6、自动控制原理-传递函数汇总
自动控制原理传递函数知识点总结

自动控制原理传递函数知识点总结自动控制原理是研究自动控制系统中信号传递、处理、转换等基本理论和方法的学科。
传递函数是描述线性时不变系统的数学模型,它对于分析和设计控制系统起着重要的作用。
下面将对自动控制原理中关于传递函数的知识点进行总结。
一、传递函数的定义传递函数是用来描述线性时不变系统输入-输出关系的数学函数。
对于连续时间系统,传递函数可以表示为:G(s) = Y(s) / X(s)其中,G(s)为传递函数,Y(s)为系统的输出信号,X(s)为系统的输入信号,s为复变量。
对于离散时间系统,传递函数可以表示为:G(z) = Y(z) / X(z)其中,G(z)为传递函数,Y(z)为系统的输出信号,X(z)为系统的输入信号,z为复变量。
二、传递函数的性质1. 时域特性:传递函数可以通过拉氏变换将时域的微分、积分方程转换为频域的代数方程,从而简化系统的分析和设计。
2. 稳定性:传递函数的稳定性与其极点位置有关。
当所有极点均位于左半平面时,传递函数是稳定的;当存在极点位于右半平面时,传递函数是不稳定的。
3. 零点和极点:传递函数的零点是使得传递函数为零的点,极点是使得传递函数无穷大的点。
零点和极点的位置对系统的动态性能和稳定性有重要影响。
4. 频率响应:传递函数的频率响应是指系统对不同频率输入信号的响应特性。
频率响应可以通过传递函数的频域分析获得,包括幅频特性和相频特性。
三、传递函数的常见形式1. 一阶系统传递函数:一阶系统的传递函数形式为:G(s) = K / (s + a)其中,K为传递函数的增益,a为系统的时间常数。
2. 二阶系统传递函数:二阶系统的传递函数形式为:G(s) = K / (s^2 + 2ζω_ns + ω_n^2)其中,K为传递函数的增益,ζ为阻尼比,ω_n为自然频率。
3. 传递函数的因果性:因果系统的传递函数在复平面上的极点全部位于左半平面,即Re(s) < 0。
非因果系统的传递函数在复平面上的极点存在于右半平面,即Re(s) > 0。
自动控制原理--传递函数的定义及性质和表示形式

传 递 函 数的表示形式
3.时间常数形式(尾1型 )
G(s)
bm (1s 1)( 2s2
an (T1s 1)(T2s2
22s 1)( is 1) 2T2s 1)(Tjs 1)
m
K bm K * am
(zi )
1 n
称 G(s)的开环增益。
传递函数
传递函数的定义及性质 传 递 函 数的表示形式
传 递 函 数的定义
对于n阶系统,线性微分方程的一般形式为:
a d n c(t) a d n1 c(t) a d c(t) a c(t)
0 dt n
dt1 n1
dt n1
n
b d m r(t) b d m1 r(t) b d r(t) b r(t)
另外实际系统总有惯性,因此实际系统中有n>=m,n称 为系统的阶数
传递函数的性质
7)传递函数是系统单位脉冲响应的Laplace变换。
定义 g(t) 为系统单位脉冲作用下的系统输出:
当 r(t) (t) 时,系统的输出c(t)称为 g(t)
此时,L[r(t)] L[ (t)] 1 所以:
C(s) G(s)R(s) G(s) c(t) g(t) L1[C(s)] L1[G(s)R(s)] L1[G(s)]
( p j )
1
i ,Tj 称时间常数。
传递函数的性质
G(s)
C(s) R(s)
b0sm a0 s n
b1sm1 a1sn1
bm1s an1s
bm an
5)传递函数的概念主要适用于单输入单输出系统。
若系统有多个输入信号,在求传递函数时,除了一
自动控制原理 传递函数计算

• 传递函数只表明一个特定的输入、输出关系, 对于多输入、多输出系统来说没有统一的传递 函数;(可定义传递函数矩阵,见第九章)
传递函数是关于复变量s的有理真分式,它的分
子,分母的阶次是: n m。
一定的传递函数有一定的零、极点分布图与之 对应。这将在第四章根轨迹中详述。
C R=1
北京航空航天大学
L1
L2
P11 P22
L3 L4 L2 L4
L3 L4
②两两互不相关的回路2
G4
R
C
G1
G2
G3
H2 H1
L3 L4 = (G4 )(G2G3 H2 )
3. ①求前向通路1
G4
R
C
G1
G2
G3
H2 H1
P1 = G1G2G3 1 = 1
3. ②求前向通路2
G4
R
C
G1
G2
G3
H2 H1
= 1 P2 = G4 2
G1G2 H1 G2G3 H 2
G4
R
G1
G2
G3
C
H2 H1
P2 = G1G4
2 = 1
前向通路数:n = 2
求解步骤之三:求总传递函数
C
R
=
1
G1G2G3
G1G2G3 G1G4 G1G2 H1 G2G3 H2
G1G4
G4 H2
例3:对例2做简单的修改
G4
R
C
G1
G2
G3
H2 H1
①求反馈回路1
G4
R
C
G1
G2
自动控制原理公式汇总松鼠学长

自动控制原理公式汇总松鼠学长
自动控制原理涉及到很多公式,下面是一些常见的公式汇总:1.开环传递函数:G(s) = Y(s)/U(s)
- G(s)表示系统的传递函数
- Y(s)表示输出信号的Laplace变换
- U(s)表示输入信号的Laplace变换
2.闭环传递函数:T(s) = Y(s)/R(s)
- T(s)表示闭环系统的传递函数
- Y(s)表示输出信号的Laplace变换
- R(s)表示参考输入信号的Laplace变换
3.系统的单位反馈闭环传递函数:T(s) = G(s)/(1 + G(s)H(s)) - T(s)表示闭环系统的传递函数
- G(s)表示开环系统的传递函数
- H(s)表示单位反馈的传递函数
4.闭环系统的稳定性判据:若开环传递函数G(s)的所有极点的实部都小于零,则闭环系统是稳定的。
5. PID控制器输出信号:u(t) = Kp*e(t) + Ki*∫[0,t] e(τ) dτ + Kd*de(t)/dt
- u(t)表示PID控制器的输出信号
- Kp是比例增益
- Ki是积分增益
- Kd是微分增益
- e(t)是误差信号,等于参考输入信号与实际输出信号之差
这些公式只是自动控制原理中的一小部分,实际上自动控制原理是一个庞大的学科,涉及到许多不同的理论和方法。
它还包括了传感器和执行器的动态特性、控制器的设计和调节、系统的鲁棒性等方面的内容。
在实际应用中,根据具体问题的要求,可能还需要考虑动态特性的影响、非线性系统的建模和控制、多变量系统的控制等更高级的内容。
因此,适当拓展自动控制原理的公式是必要的。
自动控制原理知识点汇总

自动控制原理知识点汇总自动控制原理是研究和设计自动控制系统的基础学科。
它研究的是用来实现自动化控制的基本概念、理论、方法和技术,以及这些概念、理论、方法和技术在工程实践中的应用。
下面是自动控制原理的一些重要知识点的汇总。
一、控制系统的基本概念1.控制系统的定义:控制系统是用来使被控对象按照一定要求或期望输出的规律进行运动或改变的系统。
2.控制系统的要素:输入、输出、被控对象、控制器、传感器、执行器等。
3.控制系统的分类:开环控制和闭环控制。
4.控制系统的性能评价指标:稳定性、快速性、准确性、抗干扰性、鲁棒性等。
二、数学建模1.控制对象的数学建模方法:微分方程模型、离散时间模型、差分方程模型等。
2.控制信号的形式化表示:开环信号和闭环信号。
三、传递函数和频率响应1.传递函数:描述了控制系统输入和输出之间的关系。
2.传递函数的性质:稳定性、正定性、因果性等。
3.频率响应:描述了控制系统对不同频率输入信号的响应。
四、稳定性分析和设计1.稳定性的定义:当外部扰动或干扰没有足够大时,系统的输出仍能在一定误差范围内稳定在期望值附近。
2.稳定性分析的方法:根轨迹法、频域方法等。
3.稳定性设计的方法:规定根轨迹范围、引入正反馈等。
五、PID控制器1.PID控制器的定义:是一种用于连续控制的比例-积分-微分控制器,通过调节比例、积分和微分系数来实现对系统的控制。
2.PID控制器的工作原理和特点:比例控制、积分控制、微分控制、参数调节等。
六、根轨迹设计方法1.根轨迹的定义:描述了系统极点随控制输入变化时轨迹的变化规律。
2.根轨迹的特点:实轴特征点、虚轴特征点、极点数量等。
3.根轨迹的设计方法:增益裕量法、相位裕量法等。
七、频域分析与设计1.频率响应的定义:描述了系统对不同频率输入信号的响应。
2.频率响应的评价指标:增益裕量、相位裕量、带宽等。
3.频域设计方法:根据频率响应曲线来调整系统参数。
八、状态空间分析与设计1.状态空间模型:描述了系统状态和输入之间的关系。
自动控制原理公式

自动控制原理公式下面是一些重要的自动控制原理公式:1.连续时间系统的传递函数:传递函数是描述系统输入和输出之间关系的函数。
对于连续时间系统,传递函数表示为s的函数:G(s)=Y(s)/U(s)其中,G(s)是系统的传递函数,Y(s)是系统的输出,U(s)是系统的输入,s是复变量。
2.离散时间系统的传递函数:对于离散时间系统,传递函数表示为z的函数:G(z)=Y(z)/U(z)其中,G(z)是系统的传递函数,Y(z)是系统的输出,U(z)是系统的输入,z是复变量。
3.闭环传递函数:闭环传递函数描述了闭环控制系统的输入和输出之间的关系。
对于连续时间系统,闭环传递函数表示为s的函数:T(s)=Y(s)/R(s)其中,T(s)是闭环传递函数,Y(s)是系统的输出,R(s)是参考输入。
4.控制系统的传递函数表达式:控制系统的传递函数可以表示为系统组成部分的传递函数之间的乘积或相加。
例如,对于一个系统,其传递函数可以表示为:G(s)=G1(s)*G2(s)/(1+G1(s)*G2(s)*H(s))其中,G1(s)和G2(s)是系统的组成部分的传递函数,H(s)是反馈路径的传递函数。
5.极点和零点:极点是系统传递函数的根,决定了系统的稳定性和动态响应。
零点是传递函数等于零的点,对系统的频率响应和稳定性有影响。
6.PID控制器公式:PID控制器是一种常见的反馈控制器,它根据误差信号来调整系统输出。
PID控制器的输出由比例项、积分项和微分项组成,公式表示为:u(t) = Kp * e(t) + Ki * ∫ e(t)dt + Kd * de(t) / dt其中,u(t)是PID控制器的输出,Kp、Ki、Kd是控制器的参数,e(t)是当前时刻的误差信号,∫ e(t)dt和de(t) / dt分别是误差信号的积分和微分。
这些公式只是自动控制原理中的一小部分,涵盖了控制系统的建模和调节方法。
自动控制原理公式是自动控制工程师和研究人员分析和设计自动控制系统的重要工具。
自动控制原理传递函数

自动控制原理传递函数
自动控制原理中,传递函数是一个非常重要的概念。
传递函数描述了控制系统
输入和输出之间的关系,是分析和设计控制系统的重要工具。
本文将介绍传递函数的基本概念、性质和应用。
传递函数是描述线性时不变系统输入和输出之间关系的数学函数。
对于一个线
性时不变系统,其传递函数可以用拉普拉斯变换表示。
传递函数通常用G(s)表示,其中s是复变量。
传递函数的形式可以是分子多项式除以分母多项式的比值,也可
以是一些特定形式的函数。
传递函数的性质包括,稳定性、因果性、实数性等。
稳定性是指系统在输入有
界的情况下,输出也是有界的。
因果性是指系统的输出只依赖于当前和过去的输入,而不依赖于未来的输入。
实数性是指系统的传递函数在实轴上的取值都是实数。
传递函数在控制系统分析和设计中有着广泛的应用。
通过传递函数,可以方便
地分析系统的频率响应特性,如幅频特性、相频特性等。
同时,传递函数也可以用于控制系统的设计,例如根据要求设计控制器的参数,使系统的性能满足特定的要求。
在实际工程中,传递函数也经常用于建立系统的数学模型。
通过测量系统的输
入和输出,可以辨识出系统的传递函数,从而对系统进行建模和仿真。
这对于系统的分析和预测具有重要意义。
总之,传递函数是自动控制原理中一个非常重要的概念。
通过传递函数,可以
方便地描述和分析控制系统的性能,并且可以用于控制系统的设计和建模。
因此,对传递函数的理解和掌握是控制工程师必备的基本能力之一。
希望本文对传递函数的基本概念、性质和应用有所帮助。
自动控制原理,传递函数共35页

将上式求拉氏变化,得(令初始值为零) ( a n s n a n 1 s n 1 a 1 s a 0 ) Y ( s ) ( b m s m b m 1 s m 1 b 1 s b 0 ) X ( s ) G (s)Y X ((s s))b a m n s sm n a b n m 1 1 s sn m 1 1 a b 1 1 ss a b 0 0 称为环节的传递函数
R 1 R 2(R 1 C 1 s ) R 2 R 1 C s R 1 R 2
(R1 R2 R2R1Cs1)
(R1
R2 R2
R1 R2 )(R2R1C
s1)
111TTss
R2
R1 R2
1 Cs
R1
R2
uO
T R1R2C R1 R2
R1 R2
R2
10/2/2019
ui
齿轮组
'
' k ui
t
0 kui(t)dt
可见, ' ~ ui 为比例环节,
~ ui 为积分环节。
10/2/2019
22
惯性环节
(三)惯性环节
时域方程:T'(y t)y(t)k(tx)t,0
传递函数:G(s)Y(s) k
X(s) Ts1
当输入为单位阶跃函数时,有 Ty'(t)y(t)k,可解得:
其他函数可以查阅相关表格获得。
10/2/2019
10
用复数阻抗法求电网络的传递函数
复数阻抗:电气元件两端的电压相量与流 过元件的电流相量之比,称为该元件的复 数阻抗。
6、自动控制原理-传递函数

得到系统(或环节)传递函数的一般形式
X o ( s) bm s bm1s b1s b0 G( s) X i ( s) an s n an 1s n 1 a1s a0
m
由此可知,只要知道系统微分方程,就可求出其传递函数。
即
Lxo (t ) X o (s) G ( s) Lxi (t ) X i (s)
例题2 求图示简单阻容电路的传递函数。 R 解:电路方程为
1 ui (t ) R i (t ) i (t ) dt C ui (t) 1 uo (t ) i (t ) dt C duo (t ) RC uo (t ) ui (t ) dt
i(t) C
耗能元件
因此传递函数的零、极点分布图也表征了系统的
动态性能。
8、只能反映零初始条件下输入信号引起的输出, 不能反映非零初始条件引起的输出。
5/23/2016 10:28:37 PM
19
传递函数的表示方式
1、有理分式形式
传递函数最常用的形式是下列有理分式形式
N ( a1s a0 D(s)
为系统的时间常数。
K k
( zi ) ( p j )
j 1 i 1 n
m
23
传递函数:
U c ( s) 1 G( s ) U r ( s ) LCs 2 RCs 1
[例4] 求下图的传递函数
C i1
1 i1dt R1i1 R1i2 0 C
R2
ui
R1 i2
uO
R1i2 R1i1 R2 i2 ui R2 i2 uO
(
1 R1 ) I1 ( s ) R1 I 2 ( s ) 0 Cs
自动控制原理公式汇总松鼠学长

自动控制原理公式汇总松鼠学长自动控制原理涉及到多种公式,具体公式的使用取决于所研究的控制系统的类型和特征。
以下是一些常用的自动控制原理公式的汇总:1.传递函数公式:传递函数是描述系统输入和输出关系的数学模型,通常表示为G(s)。
在拉普拉斯域中,传递函数公式可以表示为:G(s) = Y(s) / X(s)其中,Y(s)表示系统的输出,X(s)表示系统的输入。
2.系统的稳定性判据:系统的稳定性是指系统的输出在输入变化或扰动下是否保持有界。
常用的稳定性判据包括极点位置判据和频率响应判据。
其中,极点位置判据是通过判断系统传递函数的极点位置是否在左半平面来确定系统的稳定性。
3.闭环控制系统的稳定性判据:闭环控制系统的稳定性通常使用Nyquist稳定性判据或Bode稳定性判据。
Nyquist稳定性判据是通过构造Nyquist曲线来判断闭环系统的稳定性。
Bode稳定性判据是通过绘制系统的幅频响应曲线和相频响应曲线来判断系统的稳定性。
4. PID控制器的传递函数:PID控制器是常用的控制器类型,其传递函数形式为:Gc(s) = Kp + Ki / s + Kd * s其中,Kp、Ki、Kd分别表示比例系数、积分系数和微分系数。
5.标称模型的频率响应:标称模型的频率响应是指根据系统的传递函数计算得到的幅频响应和相频响应。
幅频响应可以用来描述系统的增益特性,相频响应可以用来描述系统的相位特性。
上述只是自动控制原理中一些常用的公式,实际应用中还会涉及更多的公式,例如系统的冲击响应、阶跃响应等。
根据需要,可以进一步拓展学习和应用更多的自动控制原理公式。
自动控制原理复习资料

(3)若遵循前一个环节的输出为下一个环节的输入, 则容易画图。
例题 系统的微分方程为:
x1 (t ) r (t ) c (t ) dx2 (t ) T1 K1 x1 (t ) x2 (t ) dt x3 (t ) x2 (t ) K 3c (t ) dc (t ) T2 c (t ) K 2 x3 (t ) dt
R1 ( s)
R1(S)
R1(S)
+ -
G1(S) G3(S)
C1(S)
+
G1(S)
C1(S)
G4(S)
G3(S) G2(S) -1 G4(S)
R2(S)
G2(S)
C2(S)
+
C1 ( s) G1 ( s) G( s) R1 (s) 1 G1 ( s)G2 ( s)G3 ( s)G4 ( s)
注意
负反馈取+ 正反馈取-
2-7. 求闭环传递函数。
R1(S)
+ -
G1(S) G3(S) G4(S)
C1(S)
R2(S)
G2(S)
C2(S)
+
方法要点: 一个输入作用,另一个输入为0; 关注一个输出时,与另外一个输出没有关系; 化简时碰到比较器处的“负号”时,一定要用-1代替。
(1)求 C1 (s) ,令R2(s)=0
ui
1 SC1
C1
R2
C2
1 SC2
I (s)
R1 +
U i ( s)
uo
U o ( s)
1 R1 C1s U i (s) I (s) 2 1 U ( s ) C C R R s (C2 R2 C1R1 )s 1 o 1 2 1 2 R1 G( s ) C1s U i ( s) C2 R1s 1 U o ( s) ( R2 ) I ( s) sC2
自动控制原理传递函数

自动控制原理传递函数在自动控制系统中,传递函数是一种常用的描述系统动态性能的数学工具。
它反映了系统的输入信号与输出信号之间的关系。
传递函数常用于描述线性、时不变系统,并且在控制系统设计中有着重要的作用。
传递函数可以通过系统的微分方程求得。
对于一个一阶系统,其微分方程一般可以表示为:dy(t)/dt = K*u(t)其中,dy(t)/dt表示系统的输出变量的变化率,K表示系统的增益,u(t)表示系统的输入变量。
通过对上述微分方程进行拉普拉斯变换,可以得到对应的传递函数:Y(s)=K*U(s)/s在上式中,s表示复数变量,Y(s)和U(s)分别表示输出信号和输入信号的拉普拉斯变换。
通过传递函数,我们可以方便地分析系统的动态性能。
传递函数是控制系统设计中的重要工具,它具有以下几个特点:1.表征系统的动态性能:传递函数通过描述输入信号和输出信号之间的关系,反映了系统的动态响应特性。
通过分析传递函数的特性,可以预测系统的稳定性、阻尼性、超调量等重要性能指标。
2.方便进行频域分析:传递函数在频域中有简洁的表达形式,可以方便地进行频域分析。
通过对传递函数进行频率响应分析,可以确定系统的频率特性,为系统的设计和调整提供依据。
3.便于系统设计和优化:传递函数可以直观地表示系统的输入输出关系,便于系统设计和性能调整。
通过对传递函数进行变换和运算,可以方便地进行系统的设计和优化。
可以通过一些常见的传递函数来说明其作用。
以二阶系统为例,其一般传递函数形式为:G(s) = K/(s^2 + 2ξωns + ωn^2)其中,K为系统的增益,ξ为系统的阻尼比,ωn为系统的固有频率。
通过对传递函数的分析,可以得到系统的阶跃响应、频率响应和单位冲激响应等重要特性。
总之,传递函数在自动控制原理中是一种重要的数学工具,通过它可以方便地描述和分析系统的动态特性。
掌握传递函数的分析方法,对于控制系统的设计和优化具有重要的指导意义。
对于自动控制原理的学习和应用,传递函数的掌握是非常重要的一部分。
自动控制原理传递函数

自动控制原理传递函数
自动控制原理传递函数是描述控制系统输入输出关系的数学模型,通常以s域传递函数的形式表示。
在控制系统中,输入信
号经过传递函数的作用,产生输出信号。
传递函数是由系统的微分方程所得到的拉普拉斯变换得到的。
控制系统中的传递函数通常是指示系统的输入与输出之间的关系,称为开环传递函数。
在控制系统中,传递函数是通过将系统的微分方程进行拉普拉斯变换得到的。
传递函数可以用来分析系统的动态性能,并通过调整传递函数的参数来改善系统的稳定性、快速性和准确性。
传递函数通常用以下形式表示:
G(s) = Y(s) / U(s)
其中,G(s)是传递函数,Y(s)是输出信号的拉普拉斯变换,U(s)是输入信号的拉普拉斯变换。
传递函数描述了输入与输出信号之间的关系,以及系统对输入信号的响应速度和稳定性等性能。
控制系统设计中,可以根据给定的性能要求,选择合适的传递函数来实现所需的控制效果。
常见的传递函数包括比例传递函数、积分传递函数、微分传递函数以及它们的组合。
通过对传递函数进行数学分析和计算,可以得到系统的稳定性、频率响应、步跃响应等性能指标。
控制系统设计师可以根据这些指标来优化系统的性能,并进行参数调整和改进。
总之,传递函数是自动控制原理中非常重要的概念,它描述了控制系统输入与输出之间的关系。
通过分析和优化传递函数,可以实现控制系统的稳定性、准确性和快速性等性能要求。
《自动控制原理》第2章线性系统的传递函数

《自动控制原理》第2章线性系统的传递函数线性系统是指系统的输出与输入之间存在线性关系的系统。
线性系统的传递函数是描述系统输入输出之间关系的一种数学表示方法。
在线性系统中,传递函数是一个复变函数,通常表示为H(s),其中s是复变数,表示Laplace变换域中的复频率。
传递函数可以通过对系统的微分方程进行Laplace变换得到。
传递函数的形式可以根据系统的特点进行表示。
例如,对于一个惯性系统,其传递函数可以表示为H(s)=k/(Ts+1),其中k是系统的增益,T是系统的时间常数。
传递函数的分子表示系统的输出与输入之间的增益关系,分母表示系统的动态响应特性。
通过传递函数,我们可以分析系统的频率响应特性。
频率响应可以通过将复变数s替换为jω,其中j是虚数单位,ω是真实频率。
通过计算传递函数在不同频率下的幅频特性和相频特性,我们可以了解系统对不同频率的输入信号的响应情况。
另外,传递函数还可以用于系统的稳定性分析。
对于一个线性时不变系统,如果其传递函数的分母没有极点位于劣半平面,即实部为负的复数域中,那么系统是稳定的。
通过分析传递函数的极点位置,我们可以判断系统的稳定性。
在实际应用中,我们可以利用传递函数进行系统的设计和控制。
例如,对于给定的控制要求,我们可以通过选择合适的传递函数参数,来设计满足要求的控制器。
控制器的设计过程可以通过将传递函数相乘或串联、并联等操作来实现。
总结起来,线性系统的传递函数是描述系统输入输出关系的一种数学表示方法。
通过传递函数,我们可以分析系统的频率响应和稳定性,并进行系统的设计和控制。
掌握传递函数的理论和应用,对于理解和应用自动控制原理具有重要意义。
以上是关于《自动控制原理》第2章线性系统的传递函数的1200字以上的介绍。
希望对读者理解和学习该章节内容有所帮助。
《自动控制原理》第二章传递函数

输出信号的拉氏变换 传递函数 = 输入信号的拉氏变换 零初始条件
C ( s) G(s) = R( s)
autocumt@ 1 中国矿业大学信电学院
一、 传递函数的定义和主要性质
设线性定常系统由下述n阶线性常微分方程描述: 设线性定常系统由下述n阶线性常微分方程描述:
dn d n −1 d a 0 n c (t ) + a1 n −1 c (t ) + ⋅ ⋅ ⋅ + a n −1 c (t ) + a n c (t ) dt dt dt d m −1 d dm = b0 m r (t ) + b1 m −1 r (t ) + ⋅ ⋅ ⋅ + bm −1 r (t ) + bm r (t ) dt dt dt
autocumt@
15
中国矿业大学信电学院
自动控制原理
4、振荡环节
特点:包含两个独立的储能元件,当输入量发生变化时,两个 包含两个独立的储能元件,当输入量发生变化时, 包含两个独立的储能元件 储能元件的能量进行交换,使输出带有振荡的性质。 储能元件的能量进行交换,使输出带有振荡的性质。
z1 n 2 (t) = n1 (t) z2
G(s) = N 2 (s) z1 = =K N1 (s) z 2
传递函数: 传递函数:
autocumt@
9
中国矿业大学信电学院
其它一些比例环节
自动控制原理
R2 R1
r (t )
Ec
R
c (t )
ic (t )
r1
r2
r (t )
c(t )
C
例:积分电路 积分电路
i1 (t )
R1
自动控制原理与系统-传递函数

/jwc/08jpkc/zk/wangluokecheng/cdhs.html
精品课程申报网站
课程学习
单元一
自动控制基本概念 开环控制与闭环控制 自动控制系统分类 对自动控制系统的基本要求
单元二
拉普拉斯变换及应用 控制系统数学模型 传递函数 典型环节的数学模型 控制系统结构框图
零、极点形式:
典型环节形式:
注意:ⅰ通常所说的增益是典型环节形式下的增益K而不是零极点形式下的增益。 ⅱ两种形式能相互转化。
三、由定义求取传递函数
方法有两种:
(1)建立系统微分方程,根据拉氏变换的时域微分性对此方程进行拉氏变换,而后由定义求取传递函数。
方法1:RLC电路: 系统的微分方程是:
根据拉氏变换的时域微分 性对此方程进行拉氏变换 得 所以
一、传递函数的定义
定义为: 线性定常系统在零初始条件下,系统输出量的拉氏变换值与输入量的拉氏变换值之比。
记作:
二、传递函数的性质
1.唯一性 2.传递函数是复变量s的有理分式函数,分母阶次为n的传函称为n阶传函,相应系统称为n阶系统(“阶”的概念) 3.传函反映系统固有特性,只取决于系统或元件的结构参数,而与输入量无关。 4.传递函数的拉氏反变换是单位脉冲响应g(t) 5.传函不能反映系统的物理结构和性质。 6.传递函数是一种运算函数,G(s)起着从输入到输出的传递作用,故名传递函数 7.若传递函数的分母多项式 A(s),令A(s)=0称为系统特征方程。 8.传递函数有两种表示方法
单元三
自动控制系统性能指标 系统时域分析法 系统频域分析法 自动控制系统性能改善
单元四
调速的基本概念 单闭环直流调速系统 双闭环直流调速系统 可逆直流调速系统
自动控制原理--传递函数相关知识

26.5
1
s 17.25
17.25
26.5
s (s 17.25)2 (26.5)2 (s 17.25)2 (26.5)2
所以
y(t)
1 e17.25t
cos 26.5t 17.25 e17.25t 26.5
sin 26.5t
1 e17.25t
cos
26.5t
17.25 26.5
sin
26.5t
D(s) a0sn a1sn1 an1s an D(s) 0即是系统的特征方程。
G(s) N (s) b0 (s z1)(s z2 ) (s zm ) D(s) a0 (s p1)(s p2 ) (s pn )
s zi (i 1, 2 m)是N (s) 0的根,称为传递 函数的零点,s pi (i 1, 2 n)是D(s) 0的根 是传递函数的极点。
因为组成系统的元部件或多或少存在惯 性,所以G(s)的分母阶次大于等于分子阶 次,即 n,是m有理真分式,若 ,我们m 就 n 说这是物理不可实现的系统。
二、传递函数的性质
(1)传递函数是一种数学模型,是对微分方程在零初始条件 下进行拉氏变换得到的;
(2)传递函数与微分方程一一对应;
(3)传递函数描述了系统的外部特性。不反映系统的内部物 理结构的有关信息;
R(s)
式中 ——环节的时间常数。
特点:输出量正比输入量变化的速度,能预示输 入信号的变化趋势。
实例:测速发电机输出电压与输入角度间的传递 函数即为微分环节。
5)振荡环节:其输出量和输入量的关系,由下面的 二阶微分方程式来表示。
T2
d 2 y(t) dt 2
2 T
dy (t ) dt
自动控制原理典型环节传递函数

即: x( o t) T 1x( i t) dt
拉氏变 :X( os换 ) T 1得 X s( i s) G(s)
1 Ts
T为积分环节的时间常数
例题:
当 A盘作恒速转动,并靠摩擦力带动
B盘以角速度ω转动时,因 B盘和I 轴
间以滑动键联接,故B盘滑动就会改变 偏心量e;当时e=0,A盘转动而 B盘不 转;e增大, B盘角速度ω正比的增大, 设K为比例常数,B盘转角为θ(t)。 输入— e 输出—θ(t)
x (t ) p1 、p2分别为油缸左、右腔
单位面积上的压力。
o xi—活塞位移 x0—油缸位移
可以认为是一个微分环节 对于这两种机构求其传递函数均为 激磁电压ui恒定,磁通不变。 自动控制原理典型环节传递函数 间以滑动键联接,故B盘滑动就会改变 两者物理模型不同,但数学模型相同,
o
1Ts Xo (s)
1 (设c1) Ts1 k
§2.4.3 微分环节
微分环节具有输出正比于输入的微分
即 xo(t)T x i(t)
G(s)Xo(s)Xi(s)Ts
T为微分环节的时间常数
1、理想的微分环节 G(s) Ts
2、实际的微分环节
G(s) Ts Ts 1
3、微分环节对系统的控制作用
例1、 电压下图为一直流发电机原理
解:
di(t)
1
ui(t)L dt i(t)RCi(t)dt
1
uo(t) Ci(t)d t
LT,得 U Ui0(: (ss))Lc1ssI((sIs))I(s)Rc1sI(s)
G(s)Uo(s)
1
Ui(s) LC 2sRC 1s
n1
LC R C
2L
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
⑶积分定理:(设初值为零)
L[
f
(t)dt]
F (s) s
⑷时滞定理:L[ f (t T )] e st f (t T )dt esT f (s) 0
C
i1
R1
ui
i2
R2
uO
1
C i1dt R1i1 R1i2 0 R1i2 R1i1 R2i2 ui R2i2 uO
1
( Cs
R1 ) I1 (s)
R1I 2 (s)
0
R1I1 (s) (R1 R2 )I2 (s) Ui (s)
R2 I2 (s) UO (s)
设线性定常系统(或环节)由下述n阶线性常微分方程描述
an
dn xo (t) dt n
an1
dn1xo (t) dt n1
a1
dxo (t) dt
a0 xo (t)
bm
dm xi (t) dt m
bm1
dm1xi (t) dt m1
b1
dxi (t) dt
k
例题2 求图示简单阻容电路的传递函数。
耗能元件
解:电路方程为
R
1
ui (t) R i(t) C i(t) dt
uo
(t)
1 C
i(t)
dt
ui (t)
RC
duo (t dt
)
uo
(t
)
ui
(t
)
经拉氏变换后
C uo(t) i(t)
阻容电路 储能元件
RCsU o (s) Uo (s) Ui (s)
系统传递函数为
G(s) Uo(s) 1 1 Ui (s) RCs 1 Ts 1
电路的 时间常数
T RC
例3
如图RLC电路, 试列写网络传递函数 Uc(s)/Ur(s). i(t) R L
ur(t)
C uc(t)
LC
d
2uc (t) dt 2
RC
duc (t) dt
uc
(t)
得到系统(或环节)传递函数的一般形式
G(s)
X o (s) Xi (s)
bmsm bm1sm1 b1s b0 ansn an1sn1 a1s a0
由此可知,只要知道系统微分方程,就可求出其传递函数。
即
G(s)
Lxo (t ) Lxi (t )
G(s) U0 (s) 1 1 Ts Ui (s) 1 Ts
12/13/2019 6:04:23 PM
T R1R2C R1 R2
R1 R2
ur
(t)
解: 零初始条件下取拉氏变换:
LCs 2U c (s) RCsU c (s) U c (s) U r (s)
(LCs 2 RCs 1)Uc (s) Ur (s)
传递函数: G(s) U c (s)
1
U r (s) LCs 2 RCs 1
[例4] 求下图的传递函数
m
d
2 x0 (t dt 2
)
D
dx0 (t) dt
kx0 (t)
fi (t)
解:在零初始条件下,对上式两边取拉普拉斯变换,得
ms 2 X o (s) DsX o (s) kXo (s) Fi (s)
整理得到描述系统的传递函数
G(s)
Xo (s) Fi (s)
ms 2
1 Ds
传递函数
1
主要内容: 1. 传递函数的定义与性质 2.求法
12/13/2019 6:04:23 PM
2
复习拉氏变换
F (s) f (t)est dt 0
F(s) L[ f (t)]
一个函数可以进行拉普拉斯变换的充分条件是:
1. t<0时,f(t)=0(因果系统);
2. t>=0时,f(t)分段连续;
⑸初值定理:lim f (t) lim sF (s)
t 0
s
12/13/2019 6:04:23 PM
4
复习拉氏变换
⑹终值定理:lim f (t) lim sF (s)
Hale Waihona Puke t s0 ⑺卷积定理:L[
t 0
f1 (t
)
f2 ( )d ]
F1(s)F2 (s)
③常用函数的拉氏变换:
3.
f (t)est dt
0
12/13/2019 6:04:23 PM
3
复习拉氏变换
②性质:
⑴线性性质:L[f1(t) f2 (t)] F1(s) F2 (s)
⑵微分定理:L[ f (t)] sF (s) f (0)
L[ f(t)] s2F (s) sf (0) f (0)
X o (s) X i (s)
Xo(s) Xi(s)G(s)
输入信号经系统(或环节)传递[乘以 G(s)],得到输出信号。
Xi(s)
G(s) Xo(s)
称G(s)为传递函数
传递函数分母中的最高阶次,等于输出量最高阶导数的阶次。
如果 s 的最高阶次等于n,则称这种系统为 n 阶系统。
例题1 已知系统微分方程,求其传递函数。
单位阶跃函数:f (t) 1(t), F(s) 1
单位脉冲函数:F (s)
L[
(t)]
s
1
单位斜坡函数:f (t) t, F(s) 单位抛物线函数:f (t) 1 t2, F
2
正弦函数:f (t) sint, F(s)
1 (ss2)
1 s3
s2 2
其他函数可以查阅相关表格获得。
b0 xi (t)
式中,n≥m。
当初始条件全为零,即:xi(t)和xo(t)及其各阶导数在 t=0 的值均为零时,对上式进行拉氏变换
an sn an1sn1 a1s a0 X o (s) bmsm bm1sm1 b1s b0 X i (s)
12/13/2019 6:04:23 PM
5
1. 传递函数的定义与性质
定义: 线性定常系统的传递函数为零初始条件下,系统输 出量的拉氏变换与系统输入量的拉氏变换之比。
所谓零初始条件是指 1)输入量在t>0时才作用在系统上,即在 t 0 时系统输 入及各项导数均为零; 2)输入量在加于系统之前,系统为稳态,即在 t 0时系统 输出及其所有导数项为零。