13.14.15树的遍历与森林的遍历

合集下载

树与森林的遍历

树与森林的遍历

第十七讲
∑p ×I
i =1 i
7
i
= 0.40 × 1 + 0.30 × 2 + 0.15 × 3 + 0.05 × 5 + 0.04 × 5 + 0.03 × 5 + 0.03 × 5 = 2.20
第十七讲
举例:数据传送中的二进制编码。 要传送数据 state, seat, act, tea, cat, set, a, eat, 如何使传 送的长度最短? 首先规定二叉树的构造为左走0,右走1 ,如图6.31所示。 为了保证长度最短, 先看字符出现的次数, 然后将出现 次数当作权, 如图6.32所示。
第十七讲
2. 森林的遍历 森林的遍历 森林的遍历方法主要有以下三种: 1) 先序遍历 若森林非空, 则遍历方法为: (1) 访问森林中第一棵树的根结点。 (2) 先序遍历第一棵树的根结点的子树森林。 (3) 先序遍历除去第一棵树之后剩余的树构成的森林。 例如, 图6.24(a)中森林的先序遍历序列为ABCDEFGHIJ。
第十七讲 作业:
1.二叉树的层次遍历算法(二叉链表存储); 2.求二叉树中最大结点值(二叉链表存储)。
第十七讲
哈夫曼树及其应用
第十七讲
1. 哈夫曼树
1. 路径和路径长度 路径和路径长度 路径是指从一个结点到另一个结点之间的分支序列, 路径 路径长度是指从一个结点到另一个结点所经过的分支数目。 路径长度 树的路径长度是从树根到每一结点的路径长度之和。 树的路径长度
图6.30 构造哈夫曼树示例
第十七讲
表 6 – 3 指令的哈夫曼编码
指令 I1 I2 I3 I4 I5 I6 I7 使用频率(Pi) 0 10 110 11100 11101 11110 11111

8哈夫曼树

8哈夫曼树
a
b d e c
2 3 4 5 6 7 b c d e
d
e f g f g h
f
g
h
8
h
25
3、用孩子兄弟表示法来存储
思路:用二叉链表来表示树,但链表中的两个 指针域含义不同。 左指针指向该结点的第一个孩子; 右指针指向该结点的下一个兄弟结点。
firstchild data nextsibling
100
40
21 32 g e 17 7 a
60
28 11 10 h 6 d 2 c 5 3 f
10
对应的哈夫曼编码(左0右1):
符 编码 频率 符 编码 频率
100
a
b
1100
00
0.07
0.19
a
b
000
001
0.07
0.19 0.06
0 b
0 40
1
1
0 60 1 28 1 0 6 d 0 2 c 11 1d Path Length
树的带权路径长度如何计算? WPL = 哈夫曼树则是:WPL 最小的树。
w kl k
k=1
n
经典之例:
4 d
2 c 7 a (b) 5 b
Huffman树
7 a
7 a
5
2 b c
4 d
5 b
2 c (c)
4 d
(a)
WPL=36
WPL=46
WPL= 35
3
构造霍夫曼树的基本思想: 权值大的结点用短路径,权值小的结点用长路径。 构造Huffman树的步骤(即Huffman算法):
(1) 由给定的 n 个权值{w0, w1, w2, …, wn-1},构造具有 n 棵扩充 二叉树的森林F = { T0, T1, T2, …, Tn-1 },其中每一棵扩充二叉树 Ti 只有一个带有权值 wi 的根结点,其左、右子树均为空。 (2) 重复以下步骤, 直到 F 中仅剩下一棵树为止: ① 在 F 中选取两棵根结点的权值最小的扩充二叉树, 做为左、 右子树构造一棵新的二叉树。置新的二叉树的根结点的权值为 其左、右子树上根结点的权值之和。 ② 在 F 中删去这两棵二叉树。 ③ 把新的二叉树加入 F。

树的遍历(先序、中序、后序详解)

树的遍历(先序、中序、后序详解)

树的遍历(先序、中序、后序详解) 树的遍历主要有三种
1、先序遍历:先遍历根节点,再遍历左节点,最后遍历右节点;
2、中序遍历:先遍历左节点,再遍历根节点,最后遍历右节点;
3、后序遍历:先遍历左节点,再遍历右节点,最后遍历根节点;
总结:先、中、后就表⽰根节点的遍历处于哪个位置,⽰总是先左节点后右节点。

例如先序遍历,“先”表⽰根节点最先遍历,再左节点,
最后右节点。

依此类推中序遍历,后序遍历。

接下来看⽰个题⽰,看⽰下你们是怎么做的。

我们以中序遍历为例来讲(每次以三个节点为⽰个整体):
⽰先从树的根节点开始即C F E
我们再依次来看,先看C,则以C为根节点的三个节点(即A C D)按中序遍历则为A C D。

故A放在C之前,把D放在C之后。

故A C D F E
再看A,由于以A为根节点的三个节点中其他两个没有,故看下⽰个D 同理可得B D
故把B放在D之前,即A C B D F E
类似可得中序遍历为A C B D F H E M G
这样是不是再也不怕树的遍历了。

二叉树,树,森林遍历之间的对应关系

二叉树,树,森林遍历之间的对应关系

二叉树,树,森林遍历之间的对应关系一、引言在计算机科学中,数据结构是非常重要的知识点之一。

而树这一数据结构,作为基础的数据结构之一,在软件开发中有着广泛的应用。

本文将重点探讨二叉树、树和森林遍历之间的对应关系,帮助读者更加全面地理解这些概念。

二、二叉树1. 二叉树的定义二叉树是一种特殊的树结构,每个节点最多有两个子节点,分别称为左子节点和右子节点。

二叉树可以为空,也可以是一棵空树。

2. 二叉树的遍历在二叉树中,有三种常见的遍历方式,分别是前序遍历、中序遍历和后序遍历。

在前序遍历中,节点的访问顺序是根节点、左子树、右子树;在中序遍历中,节点的访问顺序是左子树、根节点、右子树;在后序遍历中,节点的访问顺序是左子树、右子树、根节点。

3. 二叉树的应用二叉树在计算机科学领域有着广泛的应用,例如用于构建文件系统、在数据库中存储有序数据、实现算法中的搜索和排序等。

掌握二叉树的遍历方式对于理解这些应用场景非常重要。

三、树1. 树的定义树是一种抽象数据类型,由n(n>0)个节点组成一个具有层次关系的集合。

树的特点是每个节点都有零个或多个子节点,而这些子节点又构成了一颗子树。

树中最顶层的节点称为根节点。

2. 树的遍历树的遍历方式有先根遍历、后根遍历和层次遍历。

在先根遍历中,节点的访问顺序是根节点、子树1、子树2...;在后根遍历中,节点的访问顺序是子树1、子树2...,根节点;在层次遍历中,节点的访问顺序是从上到下、从左到右依次访问每个节点。

3. 树的应用树广泛用于分层数据的表示和操作,例如在计算机网络中的路由算法、在操作系统中的文件系统、在程序设计中的树形结构等。

树的遍历方式对于处理这些应用来说至关重要。

四、森林1. 森林的定义森林是n(n>=0)棵互不相交的树的集合。

每棵树都是一颗独立的树,不存在交集。

2. 森林的遍历森林的遍历方式是树的遍历方式的超集,对森林进行遍历就是对每棵树进行遍历的集合。

3. 森林的应用森林在实际编程中经常用于解决多个独立树结构的问题,例如在数据库中对多个表进行操作、在图像处理中对多个图形进行处理等。

树的遍历和哈夫曼树

树的遍历和哈夫曼树
}
2021/4/18 北京化工大学信息学院 数据结构 33
求二叉树高度的递归算法
int Height ( BinTreeNode * T ) { if ( T == NULL ) return -1; else { int m = Height ( T->leftChild ); int n = Height ( T->rightChild ) ); return (m > n) ? m+1 : n+1;
中序遍历 (Inorder Traversal)
中序遍历二叉树算法的框架是:
若二叉树为空,则空操作;
-
否则 中序遍历左子树 (L);
+
/
访问根结点 (V);
a *e f
中序遍历右子树 (R)。
遍历结果
b-
a+b*c-d-e/f
cd
2021/4/18 北京化工大学信息学院 数据结构 20
二叉树递归的中序遍历算法
如果 n = 0,称为空树;如果 n > 0,则 ▪ 有一个特定的称之为根(root)的结点,
它只有直接后继,但没有直接前驱; ▪ 除根以外的其它结点划分为 m (m 0)
个 互不相交的有限集合T0, T1, …, Tm-1,每 个集合又是一棵树,并且称之为根的子树。
2021/4/18 北京化工大学信息学院 数据结构 3
typedef struct node { //树结点定义
TreeData data;
//结点数据域
struct node * leftChild, * rightchild;
//子女指针域
} BinTreeNode;
typedef BinTreeNode * BinTree; //树定义,代表树的根指针

数据结构第七章 树和森林

数据结构第七章 树和森林

7.5 树的应用
➢判定树
在实际应用中,树可用于判定问题的描述和解决。
•设有八枚硬币,分别表示为a,b,c,d,e,f,g,h,其中有一枚且 仅有一枚硬币是伪造的,假硬币的重量与真硬币的重量不同,可能轻, 也可能重。现要求以天平为工具,用最少的比较次数挑选出假硬币, 并同时确定这枚硬币的重量比其它真硬币是轻还是重。
的第i棵子树。 ⑺Delete(t,x,i)在树t中删除结点x的第i棵子树。 ⑻Tranverse(t)是树的遍历操作,即按某种方式访问树t中的每个
结点,且使每个结点只被访问一次。
7.2.2 树的存储结构
顺序存储结构 链式存储结构 不管哪一种存储方式,都要求不但能存储结点本身的数据 信息,还要能够唯一的反映树中各结点之间的逻辑关系。 1.双亲表示法 2.孩子表示法 3.双亲孩子表示法 4.孩子兄弟表示法
21
将二叉树还原为树示意图
A BCD
EF
A
B
C
E
D
F
A
B
C
E
D
F
22
练习:将下图所示二叉树转化为树
1 2
4
5
3
6
2 4
1 53
6
23
7.3.2 森林转换为二叉树
由森林的概念可知,森林是若干棵树的集合,只要将森林中各棵树 的根视为兄弟,森林同样可以用二叉树表示。 森林转换为二叉树的方法如下:
⑴将森林中的每棵树转换成相应的二叉树。 ⑵第一棵二叉树不动,从第二棵二叉树开始,依次把后一棵二叉树 的根结点作为前一棵二叉树根结点的右孩子,当所有二叉树连起来 后,此时所得到的二叉树就是由森林转换得到的二叉树。
相交的集合T1,T2,…,Tm,其中每一个集合Ti(1≤i≤m)本身又是 一棵树。树T1,T2,…,Tm称为这个根结点的子树。 • 可以看出,在树的定义中用了递归概念,即用树来定义树。因此, 树结构的算法类同于二叉树结构的算法,也可以使用递归方法。

数据结构习题及答案与实验指导(树和森林)7

数据结构习题及答案与实验指导(树和森林)7

第7章树和森林树形结构是一类重要的非线性结构。

树形结构的特点是结点之间具有层次关系。

本章介绍树的定义、存储结构、树的遍历方法、树和森林与二叉树之间的转换以及树的应用等内容。

重点提示:●树的存储结构●树的遍历●树和森林与二叉树之间的转换7-1 重点难点指导7-1-1 相关术语1.树的定义:树是n(n>=0)个结点的有限集T,T为空时称为空树,否则它满足如下两个条件:①有且仅有一个特定的称为根的结点;②其余的结点可分为m(m>=0)个互不相交的子集T1,T2,…,T m,其中每个子集本身又是一棵树,并称为根的子树。

要点:树是一种递归的数据结构。

2.结点的度:一个结点拥有的子树数称为该结点的度。

3.树的度:一棵树的度指该树中结点的最大度数。

如图7-1所示的树为3度树。

4.分支结点:度大于0的结点为分支结点或非终端结点。

如结点a、b、c、d。

5.叶子结点:度为0的结点为叶子结点或终端结点。

如e、f、g、h、i。

6.结点的层数:树是一种层次结构,根结点为第一层,根结点的孩子结点为第二层,…依次类推,可得到每一结点的层次。

7.兄弟结点:具有同一父亲的结点为兄弟结点。

如b、c、d;e、f;h、i。

8.树的深度:树中结点的最大层数称为树的深度或高度。

9.有序树:若将树中每个结点的子树看成从左到右有次序的(即不能互换),则称该树为有序树,否则称为无序树。

10.森林:是m棵互不相交的树的集合。

7-1-2 树的存储结构1.双亲链表表示法以图7-1所示的树为例。

(1)存储思想:因为树中每个元素的双亲是惟一的,因此对每个元素,将其值和一个指向双亲的指针parent构成一个元素的结点,再将这些结点存储在向量中。

(2)存储示意图:-1 data:parent:(3)注意: Parrent域存储其双亲结点的存储下标,而不是存放结点值。

下面的存储是不正确的:-1 data:parent:2.孩子链表表示法(1)存储思想:将每个数据元素的孩子拉成一个链表,链表的头指针与该元素的值存储为一个结点,树中各结点顺序存储起来,一般根结点的存储号为0。

数据结构入门-树的遍历以及二叉树的创建

数据结构入门-树的遍历以及二叉树的创建

数据结构⼊门-树的遍历以及⼆叉树的创建树定义:1. 有且只有⼀个称为根的节点2. 有若⼲个互不相交的⼦树,这些⼦树本⾝也是⼀个树通俗的讲:1. 树是有结点和边组成,2. 每个结点只有⼀个⽗结点,但可以有多个⼦节点3. 但有⼀个节点例外,该节点没有⽗结点,称为根节点⼀、专业术语结点、⽗结点、⼦结点、根结点深度:从根节点到最底层结点的层数称为深度,根节点第⼀层叶⼦结点:没有⼦结点的结点⾮终端节点:实际上是⾮叶⼦结点度:⼦结点的个数成为度⼆、树的分类⼀般树:任意⼀个结点的⼦结点的个数都不受限制⼆叉树:任意⼀个结点的⼦结点个数最多是两个,且⼦结点的位置不可更改⼆叉数分类:1. ⼀般⼆叉数2. 满⼆叉树:在不增加树层数的前提下,⽆法再多添加⼀个结点的⼆叉树3. 完全⼆叉树:如果只是删除了满⼆叉树最底层最右边的连续若⼲个结点,这样形成的⼆叉树就是完全⼆叉树森林:n个互不相交的树的集合三、树的存储⼆叉树存储连续存储(完全⼆叉树)优点:查找某个结点的⽗结点和⼦结点(也包括判断有没有⼦结点)速度很快缺点:耗⽤内存空间过⼤链式存储⼀般树存储1. 双亲表⽰法:求⽗结点⽅便2. 孩⼦表⽰法:求⼦结点⽅便3. 双亲孩⼦表⽰法:求⽗结点和⼦结点都很⽅便4. ⼆叉树表⽰法:把⼀个⼀般树转化成⼀个⼆叉树来存储,具体转换⽅法:设法保证任意⼀个结点的左指针域指向它的第⼀个孩⼦,右指针域指向它的兄弟,只要能满⾜此条件,就可以把⼀个⼀般树转化为⼆叉树⼀个普通树转换成的⼆叉树⼀定没有右⼦树森林的存储先把森林转化为⼆叉树,再存储⼆叉树四、树的遍历先序遍历:根左右先访问根结点,再先序访问左⼦树,再先序访问右⼦树中序遍历:左根右中序遍历左⼦树,再访问根结点,再中序遍历右⼦树后续遍历:左右根后续遍历左⼦树,后续遍历右⼦树,再访问根节点五、已知两种遍历求原始⼆叉树给定了⼆叉树的任何⼀种遍历序列,都⽆法唯⼀确定相应的⼆叉树,但是如果知道了⼆叉树的中序遍历序列和任意的另⼀种遍历序列,就可以唯⼀地确定⼆叉树已知先序和中序求后序先序:ABCDEFGH中序:BDCEAFHG求后序:这个⾃⼰画个图体会⼀下就可以了,⾮常简单,这⾥简单记录⼀下1. ⾸先根据先序确定根,上⾯的A就是根2. 中序确定左右,A左边就是左树(BDCE),A右边就是右树(FHG)3. 再根据先序,A左下⾯就是B,然后根据中序,B左边没有,右边是DCE4. 再根据先序,B右下是C,根据中序,c左下边是D,右下边是E,所以整个左树就确定了5. 右树,根据先序,A右下是F,然后根据中序,F的左下没有,右下是HG,6. 根据先序,F右下为G,然后根据中序,H在G的左边,所以G的左下边是H再来⼀个例⼦,和上⾯的思路是⼀样的,这⾥就不详细的写了先序:ABDGHCEFI中序:GDHBAECIF已知中序和后序求先序中序:BDCEAFHG后序:DECBHGFA这个和上⾯的思路是⼀样的,只不过是反过来找,后序找根,中序找左右树简单应⽤树是数据库中数据组织⼀种重要形式操作系统⼦⽗进程的关系本⾝就是⼀棵树⾯向对象语⾔中类的继承关系哈夫曼树六、⼆叉树的创建#include <stdio.h>#include <stdlib.h>typedef struct Node{char data;struct Node * lchild;struct Node * rchild;}BTNode;/*⼆叉树建⽴*/void BuildBT(BTNode ** tree){char ch;scanf("%c" , &ch); // 输⼊数据if(ch == '#') // 如果这个节点的数据是#说明这个结点为空*tree = NULL;else{*tree = (BTNode*)malloc(sizeof(BTNode));//申请⼀个结点的内存 (*tree)->data = ch; // 将数据写⼊到结点⾥⾯BuildBT(&(*tree)->lchild); // 递归建⽴左⼦树BuildBT(&(*tree)->rchild); // 递归建⽴右⼦树}}/*⼆叉树销毁*/void DestroyBT(BTNode *tree) // 传⼊根结点{if(tree != NULL){DestroyBT(tree->lchild);DestroyBT(tree->rchild);free(tree); // 释放内存空间}}/*⼆叉树的先序遍历*/void Preorder(BTNode * node){if(node == NULL)return;else{printf("%c ",node->data );Preorder(node->lchild);Preorder(node->rchild);}}/*⼆叉树的中序遍历*/void Inorder(BTNode * node){if(node == NULL)return;else{Inorder(node->lchild);printf("%c ",node->data );Inorder(node->rchild);}}/*⼆叉树的后序遍历*/void Postorder(BTNode * node){if(node == NULL)return;else{Postorder(node->lchild);Postorder(node->rchild);printf("%c ",node->data );}}/*⼆叉树的⾼度树的⾼度 = max(左⼦树⾼度,右⼦树⾼度) +1*/int getHeight(BTNode *node){int Height = 0;if (node == NULL)return 0;else{int L_height = getHeight(node->lchild);int R_height = getHeight(node->rchild);Height = L_height >= R_height ? L_height +1 : R_height +1; }return Height;}int main(int argc, char const *argv[]){BTNode * BTree; // 定义⼀个⼆叉树printf("请输⼊⼀颗⼆叉树先序序列以#表⽰空结点:");BuildBT(&BTree);printf("先序序列:");Preorder(BTree);printf("\n中序序列:");Inorder(BTree);printf("\n后序序列:");Postorder(BTree);printf("\n树的⾼度为:%d" , getHeight(BTree));return 0;}// ABC##DE##F##G##。

树形结构——树和森林

树形结构——树和森林
树形结构——树和森林 树形结构——树和森林
TT
讨论的问题
1、树的概念 2、树的遍历 3、树的存储方式 4、二叉树
树的概念
树是一种常见的非线性的数据结构。 树是一种常见的非线性的数据结构 。 树的递归定义如 下: 树是n(n> 个结点的有限集, n(n>0 树是n(n>0)个结点的有限集,这个集合满足以下条 件: 有且仅有一个结点没有前件(父亲结点) ⑴有且仅有一个结点没有前件(父亲结点),该结 点称为树的根; 点称为树的根; 除根外,其余的每个结点都有且仅有一个前件; ⑵除根外,其余的每个结点都有且仅有一个前件; 除根外,每一个结点都通过唯一的路径连到根上。 ⑶除根外,每一个结点都通过唯一的路径连到根上。 这条路径由根开始,而未端就在该结点上, 这条路径由根开始 , 而未端就在该结点上 , 且除根以 路径上的每一个结点都是前一个结点的后件( 外 , 路径上的每一个结点都是前一个结点的后件 ( 儿 子结点) 子结点);
树的表示方法
树的表示方法一般有两种: 自然界的树形表示法:用结点和边表示树, ⑴自然界的树形表示法:用结点和边表示树,例如上图采用的就 是自然界的树形表示法。树形表示法一般用于分析问题。 是自然界的树形表示法。树形表示法一般用于分析问题。
⑵括号表示法:先将根结点放入一对圆括号中,然后把它的子树 括号表示法: 按由左而右的顺序放入括号中,而对子树也采用同样方法处理: 同层子树与它的根结点用圆括号括起来,同层子树之间用逗号隔 开,最后用闭括号括起来。例如图可写成如下形式 (r(a(w,x(d(h),e)),b(f),c(s,t(i(m,o, n),j),u)))
1、二叉树的递归定义和基本形态
二叉树是以结点为元素的有限集,它或者为空, 二叉树是以结点为元素的有限集,它或者为空,或者满足以 下条件: ⑴有一个特定的结点称为根; ⑵ 余下的结点分为互不相交的子集 L 和 R , 其中 R 是根的 余下的结点分为互不相交的子集L 其中R 左子树;L是根的右子树;L 左子树;L是根的右子树;L和R又是二叉树; 由上述定义可以看出, 由上述定义可以看出,二叉树和树是两个不同的概念 ⑴树的每一个结点可以有任意多个后件,而二叉树中每 树的每一个结点可以有任意多个后件, 个结点的后件不能超过2 个结点的后件不能超过2; ⑵树的子树可以不分次序(除有序树外);而二叉树的 树的子树可以不分次序(除有序树外) 子树有左右之分。我们称二叉树中结点的左后件为左儿子, 子树有左右之分。我们称二叉树中结点的左后件为左儿子, 右后件为右儿子。 右后件为右儿子。

森林的孩子兄弟表示

森林的孩子兄弟表示

•{

int _max=0;

if(r->firstChild==NULL) return 1;

for(auto i=r->firstChild;i!=NULL;i=i->nextSibling)

{
14
森林的高度(森林中树的最大高度)
• template <class T>
• int ChildSiblingForest<T>::Height() const
• (2)求森林的规模(森林中树的数目)、森林的高度(森林中树的最大高度)、 森林的叶子数(森林中所有树的叶子之和)。
• (3)在森林的孩子兄弟链表示中,设计并实现相应函数,求相应二叉树的高度和 叶子数。
3
森林的孩子兄弟存储结构
•森林的结点类模板定义同树的结点类模板定义一致
•template<class T>
• template <class T>
• int ChildSiblingForest<T>::TreeNum() const
•{

ChildSiblingForestNode<T> *cur=root;

int num=0;

while(cur!=NULL) { num++; cur=cur->nextSibling; }
•template<class T>
•void ChildSiblingForest<T>::InRootOrderHelp(ChildSiblingForestNode<T> *r, void (*Visit)(const T &)) const

树和二叉树知识考点整理

树和二叉树知识考点整理

树和二叉树知识考点整理●树的基本概念●树的定义●n个结点的有限集●n=0代表空树●满足条件●只有一个根的结点●其余结点是互不相交的有限集,每个集合本身是一棵树,是根的子树●树是一种递归的数据结构●树的根结点没有前驱,其余结点只有一个前驱●树中所有结点可以有零个或多个后驱●基本术语●双亲、兄弟、孩子、祖先●度:孩子个数●分支结点:度大于0●叶子结点:度为0●深度:从下往上;●高度:从上往下;●有序树:从左到右是有次序的●路径和路径长度:路径是从上往下的●森林:m棵互不相交的树的集合。

●树的基本性质●结点数=所有结点度数之和+1●度为m的树中第i层上至多有m的i-1次分个结点●高度为h的m叉树至多有(m^h-1)/(m-1)个结点●具有n个结点的m叉树的最小高度为「logm(n(m-1)+1)]●二叉树的概念●定义●一种树形结构,特点是每个结点至多只有两棵子树(即二叉树中不存在度大于2的结点)并且二叉树的子树有左右之分,次序不可颠倒●二叉树与度为2的有序树区别●度为2的可以有三个结点,二叉树可以是空树●度为2的有序树的孩子左右之分是根据另一个孩子而言的;二叉树无论有没有,都要确定左右●特殊的二叉树●满二叉树●树中每一层都含有最多的结点●完全二叉树●高度为h,有n个结点的二叉树,当且仅当,每个结点都与高度为h的满二叉树中的编号一一对应●二叉排序树●用途:可用于元素的排序、搜索●左子树上所有结点的关键字均小于根结点的关键字;右子树上所有结点的关键字均大于根结点的关键字;左子树和右子树又是一棵二叉排序树●二叉树的性质●非空二叉树上的叶子结点数等于度为2的结点树加1,即n0=n2+1●非空二叉树上第k层至多有2^(k-1)个结点●高度为h的二叉树至多有2^h-1个结点●具有n个结点的完全二叉树的高度为log2(n+1)取顶或者log2n取底+1●二叉树的存储结构●顺序存储结构●只适合存储完全二叉树,数组从0开始●链式存储结构●顺序存储的空间利用率太低●至少三个指针域:数据域、左指针域、右指针域●增加了指向父结点后,变为三叉链表的存储结构●在含有n个结点的二叉链表中,含有n+1个空链域●二叉树的遍历和线索二叉树●二叉树的遍历●先序遍历●根左右●应用:求树的深度●中序遍历●左根右●后序遍历●左右根●应用:求根到某结点的路径、求两个结点的最近公共祖先等●三个遍历时间复杂度都是O(n)●递归算法和非递归算法的转换●层次遍历●需要借助队列●步骤●二叉树根结点入队,然后出队,访问出队结点,若有左子树,左子树根结点入队●遍历右子树,有右子树,右子树根结点入队。

数据结构第6章树和二叉树3树和森林ppt课件

数据结构第6章树和二叉树3树和森林ppt课件

§6.4 树和森林 ❖树的存储结构——孩子兄弟表示法
这种存储结构便于实现各种树的操作。首先易于 实现找结点孩子等的操作。如果为每个结点增设一个 (parent)域,则同样能方便地实现Parent(T, x)操作。
§6.4 树和森林
❖森林和二叉树的转换
1. 树和二叉树的对应关系 由于二叉树和树都可用二叉链表作为存储结构,
R AB C
DE
F
GHK
R^
A
^D
^B
^E ^
C^
F^
^G
^H
^K ^
§6.4 树和森林
❖树的二叉链表(孩子 - 兄弟)存储表示
typedef struct CSNode { Elem data; struct CSNode *firstchild , *nextsibling;
} CSNode, *CSTree;
A BC D E F GH
A BC D
E F GH A
BC D
1)在兄弟之间加一条连线; 2)对每个结点,除了左孩子外,去除其与其余孩子之间的联系; 3)以根结点为轴心,将整个树顺时针转45°。
Ia
A B
Ib
E F
d
C D
G H I
c E F G H I
§6.4 树和森林
❖森林和二叉树的转换
2. 森林和二叉树的对应关系 从树的二叉链表表示的定义可知,任何一棵
§6.4 树和森林
3
6^
5^
0
1
7
8
2^ 9^
R AB C
DE
F
GHK
§6.4 树和森林 ❖树的存储结构——孩子兄弟表示法
或称二叉树表示法,或称二叉链表表示法。即以 二叉链表作树的存储结构。链表中结点的两个链域分 别指向该结点的第一个孩子结点和下一个兄弟结点。

《数据结构——C语言描述》第6章:树

《数据结构——C语言描述》第6章:树
Void paintleaf (Btree root) { if (root!=NULL) { if (root ->Lchild==NULL && root ->Rchild==NULL) printf (root ->data); paintleaf (root ->Lchild); paintleaf (root -遍历左子树; (2)访问根结点; (3)中根遍历右子树。 后根遍历二叉树 (1)后根遍历左子树; (2)后根遍历右子树; (3)访问根结点。
先根遍历: -+a*b–cd/ef 中根遍历: a+b*c–d–e/f 后根遍历: abcd-*+ef/-
typedef struct Node { datatype data; struct Node *Lchild; struct Node *Rchild; } BTnode,*Btree;
满二叉树:一棵深度为k且有2k-1个结 点的二叉树称为满二叉树。 完全二叉树:深度为k,有n个结点的 二叉树当且仅当其每一个结点都与深度 为k的满二叉树中编号从1至n的结点一一 对应时,称为完全二叉树。
1 2 4 8 9 10 5 11 12 6 13 14 3 7 15 4 6 2
1 3 5 7
树的度:树中最大的结点的度数即为 树的度。图6.1中的树的度为3。 结点的层次(level):从根结点算起, 根为第一层,它的孩子为第二层……。 若某结点在第l层,则其孩子结点就在 第l+1层。图6.1中,结点A的层次为1, 结点M的层次为4。 树的高度(depth):树中结点的最大层 次数。图6.1中的树的高度为4。 森林(forest):m(m≥0)棵互不相交的 树的集合。

数据结构(树)习题与答案

数据结构(树)习题与答案

一、单选题1、树最适合用来表示()。

A.元素之间具有分支层次关系的数据B.有序数据元素C.元素之间无联系的数据D.无序数据元素正确答案:A2、在树结构中,若结点A有三个兄弟,且B是A的双亲,则B的度是()。

A.5B.4C.3D.2正确答案:B3、下列陈述中正确的是()。

A.二叉树是度为2的有序树B.二叉树中结点只有一个孩子时无左右之分C.二叉树中每个结点最多只有两棵子树,并且有左右之分D.二叉树中必有度为2的结点正确答案:C4、设深度为h的二叉树中只有度为0和度为2的结点,则此类二叉树中所包含结点数至少为()。

A.2h-1B.2h+1C.h+1D.2h正确答案:A解析: A、除根之外,每层只有两个结点,且互为兄弟。

5、设深度为h的二叉树中只有度为0和度为2的结点,则此类二叉树中所包含结点数至多为()。

A.2h-1B. 2h+1-1C. 2h-1-1D. 2h+1正确答案:A解析: A、构成完全二叉树。

6、具有n(n>0)个结点的完全二叉树的深度为()。

A.⌊ log2(n)⌋ +1B.⌈log2(n)⌉C.⌊ log2(n)⌋D.⌈log2(n)+1⌉正确答案:A7、具有32个结点的完全二叉树有()个叶子结点。

A.16B.14C.15D.17正确答案:A解析: A、对结点按层序编号,32号结点的双亲结点编号为16,则17至32号结点都为叶子,共16个。

8、一棵完全二叉树的第6层上有23个叶子结点,则此二叉树最多有()结点。

A.81B.78C.80D.79正确答案:A解析: A、完全二叉树的叶子结点只能在最下两层,要使结点最多,这棵二叉树深度为7,前6层结点数共为63,第6层有32个结点,其中叶子为23个,非叶子为9个,它们的度都为2,第7层只有18个结点,故整棵二叉树结点数为81.9、具有3个结点的二叉树有()种。

A.6B.3C.5D.4正确答案:C10、若一棵二叉树有9个度为2的结点,5个度为1的结点,则叶子结点的个数为()。

第六章树与二叉树教案 二叉树的类型定义 存储结构 遍历 哈夫曼树与哈夫曼编码

第六章树与二叉树教案 二叉树的类型定义 存储结构 遍历 哈夫曼树与哈夫曼编码
或 2k-1 ≤ n < 2k
即 k-1 ≤ log2 n < k
因为 k 只能是整数,因此, k =log2n + 1
问题:
一棵含有n个结点的二叉树,可能达 到的最大深度和最小深度各是多少?
1
答:最大n,
2
最小[log2n] + 1
第六章 树和二叉树教案
二叉树的类型定义 存储结构 遍历 哈夫曼树与哈夫曼编码
树是常用的数据结构
•家族 •各种组织结构 •操作系统中的文件管理 •编译原理中的源程序语法结构 •信息系统管理 •。。。。
2
6.1 树的类型定义 6.2 二叉树的类型定义
6.2.3 二叉树的存储结构 6.3 二叉树的遍历
二叉树上每个结点至多有两棵子树, 则第 i 层的结点数 = 2i-2 2 = 2i-1 。
性质 2 :
深度为 k 的二叉树上至多含 2k-1 个 结点(k≥1)。
证明:
基于上一条性质,深度为 k 的二叉
树上的结点数至多为
20+21+ +2k-1 = 2k-1 。
(等比数列求和)
k
k
(第i层的最大结点数) 2i1 2k
i 1
i 1
性质 3 :
对任何一棵二叉树,若它含有n0 个叶 子结点(0度节点)、n2 个度为 2 的结 点,则必存在关系式:n0 = n2+1。
证明:
设 二叉树上结点总数 n = n0 + n1 + n2 又 二叉树上分支总数 b = n1+2n2
而 b = n-1 = n0 + n1 + n2 - 1 由此, n0 = n2 + 1 。

树,二叉树,森林

树,二叉树,森林

二叉树
二叉树性质(续) ② 高度为k的二叉树最多有2k-1个结点(k≥1) 证明:
高度为k的二叉树只有在每一层都达到最大结点数时,整个二叉树的结点数 才能达到最大。即当每层的结点数目都达到该层的最大结点数2i-1时(性质 2),对应的二叉树的结点数目取得最大值(等比数列求和) a1(1-qn)/(1-q)
因此如果把完全二叉树的各个结点按编号顺序依次存放到一个一维数组, 对于完全二叉树中任意结点i的双亲结点序号、左孩子结点序号和右孩子 结点序号都可由公式计算得到,具体做法是将n个结点存放到一维数组 a[n+1]中。这便是完全二叉树的顺序存储。
二叉树
带有结点编号的完全二叉树
二叉树
对于非完全二叉树是构造虚结点完成顺序存储
树的基本概念
A B E K L F C G H M D I J
back
树的基本概念
3、树的表示方法 (4种)
树形表示 文氏图表示 凹入表示
嵌套括号表示
A(B,C(D,E))
二叉树
二叉树是树型结构的一个重要类型,许多实际问题抽象 出来的数据结构都是二叉树的形式,此外一般的树也可以 简单的转换为二叉树,因此二叉树是特别重要的一种树结 构。 1、二叉树的定义: 二叉树(Binary Tree)是n(n≥0)个有限结点构成、 每个结点最多有两个孩子且有左右区分的有序树合。 n=0的树称为空二叉树;n>0的二叉树由一个根结点 和两个互不相交的、分别称作左子树和右子树的子二叉树 构成。
树、森林和二叉树的关系
树、森林和二叉树的关系
孩子兄弟表示法(二叉链表表示法): 链表中每个结点设有两个链域,分别指向该结点的第一个孩 子结点和下一个兄弟(右兄弟)结点。
树、森林和二叉树的关系

严蔚敏《数据结构》教学笔记第六章 树和二叉树

严蔚敏《数据结构》教学笔记第六章 树和二叉树

来自
转载请注明
严蔚敏数据结构教学笔记
CountLeaf( T->rchild, count); // 统计右子树中叶子结点个数 } }
2、求二叉树的深度(后序遍历) int Depth (BiTree T ) { if ( !T ) depthval = 0; else { depthLeft = Depth( T->lchild ); depthRight= Depth( T->rchild ); depthval = 1 + (depthLeft> depthRight?depthLeft:depthRight); } return depthval; }
五、遍历算法的应用举例: 1、统计二叉树中叶子结点的个数(先序遍历) void CountLeaf (BiTree T, int& count) { if ( T ) { if ((!T->lchild)&& (!T->rchild)) count++; CountLeaf( T->lchild, count); // 统计左子树中叶子结点个数 9
LeftChild(T, cur_e); RightSibling(T, cur_e);
TreeEmpty(T); TreeDepth(T);
TraverseTree(T, Visit()); 插入: InitTree(&T); CreateTree(&T, definition);
Assign(T, cur_e, value); InsertChild(&T, &p, i, c); 1
3、复制二叉树(后序遍历) // 生成一个二叉树的结点 BiTNode *GetTreeNode(TElemType item, BiTNode *lptr , BiTNode *rptr ){ if (!(T = (BiTNode*)malloc(sizeof(BiTNode)))) 10

数据结构 第六章-树

数据结构 第六章-树

20
A B C D
E
F
G H
I J
A
E F H
G
B C
D A
I J
A
B C F
E H
G
B C D F
E G H I J
21
I
D
J
5. 二叉树转换成树和森林
二叉树转换成树 1. 加线:若p结点是双亲结点的左孩子,则将p的右孩 子,右孩子的右孩子,……沿分支找到的所有右孩 子,都与p的双亲用线连起来 2. 抹线:抹掉原二叉树中双亲与右孩子之间的连线 3. 调整:将结点按层次排列,形成树结构7Fra bibliotek6.3.2
树和森林的存储结构
树的存储结构有很多,既可以采用顺序存储结构, 也可以采用链式存储结构。但无论采用哪种存储方式, 都要求存储结构不仅能存储各结点本身的数据信息,还 要能惟一地反映树中各结点之间的逻辑关系。 双亲表示法 孩子链表表示法 孩子兄弟表示法
8
1.双亲表示法 除根外,树中的每个结点都有惟一的一个双亲结点,所以可以用一 组连续的存储空间存储树中的各结点。一个元素表示树中一个结点, 包含树结点本身的信息及结点的双亲结点的位臵。 A B E F C G H D I
}CTBox;
//树结构 typedef struct {CTBox nodes[MAX_TREE_SIZE]; int n, r; }Ctree
12
3. 孩子-兄弟表示法(树的二叉链表)
孩子兄弟表示法用二叉链表作为树的存储结构。将树中的多支关系用 二叉链表的双支关系体现。 ※ 结点的左指针指向它的第一个孩子结点
//孩子结点结构 typedef struct CTNode
1 2 3 4 5 6

树和森林的遍历方式

树和森林的遍历方式

树和森林的遍历方式
树和森林是常见的数据结构,它们有着广泛的应用。

在处理树和森林的过程中,遍历方式是必不可少的。

树的遍历方式包括前序遍历、中序遍历和后序遍历。

前序遍历先访问根节点,然后依次访问左子树和右子树;中序遍历先访问左子树,然后访问根节点,最后访问右子树;后序遍历先访问左子树和右子树,最后访问根节点。

森林的遍历方式可以采用多种方式,其中最常见的是先序遍历。

先序遍历先访问每个树的根节点,然后依次遍历每个树的左子树和右子树。

除了以上遍历方式外,还有层次遍历、逆序遍历等方式。

层次遍历是按照每层从左到右的顺序遍历树或森林;逆序遍历是将遍历顺序反转,即先访问右子树再访问左子树,最后访问根节点。

不同的遍历方式适用于不同的问题,选择合适的方式可以提高算法的效率。

在实际应用中,需要根据具体问题来选择遍历方式,以达到最佳的效果。

- 1 -。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
十三、树的遍历
树结构有两种次序遍历树的方法:
1.先根遍历:先访问树的根节点,再依次先根遍历子 树;
2.后根遍历:先依次后根遍历子树,再访问树的根节 点。
树的先根遍历和后根遍历可分别借用 对应二叉树的先序遍历和中序遍历实 现。 如图: 对树进行先根遍历:A B C D 对树进行后根遍历:B C D A
十四、森林的遍历:
森林的遍历有先序遍历和中序遍历两种方式。
森林的先序遍历:
若森林不空,则: 1. 访问森林中第一棵树的根结点;
2. 先序遍历森林中第一棵树的子树森林;
3. 先序遍历森林中(除第一棵树之外)其余树构成的森 林。
森林的中序遍历:
若森林不空,则: 1. 中序遍历森林中第一棵树的子树森林;
2. 访问森一棵树之外)其余树构成的森 林。
二叉树、树和森林的遍历的关系:
给定一棵树,可以找到唯一一棵二叉树与之对应,同样, 森林也与一棵树存在一一对应关系。
树与二叉树,森林与二叉树的转化
如下图所示,(a)(b)(c)为三棵树,并构成一个森林,(d)(e)(f)分别为 (a)(b)(c)对应的二叉树,(g)为森林对应的二叉树。
由以上树的遍历,二叉树的遍历以及森林的遍历 可以看出: 森林的先序遍历,中序遍历序列与相应的二叉树 的的先序遍历,中序遍历序列是对应相同的。 另外,把一颗树看成是森林,则森林的先序遍历 和中序遍历分别与树的先根遍历和后根遍历相对 应。 森林的遍历算法可以采用其对应的二叉树的遍历 算法来实现。
相关文档
最新文档