天津市高考数学压轴卷 理(含解析)

合集下载

天津市2021高考数学压轴卷 理(含解析)(1)

天津市2021高考数学压轴卷 理(含解析)(1)

2021天津高考压轴卷数学理word一、选择题:本大题共8小题,每题5分,共40分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的1.已知集合A={x|x >1},B={x|x <m},且A ∪B=R ,那么m 的值能够是( )A . ﹣1B . 0C . 1D . 22.设集合{}|24x A x =≤,集合B 为函数lg(1)y x =-的概念域,那么A B =(A)()1,2 (B)[]1,2 (C)[1,2) (D) (1,2]3.函数y=sin (2x+φ)的图象沿x 轴向左平移个单位后,取得一个偶函数的图象,那么φ的一个可能的值为( )A .B .C . 0D . 4.函数f (x )=log 2(1+x ),g (x )=log 2(1﹣x ),那么f (x )﹣g (x )是( )A . 奇函数B . 偶函数C . 既不是奇函数又不是偶函数D . 既是奇函数又是偶函数5.设曲线sin y x =上任一点(,)x y 处切线斜率为()g x ,那么函数2()y x g x =的部份图象能够为.6.设z=2x+y ,其中变量x ,y 知足条件,假设z 的最小值为3,那么m 的值为( ) A . 1 B . 2 C . 3 D . 47.已知点P (x ,y )在直线x+2y=3上移动,当2x +4y 取最小值时,过P 点(x ,y )引圆C :=1的切线,那么此切线长等于( )A . 1B .C .D . 28.已知函数f (x )=ln (e x ﹣1)(x >0)( )A . 若f (a )+2a=f (b )+3b ,则a >bB . 若f (a )+2a=f (b )+3b ,则a <bC . 若f (a )﹣2a=f (b )﹣3b ,则a >bD . 若f (a )﹣2a=f (b )﹣3b ,则a <b二、填空题:本大题共6小题,每题5分,共30分.把答案填在答题卡的相应位置.9. 设常数a∈R,假设的二项展开式中x4项的系数为20,那么a= .10. 已知tanα=,tanβ=﹣,且0<α<,<β<π,那么2α﹣β的值.11.记等差数列{a n}的前n项和为S n,已知a2+a4=6,S4=10.那么a10= .12.棱长为2的正方体被一平面截成两个几何体,其中一个几何体的三视图如图所示,那么该几何体的体积是()13.已知圆的方程为x2+y2﹣6x﹣8y=0,设该圆过点(3,5)的最长弦和最短弦别离为AC和BD,那么四边形ABCD的面积为______________.14.等腰Rt△ACB,AB=2,.以直线AC为轴旋转一周取得一个圆锥,D为圆锥底面一点,BD⊥CD,CH⊥AD于点H,M为AB中点,那么当三棱锥C﹣HAM的体积最大时,CD的长为_____________.三、解答题:本大题共6小题,共80分.解许诺写出文字说明、证明进程或演算步骤.解答写在答题卡上的指定区域内.15. 袋中装有黑球和白球共7个,从中任取2个球都是黑球的概率为,现有甲、乙两人从袋中连番摸取1球,甲先取,乙后取,然后甲再取…,取球后不放回,直到两人中有一人取到白球时终止,每一个球在每一次被掏出的机遇是等可能的,用ξ表示取球终止所需要的取球次数.(Ⅰ)求随机变量ξ的散布列及数学期望;(Ⅱ)求乙取到白球的概率.16.在△ABC中,BC=a,AC=b,a、b是方程的两个根,且A+B=120°,求△ABC的面积及AB的长.17.如图,在棱长为1的正方体ABCD﹣A1B1C1D1中,点E是棱AB上的动点.(Ⅰ)求证:DA1⊥ED1;(Ⅱ)假设直线DA1与平面CED1成角为45°,求的值;(Ⅲ)写出点E到直线D1C距离的最大值及现在点E的位置(结论不要求证明).18.数列{a n}是递增的等差数列,且a1+a6=﹣6,a3•a4=8.(1)求数列{a n }的通项公式;(2)求数列{a n }的前n 项和S n 的最小值;(3)求数列{|a n |}的前n 项和T n .19. 已知椭圆C :的右核心为F (1,0),且点(﹣1,)在椭圆C 上.(1)求椭圆C 的标准方程;(2)已知动直线l 过点F ,且与椭圆C 交于A ,B 两点,试问x 轴上是不是存在定点Q ,使得恒成立?假设存在,求出点Q 的坐标,假设不存在,请说明理由.20. (13分)已知f (x )=lnx ,g (x )=af (x )+f′(x ),(1)求g (x )的单调区间;(2)当a=1时, ①比较的大小; ②是不是存在x 0>0,使得|g (x )﹣g (x 0)|<对任意x >0成立?假设存在,求出x 0的取值范围;假设不存在,请说明理由.2021天津高考压轴卷数学理word 参考答案1. 【答案】D.【解析】依照题意,假设集合A={x|x >1},B={x|x <m},且A ∪B=R ,必有m >1,分析选项可得,D 符合;应选D .2. 【答案】D.【解析】{}|24{2}x A x x x =≤=≤,由10x ->得1x >,即{1}B x x =>,因此{12}AB x x =<≤,因此选D.3. 【答案】【解析】令y=f (x )=sin (2x+φ),那么f (x+)=sin[2(x+)+φ]=sin(2x++φ), ∵f (x+)为偶函数, ∴+φ=kπ+, ∴φ=kπ+,k∈Z,∴当k=0时,φ=.故φ的一个可能的值为. 应选B .4. 【答案】【解析】∵f (x )=log 2(1+x ),g (x )=log 2(1﹣x ),∴f (x )﹣g (x )的概念域为(﹣1,1)记F (x )=f (x )﹣g (x )=log 2, 那么F (﹣x )=log 2=log 2()﹣1=﹣log 2=﹣F (x )故f (x )﹣g (x )是奇函数.应选A.5. 【答案】C.【解析】'cos y x =,即()cos g x x =,因此22()cos y x g x x x ==,为偶函数,图象关于y 轴对称,因此排除A,B.当2cos 0y x x ==,得0x =或,2x k k Z ππ=+∈,即函数过原点,因此选C.6. 【答案】A. 【解析】作出不等式组对应的平面区域,∵假设z 的最小值为3,∴2x+y=3,由,解得,同时(1,1)都在直线x=m上,∴m=1.应选:A.7. 【答案】D.【解析】∵x+2y=3,2x+4y =2x+22y≥2x+2y=23=8,当且仅当x=2y=时,等号成立,∴当2x+4y取最小值8时,P点的坐标为(,),点P到圆心C的距离为CP==,大于圆的半径1,故切线长为==2,应选:D.8. 【答案】A.【解析】依照复合函数的单调性可知,f(x)=ln(e x﹣1)(x>0)为增函数,∵函数的概念域为(0,+∞).∴a>0,b>0,设g(x)=f(x)+2x,∵f(x)是增函数,∴当x>0时,g(x)=f(x)+2x为递增函数,∵f(a)+2a=f(b)+3b,∴f(a)+2a=f(b)+3b>f(b)+2b,即g(a)>g(b),∵g(x)=f(x)+2x为递增函数,∴a>b,应选:A.9. 【答案】【解析】∵的二项展开式的通项公式为T r+1=•a r•x10﹣3r,令10﹣3r=4,求得r=2,故二项展开式中x4项的系数为•a2=20,解得a=±,故答案为:±.10. 【答案】【解析】∵0<α<,tanα=<1=tan,y=tanx在(0,)上单调递增,∴0<α<,又<β<π,∴﹣π<2α﹣β<﹣,∵tan2α===,tanβ=﹣,∴tan(2α﹣β)===1,∴2α﹣β=﹣.11. 【答案】【解析】等差数列{a n}的前n项和为S n,∵a2+a4=6,S4=10,设公差为d,∴,解得a1=1,d=1,∴a10=1+9=10.故答案为:10.12. 【答案】【解析】由三视图知:余下的几何体如图示:∵E、F都是侧棱的中点,∴上、下两部份的体积相等,∴几何体的体积V=×23=4.13. 【答案】【解析】圆的方程为x2+y2﹣6x﹣8y=0化为(x﹣3)2+(y﹣4)2=25.圆心坐标(3,4),半径是5.最长弦AC是直径,最短弦BD的中点是E.S ABCD=故答案为:14. 【答案】【解析】依照题意,得∵AC⊥平面BCD,BD⊂平面BCD,∴AC⊥BD,∵CD⊥BD,AC∩CD=C,∴BD⊥平面ACD,可得BD⊥CH,∵CH⊥AD,AD∩BD=D,∴CH⊥平面ABD,可得CH⊥AB,∵CM⊥AB,CH∩CM=C,∴AB⊥平面CMH,因此,三棱锥C﹣HAM的体积V=S△CMH×AM=S△CMH由此可得,当S△CMH达到最大值时,三棱锥C﹣HAM 的体积最大设∠BCD=θ,那么Rt△BCD中,BC=AB=可得CD=,BD=Rt△ACD中,依照等积转换得CH==Rt△ABD∽Rt△AHM,得,因此HM==因此,S△CMH=CH•HM==∵4+2tan2θ≥4tanθ,∴S△CMH=≤=,当且仅当tanθ=时,S△CMH达到最大值,三棱锥C﹣HAM的体积同时达到最大值.∵tanθ=>0,可得sinθ=cosθ>0∴结合sin2θ+cos2θ=1,解出cos2θ=,可得cosθ=(舍负)由此可得CD==,即当三棱锥C﹣HAM的体积最大时,CD的长为应选:C15. 【解析】(Ⅰ)设袋中原有n个黑球,由题意知…(1分)=,解得n=4或n=﹣3(舍去)…(3分)∴黑球有4个,白球有3个.由题意,ξ的可能取值为1,2,3,4,5…(4分),,,…(7分)(错一个扣一分,最多扣3分)∴ξ的散布列为ξ12345P…(8分)因此数学期望为:…(9分)(Ⅱ)∵乙后取,∴乙只有可能在第二次,第四次取球,记乙取到白球为事件A,则,…(11分)答:乙取到白球的概率为.…(12分)16. 【解析】∵A+B=120°,∴C=60°.∵a、b是方程的两个根,∴a+b=,ab=2,∴S△ABC==,AB=c====.17. 【解析】以D为坐标原点,成立如下图的坐标系,那么D(0,0,0),A(1,0,0),B(1,1,0),C (0,1,0),D1(0,1,2),A1(1,0,1),设E(1,m,0)(0≤m≤1)(Ⅰ)证明:=(1,0,1),=(﹣1,﹣m,1)∴•=0∴DA1⊥ED1;(4分)(Ⅱ)解:设平面CED1的一个法向量为=(x,y,z),那么∵=(0,﹣1,1),=(1,m﹣1,0)∴.取z=1,得y=1,x=1﹣m,得=(1﹣m,1,1).∵直线DA1与平面CED1成角为45°,∴sin45°=|cos<,>|=,∴=,解得m=.﹣﹣﹣﹣﹣(11分)(Ⅲ)解:点E到直线D1C距离的最大值为,现在点E在A点处.﹣﹣﹣﹣﹣﹣(14分)18. 【解析】(1)由得:,∴a3、a4是方程x2+6x+8=0的二个根,∴x1=﹣2,x2=﹣4;∵等差数列{a n}是递增数列,∴a3=﹣4,a4=﹣2,∴公差d=2,a1=﹣8.∴a n=2n﹣10;(2)∵S n==n2﹣9n=﹣,∴(S n)min=S4=S5=﹣20;(3)由a n≥0得2n﹣10≥0,解得n≥5,此数列前四项为负的,第五项为0,从第六项开始为正的.当1≤n≤5且n∈N*时,T n=|a1|+|a2|+…+|a n|=﹣(a1+a2+…+a n)=﹣S n=﹣n2+9n;当n≥6且n∈N*时,T n=|a1|+|a2|+…+|a5|+|a6|+…+|a n|=﹣(a1+a2+…+a5)+(a6+…+a n)=S n﹣2S5=n2﹣9n﹣2(25﹣45)=n2﹣9n+40.∴T n=.19. 【解析】(1)由题意,c=1∵点(﹣1,)在椭圆C上,∴依照椭圆的概念可得:2a=,∴a=∴b2=a2﹣c2=1,∴椭圆C的标准方程为;(2)假设x轴上存在点Q(m,0),使得恒成立当直线l的斜率为0时,A(,0),B(﹣,0),那么=﹣,∴,∴m=①当直线l的斜率不存在时,,,那么•=﹣,∴∴m=或m=②由①②可得m=.下面证明m=时,恒成立当直线l的斜率为0时,结论成立;当直线l的斜率不为0时,设直线l的方程为x=ty+1,A(x1,y1),B(x2,y2)直线方程代入椭圆方程,整理可得(t2+2)y2+2ty﹣1=0,∴y1+y2=﹣,y1y2=﹣∴=(x1﹣,y1)•(x2﹣,y2)=(ty1﹣)(ty2﹣)+y1y2=(t2+1)y1y2﹣t(y1+y2)+=+=﹣综上,x轴上存在点Q(,0),使得恒成立.20. 【解析】,g(x)的概念域为(0,+∞).①当a≤0时,g'(x)<0,(0,+∞)是g(x)的单调区间;②当a>0时,由g'(x)>0,得;由g'(x)<0,得,即增区间是,减区间是.(2),∴①当x=1时,μ(x)=0,现在②当0<x<1时,μ'(x)<0,∴μ(x)>μ(1)=0.∴③当x>1时,μ'(x)<0,∴μ(x)<μ(1)=0.∴.(3)⇔⇔∵lnx∈(0,+∞),∴g(x0)>lnx不能恒成立.故x0不存在.。

天津市高考数学压轴试卷(理科)

天津市高考数学压轴试卷(理科)

高考数学压轴试卷(理科)一、选择题(本大题共8小题,共40.0分)1.Z(M)表示集合M中整数元素的个数,设集合A={x|-1<x<8},B={x|5<2x<17},则Z(A∩B)=()A. 3B. 4C. 5D. 62.i为虚数单位,若复数(1+mi)(1+i)是纯虚数,则实数m=()A. -1B. 0C. 1D. 0或13.阅读如图的框图,运行相应的程序,若输入n的值为6,则输出S的值为()A. B. C. D.4.不等式组,所表示的平面区域的面积等于()A. B. C. D.5.下列函数中,即是奇函数,又是R上的单调函数的是()A. f(x)=ln(|x|+1)B.C. D. f(x)=x-16.展开式中x2的系数为()A. -1280B. 4864C. -4864D. 12807.已知棱长为1的正方体被两个平行平面截去两部分后,剩余部分的三视图如图所示,则剩余部分的表面积为()A.B.C.D.8.函数f(x)=x2-ln x+ax,若不等式f(x)≤0恰有两个整数解,则实数a的取值范围为()A. B. -2<a≤-1C. -3<a≤-1D.二、填空题(本大题共5小题,共25.0分)9.已知两点M(0,2),N(2,-2),以线段MN为直径的圆的方程为______.10.学校艺术节对A,B,C,D四件参赛作品只评一件一等奖,在评奖揭晓前,甲,乙,丙,丁四位同学对这四件参赛作品预测如下:甲说:“是C或D作品获得一等奖”;乙说:“B作品获得一等奖”;丙说:“A,D两件作品未获得一等奖”;丁说:“是C作品获得一等奖”.评奖揭晓后,发现这四位同学中只有两位说的话是对的,则获得一等奖的作品是______.11.已知长方体的长、宽、高分别为2,1,2,则该长方体外接球的表面积为______.12.如图,在中,,是上一点,若,则实数的值为______.13.设函数f(x)=,若f(m)>1,则实数m的取值范围是______.三、解答题(本大题共7小题,共85.0分)14.在直角坐标系xoy中,直线l的参数方程为(t为参数),以原点O为极点,x轴正半轴为极轴建立极坐标系,圆C的极坐标方程为ρ=a sinθ.(Ⅰ)若a=2,求圆C的直角坐标方程与直线l的普通方程;(Ⅱ)设直线l截圆C的弦长等于圆C的半径长的倍,求a的值.15.设△ABC的内角A,B,C所对边的长分别是a,b,c,且b=3,c=1,A=2B.(Ⅰ)求a的值;(Ⅱ)求的值.16.田忌赛马是《史记》中记载的一个故事,说的是齐国将军田忌经常与齐国众公子赛马,孙膑发也们的马脚力都差不多,都分为上、中、下三等.于是孙膑给田忌将军制定了一个必胜策略:比赛即将开始时,他让田忌用下等马对战公子们的上等马,用上等马对战公子们的中等马,用中等马对战公子们的下等马,从而使田忌赢得公子们许多赌注.假设田忌的各等级马与某公子的各等级马进行一场比赛获胜的概率如表所示:只有胜和负两种,并且毎一方三场赛马的马的等级各不相同,三场比赛中至少获胜两场的一方为最终胜利者.(1)如果按孙膑的策略比赛一次,求田忌获胜的概率;(2)如果比赛约定,只能同等级马对战,每次比赛赌注1000金,即胜利者赢得对方1000金,每月比赛一次,求田忌一年赛马获利的数学期望.17.如图,在四棱锥P-ABCD中,AB⊥PC,AD∥BC,AD⊥CD,且PC=BC=2AD=2CD=2,PA=2.(1)PA⊥平面ABCD;(2)在线段PD上,是否存在一点M,使得二面角M-AC-D的大小为60°?如果存在,求的值;如果不存在,请说明理由.18.在平面直角坐标系xOy中,设椭圆=1(a)的右焦点为F,右顶点为A,已知|OA|-|OF|=1,其中O为原点,e为椭圆的离心率.(Ⅰ)求椭圆的标准方程及离心率e;(Ⅱ)设过点A的直线l与椭圆交于点B(B不在x轴上),垂直于l的直线与l交于点M,与y轴交于点H,若BF⊥HF,且∠MOA≤∠MAO,求直线l的斜率的取值范围.19.数列{a n}是等比数列,公比大于0,前n项和S n(n∈N*),{b n}是等差数列,已知a1=,=+4,a3=,a4=.(Ⅰ)求数列{a n},{b n}的通项公式a n,b n;(Ⅱ)设{S n}的前n项和为T n(n∈N*)(i)求T n;(ii)证明:<.20.设函数f(x)=xe kx(k≠0),(1)求曲线y=f(x)在点(0,f(0))处的切线方程;(2)讨论函数f(x)的单调性;(3)设g(x)=x2-2bx+4,当k=1时,若对任意x1∈R,存在x2∈[1,2],使f(x1)≥g(x2),求实数b取值范围.答案和解析1.【答案】C【解析】解:;∴;∴Z(A∩B)=5.故选:C.可求出集合B,然后进行交集的运算即可求出A∩B,从而得出Z(A∩B).考查描述法的定义,交集的运算,理解Z(M)的定义.2.【答案】C【解析】【分析】本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础题.直接利用复数代数形式的乘除运算化简得答案.【解答】解:∵(1+mi)(1+i)=(1-m)+(1+m)i是纯虚数,∴,即m=1.故选:C.3.【答案】A【解析】【分析】本题考查循环结构,已知运算规则与运算次数,求最后运算结果,是算法中一种常见的题型,属于基础题.由图知,每次进入循环体后,S的值被施加的运算是S=S+,故由此运算规律进行计算,当i=8时不满足条件i≤6,退出循环,输出S的值即可.【解答】解:由题意,模拟执行程序,可得:n=6,i=2,S=0满足条件i≤6,S=0+=,i=4满足条件i≤6,S=+,i=6满足条件i≤6,S=++,i=8不满足条件i≤6,退出循环,输出S的值为++=.故选A.4.【答案】C【解析】解:不等式组表示的平面区域如图所示,由得交点A的坐标为(1,1).又B、C两点的坐标为(0,4),(0,).故S△ABC=(4-)×1=.故选:C.先根据约束条件画出可行域,求三角形的顶点坐标,从而求出表示的平面区域的面积即可.本题主要考查了简单的线性规划,以及利用几何意义求平面区域的面积,属于基础题.5.【答案】B【解析】解:根据题意,依次分析选项:对于A,f(x)=ln(|x|+1),有f(-x)=ln(|-x|+1)=ln(|x|+1)=f(x),则函数f(x)为偶函数,不符合题意;对于B,,有f(-x)=-f(x),函数f(x)为奇函数,且在R 上的单调递减,符合题意;对于C,,有f(-x)=-f(x),函数f(x)为奇函数,但在R上不是单调函数,不符合题意;对于D,f(x)=x-1=,f(x)的定义域为{x|x≠0},在R上不是单调函数,不符合题意;故选:B.根据题意,依次分析选项中函数的奇偶性与定义域以及单调性,综合即可得答案.本题考查分段函数的奇偶性与单调性的判断,关键是掌握分段函数的解析式的形式,属于基础题.6.【答案】A【解析】解:根据二项式的展开式,可以得到第一个括号里出3x3项,第二个括号里出项,或者第一个括号里出x4,第二个括号里出,具体为,化简得到-1280x2,故选:A.得到第一个括号里出3x3项,第二个括号里出项,或者第一个括号里出x4,第二个括号里出,转化求解即可.本题考查二项式定理的应用,考查转化思想以及计算能力.7.【答案】B【解析】【分析】本题考查三视图求几何体的表面积,由三视图正确复原几何体是解题的关键,考查空间想象能力.由三视图可知几何体是正方体在一个角上截去两个三棱锥,把相关数据求解几何体是表面积即可.【解答】解:由三视图可知几何体是正方体在一个角上截去一个三棱锥,截去两部分,∵正方体的棱长是1,∴剩余部分表面积为:S=6××1×1+2×=3+,故选:B.8.【答案】D【解析】解:f(x)定义域为由x2-ln x+ax≤0得ax≤-x2+ln x,等价为a≤-x+,设h(x)=-x+,(x>0),h′(x)=-1+=,设g(x)=-x2+1-ln x,则g(x)在(0,+∞)上为减函数,当x=1时,g(1)=-1+1-ln1=0,当x>1时,g(x)<0,此时h′(x)<0,h(x)为减函数,当0<x<1时,g(x)>0,此时h′(x)>0,h(x)为增函数,即当x=1时,h(x)取得极大值,此时h(1)=-1,则h(x)对应的图象如图:要使a≤-x+,的整数解只有两个,则这两个整数解只能为x=1,x=2,即y=a应该满足h(3)<a≤h(2),即-3<a≤-2.故选:D.利用参数分离法转化为a≤-x+,设h(x)=-x+,研究函数的极值和单调性,利用数形结合进行转化求解即可.本题主要考查函数与方程应用,利用参数分离法进行转化,构造函数研究函数的单调性和极值,利用数形结合是解决本题的关键.9.【答案】(x-1)2+y2=5【解析】【分析】根据题意,设MN的中点为O,由MN的坐标求出O的坐标以及MN的长,即可得要求圆的圆心与半径,由圆的标准方程即可得答案.本题考查圆的标准方程的计算,注意分析圆心坐标以及半径,属于基础题.【解答】解:根据题意,设MN的中点为O,则以线段MN为直径的圆的圆心为O,半径r=,又由M(0,2),N(2,-2),则O(1,0),|MN|==2,则r=,则要求圆的标准方程为:(x-1)2+y2=5;故答案为:(x-1)2+y2=5.10.【答案】B【解析】【分析】本题考查了合情推理的问题,属于基础题.假设A,B,C,D分别为一等奖,判断甲、乙、丙、丁的说法的正确性,即可判断.【解答】解:若A为一等奖,则甲,乙,丙,丁的说法均错误,故不满足题意,若B为一等奖,则乙,丙说法正确,甲,丁的说法错误,故满足题意,若C为一等奖,则甲,丙,丁的说法均正确,故不满足题意,若D为一等奖,则只有甲的说法正确,故不满足题意,故若这四位同学中只有两位说的话是对的,则获得一等奖的作品是B.故答案为B.11.【答案】9π【解析】【分析】本题考查长方体外接球表面积的求法,关键是明确长方体的对角线为其外接球的直径,是基础题.由已知求得长方体的对角线长,得到外接球的半径,代入球的表面积公式得答案.【解答】解:由已知可得,长方体的对角线长为,则长方体外接球的半径r=.∴长方体外接球的表面积为.故答案为:9π.12.【答案】【解析】【分析】本题主要考查了平面向量的基本定理的简单应用,属于基础试题.结合已知及向量的基本定理可得,结合已知,可求m,t.【解答】解:由题意及图,,又,∴,∴,又,∴,解得,.故答案为:.13.【答案】(-∞,0)∪(e,+∞)【解析】解:函数f(x)=,当m≥1,f(m)>1,即为ln m>1,解得e<m;当m<1,f(m)>1即为1-m>1,解得m<0.综上可得,m<0或1<m.故答案为:(-∞,0)∪(e,+∞).由分段函数的解析式,讨论m≥1,m<1,再由对数函数的单调性,解不等式,求并集即可得到.本题考查分段函数的运用,考查对数函数的单调性的运用,运用分类讨论的思想方法是解题的关键.14.【答案】解:(Ⅰ)当a=2时,ρ=a sinθ转化为ρ=2sinθ整理成直角坐标方程为:x2+(y-1)2=1直线的参数方程(t为参数).转化成直角坐标方程为:4x+3y-8=0(Ⅱ)圆C的极坐标方程转化成直角坐标方程为:直线l截圆C的弦长等于圆C的半径长的倍,所以:2|3a-16|=5|a|,利用平方法解得:a=32或.【解析】(Ⅰ)直接把极坐标方程和参数方程转化成直角坐标方程.(Ⅱ)利用点到直线的距离公式,建立方程求出a的值.本题考查的知识要点:极坐标方程和参数方程与直角坐标方程的互化,点到直线的距离公式的应用.15.【答案】(Ⅰ)解:由A=2B,知sin A=sin2B=2sin B cosB,…………(1分)由正、余弦定理得.………………(3分)因为b=3,c=1,所以a2=12,则.………………(5分)(Ⅱ)解:由余弦定理得.……(6分)由于0<A<π,所以………(8分)故…………(11分)………(13分)【解析】(Ⅰ)利用正弦定理和余弦定理建立方程关系进行求解空间(Ⅱ)利用两角和差的余弦公式进行求解本题主要考查解三角形的应用,利用正弦定理余弦定理以及两角和差的余弦公式是解决本题的关键.考查学生的计算能力.16.【答案】解:(1)记事件A:按孙膑的策略比赛一次,田忌获胜.对于事件A,三次比赛中,由于第三场必输,则前两次比赛中田忌都胜.因此,P(A)=0.8×0.9=0.72;(2)设田忌在每次比赛所得奖金为随机变量ξ,则随机变量ξ的可能取值为-1000和1000,若比赛一次,田忌获胜,则三场比赛中,田忌输赢的分布为:胜胜胜、负胜胜、胜负胜、胜胜负,设比赛一次,田忌获胜的概率为P,则.随机变量ξ的分布列如下表所示:所以,.因此,田忌一年赛马获利的数学期望为-100×12=-1200金.【解析】(1)由题意知,田忌第三场比赛必输,则前两场比赛都胜,因而利用相互独立事件的概率乘法公式可得出答案;(2)先计算出田忌比赛一次获胜的概率,并计算出田忌比赛一次获利的数学期望,再这个期望上乘以12即可得出田忌一年赛马获利的数学期望.本题考查离散型随机变量及其数学期望,解决本题的关键就是弄清概率的类型,并计算出相应事件的概率,考查计算能力,属于中等题.17.【答案】证明:(1)∵在四棱锥P-ABCD中,AB⊥PC,AD∥BC,AD⊥CD,且PC=BC=2AD=2CD=2,PA=2.∴AB=AC==2,∴AB2+AC2=BC2,PA2+AC2=PC2,∴AB⊥AC,AP⊥AC,∵AB⊥PC,AC PC=C,AC,PC平面PAC,∴AB⊥平面PAC,又AB平面PAC,∴PA⊥AB,∵AB∩AC=A,AB,AC平面ABCD,∴PA⊥平面ABCD.解:(2)以A为原点,AB为x轴,AC为y轴,AP为z轴,建立空间直角坐标系,设在线段PD上,存在一点M(a,b,c),使得二面角M-AC-D的大小为60°,且=λ,(0≤λ≤1),A(0,0,0),C(0,2,0),P(0,0,2),D(-1,1,0),=(a,b,c-2),=(-1,1,-2),∴,∴M(-λ,λ,2-2λ),∴=(0,2,0),=(-λ,λ,2-2λ),设平面ACM的法向量=(x,y,z),则,取x=1,得=(1,0,),平面ACD的法向量=(0,0,1),∵二面角M-AC-D的大小为60°,∴cos60°==,解得.∴在线段PD上,存在一点M,使得二面角M-AC-D的大小为60°,=4-2.【解析】(1)推导出AB⊥AC,AP⊥AC,AB⊥PC,从而AB⊥平面PAC,进而PA⊥AB,由此能证明PA⊥平面ABCD.(2)以A为原点,AB为x轴,AC为y轴,AP为z轴,建立空间直角坐标系,利用向量法能求出在线段PD上,存在一点M,使得二面角M-AC-D的大小为60°,=4-2.本题考查线面垂直的证明,考查满足二面角的点是否存在的判断与求法,考查空间中线线、线面、面面间的位置关系,考查运算求解能力,考查数形结合思想,是中档题.18.【答案】解:(Ⅰ)由已知得a-c=1,即,解得a=2,所以c=1,得,椭圆方程为.(Ⅱ)解:由题意,画图如下:设直线l的斜率为k(k≠0),则直线l的方程为y=k(x-2),设B(x B,y B)由方程组,消去y,整理得(4k2+3)x2-16k2x+16k2-12=0解得x=2或,即得:x B=,则y B=k(x B-2)=k(-2)=-.∴B点坐标为(,-).∵F点坐标为(1,0),∴直线l BF的方程为:y=-(x-1).∵k BF•k HF=-1,∴k HF=-=.∴直线l HF的方程为:y=(x-1).∴H点坐标为(0,-),∴直线l HM的方程为:y=-x-.由为,解得:.∴M点坐标为(,-),∴|OM|2=()2+()2,|AM|2=()2+()2.∵在△OMA中,∠MOA≤∠MAO,∴|OM|2≥|AM|2,即:≥.化简,得:20k2+9≥4k2+15,∴16k2≥6,即:k2≥.∴k≤-,或k≥.直线l的斜率的取值范围为:(-∞,-]∪[,+∞).【解析】本题第(Ⅰ)题可根据|OA|-|OF|=1解得a、c的值,然后即可得到椭圆的标准方程及离心率e;第(Ⅱ)题可设直线l的斜率为k(k≠0),设直线l的方程为y=k(x-2),然后联立直线l与椭圆的标准方程可得点B的坐标,然后步步推进可得M点坐标,再根据在△OMA中,∠MOA≤∠MAO,得到|OM|2≥|AM|2,代入具体关于k的表达式,可得k的取值范围.本题第(Ⅰ)题主要考查椭圆的基本概念及离心率的知识点;第(Ⅱ)题综合考查了联立直线与椭圆的标准方程可得点的坐标,互相垂直的直线求直线方程,以及三角形知识的综合题.本题属较难的中档题.19.【答案】解:(I)设等比数列{a n}的公比q>0,,--2=0,解得q=.∴a n=.设等差数列{b n}的公差为d,∵a3==,a4==.∴2b1+8d=8,3b1+16d=16,解得b1=0,d=1,∴b n=n-1.(Ⅱ)(i)S n==1-{S n}的前n项和为T n=n---……-=n-=n-1+.(ii)证明:==-.∴=-+-+……+-=-<.【解析】(I)设等比数列{a n}的公比q>0,,--2=0,解得q.可得a n.设等差数列{b n}的公差为d,由a3==,a4==.利用通项公式可得b n.(Ⅱ)(i)利用求和公式可得S n=1-可得{S n}的前n项和为T n═n-1+.(ii)由(i)可得:=-.利用裂项求和方法即可得出.本题考查了等差数列等比数列的通项公式与求和公式、裂项求和方法,考查了推理能力与计算能力,属于中档题.20.【答案】解:(1)f′(x)=(1+kx)e kx,因为f(0)=0,且f′(0)=1,所以曲线y=f(x)在点(0,f(0))处的切线方程为:y=x.(4分)(2)令f′(x)=(1+kx)e kx>0,所以1+kx>0,当k>0时,x>-,此时f(x)在(-∞,-)上单调递减,在(-,+∞)上单调递增;当k<0时,x<-,此时f(x)在(-∞,-)上单调递增,在(-,+∞)上单调递减.(8分)(3)当k=1时,f(x)在(-∞,-1)上单调递减,在(-1,+∞)上单调递增,所以对任意x1∈R,有f(x1)≥f(-1)=-,又已知存在x2∈[1,2],使f(x1)≥g(x2),所以-≥g(x2),x2∈[1,2],即存在x∈[1,2],使g(x)=x2-2bx+4≤-,即2b≥x+,即因为当x∈[1,2],x+∈[4+,5+],所以2b≥4+,即实数b取值范围是b≥2+.(14分)【解析】(1)f′(x)=(1+kx)e kx,由f(0)=0,且f′(0)=1,能求出曲线y=f(x)在点(0,f(0))处的切线方程.(2)令f′(x)=(1+kx)e kx>0,所以1+kx>0,由此利用k的符号进行分类讨论,能求出f(x)的单调性.(3)当k=1时,f(x)在(-∞,-1)上单调递减,在(-1,+∞)上单调递增,所以对任意x1∈R,有f(x1)≥f(-1)=-,已知存在x2∈[1,2],使f(x1)≥g(x2),所以-≥g(x2),x2∈[1,2],由此能求出实数b取值范围.本题考查切线方程的求法,考查函数单调性的求法,考查满足条件的实数的取值范围的求法.解题时要认真审题,仔细解答.。

2024年天津高考数学真题(原卷版+解析版】

2024年天津高考数学真题(原卷版+解析版】

2024年普通高等学校招生全国统一考试(天津卷)数学本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟.第Ⅰ卷1至3页,第Ⅱ卷4至6页.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上,并在规定位置粘贴考试用条形码.答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效.考试结束后,将本试卷和答题卡一并交回.祝各位考生考试顺利!第Ⅰ卷(选择题)注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.2.本卷共9小题,每小题5分,共45分.参考公式:·如果事件A B ,互斥,那么()()()P A B P A P B =+U .·如果事件A B ,相互独立,那么()()()P AB P A P B =.·球的体积公式34π3V R =,其中R 表示球的半径.·圆锥的体积公式13V Sh=,其中S 表示圆锥的底面面积,h 表示圆锥的高.一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1. 集合{}1,2,3,4A =,{}2,3,4,5B =,则A B =I ( )A. {}1,2,3,4 B. {}2,3,4 C. {}2,4 D. {}12. 设,a b ÎR ,则“33a b =”是“33a b =”( )A. 充分不必要条件 B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件3. 下列图中,相关性系数最大的是( )的获取更多高中资料关注公众号:网盘网课资源A. B.C. D.4. 下列函数是偶函数的是( )A. 22e 1x x y x -=+ B. 22cos 1x x y x +=+ C. e 1x xy x -=+ D. ||sin 4e x x x y +=5. 若0.30.3 4.24.2 4.2log 0.2a b c -===,,,则a b c ,,的大小关系为( )A. a b c>> B. b a c>> C. c a b>> D. b c a>>6. 若,m n 为两条不同的直线,a 为一个平面,则下列结论中正确的是( )A 若//m a ,n Ìa ,则//m nB. 若//,//m n a a ,则//m nC. 若//,a a ^m n ,则m n ^D. 若//,a a ^m n ,则m 与n 相交7. 已知函数()()πsin303f x x w w æö=+>ç÷èø的最小正周期为π.则函数在ππ,126éù-êúëû的最小值是( )A. B. 32-C. 0D.328. 双曲线22221()00a x y a bb >-=>,的左、右焦点分别为12.F F P 、是双曲线右支上一点,且直线2PF 的斜率为2.12PF F △是面积为8的直角三角形,则双曲线的方程为( )A. 22182y x -= B. 22184x y -= C. 22128x y -= D. 22148x y -=9. 一个五面体ABC DEF -.已知AD BE CF ∥∥,且两两之间距离为1.并已知123AD BE CF ===,,.则该五面体的体积为().A.B.12+C.D.12-第Ⅱ卷注意事项:1.用黑色墨水的钢笔或签字笔将答案写在答题卡上.2.本卷共11小题,共105分.二、填空题:本大题共6小题,每小题5分,共30分.试题中包含两个空的,答对1个的给3分,全部答对的给5分.10. 已知i是虚数单位,复数))i 2i +×-=______.11. 在63333x xæö+ç÷èø展开式中,常数项为______.12. 22(1)25-+=x y 的圆心与抛物线22(0)y px p =>的焦点F 重合,A 为两曲线的交点,则原点到直线AF 的距离为______.13. ,,,,A B C D E 五种活动,甲、乙都要选择三个活动参加.(1)甲选到A 的概率为______;已知乙选了A 活动,他再选择B 活动的概率为______.14. 在边长为1的正方形ABCD 中,点E 为线段CD 的三等分点, 1,2CE DE BE BA BC ==+uur uur uuu r l m ,则l m +=______;若F 为线段BE 上的动点,G 为AF 中点,则AF DG ×uuu r uuur的最小值为______.15. 若函数()21f x ax =--+有唯一零点,则a 取值范围为______.三、解答题:本大题共5小题,共75分.解答应写出文字说明,证明过程或演算步骤的的16. 在ABC V 中,92cos 5163a Bbc ===,,.(1)求a ;(2)求sin A ;(3)求()cos 2B A -.17. 已知四棱柱1111ABCD A B C D -中,底面ABCD 为梯形,//AB CD ,1A A ^平面ABCD ,AD AB ^,其中12,1AB AA AD DC ====.N 是11B C 的中点,M 是1DD 的中点.(1)求证1//D N 平面1CB M ;(2)求平面1CB M 与平面11BB CC 的夹角余弦值;(3)求点B 到平面1CB M 的距离.18. 已知椭圆22221(0)x y a b a b+=>>椭圆的离心率12e =.左顶点为A ,下顶点为B C ,是线段OB 的中点,其中ABC S △.(1)求椭圆方程.(2)过点30,2æö-ç÷èø的动直线与椭圆有两个交点P Q ,.在y 轴上是否存在点T 使得0TP TQ ×£uur uuu r 恒成立.若存在求出这个T 点纵坐标的取值范围,若不存在请说明理由.19. 已知数列{}n a 是公比大于0的等比数列.其前n 项和为n S .若1231,1a S a ==-.(1)求数列{}n a 前n 项和n S ;(2)设11,2,kn n k k k n a b b k a n a -+=ì=í+<<î,11b =,其中k 是大于1的正整数.(ⅰ)当1k n a +=时,求证:1n k n b a b -³×;(ⅱ)求1nS i i b =å.20. 设函数()ln f x x x =.(1)求()f x 图象上点()()1,1f 处的切线方程;(2)若()(f x a x ³在()0,x ¥Î+时恒成立,求a 取值范围;(3)若()12,0,1x x Î,证明()()121212f x f x x x -£-.的2024年普通高等学校招生全国统一考试(天津卷)数学本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟.第Ⅰ卷1至3页,第Ⅱ卷4至6页.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上,并在规定位置粘贴考试用条形码.答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效.考试结束后,将本试卷和答题卡一并交回.祝各位考生考试顺利!第Ⅰ卷(选择题)注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.2.本卷共9小题,每小题5分,共45分.参考公式:·如果事件A B ,互斥,那么()()()P A B P A P B =+U .·如果事件A B ,相互独立,那么()()()P AB P A P B =.·球的体积公式34π3V R =,其中R 表示球的半径.·圆锥的体积公式13V Sh=,其中S 表示圆锥的底面面积,h 表示圆锥的高.一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1. 集合{}1,2,3,4A =,{}2,3,4,5B =,则A B =I ( )A. {}1,2,3,4B. {}2,3,4 C. {}2,4 D. {}1【答案】B 【解析】【分析】根据集合交集的概念直接求解即可.【详解】因为集合{}1,2,3,4A =,{}2,3,4,5B =,所以{}2,3,4A B =I ,获取更多高中资料关注公众号:网盘网课资源2. 设,a b ÎR ,则“33a b =”是“33a b =”的( )A. 充分不必要条件 B. 必要不充分条件C. 充要条件 D. 既不充分也不必要条件【答案】C 【解析】【分析】说明二者与同一个命题等价,再得到二者等价,即是充分必要条件.【详解】根据立方的性质和指数函数的性质,33a b =和33a b =都当且仅当a b =,所以二者互为充要条件.故选:C.3. 下列图中,相关性系数最大的是( )A. B.C. D.【答案】A 【解析】【分析】由点的分布特征可直接判断【详解】观察4幅图可知,A 图散点分布比较集中,且大体接近某一条直线,线性回归模型拟合效果比较好,呈现明显的正相关,r 值相比于其他3图更接近1.故选:A4. 下列函数是偶函数的是( )A. 22e 1x x y x -=+ B. 22cos 1x x y x +=+ C. e 1x xy x -=+ D. ||sin 4e x x x y +=【答案】B【分析】根据偶函数的判定方法一一判断即可.【详解】对A ,设()22e 1x x f x x -=+,函数定义域为R ,但()112e 1f ---=,()112e f -=,则()()11f f -¹,故A 错误;对B ,设()22cos 1x x g x x +=+,函数定义域为R ,且()()()()()2222cos cos 11x x x x g x g x x x -+-+-===+-+,则()g x 为偶函数,故B 正确;对C ,设()e 1x xh x x -=+,函数定义域为{}|1x x ¹-,不关于原点对称, 则()h x 不是偶函数,故C 错误;对D ,设()||sin 4e x x x x j +=,函数定义域为R ,因为()sin141e j +=,()sin141ej ---=,则()()11j j ¹-,则()x j 不是偶函数,故D 错误.故选:B.5. 若0.30.3 4.24.2 4.2log 0.2a b c -===,,,则a b c ,,的大小关系为( )A. a b c >>B. b a c>> C. c a b>> D. b c a>>【答案】B 【解析】【分析】利用指数函数和对数函数的单调性分析判断即可.【详解】因为 4.2x y =在R 上递增,且0.300.3-<<,所以0.300.30 4.2 4.2 4.2-<<<,所以0.30.30 4.21 4.2-<<<,即01a b <<<,因为 4.2log y x =在(0,)+¥上递增,且00.21<<,所以 4.2 4.2log 0.2log 10<=,即0c <,所以b a c >>,故选:B6. 若,m n 为两条不同的直线,a 为一个平面,则下列结论中正确的是( )A. 若//m a ,n Ìa ,则//m nB. 若//,//m n a a ,则//m nC. 若//,a a ^m n ,则m n ^D. 若//,a a ^m n ,则m 与n 相交【答案】C 【解析】【分析】根据线面平行的性质可判断AB 的正误,根据线面垂直的性质可判断CD 的正误.【详解】对于A ,若//m a ,n Ìa ,则,m n 平行或异面,故A 错误.对于B ,若//,//m n a a ,则,m n 平行或异面或相交,故B 错误.对于C ,//,a a ^m n ,过m 作平面b ,使得s b a =I ,因为m b Ì,故//m s ,而s a Ì,故n s ^,故m n ^,故C 正确. 对于D ,若//,a a ^m n ,则m 与n 相交或异面,故D 错误.故选:C .7. 已知函数()()πsin303f x x w w æö=+>ç÷èø的最小正周期为π.则函数在ππ,126éù-êúëû的最小值是( )A. B. 32-C. 0D.32【答案】A 【解析】【分析】先由诱导公式化简,结合周期公式求出w ,得()sin2f x x =-,再整体求出,126éùÎ-êúëûππx 时,2x 的范围,结合正弦三角函数图象特征即可求解.【详解】()()πsin3sin 3πsin 33f x x x x w w w æö=+=+=-ç÷èø,由2ππ3T w==得23w =,即()sin2f x x =-,当,126éùÎ-êúëûππx 时,ππ2,63x éùÎ-êúëû,画出()sin2f x x =-图象,如下图,由图可知,()sin2f x x =-在ππ,126éù-êúëû上递减,所以,当π6x =时,()min πsin 3f x =-=故选:A8. 双曲线22221()00a x y a bb >-=>,的左、右焦点分别为12.F F P 、是双曲线右支上一点,且直线2PF 的斜率为2.12PF F △是面积为8的直角三角形,则双曲线的方程为( )A. 22182y x -= B. 22184x y -= C. 22128x y -= D. 22148x y -=【答案】C 【解析】【分析】可利用12PF F △三边斜率问题与正弦定理,转化出三边比例,设2PF m =,由面积公式求出m ,由勾股定理得出c ,结合第一定义再求出a .【详解】如下图:由题可知,点P 必落在第四象限,1290F PF Ð=°,设2PF m =,211122,PF F PF F q q Ð=Ð=,由21tan 2PF k q ==,求得1sin q =,因为1290F PF Ð=°,所以121PF PF k k ×=-,求得112PF k =-,即21tan 2q =,2sin q =,由正弦定理可得:121212::sin :sin :sin 902PF PF F F q q =°=,则由2PF m =得1122,2PF m F F c ===,由1212112822PF F S PF PF m m =×=×=V 得m =,则2122PF PF F c c =====由双曲线第一定义可得:122PF PF a -==a b ===所以双曲线的方程为22128x y -=.故选:C9. 一个五面体ABC DEF -.已知AD BE CF ∥∥,且两两之间距离为1.并已知123AD BE CF ===,,.则该五面体的体积为( )A.B.12+ C.D.12-【答案】C 【解析】【分析】采用补形法,补成一个棱柱,求出其直截面,再利用体积公式即可.【详解】用一个完全相同的五面体HIJ LMN -(顶点与五面体ABC DEF -一一对应)与该五面体相嵌,使得,D N ;,E M ;,F L 重合,因为AD BE CF ∥∥,且两两之间距离为1.1,2,3AD BE CF ===,则形成的新组合体为一个三棱柱,该三棱柱的直截面(与侧棱垂直的截面)为边长为1的等边三角形,侧棱长为1322314+=+=+=,212111142ABC DEF ABC HIJ V V --==´´´=.故选:C.第Ⅱ卷注意事项:1.用黑色墨水的钢笔或签字笔将答案写在答题卡上.2.本卷共11小题,共105分.二、填空题:本大题共6小题,每小题5分,共30分.试题中包含两个空的,答对1个的给3分,全部答对的给5分.10. 已知i是虚数单位,复数))i 2i +×-=______.【答案】7【解析】【分析】借助复数的乘法运算法则计算即可得.【详解】))i 2i 527+×-=+-+=-.故答案为:7-.11. 在63333x xæö+ç÷èø的展开式中,常数项为______.【答案】20【解析】【分析】根据题意结合二项展开式的通项分析求解即可.【详解】因为63333x x æö+ç÷èø的展开式的通项为()63636216633C 3C ,0,1,,63rrr r r r r x T xr x ---+æöæö===×××ç÷ç÷èøèø,令()630r -=,可得3r =,所以常数项为0363C 20=.故答案为:20.12. 22(1)25-+=x y 的圆心与抛物线22(0)y px p =>的焦点F 重合,A 为两曲线的交点,则原点到直线AF 的距离为______.【答案】45##0.8【解析】【分析】先求出圆心坐标,从而可求焦准距,再联立圆和抛物线方程,求A 及AF 的方程,从而可求原点到直线AF 的距离.【详解】圆22(1)25-+=x y 的圆心为()1,0F ,故12p=即2p =,由()2221254x y y xì-+=ïí=ïî可得22240x x +-=,故4x =或6x =-(舍),故()4,4A ±,故直线()4:13AF y x =±-即4340x y --=或4340x y +-=,故原点到直线AF 的距离为4455d ==,故答案为:4513. ,,,,A B C D E 五种活动,甲、乙都要选择三个活动参加.(1)甲选到A 的概率为______;已知乙选了A 活动,他再选择B 活动的概率为______.【答案】 ①.35②. 12【解析】【分析】结合列举法或组合公式和概率公式可求甲选到A 的概率;采用列举法或者条件概率公式可求乙选了A 活动,他再选择B 活动的概率.【详解】解法一:列举法从五个活动中选三个的情况有:,,,,,,,,,ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE ,共10种情况,其中甲选到A 有6种可能性:,,,,,ABC ABD ABE ACD ACE ADE ,则甲选到A 得概率为:63105P ==;乙选A 活动有6种可能性:,,,,,ABC ABD ABE ACD ACE ADE ,其中再选则B 有3种可能性:,,ABC ABD ABE ,故乙选了A 活动,他再选择B 活动的概率为31=62.解法二:设甲、乙选到A 为事件M ,乙选到B 为事件N ,则甲选到A 的概率为()2435C 3C 5P M ==;乙选了A 活动,他再选择B 活动的概率为()()()133524351C 2C C P MN C P N M P M ===故答案为:35;1214. 在边长为1的正方形ABCD 中,点E 为线段CD 的三等分点, 1,2CE DE BE BA BC ==+uur uur uuu r l m ,则l m +=______;若F 为线段BE 上的动点,G 为AF 中点,则AF DG ×uuu r uuur的最小值为______.【答案】 ①.43②. 518-【解析】【分析】解法一:以{},BA BC uuu r uuu r 为基底向量,根据向量的线性运算求BE uuu r,即可得l m +,设BF BE k =uuu r uur ,求,AF DG uuu r uuu r ,结合数量积的运算律求AF DG ×uuu r uuur 的最小值;解法二:建系标点,根据向量的坐标运算求BE uuu r,即可得l m +,设()1,3,,03F a a a éù-Î-êúëû,求,AF DG uuu r uuu r ,结合数量积的坐标运算求AF DG ×uuu r uuur 的最小值.【详解】解法一:因为12CE DE =,即23CE BA =uur uur ,则13BE BC CE BA BC =+=+uuu r uur u uu ur r uuu r ,可得1,13l m ==,所以43l m +=;由题意可知:1,0BC BA BA BC ==×=uuu r uuu r uuu r uuu r,因为F 为线段BE 上的动点,设[]1,0,13BF k BE k BA k BC k ==+Îuuu r uuu r uuu r uuu r,则113AF AB BF AB k BE k BA k BC æö=+=+=-+ç÷èøuuu r uuu r uuu r uuu r uuu r uuur uuu r ,又因为G 为AF 中点,则1111112232DG DA AG BC AF k BA k BC æöæö=+=-+=-+-ç÷ç÷èøèøuuur uuu r uuu r uuu r uuu r uuu r uuur ,可得11111113232AF DG k BA k BC k BA k BC éùéùæöæöæö×=-+×-+-ç÷ç÷ç÷êúêúèøèøèøëûëûuuu r uuur uuu r uuu ruuu r uuur22111563112329510k k k k æöæöæö=-+-=--ç÷ç÷ç÷èøèøèø,又因为[]0,1k Î,可知:当1k =时,AF DG ×uuu r uuur取到最小值518-;解法二:以B 为坐标原点建立平面直角坐标系,如图所示,则()()()()11,0,0,0,0,1,1,1,,13A B C D E æö---ç÷èø,可得()()11,0,0,1,,13BA BC BE æö=-==-ç÷èøuuu r uuu r uuu r ,因为(),BE BA BC l m l m =+=-uuu r uuu r uuu r ,则131l m ì-=-ïíï=î,所以43l m +=;因为点F 在线段1:3,,03BE y x x éù=-Î-êúëû上,设()1,3,,03F a a a éù-Î-êúëû,且G 为AF 中点,则13,22a G a -æö-ç÷èø,可得()131,3,,122a AF a a DG a +æö=+-=--ç÷èøuuu r uuur ,则()()22132331522510a AF DG a a a +æöæö×=+---=+-ç÷ç÷èøèøuuu r uuur ,且1,03a éùÎ-êúëû,所以当13a =-时,AF DG ×uuu r uuur 取到最小值为518-;故答案为:43;518-.15. 若函数()21f x ax =--+有唯一零点,则a 的取值范围为______.【答案】()(1-È【解析】【分析】结合函数零点与两函数的交点的关系,构造函数()g x =与()23,21,ax x a h x ax x a ì-³ïï=íï-<ïî,则两函数图象有唯一交点,分0a =、0a >与0a <进行讨论,当0a >时,计算函数定义域可得x a ³或0x £,计算可得(]0,2a Î时,两函数在y 轴左侧有一交点,则只需找到当(]0,2a Î时,在y 轴右侧无交点的情况即可得;当0a <时,按同一方式讨论即可得.【详解】令()0f x =,即21ax =--,由题可得20x ax -³,当0a =时,x ÎR,有211=--=,则x =±当0a >时,则23,2121,ax x a ax x a ì-³ïï--=íï-<ïî,即函数()g x =与函数()23,21,ax x a h x ax x a ì-³ïï=íï-<ïî有唯一交点,由20x ax -³,可得x a ³或0x £,当0x £时,则20ax -<,则211ax ax =--=-,即()22441x ax ax -=-,整理得()()()2242121210a xax a x a x éùéù---=++--=ëûëû,当2a =时,即410x +=,即14x =-,当()0,2a Î,12x a =-+或102x a=>-(正值舍去),当()2,a Î+¥时,102x a =-<+或102x a=<-,有两解,舍去,即当(]0,2a Î时,210ax --+=在0x £时有唯一解,则当(]0,2a Î时,210ax --+=在x a ³时需无解,当(]0,2a Î,且x a ³时,由函数()23,21,ax x ah x ax x a ì-³ïï=íï-<ïî关于2x a =对称,令()0h x =,可得1x a =或3x a =,且函数()h x 在12,a a æöç÷èø上单调递减,在23,a a æöç÷èø上单调递增,令()g x y ==,即2222142a x y a a æö-ç÷-ø=è,故x a ³时,()g x 图象为双曲线()222214y x a a -=右支的x 轴上方部分向右平移2a 所得,由()222214y x a a-=的渐近线方程为22a y x x a =±=±,即()g x 部分的渐近线方程为22a y x æö=-ç÷èø,其斜率为2,又(]0,2a Î,即()23,21,ax x ah x ax x a ì-³ïï=íï-<ïî在2x a ³时的斜率(]0,2a Î,令()0g x ==,可得x a =或0x =(舍去),且函数()g x 在(),a +¥上单调递增,故有13a aa a ì<ïïíï>ïî,解得1a <<,故1a <<符合要求;当a<0时,则23,2121,ax x a ax x a ì-£ïï--=íï->ïî,即函数()g x =与函数()23,21,ax x a h x ax x a ì-£ïï=íï->ïî有唯一交点,由20x ax -³,可得0x ³或x a £,当0x ³时,则20ax -<,则211ax ax =--=-,即()22441x ax ax -=-,整理得()()()2242121210a xax a x a x éùéù---=++--=ëûëû,当2a =-时,即410x -=,即14x =,当()2,0a Î-,102x a =-<+(负值舍去)或102x a=-,当(),2a Î-¥时,102x a =->+或102x a=>-,有两解,舍去,即当[)2,0a Î-时,210ax --+=在0x ³时有唯一解,则当[)2,0a Î-时,210ax --+=在x a £时需无解,当[)2,0a Î-,且x a £时,由函数()23,21,ax x ah x ax x a ì-£ïï=íï->ïî关于2x a =对称,令()0h x =,可得1x a =或3x a =,且函数()h x 在21,a a æöç÷èø上单调递减,在32,a a æöç÷èø上单调递增,同理可得:x a £时,()g x 图象为双曲线()222214y x a a -=左支的x 轴上方部分向左平移2a 所得,()g x 部分渐近线方程为22a y x æö=-+ç÷èø,其斜率为2-,又[)2,0a Î-,即()23,21,ax x ah x ax x a ì-³ïï=íï-<ïî在2x a <时的斜率[)2,0a Î-,令()0g x ==,可得x a =或0x =(舍去),的且函数()g x 在(),a -¥上单调递减,故有13a aa aì>ïïíï<ïî,解得1a <<-,故1a <<-符合要求;综上所述,()(1a Î-U .故答案:()(1-È.【点睛】关键点点睛:本题关键点在于将函数()f x 的零点问题转化为函数()g x =与函数()23,21,ax x ah x ax x a ì-³ïï=íï-<ïî的交点问题,从而可将其分成两个函数研究.三、解答题:本大题共5小题,共75分.解答应写出文字说明,证明过程或演算步骤16. 在ABC V 中,92cos 5163a Bbc ===,,.(1)求a ;(2)求sin A ;(3)求()cos 2B A -.【答案】(1)4 (2(3)5764【解析】【分析】(1)2,3a t c t ==,利用余弦定理即可得到方程,解出即可;(2)法一:求出sin B ,再利用正弦定理即可;法二:利用余弦定理求出cos A ,则得到sin A ;(3)法一:根据大边对大角确定A 为锐角,则得到cos A ,再利用二倍角公式和两角差的余弦公式即可;法二:直接利用二倍角公式和两角差的余弦公式即可.【小问1详解】设2,3a t c t ==,0t >,则根据余弦定理得2222cos b a c ac B =+-,为即229254922316t t t t =+-´´´,解得2t =(负舍);则4,6a c ==.【小问2详解】法一:因为B为三角形内角,所以sin B ===,再根据正弦定理得sin sin a b A B =,即4sin A =sin A =法二:由余弦定理得2222225643cos22564bc a A bc +-+-===´´,因为()0,πA Î,则sin A ==小问3详解】法一:因为9cos 016B =>,且()0,πB Î,所以π0,2B æöÎç÷èø,由(2)法一知sin B =,因为a b <,则A B <,所以3cos 4A ==,则3sin 22sin cos 24A A A ===,2231cos 22cos 12148A A æö=-=´-=ç÷èø()1957cos 2cos cos 2sin sin 281664B A B A B A -=+=´+=.法二:3sin 22sin cos 24A A A ===,则2231cos 22cos 12148AA æö=-=´-=ç÷èø,因为B 为三角形内角,所以sinB ===所以()9157cos 2cos cos 2sin sin 216864B A B A B A -=+=´=【17. 已知四棱柱1111ABCD A B C D -中,底面ABCD 为梯形,//AB CD ,1A A ^平面ABCD ,AD AB ^,其中12,1AB AA AD DC ====.N 是11B C 的中点,M 是1DD 的中点.(1)求证1//D N 平面1CB M ;(2)求平面1CB M 与平面11BB CC 的夹角余弦值;(3)求点B 到平面1CB M 的距离.【答案】(1)证明见解析(2(3【解析】【分析】(1)取1CB 中点P ,连接NP ,MP ,借助中位线的性质与平行四边形性质定理可得1N//D MP ,结合线面平行判定定理即可得证;(2)建立适当空间直角坐标系,计算两平面的空间向量,再利用空间向量夹角公式计算即可得解;(3)借助空间中点到平面的距离公式计算即可得解.【小问1详解】取1CB 中点P ,连接NP ,MP ,由N 是11B C 的中点,故1//NP CC ,且112NP CC =,由M 是1DD 的中点,故1111122D M DD CC ==,且11//D M CC ,则有1//D M NP 、1D M NP =,故四边形1D MPN 是平行四边形,故1//D N MP ,又MP Ì平面1CB M ,1D N Ë平面1CB M ,故1//D N 平面1CB M ;【小问2详解】以A 为原点建立如图所示空间直角坐标系,有()0,0,0A 、()2,0,0B 、()12,0,2B 、()0,1,1M 、()1,1,0C 、()11,1,2C ,则有()11,1,2CB =-uuur 、()1,0,1CM =-uuuu r 、()10,0,2BB =uuur,设平面1CB M 与平面11BB CC 的法向量分别为()111,,m x y z =r 、()222,,n x y z =r,则有111111200m CB x y z m CM x z ì×=-+=ïí×=-+=ïîuuur r uuuu r r ,1222122020n CB x y z n BB z ì×=-+=ïí×==ïîuuur r uuur r ,分别取121x x ==,则有13y =、11z =、21y =,20z =,即()1,3,1m =r 、()1,1,0n =r,则cos ,m =r ,故平面1CB M 与平面11BB CC;【小问3详解】由()10,0,2BB =uuur ,平面1CB M 的法向量为()1,3,1m =r,=即点B 到平面1CB M.18. 已知椭圆22221(0)x y a b a b+=>>椭圆的离心率12e =.左顶点为A ,下顶点为B C ,是线段OB 的中点,其中ABC S △.(1)求椭圆方程.(2)过点30,2æö-ç÷èø的动直线与椭圆有两个交点P Q ,.在y 轴上是否存在点T 使得0TP TQ ×£uur uuu r 恒成立.若存在求出这个T 点纵坐标的取值范围,若不存在请说明理由.【答案】(1)221129x y +=(2)存在()30,32T t t æö-££ç÷èø,使得0TP TQ ×£uur uuu r 恒成立.【解析】【分析】(1)根据椭圆的离心率和三角形的面积可求基本量,从而可得椭圆的标准方程.(2)设该直线方程为:32y kx =-,()()()1122,,,,0,P x y Q x y T t , 联立直线方程和椭圆方程并消元,结合韦达定理和向量数量积的坐标运算可用,k t 表示TP TQ ×uur uuu r,再根据0TP TQ ×£uur uuu r 可求t 的范围.【小问1详解】因为椭圆的离心率为12e =,故2a c =,b =,其中c 为半焦距,所以()()2,0,0,,0,A c B C æ-ççè,故122ABC S c =´=△故c =a =,3b =,故椭圆方程为:221129x y +=.【小问2详解】若过点30,2æö-ç÷èø的动直线的斜率存在,则可设该直线方程为:32y kx =-,设()()()1122,,,,0,P x y Q x y T t ,由22343632x y y kx ì+=ïí=-ïî可得()223412270k x kx +--=,故()222Δ144108343245760k kk=++=+>且1212221227,,3434k x x x x k k +==-++而()()1122,,,TP x y t TQ x y t =-=-uur uuu r,故()()121212123322TP TQ x x y t y t x x kx t kx t æöæö×=+--=+----ç÷ç÷èøèøuur uuu r ()()22121233122kx x k t x x t æöæö=+-++++ç÷ç÷èøèø()22222731231342342k k k t t k k æöæöæö=+´--+´++ç÷ç÷ç÷++èøèøèø()2222222327271812332234k k k t t t k k æö----++++ç÷èø=+()22223321245327234t t k t k æöéù+--++-ç÷ëûèø=+,因为0TP TQ ×£uur uuu r 恒成立,故()223212450332702t t t ì+--£ïíæö+-£ïç÷èøî,解得332t -££.若过点30,2æö-ç÷èø的动直线的斜率不存在,则()()0,3,0,3P Q -或()()0,3,0,3P Q -,此时需33t -££,两者结合可得332t -££.综上,存在()30,32T t t æö-££ç÷èø,使得0TP TQ ×£uur uuu r 恒成立.【点睛】思路点睛:圆锥曲线中的范围问题,往往需要用合适的参数表示目标代数式,表示过程中需要借助韦达定理,此时注意直线方程的合理假设.19. 已知数列{}n a 是公比大于0的等比数列.其前n 项和为n S .若1231,1a S a ==-.(1)求数列{}n a 前n 项和n S ;(2)设11,2,kn n k k k n a b b k a n a -+=ì=í+<<î,11b =,其中k 是大于1的正整数.(ⅰ)当1k n a +=时,求证:1n k n b a b -³×;(ⅱ)求1nS i i b =å.【答案】(1)21n n S =- (2)①证明见详解;②()131419nn S ii n b=-+=å【解析】【分析】(1)设等比数列{}n a 的公比为0q >,根据题意结合等比数列通项公式求q ,再结合等比数列求和公式分析求解;(2)①根据题意分析可知12,1k k n a b k -==+,()121n k k b -=-,利用作差法分析证明;②根据题意结合等差数列求和公式可得()()1211213143449k k k k i i b k k ---=éù=---ëûå,再结合裂项相消法分析求解.【小问1详解】设等比数列{}n a 的公比为0q >,因为1231,1a S a ==-,即1231a a a +=-,可得211q q +=-,整理得220q q --=,解得2q =或1q =-(舍去),所以122112nn n S -==--.【小问2详解】(i )由(1)可知12n n a -=,且N*,2k k γ,当124kk n a +=³=时,则111221111k k k k k a n n a a -++ì=<-=-í-=-<î,即11k k a n a +<-<可知12,1k k n a b k -==+,()()()1111222121k k k n a k k b b a a k k k k --+=+--×=+-=-,可得()()()()1112112122120kn k n k k k k k k k k b k a b ---=--+=--³--=-׳-,当且仅当2k =时,等号成立,所以1n k n b a b -³×;(ii )由(1)可知:1211nn n S a +=-=-,若1n =,则111,1S b ==;若2n ³,则112k k k a a -+-=,当1221k k i -<£-时,12i i b b k --=,可知{}i b 为等差数列,可得()()()111211112221122431434429k k k k k k k k i i b k kk k k -------=-éù=×+=×=---ëûå,所以()()()232113141115424845431434499nnS n n i i n b n n -=-+éù=+´-´+´-´+×××+---=ëûå,且1n =,符合上式,综上所述:()131419nn S ii n b=-+=å.【点睛】关键点点睛:1.分析可知当1221k k i -<£-时,12i i b b k --=,可知{}i b 为等差数列;2.根据等差数列求和分析可得()()1211213143449k k k k i i b k k ---=éù=---ëûå.20. 设函数()ln f x x x =.(1)求()f x 图象上点()()1,1f 处切线方程;(2)若()(f x a x ³在()0,x ¥Î+时恒成立,求a 的取值范围;(3)若()12,0,1x x Î,证明()()121212f x f x x x -£-.【答案】(1)1y x =- (2){}2(3)证明过程见解析【解析】【分析】(1)直接使用导数的几何意义;(2)先由题设条件得到2a =,再证明2a =时条件满足;(3)先确定()f x 的单调性,再对12,x x 分类讨论.【小问1详解】的由于()ln f x x x =,故()ln 1f x x =¢+.所以()10f =,()11f ¢=,所以所求的切线经过()1,0,且斜率为1,故其方程为1y x =-.【小问2详解】设()1ln h t t t =--,则()111t h t t t¢-=-=,从而当01t <<时()0h t ¢<,当1t >时()0h t ¢>.所以()h t 在(]0,1上递减,在[)1,+¥上递增,这就说明()()1h t h ³,即1ln t t -³,且等号成立当且仅当1t =.设()()12ln g t a t t =--,则()((ln 12ln f x a x x x a x x a x g æö--=-=-=×ç÷øè.当()0,x ¥Î+的取值范围是()0,¥+,所以命题等价于对任意()0,t ¥Î+,都有()0g t ³.一方面,若对任意()0,t ¥Î+,都有()0g t ³,则对()0,t ¥Î+有()()()()112012ln 12ln 1212g t a t t a t a t at a t t t æö£=--=-+£-+-=+--ç÷èø,取2t =,得01a £-,故10a ³>.再取t =,得2022a a a £+-=-=-,所以2a =.另一方面,若2a =,则对任意()0,t ¥Î+都有()()()212ln 20g t t t h t =--=³,满足条件.综合以上两个方面,知a 的取值范围是{}2.【小问3详解】先证明一个结论:对0a b <<,有()()ln 1ln 1f b f a a b b a-+<<+-.证明:前面已经证明不等式1ln t t -³,故lnln ln ln ln ln ln 1ln 1bb b a a a b a aa b b b b b a b a a --=+=+<+---,且1lnln ln ln ln ln ln ln 1ln 11a a b b a a b b b a b b a a a a a a b a b a bbæö---ç÷--èø=+=+>+=+----,所以ln ln ln 1ln 1b b a aa b b a -+<<+-,即()()ln 1ln 1f b f a a b b a-+<<+-.由()ln 1f x x =¢+,可知当10ex <<时()0f x ¢<,当1e x >时()0f x ¢>.所以()f x 在10,eæùçúèû上递减,在1e ,éö+¥÷êëø上递增.不妨设12x x £,下面分三种情况(其中有重合部分)证明本题结论.情况一:当1211ex x ££<时,有()()()()()()122122121ln 1f x f x f x f x x x x x x -=-<+-<-<情况二:当1210ex x <££时,有()()()()12121122ln ln f x f x f x f x x x x x -=-=-.对任意的10,e c æùÎçúèû,设()ln ln x x x c c j =--()ln 1x x j =+¢.由于()x j ¢单调递增,且有11110j =+<+=-+=¢,且当2124ln 1x c c ³-æö-ç÷èø,2cx >2ln 1c ³-可知()2ln 1ln 1ln 102c x x c j æö=+>++=-³ç÷èø¢.所以()x j ¢在()0,c 上存在零点0x ,再结合()x j ¢单调递增,即知00x x <<时()0x j ¢<,0x x c <<时()0x j ¢>.故()x j 在(]00,x 上递减,在[]0,x c 上递增.①当0x x c ££时,有()()0x c j j £=;②当00x x <<112221e e f f cæö=-£-=<ç÷èø,故我们可以取1,1q c öÎ÷ø.从而当201cx q <<->()1ln ln ln ln 0x x x c c c c c c q cj ö=-<-<--=-<÷ø.再根据()x j 在(]00,x 上递减,即知对00x x <<都有()0x j <;综合①②可知对任意0x c <£,都有()0x j £,即()ln ln 0x x x c c j =--£.根据10,ec æùÎçúèû和0x c <£的任意性,取2c x =,1x x =,就得到1122ln ln 0x x x x -£.所以()()()()12121122ln ln f x f x f x f x x x x x -=-=-£.情况三:当12101ex x <££<时,根据情况一和情况二讨论,可得()11e f x f æö-££ç÷èø,()21e f f x æö-££ç÷èø而根据()f x 的单调性,知()()()1211e f x f x f x f æö-£-ç÷èø或()()()1221e f x f xf f x æö-£-ç÷èø.故一定有()()12f x f x -£成立.综上,结论成立.【点睛】关键点点睛:本题的关键在于第3小问中,需要结合()f x 的单调性进行分类讨论.的。

2020年天津市高考数学压轴试卷(二)(有答案解析)

2020年天津市高考数学压轴试卷(二)(有答案解析)
9.答案:(x-1)2+y2=5
解析:【分析】 根据题意,设 MN 的中点为 O,由 MN 的坐标求出 O 的坐标以及 MN 的长,即可得要求 圆的圆心与半径,由圆的标准方程即可得答案. 本题考查圆的标准方程的计算,注意分析圆心坐标以及半径,属于基础题. 【解答】
解:根据题意,设 MN 的中点为 O,则以线段 MN 为直径的圆的圆心为 O,半径 r= ,
19. 数列{an}是等比数列,公比大于 0,前 n 项和 Sn(n∈N*),{bn}是等差数列,已知
a1= , = +4,a3= ,a4=

(Ⅰ)求数列{an},{bn}的通项公式 an,bn; (Ⅱ)设{Sn}的前 n 项和为 Tn(n∈N*) (i)求 Tn;
(ii)证明:
<.
20. 设函数 f(x)=xekx(k≠0), (1)求曲线 y=f(x)在点(0,f(0))处的切线方程; (2)讨论函数 f(x)的单调性; (3)设 g(x)=x2-2bx+4,当 k=1 时,若对任意 x1∈R,存在 x2∈[1,2],使 f(x1) ≥g(x2),求实数 b 取值范围.
12.答案:
解析:【分析】 本题主要考查了平面向量的基本定理的简单应用,属于基础试题.
结合已知及向量的基本定理可得
,结合已知
m,t. 【解答】
解:由题意及图,








,可求 ,

,解得 , .
第 9 页,共 15 页
故答案为: .
13.答案:(-∞,0)∪(e,+∞)
解析:解:函数 f(x)=
B.
C.
D. f(x)=x-1

KS5U2024高考压轴卷——数学(理)(全国甲卷) 含解析

KS5U2024高考压轴卷——数学(理)(全国甲卷) 含解析

KS5U2024高考压轴卷全国甲卷数学试卷(理工农医类)说明:1.本试卷分第1卷和第11卷,共4页.考生作答时,须将答案答在答题卡上,在本试卷、草稿纸上答题无效.考试结束后,将答题卡交回.2.本试卷满分150分,120分钟完卷.第1卷(选择题共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.l已知集合A={x l-1釭<s},B ={xE Nly= I o g3(x-2)},则矿B=()A.{-1,2,3,4}B.{3,4}C.{3,4,5}D.{2,3}2欧拉公式矿=cos0+isin0把自然对数的底数e'虚数单位i,cos0和sin0联系在一起,充分体现了数学的和谐美,被誉为“数学中的天桥”,若复数z满足(e;•+ i) · z = I + i,则正确的是()A.z的共辄复数为-i C.z的虏部为IB.z的实部为l D.z的模为13在(l+x)3+(l+x)4+(l+x)5的展开式中,含x2项的系数是() A.16 B.19 C.214已知角a的终边经过点p[A.5-沉B.41而2a'),则2cos—+sin a= ()4 4 2-而-5C. 5+而4 4D.24D.扣-545.执行下面的程序框图,输出的s = (I I25 A —B.—1224c.-D .l6已知向量OA=(l,0),08=(1,1),0力坐标原占,6点P(x ,y)满足约束条件{°三OP O A 三1,则O::;;OP-OB::;;2z=x-2y 的最大值为() A.-2B.2C.一3D. 37.2023年7月28日至8月8日,第31届世界夏季大学生运动会在成都市举行,组委会将5名大学生分配到A,B, C 三个路口进行引导工作,每个路口至少分配一人,每人只能去一个路口若甲、乙要求去同一个路口,则不同的分配方案共有()A. 18种B. 24种C. 36种D.48种8.Cl., 13, y为不同的平面,m,n, I为不同的直线,则m..L0的一个充分条件是A.nJ_a,nJ_/J ,mJ_a c.aJ_y,fJJ_y,mJ_aB.a nr =m ,a .Lr ,fJ.Lr D.a.LfJ,anf]=l,m.Ll9如今我国物流行业蓬勃发展,极大地促进了社会经济发展和资源整合.已知某类果蔬的保鲜时间y-(单位:小时)与储藏温度x(单位:.C)满足函数关系y = e•x+b (a, b.为常数),若该果蔬在7°C的保鲜时间为288小时,在21·c的保鲜时间为32小时,且该果蔬所需物流时间为4天,则物流过程中果蔬的储藏温度(假设物流过程中恒温)最高不能超过()A.l4'CB.l5'Cc.l3.cD.l6'CJO “阿基米德多面体”也称半正多面体,是由边数不全相同的正多边形围成的多面体,它体现了数学的对称美如图是以正方体的各条棱的中点为顶点的多面体,这是一个有八个面为正三角形,六个面为正方形的“阿基米德多面体”,若该多面体的棱长为J5,则该多而体外接球的表面积为(A. 8兀C.2兀B. 4亢4D.-nx 2v2II.设凡,F 2是双曲线C—--S,=l(a>O,b >O )的左、右焦点,0是坐标原点,点P 是C上异千实轴a 2 b2 端点的任意一点,若I PF; II PF 21-1 OPl 2= 2a 2,则C的离心率为()A.石B.五C.3D.212已知函数f(x)及其导函数f'(x)的定义域均为R,且(x-2)[f'(x)-f(x)]>0,/(4-x)=f(x)e七2入.,则不等式e 3/(I n x )<寸(3)的解集是()A.(0,e 3)B.(l,e 3)C.(e 心)D.(e3,叫第11卷(非选择题共90分)本卷包括必考题和选考题两部分,第13~21题为必考题,每个试题考生都必须作答,第22、23题为选考题,考生根据要求作答.二、填空题:共4小题,每小题5分,共20分.将答案填在答题卡上.13.已知f(x)=x 2+1为偶函数,则a=(3x+2)(x-a)14已知丛ABC 的三边长AB =4cm, BC = 2cm ,A C = 3cm ,则丛ABC 的面积为cm 215.已知两点M(-1,0),N(l,0),若臼线x-y+m=O 上存在唯一点P 满足PM -PN=O ,则实数m 的值为16已知F为抛物线C:x2=4y的焦点,过点F的直线/与抛物线C相交千不同的两点A、B,若抛物线C4的最小值为在A、B两点处的切线相交千点P,则IPFl2+了了三、解答题:解答应写出文字说明、证明过程或演算步骤.17已知S,,为各项均为正数的数列{a,,}的前n项和lZi E (0, 2), a: + 3a,, + 2 = 6S,,(l)求{a,,}的通项公式;(2)设九=,数列{丸}的前,i项和为兀,若对VnEN.,区4T,,恒成立,求实数t的最大值a,,a,i+118某公司为了确定下季度的前期广告投入计划,收渠并整理了近6个月广告投入量x(单位:万元)和收益}{单位:万元)的数据如表(其中有些数据污损不清):月份I23456广告投入侵 2 7 8 lO收益20 30 34 37他们分别用两种模型@y = b x+ a, ® y = ae 1,'进行拟合,得到相应的回归方程并进行残差分析,得到如图所示的残差图及一些统计量的值.8 6 4残差残差图`2 -- - i --一疗3 _ `、,4-- - 5-- - -6 -- - -。

最新--天津市高考压轴卷理科数学试题及答案 精品推荐

最新--天津市高考压轴卷理科数学试题及答案  精品推荐

2018年天津高考压轴卷数学理一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的1.已知集合A={x|x >1},B={x|x <m},且A ∪B=R ,那么m 的值可以是( )2.设集合{}|24x A x =≤,集合B 为函数lg(1)y x =-的定义域,则A B = (A)()1,2 (B)[]1,2 (C)[1,2) (D) (1,2] 3.函数y=sin (2x+φ)的图象沿x 轴向左平移个单位后,得到一个偶函数的图象,则φ的一个可能的值为( )4.函数f (x )=log 2(1+x ),g (x )=log 2(1﹣x ),则f (x )﹣g (x )是( )5.设曲线sin y x =上任一点(,)x y 处切线斜率为()g x ,则函数2()y x g x =的部分图象可以为.6.设z=2x+y ,其中变量x ,y 满足条件,若z 的最小值为3,则m 的值为( )7.已知点P(x,y)在直线x+2y=3上移动,当2x+4y取最小值时,过P点(x,y)引圆C:=1的切线,则此切线长等于()8.已知函数f(x)=ln(e x﹣1)(x>0)()二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡的相应位置.9. 设常数a∈R,若的二项展开式中x4项的系数为20,则a= .18. 已知tanα=,tanβ=﹣,且0<α<,<β<π,则2α﹣β的值.18.记等差数列{a n}的前n项和为S n,已知a2+a4=6,S4=18.则a18= .18.棱长为2的正方体被一平面截成两个几何体,其中一个几何体的三视图如图所示,那么该几何体的体积是()18.已知圆的方程为x2+y2﹣6x﹣8y=0,设该圆过点(3,5)的最长弦和最短弦分别为AC和BD,则四边形ABCD的面积为______________.18.等腰Rt△ACB,AB=2,.以直线AC为轴旋转一周得到一个圆锥,D 为圆锥底面一点,BD⊥CD,CH⊥AD于点H,M为AB中点,则当三棱锥C﹣HAM的体积最大时,CD的长为_____________.算步骤.解答写在答题卡上的指定区域内.18. 袋中装有黑球和白球共7个,从中任取2个球都是黑球的概率为,现有甲、乙两人从袋中轮流摸取1球,甲先取,乙后取,然后甲再取…,取球后不放回,直到两人中有一人取到白球时终止,每个球在每一次被取出的机会是等可能的,用ξ表示取球终止所需要的取球次数.(Ⅰ)求随机变量ξ的分布列及数学期望;(Ⅱ)求乙取到白球的概率.18.在△ABC中,BC=a,AC=b,a、b是方程的两个根,且A+B=180°,求△ABC的面积及AB的长.18.如图,在棱长为1的正方体ABCD﹣A1B1C1D1中,点E是棱AB上的动点.(Ⅰ)求证:DA1⊥ED1;(Ⅱ)若直线DA1与平面CED1成角为45°,求的值;(Ⅲ)写出点E到直线D1C距离的最大值及此时点E的位置(结论不要求证明).18.数列{a n}是递增的等差数列,且a1+a6=﹣6,a3•a4=8.(1)求数列{a n}的通项公式;(2)求数列{a n}的前n项和S n的最小值;(3)求数列{|a n|}的前n项和T n.19. 已知椭圆C:的右焦点为F(1,0),且点(﹣1,)在椭圆C上.(1)求椭圆C的标准方程;(2)已知动直线l过点F,且与椭圆C交于A,B两点,试问x轴上是否存在定点Q,使得恒成立?若存在,求出点Q的坐标,若不存在,请说明理由.20. (18分)已知f(x)=lnx,g(x)=af(x)+f′(x),(1)求g(x)的单调区间;(2)当a=1时,①比较的大小;②是否存在x0>0,使得|g(x)﹣g(x0)|<对任意x>0成立?若存在,求出x0的取值范围;若不存在,请说明理由.2018天津高考压轴卷数学理word 参考答案 1. 【 答案】D.【 解析】根据题意,若集合A={x|x >1},B={x|x <m},且A ∪B=R , 必有m >1,分析选项可得,D 符合; 故选D .2. 【 答案】D.【 解析】{}|24{2}x A x x x =≤=≤,由10x ->得1x >,即{1}B x x =>,所以{12}A B x x =<≤,所以选D.3. 【 答案】【 解析】令y=f (x )=sin (2x+φ),则f (x+)=sin[2(x+)+φ]=sin (2x++φ), ∵f (x+)为偶函数,∴+φ=k π+, ∴φ=k π+,k ∈Z , ∴当k=0时,φ=. 故φ的一个可能的值为. 故选B . 4. 【 答案】【 解析】∵f (x )=log 2(1+x ),g (x )=log 2(1﹣x ), ∴f (x )﹣g (x )的定义域为(﹣1,1) 记F (x )=f (x )﹣g (x )=log 2, 则F (﹣x )=log 2=log 2()﹣1=﹣log 2=﹣F (x )故f (x )﹣g (x )是奇函数. 故选A. 5. 【 答案】C.【 解析】'cos y x =,即()cos g x x =,所以22()cos y x g x x x ==,为偶函数,图象关于y轴对称,所以排除A,B.当2cos 0y x x ==,得0x =或,2x k k Z ππ=+∈,即函数过原点,所以选C. 6. 【 答案】A.【 解析】作出不等式组对应的平面区域, ∵若z 的最小值为3, ∴2x+y=3, 由,解得,同时(1,1)都在直线x=m 上, ∴m=1. 故选:A . 7. 【 答案】D.【 解析】∵x+2y=3,2x +4y =2x +22y ≥2x+2y =23=8,当且仅当 x=2y=时,等号成立, ∴当2x +4y 取最小值8时,P 点的坐标为(,),点P到圆心C的距离为CP==,大于圆的半径1,故切线长为==2,故选:D.8. 【答案】A.【解析】根据复合函数的单调性可知,f(x)=ln(e x﹣1)(x>0)为增函数,∵函数的定义域为(0,+∞).∴a>0,b>0,设g(x)=f(x)+2x,∵f(x)是增函数,∴当x>0时,g(x)=f(x)+2x为递增函数,∵f(a)+2a=f(b)+3b,∴f(a)+2a=f(b)+3b>f(b)+2b,即g(a)>g(b),∵g(x)=f(x)+2x为递增函数,∴a>b,故选:A.9. 【答案】【解析】∵的二项展开式的通项公式为 T r+1=•a r•x18﹣3r,令18﹣3r=4,求得 r=2,故二项展开式中x4项的系数为•a2=20,解得a=±,故答案为:±.18. 【答案】【解析】∵0<α<,tanα=<1=tan,y=tanx在(0,)上单调递增,∴0<α<,又<β<π,∴﹣π<2α﹣β<﹣,∵tan2α===,tanβ=﹣,∴tan(2α﹣β)===1,∴2α﹣β=﹣.18. 【答案】【解析】等差数列{a n}的前n项和为S n,∵a2+a4=6,S4=18,设公差为d,∴,解得a1=1,d=1,∴a18=1+9=18.故答案为:18.18. 【答案】【解析】由三视图知:余下的几何体如图示:∵E、F都是侧棱的中点,∴上、下两部分的体积相等,∴几何体的体积V=×23=4.18. 【答案】【解析】圆的方程为x2+y2﹣6x﹣8y=0化为(x﹣3)2+(y﹣4)2=25.圆心坐标(3,4),半径是5.最长弦AC是直径,最短弦BD的中点是E.S ABCD=故答案为:18. 【答案】【解析】根据题意,得∵AC⊥平面BCD,BD⊂平面BCD,∴AC⊥BD,∵CD⊥BD,AC∩CD=C,∴BD⊥平面ACD,可得BD⊥CH,∵CH⊥AD,AD∩BD=D,∴CH⊥平面ABD,可得CH⊥AB,∵CM⊥AB,CH∩CM=C,∴AB⊥平面CMH,因此,三棱锥C﹣HAM的体积V=S△CMH×AM=S△CMH由此可得,当S△CMH达到最大值时,三棱锥C﹣HAM的体积最大设∠BCD=θ,则Rt△BCD中,BC=AB=可得CD=,BD=Rt△ACD中,根据等积转换得CH==Rt△ABD∽Rt△AHM,得,所以HM==因此,S△CMH=CH•HM==∵4+2tan2θ≥4tanθ,∴S△CMH=≤=,当且仅当tanθ=时,S △CMH达到最大值,三棱锥C﹣HAM的体积同时达到最大值.∵tanθ=>0,可得sinθ=cosθ>0∴结合sin2θ+cos2θ=1,解出cos2θ=,可得cosθ=(舍负)由此可得CD==,即当三棱锥C﹣HAM的体积最大时,CD的长为故选:C18. 【解析】(Ⅰ)设袋中原有n个黑球,由题意知…(1分)=,解得n=4或n=﹣3(舍去)…(3分)∴黑球有4个,白球有3个.由题意,ξ的可能取值为1,2,3,4,5…(4分),,,…(7分)(错一个扣一分,最多扣3分)∴ξ的分布列为…(8分)所以数学期望为:…(9分)(Ⅱ)∵乙后取,∴乙只有可能在第二次,第四次取球,记乙取到白球为事件A,则,…(18分)答:乙取到白球的概率为.…(18分)18. 【解析】∵A+B=180°,∴C=60°.∵a、b是方程的两个根,∴a+b=,ab=2,∴S△ABC==,AB=c====.18. 【解析】以D为坐标原点,建立如图所示的坐标系,则D(0,0,0),A(1,0,0),B(1,1,0),C(0,1,0),D1(0,1,2),A1(1,0,1),设E(1,m,0)(0≤m≤1)(Ⅰ)证明:=(1,0,1),=(﹣1,﹣m,1)∴•=0∴DA1⊥ED1;(4分)(Ⅱ)解:设平面CED1的一个法向量为=(x,y,z),则∵=(0,﹣1,1),=(1,m﹣1,0)∴.取z=1,得y=1,x=1﹣m,得=(1﹣m,1,1).∵直线DA1与平面CED1成角为45°,∴sin45°=|cos<,>|=,∴=,解得m=.﹣﹣﹣﹣﹣(18分)(Ⅲ)解:点E到直线D1C距离的最大值为,此时点E在A点处.﹣﹣﹣﹣﹣﹣(18分)18. 【解析】(1)由得:,∴a3、a4是方程x2+6x+8=0的二个根,∴x1=﹣2,x2=﹣4;∵等差数列{a n}是递增数列,∴a3=﹣4,a4=﹣2,∴公差d=2,a1=﹣8.∴a n=2n﹣18;(2)∵S n==n2﹣9n=﹣,∴(S n)min=S4=S5=﹣20;(3)由a n≥0得2n﹣18≥0,解得n≥5,此数列前四项为负的,第五项为0,从第六项开始为正的.当1≤n≤5且n∈N*时,T n=|a1|+|a2|+…+|a n|=﹣(a1+a2+…+a n)=﹣S n=﹣n2+9n;当n≥6且n∈N*时,T n=|a1|+|a2|+…+|a5|+|a6|+…+|a n|=﹣(a1+a2+…+a5)+(a6+…+a n)=S n﹣2S5=n2﹣9n﹣2(25﹣45)=n2﹣9n+40.∴T n=.19. 【解析】(1)由题意,c=1∵点(﹣1,)在椭圆C上,∴根据椭圆的定义可得:2a=,∴a=∴b2=a2﹣c2=1,∴椭圆C的标准方程为;(2)假设x轴上存在点Q(m,0),使得恒成立当直线l的斜率为0时,A(,0),B(﹣,0),则=﹣,∴,∴m=①当直线l的斜率不存在时,,,则•=﹣,∴∴m=或m=②由①②可得m=.下面证明m=时,恒成立当直线l的斜率为0时,结论成立;当直线l的斜率不为0时,设直线l的方程为x=ty+1,A(x1,y1),B(x2,y2)直线方程代入椭圆方程,整理可得(t2+2)y2+2ty﹣1=0,∴y1+y2=﹣,y1y2=﹣∴=(x1﹣,y1)•(x2﹣,y2)=(ty1﹣)(ty2﹣)+y1y2=(t2+1)y1y2﹣t(y1+y2)+=+=﹣综上,x轴上存在点Q(,0),使得恒成立.20. 【解析】,g(x)的定义域为(0,+∞).①当a≤0时,g'(x)<0,(0,+∞)是g(x)的单调区间;②当a>0时,由g'(x)>0,得;由g'(x)<0,得,即增区间是,减区间是.(2),∴①当x=1时,μ(x)=0,此时②当0<x<1时,μ'(x)<0,∴μ(x)>μ(1)=0.∴③当x>1时,μ'(x)<0,∴μ(x)<μ(1)=0.∴.(3)⇔⇔∵lnx∈(0,+∞),∴g(x0)>lnx不能恒成立.故x0不存在.。

高考数学真题解析——2023天津卷第15题(填空题压轴)

高考数学真题解析——2023天津卷第15题(填空题压轴)

高考数学真题解析——2023天津卷T14(填空题压轴)若函数f(x)=ax2﹣2x﹣|x2﹣ax+1|有且仅有两个零点,则a的取值范围为.初次审题很快能发现这是常见的零点问题,那就只需要常规的处理方式,转化为“)xf=”,既“ax2﹣2x = |x2﹣ax+1|”有两解,然后再利用图象等处g)((x理方式求解参数的范围。

接下来……(~ ̄▽ ̄)~不会了y = |x2﹣ax+1|的图象本身就因为含参数带有不确定性,只能画个草图,而且!!!y = ax2﹣2x也有这个问题,它俩结合在一起,图象就更难讨论了。

此路不通,再开一条大路呗!( •̀ω•̀)无法利用图象,怎么办呢?“ax2﹣2x = |x2﹣ax+1|”这个绝对值看起来不是个好人,干它,消灭它!那就有一个问题,我们知道去掉||m绝对值是要看0m还是0m。

<=>m、0可是x2﹣ax+1到底是哪一种呢?大家可以顾一下一元二次方程、一元二次不等式与一元二次函数,我们简称“三个二次”之间的关系:这样我们就知道有三种情况,所以要进行分类讨论(重要的数学思想:分类讨论)。

由于Δ=0和Δ<0时对于去掉绝对值的影响是一样的,所以我们可以分为两类Δ≤0和Δ>0。

那么接下来了我们开始进行讨论:要记住我们的目标等式“ax 2﹣2x = |x 2﹣ax +1|”有两解1. 042≤-=a Δ,既22≤≤-a (注意:在分类讨论的时候,先讨论简单的类型,有助于拿分,在这里x 2﹣ax +10≥恒成立,情况较为简单)这时绝对值去掉,等式变为“ax 2﹣2x = x 2﹣ax +1”,化简整理转化为()()01212=--+-x a x a ()[]()0111=+--x x a很多同学不会含参数的因式分解,需要多多练习,可以结合根和系数之间的关系来入手。

很明显方程 ()[]()0111=+--x x a 有两个根1-=x 或()011=+-x a ,这时我们要注意两个问题①()011=+-x a 11-=a x 要想有意义,必须1≠a ②两个根指的是不同的两个根,也就是111-≠-a ,既0≠a再结合大前提22≤≤-a (我们现在进行的一切讨论都是在大前提的基础下进行的),故a 的取值范围为22≤≤-a 且1≠a 且0≠a .刚刚我们讨论了x 2﹣ax +10≥恒成立的情况,但它也可能可以在某些范围上是大于零,某些范围上是小于零,甚至于是等于零。

天津市高考数学压轴卷 理

天津市高考数学压轴卷 理

2017天津市高考压轴卷理科数学一、选择题(每小题5分,共40分)1.设常数a R ∈,集合{|(1)()0},{|1}A x x x a B x x a =--≥=≥-,若A B R ⋃=,则a 的取值范围为( )(A) (,2)-∞(B) (,2]-∞ (C) (2,)+∞(D) [2,)+∞2.函数()2ln f x x =的图像与函数()245g x x x =-+的图像的交点个数为A .3B .2C .1D .03.某学校有男、女学生各500名.为了解男女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是A .抽签法B .随机数法C .系统抽样法D .分层抽样法4.已知04πθ<<,则双曲线22122:1cos sin x y C θθ-=与222222:1sin sin tan y x C θθθ-=的( ) A.实轴长相等 B.虚轴长相等 C.焦距相等 D. 离心率相等5.已知下列三个命题: ①若一个球的半径缩小到原来的12, 则其体积缩小到原来的18; ②若两组数据的平均数相等, 则它们的标准差也相等; ③直线x + y + 1 = 0与圆2212x y +=相切. 其中真命题的序号是:(A) ①②③ (B) ①② (C) ②③ (D) ②③6.执行如图所示的程序框图,若输入10,n S ==则输出的A .511B .1011C .3655D .72557.某学校组织学生参加英语测试,成绩的频率分布直方图如图, 数据的分组一次为[)[)[)[)20,40,40,60,60,80,820,100. 若低于60分的人数是15人,则该班的学生人数是(A )45 (B )50 (C )55 (D )608.设函数()()()()()222,2,0,8x e e f x x f x xf x f x f x x '+==>满足则时, (A )有极大值,无极小值 (B )有极小值,无极大值 (C )既有极大值又有极小值 (D )既无极大值也无极小值 二、填空题:本大题共6小题,每小题5分,共30分.9.设m R ∈,222(1)i m m m +-+-是纯虚数,其中i 是虚数单位,则________m = 10.12.若209,Tx dx T =⎰则常数的值为11.设常数a R ∈,若52a x x ⎛⎫+ ⎪⎝⎭的二项展开式中7x 项的系数为10-,则______a =12.如图,圆O 上一点C 在直线AB 上的射影为D ,点D 在半径OC 上的射影为E 。

2023天津高考数学压轴题

2023天津高考数学压轴题

2023天津高考数学压轴题2023年天津高考数学压轴题,作为试卷的最后一题,旨在考查学生的深层次思维、问题解决能力和数学知识的综合运用。

这类题目通常设计得较为复杂,需要考生通过多个步骤和策略来找到解决方案。

内容分析压轴题往往融合了多个数学知识点,可能包括函数、数列、不等式、几何等多个领域。

题目设计精巧,既考查了学生对基础知识的掌握,也检验了他们的逻辑思维和推理能力。

题目中可能包含多个小问,每个小问都建立在前面问题的基础上,逐步深入,要求考生层层递进地解决问题。

特点综合性强:压轴题往往融合了多个数学知识点,要求考生能够综合运用所学知识来解决问题。

思维层次高:这类题目不仅要求考生掌握基本的数学知识和技能,还要求他们能够进行深层次的思维活动,如分析、综合、归纳、推理等。

解题策略多样:由于压轴题的复杂性和综合性,通常有多种解题策略和方法。

考生需要选择最适合自己的方法来解决问题。

区分度高:压轴题的设计往往能够很好地区分不同水平的学生,使得优秀学生能够脱颖而出。

做题技巧对于解决高考数学压轴题尤为重要,以下是一些建议的技巧:仔细审题:仔细阅读题目,确保理解题目中的每一个条件和要求。

标记出关键信息,如函数的定义域、值域、特殊点等。

制定解题计划:在开始解题之前,先思考一下可能的解题步骤和策略。

确定哪些步骤是必要的,哪些可能是辅助性的。

利用已知条件:充分利用题目给出的已知条件,这些条件通常是解题的出发点。

尝试将已知条件与所学的数学知识点联系起来。

尝试多种方法:如果一种方法行不通,不要气馁,尝试换一种思路或方法。

灵活运用所学的数学知识,寻找解题的突破口。

检查答案:在得出答案后,务必进行检查,确保答案符合题目的所有条件和要求。

如果时间允许,可以尝试用不同的方法验证答案的正确性。

注意时间管理:压轴题通常较为复杂,需要花费较多时间,但要避免在单个题目上花费过多时间而影响其他题目的解答。

如果在解题过程中遇到困难,可以先标记出来,等完成其他题目后再回来解决。

全国卷Ⅰ2024年高考数学压轴卷理含解析

全国卷Ⅰ2024年高考数学压轴卷理含解析

(全国卷Ⅰ)2024年高考数学压轴卷 理(含解析)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合402x A x x ⎧-⎫=∈≥⎨⎬+⎩⎭Z,1244x B x ⎧⎫=≤≤⎨⎬⎩⎭,则A B =( )A .{}12 x x -≤≤B .{}1,0,1,2-C .{}2,1,0,1,2--D .{}0,1,22.已知a 是实数,i1ia +-是纯虚数,则a 等于( ) A.B .1-CD .13.“0a ≤”是“函数()|(1)|f x ax x =-在区间(0,)+∞内单调递增”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件4.已知双曲线()2222:10,0x y C a b a b-=>>的右焦点到渐近线的距离等于实轴长,则此双曲线的离心率为( )ABCD5.若221m n >>,则( ) A .11m n> B .1122log log m n >C .()ln 0m n ->D .1m n -π>6.已知平面对量a ,b,满意(=a ,3=b ,()2⊥-a a b ,则-=a b ( ) A .2B .3C .4D .67.执行右边的程序框图,输出的2018ln =S ,则m 的值为( ) A .2024 B .2024 C .2024D .20248.据统计,连续熬夜48小时诱发心脏病的概率为0055.,连续熬夜72小时诱发心脏病的概率为019.,现有一人已连续熬夜48小时未诱发心脏病,则他还能接着连续熬夜24小时不诱发心脏病的概率为( )A .67B .335C .1135D .019.9.已知一几何体的三视图如图所示,则该几何体的体积为( )A .163π+ B .112π+ C .1123π+ D .143π+ 10.将()2sin22cos21f x x x =-+的图像向左平移π4个单位,再向下平移1个单位,得到函数()y g x =的图像,则下列关于函数()y g x =的说法错误的是( )A .函数()y g x =的最小正周期是πB .函数()y g x =的一条对称轴是π8x = C .函数()y g x =的一个零点是3π8D .函数()y g x =在区间5π,128π⎡⎤⎢⎥⎣⎦上单调递减11.焦点为F 的抛物线2:8C y x =的准线与x 轴交于点A ,点M 在抛物线C 上,则当MA MF取得最大值时,直线M A 的方程为( ) A .2y x =+或2y x =-- B .2y x =+ C .22y x =+或22y x =-+D .22y x =-+12.定义在R 上的函数()f x 满意()()22f x f x +=,且当[]2,4x ∈时,()224,232,34x x x f x x x x⎧-+≤≤⎪=⎨+<≤⎪⎩,()1g x ax =+,对[]12,0x ∀∈-,[]22,1x ∃∈-使得()()21g x f x =,则实数a 的取值范围为( )A .11,,88⎛⎫⎡⎫-∞-+∞ ⎪⎪⎢⎝⎭⎣⎭ B .11,00,48⎡⎫⎛⎤-⎪ ⎢⎥⎣⎭⎝⎦C .(]0,8D .11,,48⎛⎤-∞-+∞ ⎥⎪⎝⎦⎡⎫⎢⎣⎭二、填空题:本大题共4小题,每小题5分.13.已知1sin )1lg()(2++-+=x x x x f 若21)(=αf 则=-)(αf 14.在()311nx x x ⎛⎫++ ⎪⎝⎭的绽开式中,各项系数之和为256,则x 项的系数是__________. 15.知变量x ,y 满意条件236y xx y y x ≤+≥≥-⎧⎪⎨⎪⎩,则目标函数223x y z x y-=+的最大值为16.如图,在ABC △中,3sin23ABC ∠=,点D 在线段AC 上,且2AD DC =,433BD =,则ABC △的面积的最大值为__________.三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)已知公差不为零的等差数列{}n a 和等比数列{}n b 满意:113a b ==,24b a =, 且1a ,4a ,13a 成等比数列. (1)求数列{}n a 和{}n b 的通项公式; (2)令nn na cb =,求数列{}n c 的前n 项和n S . 18.(本小题满分12分)某市实行“中学生诗词大赛”,分初赛和复赛两个阶段进行,规定:初赛成果大于90分的具有复赛资格,某校有800名学生参与了初赛,全部学生的成果均在区间(]30,150内,其频率分布直方图如图.(1)求获得复赛资格的人数;(2)从初赛得分在区间(]110,150的参赛者中,利用分层抽样的方法随机抽取7人参与学校座谈沟通,那么从得分在区间(]110,130与(]130,150各抽取多少人?(3)从(2)抽取的7人中,选出3人参与全市座谈沟通,设X 表示得分在区间(]130,150中参与全市座谈沟通的人数,求X 的分布列及数学期望()E X .19.(本小题满分12分)如图,底面ABCD 是边长为3的正方形,DE ⊥平面ABCD ,//AF DE ,3DE AF =,BE 与平面ABCD 所成角为60︒.(1)求证:AC ⊥平面BDE ; (2)求二面角F BE D --的余弦值.20.(本小题满分12分)过抛物线22(0)x py p =>的焦点F 的直线与抛物线在第一象限的交点为A ,与抛物线准线的交点为B ,点A 在抛物线准线上的射影为C ,若AF FB =,ABC △的面积为83(1)求抛物线的标准方程;(2)过焦点F 的直线与抛物线交于M ,N 两点,抛物线在M ,N 点处的切线分别为1l ,2l ,且1l 与2l 相交于P 点,1l 与x 轴交于Q 点,求证:2FQ l ∥.21.(本小题满分12分) 设函数()(2ln 1f x x x x =-++. (1)探究函数()f x 的单调性;(2)若0x ≥时,恒有()3f x ax ≤,试求a 的取值范围;请考生在22、23两题中任选一题作答,假如多做,则按所做的第一题记分. 22.(本小题满分10分)【选修4-4:坐标系与参数方程】在直角坐标系xOy 中,圆C 的一般方程为2246120x y x y +--+=.在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,直线l 的极坐标方程为πsin 4ρθ⎛⎫=+= ⎪⎝⎭(1)写出圆C 的参数方程和直线l 的直角坐标方程;(2)设直线l 与x 轴和y 轴的交点分别为A ,B ,P 为圆C 上的随意一点,求PA PB ⋅的取值范围.23.(本小题满分10分)【选修4-5:不等式选讲】 设函数()21f x x =-.(1)设()()15f x f x ++<的解集为A ,求集合A ;(2)已知m 为(1)中集合A 中的最大整数,且a b c m ++=(其中a ,b ,c 为正实数),求证:1118a b ca b c---⋅⋅≥.2024全国卷Ⅰ高考压轴卷数学理科答案解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.【答案】B【解析】集合{}{}40241,0,1,2,3,42x A x x x x ⎧-⎫=∈≥=∈-<≤=-⎨⎬+⎩⎭ZZ ,{}14224B x x x x ⎧⎫=≤≤=-≤≤⎨⎬⎩⎭,则{}1,0,1,2AB =-,故选B .2.【答案】D 【解析】i 1i a +-是纯虚数,i 1+(+1)i=1i 2a a a +--,则要求实部为0,即1a =.故选D . 3.【答案】C .【解析】当0a =时,()|(1)|||f x ax x x =-=在区间(0,)+∞上单调递增;当0a <时,结合函数2()|(1)|||f x ax x ax x =-=-的图像知函数在(0,)+∞上单调递增,如图1-7(a)所示;当0a >时,结合函数2()|(1)|||f x ax x ax x =-=-的图像知函数在(0,)+∞上先增后减再增,不符合条件,如图1-7(b)所示.所以要使函数()|(1)|f x ax x =-在(0,)+∞上单调递增,只需0a ≥,即“0a ≥”是“函数()|(1)|f x ax x =-在区间(0,)+∞内单调递增”的充要条件.故选C.4.【答案】C【解析】由题意可设双曲线C 的右焦点(),0F c ,渐进线的方程为by x a=±,可得2d b a ===,可得c =,可得离心率ce a=C .5.【答案】D【解析】因为221m n >>,所以由指数函数的单调性可得0m n >>, 因为0m n >>,所以可解除选项A ,B ;32m =,1n =时,可解除选项C , 由指数函数的性质可推断1m n -π>正确,故选D . 6.【答案】B【解析】由题意可得:2=a ,且:()20⋅-=a a b ,即220-⋅=a a b ,420-⋅=a b ,2⋅=a b ,由平面对量模的计算公式可得:3-=a b .故选B .7.【答案】B【解析】第一次循环,2,2ln ==i S 其次次循环,3,3ln ln 2ln 12ln 3232==+=+=⎰i x dx xS 第三次循环,4,4ln ln 2ln 13ln 4343==+=+=⎰i x dx xS 第四次循环,5,5ln ln 4ln 14ln 5454==+=+=⎰i x dx xS ……推理可得m=2024,故选B .8.【答案】A【解析】设事务A 为48h 发病,事务B 为72h 发病,由题意可知:()0055P A =.,()019P B =.,则()0945P A =.,()081P B =., 由条件概率公式可得:()()()()()0816|09457P AB P B P B A P A P A ====...故选A . 9.【答案】C【解析】视察三视图可知,几何体是一个圆锥的14与三棱锥的组合体,其中圆锥的底面半径为1,高为1.三棱锥的底面是两直角边分别为1,2的直角三角形,高为1.则几何体的体积21111π1π111213432123V =⨯⨯⨯⨯+⨯⨯⨯⨯=+.故本题答案选C .10.【答案】D【解析】由题意可知:()2sin22cos212sin 4π21f x x x x ⎛⎫=-+=-+ ⎪⎝⎭,图像向左平移π4个单位,再向下平移1个单位的函数解析式为: ()ππ2sin 2112sin 244π4g x x x ⎡⎤⎛⎫⎛⎫=+-+-=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦.则函数()g x 的最小正周期为2ππ2T ==,A 选项说法正确; 当π8x =时,22ππ4x +=,函数()y g x =的一条对称轴是π8x =,B 选项说法正确; 当3π8x =时,2π4πx +=,函数()y g x =的一个零点是3π8,C 选项说法正确; 若5π,128πx ⎡⎤∈⎢⎥⎣⎦,则5π3π2,4122πx ⎡⎤+∈⎢⎥⎣⎦,函数()y g x =在区间5π,128π⎡⎤⎢⎥⎣⎦上不单调,D 选项说法错误;故选D . 11.【答案】A 【解析】过M 作MP 与准线垂直,垂足为P ,则11cos cos MA MA MFMPAMP MAF ===∠∠,则当MA MF取得最大值时,M AF ∠必需取得最大值,此时直线AM 与抛物线相切,可设切线方程为()2y k x =+与28y x =联立,消去y 得28160ky y k -+=,所以264640k ∆=-=,得1k =±.则直线方程为2y x =+或2y x =--.故本题答案选A .12.【答案】D【解析】因为()f x 在[]2,3上单调递减,在(]3,4上单调递增,所以()f x 在[]2,3上的值域是[]3,4,在(]3,4上的值域是119,32⎛⎤ ⎥⎝⎦,所以函数()f x 在[]2,4上的值域是93,2⎡⎤⎢⎥⎣⎦,因为()()22f x f x +=,所以()()()112424f x f x f x =+=+, 所以()f x 在[]2,0-上的值域是39,48⎡⎤⎢⎥⎣⎦,当0a >时,()g x 为增函数,()g x 在[]2,1-上的值域为[]21,1a a -++, 所以3214918a a ≥-+≤+⎧⎪⎪⎨⎪⎪⎩,解得18a ≥;当0a <时,()g x 为减函数,()g x 在[]2,1-上的值域为[]1,21a a +-+, 所以3149218a a ≥+⎧⎪≤+⎨-⎪⎪⎪⎩,解得14a ≤-,当0a =时,()g x 为常函数,值域为{}1,不符合题意,综上,a 的范围是11,,48⎛⎤⎡⎫-∞-+∞ ⎪⎥⎢⎝⎦⎣⎭,故选D . 二、填空题:本大题共4小题,每小题5分. 13. 【答案】23【解析】解析:因为1sin )1lg()(2++-+=x x x x f 的定义域为R,关于原点对称,21sin )1lg(1sin )1lg()()(22=+-++++++-+=-+)(x x x x x x f f αα故221)(=+-αf 则=-)(αf 2314.【答案】7【解析】令1x =可得各项系数和:()31112561n⎛+⨯= ⎝,据此可得:7n =,73x x ⎛+ ⎝绽开式的通项公式为:()721732177C C r r rr r r T xx x --+==, 令72102r -=可得:6r =,令72112r -=可得:407r =,不是整数解,据此可得:x 项的系数是67C 7=. 15.3【解析】作出236y x x y y x ≤+≥≥-⎧⎪⎨⎪⎩,表示的可行域,如图变形目标函数,()()()2222223,1,32cos 31x y x y z x yx y θ-⋅-===++-⋅+,其中θ为向量)3,1=-a 与(),x y =b 的夹角,由图可知,()2,0=b 时θ有最小值6π, (),x y =b 在直线y x =上时,θ有最大值56412π+=ππ,即5612θπ≤≤π,5612θπ≤≤π, 目标函数223x y z x y-=+3C .16.【答案】32 【解析】由3sin2ABC ∠=可得:6cos 2ABC ∠=, 则22sin 2sin cos 22ABC ABC ABC ∠∠∠==. 由32sin2ABC ∠<452ABC ∠<︒,则90ABC ∠<︒,由同角三角函数基本关系可知:1cos 3ABC ∠=. 设AB x =,BC y =,()30,0,0AC z x y z =>>>,在ABD △中由余弦定理可得:()22162cos z x BDA +-∠=,在CBD △中由余弦定理可得:2216cos z y BDC +-∠=由于180BDA BDC ∠+∠=︒,故cos cos BDA BDC ∠=-∠,()222216162z x z y +-+-=22216620z x y +--=.①在ABC △中,由余弦定理可知:()2221233x y xy z +-⨯=,则:2222246339z x y xy =+-,代入①式整理计算可得:2214416339x y xy ++=,由均值不等式的结论可得:4161699xy xy ≥=,故9xy ≤,当且仅当x =y =时等号成立,据此可知ABC △面积的最大值为:()max max 11sin 922S AB BC ABC =⨯⨯⨯∠=⨯= 三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)【答案】(1)()32121n a n n =+-=+,3n n b =;(2)223n nn S +=-. 【解析】(1)设{}n a 的公差为d ,则由已知得21134a a a =,即()()2331233d d +=+,解之得:2d =或0d =(舍),所以()32121n a n n =+-=+; 因为249b a ==,所以{}n b 的公比3q =,所以3n n b =. (2)由(1)可知213n nn c +=, 所以23357213333n n n S +=++++...,21572133333n n n S -+=++++...,所以12111211112121243323234133333313n n n n n n n n n S --⎛⎫⋅- ⎪+++⎛⎫⎝⎭=++++-=+-=- ⎪⎝⎭-...,所以223n n n S +=-.18.(本小题满分12分)【答案】(1)520人;(2)5人,2人;(3)()67E X =.【解析】(1)由题意知[)90,110之间的频率为:()1200.00250.0050.007520.01250.3-⨯++⨯+=,()0.30.01250.0050200.65++⨯=,获得参赛资格的人数为8000.65520⨯=人.(2)在区间(]110,130与(]130,150,0.0125:0.00505:2=,在区间(]110,150的参赛者中,利用分层抽样的方法随机抽取7人,分在区间(]110,130与(]130,150各抽取5人,2人.结果是5人,2人.(3)X 的可能取值为0,1,2,则:()305237C C 20C 7P X ===;()215237C C 41C 7P X ===;()125237C C 12C 7P X ===;故X 的分布列为:()20127777E X =⨯+⨯+⨯=.19.(本小题满分12分)【答案】(1)见解析(2(1)证明:∵DE ⊥平面ABCD ,AC ⊂平面ABCD ,∴DE AC ⊥,又∵底面ABCD 是正方形,∴AC BD ⊥.∵BD DE D =,∴AC ⊥平面BDE .(2)解:∵DA ,DC ,DE 两两垂直,∴建立如图所示的空间直角坐标系D xyz -,∵BE 与平面ABCD 所成角为60︒,即60DBE ∠=︒,∴3ED DB=, 由3AD =,可知32BD =36DE =6AF = 则(3,0,0)A ,6)F ,(0,0,36)E ,(3,3,0)B ,(0,3,0)C , ∴(0,6)BF =-,(3,0,26)EF =-.设平面BEF 的一个法向量为(,,)n x y z =,则0,0,n BF n EF ⎧⋅=⎪⎨⋅=⎪⎩即360,360,y z x z ⎧-=⎪⎨-=⎪⎩ 令6z =(4,2,6)n =. ∵AC ⊥平面BDE ,∴CA 为平面BDE 的一个法向量,∴(3,3,0)CA =-,∴||13cos ,||||3226n CA n CA n CA ⋅<>===⋅⨯ ∵二面角F BE D --为锐角,∴二面角F BE D --的余弦值为1313. 20.(本小题满分12分) 【答案】(1)24x y =;(2)证明见解析.【解析】(1)因为AF FB =,所以F 到准线的距离即为三角形ABC △的中位线的长,所以2AC p =,依据抛物线的定义AC AF =,所以24AB AC p ==,()()224223BC p p =-,1223832ABC S p =⋅⋅=△ 解得2p =,所以抛物线的标准方程为24x y =.(2)易知直线MN 的斜率存在,设直线:1MN y kx =+,设()11,M x y ,()22,N x y联立24 1x y y kx =+⎧⎪⎨⎪⎩=消去y 得2440x kx --=,得124x x =-, 24x y =,'2x y =,设()11,M x y ,()22,N x y ,111:22l y y xx +=,222:22l y y xx +=,()22212212112121121212442,22,12444p p p x x y y x x x x x x x x y x y x x x x ⎛⎫- ⎪-++⎝⎭===+⋅===---, 得P 点坐标21,12x x P +⎛⎫- ⎪⎝⎭,由111:22l y y xx +=,得1,02x Q ⎛⎫ ⎪⎝⎭, 12QF k x =-,221141222l x k x x -==⋅=-,所以2QF l k k =,即2PQ l ∥. 21.(本小题满分12分)【答案】(1)增函数;(2)1,6⎡⎫+∞⎪⎢⎣⎭;(3)见解析. 【解析】(1)函数()f x 的定义域为R .由()'10f x =≥,知()f x 是实数集R 上的增函数.(2)令()()(33ln g x f x ax x x ax =-=--,则()2131'ax g x --,令())2131h x ax =--,则()()23169169'x a ax a x ax h x ⎡⎤----==.(i )当16a ≥时,()'0h x ≤,从而()h x 是[)0,+∞上的减函数, 留意到()00h =,则0x ≥时,()0h x ≤,所以()'0g x ≤,进而()g x 是[)0,+∞上的减函数,留意到()00g =,则0x ≥时,()0g x ≤时,即()3f x ax ≤.(ii )当106a <<时,在⎡⎢⎣上,总有()'0h x >,从而知,当x ⎡∈⎢⎣⎭时,()3f x ax >; (iii )当0a ≤时,()'0h x >,同理可知()3f x ax >,综上,所求a 的取值范围是1,6⎡⎫+∞⎪⎢⎣⎭. 请考生在22、23两题中任选一题作答,假如多做,则按所做的第一题记分.22.(本小题满分10分)【答案】(1)2cos 3sin x y θθ+=+⎧⎨⎩=,20x y +-=;(2)44PA PB -⋅≤+ 【解析】(1)圆C 的参数方程为2cos 3sin x y θθ+=+⎧⎨⎩=(θ为参数). 直线l 的直角坐标方程为20x y +-=.(2)由直线l 的方程20x y +-=可得点()2,0A ,点()0,2B . 设点(),P x y ,则()()222,,2222412PA PB x y x y x y x y x y ⋅=--⋅--=+--=+-.由(1)知2cos 3sin x y θθ+=+⎧⎨⎩=,则()4sin 2cos 44PA PB θθθϕ⋅=++=++.因为θ∈R ,所以44PA PB -≤⋅≤+23.(本小题满分10分)【答案】(1)55|44A x x ⎧⎫=-<<⎨⎬⎩⎭;(2)见解析.【解析】(1)()()15f x f x ++<即21215x x -++<, 当12x <-时,不等式化为12215x x ---<,∴5142x -<<-; 当1122x -≤≤时,不等式化为12215x x -++<,不等式恒成立; 当12x >时,不等式化为21215x x -++<,∴1524x <<. 综上,集合55|44A x x ⎧⎫=-<<⎨⎬⎩⎭.(2)由(1)知1m =,则1a b c ++=.则1a b c a a -+=1b b -≥1c c -≥则1118a b c a b c ---⋅⋅≥=,即8M ≥.。

2025届天津市静海区高三最后一卷数学试卷含解析

2025届天津市静海区高三最后一卷数学试卷含解析

2025届天津市静海区高三最后一卷数学试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。

2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。

3.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知函数()ln 1f x x =+,()122x g x e -=,若()()f m g n =成立,则m n -的最小值是( )A .1ln 22+B .2e -C .1ln 22-D .12e -2.正四棱锥P ABCD -的五个顶点在同一个球面上,它的底面边长为6,侧棱长为23,则它的外接球的表面积为( ) A .4πB .8πC .16πD .20π3.关于圆周率π,数学发展史上出现过许多很有创意的求法,如著名的浦丰实验和查理斯实验.受其启发,我们也可以通过设计下面的实验来估计π的值:先请全校m 名同学每人随机写下一个都小于1的正实数对(),x y ;再统计两数能与1构成钝角三角形三边的数对(),x y 的个数a ;最后再根据统计数a 估计π的值,那么可以估计π的值约为( )A .4amB .2a m+ C .2a mm+ D .42a mm+ 4.甲、乙、丙、丁四位同学利用暑假游玩某风景名胜大峡谷,四人各自去景区的百里绝壁、千丈瀑布、原始森林、远古村寨四大景点中的一个,每个景点去一人.已知:①甲不在远古村寨,也不在百里绝壁;②乙不在原始森林,也不在远古村寨;③“丙在远古村寨”是“甲在原始森林”的充分条件;④丁不在百里绝壁,也不在远古村寨.若以上语句都正确,则游玩千丈瀑布景点的同学是( ) A .甲B .乙C .丙D .丁5.函数y =2x sin2x 的图象可能是A .B .C .D .6.如图,在等腰梯形ABCD 中,//AB DC ,222AB DC AD ===,60DAB ∠=︒,E 为AB 的中点,将ADE ∆与BEC ∆分别沿ED 、EC 向上折起,使A 、B 重合为点F ,则三棱锥F DCE -的外接球的体积是( )A 6B 6C .32π D .23π 7.等比数列{}n a 的各项均为正数,且384718a a a a +=,则3132310log log log a a a +++=( )A .12B .10C .8D .32log 5+8.已知函数()cos(2)3f x x π=+,则下列结论错误的是( )A .函数()f x 的最小正周期为πB .函数()f x 的图象关于点,012π⎛⎫⎪⎝⎭对称 C .函数()f x 在2,33ππ⎛⎫⎪⎝⎭上单调递增 D .函数()f x 的图象可由sin 2y x =的图象向左平移12π个单位长度得到9.某几何体的三视图如图所示(单位:cm ),则该几何体的表面积是( )A .28cmB .212cmC .()2452cm +D .()2454cm +10.已知集合{}1,2,3,,M n =(*n N ∈),若集合{}12,A a a M =⊆,且对任意的b M ∈,存在{},1,0,1λμ∈-使得i j b a a λμ=+,其中,i j a a A ∈,12i j ≤≤≤,则称集合A 为集合M 的基底.下列集合中能作为集合{}1,2,3,4,5,6M =的基底的是( )A .{}1,5B .{}3,5C .{}2,3D .{}2,411.历史上有不少数学家都对圆周率作过研究,第一个用科学方法寻求圆周率数值的人是阿基米德,他用圆内接和外切正多边形的周长确定圆周长的上下界,开创了圆周率计算的几何方法,而中国数学家刘徽只用圆内接正多边形就求得π的近似值,他的方法被后人称为割圆术.近代无穷乘积式、无穷连分数、无穷级数等各种π值的表达式纷纷出现,使得π值的计算精度也迅速增加.华理斯在1655年求出一个公式:π2244662133557⨯⨯⨯⨯⨯⨯=⨯⨯⨯⨯⨯⨯,根据该公式绘制出了估计圆周率π的近似值的程序框图,如下图所示,执行该程序框图,已知输出的 2.8T >,若判断框内填入的条件为?k m ≥,则正整数m 的最小值是A .2B .3C .4D .512.若2332a b a b +=+,则下列关系式正确的个数是( )①0b a << ②a b = ③01a b <<< ④1b a << A .1B .2C .3D .4二、填空题:本题共4小题,每小题5分,共20分。

2025届天津市滨海新区大港油田一中高三压轴卷数学试卷含解析

2025届天津市滨海新区大港油田一中高三压轴卷数学试卷含解析

2025届天津市滨海新区大港油田一中高三压轴卷数学试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。

2.答题时请按要求用笔。

3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设0.50.82a =,sin1b =,lg 3c =,则a ,b ,c 三数的大小关系是A .a c b <<B .a b c <<C .c b a <<D .b c a <<2.,,a b αβαβ//////,则a 与b 位置关系是 ( )A .平行B .异面C .相交D .平行或异面或相交3.一场考试需要2小时,在这场考试中钟表的时针转过的弧度数为( )A .3πB .3π-C .23π D .23π-4.设x ∈R ,则“327x <”是“||3x <”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5.若x ,y 满足约束条件-0210x y x y x ≤⎧⎪+≤⎨⎪+≥⎩,,,则z =32x y ++的取值范围为()A .[2453,] B .[25,3] C .[43,2] D .[25,2]6.函数()y f x =在区间,22ππ⎛⎫- ⎪⎝⎭上的大致图象如图所示,则()f x 可能是( )A .()ln sin f x x =B .()()ln cos f x x =C .()sin tan f x x =-D .()tan cos f x x =-7.设点A ,B ,C 不共线,则“()AB AC BC +⊥”是“AB AC =”( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件 8.为比较甲、乙两名高中学生的数学素养,对课程标准中规定的数学六大素养进行指标测验(指标值满分为100分,分值高者为优),根据测验情况绘制了如图所示的六大素养指标雷达图,则下面叙述不正确的是( )A .甲的数据分析素养优于乙B .乙的数据分析素养优于数学建模素养C .甲的六大素养整体水平优于乙D .甲的六大素养中数学运算最强 9.已知AB 是过抛物线24y x =焦点F 的弦,O 是原点,则OA OB ⋅=( )A .-2B .-4C .3D .-310.设函数()()ln 1f x x =-的定义域为D ,命题p :x D ∀∈,()f x x ≤的否定是( )A .x D ∀∈,()f x x >B .0x D ∃∈,()00f x x ≤C .xD ∀∉,()f x x > D .0x D ∃∈,()00f x x >11.设2log 3a =,4log 6b =,0.15c -=,则( )A .a b c >>B .b a c >>C .c a b >>D .c b a >>12.若各项均为正数的等比数列{}n a 满足31232a a a =+,则公比q =( )A .1B .2C .3D .4二、填空题:本题共4小题,每小题5分,共20分。

天津市滨海新区大港油田实验中学2025届高考压轴卷数学试卷含解析

天津市滨海新区大港油田实验中学2025届高考压轴卷数学试卷含解析

天津市滨海新区大港油田实验中学2025届高考压轴卷数学试卷注意事项1.考生要认真填写考场号和座位序号。

2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。

第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。

3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知实数,x y 满足,10,1,x y x y y ≥⎧⎪+-≤⎨⎪≥-⎩则2z x y =+的最大值为( )A .2B .32C .1D .02.若函数32()39f x x ax x =++-在3x =-时取得极值,则a =( ) A .2B .3C .4D .53.已知函数2()e (2)e xx f x t t x =+--(0t ≥),若函数()f x 在x ∈R 上有唯一零点,则t 的值为( )A .1B .12或0 C .1或0 D .2或04.函数()sin 3f x x πω⎛⎫=- ⎪⎝⎭(0>ω),当[]0,x π∈时,()f x的值域为,12⎡⎤-⎢⎥⎣⎦,则ω的范围为( ) A .53,62⎡⎤⎢⎥⎣⎦B .55,63⎡⎤⎢⎥⎣⎦C .14,23⎡⎤⎢⎥⎣⎦D .50,3⎛⎤ ⎥⎝⎦5.已知锐角α满足2sin21cos2 ,αα=-则tan α=( ) A .12B .1C .2D .46.已知椭圆2222:19x y C a a +=+,直线1:30l mx y m ++=与直线2:30l x my --=相交于点P ,且P 点在椭圆内恒成立,则椭圆C 的离心率取值范围为( )A.0,2⎛⎫ ⎪ ⎪⎝⎭ B.2⎛⎫⎪ ⎪⎝⎭C .10,2⎛⎫⎪⎝⎭D .1,12⎛⎫ ⎪⎝⎭7.已知向量11,,2a b m ⎛⎫==⎪⎝⎭,若()()a b a b +⊥-,则实数m 的值为( ) A.12B C.12±D . 8.盒中有6个小球,其中4个白球,2个黑球,从中任取()1,2i i =个球,在取出的球中,黑球放回,白球则涂黑后放回,此时盒中黑球的个数()1,2i X i =,则( )A .()()1233P X P X =>=,12EX EX >B .()()1233P X P X =<=,12EX EX >C .()()1233P X P X =>=,12EX EX <D .()()1233P X P X =<=,12EX EX <9.为了进一步提升驾驶人交通安全文明意识,驾考新规要求驾校学员必须到街道路口执勤站岗,协助交警劝导交通.现有甲、乙等5名驾校学员按要求分配到三个不同的路口站岗,每个路口至少一人,且甲、乙在同一路口的分配方案共有( ) A .12种B .24种C .36种D .48种10.已知F 为抛物线2:8C y x =的焦点,点()1,A m 在C 上,若直线AF 与C 的另一个交点为B ,则AB =( )A .12B .10C .9D .811.622x x ⎛⎫- ⎪⎝⎭的展开式中,含3x 项的系数为( ) A .60-B .12-C .12D .6012.下列函数中,既是偶函数又在区间0,上单调递增的是( ) A.y =B .()sin f x x x =C .()2f x x x =+ D .1y x =+二、填空题:本题共4小题,每小题5分,共20分。

天津市2021年高考数学压轴卷(含解析)

天津市2021年高考数学压轴卷(含解析)

天津市2021年高考数学压轴卷(含解析)一、填空题(本大题共有12题,满分54分)考生应在答题纸上相应编号的空格内直接填写结果,第1~6题每个空格填对得4分,第7~12题每个空格填对得5分,否则一律得零分.1.已知集合{|24},{|22}A x x B x x =-<≤=-≤<,则A B =( )A .{|22}x x -<<B .{|24}x x -≤≤C .{|22}x x -≤≤D .{|24}x x -<≤2.已知(2)(2)43,m i i i +-=+,m R i ∈为虚数单位,则m 的值为( ) A .1B .1-C .2D .2-3.已知不等式22240x mx m -+->成立的必要不充分条件是1x ≤或2x ≥,则实数m 的最大值为( )A .1B .2C .3D .44.已知函数()f x 是定义在R 上的偶函数,且在()0,∞+上单调递增,则( ) A .()()()0.633log 132f f f -<-<B .()()()0.6332log 13f f f -<<-C .()()()0.632log 133f f f <-<-D .()()()0.6323log 13f f f <-<5.已知在等差数列{}n a 中,34576, 11a a a a ++==,则1a =( ) A .3B .7C .7-D .3-6.已知双曲线22212x y a -=的一条渐近线的倾斜角为6π,则双曲线的离心率为( )A B .3C D .27.已知sin α=,sin()10αβ-=-,,αβ均为锐角,则β=( ) A .512πB .3π C .4π D .6π 8.有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫.从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为 A .45B .35C .25D .159.已知函数()()2321120xxf x xx a x ax x⎧≤⎪=-⎨⎪-++>⎩,,,若方程()f x ax=有4个不同的实数根,则实数a的取值范围是()A.(﹣1,0)B.(0,1)C.(0,1] D.(1,+∞)第II卷(非选择题)二、选择题(本大题共有4题,满分20分)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.10.若函数()2212f x x x+=-,则()3f=______________.11.612xx⎛⎫-⎪⎝⎭展开式的常数项为.(用数字作答)12.抛物线,直线l经过抛物线的焦点F,与抛物线交于A、B两点,若,则(O为坐标原点)的面积为______.13.如图,在正四棱柱1111ABCD A B C D-中,P是侧棱1CC上一点,且12C P PC=.设三棱锥1P D DB-的体积为1V,正四棱柱1111ABCD A B C D-的体积为V,则1VV的值为________.14.已知函数()sin3(0)f x x xωωω=+>,x∈R.若函数()f x在区间(0,4)π内恰有5个零点,则ω的取值范围为_________.15.已知a b>,二次三项式240ax x b++≥对于一切实数x恒成立,又0x R∃∈,使20040ax x b++=成立,则22a ba b+-的最小值为____.三、解答题(本大题满分76分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.16.(本题满分14分)本题共有2个小题,第1小题满分4分,第2小题满分5分,第3小题满分5分.已知函数2()2sin cos23cos3,f x x x x x R=-+∈.(1)求()f x的最小正周期;(2)求()f x在区间2[,]243ππ上的最大值和最小值;(3)若关于x的不等式()3()mf x m f x+≥在R上恒成立,求实数m的取值范围. 17.(本题满分14分)本题共有2个小题,第1小题满分4分,第2小题满分5分,第3小题满分5分.如图,在三棱柱111ABC A B C-中,四边形11ABB A,11BB C C均为正方形,且1111A B B C⊥,M为1CC的中点,N为1A B的中点.(1)求证://MN平面ABC;(2)求二面角1B MN B--的正弦值;(3)设P是棱11B C上一点,若直线PM与平面1MNB所成角的正弦值为215,求111B PB C的值18.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.已知抛物线2:2C y x=的焦点为椭圆()2222:10x yE a ba b+=>>的右焦点,C的准线与E交于P,Q两点,且2PQ=.(1)求E的方程;(2)过E的左顶点A作直线l交E于另一点B,且BO(O为坐标原点)的延长线交E 于点M,若直线AM的斜率为1,求l的方程.19.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.已知数列{}n a的前n项和22nn nS+=,数列{}n b满足:122b b==,()112nn nb b n N+*+=∈.(Ⅰ)求数列{}n a ,{}n b 的通项公式; (Ⅱ)求()*21121 ni i i i a b n N b -=⎛⎫-∈ ⎪⎝⎭∑. 20.(本题满分16分)本题共有3个小题,第1小题满分7分,第2小题满分9分. 已知函数2(2)1ln f x x ax x =-+,a R ∈. (1)试判断函数()f x 的单调性;(2)是否存在实数a ,使函数()f x 的极值大于0?若存在,求a 的取值范围;若不存在,请说明理由.21. (本题满分16分)本题共有3个小题,第1小题满分7分,第2小题满分9分已知数列{}n a 的前n 项和22n n nS +=,数列{}n b 满足:122b b ==,()112n n n b b n N +*+=∈.(Ⅰ)求数列{}n a ,{}n b 的通项公式; (Ⅱ)求()*21121 ni i i i a b n N b -=⎛⎫-∈ ⎪⎝⎭∑.2021天津高考压轴卷数学Word 版含解析参考答案 1.【答案】B 【解析】由已知,集合{|24},{|22}A x x B x x =-<≤=-≤<,所以{|24}A B x x ⋃=-≤≤. 故选:B 2.【答案】A 【解析】∵()()2243,m i i i +-=+ ∴()2m 2443m i i ++-=+,∴22443m m +=⎧⎨-=⎩,即m 1=故选A 3.【答案】C【解析】()()()()2224220x mx m x m x m -+-=-+-->,2x m ∴<-或2x m >+,1x ≤或2x ≥是不等式22240x mx m -+->成立的必要不充分条件, 2122m m -≤⎧∴⎨+≥⎩,解得:03m ≤≤,则实数m 的最大值为3. 故选:C . 4.【答案】C【解析】()f x 为R 上的偶函数,()()33f f ∴-=,()()33log 13log 13f f -=,0.633322log 9log 13log 273<=<<=且()f x 在()0,∞+上单调递增,()()()0.632log 133f f f ∴<<,()()()0.632log 133f f f ∴<-<-.故选:C . 5.【答案】C【解析】由等差数列的性质,得345436a a a a ++==, 所以42,a =公差7493743a a d -===-, 又4132a a d =+=,所以17a =-. 故选:C 6.【答案】A【解析】双曲线22212x y a -=的一条渐近线的倾斜角为6π,则tan6π=,所以该条渐近线方程为3y x =;所以3a =,解得a =所以c ==,所以双曲线的离心率为3c e a ===. 故选:A . 7.【答案】C【解析】由题意,可得α,β均为锐角,∴-2π <α-β<2π.又.又 ∴sin β=sin[α-(α-β)]=sin αcos(α-β)-cos αsin(α-β)=10⎛⎫- ⎪ ⎪⎝⎭∴β=4π. 8.【答案】C【解析】选取两支彩笔的方法有25C 种,含有红色彩笔的选法为14C 种,由古典概型公式,满足题意的概率值为142542105C p C ===. 本题选择C 选项. 9.【答案】B【解析】解:由题意0x =满足方程()f x ax =, ①当0x <时,只需1x a x =-有一个负根,即01ax a =-<, 解得:01a <<;②当0x >时,只需()210x a x a -++=有两个正根即可,方程可化为()()10x x a --=,故两根为:1x =或a , 由题意只需0a >且1a ≠,综合①②可知,当01a <<时,方程()f x ax =有4个不同的实数根. 所以实数a 的取值范围是(0,1). 故选:B . 10.【答案】-1【解析】当213x +=时1x =,故()3f =()2211121f ⨯+=-=-.故答案为:1- 11.【答案】-160【解析】由6662166(1)(2)rr r r r r r r T C C ---+⎛==- ⎝,令620r -=得3r =,所以6⎛ ⎝展开式的常数项为33636(1)(2)160C --=-.12.【答案】【解析】 由题意可知:,结合焦半径公式有:,解得:,故直线AB 的方程为:,与抛物线方程联立可得:,则,故的面积.13.【答案】16【解析】设正四棱柱1111ABCD A B C D -的底面边长AB BC a ==,高1AA b =, 则111121ABCD A B C D ABCD V S AA a b -=⨯=,111211113326P D DB B D DP D DP V V S BC ab a a b --∆==⋅=⨯⋅=1111116ABCD D P D D A B B C V V --∴=即116V V = 故答案为:1614.【答案】7(6,17]12【解析】因为()sin 32sin()3f x x x x πωωω==+,所以令2sin()03x πω+=,()3x k k Z πωπ+=∈,解得(31)()3k x k Z πω-=∈ 0>ω,则非负根中较小的有:258111417,,,,,,333333ππππππωωωωωω因为函数()f x 在区间(0,4)π内恰有5个零点,所以1443ππω<且1743ππω≥,解得717612ω<≤. 故答案为:717(,]61215.【答案】【解析】已知a b >,二次三项式240ax x b ++≥对于一切实数x 恒成立,0a ∴>,且1640,4ab ab ∆=-≤∴≥;再由0x R ∃∈,使20040ax x b ++=成立,可得1640,4ab ab ∆=-≥∴≤,4ab ∴=,22221642,,04a a b a a b a a b a a++∴>==>--, 令22168a t a+=>,则()22222221664816161632488a a b t a t a b t t a a ⎛⎫+ ⎪⎛⎫+===-++≥+= ⎪ ⎪---⎝⎭ ⎪-⎝⎭ (当16t =时,等号成立),所以,222a b a b ⎛⎫+ ⎪-⎝⎭的最小值为32,故22a b a b+-=,故答案为16.【答案】(1) π;(2) 最大值为2,最小值为;(3) 25m ≥. 【解析】2()2sin cos =-+f x x xx sin 22x x =2sin(2)3x π=-(1)22T ππ==,所以()f x 的最小正周期为π. (2)当2[,]243x ππ∈时, 2[,]34x πππ-∈-,当234x ππ-=-时,即24x π=时函数求得最小值()24f π=当232x ππ-=时,即512x π=时函数求得最大值5()212f π=; 所以()f x 在区间2,243ππ⎡⎤⎢⎥⎣⎦上的最大值为2,最小值为 (3)对x ∀∈R ,2()2f x -≤≤,所以不等式()3()mf x m f x +≥恒成立等价于, 对x ∀∈R ,()()3f x m f x ≥+恒成立,即max()()3f x m f x ⎛⎫≥ ⎪+⎝⎭,设()()()3f x g x f x =+,则()3()1()3()3f xg x f x f x ==-++,令()t f x =,且313y t =-+在[]22-,上为增函数, 所以,max 2()(2)5g x g ==,所以,25m ≥. 17.【答案】(1)证明过程见详解;(2)9;(3)13.【解析】(1)取1AA 中点为O ,连接ON ,OM , 因为M 为1CC 的中点,N 为1A B 的中点, 所以//ON AB ,//OM AC , 又AB平面ABC ,AC ⊂平面ABC ,AC AB A ⋂=,所以平面//MON 平面ABC , 又MN ⊂平面MON , 所以//MN 平面ABC ;(2)因为四边形11ABB A ,11BB C C 均为正方形,所以11B C ,1B B ,11B A 两两垂直, 以1B 为坐标原点,分别以1B B ,11B C ,11B A 为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系,设11ABB A 边长为2,则1(0,0,0)B ,(2,0,0)B ,1(0,2,0)C ,(2,2,0)C ,1(0,0,2)A ,所以(1,0,1)N ,(1,2,0)M ,因此1(1,2,0)B M =,(0,2,1)MN =-,(1,2,0)BM -=, 设平面BMN 的一个法向量为(),,m x y z =,则m BM m MN ⎧⊥⎨⊥⎩,所以2020m BM x y m MN y z ⎧⋅=-+=⎨⋅=-+=⎩,令1y =,则22x z =⎧⎨=⎩,因此()2,1,2m =;设平面1B MN 的一个法向量为()111,,n x y z =,则1m B M m MN ⎧⊥⎨⊥⎩,所以12020m B M x y m MN y z ⎧⋅=+=⎨⋅=-+=⎩,令1y =,则22x z =-⎧⎨=⎩,因此()2,1,2n =-,设二面角1B MN B --的大小为θ, 则4141cos cos ,9414414m n m n m nθ⋅-++=<>===++⨯++, 所以245sin 1cos 9θθ=-=; (3)因为P 是棱11B C 上一点,设[]1110,1B Pt B C =∈,则(0,2,0)P t ,所以()1,22,0PM t=-,由(2)知,平面1MNB的一个法向量为()2,1,2n=-,又直线PM与平面1MNB所成角的正弦值为215,记直线PM与平面1MNB所成角为α则有222222 sin cos,151(22)34853PM n tPM nPM n t t tα⋅-+-=<>====+-⨯-+⨯,整理得221850t t+-=,解得13t=或57t=-(舍)所以11113B PtB C==.18.【答案】(1)22142x y+=;(2)220x y++=.【解析】(1)因为抛物线2:2C y x=的焦点为)2,0,由题意,可得:椭圆()2222:10x yE a ba b+=>>的两焦点为())2,0,2,0-,又抛物线C的准线与E交于P,Q两点,且2PQ=,将x c=-代入椭圆方程得22221c ya b+=,所以2bya=±,则222ba=,即2b a=①,又2222c a b=-=②,根据①②解得:24a=,22b=,因此椭圆E 的方程为22142x y +=;(2)由(1)得22142x y +=的左顶点为()2,0A -,设直线l 的方程为2x my =-,()00,B x y , 由222142x my x y =-⎧⎪⎨+=⎪⎩得22(2)40m y my +-=,所以0242A m y y m +=+,因此0242m y m =+,所以20022422m x my m -=-=+,则222244,22m m B m m ⎛⎫- ⎪++⎝⎭,又因为BO (O 为坐标原点)的延长线交E 于点M ,则M 与B 关于原点对称,所以222244,22m m M m m ⎛⎫--- ⎪++⎝⎭,因为直线AM 的斜率为1,所以2224212422mm m m +=--++,解得:2m =-, 因此,直线l 的方程为:220x y ++=.19.【答案】(Ⅰ)n a n =;12222n n n n b n +⎧⎪=⎨⎪⎩,为奇数;,为偶数(Ⅱ)()12122n n n n ++-⋅+.【解析】(Ⅰ)当2n ≥时,()221(1)122n n n n n n n a S S n ----+=-=-=, 当1n =时,111a S ==,适合上式, 所以:n a n =;∵122b b ==,()112n n n b b n N +*+=∈, ∴()122nn n b b n -=≥,∴()112,2n n b b n +-=≥,∴数列{}n b 的奇数项和偶数项都是首项为2,公比为2的等比数列,∴12222n n n n b n +⎧⎪=⎨⎪⎩,为奇数;,为偶数(Ⅱ)由(Ⅰ)可得,i a i =, 且21122122i i i b-+-==,22222i i i b ==,212122ii i i i i a b i b -⎛⎫∴-=⋅- ⎪⎝⎭,设()()2311231,0,1n n M x x x n x n x x -=⋅+⋅+⋅++-⋅+⋅≠,① ∴()23411231n n xM x x x n x n x +=⋅+⋅+⋅++-⋅+⋅,②①﹣②得()()2311111n n n n x x x M x x x x n x n x x++--=++++-⋅=-⋅-,∴()()1211n x nx n x M x ++--⋅=-,∴()()112122122122(12)n nin i n n i n ++=+--⋅⋅==-⋅+-∑,12111122222122(1)2n ni ni n n i n +=⎛⎫+--⋅ ⎪+⎝⎭==--∑, ∴()1211212122n n i i n i i n a b n b +-=⎛⎫+-=-⋅+ ⎪⎝⎭∑.20.【答案】(1)见解析;(2)存在,实数a 的取值范围为(0,2).【解析】(1)由题可得,函数()f x 的定义域为(0,)+∞,21(1)1ax x x a f x x'x ---+=-=.①当0a =时,1()0f x 'xx+=>,所以函数()f x 在(0,)+∞上单调递增. ②当0a ≠时,令'()0f x =,即210ax x x--=,即210ax x --=,14a ∆=+.当0∆≤,即14a -≤时,210ax x --≤, 故'()0f x ≥,所以函数()f x 在(0,)+∞上单调递增.当>0∆,即14a >-时,方程210ax x --=的两个实根分别为1x =2x =.若104a -<<,则10x <,20x <, 此时'()0f x >,所以函数()f x 在(0,)+∞上单调递增; 若0a >,则10x <,20x >,此时当2(0,)x x ∈时,'()0f x >,当2(,)x x ∈+∞时,'()0f x <,所以函数()f x 在上单调递增,在)+∞上单调递减.综上所述,当0a ≤时,函数()f x 在(0,)+∞上单调递增;当0a >时,函数()f x 在单调递增,在)+∞上单调递减.(2)由(1)可得,当0a ≤时,函数()f x 在(0,)+∞上单调递增,故函数()f x 无极值;当0a >时,函数()f x 在1(0,2a +上单调递增,在12)(a+∞上单调递减,此时函数()f x 有极大值,极大值为222221ln ()2f x ax x x =-+,其中2x =. 又2()0f 'x =,所以22210ax x --=,即2221ax x =+,所以2221l 2)n (x f x x -=+. 令1ln (2)x h x x =+-,则11(2)0h'x x =+>, 所以函数()h x 在(0,)+∞上单调递增.又(1)0h =,所以当1x >时,()0h x >,所以222()1ln 02x f x x =+>-等价于21>x , 即当0a >1>21a >-,显然当0a >|21|a >-,所以214(21)a a +>-,即220a a -<,解得02a <<,故存在满足条件的实数a ,使函数()f x 的极值大于0,此时实数a 的取值范围为(0,2).21. (Ⅰ)n a n =;12222n n n n b n +⎧⎪=⎨⎪⎩,为奇数;,为偶数(Ⅱ)()12122n n n n ++-⋅+.(Ⅰ)当2n ≥时,()221(1)122n n n n n n n a S S n ----+=-=-=, 当1n =时,111a S ==,适合上式, 所以:n a n =;∵122b b ==,()112n n n b b n N +*+=∈, ∴()122nn n b b n -=≥,∴()112,2n n b b n +-=≥,∴数列{}n b 的奇数项和偶数项都是首项为2,公比为2的等比数列,∴12222n n n n b n +⎧⎪=⎨⎪⎩,为奇数;,为偶数(Ⅱ)由(Ⅰ)可得,i a i =, 且21122122i i i b-+-==,22222i i i b ==,212122ii i i i i a b i b -⎛⎫∴-=⋅- ⎪⎝⎭,设()()2311231,0,1n n M x x x n x n x x -=⋅+⋅+⋅++-⋅+⋅≠,① ∴()23411231n n xM x x x n x n x +=⋅+⋅+⋅++-⋅+⋅,②①﹣②得()()2311111n n n n x x x M x x x x n x n x x++--=++++-⋅=-⋅-,∴()()1211n x nx n x M x ++--⋅=-,∴()()112122122122(12)n nin i n n i n ++=+--⋅⋅==-⋅+-∑,12111122222122(1)2n ni ni n n i n +=⎛⎫+--⋅ ⎪+⎝⎭==--∑, ∴()1211212122n n i i n i i n a b n b +-=⎛⎫+-=-⋅+ ⎪⎝⎭∑.。

天津高考压轴卷 理科数学含答案

天津高考压轴卷 理科数学含答案

天津卷高考压轴卷 数学(理工类)本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟。

考试结束后,上交答题卡。

参考公式:(1)34,3V R π=球 (2) ,V S h =柱底 (3)1.3V S h =锥底 (4)若事件,A B 相互独立,则A 与B 同时发生的概率()()(P A B P A P B⋅=⋅.第I 卷(选择题, 共40分)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.(1)已知集合{}21|log ,2,|,12xA y y x xB y y x ⎧⎫⎪⎪⎛⎫==>==<⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,则A B =( )A . ()1,+∞B .10,2⎛⎫ ⎪⎝⎭ C .1,2⎛⎫+∞⎪⎝⎭ D .1,12⎛⎫ ⎪⎝⎭(2)函数2ln xy x x=+的图像大致为( ) A . B .C. D .(3)设}{n a 是等比数列,则下列结论中正确的是A. 若4,151==a a ,则23-=aB. 若031>+a a ,则042>+a aC. 若12a a >,则23a a >D. 若012>>a a ,则2312a a a >+(4)已知函数()()cos f x x ωϕ=+(其中0ω≠)的一个对称中心的坐标为π(0)12,,一条对称轴方程为π3x =.有以下3个结论: ① 函数()f x 的周期可以为π3; ② 函数()f x 可以为偶函数,也可以为奇函数; ③ 若2π3ϕ=,则ω可取的最小正数为10. 其中正确结论的个数为 A. 0B. 1C. 2D. 3(5)如图,正方形ABCD 的边长为2,E 为BC 的中点,2DF FC =uuu r uu u r,且AE 与BF 相交于点G ,则AG BF ⋅uuu r uu u r的值为( )A .47 B .47- C .35 D .35- (6)设0a >,若关于x ,y 的不等式组20,20,20,ax y x y x -+≥⎧⎪+-≥⎨⎪-≤⎩表示的可行域与圆22(2)9x y -+=存在公共点,则2z x y =+的最大值的取值范围为( ) A .[]8,10 B .(6,)+∞C .(6,8]D .[8,)+∞(7)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体积为( )A .163π B .112π C .173π D .356π (8)若圆2244100x y x y ++--=上至少有三个不同的点到直线:0l ax by +=的距离为l 的斜率的取值范围是( )A .2⎡⎣B .22⎡⎤--⎣⎦C .2⎡-⎣D .2⎡-⎣第Ⅱ卷(非选择题, 共110分)二、填空题共6小题,每小题5分,共30分.(9)如图所示,在复平面内,网格中的每个小正方形的边长都为1,点A,B 对应的复数分别是,则.(10)执行如图所示的程序框图,输出的S 值为 .(11)()61)1(x x -+的展开式中,3x 的系数是 .(用数字作答)(12)已知抛物线的焦点与双曲线的一个焦点重合,则____;双曲线的渐近线方程是____.(13)已知函数322()()3f x ax bx cx d a b =+++<,在R 上是单调递增函数,则3223a b cb a++-的最小值是( )(A) 3 (B) 4 (C) 5 (D) 6 (14)已知函数()y f x =是定义域为R 的偶函数,当0x ≥时,()5sin(),01421()1,14x x x f x x π⎧≤≤⎪⎪=⎨⎪+>⎪⎩,若关于x 的方程()()25[](56)60()f x a f x a a R -++=∈有且仅有6个不同的实数根,则实数a 的取值范围是 .三、解答题:(本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.) (15)(本小题满分13分) 如图,在ABC ∆中,3B π∠=,D 为边BC 上的点,E 为AD 上的点,且8AE =,AC =4CED π∠=.(1)求CE 的长; (2)若5CD =,求cos DAB ∠的值.(16)(本小题满分13分)如图,在直三棱柱ABC —1111=24,A B C BC AB CC AC M N ===中,,,分别是111,A B B C 的中点.(1)求证://MN 平面11ACC A ;(2)求平面MNC 与平面11A B B 所成的锐二面角的余弦值.为了调查观众对电视剧《风筝》的喜爱程度,某电视台举办了一次现场调查活动.在参加此活动的甲、乙两地观众中,各随机抽取了8名观众对该电视剧评分做调查(满分100分),被抽取的观众的评分结果如图所示.(Ⅰ)计算:①甲地被抽取的观众评分的中位数;②乙地被抽取的观众评分的极差; (Ⅱ)用频率估计概率,若从乙地的所有观众中再随机抽取4人进行评分调查,记抽取的4人评分不低于90分的人数为X ,求X 的分布列与期望;(Ⅲ)从甲、乙两地分别抽取的8名观众中各抽取一人,在已知两人中至少一人评分不低于90分的条件下,求乙地被抽取的观众评分低于90分的概率.(18)(本小题满分13分)已知函数x a x x x f ln )6()(+-=在),2(+∞∈x 上不具有单调性. (1)求实数a 的取值范围;(2)若)(x f '是)(x f 的导函数,设226)()(x x f x g -+'=,试证明:对任意两个不相等正数21x x 、,不等式||2738|)()(|2121x x x g x g ->-恒成立.已知圆和椭圆,是椭圆的左焦点.(Ⅰ)求椭圆的离心率和点的坐标;(Ⅱ)点在椭圆上,过作轴的垂线,交圆于点(不重合),是过点的圆的切线.圆的圆心为点,半径长为.试判断直线与圆的位置关系,并证明你的结论.(20)(本小题满分13分)对于项数为m (1m >)的有穷正整数数列{}n a ,记12max{,,,}k k b a a a =(1,2,,k m =),即k b 为12,,k a a a 中的最大值,称数列{}n b 为数列{}n a 的“创新数列”.比如1,3,2,5,5的“创新数列”为1,3,3,5,5.(Ⅰ)若数列{}n a 的“创新数列”{}n b 为1,2,3,4,4,写出所有可能的数列{}n a ; (Ⅱ)设数列{}n b 为数列{}n a 的“创新数列”,满足12018k m k a b -++=(1,2,,k m =),求证:k k a b =(1,2,,k m =);(Ⅲ)设数列{}n b 为数列{}n a 的“创新数列”,数列{}n b 中的项互不相等且所有项的和等于所有项的积,求出所有的数列{}n a .数学(理工类)试卷答案及评分参考一、选择题:1.【Ks5u答案】A【Ks5u解析】,所以,选A.2.【Ks5u答案】C【Ks5u解析】令,因为,故排除选项A、B,因为,故排除选项D;故选C3.【Ks5u答案】D4.【Ks5u答案】C5.【Ks5u答案】A【Ks5u解析】以D为原点,DC,DA所在的直线分别为x轴,y轴建立平面直角坐标系,则D(0,0),A(0,2), C(2,0), B(2,2)∵E为BC的中点,∴,∴直线AE的方程为,直线BF的方程为,联立,得∴,∴故选A6.【Ks5u答案】D7.【Ks5u答案】A8.【Ks5u答案】B二、填空题: 9.【Ks5u 答案】10.【Ks5u 答案】7【Ks5u 解析】模拟程序的运行,可得 S=1,i=1满足条件i≤2,执行循环体,S=3,i=2 满足条件i≤2,执行循环体,S=3+4=7,i=3 不满足条件i≤2,退出循环,输出S 的值为7. 故答案为:7. 11.【Ks5u 答案】5-12.【Ks5u 答案】,13.【Ks5u 答案】A 14.【Ks5u 答案】5(0,1){}4三、解答题:15.(本小题满分13分)【Ks5u 答案】(1)因为344AEC πππ∠=-=,在AEC ∆中,由余弦定理得2222cos AC AE CE AE CE AEC =+-⋅∠,所以216064CE =++,所以2960CE +-=,所以CE =. (2)在CDE ∆中,由正弦定理得sin sin CE CDCDE CED=∠∠,所以5sin 2CDE ∠=,所以4sin 5CDE ∠=.因为点D 在边BC 上,所以3CDE B π∠>∠=,而452<,所以CDE ∠只能为钝角,所以3cos 5CDE ∠=-,所以cos cos()cos cossin sin333DAB CDE CDE CDE πππ∠=∠-=∠+∠314525=-⨯+=16.(本小题满分13分)【Ks5u答案】(1)证明:如图,连接,∵该三棱柱是直三棱柱,,则四边形为矩形,由矩形性质得过的中点M,在△中,由中位线性质得,又,,;(2) 解:,,如图,分别以为轴正方向建立空间直角坐标系,,,,设平面的法向量为,则,令则,,(10分)又易知平面的一个法向量为,,即平面与平面所成的锐二面角的余弦值为.17.(本小题满分13分)【Ks5u答案】(Ⅰ)由茎叶图可知,甲地被抽取的观众评分的中位数是83,乙地被抽取的观众评分的极差是977621-=(Ⅱ)记“从乙地抽取1人进行评分调查,其评分不低于90分”为事件M,则21()84P M==随机变量X的所有可能取值为0,1,2,3,4,,且1(4,)4 X B所以4411()()(1)44k k k P x k C -==-,0,1,2,3,4k =所以X 的分布列为∴1()414E x =⨯= (Ⅲ)由茎叶图可得,甲地被抽取的8名观众中有2名观众评分不低于90分,乙地被抽取的8名观众中有2名观众评分不低于90分,设事件A 为“从甲、乙两地分别抽取的8名观众中各抽取一人,两人中至少一人评分不低于90分”,事件B 为“从甲、乙两地分别抽取的8名观众中各抽取一人,乙地观众评分低于90分”, 所以667()18816P A ⨯=-=⨯ 263()8816P AB ⨯==⨯ 根据条件概率公式,得3316(|)7716P B A ===. 所以在已知两人中至少一人评分不低于90分的条件下,乙地被抽取的观众评分低于90分的概率为37. 18.(本小题满分13分)【Ks5u 答案】(1)xa x x x a x x f +-=+-='6262)(2 )(x f 在),2(+∞∈x 上不具有单调性,∴在),2(+∞∈x 上)(x f '有正也有负也有0,即二次函数a x x y +-=622在),2(+∞∈x 上有零点 a x x y +-=622 是对称轴是23=x ,开口向上的抛物线,026222<+⋅-⋅=∴a y 的实数a 的取值范围)4,(-∞(2)由(1)222)(x x a x x g -+=, 方法1:)0(2262)()(22>-+=+-'=x x x a x x x f x g , 33323244244242)(,4x x x x x x x a x g a +-=+->+-='∴< ,设44332)32(4128)(,442)(x x x x x h x x x h -=-='+-= )(x h 在)23,0(是减函数,在),23(+∞增函数,当23=x 时,)(x h 取最小值2738 ∴从而0)2738)((,2738)(>'-∴>'x x g x g ,函数x x g y 2738)(-=是增函数, 21x x 、是两个不相等正数,不妨设21x x <,则11222738)(2738)(x x g x x g ->- ∴2738)()(,0),(2738)()(1212121212>--∴>-->-x x x g x g x x x x x g x g 2738|)()(|1212>--∴x x x g x g ,即||2738|)()(|1212x x x g x g ->- 方法2:))(,())(,(2211x g x N x g x M 、是曲线)(x g y =上任意两相异点,4,2|,)(22||)()(|2121212221211212<>+-++=--a x x x x x x a x x x x x x x g x g 2132121321212221214)(42)(42)(22x x x x x x a x x x x a x x x x -+>-+>-++∴ 设0,121>=t x x t ,令)23(4)(,442)(23-='-+==t t t u t t t u k MN , 由0)(>'t u ,得32>t ,由0)(<'t u 得320<<t , )(t u ∴在)32,0(上是减函数,在),32(+∞上是增函数, )(t u ∴在32=t 处取极小值2738)(,2738≥∴t u , ∴所以2738|)()(|1212>--x x x g x g ,即||2738|)()(|1212x x x g x g ->-19.(本小题满分14分)【Ks5u 答案】(Ⅰ)由题意,椭圆的标准方程为. 所以 ,,从而 .因此 ,.故椭圆的离心率 . 椭圆的左焦点的坐标为. (Ⅱ)直线与圆相切.证明如下:设,其中,则, 依题意可设,则. 直线的方程为 , 整理为 . 所以圆的圆心到直线的距离. 因为. 所以 ,即 ,所以 直线与圆相切.20.(本小题满分14分)【Ks5u 答案】解:(Ⅰ)所有可能的数列{}n a 为1,2,3,4,1;1,2,3,4,2;1,2,3,4,3;1,2,3,4,4(Ⅱ)由题意知数列{}n b 中1k k b b +≥.又12018k m k a b -++=,所以12018k m k a b +-+=111(2018)(2018)0k k m k m k m k m k a a b b b b +--+-+--=---=-≥所以1k k a a +≥,即k k a b =(1,2,,k m =)(Ⅲ)当2m =时,由1212b b b b +=得12(1)(1)1b b --=,又12,b b N *∈所以122b b ==,不满足题意;当3m =时,由题意知数列{}n b 中1n n b b +>,又123123b b b b b b ++=当11b ≠时此时33b >,12333,b b b b ++<而12336b b b b >,所以等式成立11b =;当22b ≠时此时33b >,12333,b b b b ++<而12333b b b b ≥,所以等式成立22b =; 当11b =,22b =得33b =,此时数列{}n a 为1,2,3.当4m ≥时,12m m b b b mb +++<,而12(1)!m m m b b b m b mb ≥->,所以不存在满足题意的数列{}n a .综上数列{}n a 依次为1,2,3.。

2017天津市高考压轴卷数学(理)附答案解析

2017天津市高考压轴卷数学(理)附答案解析

2017天津市高考压轴卷理科数学一、选择题(每小题5分,共40分)1. 已知集合2{|1}M x x=<,{|1}N y y x ==-,则()R C M N =( )A.(0,2]B.[0,2]C.∅D.[1,2]2. 函数错误!未找到引用源。

()()1ln 52x f x e x =-- )A .错误!未找到引用源。

[0,+∞)B .错误!未找到引用源。

(-∞,2] C.错误!未找到引用源。

[0,2] D .错误!未找到引用源。

[0,2)3. 平行四边形中,,点在边上,则的最大值为A. B. C. D.4. 某几何体的三视图如图所示,在该几何体的体积是( )A .B .C .D .5. (x 3+x )3(﹣7+)的展开式x 3中的系数为( )A .3B .﹣4C .4D .﹣76. 已知椭圆+=1(m >0)与双曲线=1(n >0)有相同的焦点,则m+n 的最大值是( )A .3B .6C .18D .367. 已知数列{a n }中,前n 项和为S n ,且n n a 32n S +=,则1n n a a -的最大值为( )A .﹣3B .﹣1C .3D .18. 我国南北朝数学家何承天发明的“调日法”是程序化寻求精确分数来表示数值的算法,其理论依据是:设实数x 的不足近似值和过剩近似值分别为b a 和d c (a ,b ,c ,*d N ∈),则b da c++是x 的更为精确的不足近似值或过剩近似值.我们知道 3.14159π=…,若令31491015π<<,则第一次用“调日法”后得165是π的更为精确的过剩近似值,即3116105π<<,若每次都取最简分数,那么第四次用“调日法”后可得π的近似分数为( ) A .227 B .6320 C .7825D .10935 二、填空题:本大题共6小题,每小题5分,共30分.9.若复数z 满足(1﹣i )z=1﹣5i ,则复数z 的虚部为 .10. 阅读程序框图,如果输出的函数值y 在区间内,则输入的实数x 的取值范围是 .11设变量x 、y 满足约束条件:则z =x 2+y 2的最大值是__ __.12在平面直角坐标系xOy 中,点F 为抛物线x 2=8y 的焦点,则点F 到双曲线x 2﹣=1的渐近线的距离为 .13. 在平面直角坐标系中,已知直线l 的参数方程为11x s y s=+⎧⎨=-⎩,(s 为参数),曲线C 的参数方程为22x t y t=+⎧⎨=⎩,(t 为参数),若直线l 与曲线C 相交于A B ,两点,则AB =____. 14.设12,F F 是双曲线2222:1(0,0)x y C a b a b -=>>的两个焦点,P 是C 上一点,若216,PF PF a +=且12PF F ∆的最小内角为30,则C 的离心率为___。

天津市第一中学新高考数学高考数学压轴题 多选题分类精编含答案

天津市第一中学新高考数学高考数学压轴题 多选题分类精编含答案

一、函数的概念与基本初等函数多选题1.已知函数2ln(1),0()21,0x x f x x ax x +≥⎧=⎨-+<⎩,其中实数 a ∈R ,则下列关于 x 的方程f 2 (x ) − (1+a )⋅ f (x ) + a = 0的实数根的情况,说法正确的有( ) A .a 取任意实数时,方程最多有5个根B .当151522a --+<<时,方程有2个根 C .当 15a --=时,方程有3个根 D .当 a ≤ −4时,方程有4个根 【答案】CD 【分析】先化简方程为()1f x =或()f x a =,再对a 进行分类讨论,结合图象来确定()1f x =或()f x a =分别有几个根,根据结果逐一判断选项正误即可.【详解】解:关于x 的方程f 2 (x ) − (1+ a )⋅ f (x ) + a = 0,即[][]()1()0f x f x a --=,故()1f x =或()f x a =.函数2ln(1),0()21,0x x f x x ax x +≥⎧=⎨-+<⎩中,()0,()ln 1x f x x ≥=+单调递增,()2220,(2)11x a x f x a x x a -+=-<=+-,对称轴为x a =,判别式()()411a a ∆=+-.(1)当0a ≥时,函数()f x 图象如下:由图象可知,方程()1f x =有1个根,1a >时方程()f x a =有2个根,01a ≤≤时,方程()f x a =有1个根,故1a >时已知方程有3个根,01a ≤<时,已知方程有2个根,1a =时已知方程有1个根;(2)1a =-时,函数()f x 图象如下:10a -<<时,函数()f x 图象如下:由两个图象可知,10a -≤<时,方程()1f x =有2个根,方程()f x a =没有根,故已知方程有2个根;(3)1a <-时,函数()f x 图象如下:方程()1f x =有两个根.下面讨论最小值21a -与a 的关系,由21a a -<解得152a -<, 故当15a --<时,21a a -<,直线y a =如图①,方程()f x a =有2个根,故已知方程有4个根; 当15a --=21a a -=,直线y a =如图②,方程有()f x a =有1 个根,故已知方程有3个根;1a <<-时,21a a ->,直线y a =如图③,方程()f x a =没有根,故已知方程有2个根.综上可知,a 取任意实数时,方程最多有4个根,选项A1a <<时方程有2个根,1a =时已知方程有1个根,1a >时方程有3个根,故选项B 错误;当a =3个根,C 正确;当4a ≤-<时,方程有4个根,故D 正确. 故选:CD. 【点睛】 关键点点睛:本题的解题关键在于分类讨论确定二次函数的图象,以及其最低点处21a -与a 的关系,以确定方程()f x a =的根的情况,才能突破难点.2.1837年,德国数学家狄利克雷(P .G.Dirichlet ,1805-1859)第一个引入了现代函数概念:“如果对于x 的每一个值,y 总有一个完全确定的值与之对应,那么y 是x 的函数”.由此引发了数学家们对函数性质的研究.下面是以他的名字命名的“狄利克雷函数”:1,()0,R x Q D x x Q ∈⎧=⎨∈⎩(Q 表示有理数集合),关于此函数,下列说法正确的是( )A .()D x 是偶函数B .,(())1x R D D x ∀∈=C .对于任意的有理数t ,都有()()D x t D x +=D .存在三个点112233(,()),(,()),(,())A x D x B x D x C x D x ,使ABC 为正三角形 【答案】ABCD 【分析】利用定义判断函数奇偶性,可确定A 的正误,根据“狄利克雷函数”及有理数、无理数的性质,判断其它三个选项的正误. 【详解】A :由()D x 定义知:定义域关于原点对称,当x Q ∈则x Q -∈,当R x Q ∈则Rx Q -∈,即有()()D x D x -=,故()D x 是偶函数,正确;B :由解析式知:,()1x R D x ∀∈=或()0D x =,即(())1D D x =,正确;C :任意的有理数t ,当x Q ∈时,x t Q +∈即()()D x t D x +=,当R x Q ∈时,R x t Q +∈即()()D x t D x +=,正确;D :若存在ABC 为正三角形,则其高为1,边长为23,所以当33(,0),(0,1),(,0)A B C -时成立,正确; 故选:ABCD 【点睛】关键点点睛:应用函数的奇偶性判断,结合新定义函数及有理数、无理数的性质判断各选项的正误.3.设函数ln(2),2()1,2x x f x x x ->⎧=⎨+≤⎩,g (x )=x 2-(m +1)x +m 2-2,下列选项正确的有( )A .当m >3时,f [f (x )]=m 有5个不相等的实根B .当m =0时,g [g (x )]=m 有4个不相等的实根C .当0<m <1时,f [g (x )]=m 有6个不相等的实根D .当m =2时,g [f (x )]=m 有5个不相等的实根 【答案】BCD 【分析】作出函数()f x 的图象,利用函数()f x 的图象和函数()g x 的图象分析可解得结果.【详解】作出函数()f x 的图象:令()f x t =,得[()]()f f x f t m ==;当3m >时,()f x m =有两个根:31242e t t <->+,,方程1()f x t =有1个根,方程2()f x t =有2个根,所以A 错误;②当0m =时,2 ()2g x x x =--,[()]0g g x =,令()g x t =,由()0g t =,得1221t t ==-,, 由2122t x x ==--12117117x x -+⇒=由2234151512t x x x x -+=-=--⇒==所以B 正确; ③令()g x t =,()f t m =∴,因为01m <<,所以()f t m =有3个实根根123,,t t t ,设123t t t <<,所以12311ln(2)t m t m t m --=+=-=,,, 22()(1)2g x x m x m =-++-221329()24m m m x +--=-+23294m m --≥, 221329329144m m m m t m -----=---23254m m --+=, 因为2325m m --+在(0,1)上递减,所以23253250m m --+>--+=, 所以2132504m m t --+->,所以213254m m t --+>, 即方程()f t m =的最小根1t 大于()g x 的最小值,所以1()g x t =、2()g x t =、3()g x t =都有2个不等实根,且这6个实根互不相等, 所以当0<m <1时,f [g (x )]=m 有6个不相等的实根,所以C 正确; ④令()f x t =,则()g t m =,当2m =时,方程()2g t =化为230t t -=,得1230t t ==,;当20()t f x ==,得1213x x =-=,; 当13()t f x ==,得3442x x =-=,,352e x =+符合题意,所以D 正确. 故选:BCD. 【点睛】关键点点睛:作出函数的图象,利用数形结合法求解是解题关键.4.已知函数()()()22224x x f x x x m m ee --+=-+-+(e 为自然对数的底数)有唯一零点,则m 的值可以为( ) A .1 B .1-C .2D .2-【答案】BC 【分析】由已知,换元令2t x =-,可得()()f t f t -=,从而f t 为偶函数,()f x 图象关于2x =对称,结合函数图象的对称性分析可得结论.【详解】∵22222222()4()()(2)4()()x x x x f x x x m m e e x m m e e --+--+=-+-+=--+-+, 令2t x =-,则22()4()()ttf t t m m e e -=-+-+,定义域为R ,22()()4()()()t t f t t m m e e f t --=--+-+=,故函数()f t 为偶函数,所以函数()f x 的图象关于2x =对称, 要使得函数()f x 有唯一零点,则(2)0f =, 即2482()0m m -+-=,解得1m =-或2 ①当1m =-时,2()42()t t f t t e e -=-++ 由基本不等式有2t t e e -+≥,当且仅当0t =时取得2()4t t e e -∴+≥故2()42()0ttf t t e e -=-++≥,当且仅当0t =取等号 故此时()f x 有唯一零点2x =②当2m =时,2()42()t t f t t e e -=-++,同理满足题意. 故选:BC . 【点睛】方法点睛:①函数轴对称:如果一个函数的图像沿一条直线对折,直线两侧的图像能够完全重合,则称该函数具备对称性中的轴对称,该直线称为该函数的对称轴.②()y f x =的图象关于直线x a =对称 ()()f a x f a x ⇔-=+()()2f x f a x ⇔-=+5.已知()f x 是定义在R 上的奇函数,当(,0)x ∈-∞时,2()2f x x x =-+,下列说法正确的是( )A .(0,)x ∈+∞时,函数解析式为2()2f x x x =-B .函数在定义域R 上为增函数C .不等式(32)3f x -<的解集为(,1)-∞D .不等式2()10f x x x -+->恒成立 【答案】BC 【分析】对于A ,利用奇函数定义求(0,)x ∈+∞时,函数解析式为2()2f x x x =+;对于B ,研究当(,0)x ∈-∞时,()f x 的单调性,结合奇函数图像关于原点对称,知()f x 在R 上的单调性;对于C ,求出(1)3f =,不等式(32)3f x -<,转化为(32)(1)f x f -<,利用单调性解不等式;对于D ,分类讨论(0,)x ∈+∞与(,0)x ∈-∞两种情况是否恒成立. 【详解】对于A ,设(0,)x ∈+∞,(,0)x -∈-∞,则2()2f x x x -=--,又()f x 是奇函数,所以2()()2f x f x x x =--=+,即(0,)x ∈+∞时,函数解析式为2()2f x x x =+,故A 错;对于B ,2()2f x x x =-+,对称轴为1x =,所以当(,0)x ∈-∞时,()f x 单调递增,由奇函数图像关于原点对称,所以()f x 在R 上为增函数,故B 对;对于C ,由奇函数在R 上为增函数,则(0,)x ∈+∞时,2()23f x x x =+=,解得11x =,23x =-(舍去),即(1)3f =,所以不等式(32)3f x -<,转化为(32)(1)f x f -<, 又()f x 在R 上为增函数,得321x -<,解得1x <, 所以不等式的解集为(,1)-∞,故C 对;对于D ,当(,0)x ∈-∞时,2()2f x x x =-+2222()121231(21)(1)0f x x x x x x x x x x x -+-=-+-+-=-+-=-+-<,当(0,)x ∈+∞时,2()2f x x x =+222()12131f x x x x x x x x -+-=+-+-=-不恒大于0,故D 错;故选:BC 【点睛】方法点睛:考查了解抽象不等式,要设法把隐性划归为显性的不等式求解,方法是: (1)把不等式转化为[][]()()f g x f h x >的模型;(2)判断函数()f x 的单调性,再根据函数的单调性将不等式的函数符号“f ”脱掉,得到具体的不等式(组)来求解,但要注意奇偶函数的区别. 考查了利用奇偶性求函数解析式,求函数解析式常用的方法: (1)已知函数类型,用待定系数法求解析式; (2)已知函数奇偶性,用奇偶性定义求解析式;(3)已知()f x 求[()]f g x ,或已知[()]f g x 求()f x ,用代入法、换元法或配凑法; (4)若()f x 与1()f x或()f x -满足某个等式,可构造另一个等式,通过解方程组求解;6.已知函数()()()52log 1,122,1x x f x x x ⎧-<⎪=⎨--+≥⎪⎩,则方程12f x a x ⎛⎫+-= ⎪⎝⎭的实根个数可能为( ) A .8 B .7C .6D .5【答案】ABC 【分析】以()1f x =的特殊情形为突破口,解出1x =或3或45或4-,将12x x+-看作整体,利用换元的思想进一步讨论即可. 【详解】 由基本不等式可得120x x +-≥或124x x+-≤-, 作出函数()()()52log 1,122,1x x f x x x ⎧-<⎪=⎨--+≥⎪⎩的图像,如下:①当2a >时,1224x x +-≤-或1021x x<+-<, 故方程12f x a x ⎛⎫+-= ⎪⎝⎭的实数根个数为4; ②当2a =时,1224x x +-=-或1021x x <+-<或122x x+-=, 故方程12f x a x ⎛⎫+-= ⎪⎝⎭的实数根个数为6; ③当12a <<时,12424x x -<+-<-或1021x x <+-<或1122x x<+-< 或1223x x<+-<, 故方程12f x a x ⎛⎫+-= ⎪⎝⎭的实数根个数为8; ④当1a =时,124x x +-=-或1021x x <+-<或121x x +-=或123x x+-=,故方程12f x a x ⎛⎫+-= ⎪⎝⎭的实数根个数为7; ⑤当01a <<时,1420x x -<+-<或1324x x<+-<, 故方程12f x a x ⎛⎫+-= ⎪⎝⎭的实数根个数为2; ⑥当0a =时,120x x +-=或1324x x<+-<, 故方程12f x a x ⎛⎫+-= ⎪⎝⎭的实数根个数为3; ⑦当0a <时,123x x+->, 故方程12f x a x ⎛⎫+-= ⎪⎝⎭的实数根个数为2; 故选:ABC 【点睛】本题考查了求零点的个数,考查了数形结合的思想以及分类讨论的思想,属于难题.7.设函数g (x )=sinωx (ω>0)向左平移5πω个单位长度得到函数f (x ),已知f (x )在[0,2π]上有且只有5个零点,则下列结论正确的是( )A .f (x )的图象关于直线2x π=对称B .f (x )在(0,2π)上有且只有3个极大值点,f (x )在(0,2π)上有且只有2个极小值点C .f (x )在(0,)10π上单调递增 D .ω的取值范围是[1229,510) 【答案】CD 【分析】利用正弦函数的对称轴可知,A 不正确;由图可知()f x 在(0,2)π上还可能有3个极小值点,B 不正确;由2A B x x π≤<解得的结果可知,D 正确;根据()f x 在3(0,)10πω上递增,且31010ππω<,可知C 正确. 【详解】依题意得()()5f x g x πω=+sin[()]5x πωω=+sin()5x πω=+, 2T πω=,如图:对于A ,令52x k ππωπ+=+,k Z ∈,得310k x ππωω=+,k Z ∈,所以()f x 的图象关于直线310k x ππωω=+(k Z ∈)对称,故A 不正确; 对于B ,根据图象可知,2A B x x π≤<,()f x 在(0,2)π有3个极大值点,()f x 在(0,2)π有2个或3个极小值点,故B 不正确, 对于D ,因为5522452525A x T ππππωωωω=-+=-+⨯=,22933555B x T ππππωωωω=-+=-+⨯=,所以2429255πππωω≤<,解得1229510ω≤<,所以D 正确;对于C ,因为1123545410T ππππωωωω-+=-+⨯=,由图可知()f x 在3(0,)10πω上递增,因为29310ω<<,所以33(1)0101010πππωω-=-<,所以()f x 在(0,)10π上单调递增,故C 正确; 故选:CD. 【点睛】本题考查了三角函数的相位变换,考查了正弦函数的对称轴和单调性和周期性,考查了极值点的概念,考查了函数的零点,考查了数形结合思想,属于中档题.8.高斯是德国著名数学家、物理学家、天文学家、大地测量学家,近代数学奠基者之一.高斯被认为是历史上最重要的数学家之一,并享有“数学王子”之称.有这样一个函数就是以他名字命名的:设x ∈R ,用[]x 表示不超过x 的最大整数,则[]()f x x =称为高斯函数,又称为取整函数.如:(2.3)2f =,( 3.3)4f -=-.则下列正确的是( ) A .函数()f x 是R 上单调递增函数B .对于任意实数a b ,,都有()()()f a f b f a b +≤+ C .函数()()g x f x ax =-(0x ≠)有3个零点,则实数a 的取值范围是34434532⎛⎤⎡⎫⋃ ⎪⎥⎢⎝⎦⎣⎭,, D .对于任意实数x ,y ,则()()f x f y =是1x y -<成立的充分不必要条件 【答案】BCD 【分析】取反例可分析A 选项,设出a ,b 的小数部分,根据其取值范围可分析B 选项,数形结合可分析C 选项,取特殊值可分析D 选项. 【详解】解:对于A 选项,()()1 1.21f f ==,故A 错误;对于B 选项,令[]a a r =+,[](,b b q r =+q 分别为a ,b 的小数部分), 可知[]01r a a =-<,[]01q b b =-<,[]0r q +≥, 则()[][][][][][][]()()f a b a b r q a b r q a b f a f b ⎡⎤+=+++=++++=+⎣⎦,故B 错误;对于C 选项,可知当1k x k ≤<+,k Z ∈时,则()[]f x x k ==, 可得()f x 的图象,如图所示:函数()()()0g x f x ax x =-≠有3个零点,∴函数()f x 的图象和直线y ax =有3个交点,且()0,0为()f x 和直线y ax =必过的点,由图可知,实数a 的取值范围是][3443,,4532⎛⎫⋃⎪⎝⎭,故C 正确;对于D 选项,当()()f x f y =时,即r ,q 分别为x ,y 的小数部分,可得01r ≤<,01q ≤<,[][]101x y x r y q r q -=+--=-<-=;当1x y -<时,取0.9x =-,0.09y =,可得[]1x =-,[]0y =,此时不满足()()f x f y =,故()()f x f y =是1x y -<成立的充分不必要条件,故D 正确; 故选:BCD . 【点睛】本题考查函数新定义问题,解答的关键是理解题意,转化为分段函数问题,利用数形结合思想;9.已知正数,,x y z ,满足3412x y z ==,则( ) A .634z x y << B .121x y z+= C .4x y z +>D .24xy z <【答案】AC 【分析】令34121x y z m ===>,根据指对互化和换底公式得:111log 3log 4log 12m m m x y z===,,,再依次讨论各选项即可. 【详解】由题意,可令34121x y z m ===>,由指对互化得:111,,log 3log 4log 12m m m x y z ===, 由换底公式得:111log 3,log 4,log 12m m m x y z ===,则有111x y z+=,故选项B 错误; 对于选项A ,124log 12log 9log 03m m m z x -=-=>,所以2x z >,又4381log 81log 64log 064m m m x y -=-=>,所以43y x >,所以436y x z >>,故选项A 正确;对于选项C 、D ,因为111x y z +=,所以xyz x y=+,所以()()()()2222222440x y xy x y xy x y z xy x y x y -+--==-<++,所以24xy z >,则()24z x y z +>,则4x y z +>,所以选项C 正确,选项D 错误;故选:AC. 【点睛】本题考查指对数的运算,换底公式,作差法比较大小等,考查运算求解能力,是中档题.本题解题的关键在于令34121x y z m ===>,进而得111,,log 3log 4log 12m m m x y z ===,再根据题意求解.10.已知函数12()123x x x f x x x x ++=+++++,下列关于函数()f x 的结论正确的为( ) A .()f x 在定义域内有三个零点 B .函数()f x 的值域为R C .()f x 在定义域内为周期函数 D .()f x 图象是中心对称图象【答案】ABD 【分析】将函数变形为111()3123f x x x x ⎛⎫=-++⎪+++⎝⎭,求出定义域,结合导数求函数的单调性即可判断BC ,由零点存在定理结合单调性可判断A ,由()()46f x f x --=+可求出函数的对称点,即可判断D. 【详解】解:由题意知,1111()111312311123f x x x x x x x ⎛⎫=-+-+-=-++ ⎪++++++⎝⎭, 定义域为()()()(),33,22,11,-∞-⋃--⋃--⋃-+∞,()()()22211()01213f x x x x '=++>+++,所以函数在()()()(),3,3,2,2,1,1,-∞------+∞定义域上单调递增,C 不正确; 当1x >-时,()3371230,004111523f f ⎛⎫-=-++<=+> ⎪⎝⎭,则()1,-+∞上有一个零点, 当()2,1x ∈--时,750,044f f ⎛⎫⎛⎫-<-> ⎪ ⎪⎝⎭⎝⎭,所以在()2,1x ∈--上有一个零点, 当()3,2x ∈--时,1450,052f f ⎛⎫⎛⎫-<-> ⎪ ⎪⎝⎭⎝⎭,所以在()3,2x ∈--上有一个零点, 当3x <-,()0f x >,所以在定义域内函数有三个零点,A 正确; 当0x <,1x +→-时,()f x →-∞,当x →+∞时,()f x →+∞, 又函数在()1,-+∞递增,且在()1,-+∞上有一个零点,则值域为R ,B 正确;()1111(4)363612311123f x f x x x x x x x ⎡⎤⎛⎫⎛⎫--=+++=--++=- ⎪ ⎪⎢⎥++++++⎝⎭⎝⎭⎣⎦, 所以()()46f x f x --=+,所以函数图象关于()2,3-对称,D 正确; 故选:ABD. 【点睛】 结论点睛:1、()y f x =与()y f x =-图象关于x 轴对称;2、()y f x =与()y f x =-图象关于y 轴对称;3、()y f x =与()2y f a x =-图象关于x a =轴对称;4、()y f x =与()2y a f x =-图象关于y a =轴对称;5、()y f x =与()22y b f a x =--图象关于(),a b 轴对称.二、导数及其应用多选题11.对于定义城为R 的函数()f x ,若满足:①(0)0f =;②当x ∈R ,且0x ≠时,都有()0xf x '>;③当120x x <<且12||||x x <时,都有12()()f x f x <,则称()f x 为“偏对称函数”.下列函数是“偏对称函数”的是( )A .()321f x x x =-+B .()21xf x e x =--C .()3ln 1,0()2,x x f x x x ⎧-+≤=⎨>⎩D .4()sin f x x x =【答案】BC 【分析】运用新定义,分别讨论四个函数是否满足三个条件,结合奇偶性和单调性,以及对称性,即可得到所求结论. 【详解】解:经验证,1()f x ,2()f x ,3()f x ,4()f x 都满足条件①;0()0()0x xf x f x >⎧'>⇔⎨'>⎩,或0()0x f x <⎧⎨'<⎩;当120x x <<且12||||x x <时,等价于21120x x x x -<<<-<,即条件②等价于函数()f x 在区间(,0)-∞上单调递减,在区间(0,)+∞上单调递增; A 中,()321f x x x =-+,()2132f x x x '=-+,则当0x ≠时,由()()321232230x x x x f x x =-+=-≤',得23x ≥,不符合条件②,故1()f x 不是“偏对称函数”;B 中,()21xf x e x =--,()21xf x e '=-,当0x >时,e 1x >,()20f x '>,当0x <时,01x e <<,()20f x '<,则当0x ≠时,都有()20xf x '>,符合条件②, ∴函数()21xf x e x =--在(),0-∞上单调递减,在()0,∞+上单调递增,由2()f x 的单调性知,当21120x x x x -<<<-<时,()2122()f x f x <-, ∴22212222222()()()()2x x f x f x f x f x e e x --<--=-++,令()2x x F x e e x -=-++,0x >,()220x x F x e e -'=--+≤-=, 当且仅当x x e e -=即0x =时,“=”成立,∴()F x 在[0,)+∞上是减函数,∴2()(0)0F x F <=,即2122()()f x f x <,符合条件③, 故2()f x 是“偏对称函数”;C 中,由函数()3ln 1,0()2,0x x f x x x ⎧-+≤=⎨>⎩,当0x <时,31()01f x x =<-',当0x >时,3()20f x '=>,符合条件②,∴函数3()f x 在(),0-∞上单调递减,在()0,∞+上单调递增, 有单调性知,当21120x x x x -<<<-<时,()3132()f x f x <-, 设()ln(1)2F x x x =+-,0x >,则1()201F x x '=-<+,()F x 在(0,)+∞上是减函数,可得()(0)0F x F <=,∴1222()()()()f x f x f x f x -<--()()222ln 1()0F x x f x =+-=<, 即12()()f x f x <,符合条件③,故3()f x 是“偏对称函数”;D 中,4()sin f x x x =,则()44()sin ()f x x x f x -=--=,则4()f x 是偶函数,而4()sin cos f x x x x '=+ ()x ϕ=+(tan x ϕ=),则根据三角函数的性质可知,当0x >时,4()f x '的符号有正有负,不符合条件②,故4()f x 不是“偏对称函数”; 故选:BC . 【点睛】本题主要考查在新定义下利用导数研究函数的单调性与最值,考查计算能力,考查转化与划归思想,属于难题.12.已知函数()xf x e =,()1ln22x g x =+的图象与直线y m =分别交于A 、B 两点,则( )A .AB 的最小值为2ln2+B .m ∃使得曲线()f x 在A 处的切线平行于曲线()g x 在B 处的切线C .函数()()f x g x m -+至少存在一个零点D .m ∃使得曲线()f x 在点A 处的切线也是曲线()g x 的切线 【答案】ABD 【分析】求出A 、B 两点的坐标,得出AB 关于m 的函数表达式,利用导数求出AB 的最小值,即可判断出A 选项的正误;解方程()12ln 2m f m g e -⎛⎫''= ⎪⎝⎭,可判断出B 选项的正误;利用导数判断函数()()y f x g x m =-+的单调性,结合极值的符号可判断出C 选项的正误;设切线与曲线()y g x =相切于点()(),C n g n ,求出两切线的方程,得出方程组,判断方程组是否有公共解,即可判断出D 选项的正误.进而得出结论. 【详解】令()xf x e m ==,得ln x m =,令()1ln22x g x m =+=,得122m x e -=, 则点()ln ,A m m 、122,m B e m -⎛⎫ ⎪⎝⎭,如下图所示:由图象可知,122ln m AB e m -=-,其中0m >,令()122ln m h m em -=-,则()1212m h m em-'=-,则函数()y h m '=单调递增,且102h ⎛⎫'= ⎪⎝⎭,当102m <<时,0h m,当12m >时,0h m.所以,函数()122ln m h m e m -=-在10,2⎛⎫ ⎪⎝⎭上单调递减,在1,2⎛⎫+∞⎪⎝⎭上单调递增, 所以,min 112ln 2ln 222AB h ⎛⎫==-=+⎪⎝⎭,A 选项正确; ()x f x e =,()1ln 22x g x =+,则()x f x e '=,()1g x x'=,曲线()y f x =在点A 处的切线斜率为()ln f m m '=,曲线()y g x =在点B 处的切线斜率为1212122m m g e e --⎛⎫'= ⎪⎝⎭,令()12ln 2m f m g e -⎛⎫''= ⎪⎝⎭,即1212m m e -=,即1221m me -=, 则12m =满足方程1221m me -=,所以,m ∃使得曲线()y f x =在A 处的切线平行于曲线()y g x =在B 处的切线,B 选项正确;构造函数()()()1ln22xx F x f x g x m e m =-+=-+-,可得()1x F x e x'=-, 函数()1xF x e x '=-在()0,∞+上为增函数,由于120F e e ⎛⎫'=< ⎪⎝⎭,()110F e -'=>,则存在1,12t ⎛⎫∈⎪⎝⎭,使得()10t F t e t '=-=,可得ln t t =-,当0x t <<时,()0F x '<;当x t >时,()0F x '>.()()min 1111ln ln ln 2ln 22222t t t F x F t e m e t m t m t ∴==-+-=-++-=+++-13ln 2ln 2022m m >+-=++>,所以,函数()()()F x f x g x m =-+没有零点,C 选项错误;设曲线()y f x =在点A 处的切线与曲线()y g x =相切于点()(),C n g n , 则曲线()y f x =在点A 处的切线方程为()ln ln my m ex m -=-,即()1ln y mx m m =+-,同理可得曲线()y g x =在点C 处的切线方程为11ln 22n y x n =+-, 所以,()111ln ln 22m nn m m ⎧=⎪⎪⎨⎪-=-⎪⎩,消去n 得()11ln ln 202m m m --++=,令()()11ln ln 22G x x x x =--++,则()111ln ln x G x x x x x-'=--=-, 函数()y G x '=在()0,∞+上为减函数,()110G '=>,()12ln 202G '=-<,则存在()1,2s ∈,使得()1ln 0G s s s'=-=,且1s s e =. 当0x s <<时,()0G x '>,当x s >时,()0G x '<.所以,函数()y G x =在()2,+∞上为减函数,()5202G =>,()17820ln 202G =-<, 由零点存在定理知,函数()y G x =在()2,+∞上有零点, 即方程()11ln ln 202m m m --++=有解. 所以,m ∃使得曲线()y f x =在点A 处的切线也是曲线()y g x =的切线. 故选:ABD. 【点睛】本题考查导数的综合应用,涉及函数的最值、零点以及切线问题,计算量较大,属于难题.13.已知偶函数()y f x =对于任意的0,2x π⎡⎫∈⎪⎢⎣⎭满足()()cos sin 0f x x f x x '+>(其中()f x '是函数()f x 的导函数),则下列不等式中不成立的是( )A34f ππ⎛⎫⎛⎫-< ⎪ ⎪⎝⎭⎝⎭B34f ππ⎛⎫⎛⎫-<- ⎪ ⎪⎝⎭⎝⎭C .()04f π⎛⎫>- ⎪⎝⎭ D.63f ππ⎛⎫⎛⎫<⎪ ⎪⎝⎭⎝⎭【答案】ABC 【分析】 构造函数()()cos f x g x x =,结合导数和对称性可知()g x 为偶函数且在0,2x π⎡⎫∈⎪⎢⎣⎭上单调递增,即可得23643f f πππ⎛⎫⎛⎫⎛⎫<< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,从而可判断ABD 选项,由()04g g π⎛⎫< ⎪⎝⎭可判断C 选项.【详解】因为偶函数()y f x =对于任意的0,2x π⎡⎫∈⎪⎢⎣⎭满足()()cos sin 0f x x f x x '+>, 所以构造函数()()cos f x g x x =,则()()2cos sin ()0cos f x x f x x g x x'+'=>, ∴()g x 为偶函数且在0,2x π⎡⎫∈⎪⎢⎣⎭上单调递增,32333cos 3f g g f πππππ⎛⎫⎪⎛⎫⎛⎫⎛⎫⎝⎭∴-=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,4444cos 4f g g πππππ⎛⎫ ⎪⎛⎫⎛⎫⎛⎫⎝⎭-=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,666cos 6f g f ππππ⎛⎫ ⎪⎛⎫⎛⎫⎝⎭== ⎪ ⎪⎝⎭⎝⎭,由函数单调性可知643g g g πππ⎛⎫⎛⎫⎛⎫<< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2643f f πππ⎛⎫⎛⎫⎛⎫<< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 对于AB,4343f f ππππ⎛⎫⎛⎫⎛⎫<=- ⎪ ⎪⎛⎫-= ⎪⎝⎭⎝⎭⎝ ⎪⎭⎭⎝,故AB 错误; 对于C ,()04g g π⎛⎫<⎪⎝⎭,()044f ππ⎛⎫⎛⎫<=- ⎪ ⎪⎝⎭⎝⎭,故C 错误; 对于D263f fππ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,即63f ππ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,故D 正确; 故选:ABC. 【点睛】关键点点睛:本题考查了利用导数研究函数的单调性,解题的关键是利用已知条件构造对应的新函数()()cos f x g x x=,利用导数研究函数的单调性,从而比较大小,考查学生的逻辑推理能力与转化思想,属于较难题.14.函数()()320ax bx d a f x cx =+++≠有两个极值点1x 、()212x x x <,则下列结论正确的是( ) A .230b ac ->B .()f x 在区间()12,x x 上单调递减C .若()10af x <,则()f x 只有一个零点D .存在0x ,使得()()()1202f x f x f x +=【答案】ACD 【分析】利用极值点与导数的关系可判断A 选项的正误;取0a <,利用函数的单调性与导数的关系可判断B 选项的正误;分0a >、0a <两种情况讨论,分析函数()f x 的单调性,结合图象可判断C 选项的正误;计算出函数()f x 的图象关于点,33b b f a a ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭对称,可判断D 选项的正误. 【详解】()()320f x ax bx cx d a =+++≠,则()232f x ax bx c '=++.对于A 选项,由题意可知,关于x 的二次方程()23200ax bx c a ++=≠有两个不等的实根,则24120b ac ∆=->,可得230b ac ->,A 选项正确;对于B 选项,当0a <时,且当()12,x x x ∈时,()0f x '>,此时函数()f x 在区间()12,x x 上单调递增,B 选项错误;对于C 选项,当0a >时,由()0f x '>,可得1x x <或2x x >;由()0f x '<,可得12x x x <<.所以,函数()f x 的单调递增区间为()1,x -∞、()2,x +∞,单调递减区间为()12,x x , 由()10af x <,可得()10<f x ,此时,函数()f x 的极大值为()10<f x ,极小值为()2f x ,且()()210f x f x <<,如下图所示:由图可知,此时函数()f x 有且只有一个零点,且零点在区间()2,x +∞内; 当0a <时,由()0f x '<,可得1x x <或2x x >;由()0f x '>,可得12x x x <<. 所以,函数()f x 的单调递减区间为()1,x -∞、()2,x +∞,单调递增区间为()12,x x , 由()10af x <,可得()10f x >,此时,函数()f x 的极小值为()10f x >,极大值为()2f x ,且()()210f x f x >>,如下图所示:由图可知,此时函数()f x 有且只有一个零点,且零点在区间()2,x +∞内,C 选项正确;对于D 选项,由题意可知,1x 、2x 是方程2320ax bx c ++=的两根, 由韦达定理可得1223bx x a +=-,123c x x a=, ()()()()()()()()3232f t x f t x a t x b t x c t x d a t x b t x c t x d ⎡⎤⎡⎤-++=-+-+-++++++++⎣⎦⎣⎦()()()()()(322322322322332332a t t x tx x b t tx x c t x d a t t x tx x b t tx x c ⎡⎤⎡=-+-+-++-+++++++++⎣⎦⎣()()322223222a t tx b t x ct d =+++++,取3bt a=-,则322223222333333b b b b b b f x f x a x b x c d a a a a a a ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫--+-+=-+⨯-+-++⋅-+⎢⎥⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦32222223333b b b b a b c d fa a a a ⎛⎫⎛⎫⎛⎫⎛⎫=-+⋅-+⋅-+=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,所以,函数()f x 的图象关于点,33b b f a a ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭对称, 1223bx x a+=-,()()1223b f x f x f a ⎛⎫∴+=- ⎪⎝⎭,D 选项正确. 故选:ACD. 【点睛】方法点睛:利用导数解决函数零点问题的方法:(1)直接法:先对函数求导,根据导数的方法求出函数的单调区间与极值,根据函数的基本性质作出图象,然后将问题转化为函数图象与x 轴的交点问题,突出导数的工具作用,体现了转化与化归思想、数形结合思想和分类讨论思想的应用; (2)构造新函数法:将问题转化为研究两函数图象的交点问题;(3)参变量分离法:由()0f x =分离变量得出()a g x =,将问题等价转化为直线y a =与函数()y g x =的图象的交点问题.15.若函数()f x 满足对于任意1x ,2(0,1)x ∈,()()121222f x f x x x f ++⎛⎫≤⎪⎝⎭,则称函数()f x 为“中点凸函数”.则下列函数中为“中点凸函数”的是( )A .2()2f x x x =-B .()tan f x x =C .()sin cos f x x x =-D .()e ln x f x x =-【答案】ABD【分析】 用计算()()121222f x f x x x f ++⎛⎫-⎪⎝⎭的正负值来解,运算量大,比较复杂.我们可分析“中点凸函数”的几何特征,结合图像作答.由已知“中点凸函数”的定义,可得“中点凸函数”的图象形状可能为:【详解】由“中点凸函数”定义知:定义域内12,x x 对应函数值的平均值大于或等于122x x +处的函数值,∴下凸函数:任意连接函数图象上不同的两点所得直线一定在图象上方或与图象重合. 设()()11,Ax f x ,()()22,B x f x 为曲线()f x 在(0,1)上任意两点A 、B 、C 、D 选项对应的函数图象分别如下图示: ①2()2f x x x =-符合题意 ②()tan f x x =符合题意③()sin cos 2sin 4f x x x x π⎛⎫=-=- ⎪⎝⎭放大局部图像可见,在,14段,并不满足12,x x 对应函数值的平均值大于或等于122x x +处的函数值.不合题意④()e ln x f x x =-'1()e x f x x =-,''21()e 0x f x x+=>根据导函数作出图像如下符合题意. 故选:ABD 【点睛】本题主要考查了函数的新定义及其应用,其中解答中正确理解函数的新定义,以及结合函数的图象求解是解答的关键,学生可利用数形结合求解,需要较强的推理与运算能力.16.若存在常数k 和b ,使得函数()F x 和()G x 对其公共定义域上的任意实数x 都满足:()F x kx b ≥+和()G x kx b ≤+恒成立,则称此直线y kx b =+为()F x 和()G x 的“隔离直线”.已知函数()22x f x =(x ∈R ),()12g x x =(0x <),()ln h x e x =,(e 为自然对数的底数),则( ) A .()()()m x f x g x =-在302x ⎛⎫∈ ⎪⎝⎭内单调递减 B .()f x 和()g x 之间存在“隔离直线”,且b 的最小值为2- C .()f x 和()g x 之间存在“隔离直线”,且k 的取值范围是[]2,1-D .()f x 和()g x 之间存在唯一的“隔离直线”,方程为2e y =-【答案】BD 【分析】对于A :令()()()m x f x g x =-,利用导数可确定()m x 单调性,进而作出判断; 对于B 和C :利用二次函数的性质以及不等式恒成立的知识求出b 、k 的范围,进而作出判断;对于选项D :根据隔离直线过()f x 和()h x 的公共点,可假设隔离直线为2e y kx =-;可得到222x ekx ≥-,再利用恒成立得出k 的值,最后尝试利用导数证明()2eh x ≤-,进而作出判断. 【详解】对于A ,()()()2122x m x f x g x x =-=-, ()322121022x m x x x x +'∴=+=>,当x ⎛⎫∈ ⎪⎝⎭时,()0m x '>,()m x ∴单调递增,故A 错误; 对于B ,C ,设()f x ,()g x 的隔离直线为y kx b =+,22x kx b ≥+对任意x ∈R 恒成立,即2220x kx b --≥对任意x ∈R 恒成立, 所以21480k b ∆=+≤,所以0b ≤,又12kx b x ≤+对任意(),0x ∈-∞恒成立,即22210kx bx +-≤对任意(),0x ∈-∞恒成立,因为0b ≤,所以0k ≤且21480b k ∆=+≤,所以22k b ≤-且22b k ≤-,4248k b b ≤≤-,解得20k -≤≤,同理20b -≤≤, 所以b 的最小值为2-,k 的取值范围是[]2,0-, 故B 正确,C 错误;对于D ,函数()f x 和()h x 的图象在x =∴若存在()f x 和()h x 的隔离直线,那么该直线过这个公共点,设隔离直线的斜率为k ,则隔离直线方程为(2e y k x -=,即2e y kx =-,则222x ekx ≥-(x ∈R ),得2220x kx e -+≥对x ∈R 恒成立,则()24420k e ∆=-≤,解得k =,此时隔离直线方程为:2e y =-,下面证明()2e h x ≤-, 令()()ln 22e e G x h x e x =--=--(0x >),则()x G x x'=,当x =()0G x '=;当0x <<()0G x '<;当x >()0G x '>;∴当x =()G x 取到极小值,也是最小值,即()0min G x G==,()()02e G x h x ∴=--≥在()0,∞+上恒成立,即()2eh x ≤-,∴函数()f x 和()h x存在唯一的隔离直线2ey =-,D 正确. 故选:BD . 【点睛】关键点睛:本题考查导数中的新定义问题的求解;解题关键是能够充分理解“隔离直线”的定义,将问题转化为根据不等式恒成立求解参数范围或参数值、或不等式的证明问题,属于难题.17.经研究发现:任意一个三次多项式函数32()(0)f x ax bx cx d a =+++≠的图象都只有一个对称中心点()()00,x f x ,其中0x 是()0f x ''=的根,()'f x 是()f x 的导数,()f x ''是()'f x 的导数.若函数32()f x x ax x b =+++图象的对称点为(1,2)-,且不等式(ln 1)x e e mx x -+32()3ef x x x e x ⎡⎤≥--+⎣⎦对任意(1,)x ∈+∞恒成立,则( )A .3a =B .1b =C .m 的值可能是e -D .m 的值可能是1e-【答案】ABC 【分析】求导得()62f x x a ''=+,故由题意得()1620f a ''=-+=-,()1112f a b -=-+-+=,即3,1a b ==,故()3231f x x x x =+++.进而将问题转化为()1ln 1e x x e x e m x --++<+,由于1x e x >+,故ln ln 1ee x x x x e e x e x --+=≥-+,进而得()1ln ln 1ln 1e x x e x e e x ee x x --++--≥=-++,即m e ≤-,进而得ABC 满足条件.【详解】由题意可得()1112f a b -=-+-+=,因为()2321x ax f x =++',所以()62f x x a ''=+,所以()1620f a ''=-+=-,解得3,1a b ==,故()3231f x x x x =+++.因为1x >,所以()()32ln []13xeee mx xf x x x e x -+≥--+等价于()1ln 1e x x e x e m x --++≤+. 设()()10xg x e x x =-->,则()10xg x e '=->,从而()g x 在()0,∞+上单调递增.因为()00g =,所以()0g x >,即1x e x >+, 则ln ln 1ee x xxx e e x e x --+=≥-+(当且仅当x e =时,等号成立),从而()1ln ln 1ln 1e x x e x e e x e e x x --++--≥=-++,故m e ≤-.故选:ABC. 【点睛】本题解题的关键在于根据题意得()3231f x x x x =+++,进而将不等式恒成立问题转化为()1ln 1e x x e x e m x --++≤+恒成立问题,再结合1x e x >+得ln ln 1ee x xxx e e x e x --+=≥-+,进而得m e ≤-.考查运算求解能力与化归转化思想,是难题.18.定义在R 上的函数()f x ,若存在函数()g x ax b =+(a ,b 为常数),使得()()f x g x ≥对一切实数x 都成立,则称()g x 为函数()f x 的一个承托函数,下列命题中正确的是( )A .函数()2g x =-是函数ln ,0()1,0x x f x x >⎧=⎨⎩的一个承托函数B .函数()1g x x =-是函数()sin f x x x =+的一个承托函数C .若函数()g x ax = 是函数()x f x e =的一个承托函数,则a 的取值范围是[0,]eD .值域是R 的函数()f x 不存在承托函数 【答案】BC 【分析】由承托函数的定义依次判断即可. 【详解】解:对A ,∵当0x >时,()ln (,)f x x =∈-∞+∞, ∴()()2f x g x ≥=-对一切实数x 不一定都成立,故A 错误;对B ,令()()()t x f x g x =-,则()sin (1)sin 10t x x x x x =+--=+≥恒成立, ∴函数()1g x x =-是函数()sin f x x x =+的一个承托函数,故B 正确; 对C ,令()xh x e ax =-,则()xh x e a '=-, 若0a =,由题意知,结论成立, 若0a >,令()0h x '=,得ln x a =,∴函数()h x 在(,ln )a -∞上为减函数,在(ln ,)a +∞上为增函数, ∴当ln x a =时,函数()h x 取得极小值,也是最小值,为ln a a a -, ∵()g x ax =是函数()x f x e =的一个承托函数, ∴ln 0a a a -≥, 即ln 1a ≤, ∴0a e <≤,若0a <,当x →-∞时,()h x →-∞,故不成立,综上,当0a e 时,函数()g x ax =是函数()xf x e =的一个承托函数,故C 正确;对D ,不妨令()2,()21f x x g x x ==-,则()()10f x g x -=≥恒成立, 故()21g x x =-是()2f x x =的一个承托函数,故D 错误. 故选:BC . 【点睛】方法点睛:以函数为载体的新定义问题,是高考命题创新型试题的一个热点,常见的命题形式有新概念、新法则、新运算等,这类试题中函数只是基本的依托,考查的是考生创造性解决问题的能力.19.某同学对函数()sin e e x xxf x -=-进行研究后,得出以下结论,其中正确的是( )A .函数()y f x =的图象关于原点对称B .对定义域中的任意实数x 的值,恒有()1f x <成立C .函数()y f x =的图象与x 轴有无穷多个交点,且每相邻两交点的距离相等D .对任意常数0m >,存在常数b a m >>,使函数()y f x =在[]a b ,上单调递减 【答案】BD 【分析】由函数奇偶性的定义即可判断选项A ;由函数的性质可知()sin 1x xx f x e e -=<-可得到sin x x x e e -<-,即sin 0x x e e x --->,构造函数()sin 0x x h x e e x x -=-->,求导判断单调性,进而求得最值即可判断选项B ;函数()y f x =的图象与x 轴的交点坐标为()0,πk (k Z ∈,且)0k ≠,可判断选项C ;求导分析()0f x '≤时成立的情况,即可判断选项D. 【详解】对于选项A :函数()sin e ex xxf x -=-的定义域为{}|0x x ≠,且 ()()sin sin x x x xx xf x f x e e e e----===--,所以()f x 为偶函数,即函数()y f x =的图象关于y 轴对称,故A 选项错误; 对于选项B :由A 选项可知()f x 为偶函数,所以当0x >时,0x x e e -->,所以()sin 1x xx f x e e -=<-,可得到sin x x x e e -<-,即sin 0x xe e x --->,可设()sin 0x x h x e e x x -=-->,,()cos x x h x e e x -'=+±,因为2x x e e -+>,所以()cos 0x x h x e e x -±'=+>,所以()h x 在()0+∞,上单调递增,所以()()00h x h >=,即()sin 1x xx f x e e -=<-恒成立,故选项B 正确;对于选项C :函数()y f x =的图象与x 轴的交点坐标为()()00k k Z k π∈≠,,且,交点()0π-,与()0π,间的距离为2π,其余任意相邻两点的距离为π,故C 选项错误; 对于选项D :()()()()2cos sin 0xx x x xxe e x e e xf x ee-----+-'=≤,可化为e x (cos x -sin x )()cos sin 0xex x --+≤,不等式两边同除以x e -得,()2cos sin cos sin x e x x x x -≤+,当()32244x k k k Z ππππ⎛⎫∈++∈⎪⎝⎭,,cos sin 0x x -<,cos sin 0x x +>,区间长度为12π>,所以对于任意常数m >0,存在常数b >a >m ,32244a b k k ππππ⎛⎫∈++⎪⎝⎭,,,()k Z ∈,使函数()y f x =在[]a b ,上单调递减,故D 选项正确;故选:BD 【点睛】思路点睛:利用导数研究函数()f x 的最值的步骤: ①写定义域,对函数()f x 求导()'f x ;②在定义域内,解不等式()0f x '>和()0f x '<得到单调性; ③利用单调性判断极值点,比较极值和端点值得到最值即可.20.若存在实常数k 和b ,使得函数()F x 和()G x 对其公共定义域上的任意实数x 都满足:()F x kx b ≥+和()G x kx b ≤+恒成立,则称此直线y kx b =+为()F x 和()G x 的“隔离直线”,已知函数()()2f x x R x =∈,()()10g x x x=<,()2eln h x x =(e 为自然对数的底数),则下列结论正确的是( ) A .()()()m x f x g x =-在x ⎛⎫∈ ⎪⎝⎭内单调递增 B .()f x 和()g x 之间存在“隔离直线,且b 的最小值为4 C .()f x 和()g x 间存在“隔离直线”,且k 的取值范围是(]4,1-D .()f x 和()h x 之间存在唯一的“隔离直线”e y =- 【答案】AD 【分析】求出()()()m x f x g x =-的导数,检验在x ⎛⎫∈ ⎪⎝⎭内的导数符号,即可判断选项A ;选项B 、C 可设()f x 、()g x 的隔离直线为y kx b =+,2x kx b ≥+对一切实数x 都成立,即有10∆≤,又1kx b x≤+对一切0x <都成立,20∆≤,0k ≤,0b ≤,根据不等式的性质,求出k 、b 的范围,即可判断选项B 、C ;存在()f x 和()h x 的隔离直线,那么该直线过这个公共点,设隔离直线的斜率为k ,则隔离直线的方程为(y e k x -=,构造函数求出函数的导数,根据导数求出函数的最值.【详解】对于选项A :()()()21m x f x g x x x =-=-,()212m x x x'=+, 当x ⎛⎫∈ ⎪⎝⎭时,()2120m x x x '=+>, 所以函数()()()m x f x g x =-在x ⎛⎫∈ ⎪⎝⎭内单调递增;故选项A 正确 对于选项BC :设()f x 、()g x 的隔离直线为y kx b =+,则2x kx b ≥+对一切实数x 都成立,即有10∆≤,即240k b +≤,又1kx b x≤+对一切0x <都成立,则210kx bx +-≤,即 20∆≤,240b k +≤,0k ≤,0b ≤,即有24k b ≤-且24b k ≤-,421664k b k ≤≤-,可得40k -≤≤,同理可得:40b -≤≤,故选项B 不正确,故选项C 不正确;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014天津高考压轴卷数学理word一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的1.已知集合A={x|x >1},B={x|x <m},且A ∪B=R ,那么m 的值可以是( ) A . ﹣1 B . 0 C . 1 D . 2 2.设集合{}|24x A x =≤,集合B 为函数lg(1)y x =-的定义域,则A B =I (A)()1,2 (B)[]1,2 (C)[1,2) (D) (1,2] 3.函数y=sin (2x+φ)的图象沿x 轴向左平移个单位后,得到一个偶函数的图象,则φ的一个可能的值为( ) A . B .C . 0D .4.函数f (x )=log 2(1+x ),g (x )=log 2(1﹣x ),则f (x )﹣g (x )是( )A . 奇函数B . 偶函数C . 既不是奇函数又不是偶函数D . 既是奇函数又是偶函数5.设曲线sin y x =上任一点(,)x y 处切线斜率为()g x ,则函数2()y x g x =的部分图象可以为.6.设z=2x+y ,其中变量x ,y 满足条件,若z 的最小值为3,则m 的值为( )A . 1B . 2C . 3D . 47.已知点P (x ,y )在直线x+2y=3上移动,当2x +4y取最小值时,过P 点(x ,y )引圆C :=1的切线,则此切线长等于()A.1 B.C.D.28.已知函数f(x)=ln(e x﹣1)(x>0)()A.若f(a)+2a=f(b)+3b,则a>b B.若f(a)+2a=f(b)+3b,则a<bC.若f(a)﹣2a=f(b)﹣3b,则a>b D.若f(a)﹣2a=f(b)﹣3b,则a<b二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡的相应位置.9. 设常数a∈R,若的二项展开式中x4项的系数为20,则a= .10. 已知tanα=,tanβ=﹣,且0<α<,<β<π,则2α﹣β的值.11.记等差数列{a n}的前n项和为S n,已知a2+a4=6,S4=10.则a10= .12.棱长为2的正方体被一平面截成两个几何体,其中一个几何体的三视图如图所示,那么该几何体的体积是()13.已知圆的方程为x2+y2﹣6x﹣8y=0,设该圆过点(3,5)的最长弦和最短弦分别为AC和BD,则四边形ABCD的面积为______________.14.等腰Rt△ACB,AB=2,.以直线AC为轴旋转一周得到一个圆锥,D为圆锥底面一点,BD⊥CD,CH⊥AD于点H,M为AB中点,则当三棱锥C﹣HAM的体积最大时,CD的长为_____________.三、解答题:本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.解答写在答题卡上的指定区域内.15. 袋中装有黑球和白球共7个,从中任取2个球都是黑球的概率为,现有甲、乙两人从袋中轮流摸取1球,甲先取,乙后取,然后甲再取…,取球后不放回,直到两人中有一人取到白球时终止,每个球在每一次被取出的机会是等可能的,用ξ表示取球终止所需要的取球次数.(Ⅰ)求随机变量ξ的分布列及数学期望;(Ⅱ)求乙取到白球的概率.16.在△ABC中,BC=a,AC=b,a、b是方程的两个根,且A+B=120°,求△ABC 的面积及AB的长.17.如图,在棱长为1的正方体ABCD﹣A1B1C1D1中,点E是棱AB上的动点.(Ⅰ)求证:DA1⊥ED1;(Ⅱ)若直线DA1与平面CED1成角为45°,求的值;(Ⅲ)写出点E到直线D1C距离的最大值及此时点E的位置(结论不要求证明).18.数列{a n}是递增的等差数列,且a1+a6=﹣6,a3•a4=8.(1)求数列{a n}的通项公式;(2)求数列{a n}的前n项和S n的最小值;(3)求数列{|a n|}的前n项和T n.19. 已知椭圆C:的右焦点为F(1,0),且点(﹣1,)在椭圆C上.(1)求椭圆C的标准方程;(2)已知动直线l过点F,且与椭圆C交于A,B两点,试问x轴上是否存在定点Q,使得恒成立?若存在,求出点Q的坐标,若不存在,请说明理由.20. (13分)已知f(x)=lnx,g(x)=af(x)+f′(x),(1)求g(x)的单调区间;(2)当a=1时,①比较的大小;②是否存在x0>0,使得|g(x)﹣g(x0)|<对任意x>0成立?若存在,求出x0的取值范围;若不存在,请说明理由.2014天津高考压轴卷数学理word 参考答案 1. 【答案】D.【解析】根据题意,若集合A={x|x >1},B={x|x <m},且A ∪B=R , 必有m >1,分析选项可得,D 符合; 故选D .2. 【答案】D.【解析】{}|24{2}x A x x x =≤=≤,由10x ->得1x >,即{1}B x x =>,所以{12}A B x x =<≤I ,所以选D.3. 【答案】【解析】令y=f (x )=sin (2x+φ), 则f (x+)=sin[2(x+)+φ]=sin (2x++φ),∵f (x+)为偶函数,∴+φ=kπ+,∴φ=kπ+,k ∈Z ,∴当k=0时,φ=.故φ的一个可能的值为.故选B . 4. 【答案】【解析】∵f (x )=log 2(1+x ),g (x )=log 2(1﹣x ), ∴f (x )﹣g (x )的定义域为(﹣1,1) 记F (x )=f (x )﹣g (x )=log 2, 则F (﹣x )=log 2=log 2()﹣1=﹣log 2=﹣F (x )故f (x )﹣g (x )是奇函数. 故选A.5. 【答案】C.【解析】'cos y x =,即()cos g x x =,所以22()cos y x g x x x ==,为偶函数,图象关于y 轴对称,所以排除A,B.当2cos 0y x x ==,得0x =或,2x k k Z ππ=+∈,即函数过原点,所以选C.6. 【答案】A.【解析】作出不等式组对应的平面区域, ∵若z 的最小值为3, ∴2x+y=3, 由,解得,同时(1,1)都在直线x=m 上, ∴m=1. 故选:A . 7. 【答案】D.【解析】∵x+2y=3,2x+4y=2x+22y≥2x+2y=23=8,当且仅当 x=2y=时,等号成立,∴当2x+4y取最小值8时,P 点的坐标为(,),点P 到圆心C 的距离为CP==,大于圆的半径1,故切线长为==2,故选:D . 8. 【答案】A.【解析】根据复合函数的单调性可知,f (x )=ln (e x﹣1)(x >0)为增函数, ∵函数的定义域为(0,+∞). ∴a >0,b >0,设g (x )=f (x )+2x , ∵f (x )是增函数,∴当x >0时,g (x )=f (x )+2x 为递增函数, ∵f (a )+2a=f (b )+3b ,∴f (a )+2a=f (b )+3b >f (b )+2b , 即g (a )>g (b ),∵g (x )=f (x )+2x 为递增函数, ∴a >b , 故选:A . 9. 【答案】【解析】∵的二项展开式的通项公式为 T r+1=•a r•x10﹣3r,令10﹣3r=4,求得 r=2,故二项展开式中x4项的系数为•a2=20,解得a=±,故答案为:±.10. 【答案】【解析】∵0<α<,tanα=<1=tan,y=tanx在(0,)上单调递增,∴0<α<,又<β<π,∴﹣π<2α﹣β<﹣,∵tan2α===,tanβ=﹣,∴tan(2α﹣β)===1,∴2α﹣β=﹣.11. 【答案】【解析】等差数列{a n}的前n项和为S n,∵a2+a4=6,S4=10,设公差为d,∴,解得a1=1,d=1,∴a10=1+9=10.故答案为:10.12. 【答案】【解析】由三视图知:余下的几何体如图示:∵E、F都是侧棱的中点,∴上、下两部分的体积相等,∴几何体的体积V=×23=4.13. 【答案】【解析】圆的方程为x2+y2﹣6x﹣8y=0化为(x﹣3)2+(y﹣4)2=25.圆心坐标(3,4),半径是5.最长弦AC是直径,最短弦BD的中点是E.S ABCD=故答案为:14. 【答案】【解析】根据题意,得∵AC⊥平面BCD,BD⊂平面BCD,∴AC⊥BD,∵CD⊥BD,AC∩CD=C,∴BD⊥平面ACD,可得BD⊥CH,∵CH⊥AD,AD∩BD=D,∴CH⊥平面ABD,可得CH⊥AB,∵CM⊥AB,CH∩CM=C,∴AB⊥平面CMH,因此,三棱锥C﹣HAM的体积V=S△CMH×AM=S△CMH由此可得,当S△CMH达到最大值时,三棱锥C ﹣HAM的体积最大设∠BCD=θ,则Rt△BCD中,BC=AB=可得CD=,BD=Rt△ACD中,根据等积转换得CH==Rt△ABD∽Rt△AHM,得,所以HM==因此,S△CMH=CH•HM==∵4+2tan2θ≥4tanθ,∴S△CMH=≤=,当且仅当tanθ=时,S△CMH达到最大值,三棱锥C﹣HAM的体积同时达到最大值.∵tanθ=>0,可得sinθ=cosθ>0∴结合sin2θ+cos2θ=1,解出cos2θ=,可得cosθ=(舍负)由此可得CD==,即当三棱锥C﹣HAM的体积最大时,CD的长为故选:C15. 【解析】(Ⅰ)设袋中原有n个黑球,由题意知…(1分)=,解得n=4或n=﹣3(舍去)…(3分)∴黑球有4个,白球有3个.由题意,ξ的可能取值为1,2,3,4,5…(4分),,,…(7分)(错一个扣一分,最多扣3分)∴ξ的分布列为ξ 1 2 3 4 5P…(8分)所以数学期望为:…(9分)(Ⅱ)∵乙后取,∴乙只有可能在第二次,第四次取球,记乙取到白球为事件A,则,…(11分)答:乙取到白球的概率为.…(12分)16. 【解析】∵A+B=120°,∴C=60°.∵a、b是方程的两个根,∴a+b=,ab=2,∴S△ABC==,AB=c====.17. 【解析】以D为坐标原点,建立如图所示的坐标系,则D(0,0,0),A(1,0,0),B (1,1,0),C(0,1,0),D1(0,1,2),A1(1,0,1),设E(1,m,0)(0≤m≤1)(Ⅰ)证明:=(1,0,1),=(﹣1,﹣m,1)∴•=0∴DA1⊥ED1;(4分)(Ⅱ)解:设平面CED1的一个法向量为=(x,y,z),则∵=(0,﹣1,1),=(1,m﹣1,0)∴.取z=1,得y=1,x=1﹣m,得=(1﹣m,1,1).∵直线DA1与平面CED1成角为45°,∴sin45°=|cos<,>|=,∴=,解得m=.﹣﹣﹣﹣﹣(11分)(Ⅲ)解:点E到直线D1C距离的最大值为,此时点E在A点处.﹣﹣﹣﹣﹣﹣(14分)18. 【解析】(1)由得:,∴a3、a4是方程x2+6x+8=0的二个根,∴x1=﹣2,x2=﹣4;∵等差数列{a n}是递增数列,∴a3=﹣4,a4=﹣2,∴公差d=2,a1=﹣8.∴a n=2n﹣10;(2)∵S n==n2﹣9n=﹣,∴(S n)min=S4=S5=﹣20;(3)由a n≥0得2n﹣10≥0,解得n≥5,此数列前四项为负的,第五项为0,从第六项开始为正的.当1≤n≤5且n∈N*时,T n=|a1|+|a2|+…+|a n|=﹣(a1+a2+…+a n)=﹣S n=﹣n2+9n;当n≥6且n∈N*时,T n=|a1|+|a2|+…+|a5|+|a6|+…+|a n|=﹣(a1+a2+…+a5)+(a6+…+a n)=S n﹣2S5=n2﹣9n﹣2(25﹣45)=n2﹣9n+40.∴T n=.19. 【解析】(1)由题意,c=1∵点(﹣1,)在椭圆C上,∴根据椭圆的定义可得:2a=,∴a=∴b2=a2﹣c2=1,∴椭圆C的标准方程为;(2)假设x轴上存在点Q(m,0),使得恒成立当直线l的斜率为0时,A(,0),B(﹣,0),则=﹣,∴,∴m=①当直线l的斜率不存在时,,,则•=﹣,∴∴m=或m=②由①②可得m=.下面证明m=时,恒成立当直线l的斜率为0时,结论成立;当直线l的斜率不为0时,设直线l的方程为x=ty+1,A(x1,y1),B(x2,y2)直线方程代入椭圆方程,整理可得(t2+2)y2+2ty﹣1=0,∴y1+y2=﹣,y1y2=﹣∴=(x1﹣,y1)•(x2﹣,y2)=(ty1﹣)(ty2﹣)+y1y2=(t2+1)y1y2﹣t(y1+y2)+=+=﹣综上,x轴上存在点Q (,0),使得恒成立.20. 【解析】,g(x)的定义域为(0,+∞).①当a≤0时,g'(x)<0,(0,+∞)是g(x)的单调区间;②当a>0时,由g'(x)>0,得;由g'(x)<0,得,即增区间是,减区间是.(2),∴①当x=1时,μ(x)=0,此时②当0<x<1时,μ'(x)<0,∴μ(x)>μ(1)=0.∴③当x>1时,μ'(x)<0,∴μ(x)<μ(1)=0.∴.(3)⇔⇔∵lnx∈(0,+∞),∴g(x0)>lnx不能恒成立.故x0不存在.- 11 -。

相关文档
最新文档