操作更简单;如果认为这样不经济,就少用一点菌体;⑺配琼脂糖时应使其完全熔化后方可制胶,琼脂糖凝胶易于破碎,操作时要轻缓;⑻限制性内切酶的酶切反应属于微量操作技术,无论是DNA样品还是酶的用量都极少,必须严格注意吸样量的准确性并确保样品和酶全部加入反应体系;2、思考题1从电泳图上如何判断质粒DNA是否单酶切完全答:没有酶切的质粒处于超螺旋状态,因此在电泳图上原则上只能看到超螺旋条带;单酶切后质粒处于线状,如果单酶切不完全可能出现超螺旋状态和线状质粒条带同时存在,可以添加原质粒未酶切样品及同种质粒酶切完全样品做Maker,通过对比单酶切后的质粒条带是否单一及是否为线性进行判断;2影响质粒DNA转化效率的因素有哪些答:准备用来制备感受的细菌的生长状态与密度,制备感受态时细菌应处于对数期或者对数前期;质粒DNA的数量、大小与构型,质粒DNA数量不应太多,而分子量越大的质粒转化效率越低,超螺旋质粒DNA的转化效率高于重组DNA,环状DNA转化效率高于线性DNA;进行转化所用的试剂的纯度、质量和器材的洁净程度;数否杂菌及外源DNA污染;。

分子生物学实验设计报告

分子生物学实验设计报告

分子生物学实验设计报告李豪20一、引言基因标记技术是近年来发展起来的分子生物学技术,荧光蛋白是海洋生物体内的一类发光蛋白,分为绿色荧光蛋白、蓝色荧光蛋白、黄色荧光蛋白和红色荧光蛋白。

绿色荧光蛋白(green fluorescent protein,GFP)是一类存在于包括水母、水螅和珊瑚等腔肠动物体内的生物发光蛋白,共27kD,由238个氨基酸构成。

它产生荧光无需底物或辅因子,发色团是其蛋白质一级序列固有的。

当受到紫外或蓝光激发时,GFP发射绿色荧光。

研究绿色荧光蛋白在大肠杆菌体内的基因克隆和表达。

通过质粒重组形成所需要的重组质粒pET-28a-GFP,将重组质粒导入大肠杆菌体内,通过酶切、PCR及用IPTG诱导检测是否在大肠杆菌体内诱导表达成功。

根据电泳结果及荧光现象得出结论,重组质粒三、具体实验方案实验一、仪器准备与培养基的配置1.实验原理:1)质粒(Plasmid)是一种染色体外的遗传因子,大小在1kb~200kb之间,是具有双链闭合环状结构的DNA分子,主要发现于细菌、放线菌和真菌细胞中。

质粒具有自主复制能力,能使子代保持他们恒定的复制数,可表达它携带的遗传信息。

它可以独立游离于细胞质内,也可以整合到细菌染色体中,它离开宿主细胞就不能复制,而它控制的许多生物学功能也是对宿主细胞的补偿。

2)从大肠杆菌中抽提质粒DNA的方法很多,可以在实验中根据不同的需要采用不同的方法。

碱变性法抽提质粒DNA的基本原理是根据染色体DNA和质粒DNA分子量的巨大差异而达到分离的。

十二烷基磺酸钠(SDS)是一种阴离子表面活性剂,它既能使细菌细胞裂解,又能使一些蛋白质变性碱变性法因其抽提效果好,收得率高,获得的DNA可用于酶切、连接与转化,因而被各实验室广泛采用。

抽提过程中在加入溶液II后,碱性条件使DNA的氢键断裂,宿主染色体双螺旋结构解开而变性,而闭合环状的质粒DNA的两条链不会完全分离,当加入溶液III中和后,宿主DNA相对分子质量大,还没来得及复性,就在冰冷的条件下与SDS、蛋白质、高分子量的RNA等缠绕在一起而沉淀下来,而质粒DNA由于能够迅速配对恢复原来的构型而溶解在TE溶液中。

分子酶切实验报告(3篇)

分子酶切实验报告(3篇)

第1篇一、实验目的1. 掌握限制性核酸内切酶的原理和应用。

2. 熟悉质粒DNA的提取和纯化方法。

3. 学习琼脂糖凝胶电泳技术,分析酶切结果。

4. 探讨影响酶切效率的因素。

二、实验原理限制性核酸内切酶(RE)是一种能够识别双链DNA上的特定序列,并在识别序列处切割DNA的酶。

根据酶切位点的不同,限制性核酸内切酶可分为两类:Ⅰ类酶和Ⅱ类酶。

本实验所使用的是Ⅱ类酶,如HindⅢ、EcoRⅠ等。

质粒DNA的提取和纯化是分子生物学实验中的基本操作,通过提取和纯化可以获得高纯度的质粒DNA,便于后续的酶切、连接、转化等操作。

琼脂糖凝胶电泳技术是一种常用的分子生物学分离技术,通过电泳分离不同分子量的DNA片段,从而对酶切结果进行鉴定。

三、实验材料1. 质粒DNA2. 限制性核酸内切酶(如HindⅢ、EcoRⅠ)3. 琼脂糖4. DNA marker5. Tris-HCl缓冲液6. 10×Loading buffer7. 1×TAE电泳缓冲液8. 0.5×TAE电泳缓冲液9. 0.5%琼脂糖凝胶10. 紫外灯11. 显影液四、实验步骤1. 质粒DNA的提取和纯化(1)将质粒DNA加入Tris-HCl缓冲液中,加入等体积的酚/氯仿,剧烈振荡,静置5分钟。

(2)取上清液,加入等体积的氯仿,剧烈振荡,静置5分钟。

(3)取上清液,加入2/3体积的95%乙醇,混匀,室温放置10分钟。

(4)将沉淀物用70%乙醇洗涤,室温放置5分钟。

(5)将沉淀物溶于适量TE缓冲液中,即为纯化的质粒DNA。

2. 酶切反应(1)将纯化的质粒DNA加入酶切缓冲液中,加入限制性核酸内切酶,混匀。

(2)37℃水浴孵育2-3小时,或根据酶的说明书进行。

(3)加入适量DNA loading buffer,混匀。

3. 琼脂糖凝胶电泳(1)制备0.5%琼脂糖凝胶,加入1×TAE电泳缓冲液。

(2)将酶切反应产物加入凝胶孔中,同时加入DNA marker。

质粒酶切实验报告讨论

质粒酶切实验报告讨论

一、实验背景质粒是细菌染色体外的DNA分子,广泛存在于细菌、真菌、植物和动物细胞中。

质粒DNA在分子生物学研究中具有重要意义,如基因克隆、基因表达、基因编辑等。

质粒酶切实验是分子生物学实验中的一项基础技术,通过限制性核酸内切酶(限制酶)切割质粒DNA,得到特定的DNA片段,从而实现基因克隆、基因表达等目的。

本实验旨在通过质粒酶切实验,对提取的质粒DNA进行酶切,并利用琼脂糖凝胶电泳技术检测酶切结果,以验证实验的准确性。

二、实验方法1. 质粒DNA提取(1)采用碱裂解法提取质粒DNA,具体操作如下:① 将含有质粒的细菌培养至对数生长期,收集菌液。

② 向菌液中加入溶菌酶,37℃水浴30分钟,使细胞壁破裂。

③ 加入等体积的碱液(NaOH),混匀,室温放置5分钟。

④ 加入等体积的冰乙酸,混匀,室温放置5分钟。

⑤ 12,000 r/min离心5分钟,取上清液。

⑥ 加入2倍体积的无水乙醇,混匀,室温放置15分钟。

⑦ 12,000 r/min离心10分钟,弃上清液。

⑧ 加入1ml 70%乙醇洗涤沉淀,12,000 r/min离心5分钟。

⑨ 弃上清液,将沉淀溶于50μl TE缓冲液中。

(2)检测质粒DNA浓度和纯度,具体操作如下:① 使用紫外分光光度计测定质粒DNA在260nm和280nm处的吸光度值。

② 根据公式计算质粒DNA浓度和纯度。

2. 质粒DNA酶切(1)选择合适的限制酶,根据质粒DNA序列设计酶切位点。

(2)配制酶切反应体系,包括质粒DNA、限制酶、缓冲液等。

(3)将反应体系置于37℃水浴中酶切反应4小时。

3. 琼脂糖凝胶电泳检测(1)配制琼脂糖凝胶,加入适量的溴化乙锭(EB)。

(2)将酶切后的质粒DNA样品和DNA分子量标准样品加入琼脂糖凝胶孔中。

(3)100V电压电泳1小时。

(4)紫外灯下观察并拍照记录电泳结果。

三、实验结果与分析1. 质粒DNA提取结果通过紫外分光光度计检测,质粒DNA浓度为100ng/μl,纯度为1.8(A260/A280),符合实验要求。

《分子生物学》实验指导书

《分子生物学》实验指导书

《分子生物学》实验指导书实验学时:32学时适用专业:生物科学、生物技术实验目录实验一质粒DNA的提取、酶切与电泳鉴定 (1)实验二聚合酶链式反应扩增DNA片段 (3)实验三大肠杆菌感受态细胞的制备与质粒DNA分子转化 (4)实验四植物基因组DNA提取及电泳 (6)实验五植物基因组RNA提取及电泳 (7)实验一质粒DNA的提取、酶切与电泳鉴定实验项目类型:综合性一、实验目的1. 学习质粒的相关基本知识,掌握碱裂解法提取质粒DNA的原理和方法。

2. 学习和掌握限制性内切酶的特性、掌握对重组质粒进行限制性内切酶酶切的原理和方法,并理解限制性内切酶是DNA重组技术的关键工具。

二、实验原理碱裂解法提取质粒DNA的原理是根据共价闭合环状质粒DNA与线性染色体DNA的结构差异来实现分离的。

在pH12-12.5时,线性DNA被彻底变性,但共价闭环质粒DNA虽然氢键也发生断裂,但两条互补链仍会紧密缠绕结合在一起。

当在溶液体系中加入pH4.8的KAC时,溶液恢复中性,质粒DNA迅速复性,染色体DNA则由于变性而相互混乱缠绕,不能复性,从而离心即可以把变性的染色体DNA沉淀和蛋白-SDS复合物沉淀分离出来。

三、实验仪器与材料1. 材料:含pSV的E.coli JM109菌株、1.5ml塑料离心管、离心管架、EB、酚、氯仿、异丙醇、乙醇、琼脂糖、吸头等。

2. 溶液或试剂:LB培养基、溶液Ⅰ、溶液II(0.4mol/L NaOH、2%SDS用前等体积混合)、溶液Ⅲ、分离液:酚/氯仿/异戊醇=25:24:1、无水乙醇、70%乙醇等。

3. 仪器或其他用具:微量移液器(20μl,200μl,1000μl)、恒温振荡摇床、高压蒸汽灭菌锅、涡旋振荡器、琼脂糖凝胶电泳系统、凝胶成像系统、恒温培养箱、制冰机等。

四、操作步骤质粒DNA的提取步骤:1. 用灭菌的牙签挑取白色单菌落接种于另外已制备好的LB琼脂平板上,保存菌种,并把牙签放入盛3 ml LB液体培养基的试管中,37℃振荡培养过夜。

质粒的提取与酶切实验报告

质粒的提取与酶切实验报告

质粒提取和酶切实验是分子生物学中常用的方法,用于提取和分离特定的DNA 分子或者蛋白质分子。

这些分子通常用于进一步的分析和研究,比如测序、克隆、表达、结构分析等。

质粒提取是指从细胞或组织中提取DNA 的过程。

这通常包括将细胞破碎或消化,然后使用不同的化学方法去除蛋白质、脂质和其他污染物,最后得到纯的DNA。

常用的质粒提取方法有沉淀法、超声法、溶剂法、离心法和酶法等。

酶切实验是指使用酶切特定的序列,将DNA 或蛋白质分割成较小的片段的实验。

常用的DNA 酶有限制性内切酶、全基因组酶和多克隆抗体酶,常用的蛋白质酶有蛋白酶K、蛋白酶D 和蛋白酶R。

酶切实验可用于检测和鉴定特定的DNA 序列或蛋白质分子、研究基因组结构和功能、分离和纯化蛋白质分子等。

在进行质粒提取和酶切实验时,应注意实验条件的控制,包括温度、pH 值、酶的活性和浓度、酶的孵育时间和物质的浓度等。

此外,应注意保护样品的纯度,避免受到污染或酶的抑制。

在进行酶切实验时,还应注意使用适当的酶抑制剂来控制酶的活性,以防止不必要的酶切。

在实验报告中,应详细记录实验条件和步骤,并描述样品的特征和纯度。

对于质粒提取实验,应记录使用的提取方法、提取效率和纯度,并对提取的质粒进行简单的鉴定。

对于酶切实验,应记录使用的酶种类和条件、酶切特异性和效率,并对酶切的片段进行简单的鉴定。

总的来说,质粒提取和酶切实验是分子生物学中常用的基础实验,在进行这些实验时应注意实验条件的控制和样品的纯度,并在实验报告中详细记录实验条件和结果。

分子生物学实验

分子生物学实验

分子生物学基础实验分子生物学实验技术已成为生物化学及分子生物学以及相关学科院系教学科研不可缺少的一部分。

为提高学生在分子生物学技术方面的动手能力,生物技术综合实验室主要开设常用而基本的分子生物学实验技术。

它的内容包括质粒DNA的制备;DNA的重组;PCR基因扩增等等。

实验一质粒DNA的小量制备一、实验原理要把一个有用的外源基因通过基因工程手段,送进细胞中去进行繁殖和表达,需要运载工具,携带外源基因进入受体细胞的这种工具就叫载体(vector)。

载体的设计和应用是DNA体外重组的重要条件。

作为基因工程的载体必须具备下列条件:(1)是一个复制子,载体有复制点才能使与它结合的外源基因复制繁殖;(2)载体在受体细胞中能大量增殖,只有高复制率才能使外源基因在受体细胞中大量扩增;(3)载体DNA链上有1到几个限制性内切酶的单一识别与切割位点,便于外源基因的插入;(4)载体具有选择性的遗传标记,如有抗四环素基因(Tc r),抗新霉素基因(Ne r)等,以此知道它是否已进入受体细胞,也可根据这个标记将受体细胞从其他细胞中分离筛选出来。

细菌质粒具备上述条件,它是基因工程中常用的载体之一。

质粒(plasmid)是一种染色体外的稳定遗传因子,大小在1~120kb之间,具有双链闭合环状结构的DNA分子,主要发现于细菌、放线菌和真菌细胞中。

质粒具有自主复制和转录能力,能使子代细胞保持它们恒定的拷贝数,可表达它携带的遗传信息。

它可独立游离在细胞质内,也可以整合到细菌染色体中,它离开宿主的细胞就不能存活,而它控制的许多生物学功能也是对宿主细胞的补偿。

质粒在细胞内的复制,一般分为两种类型:严密控制型(stringent control)和松弛控制型(relaxed control)。

前者只在细胞周期的一定阶段进行复制,染色体不复制时,它也不复制。

每个细胞内只含有1个或几个质粒分子。

后者的质粒在整个细胞周期中随时复制,在细胞里,它有许多拷贝,一般在20个以上。

质粒DNA的提取与酶切鉴定 (2)

质粒DNA的提取与酶切鉴定                                          (2)

4、加入200L新配制的溶液II, 盖紧管口,快速颠倒离心管, 以混匀 内容物,冰上放置3-5min;
溶液II中的NaOH与SDS可裂解细胞,使DNA变性以及SDS使蛋白变 性并形成交联的网状结构
5、加入150l溶液III, 加盖后颠倒6-7次混匀,冰上放置2~3min; 溶液III为低pH的醋酸钾缓冲液,中和NaOH,以便使部分变性的闭环
质粒复性,而细菌染色体DNA不能正确复性
6、12000 g离心6 min,将上清移入另一干净的Ep管中; 7、加2倍上清体积(约1mL)的无水乙醇, 振荡混匀,室温放 置2min. 8、12000g离心10min,弃上清液,再用70%的乙醇洗涤 一次, 12000g离心1min,离心管倒置于吸水纸上扣干, 然后在中空浓缩系统上干燥质粒; 9、加入40L含50 g/mL RNase A的灭菌蒸馏水或TE 缓 冲液溶解提取物,室温放置直到质粒完全溶解(约8min), 存于-20℃或直接用于酶切。
其基本特点如下:
(1)、专一性地识别并切割特定的核苷酸序列,如EcoR I识别与
切割序列为
5`····GAATTC····3`
3`····CTTAAG····5`
(2)、识别的核苷酸数目大多数为4~6个,少数识别8~13个;
(3)、识别序列大多数为二重对称(回文序列),大多数酶产生
的是具有凸出的粘性末端:
四、碱裂解法小量制备质粒DNA
1、挑取转化筛选的带有目的质粒的大肠杆菌接种到液体培养基 中,37℃震荡培养12~16小时;
2、将1.5mL菌液加入Ep离心管中,12000 g离心30 Sec,弃上清液, 在吸水纸上扣干; 离心时间不能太长,以免影响下一步的菌体悬浮
3、加入100L预冷的溶液I ,于涡旋振荡器上振荡悬浮细菌细胞, 尽量使细胞分散; 溶液I中的葡萄糖的作用是增大让一让的粘度,减少提取过程 中的机械剪切力,防止染色体DNA 的断裂;EDTA的作用是与 二价离子(Ca2+)结合,降低DNase对DNA的降解

动物分子生物学实验6重组质粒DNA的提取及插入DNA的酶切鉴定

动物分子生物学实验6重组质粒DNA的提取及插入DNA的酶切鉴定
564
125
四、实验步骤
接含质粒的单菌落于3ml LB Amp+液体培养基中 370C,190rpm振荡培养过夜
取1.5ml菌液入1.5ml的dorf管中 6000rpm、离心2min,弃上清,收集菌体 100uL溶液I悬浮菌体(充分振荡),室温(或冰浴)
10min 加入200uL溶液II(轻轻混匀),冰上静置5min裂解菌体
3 将细菌沉淀悬浮于100μL溶液Ⅰ中,充分混匀,室 温放置10 min。
4 加200μL溶液Ⅱ(新鲜配制),盖紧管盖,混匀内 容物,将离心管放冰上5 min。
5 加入150μL溶液Ⅲ(冰上预冷),盖紧管口,颠倒数 次使混匀。冰上放置15min。
6 12 000r/min,离心10 min,将上清转至另一离心管中。 向上清中加入等体积酚:氯仿 (1:1)(去蛋白),反复 混匀,12 000r/min,离心5 min,将上清转至另一离心 管中。转移时小心!(total volume: 400 μL)
- 原核细胞 - 繁殖力强, 2-30 分细胞分裂、加倍
DNA
基因组107bp, 编码约2000种蛋白质
质粒(plasmid)
- 染色体外的稳定遗传因子
- 双链、闭环的DNA分子,大小1-200 kb 不等 - 存在于细菌、放线菌和真菌细胞中
- 具有自主复制和转录能力,并表达所携带的遗传信息
DNA
*溶液II 0.2mol/L溶液(3M, pH=4.8):
60mL的5mol/L KAc, 11.5ml冰醋酸, 28.5mL H2O
*饱和酚(pH8.0 Tris-HCl饱和) *氯仿 *3M乙酸钠溶液(pH5.2) * TE缓冲液:
10mmol/L,Tris-HCl, 1mmol/L,EDTA , pH8.0, * 100%乙醇与70%乙醇
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

质粒DNA及λDNA的酶切、连接、转化及重组子的筛选、鉴定一、实验目的1、学习和掌握限制性内切酶的特性2、掌握对重组质粒进行限制性内切酶酶切的原理和方法3、掌握利用CaCl2制备感受态细胞的方法4、学习和掌握热击法转化E.coli的原理和方法5、掌握α互补筛选法的原理6、学习用试剂盒提取重组质粒DNA的方法7、复习琼脂糖凝胶电泳的原理及方法二、实验原理:外源DNA与载体分子的连接即为DNA重组技术,这样重新组合的DNA分子叫做重组子。

重组的DNA分子式在DNA连接酶的作用下,有Mg2+、ATP存在的连接缓冲系统中,将分别经限制性内切酶酶切酶切酶切酶切的载体分子和外源DNA分子连接连接连接连接起来。

将重组质粒导入感受态细胞中导入感受态细胞中导入感受态细胞中导入感受态细胞中,将转化后的细胞在选择性培养基选择性培养基选择性培养基选择性培养基中培养,可以通过αααα互补筛选法互补筛选法互补筛选法互补筛选法筛选出重组子,并可通过酶切酶切酶切酶切电泳电泳电泳电泳及PCRPCRPCRPCR检验检验检验检验的方法进行重组子的鉴定。

1.重组子的构建酶切时首先要了解目的基因的酶切图谱,选用的限制性内切酶不能目的基因内部有专一的识别位点,否则当用一种或两种限制性内切酶切割外源工体DNA时不能得到完整的目的基因。

其次要选择具有相应的单一酶切位点质粒或者噬菌体载体分子。

常用的酶切方法有双酶切法和单酶切法两种。

本实验采用单酶切法,即只用一种限制性内切酶切割目的DNA片段,酶切后的片段两端将产生相同的黏性末端或平末端,再选用同样的限制性内切酶处理载体。

在构建重组子时,除了形成正常的重组子外,还可能出现目的DNA片段以相反方向插入载体分子中,或目的DNA串联后再插入载体分子中,甚至出现载体分子自连,重新环化的现象。

单酶切法简单易行单是后期筛选工作比较复杂。

各种限制性内切酶都有去最佳反应条件,最主要的因素是反应温度和缓冲液的组成,在双酶切体系中,限制性内切酶在使用时应遵循“先低盐后高盐,先低温后高温”的原则进行反应。

(要达到高效率的连接,必须酶切完全,酶切的DNA数量要适当。

另外,酶切反应的规模也取决于需要酶切的DNA的量,以及相应的所需酶的量。

可以适当增加酶的用量,但是最高不能超过反应总体积的10%,因为限制性核酸内切酶一般是保存在50%甘油的缓冲液中,如果酶切反应体系中甘油的含量超过5%,就会抑制酶的活性。

)连接反应总是紧跟酶切反应,外源DNA片段与载体分子连接的方法即DNA分子体外重组技术主要依赖限制性核算内切酶和DNA连接酶催化完成的。

DNA连接酶催化两双链DNA片段相邻的5'-磷酸和3'-OH间形成磷酸二酯键。

它可以连接酶,T4DNA噬菌体的T4连接酶是来自DNA在分子克隆中最有用的.连接黏性末端和平末端。

连接反应时,载体DNA和外源DNA的摩尔数之比控制在1:(1~3)之间,可以有效地解决DNA多拷贝插入的现象。

反应温度介于酶作用速率和末端结合速率之间,一般是16℃,用常用的连接时间为12-16h。

2.感受态细胞的制备及质粒转化构建好的重组DNA转入感受态细胞中进行表达的现象就是转化。

能进行转化的受体细胞必须是感受态细胞,即受体细胞最容易接受外源DNA片段实现转化的生理状态,它决定于受体菌的遗传特性,同时与菌龄、外界环境等因素有关。

人工转化是通过人为诱导的方法使细胞具有摄取DNA的能力,或人为地将DNA 导入细胞内,该过程与细菌自身的遗传控制无关,常用热击法,电穿孔法等。

能否实现质粒DNA的转化还与受体细胞的遗传特性有关,所用的受体细胞一般是限制修饰系统的缺陷变异株,即不含限制性内切酶和甲基化酶的突变株。

目前常用的感受态细胞制备方法有CaCl2法,制备好的感受态细胞可以加入终浓度为15%的无菌甘油,-70℃可保存半年至一年。

经过CaCl2处理的细胞细胞膜通透性增加,允许外源DNA分子进入。

在低温下,将携带有外源DNA片段的载体与感受态细胞混合,经过热击或电穿孔技术,使载体分子进入细胞。

进入受体细胞的外源DNA分子通过复制、表达,使受体细胞出现新的遗传性状。

将这些转化后的细胞在选择性培养基上培养,即可筛选出重组子。

本实验以E.coliDH5α菌株为受体细胞,用CaCl2处理,使其处于感受态,然后将重组后的PUC19质粒在42℃下热击90s,实现转化。

3.重组子的筛选鉴定重组DNA转化宿主细胞后,并非所有的受体细胞都能被导入重组DNA分子,一般仅有少数重组DNA分子能进入受体细胞,同时也只有极少数的受体细胞在吸纳重组DNA分子之后能良好增殖。

并且它们是与其他大量未被转化的受体菌细胞混杂在一起。

再者,在这些被转化的受体细胞中,除部分含有我们所期待的重组DNA分子外,另外一些还可能是由于载体自身或一个载体与多个外源DNA 片段形成非期待重组DNA分子导入所致。

因此必须使用各种筛选及鉴定手段区分转化子与非转化子,并从转化的细胞群体中分理出带有目的基因的重组子。

本实验中采用的方法是平板筛选法电泳筛选法及PCR检测方法。

抗药性筛选主要用于重组质粒DNA分子的转化子的筛选,而不含重组质粒DNA 分子的受体菌则不能存活,α互补筛选法是根据菌落颜色筛选含有充足质粒的转化子。

质粒PUC19携带有氨苄青霉素抗性基因(Ampr),在含有氨苄青霉素平板上筛选转化子。

没有导入质粒PUC19的受体细胞,在含有氨苄青霉素的平板上不生长。

质粒PUC19进入E.coliDH5α后,通过α-互补作用,形成完整的β-半乳糖苷酶。

在麦康凯培养基平板上,转化子利用β-半乳糖苷酶分解培养基中的乳糖产生有机酸,pH降低,培养集中的指示剂变红,转化子的菌落变红。

不含质粒的E.coliDH5α,没有β-半乳糖苷酶活性,不能利用培养集中的乳糖产生有机酸,而是利用培养集中的有机碳源,不使培养基pH降低,在不含有氨苄青霉素的麦康凯培养基上形成白色菌落。

重组后的载体DNA因为目的基因的插入位点在PUC19乳糖利用基因内部,不能形成α-互补作用,所以也不能利用培养集中的乳糖产生有机酸,在含有氨苄青霉素的麦康凯培养基上形成白色菌落。

挑选在氨苄青霉素培养基上生长的白色菌落,通过扩增培养。

因为许多菌落存在假阳性情况,在氨苄青霉素培养基上的白色菌落可能是导入的重组载体菌落,也可能是载体自连后发生突变的菌落,所以还要鉴定转化子中重组DNA.质粒DNA分子的大小,可将重组的载体DNA提取出来,进行后续的酶切、电泳检验。

也以提取的重组质粒为模板,利用现有的引物,进行那个PCR扩增,检测个噢偶见的质粒是否是所期望的重组质粒。

4.PCR技术PCR(Polymerasechainreaction)即聚合酶链式反应,其原理类似于DNA的体内复制,又叫做“体外基因扩增”。

反应体系包括:模板DNA、寡核苷酸引物、Mg2+,4种脱氧核糖核酸(dNTP)、DNA聚合酶和合适的缓冲体系。

反应基本程序包括DNA变性、引物复性及引物延伸三个基本过程。

这三个反应构成一个循环,反复进行。

每一轮循环扩增的产物可作为下一轮扩增反应的模板。

理论上每一轮循环可使DNA数量增加一倍,反复30次,特异DNA序列片段以指数方式可扩增105~106。

通过此技术可以使非常微量的DNA产生大量的PCR产物,因此这个技术是一项在体外大量生产目的基因的技术。

现在普遍通用的是一种从水生嗜热杆菌中提取的TaqDNA聚合酶,而且大大提高了扩增片段的特异性、灵敏性和扩增效率。

反应中用的引物有两段,一条称为上游引物或者正向引物,一条称为下游引物或者反向引物。

引物的设计十分重要,在设计时应遵循以下原则:长度一般为18到24个碱基;G+C的百分含量在40%~60%;单条引物内部避免含有二级结构,避免形成引物二聚体;最好以1到2个G或C碱基开始或结束;引物的5'端可以被修饰,但是3'端绝对不能进行任何修饰,而且引物的3'端要避开密码子的第三位。

模板的浓度不能太大,dNTP的浓度为2.5mmol/L,金属离子的浓度为1.5mmol/L,缓冲液为pH为7.2~8.0的Tris—HCl溶液。

二、实验材料:1.菌株:E.coliDH5α2.培养基:LB培养基、麦康凯培养基(加入氨苄青霉素)3.试剂材料:酶切反应:(DNAPUC19质粒,酶切10×buffer,HindⅢ,重蒸水,λDNA。

)连接反应:(酶切后的DNAPUC19质粒和λDNA,连接10×buffer,T4连接酶,重蒸水。

)感受态细胞的制备:(0.1MCaCl2)转化:(连接液和感受态细胞,0.1MCaCl2,冰块。

)重组菌的挑选、检验:试剂盒(含有RnaseA的溶液Ⅰ,溶液Ⅱ,溶液Ⅲ,HBbuffer,DNAwashingbuffer,elutionbuffer),酶切后的DNAPUC19质粒,试剂盒抽提的DNA,酶切10×buffer,HindⅢ,重蒸水,琼脂糖,TAE缓冲液。

上样缓冲液,EB染液。

PCR检测:10×PCRbuffer,dNTP,模板,引物1,引物2,水,TaqDNA聚合酶,琼脂糖,TAE、溴化乙锭(EB)4.仪器器材:20、200、1000ul的枪和枪尖,1.5ml的Ep管,恒温培养箱,水浴锅,平板,三角瓶,试管,接种环,牙签,酒精灯,火柴,冰箱,离心机,电泳槽,紫外仪,PCR扩增仪三、实验步骤.载体与外源片段的酶切→连接→感受态细胞的制备→质粒转化与重组子的筛选→重组子的挑取与复证→重组质粒的提取与电泳检测→PCR检测(一)酶切1、在两支Eppendorf管中依次加入酶切反应的各种成分,混匀,适当离心,使样品集中于管底;酶切反应各成分添加如下:表1pUC19质粒及λDNA酶切反应体系目的DNA(λDNA)载体DNA(pUC19质粒)试剂体积/ul 试剂体积/ulλDNA 4.0 pUC19质粒 5.0Buffer 1.5 Buffer 3.0ddH2O 8.5 ddH2O 20.0HindⅢ核酸内切1.0 HindⅢ核酸内切2.0酶酶加样次序:ddH2O、Buf、DNA、酶2、在37℃恒温水浴锅中反应1h以上。

3.分别取上述酶切样品2~5uL,与1~2uL电泳上样缓冲液混合均匀,进行琼脂糖凝胶电泳,观察酶切反应是否彻底,剩余样品可以继续酶切。

4.待电泳观察酶切反应完全后,将剩余样品从恒温水浴锅中取出,置65℃恒温水浴锅中保存10~15min,终止酶切反应5.样品可以直接进行酶切反应或者保存于-20℃冰箱备用(二)连接1、在Eppendorf管中依次加入连接反应的各种成分,混匀,适当离心,使样品集中于管底;连接反应各成分添加如下:表2连接反应体系试剂体积/ulλDNA/HindⅢ 2.0pUC19DNA/HindⅢ 2.010*LigaseBuffer 1.0ddH2O 4.0T4-DNA连接酶 1.02、在16℃的恒温水浴锅中反应12-16h或者过夜;3、连接产物可用于转化实验。

相关文档
最新文档