导数的概念ppt课件演示文稿
合集下载
导数的概念ppt课件
解: y x x x,
y x x x
x
x
y' y x
1
x x
x x x x
1 ,当x 0时的值。 x 2x
例3 某质点沿直线运动,运动规律是s=5t2+6,求: (1)t=2的瞬时速度; (2) 求该质点的速度; (3)求该质点的加速度.
作业2:航天飞机发射后的一段时间内,第t秒 末 的高度h(t)=30t2+45t,其中h的单位是m, t的单位是s.
v在t0的瞬时速度
f (t0 t) t
f (t0 )
当t 0时
以平均加速度代替瞬时加速度,然后通过
取极限,从瞬时加速度的近似值过渡到瞬时加速
度的精确值。 其实函数在某一点处的瞬时变化 率---------导数。
导数的概念
一.导数的概念
函数 y f ( x)在区间(a, b)有定义, x0 (a, b)
(4) f(x) = 1 ; x
并把A
叫做函数 y f (x)在点 x0处的导数 , 记为y x x0
y xx0 f ' ) ,当x 0
x
x
由定义求导数(三步法)
步骤:
(2) 算比值 y f ( x0 x) f ( x0 ) ;
(3) 求y
x x0
xy .在x x
x
0时
例1.求y=x2+2在点x=1处的导数
解: y [(1 x)2 2] (12 2) 2x (x)2
y 2x (x)2
2 x
x
x
y 2 x,当x 0时 x
y' |x1 2
变题.求y=x2+2在点x=a处的导数
例2.若f (x) (x 1)2 , 求f (2)和( f (2))
y x x x
x
x
y' y x
1
x x
x x x x
1 ,当x 0时的值。 x 2x
例3 某质点沿直线运动,运动规律是s=5t2+6,求: (1)t=2的瞬时速度; (2) 求该质点的速度; (3)求该质点的加速度.
作业2:航天飞机发射后的一段时间内,第t秒 末 的高度h(t)=30t2+45t,其中h的单位是m, t的单位是s.
v在t0的瞬时速度
f (t0 t) t
f (t0 )
当t 0时
以平均加速度代替瞬时加速度,然后通过
取极限,从瞬时加速度的近似值过渡到瞬时加速
度的精确值。 其实函数在某一点处的瞬时变化 率---------导数。
导数的概念
一.导数的概念
函数 y f ( x)在区间(a, b)有定义, x0 (a, b)
(4) f(x) = 1 ; x
并把A
叫做函数 y f (x)在点 x0处的导数 , 记为y x x0
y xx0 f ' ) ,当x 0
x
x
由定义求导数(三步法)
步骤:
(2) 算比值 y f ( x0 x) f ( x0 ) ;
(3) 求y
x x0
xy .在x x
x
0时
例1.求y=x2+2在点x=1处的导数
解: y [(1 x)2 2] (12 2) 2x (x)2
y 2x (x)2
2 x
x
x
y 2 x,当x 0时 x
y' |x1 2
变题.求y=x2+2在点x=a处的导数
例2.若f (x) (x 1)2 , 求f (2)和( f (2))
导数及其应用PPT课件
解:(1)
4.已知a>0,n为正整数。 (1)设y=(x-a)n, 证明y’=n(x-a)n-1; (2)设fn(x)=xn-(x-a)n , 对任意n≥a,证明:
小
求函数单调区间的步骤:
求函数极值的步骤:
结
(1)求导函数f ’(xቤተ መጻሕፍቲ ባይዱ; (2)求方程f ’(x)=0的根;(3)检查f ’(x)在 方程根左右的符号,如果左正右负,那么f(x)在这个根处 取得最大值,如果左负右正,那么f(x)在这个根处取得最 小值。 求闭区间上函数的最值的方法:
y
极大值
极大值
x0
极小值
0
x
极小值
显然在极值处函数的导数为0.
【知识在线】:
1.函数y=2x3+4x2+1的导数是_____________. 2.函数y=f(x)的导数y/>0是函数f(x)单调递增的 (B )
A.充要条件
C.必要不充分条件
B.充分不必要条件
D.既不充分也不必要条件
(0,2) 单调递增区 3.函数y=x2 (x-3),则f(x)的单调递减区间是_____, (-∞,0) , (2,+∞) 。 间为______________
x
f(x)
极大值 极小值
由此可得,函数在x=- ,处取得极大值2+ 2
在x= ,处取得极小值2- 2 .草图如图
y
∵a>0,显然极大值必为正,
故只要看极小值的正负即可。
-
0
x
y
方程x3-3ax+2=0有惟一的实根;
-
0 y
x
方程x3-3ax+2=0有二个不同的实根 (其中有一个为二重根);
高等数学导数的概念教学ppt课件.ppt
h0
h
h0 h 0.
即 (C ) 0.
9
第二章 导数与微分
第一节 导数的概念
例5 设函数 f ( x) sin x,求(sin x)及(sin x) x . 4
解:(sin x) lim sin( x h) sin x
h0
h
h
lim cos( x
h0
h) sin 2 2h
cos
x.
2 即 (sin x) cos x.
定理2.1.2 凡可导函数都是连续函数.
证 设函数 f ( x)在点 x0可导, 即
lim y x0 x
f ( x0 )
有
lim y
x0
lim
x0
y x
x
f
(
x0
)
lim
x0
x
0
函数 f ( x)在点 x0连续 .
注意: 该定理的逆定理不成立.
15
第二章 导数与微分
第一节 导数的概念
例10 讨论函数 f ( x) x 在x 0处的可导性.
1.左导数:
f( x0 )
lim
x x0
f ( x) f ( x0 ) lim
x x0
x0
f ( x0 x) x
f ( x0 ) ;
2.右导数:
f( x0 )
lim
x x0
f ( x) f ( x0 ) lim
x x0
x0
f ( x0 x) x
f ( x0 ) ;
定理2.1.1
函数 f ( x)在点x0 处可导 左导数 f( x0 ) 和右 导数 f( x0 )都存在且相等.
解: f (0 h) f (0) h ,
22_第1讲导数的概念及运算理ppt课件
Δt<0,则 9.8 m/s 是(1+Δt) s~1 s 时段的速率
12
考点 2 曲线的几何意义
例 2:如图 4-1-1,函数 y=f(x)的图像在点 P 处的切线方
程是 y=-x+8,则 f(5)+f′(5)=
.
图 4-1-1 解题思路:区分过曲线 P 处的切线与过 P 点的切线的不同, 后者的 P 点不一定在曲线上.
(1)求曲线在 x=2 处的切线方程; (2)求曲线过点(2,4)的切线方程. 误解分析:没有注意点(2,4)为切点以及(2,4)不为切点的情 形. 正解:(1)∵y′=x2, ∴在点 P(2,4)处的切线的斜率 k=y′|x=2=4. ∴曲线在点 P(2,4)处的切线方程为 y-4=4(x-2), 即 4x-y-4=0.
1 ;(exx)′= ; ex
7
4.运算法则 (1)求导数的四则运算法则:
(u±v)′= u′±v ′ ;(uv)′=
u′v+;uv ′
y′x=y′u·u′x
.
中,坐标为整数的点的个数是( D )
A.3
B.2
C.1
D.0
8
A
3.曲线 y=x3+x+1 在点(1,3)处的切线方程是y=4x-1.
9
另外定积分的应用主要是计算面积,诸如计算曲边梯形的 面积、变速直线运动等实际问题要很好的转化为数学模型.
4
5
第 1 讲 导数的概念及运算
1.用定义求函数的导数的步骤 (1)求函数的改变量Δy. (2)求平均变化率Δy
Δx.
2.导数的几何意义和物理意义 几何意义:曲线 f(x)在某一点(x0,y0)处的导数是过点(x0, y0)的切线的 斜率 .
6
物理意义:若物体运动方程是 s=s(t),在点 P(t0,s(t0))处导 数的意义是 t=t0处的 瞬时速度 .
12
考点 2 曲线的几何意义
例 2:如图 4-1-1,函数 y=f(x)的图像在点 P 处的切线方
程是 y=-x+8,则 f(5)+f′(5)=
.
图 4-1-1 解题思路:区分过曲线 P 处的切线与过 P 点的切线的不同, 后者的 P 点不一定在曲线上.
(1)求曲线在 x=2 处的切线方程; (2)求曲线过点(2,4)的切线方程. 误解分析:没有注意点(2,4)为切点以及(2,4)不为切点的情 形. 正解:(1)∵y′=x2, ∴在点 P(2,4)处的切线的斜率 k=y′|x=2=4. ∴曲线在点 P(2,4)处的切线方程为 y-4=4(x-2), 即 4x-y-4=0.
1 ;(exx)′= ; ex
7
4.运算法则 (1)求导数的四则运算法则:
(u±v)′= u′±v ′ ;(uv)′=
u′v+;uv ′
y′x=y′u·u′x
.
中,坐标为整数的点的个数是( D )
A.3
B.2
C.1
D.0
8
A
3.曲线 y=x3+x+1 在点(1,3)处的切线方程是y=4x-1.
9
另外定积分的应用主要是计算面积,诸如计算曲边梯形的 面积、变速直线运动等实际问题要很好的转化为数学模型.
4
5
第 1 讲 导数的概念及运算
1.用定义求函数的导数的步骤 (1)求函数的改变量Δy. (2)求平均变化率Δy
Δx.
2.导数的几何意义和物理意义 几何意义:曲线 f(x)在某一点(x0,y0)处的导数是过点(x0, y0)的切线的 斜率 .
6
物理意义:若物体运动方程是 s=s(t),在点 P(t0,s(t0))处导 数的意义是 t=t0处的 瞬时速度 .
导数的概念-课件-导数的概念
导数在现代数学中的地位和作用
基本概念
导数是现代数学的基本概念之一,是研究函数性质和解决实际问题的 重要工具。
数学分析
导数是数学分析的重要分支,是研究函数的可微性、可导性和连续性 的基础。
应用领域
导数的应用领域非常广泛,不仅限于数学和物理领域,还涉及到工程 学、经济学和计算机科学等多个领域。
数学建模
导数的应用发展
物理学
工程学
导数在物理学的各个分支中都有广泛的应 用,如力学、电磁学、热学等。
在机械工程、航空航天工程、土木工程等 领域,导数被用于优化设计、控制工程和 流体力学等方面。
经济学
计算机科学
导数在经济学中被用于研究经济系统的变 化率和最优决策问题。
在计算机图形学、数值分析和机器学习等 领域,导数被用于计算图像处理、数据拟 合和模型训练等方面。
高阶导数在研究函数的极值、拐 点、曲线的形状等方面有重要应 用。
微分学基本定理
微分学基本定理的内容
微分学基本定理是导数与微分之间的关系,即函数在某点的导数 等于该函数在该点的切线的斜率。
微分学基本定理的推导
通过极限的概念和性质,利用切线斜率的定义推导出微分学基本定 理。
微分学基本定理的应用
微分学基本定理是微分学的基础,在研究函数的增减性、极值、曲 线的形状等方面有重要应用。
复合函数求导法则
若$y = f(u)$和$u = g(x)$都可导, 则复合函数$y = f[g(x)]$的导数为 $(y)' = u' cdot (u)' = u' cdot v'$。
隐函数的导数
由显函数表示的隐函数求 导
若由显函数$F(x, y) = 0$表示的隐函数为$y = f(x)$,则通过求偏导数$frac{partial F}{partial x}$和$frac{partial F}{partial y}$ ,可以得到隐函数$y = f(x)$的导数。
导数的课件ppt
导数的课件
目录
Contents
• 导数的定义与几何意义 • 导数的计算 • 导数在几何中的应用 • 导数在实际问题中的应用 • 导数的历史与发展
01 导数的定义与几何意义
导数的定义
总结词
导数描述了函数在某一点处的切线斜率,是函数值随自变量变化的瞬时速度。
详细描述
导数是微积分中的一个基本概念,它表示函数在某一点处的切线斜率。具体来说 ,对于可导函数$f(x)$,其在点$x_0$处的导数$f'(x_0)$定义为函数在$x_0$附近 的小范围内变化时,函数值$f(x)$随自变量$x$变化的瞬时速度。
导数的几何意义
总结词
导数的几何意义是函数图像在某一点处的切线斜率。
详细描述
导数的几何意义是函数图像在某一点处的切线斜率。也就是说,对于可导函数 $f(x)$,其在点$x_0$处的导数$f'(x_0)$等于函数图像在点$(x_0, f(x_0))$处的 切线的斜率。
导数与切线斜率
总结词
导数与切线斜率是等价的,导数即为 函数在某一点处的切线斜率。
通过导数的符号变化,可以判断函数的凹凸性。
详细描述
在凹区间内,二阶导数大于0;在凸区间内,二阶导数小于0。
04 导数在实际问题中的应用
导数在物理中的应用
速度与加速度
导数可以用来描述物体的速度和 加速度,例如在分析物体的运动 轨迹时,可以运用导数来计算瞬
时速度和加速度。
弹性分析
在物理中,弹性分析是一个重要的 概念,导数可以用来描述弹性体的 应变和应力之间的关系,帮助我们 理解物体的弹性行为。
对于两个函数的和或差, 其导数等于两个函数导数 的和或差。
乘法运算规则
对于两个函数的乘积,其 导数为两个函数导数的乘 积加上被乘函数自身的导 数。
目录
Contents
• 导数的定义与几何意义 • 导数的计算 • 导数在几何中的应用 • 导数在实际问题中的应用 • 导数的历史与发展
01 导数的定义与几何意义
导数的定义
总结词
导数描述了函数在某一点处的切线斜率,是函数值随自变量变化的瞬时速度。
详细描述
导数是微积分中的一个基本概念,它表示函数在某一点处的切线斜率。具体来说 ,对于可导函数$f(x)$,其在点$x_0$处的导数$f'(x_0)$定义为函数在$x_0$附近 的小范围内变化时,函数值$f(x)$随自变量$x$变化的瞬时速度。
导数的几何意义
总结词
导数的几何意义是函数图像在某一点处的切线斜率。
详细描述
导数的几何意义是函数图像在某一点处的切线斜率。也就是说,对于可导函数 $f(x)$,其在点$x_0$处的导数$f'(x_0)$等于函数图像在点$(x_0, f(x_0))$处的 切线的斜率。
导数与切线斜率
总结词
导数与切线斜率是等价的,导数即为 函数在某一点处的切线斜率。
通过导数的符号变化,可以判断函数的凹凸性。
详细描述
在凹区间内,二阶导数大于0;在凸区间内,二阶导数小于0。
04 导数在实际问题中的应用
导数在物理中的应用
速度与加速度
导数可以用来描述物体的速度和 加速度,例如在分析物体的运动 轨迹时,可以运用导数来计算瞬
时速度和加速度。
弹性分析
在物理中,弹性分析是一个重要的 概念,导数可以用来描述弹性体的 应变和应力之间的关系,帮助我们 理解物体的弹性行为。
对于两个函数的和或差, 其导数等于两个函数导数 的和或差。
乘法运算规则
对于两个函数的乘积,其 导数为两个函数导数的乘 积加上被乘函数自身的导 数。
《导数定义》课件
2023
《导数定义》ppt课 件
REPORTING
2023
目录
• 导数定义 • 导数的计算 • 导数的应用 • 导数的历史发展
2023
PART 01
导数定义
REPORTING
导数的定义
总结词
导数的定义是函数在某一点的变化率 ,是函数在这一点附近的小范围内取 值的平均变化率的极限。
详细描述
导数定义为函数在某一点的变化率, 即函数在该点的切线斜率。具体来说 ,对于可微函数,其导数是函数值随 自变量变化的速率。
隐函数的导数
总结词
隐函数的导数是导数计算中的另一个重要内容,掌握隐函数的导数计算方法有助于解决实际问题。
详细描述
隐函数的导数是通过对隐函数求偏导数来得到的,其核心思想是利用偏导数和全微分的概念,将隐函 数转化为显函数,然后利用显函数的导数计算方法进行计算。
2023
PAR学等。
导数的早期应用
物理学的应用
在研究速度、加速度、斜率等问 题中,导数发挥了关键作用。
经济学应用
在研究成本、收益、效用和供需 关系时,导数提供了重要的分析
工具。
工程学应用
在优化设计、控制理论和流体动 力学等领域,导数也有广泛应用
。
导数在现代数学中的地位
导数是微积分的重要组成部分, 是研究函数性质和变化率的关键
详细描述
导数具有一些重要的基本性质,如线性性质、常数性质、乘积法则、商的法则 和链式法则等。这些性质在研究函数的单调性、极值和曲线的形状等方面具有 广泛应用。
2023
PART 02
导数的计算
REPORTING
导数的四则运算
总结词
理解导数的四则运算法则是掌握导数计算的基础,包括加法、减法、乘法和除法 。
《导数定义》ppt课 件
REPORTING
2023
目录
• 导数定义 • 导数的计算 • 导数的应用 • 导数的历史发展
2023
PART 01
导数定义
REPORTING
导数的定义
总结词
导数的定义是函数在某一点的变化率 ,是函数在这一点附近的小范围内取 值的平均变化率的极限。
详细描述
导数定义为函数在某一点的变化率, 即函数在该点的切线斜率。具体来说 ,对于可微函数,其导数是函数值随 自变量变化的速率。
隐函数的导数
总结词
隐函数的导数是导数计算中的另一个重要内容,掌握隐函数的导数计算方法有助于解决实际问题。
详细描述
隐函数的导数是通过对隐函数求偏导数来得到的,其核心思想是利用偏导数和全微分的概念,将隐函 数转化为显函数,然后利用显函数的导数计算方法进行计算。
2023
PAR学等。
导数的早期应用
物理学的应用
在研究速度、加速度、斜率等问 题中,导数发挥了关键作用。
经济学应用
在研究成本、收益、效用和供需 关系时,导数提供了重要的分析
工具。
工程学应用
在优化设计、控制理论和流体动 力学等领域,导数也有广泛应用
。
导数在现代数学中的地位
导数是微积分的重要组成部分, 是研究函数性质和变化率的关键
详细描述
导数具有一些重要的基本性质,如线性性质、常数性质、乘积法则、商的法则 和链式法则等。这些性质在研究函数的单调性、极值和曲线的形状等方面具有 广泛应用。
2023
PART 02
导数的计算
REPORTING
导数的四则运算
总结词
理解导数的四则运算法则是掌握导数计算的基础,包括加法、减法、乘法和除法 。
高二导数ppt课件
幂函数的导数
总结词
掌握幂函数的导数是理解函数单调性和极值的基础。
详细描述
幂函数是一种常见的函数形式,其导数的计算方法可以通过指数法则进行计算。通过对幂函数进行求导,可以分 析函数的单调性和极值,对于解决实际问题非常重要。
03 导数的性质
单调性
总结词
单调性是指函数在某区间内的导数符 号,决定了函数在该区间内的单调趋 势。
高二导数ppt课件
目录
CONTENTS
• 导数的概念 • 导数的计算 • 导数的性质 • 导数在实际问题中的应用 • 导数的历史与发展
01 的变化率, 反映了函数在该点的切线斜率。
详细描述
导数定义为函数在某一点处的切 线斜率,表示函数在该点的变化 率。对于可导函数,其在某一点 的导数值等于该点切线的斜率。
导数的几何意义
总结词
导数的几何意义是切线斜率,即函数图像上某一点处的切线 与x轴正方向的夹角正切值。
详细描述
导数的几何意义是将导数与切线斜率联系起来。对于可导函 数,其在某一点的导数值等于该点切线的斜率,即切线与x轴 正方向的夹角正切值。
导数在生活中的应用
总结词
导数在生活中的应用广泛,如速度、加速度、温度变化率等。
曲线的凹凸性
总结词
曲线的凹凸性是指函数图像在某区间内 的弯曲形状,可以通过二阶导数来判断 。
VS
详细描述
如果函数的二阶导数大于0,则函数图像 在对应区间内是凹的;如果二阶导数小于 0,则图像是凸的。
04 导数在实际问题中的应用
最大利润问题
总结词
利用导数求最大利润
详细描述
在最大利润问题中,导数的应用可以帮助我 们找到使利润最大的最优解。通过构建利润 函数,并对其求导,我们可以找到使利润最 大的点,从而实现最大利润。
高等数学导数的概念ppt课件.ppt
x0 处的右 (左) 导数, 记作
y
y x
o
x
机动 目录 上页 下页 返回 结束
定理2. 函数 是
在点 可导的充分必要条件 且
简写为 f (x0) 存在
f(x0 )
定理3. 函数 在点 处右 (左) 导数存在
在点 必 右 (左) 连续.
若函数
在开区间
内可导, 且
都存在 , 则称
在闭区间
上可导.
显然:
f
(0)
lim
x 0
sin x
x
0
0
1
ax 0
f
(0)
lim
x 0
x0
a
故 a 1 时
此时
在
都存在,
机动 目录 上页 下页 返回 结束
作业
P49 5 , 7, 9
第二节 目录 上页 下页 返回 结束
备用题
1. 设
存在, 且
求
解: 因为
1 f (1 (x)) f (1)
lim
2 x0
(x)
在闭区间 [a , b] 上可导
与 f(b)
机动 目录 上页 下页 返回 结束
练习:讨论下列函数在x=0时候的连 续性与可导性.
练习:习题2.1题8
f
x
xk
sin
1 x
,
x0
0, x 0.
若函数在x 0连续,则
lim f x lim xk sin 1 f 0 0,
x0
x0
x
必须满足 lim xk 0, k 0即可. x0
反例:
在 x = 0 处连续 , 但不可导. o
x
机动 目录 上页 下页 返回 结束
导数的概念 课件
A.物体5 s内共走过42 m B.物体每5 s钟运动42 m C.物体开始运动到第5 s运动的平均速度是42 m/s D.物体以t=5 s时的瞬时速度运动的话,每经过一秒, 物体运动的路程为42 m
由导数的定义求导数,是求导数的基本方法,必须严格 按以下三个步骤进行:
(1)求函数的增量Δy=f(x0+Δx)-f(x0);
解析:
f′(1)= lim Δx→0
f1+ΔΔxx-f1=
lim
Δx→0
1+ΔΔxx2-1=Δlixm→0
(2+Δx)=2.
同理可得f′(3)=6.
1.一直线运动的物体,从时间t到t+Δt时,物体的位移
为Δs,那么 lim Δt→0
Δs Δt
为(
B
)
A.从时间t到t+Δt时,物体的平均速度
B.时间为t时该物体的瞬时速度
变化率与导数 导数的概念
基础梳理
1. 函数f(x)在x=x0处的瞬时变化率定义:
一般地,lim Δx→0
ΔΔyx=Δlixm→0
fx0+Δx-fx0 Δx
,我们称它为函数y=
f(x)在x=x0处的导数,记作f′(x0)或y′|x=x0,
即y′|x=x0=f′(x0)=Δlixm→0
fx0+Δx-fx0 Δx
C.当时间为Δt 时该物体的速度
D.从时间t到t+Δt时位移的平均变化率
2.Biblioteka 设函数f(x)在x0处可导,则
lim
Δx→0
fx0-Δx-fx0 Δx
=(
C
)
A.f′(x0)
B.f′(-x0)
C.-f′(x0)
D.-f(-x0)
3.一物体运动满足方程s=4t2+2t-3且s′(5)=42(m/s), 其实际意义是( D )
由导数的定义求导数,是求导数的基本方法,必须严格 按以下三个步骤进行:
(1)求函数的增量Δy=f(x0+Δx)-f(x0);
解析:
f′(1)= lim Δx→0
f1+ΔΔxx-f1=
lim
Δx→0
1+ΔΔxx2-1=Δlixm→0
(2+Δx)=2.
同理可得f′(3)=6.
1.一直线运动的物体,从时间t到t+Δt时,物体的位移
为Δs,那么 lim Δt→0
Δs Δt
为(
B
)
A.从时间t到t+Δt时,物体的平均速度
B.时间为t时该物体的瞬时速度
变化率与导数 导数的概念
基础梳理
1. 函数f(x)在x=x0处的瞬时变化率定义:
一般地,lim Δx→0
ΔΔyx=Δlixm→0
fx0+Δx-fx0 Δx
,我们称它为函数y=
f(x)在x=x0处的导数,记作f′(x0)或y′|x=x0,
即y′|x=x0=f′(x0)=Δlixm→0
fx0+Δx-fx0 Δx
C.当时间为Δt 时该物体的速度
D.从时间t到t+Δt时位移的平均变化率
2.Biblioteka 设函数f(x)在x0处可导,则
lim
Δx→0
fx0-Δx-fx0 Δx
=(
C
)
A.f′(x0)
B.f′(-x0)
C.-f′(x0)
D.-f(-x0)
3.一物体运动满足方程s=4t2+2t-3且s′(5)=42(m/s), 其实际意义是( D )
《导数的概念及应用》课件
以判断函数的单调性。
极值与导数的关系
总结词
导数的零点通常是函数的极值点,但需 满足一定的条件。在极值点处,导数的 符号发生变化。
VS
详细描述
如果一个函数在某一点的导数为零,且在 这一点的一阶导数存在,那么这个点可能 是函数的极值点。为了确定这一点是否为 极值点,需要检查该点两侧的导数符号是 否发生变化。如果导数的符号在这一点从 正变为负或从负变为正,则该点为极值点 。
曲线的凹凸性与导数的关系
总结词
二阶导数可以判断曲线的凹凸性。二阶导数 大于零的区间内,曲线是凹的;二阶导数小 于零的区间内,曲线是凸的。
详细描述
二阶导数描述了函数值随自变量变化的加速 度。当二阶导数大于零时,表示函数在该区 间内单调递增;当二阶导数小于零时,表示 函数在该区间内单调递减。因此,通过分析 二阶导数的正负,可以判断曲线的凹凸性。
详细描述
在流体动力学中,导数可以用来描述流体速度和压强的变化规律,以及流体流动的稳定性分析。在结构分析中, 导数可以用来计算结构的应力和应变,评估结构的强度和稳定性。在控制理论中,导数可以用来分析系统的动态 响应和稳定性,优化系统的性能和稳定性。
THANKS
感谢观看
极值的概念
函数在某点的极值表示该点附近函数值的大小变化情 况,极值可以是极大值或极小值。
导数与极值的关系
函数在极值点的导数等于零,通过求导可以找到极值 点。
极值问题的求解方法
利用导数等于零的条件,结合函数单调性判断,确定 极值点并计算出极值。
曲线的长度计算
曲线长度的概念
01
曲线长度表示曲线本身的长度,是几何学中的一个基本概念。
导数的几何意义
总结词
导数在几何上表示函数图像在某一点的切线斜率。
极值与导数的关系
总结词
导数的零点通常是函数的极值点,但需 满足一定的条件。在极值点处,导数的 符号发生变化。
VS
详细描述
如果一个函数在某一点的导数为零,且在 这一点的一阶导数存在,那么这个点可能 是函数的极值点。为了确定这一点是否为 极值点,需要检查该点两侧的导数符号是 否发生变化。如果导数的符号在这一点从 正变为负或从负变为正,则该点为极值点 。
曲线的凹凸性与导数的关系
总结词
二阶导数可以判断曲线的凹凸性。二阶导数 大于零的区间内,曲线是凹的;二阶导数小 于零的区间内,曲线是凸的。
详细描述
二阶导数描述了函数值随自变量变化的加速 度。当二阶导数大于零时,表示函数在该区 间内单调递增;当二阶导数小于零时,表示 函数在该区间内单调递减。因此,通过分析 二阶导数的正负,可以判断曲线的凹凸性。
详细描述
在流体动力学中,导数可以用来描述流体速度和压强的变化规律,以及流体流动的稳定性分析。在结构分析中, 导数可以用来计算结构的应力和应变,评估结构的强度和稳定性。在控制理论中,导数可以用来分析系统的动态 响应和稳定性,优化系统的性能和稳定性。
THANKS
感谢观看
极值的概念
函数在某点的极值表示该点附近函数值的大小变化情 况,极值可以是极大值或极小值。
导数与极值的关系
函数在极值点的导数等于零,通过求导可以找到极值 点。
极值问题的求解方法
利用导数等于零的条件,结合函数单调性判断,确定 极值点并计算出极值。
曲线的长度计算
曲线长度的概念
01
曲线长度表示曲线本身的长度,是几何学中的一个基本概念。
导数的几何意义
总结词
导数在几何上表示函数图像在某一点的切线斜率。
3.1 导数的概念 课件 (共21张PPT)《高等数学》(高教版).ppt
(2)若极限 点 处的右导数,记作
,即:
存在,则称其为函数 在
定理1 函数
在点 处可导的充分必要条件是
在点 处的左导数和右导数都存在且相等,即
.
例1 讨论函数
在 处的连续性和可导性.
解:因为
又
,所以函数
在 处的连续.
由于
,所以函数
在 处不可导.
例2 讨论函数
解:因为 连续.
又因为 处不可导.
在 处的连续性和可导性.
在点
分析:设函数
在点 处可导,则
故函数
在点 处一定连续.
随堂练习
1、设 解:
,判断 在点 函数
处的连续性与可导性. 在 处连续.
函数 在 处不可导.
2、若函数
处处可导,求 的值.
解: 函数 在 处可导,则在
处处可导.由于函数
可导必连续.得
再根据函数在 处可导,
则左右导数存在且相等.
故
时,
函数 在点
或 ,即
函数
在点 处的导数就是导函数 在点 处的函数值
,即
注:若函数
在区间
在区间 上不可导.
内有一点处不可导,则称函数
由导数的定义可知,求函数
个步骤:
(1)求增量
;
(2)算比值
;
(3)取极限
例1 求函数
的导数.
解:
常量函数的导数为
的导数可分为以下三 .
例6 求函数 解:
的导数.
例7 求函数 解:
,所以函数
在 处的
,所以函数
在
从图形上看,曲线 线.这也说明函数 原点外,处处可导.因 连续.
在原点O处具有垂直于 轴的切
导数概念ppt
Δx→0
f(xo
+Δx)Δx
f(xo )=
Δx→0
Δf , Δx
lim lim f (xo)
注:
Δx→0
f(xo
+Δx)Δx
f(xo )=
Δx→0
Δf , Δx
1)函数x=x0在处有定义;
2)△x→0, △x可正、可负、但不为0; △y 可能为0。
3)△y 是函数自变量x在△x范围内的 △x
平均变化率;
x
四、求导举例:
例1、求函数f(x)=x2+x,求y’|x=2.
练习:求y=x2在x=1处的导数。
例2、设函数f(x)在xo处可导,
则 lim f(xo -△x)- f(xo ) 的值是 -f(xo ).
△x→0
△x
(A)练习:1)设函数f(x)在x=1处可导,
则 lim f(1+△x)- f(1) 的值是
即:物体运动的瞬时速度是路程增量与时 间增量之比当时间增量趋于零时的极限。
二、导数的概念
函数f(x)在 x=xo 处的瞬时变化率是
lim lim f(xo +Δx)- f(xo )= Δf ,
Δx→0
Δx
Δx→0 Δx
这就是函数y=f(x)在x=xo 处的导数
记作
lim 即
f
(xo )
4)在x=xo处的导数反映的是函数在 x=xo处变化的快慢程度。
三、根据导数的定义,求函数y=f(x)的导数的
三个步骤:
1.求增量: y f (x x) f (x)
2.算比值: y f (x x) f (x)
x
x
3.取极限: y lim y lim f (x x) f (x)
导数的概念PPT课件
△t<0时
2+△t
计算区间2 t, 2和区间2, 2 t
内平均速度v, 可以得到如下表格.
2
t
△t>0时 2+△t
平均变化率近似地刻画了曲线在某一区间上的变化趋势. 如何精确地刻画曲线在一点处的变化趋势呢?
△t<0时, 在[ 2+△t, 2 ]这段时 间内
当Δt趋近于0时,平均 速度有什么变化趋势?
注意:这里的增量不是一般意义上的增量,它可正也可负. 自变量的增量Δx的形式是多样的,但不论Δx选择哪种形 式,Δy也必须选择与之相对应的形式.
一差、二商、三极限
求函数在某处的导数
例1. (1)求函数y=3x2在x=1处的导数.
(2)求函数f(x)=-x2+x在x=-1附近的平均变化率, 并求出在该点处的导数.
(3)质点运动规律为s=t2+3,求质点在t=3的瞬时 速度.
例1. (1)求函数y=3x2在x=1处的导数.
解:Δy f (1 Δx) f (1) 3(1 Δx)2 3 6Δx 3(Δx)2
Δy 6Δx 3(Δx)2 6 3Δx
Δx
Δx
f '(1) lim Δy lim (6 3Δx) 6 x0 Δx x0
(3)质点运动规律为s=t2+3,求质点在t=3的瞬时 速度.
例1. (1)求函数y=3x2在x=1处的导数.
解:Δy f (1 Δx) f (1) 3(1 Δx)2 3 6Δx 3(Δx)2
Δy 6Δx 3(Δx)2 6 3Δx
Δx
Δx
f '(1) lim Δy lim (6 3Δx) 6 x0 Δx x0
称为函数 y = f (x) 在 x = x0 处的导数, 记作
高中数学导数的概念课件
优化问题求解
总结词
导数在数学优化中常用于求解最值问题,通过求导可以 找到函数的极值点。
详细描述
在数学优化中,最值问题是最常见的一类问题,导数可 以用来求解这类问题。通过对函数求导,可以找到函数 的极值点,从而确定函数的最值。例如,一个企业要制 定一个营销策略,目标是最大化利润,利润函数为P(x) ,对其求导得到利润函数的导数P'(x),通过求解P'(x)=0 ,可以找到使利润最大的最优策略。
导数在科学计算中的应用
数值分析
导数可以用于数值分析中,如求 解微分方程、积分方程等,通过 求导数可以得到数值解的近似值
。
图像处理
导数可以用于图像处理中,如边 缘检测、图像滤波等,通过求图 像函数的导数可以得到图像的边
缘信息。
信号处理
导数可以用于信号处理中,如滤 波器设计、信号降噪等,通过求 信号函数的导数可以得到信号的
高中数学导数的概念课件
汇报人:
202X-01-05
CATALOGUE
目 录
• 导数的定义 • 导数的性质 • 导数的应用 • 导数的计算 • 导数在实际问题中的应用案例
01
CATALOGUE
导数的定义
导数的起源
01
导数起源于微积分,最初由牛顿 和莱布尼茨等数学家提出,用于 描述函数在某一点的变化率。
导数与函数极值
总结词
导数等于0的点可能是极值点
详细描述
函数在极值点的一阶导数等于0,但一阶导数为0的点不一定是极值点,需要进一 步判断二阶导数的正负。
导数与函数最值
总结词
导数可以帮助寻找函数最值
详细描述
通过求导数并令其为0,可以找到可能的极值点,再结合一阶或二阶导数的符号变化,判断是极大值还是极小值 ,从而确定函数的最值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
__
s s (t0 t ) s (t0 ) 1 v 2 g g ( t ) t t 2
定义:
函数 y = f (x) 在 x = x0 处的瞬时变化率是
或 y | x x , 即
0
f ( x0 Δx) f ( x0 ) y lim lim x 0 x 0 x x 称为函数 y = f (x) 在 x = x0 处的导数, 记作 f ( x0 )
f (x0 Δx) f ( x0 ) f ( x0 ) lim . x 0 x
同理可得 f ' 6 5.
请同学们自己完成具体 运算过程 .
在第2h与第6h时, 原油温度的瞬时变化率 分别为 3 与5.它说明在第2h附近, 原油温度大约以 3 C / h的速 率下降; 在6h附近, 原油温度大约以 50 C / h的速率上升 . 一般地, f ' x0 反映了原油温度在时刻 x 0附近的变化 情况.
y f ( x0 x) f ( x0 ) 2. 求平均变化率 ; x y x 3. 求值 f ( x0 ) lim . x 0 x
一差、二比、三极限
三.典例分析
例1. (1)求函数y=3x2在x=1处的导数. (2)求函数f(x)=-x2+x在x=-1附近的平均 变化率,并求出在该点处的导数. (3)质点运动规律为s=t2+3,求 质点在t=3的瞬时速度.
y f 2 x f 2 , 和 f 6. 根据导数的定义 x x 2 x 2 72 x 15 22 7 2 15 x
'
4 x x 2 7x x 3, x y ' 所以, f 2 lim lim x 3 3, x 0 x x 0
一.创设情景 (一)平均变化率 (二)探究:
在高台跳水运动中,平均速度不能反映他在 这段时间里运动状态,需要用瞬时速度描 述运动状态。我们把物体在某一时刻的速 度称为瞬时速度.
又如何求 瞬时速度呢?
二.新课讲授ቤተ መጻሕፍቲ ባይዱ
1.瞬时速度
在高台跳水运动中 , 运动员在不同时刻的速 度 是不同的. 我们把物体在某一时刻 的速度称为 瞬时速度(ins tan eous velociy ).运动员的平均速 度不一定能反映他 她 在某时刻的瞬时速度. 那么, 如何求运动员的瞬时速 度呢 ? 比如 , t 2 时的瞬时速度是多少 ? 我们先考察t 2 附近的情况. 在 t 2 之前或之后, 任意取一个时刻 2 t , t是时间的改变量 , 可以是 正值, 也可以是负值 , 但不为0.当t 0时,2 t在2 之前;当t 0时,2 t在2之后.计算区间2 t ,2
和区间2,2 t 内平均速度v, 可以得到如下表格 .
平均变化率近似地刻画了曲线在某一区间上的变化趋
势.
如何精确地刻画曲线在一点处的变化趋势呢?
Δt趋近于0时,平均 h(t ) 4.9t 6.5t 当 10
2
速度有什么变化趋势?
△t<0时, 在[ 2+△t, 2 ]这段时 间内
0
1 2 s gt 例3 物体作自由落体运动,运动方程为: 2
其中位移单位是m,时间单位是s,g=10m/s2.求: (1) 物体在时间区间[2,2.1]上的平均速度; (2) 物体在时间区间[2,2.01]上的平均速度; (3) 物体在t=2(s)时的瞬时速度.
分析:
1 s s (t0 t ) s (t0 ) 2 g t g (t ) 2 2
v 13.149
当△t =0.001时, v 13.1049
△t = 0.00001,
当△t = –0.0001时, v 13.09951 当△t =0.0001时, v 13.10049
v 13.099951
v 13.100049
……
v 13.0999951 △t =0.000001, v 13.1000049
例 2 将原油精炼为汽油、 柴油、塑胶等各种不同产 品 , 需要 对原 油进 行冷却 和加热 .如果在 xh 时, 原油 的温度 单位 :0 C 为 f x x 2 7 x 15(0 x 8).计算第2h和第6h时, 原油温度 的瞬时变化率, 并说明它们的意义.
解 在第2h和第6h时, 原油温度的瞬时变化率 就是f ' 2
△t>0时, 在[2, 2 +△t ]这段时 间内
v 4.9t 13.1
当△t = – 0.01时, v 13.051
当△t = – 0.001时, v 13.0951
△t = – 0.00001, △t = – 0.000001,
v 4.9t 13.1
当△t = 0.01时,
……
我们发现,当t趋近于0 时, 即无论t从小于2 的一边, 还是从大于2一边趋近于2时, 平均速度都趋近于一 个确定的值 13.1. 从物理的角度看 , 时间间隔| t | 无限变小时, 平均
h2 t h2 我们称确定值 13.1是 当t趋近于0时的极限. t
速度v就无限趋近于 t 2时的瞬时速度 .因此, 运动 员在t 2时的瞬时速度是 13.1m / s. h2 t h2 为了表述方便 , 我们用lim 13.1 t 0 t 表示"当t 2, t 趋势近于0时, 平均速度v 趋近于确 定值 13.1".
1. f ( x0 )与x0的值有关,不同的x0其导数值一般也不相同。 2. f ( x0 )与x的具体取值无关。
3.瞬时变化率与导数是同一概念的两个名称。
由导数的定义可知, 求函数 y = f (x)的导数的一般方法:
1. 求函数的改变量
y f ( x0 x) f ( x0 );
s s (t0 t ) s (t0 ) 1 v 2 g g ( t ) t t 2
定义:
函数 y = f (x) 在 x = x0 处的瞬时变化率是
或 y | x x , 即
0
f ( x0 Δx) f ( x0 ) y lim lim x 0 x 0 x x 称为函数 y = f (x) 在 x = x0 处的导数, 记作 f ( x0 )
f (x0 Δx) f ( x0 ) f ( x0 ) lim . x 0 x
同理可得 f ' 6 5.
请同学们自己完成具体 运算过程 .
在第2h与第6h时, 原油温度的瞬时变化率 分别为 3 与5.它说明在第2h附近, 原油温度大约以 3 C / h的速 率下降; 在6h附近, 原油温度大约以 50 C / h的速率上升 . 一般地, f ' x0 反映了原油温度在时刻 x 0附近的变化 情况.
y f ( x0 x) f ( x0 ) 2. 求平均变化率 ; x y x 3. 求值 f ( x0 ) lim . x 0 x
一差、二比、三极限
三.典例分析
例1. (1)求函数y=3x2在x=1处的导数. (2)求函数f(x)=-x2+x在x=-1附近的平均 变化率,并求出在该点处的导数. (3)质点运动规律为s=t2+3,求 质点在t=3的瞬时速度.
y f 2 x f 2 , 和 f 6. 根据导数的定义 x x 2 x 2 72 x 15 22 7 2 15 x
'
4 x x 2 7x x 3, x y ' 所以, f 2 lim lim x 3 3, x 0 x x 0
一.创设情景 (一)平均变化率 (二)探究:
在高台跳水运动中,平均速度不能反映他在 这段时间里运动状态,需要用瞬时速度描 述运动状态。我们把物体在某一时刻的速 度称为瞬时速度.
又如何求 瞬时速度呢?
二.新课讲授ቤተ መጻሕፍቲ ባይዱ
1.瞬时速度
在高台跳水运动中 , 运动员在不同时刻的速 度 是不同的. 我们把物体在某一时刻 的速度称为 瞬时速度(ins tan eous velociy ).运动员的平均速 度不一定能反映他 她 在某时刻的瞬时速度. 那么, 如何求运动员的瞬时速 度呢 ? 比如 , t 2 时的瞬时速度是多少 ? 我们先考察t 2 附近的情况. 在 t 2 之前或之后, 任意取一个时刻 2 t , t是时间的改变量 , 可以是 正值, 也可以是负值 , 但不为0.当t 0时,2 t在2 之前;当t 0时,2 t在2之后.计算区间2 t ,2
和区间2,2 t 内平均速度v, 可以得到如下表格 .
平均变化率近似地刻画了曲线在某一区间上的变化趋
势.
如何精确地刻画曲线在一点处的变化趋势呢?
Δt趋近于0时,平均 h(t ) 4.9t 6.5t 当 10
2
速度有什么变化趋势?
△t<0时, 在[ 2+△t, 2 ]这段时 间内
0
1 2 s gt 例3 物体作自由落体运动,运动方程为: 2
其中位移单位是m,时间单位是s,g=10m/s2.求: (1) 物体在时间区间[2,2.1]上的平均速度; (2) 物体在时间区间[2,2.01]上的平均速度; (3) 物体在t=2(s)时的瞬时速度.
分析:
1 s s (t0 t ) s (t0 ) 2 g t g (t ) 2 2
v 13.149
当△t =0.001时, v 13.1049
△t = 0.00001,
当△t = –0.0001时, v 13.09951 当△t =0.0001时, v 13.10049
v 13.099951
v 13.100049
……
v 13.0999951 △t =0.000001, v 13.1000049
例 2 将原油精炼为汽油、 柴油、塑胶等各种不同产 品 , 需要 对原 油进 行冷却 和加热 .如果在 xh 时, 原油 的温度 单位 :0 C 为 f x x 2 7 x 15(0 x 8).计算第2h和第6h时, 原油温度 的瞬时变化率, 并说明它们的意义.
解 在第2h和第6h时, 原油温度的瞬时变化率 就是f ' 2
△t>0时, 在[2, 2 +△t ]这段时 间内
v 4.9t 13.1
当△t = – 0.01时, v 13.051
当△t = – 0.001时, v 13.0951
△t = – 0.00001, △t = – 0.000001,
v 4.9t 13.1
当△t = 0.01时,
……
我们发现,当t趋近于0 时, 即无论t从小于2 的一边, 还是从大于2一边趋近于2时, 平均速度都趋近于一 个确定的值 13.1. 从物理的角度看 , 时间间隔| t | 无限变小时, 平均
h2 t h2 我们称确定值 13.1是 当t趋近于0时的极限. t
速度v就无限趋近于 t 2时的瞬时速度 .因此, 运动 员在t 2时的瞬时速度是 13.1m / s. h2 t h2 为了表述方便 , 我们用lim 13.1 t 0 t 表示"当t 2, t 趋势近于0时, 平均速度v 趋近于确 定值 13.1".
1. f ( x0 )与x0的值有关,不同的x0其导数值一般也不相同。 2. f ( x0 )与x的具体取值无关。
3.瞬时变化率与导数是同一概念的两个名称。
由导数的定义可知, 求函数 y = f (x)的导数的一般方法:
1. 求函数的改变量
y f ( x0 x) f ( x0 );