《随机事件的概率》说课稿
《随机事件的概率》说课稿
《随机事件的概率》说课稿《随机事件的概率》说课稿作为一名为他人授业解惑的教育工作者,往往需要进行说课稿编写工作,说课稿有助于顺利而有效地开展教学活动。
写说课稿需要注意哪些格式呢?以下是小编整理的《随机事件的概率》说课稿,仅供参考,欢迎大家阅读。
《随机事件的概率》说课稿1教学目标1、让学生理解必然事件、不可能事件、随机事件的概念;2、让学生经历试验等活动会判断必然事件、不可能事件、随机事件。
3、培养学生的数学素养,体验数学与生活密切相关,激发学生学以致用的热情。
重点难点重点:能对必然事件、不可能事件、随机事件的类型作出正确判断。
难点:必然事件、不可能事件、随机事件的区别与转化关系。
教学过程3.1第一学时教学活动活动1教学过程:一、创设情境,导入新课:(摸出红球表示运气好)1、教师拿出事先准备好的一只装的全部是红球的不透明盒子,让坐在教室左边部分的三四位同学摸球,显然学生摸到的全是红球,摸到红球的学生个个惊叹自己运气好啊。
2、教师再拿出事先准备好的另一只装的全部是白球的不透明箱盒子,让坐在教室右边部分的三四位同学摸球,而学生摸出的全部是白球,摸到白球的学生个个唉声叹气,叹自己运气怎么就不好呢。
师:真的是教室左边部分的同学运气好,右边部分的同学运气不好吗?我们一起来观察两个盒子里的秘密。
3、教师揭秘,分别展示两个不透明盒子里的球,学生观察第一个盒子里全部是红球,第二个盒子里全部是白球。
师:这个游戏公平吗?生:不公平。
师:为什么不公平呢?请大家思考生1:第一个盒子里装的全部是红球,必然摸到红球。
第二个盒子里装的全部是白球,摸到红球显然是不可能的。
师:回答得非常好,请坐。
师:如果现在让大家来摸球,你们可以确定摸出的球是什么球吗?生2:在第一个盒子里摸球,摸出的球肯定是红球,在第二个盒子里摸球,摸出的球肯定是白球。
概念:(1)在一定条件下,必然会发生的事件叫做必然事件。
(2)在一定条件下,不可能发生的事件叫做不可能事件。
“随机事件的概率”说课稿
《随机事件的概率》说课稿高等教育出版社《中职数学(基础模块)下册》第10章第2节学校:××××××姓名:××××××《随机事件的概率》说课稿尊敬的各位专家、评委老师,大家好!今天我说课的课题是高等教育出版社中职数学(基础模块)下册第十章第二节的第一课时《随机事件的概率》。
下面我就从教材分析、学情分析、教学目标分析、教学模式及教法和学法分析、教学过程分析、板书设计、教学评价与教学反思等八个方面来谈谈我对教材的理解和教学的设计,敬请各位专家、评委老师批评指正。
一、教材分析:《随机事件的概率》是学生学习《概率》的入门课,也是一堂概念课。
现实生活中存在大量的不确定事件,而概率正是研究不确定事件的一门学科。
本节课主要是通过试验让学生体会“随机事件发生的不确定性以及大量重复试验下又表现出的频率的稳定性”这一抽象知识点;通过剖析试验数据理解频率与概率的关系。
由于学生在初中阶段已经学习了概率初步,因此本节课是对已学内容的深化和延伸;同时,又是对后面拓展模块学习的古典概型、几何概型等内容的一个铺垫,具有承上启下的作用。
二、学情分析:1.知识方面:学生在初中阶段学习了概率初步,所以学生具备了一定的认知结构;2.能力方面:对于中一的学生来说已经具备了一定的动手试验、观察、归纳、概括能力;3.情感方面:学生知道概率与游戏、博彩等有关,多数学生兴趣浓厚,能积极主动的参与教学活动,但少数学生的主动性还需要营造一定的学习氛围加以带动。
三、教学目标及重难点(一)教学目标:知识与技能:(1)结合一些具体实例了解随机事件、必然事件、不可能事件的概念;(2)通过亲身实验,了解随机事件发生的不确定性和频率的稳定性;(3)理解当实验次数较大时实验频率稳定于理论概率,并据此估计某一事件发生的概率。
过程与方法:(1)发现法教学——经历抛硬币试验获取数据的过程,归纳总结试验结果,发现规律,真正做到在探索中学习,在探索中提高;(2)培养能力——通过三种事件的区分及用统计算法计算随机事件的概率,提高学生分析问题、解决问题的能力。
随机事件的概率-获奖说课稿
随机事件的概率-获奖说课稿随机事件的概率一、教材分析1、教材的地位和作用《随机事件的概率》主要研究随机事件的概念,概率的概念及意义,是学生进入概率学习的钥匙。
学生对概念及意义的理解如何,将会直接影响到整个概率知识的学习。
在数学知识的学习上,它能使学生经历观察、分析、猜想、验证等数学活动过程,是培养学生应用意识、创新意识和抽象思维能力的重要素材。
而且概率与我们的实际生活有着紧密的联系,对指导我们从事社会生产、生活具有十分重要的意义。
因此该部分内容在教材中处于非常重要的位置。
2、教学目标:(1)知识与技能:经历对事件进行判断的过程,了解随机事件、必然事件、不可能事件的概念;理解并掌握概率的概念和意义;能利用概率知识解决生活中的实际问题。
(2)过程与方法:亲身经历概率定义的形成过程和对现实生活问题的探究过程,学习对实验数据进行有效的分析和处理的方式和方法,提高分析问题、解决问题的能力。
(3)情感态度与价值观:了解偶然性寓于必然性之中的辩证唯物主义思想,体验研究1式学习的快乐。
3、教学重点、难点:概率的定义及概率定义的形成过程突出重点、突破难点的关键是引导学生亲身参与体验,再现概率定义的形成过程,实现由具体问题到抽象概念的转化。
二、教法学法教法:我采取的是“研究体验式”教学法,这其实也是教给学生学习和研究的一种方法。
以问题为载体,再现概念的形成过程,实现研究方法的渗透以及数学知识的建构。
与此同时通过营造民主和谐的课堂氛围,培养学生自主学习,合作交流的学习习惯,增加学生学习和研究的兴趣。
学法:新课程把转变学生的学习方式作为重要的着眼点,提倡自主、合作、探究的学习方式。
本节课学生通过亲身经历动手试验、收集数据、绘制图表、独立思考、合作交流、分析归纳等研究过程,体验合作参与、自主构建知识的快乐。
三、教学程序新课标倡导:教学过程设计必须遵循学生的认知规律,要尽可能带动所有学生的积极性,让学生经历知识的形成与发展过程;同时还要引导学生走出学习数学概念仅靠单纯的记忆模仿的误区。
《随机事件的概率》说课稿
环节三
典型例题,巩固知识
4分钟
2.巩固概念
例
下列哪些是随机事件,哪些是必然事件, 哪些是不可能事件? (1)同性电荷,相互排斥。 ; (2)在标准大气压下,且温度低于零度时,冰融化 ; (3)从分别标有1,2,3,4,5,6的6张号签中任取一张,得 到4号签; (4)常温下,石头一天风化; (5)木柴燃烧,产生能量; (6)掷一枚硬币,出现正面朝上。
环节二
自主探究,提炼概念
8分钟
2.概念提炼
必然事件 分组讨论 代表发言 教师总结
在条件s下,一定发生的事件。
不可能事件
在条件s下,一定不发生的事件。
随机事件
在条件s下,可能发生也可能 不发生的事件。
环节三
典型例题,巩固知识
4分钟
1.巩固概念
例
“从一堆牌中任意抽一张抽到红牌” 这是什么事件?
设计意图:在同一事件,不同条件下,让学 生作出判断,从而加强对“在条件S下”的理解。
随 机 事 件 的 概 念
设计意图:引导学生 对问题进行回味与深化, 使知识成为系统。让学生 尝试小结,提高学生的总 结能力和语言表达能力。 教师补充帮助学生全面地 理解,掌握新知识。
随 机 事 件 的 概 率 定 义
频 率 与 概 率
环节六
归纳总结,布置作业
4分钟
【布置作业】:
1.阅读教材; 2.教材必修3第113页练习1、2、3及导学案拓展练习; 2.寻找生活中有关频率与概率关系的实例,运用本课知 识解释
拓展应用,升华思维
5分钟
例
某射手在同一条件下进行射击,结果如下表所示。
(1)填写表中击中靶心的频率; (2)这个射手射击一次,击中靶心的概率约是多少? 设计意图:本题充分发挥学生的主体地位, 让学生学会分析,引导学生仔细观察,应选取哪 一个频率作为概率的近似值。
随机事件的概率 说课稿 教案 教学设计
随机现象教学目标:了解随机现象,概率论的历史教学重点:了解随机现象,概率论的历史教学过程:1.从随机现象说起在自然界和现实生活中,一些事物都是相互联系和不断发展的。
在它们彼此间的联系和发展中,根据它们是否有必然的因果联系,可以分成截然不同的两大类:一类是确定性的现象。
这类现象是在一定条件下,必定会导致某种确定的结果。
举例来说,在标准大气压下,水加热到100摄氏度,就必然会沸腾。
事物间的这种联系是属于必然性的。
通常的自然学各学就是专门研究和认识这种必然性的,寻求这类必然现象的因果关系,把握它们之间的数量规律。
另一类是不确定性的现象。
这类现象是在一定条件下,它的结果是不确定的。
举例来说,同一个工人在同一台机床上加工同一种零件若干个,它们的尺寸总会有一点差异。
又如,在同样条件下,进行小麦品种的人工催芽试验,各棵种子的发芽情况也不尽相同,有强弱和早晚的分别等等。
为什么在相同的情况下,会出现这种不确定的结果呢?这是因为,我们说的“相同条件”是指一些主要条件来说的,除了这些主要条件外,还会有许多次要条件和偶然因素又是人们无法事先一一能够掌握的。
正因为这样,我们在这一类现象中,就无法用必然性的因果关系,对个别现象的结果事先做出确定的答案。
事物间的这种关系是属于偶然性的,这种现象叫做偶然现象,或者叫做随机现象。
在自然界,在生产、生活中,随机现象十分普遍,也就是说随机现象是大量存在的。
比如:每期体育彩票的中奖号码、同一条生产线上生产的灯泡的寿命等,都是随机现象。
因此,我们说:随机现象就是:在同样条件下,多次进行同一试验或调查同一现象,所的结果不完全一样,而且无法准确地预测下一次所得结果的现象。
随机现象这种结果的不确定性,是由于一些次要的、偶然的因素影响所造成的。
随机现象从表面上看,似乎是杂乱无章的、没有什么规律的现象。
但实践证明,如果同类的随机现象大量重复出现,它的总体就呈现出一定的规律性。
大量同类随机现象所呈现的这种规律性,随着我们观察的次数的增多而愈加明显。
随机事件的概率说课稿
247 0.494
波251动最0小.502
262 0.524
0.8 27 0.54 258 0.516
历史上有人曾经做过大量重复 掷硬币的试验,如下表所示:
试 验 者 试验次数 正面朝上的次数 正面朝上的比例
棣莫佛 蒲丰 费勒
2048 4040 10000
1061 2048 4979
0.5181 0.5069 0.4979
试验要求:要求每组的学生人数要相等,使得组与组之间有可比性.
第三步:请同学上讲台进行电脑模拟试验
试验总次数 正面朝上总的次数 正面朝上的比例
使用计算机模拟抛硬币试验
教师总结excel
随机事件在一次试验中是否发生是不确定的,但是在大量 重复试验的情况下,它的发生会呈现出一定的稳定性.
抛掷硬币试验
试验
抽取球数 n
50
100 200 500 1000 2000
优等品数 m
45
92 194 470 954 1902
优等品频 率m/n
0.9
0.92 0.97 0.94 0.954 0.951
则这批乒乓球优等品的概率约是多少?为什么?
五、小结作业
1、提问:本课学习的主要内容是什么?它们之间有 怎样的区别和联系? ①事件的分类:确定事件;随机事件. ②随机事件的概念:在一定条件下可能发生也可能不 发生的事件,叫做随机事件。 ③随机事件的概率的定义:在大量重复进行同一试验 时,事件A 发生的频率总是稳定于某个常数,这时就 把这个常数叫做事件A的概率。
皮 尔 逊 12000
6019
0.5016
皮 尔 逊 24000
12012
0.5005
归纳出概率的统计定义:
随机事件的概率说课稿
频率与概率说课稿一、教材分析自然界和人类社会中出现的确定性现象有其必然的结果,而随机事件现象因其不确定性吸引着人们不断探索。
随机事件的概率是高考考查的重点,教材编排中本章放在了“统计”之后,“计数原理”之前,结合古今现实生活的实例展开的,“统计”一章让学生掌握的分析实例的统计方法为本章的学习奠定了基础,大大加强了学生的实践能力,而且为后续概率部分的学习提供了有力保证。
二、教学目标知识和技能:(1)通过试验了解随机事件发生的不确定性和频率的稳定性。
(2)利用概率知识正确理解现实生活中的实际问题。
过程与方法:(1)创设情境,引出课题,激发学生的学习兴趣和求知欲。
(2)发现式教学,通过抛硬币试验,获取数据,归纳总结试验结果。
体会随机事件发生的随机性和规律性,在探索中不断提高。
(3)明确概率与频率的区别和联系,理解利用频率估计概率的思想方法。
(4)通过对现实生活中的“掷币”,“彩票中奖”等问题的探究,感知应用数学知识解决数学问题的方法,理解逻辑推理的数学方法。
.情感、态度与价值观:(1)通过学生自己动手、动脑和亲身试验来理解知识,体会数学知识与现实世界的联系。
(2)培养学生的辩证唯物主义观点,增强学生的科学意识,并通过数学史实渗透,培育学生刻苦严谨的科学精神。
三、教学重、难点重点:通过抛掷硬币了解概率的定义、明确其与频率的区别和联系。
难点:利用频率估计概率,体会随机事件发生的随机性和规律性。
四、学法与教学用具学法:实践教学法,指导学生做简单易行的试验,让学生自然地发现随机事件的某一结果发生的规律性。
教学用具:硬币数枚、粉笔五、教学设想六、教学过程教学环节教学程序及设计设计意图创设情境引入新课引入:以北宋大将狄青抛掷100枚铜钱的故事引入,激发学生的学习兴趣,配合实际生活中的抛掷硬币和彩票中奖的例子,设置疑问,引导学生进入到这节课要研究的问题:随机事件的概率。
创设情境激发学生兴趣、引入新课,同时说明新课来自实际生活,便于学生接受。
随机事件的概率 说课稿 教案 教学设计
课题
随机事件的概率
课型
新课
教学目标
(1)了解必然事件、不可能事件、随机事件的概念;
(2)理解频率的稳定性及概率的统计定义.
(3)发现法教学,通过学生在抛硬币的试验中获取数据,归纳总结试验结果,发现规律,真正做到在探索中学习,在探索中提高.理解在大量重复试验的情况下,随机事件的发生呈现规律性,进而理解概率和频率的关系.从而培养学生从试验中归纳出一般规律的能力以及学生动手能力与解决实际问题的能力.
思考6:在实际问题中,随机事件A发生的概率往往是未知的(如在一定条件下射击命中目标的概率),你如何得到事件A发生的概率?
通过大量重复试验得到事件A发生的频率的稳定值,即概率.
思考7:在相同条件下,事件A在先后两次试验中发生的频率fn(A)是否一定相等?事件A在先后两次试验中发生的概率P(A)是否一定相等?
(6)随机选取一个实数x,得|x|≥0.
例2某射手在同一条件下进行射击,结果如下表所示:
(1)填写表中击中靶心的频率;
(2)这个射手射击一次,击中靶心的概率约是多少?
小结评价
频率具有随机性,做同样次数的重复试验,事件A发生的频率可能不相同;概率是一个确定的数,是客观存在的,与每次试验无关.
3.1.1 随机事件的概率说课稿
3.1.1随机事件的概率说课稿纳雍县第一中学王昊各位老师:大家好!我叫王昊,我说课的题目是《随机事件的概率》,内容选自于高中教材新课程人教A版必修3第三章第一节,课时安排为二个课时,本节课内容为第一课时。
下面我将从教材分析、教学目标分析、教学方法与手段分析、教学过程分析四大方面来阐述我对这节课的分析和设计:一、教材分析1.教材所处的地位和作用“随机事件的概率”是第三章《概率》的第一节课,是学生学习《概率》的入门课,也是一堂概念课。
现实生活中存在大量不确定事件,而概率正是研究不确定事件的一门学科。
概率也是每年高考的必查内容之一,主要是对基础知识的运用以及生活中的随机事件的概率的计算,这些都是学生今后的学习、工作与生活中必备的数学素养,所以它在教材中处于非常重要的位置。
二、教学目标分析1、知识与技能:(1)了解随机事件、必然事件、不可能事件的概念;(2)理解概率的概念和意义,明确事件A发生的频率f n(A)与事件A发生的概率P(A)的区别与联系;(3)利用概率知识正确理解现实生活中的实际问题.2、过程与方法:通过在抛硬币、抛骰子的试验中获取数据,归纳总结试验结果,发现规律,真正做到在探索中学习,在探索中提高;感知应用数学知识解决数学问题的方法,理解逻辑推理的数学方法.3、情感态度与价值观:(1)通过学生自己动手、动脑和亲身试验来理解知识,体会数学知识与现实世界的联系;(2)培养学生的辩证唯物主义观点,增强学生的科学意识.教学重点:事件的分类;概率的定义以及和频率的区别与联系;教学难点:用概率的知识解释现实生活中的具体问题.三、教学方法与手段分析1. 教学方法:本节课我主要采用实验发现式的教学方法,引导学生对身边的事件加以注意、分析,指导学生做简单易行的实验,让学生无意识地发现随机事件的某一结果发生的规律性;2.教学手段:利用硬币及多媒体等设备辅助教学四、教学过程分析(一)创设情境,引入新课例举日常生活问题「设计意图」通过故事激发学生学习本课的兴趣,并由此引出我们今天将要学习的主要内容。
随机事件的概率 说课稿 教案 教学设计
随机事件的概率教学目标:1.通过在抛硬币等试验获取数据,了解随机事件、必然事件、不可能事件的概念.2.通过获取数据,归纳总结试验结果,发现规律,正确理解事件A出现的频率的意义,真正做到在探索中学习,在探索中提高.3.通过数学活动,即自己动手、动脑和亲身试验来理解概率的概念,明确事件A发生的频率f n(A)与事件A发生的概率P(A)的区别与联系,体会数学知识与现实世界的联系.教学重点:理解随机事件发生的不确定性和频率的稳定性.教学难点:理解频率与概率的关系.教学方法:讲授法课时安排1课时教学过程一、导入新课:在第二次世界大战中,美国曾经宣布:一名优秀数学家的作用超过10个师的兵力.这句话有一个非同寻常的来历.(故事略)在自然界和实际生活中,我们会遇到各种各样的现象.如果从结果能否预知的角度来看,可以分为两大类:一类现象的结果总是确定的,即在一定的条件下,它所出现的结果是可以预知的,这类现象称为确定性现象;另一类现象的结果是无法预知的,即在一定的条件下,出现那种结果是无法预先确定的,这类现象称为随机现象.随机现象是我们研究概率的基础,为此我们学习随机事件的概率.二、新课讲解:1、提出问题(1)什么是必然事件?请举例说明.(2)什么是不可能事件?请举例说明.(3)什么是确定事件?请举例说明.注:以上3问初中已经学习了.(4)什么是随机事件?请举例说明.(5)什么是事件A的频数与频率?什么是事件A的概率?(6)频率与概率的区别与联系有哪些?观察:(1)掷一枚硬币,出现正面;(2)某人射击一次,中靶;(3)从分别标有号数1,2,3,4,5的5张标签中任取一张,得到4号签;这三个事件在一定的条件下是或者发生或不一定发生的,是模棱两可的.2、活动做抛掷一枚硬币的试验,观察它落地时哪一个面朝上.通过学生亲自动手试验,突破学生理解的难点:“随机事件发生的随机性和随机性中的规律性”.通过试验,观察随机事件发生的频率,可以发现随着实验次数的增加,频率稳定在某个常数附近,然后再给出概率的定义.在这个过程中,重视了掌握知识的过程,体现了试验、观察、探究、归纳和总结的思想方法具体如下:第一步每个人各取一枚硬币,做10次掷硬币试验,记录正面向上的次数和比例,填在下思考:试验结果与其他同学比较,你的结果和他们一致吗?为什么?第二步 由组长把本小组同学的试验结果统计一下,填入下表.思考:与其他小组试验结果比较,正面朝上的比例一致吗?为什么?通过学生的实验,比较他们实验结果,让他们发现每个人实验的结果、组与组之间实验的结果不完全相同,从而说明实验结果的随机性,但组与组之间的差别会比学生与学生之间的差别小,小组的结果一般会比学生的结果更接近0.5.第三步 用横轴为实验结果,仅取两个值:1(正面)和0(反面),纵轴为实验结果出现的频率,画出你个人和所在小组的条形图,并进行比较,发现什么?第四步 把全班实验结果收集起来,也用条形图表示.思考:这个条形图有什么特点?引导学生在每组实验结果的基础上统计全班的实验结果,一般情况下,班级的结果应比多数小组的结果更接近0.5,从而让学生体会随着实验次数的增加,频率会稳定在0.5附近.并把实验结果用条形图表示,这样既直观易懂,又可以与第二章统计的内容相呼应,达到温故而知新的目的.第五步 请同学们找出掷硬币时“正面朝上”这个事件发生的规律性.思考:如果同学们重复一次上面的实验,全班汇总结果与这一次汇总结果一致吗?为什么?出现正面朝上的规律性:随着实验次数的增加,正面朝上的频率稳定在0.5附近.由特殊事件转到一般事件,得出下面一般化的结论:随机事件A 在每次试验中是否发生是不能预知的,但是在大量重复实验后,随着次数的增加,事件A 发生的频率会逐渐稳定在区间[0,1]中的某个常数上.从而得出频率、概率的定义,以及它们的关系.3、讨论结果:(1)必然事件:在条件S 下,一定会发生的事件,叫相对于条件S 的必然事件(certain event ),简称必然事件.(2)不可能事件:在条件S 下,一定不会发生的事件,叫相对于条件S 的不可能事件(impossible event ),简称不可能事件.(3)确定事件:必然事件和不可能事件统称为相对于条件S 的确定事件.(4)随机事件:在条件S 下可能发生也可能不发生的事件,叫相对于条件S 的随机事件(random event ),简称随机事件;确定事件和随机事件统称为事件,用A,B,C,…表示.(5)频数与频率:在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数n a 为事件A 出现的频数(frequency );称事件A 出现的比例f n (A)=nn A为事件A 出现的频率(relative frequency );对于给定的随机事件A,如果随着试验次数的增加,事件A 发生的频率f n (A)稳定在某个常数上,把这个常数记作P (A ),称为事件A 的概率(probability ).(6)频率与概率的区别与联系:随机事件的频率,指此事件发生的次数A n 与试验总次数n 的比值nn A ,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小.我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发生的可能性的大小.频率在大量重复试验的前提下可以近似地作为这个事件的概率.频率是概率的近似值,随着试验次数的增加,频率会越来越接近概率.在实际问题中,通常事件的概率未知,常用频率作为它的估计值.频率本身是随机的,在试验前不能确定.做同样次数的重复实验得到事件的频率会不同.概率是一个确定的数,是客观存在的,与每次试验无关.比如,一个硬币是质地均匀的,则掷硬币出现正面朝上的概率就是0.5,与做多少次实验无关.三、课堂练习:四、课堂小结:本节研究的是那些在相同条件下,可以进行大量重复试验的随机事件,它们都具有频率稳定性,即随机事件A 在每次试验中是否发生是不能预知的,但是在大量重复试验后,随着试验次数的增加,事件A 发生的频率逐渐稳定在区间[0,1]内的某个常数上(即事件A 的概率),这个常数越接近于1,事件A 发生的概率就越大,也就是事件A 发生的可能性就越大.反之,概率越接近于0,事件A 发生的可能性就越小.因此说,概率就是用来度量某事件发生的可能性大小的量.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《随机事件的概率》说课稿
齐齐哈尔市第十一中学郭建军
各位老师:
我说课的题目是《随机事件的概率》,内容选自于高中教材新课程人教A版必修3第三章第一节,课时安排为三个课时,本节课内容为第一课时。
下面我将从教材分析、教学目标分析、教学方法与手段分析、教学过程分析四大方面来阐述我对这节课的分析和设计:
一、教材分析
1.教材所处的地位和作用
“随机事件的概率”是第三章《概率》的第一节课,是学生学习《概率》的入门课,也是一堂概念课。
现实生活中存在大量不确定事件,而概率正是研究不确定事件的一门学科。
概率也是每年高考的必查内容之一,主要是对基础知识的运用以及生活中的随机事件的概率的计算,这些都是学生今后的学习、工作与生活中必备的数学素养,所以它在教材中处于非常重要的位置。
2.教学的重点和难点
重点:①事件的分类;
②了解随机事件发生的不确定性和概率的稳定性;
③正确理解概率的定义。
难点:随机事件的概率的统计定义.
二、学情分析
我所教的班级是普通高中的文科班,学生数学基础较差,对新知识接受能力较差,没有良好的数学思维习惯。
在初中时学生对概率有
了初步的了解,对概率有一定的认识。
因此我要通过学生身边的简单事例和学生的实验操作,来完成本节课的概念教学。
三、教学目标分析
1.知识与技能目标
(1)了解随机事件、必然事件、不可能事件的概念;
(2)正确理解事件A出现的频率的意义;
(3)正确理解概率的概念和意义,明确事件A发生的频率fn(A)与事件A发生的概率P(A)的区别与联系;
(4)利用概率知识正确理解现实生活中的实际问题.
2、过程与方法:
(1)发现法教学,经历抛硬币试验获取数据的过程,归纳总结试验结果,发现规律,真正做到在探索中学习,在探索中提高;
(2)通过三种事件的区分及用统计算法计算随机事件的概率,提高学生分析问题、解决问题的能力;
(3)通过概念的提炼和小结的归纳提高学生的语言表达和归纳能力。
3、情感态度与价值观:
(1)通过学生自己动手、动脑和亲身试验来理解知识,体会数学知识与现实世界的联系;
(2)通过动手实验,培养学生的“做”数学的精神,享受“做”数学带来的成功喜悦。
四、教学方法与手段分析
1. 教学方法:本节课我主要采用实验发现式的教学方法,引导学生对身边的事件加以注意、分析,指导学生做简单易行的实验,让学生无意识地发现随机事件的某一结果发生的规律性;
2.教学手段:利用硬币及多媒体等设备辅助教学
五、教学过程分析
(一)创设情境,引入新课
给学生讲一个故事——《1名数学家=10个师》:这是一个真实的事例,数学家运用自己的知识和方法解决了英美海军无力解决的问题,这便是数学知识的魅力所在。
它告诉我们数学知识在实际生活中的作用是巨大的,特别是当今社会,随着信息时代的到来,知识正改变着我们周围的一切,改变着世界,改变着未来。
今天,我们一起来学习和探索当初那位数学家所运用的数学知识----------随机事件的概率问题。
「设计意图」通过故事激发学生学习本课的兴趣,并由此引出我们今天将要学习的主要内容。
(二)讲解新课
1、判断下列事件是否会发生:
(1)导体通电时,发热;
(2)抛一石块,下落;
(3)在标准大气压下且温度低于0°C时,冰融化;
(4)在常温下,铁熔化;
「设计意图」引导学生对身边的事件加以注意、分析,从而引出
三个事件的定义。
2、概念提炼:
通过小组讨论,由学生代表发言,教师总结:在一定条件下必然发生的事件,叫做必然事件;在一定条件下不可能发生的事件,叫做不可能事件;在一定条件下可能发生也可能不发生的事件,叫做随机事件。
(请同学们举出生活中的这三种事件的例子)「设计意图」通过学生分类总结,提炼出概念,使概念更严密;让学生自己举例子加深对概念的理解,充分发挥学生的想象力和创新力,有利于学生发散思维的培养
3、提问:由于随机事件具有不确定性,因而从表面看似乎偶
然性在起支配作用,没有什么必然性。
但是,人们经过长期的实践并深入研究后,发现随机事件虽然就每次试验结果来说具有不确定性,然而在大量重复实验中,它却呈现出一种完全确定的规律性。
这是真的吗?让我们用事实说话
「设计意图」创设疑问,激发学生好奇心,引出本节课突破重难点的环节。
4、实验操作:
(根据上面的提问,我设计了以下投硬币的实验)
第一步:请全班同学拿出事先就准备好的硬币,每人做10次掷硬币的试验并记录下试验结果并提出问题1:与其他同学的试验结果比较,你的结果和他们一致吗?为什么会出现这样的情况?
第二步:请各组的小组长把本组同学的试验结果进行统计
提出问题2:与其他各组的试验结果比较,各组的结果一致吗?为什么?
教师总结:(1)以上试验中,正面朝上的次数叫做频数,事件A 出现的次数与总试验次数的比例叫做频率。
(2)频率的取值范围:(0,1)
「设计意图」根据提问一,让学生知道随机事件一次发生具有偶然性;针对提问二,发现实验次数越多,频率数值就越有规律性,而这种规律性就反映出事件发生的可能性大小,从正面引出随机事件的概率的统计定义;通过整个实验可以培养学生“做”数学的精神,享受“做”数学带来的成功喜悦。
并在此通过实例、突破教学难点。
5、根据上面的实验总结出随机事件概率的统计定义。
「屏幕显示」对于概率的统计定义,应注意以下几点:
①求一个事件的概率的基本方法是通过大量的重复试验。
②只有当频率在某个常数附近摆动时,这个常数才叫做事件A 的概率。
③概率是频率的稳定值,而频率是概率的近似值。
④概率反映了随机事件发生的可能性的大小。
「设计意图」充分的发挥学生的主体地位,让学生学会分析问题,体验合作精神。
通过教师的补充使学生对概念更清晰、理解更透彻。
(三)拓展应用,思维升华
思考:在进行乒乓球比赛前,裁判如何决定由谁先发球的,为什么?(课前让学生准备好)
「设计意图」让学生感受到数学源于生活,而又回到生活当中去。
同时也能增强学生课外知识的积累.
(四)加强训练,及时巩固
「设计意图」根据学生的举例和自身的基础,我设计了两道关于三种事件的训练题,帮助学生对所学概念进行理解。
第(3)题充分发挥学生的主体地位,让学生学会分析,引导学生仔细观察,应选取哪一个频率作为概率的近似值。
(五)反思小结、培养能力
提问:本课学习的主要内容是什么?它们之间有怎样的区别和联系?
①事件的分类:随机事件;必然事件;不可能事件.
②随机事件的概念:在一定条件下可能发生也可能不发生的事件,叫
做随机事件。
③随机事件的概率的定义:在大量重复进行同一试验时,事件A 发
生是频率m/n总是接近于某个常数,在它附近摆动,这时就把这个常
数叫做事件A的概率。
④概率的性质。
「设计意图」小结是引导学生对问题进行回味与深化,使知识成为系统。
让学生尝试小结,提高学生的总结能力和语言表达能力。
教
师补充帮助学生全面地理解,掌握新知识。
(六)课后作业,自主学习
课本练习1、2
「设计意图」布置作业让学生温故知新,同时针对学生的解答情况及时弥补和调整。
五、板书设计
六、教学反思
本节课从一个小故事进行引入,事件的分类讲起,通过实验操作得出概率的定义,通过生活实例巩固所学知识,引导学生总结,形成知识体系。
本节课主要采用实验发现式的教学方法,引导学生对身边的事件加以注意、分析,指导学生做简单易行的实验。
对知识要点的把握,以兴趣为主,把学生从茫然无措带进一个有趣的数学世界里,让学生无意识地发现随机事件的某一结果发生的规律性。
本节课还存在着不足的地方,在今后的教学中,我会不断地加以改正,提高课堂教学的实效性。