《基本平面图形》复习教案

合集下载

第六单元《平面图形的周长与面积》复习课(教案)

第六单元《平面图形的周长与面积》复习课(教案)
其次,在实践活动和小组讨论中,学生们表现出了很高的热情,能够积极投入到解决问题中。但在讨论过程中,我发现有些学生还不太会运用所学知识去分析问题,这可能是因为他们对知识点的理解还不够深入。因此,我计划在接下来的课程中增加一些类似的活动,让学生有更多机会运用所学知识解决实际问题。
此外,我在课堂上也注意到了一些学生对于图形拼接、切割中的周长与面积变化问题感到困惑。这个问题确实有一定的难度,需要学生具备较强的逻辑思维和分析能力。在今后的教学中,我会着重强调这部分内容,通过丰富的例题和练习,帮助学生突破这个难点。
第六单元《平面图形的周长与面积》复习课(教案)
一、教学内容
第六单元《平面图形的周长与面积》复习课,主要包括以下内容:
1.矩形、正方形、三角形、平行四边形、梯形等常见平面图形的周长和面积公式复习;
2.各类图形周长和面积公式的推导过程及应用;
3.图形拼接、切割中的周长与面积变化问题;
4.实际生活中的周长与面积计算问题,如围栏、地砖铺设等;
(2)熟练运用周长和面积知识解决实际问题,如图形习,使学生能够理解并运用公式进行相关习题的解答。
举例:矩形周长和面积公式的掌握,以及在实际问题中的应用,如计算一块矩形地砖的面积和围栏长度。
2.教学难点
(1)图形面积公式的推导过程,特别是三角形、平行四边形和梯形;
同学们,今天我们将要复习的是《平面图形的周长与面积》这一章节。在开始之前,我想先问大家一个问题:“你们在生活中是否注意过围栏的长度或者地砖的面积?”这个问题与我们将要复习的内容密切相关。通过这个问题,我希望能够唤起大家的兴趣,让我们一起探索周长与面积的奥秘。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要回顾矩形、正方形、三角形等平面图形的周长和面积的基本概念。这些概念在解决实际问题中起着关键作用。

初中数学北师大七年级上册(2023年修订) 基本平面图形七年级数学教案多边形和圆的初步认识

初中数学北师大七年级上册(2023年修订) 基本平面图形七年级数学教案多边形和圆的初步认识
问题3:(给出几个四边形)类似你能试着给四边形下个定义吗?五边形就是五条,n边形就是n条。现在给三角形、四边形、五边形、...、n边形一起下个定义,只需替换三、四、五、...、n,我们用“若干”这个词,于是得到:由若干条不在同一直线上的线段首尾顺次相连组成的封闭平面图形,这样的图形叫做多边形。(师完善板书)
3、难点:从生活中抽象出数学图形,并从数学角度分析问题获得概念,利用概念和性质解决简单问题。
二、教学过程
在环节一、二、三都使用信息技术,有电子白板、几何画板、幻灯片、实物投影。电子白板适时互动,几何画板动态演示,幻灯片直观呈现,实物投影及时反馈。预期效果是丰富课堂气氛,有效突破难点,使学生对多边形、圆的概念理解深刻到位。
三、教学设计
环节一 图片欣赏 归纳概念
问题1:幻灯片展示生活中有很多美丽的图片,请同学们细心观察,其中有哪些你熟悉的平面图形?在三角形、四边形、五边形等图形中,我们从最简单的图形——三角形开始研究。
问题2:(给出三条线段)请看,用这三条线段绘制一个三角形,(三条线段在同一直线上)这时能组成三角形吗?就是要求三条线段不在同一直线上。下面连接,(三条线段一端连在一起)这样可以吗?你能比划一下吗?就是首尾顺次相连。(不封闭)这样可以吗?就是要封闭图形。由此得到三角形是由三条不在同一直线上的线段首尾顺次相连组成的封闭平面图形。(生叙述师补充后板书)
多边形和圆的初步认识
年级学科
七年级上册数学
教材版本
北师大版
一、教学目标
1、情感目标:经历从现实世界中抽象出平面图形的过程,感受图形世界的丰富多彩,在丰富的活动中发展学生有条理的思考和表达能力;
2、重点:在具体情境中认识多边形、圆、扇形及相关概念,明确多边形边数与对角线条数的关系,会根据扇形和圆的关系求扇形圆心角的度数。

基本平面图形教案

基本平面图形教案

基本平面图形教案教案标题:基本平面图形教案教学目标:1. 理解并能够识别常见的基本平面图形,包括圆形、正方形、长方形和三角形。

2. 能够描述和比较不同基本平面图形的特征和属性。

3. 能够应用所学知识解决与基本平面图形相关的问题。

教学资源:1. 平面图形的图片或卡片。

2. 学生练习册。

3. 幻灯片或投影仪。

教学步骤:引入活动:1. 使用幻灯片或投影仪展示不同的基本平面图形,并引导学生观察和描述每个图形的特征。

2. 引发学生对基本平面图形的兴趣,例如提出问题:“你们能想到哪些常见的平面图形?”或者“你们在日常生活中见过哪些平面图形?”探究活动:3. 将学生分成小组,每个小组分配一种基本平面图形。

4. 每个小组成员轮流描述并绘制自己所分配的图形。

其他小组成员可以提出问题或提供反馈。

5. 鼓励学生在小组内讨论并比较不同图形的特征和属性,例如边长、角度等。

知识总结:6. 整理学生的观察和讨论结果,引导他们总结每种基本平面图形的特征和属性,并记录在黑板或幻灯片上。

应用活动:7. 分发学生练习册,让学生完成一些与基本平面图形相关的练习题,例如辨认图形、计算周长和面积等。

8. 监督学生的学习过程,提供必要的帮助和指导。

拓展活动:9. 鼓励学生应用所学知识解决实际问题,例如设计一个房间的平面图或者分析一个城市的道路规划。

10. 分享学生的解决方案,并进行讨论和反思。

评估活动:11. 设计一些评估题目,测试学生对基本平面图形的理解和应用能力。

12. 根据学生的表现评估他们的学习成果,并提供反馈和建议。

延伸活动:13. 鼓励学生进一步探究其他平面图形的特征和属性,例如梯形、菱形等。

14. 提供相关的延伸阅读材料或在线资源,让学生自主学习和探索。

教学反思:15. 教学结束后,回顾整个教学过程,总结有效的教学方法和活动,以及学生的学习表现。

根据反思结果,调整和改进教学策略。

复习初中七年级平面图形的教案

复习初中七年级平面图形的教案

复习初中七年级平面图形的教案教案标题:复习初中七年级平面图形教案目标:1. 复习初中七年级平面图形的基本概念和性质;2. 强化学生对平面图形的分类和特征的理解;3. 提高学生解决与平面图形相关问题的能力。

教学准备:1. 教学课件或黑板;2. 平面图形的实物或图片;3. 学生练习册或作业本。

教学步骤:引入:1. 利用课件或黑板展示不同的平面图形,如三角形、四边形、圆等,并引导学生回忆并讨论它们的特征和名称。

探究:2. 将学生分成小组,每个小组分配一组平面图形的实物或图片。

3. 要求学生观察和比较实物或图片,讨论它们的相似之处和不同之处,并尝试给它们分类。

4. 引导学生总结出平面图形的分类规则,如根据边数、角数等进行分类。

讲解:5. 利用课件或黑板,对每个平面图形的分类进行讲解,并介绍每个图形的特征和性质。

6. 引导学生思考和讨论,通过问题和例子加深对每个图形的理解,如“正方形的特征是什么?给出一个实际生活中的例子。

”等。

练习:7. 分发学生练习册或作业本,让学生完成一些练习题,包括辨认图形、计算图形的周长和面积等。

8. 监督学生的练习过程,及时给予指导和解答疑惑。

巩固:9. 随堂小结,回顾学生在本节课中所学的知识点,强调重点和难点。

10. 布置作业,要求学生进一步巩固和应用所学的知识,如设计一个包含不同平面图形的城市地图等。

拓展:11. 鼓励学生在日常生活中观察和发现平面图形的应用,如交通标志、建筑物等,并与课堂所学进行联系和讨论。

教学反思:12. 教师根据学生的表现和反馈,总结本节课的教学效果,并进行教学反思,为下一节课的教学做准备。

教案评价:本教案通过引入、探究、讲解、练习、巩固和拓展等环节,有助于学生全面理解和掌握初中七年级平面图形的知识。

同时,通过引导学生观察和思考,培养了学生的观察力、思维能力和解决问题的能力。

第4章基本平面图形(教案)2023-2024学年七年级上册数学(教案)(北师大版)

第4章基本平面图形(教案)2023-2024学年七年级上册数学(教案)(北师大版)
三、教学难点与重点
1.教学重点
-线段、射线与直线的定义及性质:这是基础几何概念,需要学生熟练掌握,并能应用于实际问题中。例如,理解线段的两个端点、射线的起点和延伸方向、直线的无限延伸等特性。
-角的分类及性质:重点在于区分不同类型的角,并了解它们的基本性质。如锐角、直角、钝角、周角的定义及特征。
-三角形的分类:强调三角形按角的大小分类,以及各类三角形的性质和特点。
-空间想象能力的培养:对于一些空间想象能力较弱的学生,理解图形的旋转、翻折等变换是难点,需要通过实物模型或多媒体辅助教学来帮助理解。
本章节的教学难点与重点紧密联系课本内容,教师在教学过程中应针对这些核心知识进行深入讲解,通过实例分析、图形操作、逻辑推理等教学策略,帮助学生理解难点,掌握重点,提高几何学科素养。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解线段、射线与直线的基本概念。线段是有限长度的,有两个端点;射线有一个起点,向一个方向无限延伸;直线则是无限制地延伸。它们是构成复杂图形的基础。这些基本图形在建筑、设计等领域有着广泛的应用。
2.案例分析:接下来,我们来看一个具体的案例。通过分析一个简单的房屋设计图,我们可以看到线段、射线和直线是如何被用来表示墙壁和屋顶的。
-平行线的性质与判定:掌握平行线的定义、性质以及判定方法,如同位角、内错角、同旁内角等。
-四边形的定义及性质:掌握矩形、菱形、平行四边形的定义及性质,如对边平行、对角相等、对角线互相平分等。
-图形的全等:理解全等图形的概念,掌握SSS、SAS、ASA、AAS全等三角形的判定方法。
2.教学难点
-平行线的判定:对于初中生来说,理解并熟练运用平行线的判定方法是一个难点,特别是同位角、内错角等概念的运用。

平面图形周长和面积的整理和复习教案

平面图形周长和面积的整理和复习教案

平面图形的周长和面积潍坊日向友好学校王冬梅2009.04.24一、教学内容:人教版六年级下册空间与图形---平面图形周长和面积的整理复习二、教学目标:1、通过复习引导学生回忆,整理平面图形周长和面积的意义及其计算公式的推导过程,并能熟练地应用公式进行计算。

2、渗透“事物之间是相互联系的”等辩证唯物主义观点,引导学生在“做”中探寻知识之间的相互联系,构建知识网络,加深对知识的理解,从而学会整理知识,掌握复习方法。

3、联系生活实际,培养解决实际问题的能力,培养学生的自主合作的学习意识与能力。

4、培养空间想象力及创新意识,不断发展空间观念,适当渗透转化的数学思想,对学生进行辩证唯物主义的启蒙教育和数学史的教育二、教学重点难点教学重点:掌握平面图形周长和面积的意义及其计算公式。

教学难点:根据平面图形之间的相互联系构建知识网络。

三、、教学过程1、课前交流:大家平时肯定积累了很多的名人名言,是吧!说两句给大家听一听。

生1:天才是百分之一的灵感加上百分之九十九的汗水(爱迪生)师:这是什么意思呢?……说的太好了!老师相信如果你按照爱迪生说的去做的话,你肯定也是个天才!谁再来说一个?生2:少壮不努力老大徒伤悲师:解释一下吧!……今天,老师也给大家带来了一句名言(大屏幕出示)装着一些片断的、没有联系的知识的头脑,就像一个乱七八糟的仓库,主人从那里是什么也找不出来的。

——乌申斯基(俄国)我请一名同学读一读,其他同学思考:这句名言让你知道了什么。

师总结:是的,适当的整理,对学习起着非常大的作用。

平时我们所学习的知识就像一颗颗散落的珍珠,通过复习,就可以把这些散落的珍珠穿成串,这样就会更条理、清晰。

这节课我们就一起来对我们小学阶段学过的平面图形的周长和面积进行整理和复习。

(板书课题:平面图形周长和面积的整理复习)上课!回想一下,我们学过了哪些平面图形?(生说,师在黑板贴卡片)在我们整个小学阶段,主要学习了长方形、正方形、平行四边形、三角形、梯形、圆形。

平面图形的认识整理与复习讲课教案

平面图形的认识整理与复习讲课教案

并找一找它们之间的关系。来自锐角三角形三角形 直角三角形 钝角三角形
平行四边形
多边形 四边形 梯形
……
平面图形 圆
五边形
……
图形
……
立体图形
正方体 长方体
圆柱 圆锥
立体图形
··················
点动连成线 线动围成面
面动围成或旋转成体
回顾与交流
1.分别画出直线、射线和线段,并说一说他们 的联系与区别。
形体


顶点
6个面
12条棱
长方体
相对的面完全相同, 特殊情况两个相对面 为正方形
相对的棱长度相 等。
8个顶点
正方体
6个面 都是正方形
12条棱 长度全相等。
8个顶点
圆柱和圆锥有什么特点?
底面 面侧
底面
3个面,2个底面 (大小相等的圆) 和1个侧面(曲 面)。
底面 侧 面
底面

2个面,1个底面(圆)
A● B
C
4、按要求作图。 过图中的A点画直线BC的平行线和垂线。
A ● B
C
5、判断题。(对的打“√”,错的打“×”) 1、从直线外一点到这条直线所画的线段中, 以和这条直线垂直的线段为最短。( )

2、平角也是一条直线。 (×) 3、角的两边越长角越大。 (× ) 4、一条直线的长度是一条射线长度的

垂足
平行线之间有无数条垂线, 并且这些垂线都相等。
同一平面内 的两条直线 的位置关系
成直角 (垂直)
相交
不成直角
不相交(平行)
巩固与应用
①过一点可以画(无数 )条直线,过两点可以画(一)条直线。

北师大版数学七年级上册教案 4第四章《基本平面图形》回顾与思考

北师大版数学七年级上册教案 4第四章《基本平面图形》回顾与思考

第四章《基本平面图形》回顾与思考课时课题:第四章《基本平面图形》回顾与思考课型:复习课教学目标:1.经历观察、测量、折叠、模型制作等活动,发展空间观念.2.在现实情景中认识线段、射线、直线、角、多边形、扇形、圆等简单的平面图形,了解其含义及相关的性质.3.会进行线段或角的大小比较及有关计算,会进行角的单位间的简单换算.4.能用尺规作图作一条线段等于已知线段.5.经历在操作活动中探索图形性质的过程,了解简单图形的性质,发展有条理的思考与表达能力.教学重点、难点:重点:在现实的生活背景中识别“三线”,掌握线段或角的大小比较的方法,会求线段的长度和角的度数,并能进行简单的说理.难点:对图形性质的理解以及简单的画图,能运用类比法复习线段和角的大小比较及有关计算.教法及学法指导:本章是初中平面几何的起始章,概念较多,不但要知其然,更要知其所以然,能够把他们多作比较,发现它们的内在联系,并作记忆. 要运用类比法复习线段和角的大小比较及有关运算,要经常动手去画一些基本图形,在画图过程中领悟并提高能力,同时,注意画出的图形要整洁、美观、大方.教学过程:一、情境导入:各位同学,今天是“三线”、“角”和“平面图形”三位先生竞选的日子,欢迎同学们的参与,请你们做观察团,看看他们谁能获胜. 首先了解一下他们的竞选团队.(设计意图:在学生充分思考、交流的基础上,帮助学生梳理知识结构,总结各知识点之间的联系. 其中三线的概念及性质与角的有关概念及换算是需要加强的要点.)下面有请“三位先生”分别就当选后重点“关注”的问题作演说.二、重点知识回顾1.直线、射线和线段(1)基本概念①“一根拉紧的绳子”可以近似地看作_________,线段有________个端点,它可以比较__________和度量.②将线段向一个方向无限延长就形成了________,射线有_______个端点,射线不能度量和比较大小.③将线段向两个方向无限延长就形成了_____,直线______端点,不能度量和比较大小.④两点之间线段的__________叫做两点之间的距离;线段上把线段分成相等的两条线段的点,叫做___________.(2)表示方法①线段的两种表示方法:用____________表示(即线段的两端点)或用__________表示.②射线的两种表示方法:用_____________表示,其中端点字母必须写在前面,如射线OA,就不能再记作射线AO;用__________表示,如射线l.③直线的两种表示方法:用___________表示,没有顺序,如直线AB或直线BA表示同一条直线;用___________表示,如直线a.(3)重要结论及性质①两点之间的所有连线中,__________最短;②经过两点有且只有________条直线,或者两点确定________条直线.③比较两条线段长短的方法主要有_________和_________.2.角(1)基本概念①角是由两条__________组成的几何图形,这个公共端点我们称为角的________;角也可以看成是由一条射线_________旋转而成的图形. 角的大小与角的两边的长短_______.②从一个角的顶点引出的一条射线,若把这个角分成两个相等的角,则这条射线叫做这个角的__________.(2)表示方法①用三个大写英文字母表示,___________必须写在中间;②当角的顶点只有一个角时,可用_________个大写字母来表示;③用希腊字母或用________来表示.(3)重要结论①1周角=______平角=______直角=______度;1°=_________′=_________″.②类比线段的大小比较,比较角的大小的方法有_________和_________.3.多边形及圆(1)由一些不在同一条直线上的________依次首尾相连组成的封闭平面图形,叫做多边形. 如三角形、四边形、五边形、六边形等都是多边形.①各边相等,各角也相等的多边形叫做____________.②在多边形中,连结_____________两个顶点的线段,叫做多边形的对角线.(2)在平面上,一条线段绕着它_____________旋转一周,另一个端点形成的图形叫做圆. 固定的端点称为___________.①圆上______________叫做圆弧,简称弧.②顶点在_________的角叫做圆心角.③有一条弧和经过这条弧的端点的两条________所组成的图形叫做扇形.(设计意图:主要通过填空的方式复习本章所学习的相关基本知识,使学生通过这种方图1 式对所学的知识进行及时的巩固,最终达到掌握并灵活应用的目的.)亲爱的选民们,三位候选人介绍的都很详尽、全面,下面有请“三位先生”把今后的工作重点和专题研究作详细介绍.三、专题研究专题1: “三线”的概念及性质例1 下列语句正确的是( ).A .画直线AB=10厘米B .直线、射线、线段中,线段最短.C .画射线OB=3厘米D .延长线段AB 到点C ,使得BC=AB解析:直线、射线的延伸性决定了直线、射线无长度,不能比较大小. 故选D.温馨提示:本题要求能根据几何语言规范而准确地画出图形. 要做到这一点,第一:要读懂这些几何语句;第二:要抓住这些基本图形的共同特点及细微区别.跟踪练习(选作):1.已知平面内的四个点A 、B 、C 、D ,过其中两点画直线,已知最多可以画m 条,最少可以画n 条,则m n +的值为_________.2.京沪高铁通车后,乘火车从济南西站出发,沿途经过泰安站、曲阜东站、滕州东站可到达枣庄站,那么从济南西站到枣庄站需要制作的火车票价格有( ).A .8种B .9种C .10种D .11种(设计意图:涉及到本专题的内容主要有直线、射线和线段的有关概念、直线的性质及线段的应用等问题,重点考查学生对基础知识和基本技能的掌握情况. 此外,本专题还特别注意考查学生发现问题、解决问题的能力.)专题2:线段长度的计算例2 如图1,已知线段AD=6cm ,AC=BD=4cm ,E 、F 分别是线段AB 、CD 的中点. 求线段EF 的长.解析:因为AC=BD=4cm ,所以AB=AD -BD=6-4=2(cm),CD=AD -AC=2cm.又因为E 、F 分别是AB 、CD 的中点,所以AE=12AB=1cm ,FD=12CD=1cm. 所以EF= AD -(AE +FD)=6-(1+1)=4(cm).温馨提示:本题将求EF 的问题转化为求AE 和FD 的问题,从而使问题顺利求解,这体现了转化思想. 若要正确地解决这类问题,须要理清各线段之间的和、差、倍、分关系.跟踪练习(选作):1.如果点C 在线段AB 上,则下列选项中不能够判定点C 是线段AB 中点的是( ).A .AC=12AB B .AC=BC C .AB=2AC D .AC +BC=AB 2.已知A 、B 、C 三点在同一条直线上,M 、N 分别为线段AB 、BC 的中点,且 AB = 60,BC = 40,则MN 的长为___________. (设计意图:求线段的长度是本章的重要题型之一,是初中阶段求线段长度的入门知识,也是中考必考知识点,因此,应重点掌握. 解决这类问题,线段的和、差、倍、分是基础,通常利用线段中点的定义,并运用方程、比例等知识来综合解决.)专题3:角度的换算例3(1)将68.34︒用度、分、秒表示;(2)将131836'''︒用度表示.解析:(1)因为整数部分是68︒,所以需要将0.34︒化为分,即600.34=20.4''⨯;再把0.4'化为秒,即600.4=24''''⨯. 所以68.34=682024'''︒︒.(2)将131836'''︒用度表示,应先将36''化为分,即36''=1360.660''⨯=(),所以图3 180.618.6'''+=,再把18.6'化为度,即118.618.60.3160'=︒⨯=︒(). 所以131836'''︒=13.31︒. 温馨提示:角的换算单位是60进制,几分几秒化成度,要从秒开始,除以进率60;度化成几分几秒,要从分开始,乘以进率60.跟踪练习(选作):1.若12512'∠=︒,225.12∠=︒,325.2∠=︒,则下列结论正确的是( ).A .13∠=∠B .23∠=∠C .12∠=∠D .123∠=∠=∠2.下列单位换算中,错误的是( ). A .03902⎛⎫'= ⎪⎝⎭ B .0.25900''︒= C .125.4512545'︒=︒ D .05100018⎛⎫''= ⎪⎝⎭(设计意图:要求学生掌握角度的换算方法,角度的换算与时间中的小时、分、秒类似,都是60进制,要注意克服十进制的习惯,借一当60,逢60进一.)专题4、角度的计算例4 如图2,将一副三角板折叠放在一起,使直角的顶点重合于点O ,则∠AOC +∠DOB=____________.解析:观察图形可知∠AOC=∠AOD +∠DOC ,所以可得∠AOC +∠DOB=∠AOD +∠DOC +∠DOB=∠AOB +∠DOC=90°+90°=180°. 故填180°.温馨提示:本题可以利用一副三角板,按要求进行操作,进而找到解接题的突破口. 实事上,本题无论如何按要求叠放,其和总是一个常数,为两个直角的和.跟踪练习(选作):1.如图3,已知点O 是直线AD 上的一点,∠AOB 、∠BOC 、∠COD 三个角从小到大依次相差25︒,则∠AOB 的度数为______________.2.如图4,已知∠AOB=∠COD=90°,∠AOD=5∠BOC ,则∠BOC 的度数为_______.(设计意图:角同线段一样,都是平面几何的基础,角的计算通常离不开如下知识点:周角,平角,直角,角的平分线,角的和、差、倍、分,以及方程等,解决这类问题,通常是在认真审题的基础上,将有关知识融为一体来解决.)专题5:与多边形、圆有关的计算例5 如图5,若扇形DOE 与扇形AOE 的圆心角的度数之比为1:2.求这五个圆心角的度数.解析:扇形AOB 的圆心角度数为360°×15%=54°;扇形BOC 的圆心角度数为360°×25%=90°;扇形COD 的圆心角度数为360°×30%=108°; 扇形DOE 的圆心角度数为(360°-54°-90°-108°)×112+=36°; 扇形DOE 的圆心角度数为(360°-54°-90°-108°)×212+=72°. 温馨提示:用扇形圆心角所对应的比去乘以360°,即可求出相应扇形圆心角的度数. 跟踪练习(选作): 图2 图4图51.在一个直径为6cm 的圆中,莉莉画了一个圆心角为120°的扇形,则这个扇形的面积为( ).A .πcm 2B .2πcm 2C .3πcm 2D .6πcm 22.小敏测得正六边形的一个内角为120°,则其余五个角的和为__________.(设计意图:生活中有很多图形都是由我们熟悉的平面图形组成的,如果我们用“数学的眼光”观察周围的世界,就会感受到数学无处不在. 在本章中与圆有关的计算,主要是计算圆心角的度数和扇形面积问题,题目一般比较简单.)专题6:数几何图形的个数例6 如图,在锐角∠AOB 内部,画1条射线,可得3个锐角;画2条不同射线,可得6个锐角;画3条不同射线,可得10个锐角;……照此规律,画10条不同射线,可得锐角_________ 个.解析:先探究一般规律:在锐角∠AOB 内部,画1条射线有1+2=3个角;画2条不同射线有1+2+3=6个角;画3条不同射线有1+2+3+4=10个角;画4条不同射线有1+2+3+4+5=15个角;……所以在锐角∠AOB 的内部,画10条不同射线,可得锐角的个数为:1+2+3+…+10=66(个). 故填66.温馨提示:从简单情形入手,可类比得到一般性的规律:在锐角AOB ∠的内部,画n 条不同的射线,可得锐角的个数为:()()()1123 (1122)n n n n ++++++=++. 跟踪练习(选作):1.在同一平面内,三条直线两两相交,最多..有3个交点,那么4条直线两两相交,最.多.有 个交点,8条直线两两相交,最多..有 个交点. 2.观察下列图形,填写下表:(设计意图:数几何图形的个数在本章主要涉及两个问题:①数线(包括线段、射线、直线)的条数;②数角(通常指小于平角的角)的个数. 解决这类问题通常是根据题意,画出图形,借助于图形,采用“由特殊到一般”的方法,探寻规律.)从三位候选人的陈述中可以看出,他们是最能够时刻为选民们着想并全心全意服务的,现在开始投票……四、课时小结在本章中,需要注意的问题有:1.对线段、射线、直线的概念理解不透,出现延长直线或延长射线之类的错误;在表示射线时,没有把端点放在前面;数线段或直线的条数时,方法不当出现数重或漏数的现象.多边形四边形 五边形 六边形 七边形 n 边形 从一个顶点引对角线的条数1 3 多边形被对角线分成的三角形的个数 3 5图6 图7 2.连结两点间线段的长度,叫做这两点的距离. 这里应注意线段与距离的区别,距离是线段的长度,是一个量;线段则是一个图形,它们之间是不等同的.3.角的顶点处有几个角时,不能用一个大写字母表示;要注意平角与直线的区别,平角可以度量,它的大小是180°,直线不可以度量;平角有一个顶点和两条边,直线则没有.4.误认为“各边相等的多边形是正多边形”,或不能正确理解弧与扇形的概念.(设计意图:课时小结由学生发言,为他们提供一个互相交流的平台,让学生养成反思与总结的习惯,并揭示学习中遇到的常见误区,做到防患于未然.)五、课堂检测1.按下列语句画图:点M 在直线a 上,也在直线b 上,但不在直线直线c 上,直线a 、b 、c 两两相交,下列图形符合题意的是( ).2.下列说法中:①球是特殊的圆;②三角形也是多边形;③弧可以看作是扇形;④正多边形的边长相等;⑤顶点在圆心的角叫圆心角. 不正确的有( ).A .1个B .2个C .3个D .4个3.已知∠AOB=50°,作射线OC ,使∠AOC=32°,则∠BOC 的度数为_________.4.如图6,线段AB 被P 、Q 分成2:3:3三部分,其中AP=4cm ,则线段AB 的长为___________.5.如图7,OE ,OF 分别是∠AOC 与∠BOC 的平分线,且∠EOF=90°,小玲认为A 、O 、B •三点在同一直线上,你同意她的观点吗?请说明理由.(设计意图:要求学生在5~7分钟内完成,规定时间和内容,一方面可以了解学生对本节课所复习内容的掌握情况,同时也可以培养学生快速准确解答问题的能力.)六、作业设计1.如图8,已知线段AB=4,点O 是线段AB 上的点,点C 、D 分别是线段OA 、OB 的中点.(1)求线段CD 的长. (2)若点O 运动到线段AB 的延长线上,其它条件不变,求线段CD 的长.2.如图9,O 是直线AB 上一点,已知∠AOC=50°,OD 平分∠AOC ,∠DOE=90°.(1)请你数一数,图中小于平角的角有__________个.(2)求∠BOD 的度数;(3)试判断OE 是否平分∠BOC ,并说明理由.七、板书设计图9图8 A . B . C . D .回顾与思考知识框架图例题教学反思1.本章涉及的概念以及常见作图术语比较多,复习时要认真搞清概念及性质的含义,要咬文嚼字仔细推敲,领会图形的表示方法,体会几何语言的严谨性.2.用处理线段问题的类似方法来解决角的问题,可以促进问题的转化,用类比推理法解决数学问题,可以帮助同学们由已建立起的知识结构来构造新的知识结构.3.几何题一般都附有示意图,其目的不仅增加题目的直观性,还防止理解上产生歧义. 在计算线段的长度、角的度数时,对于无图题,让学生明确:当所画的图形不惟一时,要注意分类讨论,考虑周全,唯有如此,才会得到全面而又正确的答案.。

外国语中学初中数学七年级上册基本平面图形教案

外国语中学初中数学七年级上册基本平面图形教案

C. 如果线段 AB 的一个端点在线段 CD 的内部,另一个端点在线段 CD 的外部,那么 AB>CD
D . 如果 B、 D 重合, A、C 位于点 B 的同侧,且 A 落在线段 CD 的外部,则 AB>CD
5、同一平面内互不重合的三条直线的公共点的个数是
()
A、可能是 0 个, 1 个, 2 个
B、可能是 0 个, 2 个, 3 个

2、如图,点 A、 B、C、D 在直线 l 上 ( 1)AC=_______- CD; AB + _______ + CD =AD;
( 2)图中共有 ________条线段,共有 _______条射线,以点 C 为端点的射线是 ________.
3、下列说法正确的是(

A. 两点之间的连线中,直线最短
【知识点二:比较线段的长短】
1、线段公理:两点间线段最短 ;两点之间线段的长度叫做这两点之间的距离 .
2、比较线段长短的两种方法: ①圆规截取比较法;②刻度尺度量比较法 .
3、用刻度尺可以画出线段的中点,线段的和、差、倍、分;用圆规可以画出线段的和、差、倍
.
线段的中点:
把一条线段分成两条相等的线段的点,叫做线段的中点.
2
n 个班进行单循环比赛,共比赛
n n 1 场; 2
n 个人相互握手的总次数为 n n 1 次; 2
【典型例题】
1 、用一个钉子把一根细木条钉在墙上,木条就可能绕着钉子
_____________________ ,原因是
__________________________ ;当用两个钉子把木条钉在墙上时,木条就被固定住,其依据是
C、可能是 0 个, 1 个, 2 个或 3 个

新北师大版初中数学七年级上册 第四单元 基本平面图形 教案(全)

新北师大版初中数学七年级上册 第四单元 基本平面图形 教案(全)

4.1 线段、射线、直线教学目标:1、在现实情境中理解线段、直线、射线等简单的平面图形,感受图形世界的丰富多彩。

2、通过操作活动,了解两点确定一条直线等事实,积累操作活动经验。

教学重点:线段、射线、直线的概念及表示方法;了解三者的基本的特点,理解一个公理教学难点:几何语言的表达方法教学过程:一.预习:1.请同学们阅读教材,勾出重点和不懂的。

2.(1)绷紧的琴弦、人行横道线都可以近似地看做。

线段有端点。

(2)将线段向一个方向无限延长就形成了。

射线有端点。

(3)将线段向两个方向无限延长就形成了。

直线端点。

34.点与直线的位置关系点在直线上,即直线点;点在直线外,即直线点。

5.经过一点可以画条直线;经过两点有且只有条直线,即确定一条直线。

二.探究新知(一)创设情境,引入课题:用多媒体出示一组生活中的图片,有绷紧的琴弦、手电光束、笔直铁轨、筷子图、人行横道.让学生观察,问:你们能在其中发现我们所熟知的几何图形吗?(二)探究1. 线段射线和直线的概念及表示方法:讨论后讲解后完善预习中的表格。

线段特点及表示方法:射线特点及表示方法:直线特点及表示方法:探究2:(1)经过一个已知点A画直线,可以画多少条?经过两个点A、B画直线,又可以画多少条?(2)如果你想将一根细木条固定在墙上,至少需要几枚钉子?归纳:经过两点有且(“有”表示“存在性”,“只有”表示“唯一性”)练习1:如图,已知点A、B、C是直线m上的三点,请回答(1)射线AB与射线AC是同一条射线吗?cba BCADB CA(2)射线BA 与射线BC 是同一条射线吗? (3)射线AB 与射线BA 是同一条射线吗?(4)图中共有几条直线?几条射线?几条线段?分析:线段有两个端点;射线有一个端点,向一方无限延伸;直线没有端点,向两方无限延伸2、判断题: 1)、射线是向两方无限延伸的; ( ) 2)、可以用直线上的一个点来表示该直线 ( ) 3)、“射线AB ”也可以写成“射线BA ” ( ) 4)、线段AB 与线段BA 是指同一条线段 ( ) 探究3:点与直线的位置关系:(画图)1)、点P 在直线a 上(或说:直线a 经过点P ) 2)点P 在直线a 外 (或说:直线a 不经过点P )4.两条直线相交:当两条不同的直线有一个公共点时,称两条直线相交,公共点叫做它们的交点。

平面图形的周长和面积复习教案

平面图形的周长和面积复习教案

平面图形的周长和面积复习教案教学内容:人教版九年义务教育六年制小学数学第十二册第128-130页。

教学目的:1、引导学生回忆、整理平面图形的周长和面积的意义及其计算公式的推导过程,并能熟练地应用公式进行计算。

2、通过知识在实际生活中的运用,体验数学与生活的密切联系,培养学生懂得数学来源于生活,又运用于生活的数学意识。

3、渗透“事物之间是相互联系的”等辨证唯物主义观点,引导学生探寻知识之间的相互联系,构建知识网络,从而加深对知识的理解,并从中学会整理知识,学会学习方法。

4、通过小组学习活动,让学生在讨论、交流中参与学习活动,培养学生的合作意识,学习能力。

教学重点:整理完善知识结构,正确解决实际问题。

教学难点:理解平面图形周长、面积计算公式之间的内在联系。

教具准备:多媒体课件,六个平面图形纸片。

教学过程:一、讨论、交流、明确任务师:同学们,咱们现在离期末考试还有多长时间啊?生:大概还有……师:是的,你们现在啊不仅离期末考试只有10来天了,而且你们也即将结束你们的小学生活了,那在小学的这六年来,那么对于小学的知识你是否都掌握了呢?生1:学会了、还没有……师:这节课,老师想跟你们一起复习一下平面图形的周长和面积,你们愿意吗?生:愿意师板书:平面图形的周长和面积复习师:看了这个课题,你觉得这节课需要解决哪些问题?生:讨论交流师:整理学生的讨论结果,明确本课复习任务。

①什么是平面图形的周长和面积?②平面图形的周长和面积是怎么计算的?③平面图形的面积计算公式是怎么推导出来的?(电脑出示,全体齐读一遍。

)二、复习第一个问题——平面图形周长和面积的含义1、复习周长的含义。

师:小学阶段我们学过哪些平面图形?生:长方形、正方形、平形四边形、三角形、梯形和圆形。

师:电脑随机出示六种基本的平面图形。

师:那什么是平面图形的周长?(板书:周长)谁来说说?生:围成一个图形的所有边长的总和叫做这个图形的周长。

师:是这样吗?说得真好。

北师大版七年级数学上册第四章基本平面图形(教案)

北师大版七年级数学上册第四章基本平面图形(教案)
五、教学反思
在今天的教学过程中,我发现学生们对于基本平面图形的概念和分类掌握得还不错,但是在具体的案例分析中,部分学生在辨别角的类型和识别四边形特性时遇到了一些困难。这让我意识到,理论知识虽然重要,但将理论知识与实际应用结合起来,让学生在实际情境中去感受和理解这些概念,才是他们真正消化和吸收知识的关键。
最后,总结回顾环节,我通过提问的方式检验了学生们对今天所学知识的掌握情况,总体来说,他们对重点知识的掌握还算扎实。但是,我也意识到,对于难点的理解和运用,还需要在后续的课堂中继续巩固和强化。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“平面图形在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
在讲授新课的过程中,我尽量用生活中的实例来解释角、三角形和四边形的性质,这样做的效果是明显的,学生们能够更直观地理解这些抽象的几何概念。不过,我也注意到,对于一些空间想象力较弱的学生来说,仅凭语言描述和静态图形展示可能还不够,今后我需要寻找更多直观的教学工具,比如动态模型或者互动软件,来帮助他们更好地理解和记忆。
-重点二:三角形的定义及特性。掌握不等边三角形、等腰三角形、等边三角形的性质。
-举例:通过实际操作,让学生观察和比较不同三角形的边长和角度特点。
-重点三:四边形的定义及特性。理解矩形、正方形、平行四边形、菱形的性质。
-举例:分析生活中的四边形物体(如桌面、书籍、窗户等),让学生直观感受四边形的特性。
-重点四:周长的计算方法。掌握三角形和四边形周长的计算公式。

北师大版七年级数学上册第四章基本平面图形4.1线段、射线、直线(教案)

北师大版七年级数学上册第四章基本平面图形4.1线段、射线、直线(教案)
-突破方法:利用实物模型、几何画板等工具,帮助学生建立空间观念,提高空间想象力。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《线段、射线、直线》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要量度距离或画直线的情况?”(如用尺子量书本的长度)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索线段、射线、直线的奥秘。
4.培养学生的数学抽象素养,掌握线段的表示方法及其度量,提高对数学符号和几何图形的理解,形成数学抽象思维。
5.培养学生的团队合作意识,通过小组讨论、互助解答习题,提高沟通协作能力,培养合作共赢的价值观。
三、教学难点与重点
1.教学重点
-线段、射线、直线的定义及其性质:这是本节课的核心内容,需要学生掌握三种几何概念的基本属性,理解其无限性和有限性,以及端点个数的不同。
1.对于抽象的概念,如无限延伸,需要寻找更多生活中的实例,帮助学生形象地理解。
2.在实践活动和小组讨论中,关注每个学生的参与情况,鼓励他们积极表达自己的观点。
3.加强学生动手能力的培养,提高他们在ห้องสมุดไป่ตู้验操作中的准确性。
4.注重培养学生的表达能力和逻辑思维,让他们在分享成果时更有条理。
五、教学反思
今天在教授《线段、射线、直线》这一章节时,我发现学生们对几何概念的理解有着不同的接受程度。在导入新课阶段,通过提问日常生活中的实例,我发现大部分学生能够迅速联系到所学内容,这为后续的教学打下了良好的基础。
在新课讲授过程中,我尝试用简单的语言解释线段、射线、直线的概念,并通过案例分析和比较,让学生们更直观地理解它们的性质。我发现,对于线段、射线、直线的定义,大部分学生能够掌握,但在理解无限延伸的概念时,部分学生还是显得有些困惑。这可能是因为无限这个概念本身就比较抽象,需要更多的实例和形象的解释来帮助学生理解。

北师大版七年级上册新第四章《基本平面图形》优秀教案

北师大版七年级上册新第四章《基本平面图形》优秀教案

cbaBCA第四章基本平面图形 41 线段、射线、直线教学目标:知识与技能:1、在现实情境中理解线段、直线、射线等简单的平面图形,感受图形世界的丰富多彩。

2、通过操作活动,了解两点确定一条直线等事实,积累操作活动经验。

过程与方法:数形结合情感态度价值观:经历从现实世界中抽象出图形的过程,通过丰富的生活实例,认识线段、射线、直线的概念,发展抽象思维。

教学重点:1、线段、射线、直线的概念;2、线段、射线、直线表示方法;了解线段、射线、直线的基本的特点,知道一个公理 教学难点:几何语言的表达方法教学方法:自主探索式学习法、谈论法。

教学过程:(一)课前研究:1.看一看,观察美丽的图片,从数学角度阐述你观察到的与数学有关的事实,尽可能用数学词汇来表达极光 铁轨 输油管道 2.让学生举出实际生活中所见到的直线的实例可请5~6位学生发言. 106--107,要求:(1)直线的概念,线段定义,射线的定义。

(2)直线、射线和线段的表示。

(二)课中展示:1、各小组展示探究结果2、总结归纳: 直线的表示有两种:一个小写字母或两个大写字母.但前面必须加“直线”两字,如:直线;直线m ,直线AB ;直线CD .线段的表示也有两种:一个小写字母或用端点的两个大写字母.但前面必须加“线段”两字.如:线段a ;线段AB .射线的表示同样有两种:一个小写字母或端点的大写字母和射线上的一个大写字母,前面必须加“射线”两字.如:射线a ;射线OA . (三)应用新知:1N 分别是AC 、BC 的中点,则MN =______________=_______AC _______BC =_______2、 已知线段AB ,在AB 的延长线上取一点C ,使BC=2AB ,再在BA 的延长线上取一点D ,使DA=AC ,则线段DC=______AB ,BC=_____CD3、 已知线段AB=10㎝,点C 是AB 的中点,点D 是AC 中点,则线段CD=_________㎝。

北师大版七年级数学上册第四章《基本平面图形》教案

北师大版七年级数学上册第四章《基本平面图形》教案

第四章基本平面图形1 线段、射线、直线1.了解线段的描述性概念,了解射线、直线的概念,了解线段、射线、直线之间的区别与联系.2.掌握线段、射线、直线的表示方法.3.通过操作活动了解两点确定一条直线等事实,积累操作活动经验,培养学生的观察能力.4.能使学生积极参与到数学活动中来,感受图形世界的丰富多彩,激发学生的学习兴趣.【教学重点】线段、射线与直线的概念及表示方法【教学难点】直线的性质的发现、理解及应用.一、情境导入,初步认识线段、射线、直线对大家而言并不陌生,在小学里我们对它已有了了解.现在我们继续学习线段、射线,直线的相关知识.【教学说明】学生通过回忆小学里学过的知识,加深印象,激发学生探求新知的欲望.二、思考探究,获取新知1.线段、射线、直线的概念问题1生活中,有哪些物体可以近似地看做线段、射线,直线?【教学说明】学生很容易从生活中找到线段、射线、直线的例子,通过观察,加深对线段、射线、直线概念的理解.教材第106页“议一议”上面的内容.【归纳总结】线段、射线都是直线的一部分,射线、直线不可度量,线段可以度量.2.线段、射线、直线的表示方法.问题2线段、射线、直线该怎样表示呢?【教学说明】学生通过观察,了解并掌握线段、射线、直线的表示方法.我们可以用以下方式分别表示线段、射线、直线:【归纳结论】线段、射线、直线都可以用两个大写字母表示,也可以用一个小写字母表示.注意:表示射线时,端点字母必须写在前面.3.直线的性质问题3教材第107页上面的“做一做”.【教学说明】学生通过动手操作,进一步掌握直线的性质,体会数学与生活的密切联系,激发学生的积极性和主动性.【归纳结论】经过两点有且只有一条直线.这一事实可以简述为:两点确定一条直线.4.几何画图问题4按下列语句画图:(1)点P不在直线l上;(2)线段a、b相交于点P;(3)直线a经过点A,而不经过点B;(4)直线l和线段a、b分别交于A、B两点.【教学说明】学生通过动手操作,理解相应几何语句的意义,同时能结合语句画出正确的几何图形.【归纳结论】规范画图是学好几何的基础,要养成规范画图,画图完毕即标上表示点或线的字母的良好习惯.三、运用新知,深化理解1.下列语句错误的是()A.延长线段ABB.延长射线ABC.直线m和直线n相交于P点D.直线AB向两方无限延伸,所以不能延长直线AB2.举出一个能反映“经过两点有且只有一条直线”的实例.3.指出下图中的直线、射线、线段,并一一表示出来.4.作图题:已知平面上四点A、B、C、D,如图.(1)画直线AB;(2)画射线AD;(3)直线AB、CD相交于E;(4)连接AC、BD相交于点F.【教学说明】学生自主完成,加深对教学知识的理解,检测本节课内容的掌握情况,为后面的学习打下坚实的基础.完成上述题目后,教师引导学生完成练习册中本课时练习的课堂作业部分.【答案】1.B2.如栽树时只要确定两个树坑的位置,就能确定同一行的树坑所在的直线.3.直线AB(或直线AC,直线BC);射线AB,射线BC,射线CB,射线BA;线段AB,线段AC,线段BC.4.四、师生互动,课堂小结1.师生共同回顾线段、射线、直线的有关知识.2.通过这节课的学习,你掌握了哪些新知识?还有哪些疑问?【教学说明】教师引导学生回顾知识点,让学生大胆发言,积极与同伴交流,加深对新学知识的理解与运用.【板书设计】1.布置作业:从教材“习题4.1”中选取.2.完成练习册中本课时的相应作业.本节课从学生了解线段、射线、直线的概念及表示方法到探究直线的性质和通过动手操作,培养学生动手、动脑习惯,激发学生学习兴趣.2 比较线段的长短1.了解“两点之间线段最短”的性质;能借助尺、规等工具比较两条线段的大小;能用圆规作一条线段等于已知线段;理解线段中点的概念,会用数量关系表示中点及进行相应的计算.2.感受用类比的思想比较两条线段的大小,经过体会由感性认识上升到理性认识的过程,发展学生的符号感和数感;发展几何图形意识和探究意识.3.在积极参与、合作交流中体验到教学活动中充满着探索和创造,在学习中获得成功的经验,提高学习数学的兴趣.【教学重点】线段长短的两种比较方法:线段中点的概念及表示方法;线段的和、差、倍、分关系.【教学难点】叠合法比较两条线段大小;会画一条线段等于已知线段.一、情境导入,初步认识把弯曲的河道改直就可以缩短航程.在公园的河面上修建曲折的桥,就能增加观光的路程,你知道这其中的道理吗?怎样比较两个同学的高矮?你有哪些方法?【教学说明】通过生活中常见的例子,体会数学与生活的紧密联系,激发学生学习兴趣.二、思考探究,获取新知1.线段公理问题1 教材第110页图4—6及有关图的内容.【教学说明】学生通过观察,实际操作,很容易得出正确的结论.【归纳结论】两点之间的所有连线中,线段最短.这一事实可以简述为:两点之间,线段最短.我们把两点之间线段的长度,叫做这两点之间的距离.2.线段的比较问题2 教材第110页的“议一议”.【教学说明】学生通过实物的比较到线段的比较,归纳比较两条线段长短的方法.【归纳结论】如果直接观察难以判断,我们可以有两种方法进行比较:一种方法是用刻度尺量出它们的长度,再进行比较,即度量法;另一种方法是把其中的一条线段移到另一条线段上去,将其中的一个端点重合在一起加以比较,即叠合法.3.作一条线段等于已知线段问题3 如图,已知线段AB,用尺规作一条线段等于已知线段AB.【教学说明】学生通过操作,掌握作一条线段等于已知线段的方法.作图规律如下:(1)作射线A′C′(如图所示);(2)用圆规在射线A′C′上截取A′B′=AB.线段A′B′就是所求作的线段.4.线段中点的定义及表示方法如图,点M把线段AB分成相等的两条线段AM与BM,点M叫做线段AB的中点,这时AM=BM=12AB(或AB=2AM=2BM).5.线段中点性质的运用问题4 在直线l上顺次取A,B,C三点,使得AB=4cm,BC=3cm.如果点O是线段AC的中点,那么线段OB的长度是多少?【教学说明】学生画图加以分析,与同伴进行交流,进一步掌握线段中点的性质.【归纳结论】线段的和,差,中点计算时,应注意数形结合,根据已知条件画出图形再加以分析.三、运用新知,深化理解1.如图,从A到B有3条路径,最短的路径是()A.①B.②C.③D.都一样第1题图第2题图2.如图,已知线段AD>BC,则线段AC与BD的关系是()A.AC>BDB.AC=BDC.AC <BDD.不能确定3.已知线段AB=8cm,在直线AB上取点C,使BC=2cm,则线段AC的长是___cm.4.教材第112页上方的“随堂练习”第1题.5.教材第112页上方的“随堂练习”第2题.6.已知点A、B、C是同一直线上的三个点,且AC=9cm,BC=5cm,求线段AB和BC的中点间的距离.【教学说明】学生自主完成,加深对新学知识的理解,检测线段的比较,线段的中点等知识的掌握情况,对学生的疑惑教师应及时指导.完成上述题目后,教师引导学生完成练习册中本课时练习的课堂作业部分.【答案】1.C2.A3.10或64.可用刻度尺量出AB各线段的长度,再量出线段A′B′的长度.将AB各线段和与A′B′长度作比较,也可用尺规作图法将AB的每段长度移到线段A′B′上,再做判断.5.6. 4.5cm四、师生互动,课堂小结1.师生共同回顾线段的公理,线段的比较,线段的中点等有关知识.2.通过这节课的学习,你掌握了哪些新知识?还有哪些疑问?【教学说明】教师引导学生回顾知识点,让学生大胆发言,积极与同伴交流,进行知识的提炼和归纳.【板书设计】1.布置作业:从教材“习题4.2”中选取.2.完成练习册中本课时的相应作业.本节课从学生探究线段的公理,线段的比较方法,线段的中点的表示方法,到运用线段中点的性质解决具体问题等方面,培养学生动手、动脑习惯,提高学生解决问题的能力.3 角1.通过实际情境,理解角的有关概念,掌握角的表示方法.2.会进行角的度量,以及度、分、秒的互化.3.进一步认识锐角、钝角、直角、平角、周角及其大小关系.4.通过问题情境,认识角、表示角、度量角、进行角的互化,经历角的静态定义到动态定义的形成过程,体会运动变化的思想方法.发展学生的符号感和数感.5.结合本课教学特点,教育学生热爱生活,热爱学习,激发学生学习兴趣.【教学重点】理解角的概念与表示方法,学会角度的测量,以及度、分、秒的互化.【教学难点】度、分、秒的互化.一、情境导入,初步认识教材第114页最上方的彩图及相关问题.【教学说明】学生很容易从生活中的图形中找到角.初步感受角的形象,体会角与生活的紧密联系.二、思考探究,获取新知1.角的概念与表示方法问题1 角是由什么图形组成的?角有哪些表示方法?【教学说明】学生在小学对角的概念与表示方法有一定的了解,此时教师加以规范,有助于学生进一步掌握角的概念及表示方法.【归纳结论】角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点,这两条射线是角的两边.角的表示方法常见的有三种:(1)用三个或一个大写的英文字母表示;(2)用一个小写的希腊字母表示;(3)用数学标注.注意:顶点处只有一个角时才能用一个大写的英文字母表示.问题2 教材第114页下方“做一做”.【教学说明】学生通过观察,分析,进一步掌握角的表示方法.2.用旋转的观点描述角及认识平角,周角问题3 教材第115页“议一议”.【教学说明】学生通过观察,从旋转的角度体会角的形成.【归纳结论】角可以看成是由一条射线绕着它的端点旋转而成的.3.角的度量及度、分、秒的换算问题4 在小学数学中,我们已知道:1平角=180°,1周角=360°.度量角的单位除了度,还有哪些?相邻单位间的进率又是多少呢?【教学说明】教师引导学生了解角的度量单位,掌握相邻单位间的进率.【归纳结论】为了更精密地度量角,我们规定:问题5 计算:(1)1.45°等于多少分?等于多少秒?(2)1800″等于多少分?等于多少度?【教学说明】学生通过计算,与同伴进行交流,熟练掌握度、分、秒的计算.问题6 教材第116页“做一做”.【教学说明】学生通过观察,动手操作,进一步掌握角的表示方法和角的度量,会用角度来表示方位.三、运用新知,深化理解1.下列说法正确的是()A.平角是一条直线B.一条射线是一个周角C.两边成一条直线时组成的角是平角D.一个角不是锐角就是钝角2.教材第116页下方的“随堂练习”第1题.3.教材第116页下方的“随堂练习”第2题.【教学说明】学生自主完成,检测对角的有关知识的掌握情况,加深对新学知识的理解,对学生的疑惑、教师应及时指导.完成上述题目后,教师引导学生完成练习册中本课时练习的课堂作业部分.【答案】1.C2.(1)北偏东90°(2)虎豹园在南偏东0°(正南方),猴山在北偏东0°(正北方),大象馆在北偏东45°;(3)图略.∠AOC=∠AOB=90°,∠AOD=∠BOD=45°,∠COD=135°,∠BOC=180°;(4)锐角有∠BOD、∠AOD、∠AOC,钝角为∠COD、∠BOC,直角为∠AOB、∠AOC,平角为∠BOC.3.(1)15 ′,900″;(2)45′,0.75°.四、师生互动,课堂小结通过这节课的学习,你掌握了哪些新知识?还有哪些疑问?【教学说明】教师引导学生回顾知识点,让学生大胆发言,积极与同伴交流,加深对知识的理解.【板书设计】1.布置作业:从教材“习题4.3”中选取.2.完成练习册中本课时的相应作业.本节课从学生了解角的概念及表示方法,到角的度量及度、分、秒的换算,培养学生动手动脑习惯,激发学生学习兴趣.4 角的比较1.运用类比的方法,会比较两个角的大小.2.认识角的平分线,掌握角的和、差、倍、分关系.3.通过类比线段大小的比较,掌握角的大小比较方法,认识角的平分线及表示方法,发展学生的符号感和数感,发展几何图形意识和探究意识.4.在积极参与,合作交流中体验到教学活动充满着探索和创造,提高学生学习数学的兴趣.【教学重点】会比较角的大小,会分析图中角的和差关系,能熟练运用角的平分线.【教学难点】角的和、差、倍、分关系.一、情境导入,初步认识还记得怎样比较线段的长短吗?类似地,你能比较角的大小吗?【教学说明】通过类比线段大小的比较方法,学生很容易得到角的大小比较方法.二、思考探究,获取新知1.角的大小比较问题1 怎样比较角的大小呢?【教学说明】学生通过类比线段大小的比较方法,再与同伴交流,归纳角的大小比较方法.【归纳结论】与比较线段的长短类似,如果直接观察难以判断,我们可以有两种方法对角进行比较:一种方法是用量角器量出它们的度数,再进行比较,即度量法;另一种方法是将两个角的顶点及一条边重合,另一条边放在重合边的同侧就可以比较大小,即叠合法.问题2 教材第119页上方的“做一做”.【教学说明】学生通过观察、分析,与同伴进行交流,进一步掌握角的大小比较方法.3.角的平分线定义及表示方法教材第119页上方的“做一做”.问题 3 已知EOF为一直线,∠AOB=90°,OE平分∠COB,∠EOC=15°,求∠AOF的度数.【教学说明】学生观察、分析,与同伴交流,通过计算,进一步掌握角的平分线的性质及角的和差关系.【归纳结论】在进行角的和、差、倍、分计算时,往往结合图形来分析数量关系.4.估量角的度数问题4 (1)如图估计∠AOB,∠DEF的度数.(2)量一量,验证你的估计.【教学说明】学生先估量,再用量角器量一量,验证自己的估计是否正确.三、运用新知,深化理解1.∠AOB的内部任取一点C,作射线OC,那么下列各式中正确的是()A.∠AOB>∠AOCB.∠AOC>∠BOCC.∠BOC=∠AOCD.∠BOC>∠AOC2.教材第120页上面“随堂练习”第1题.3.教材第120页上面“随堂练习”第2题.4.如图所示,OB是∠AOC的平分线,DO平分∠COE,若∠AOE=128°,求∠BOD的度数.【教学说明】学生自主完成,加深对新学知识的理解,检测对角的大小比较,角的平分线性质的掌握情况,对学生的疑惑教师应及时指导.完成上述题目后,教师引导学生完成练习册中本课时练习的课堂作业部分.【答案】1.A2.(1)135°,135°,45°(2)图中两个钝角相等,一个钝角和一个锐角的和为180°.3.45°,30°,60°4.64°四、师生互动,课堂小结1.师生共同回顾角的大小比较,角的平分线性质等知识点.2.通过这节课的学习,你掌握了哪些新知识?还有哪些疑问?【教学说明】教师引导学生回顾知识点,让学生大胆发言,积极与同伴交流,加深对知识的理解.【板书设计】1.布置作业:从教材“习题4.4”中选取.2.完成练习册中本课时的相应作业.本节课从学生探究角的大小比较方法,角的平分线定义及性质,到运用角的和、差、倍、分解决具体问题,培养学生应用知识的能力,激发学生学习的兴趣.5 多边形和圆的初步认识1.在具体情境中认识多边形和圆,了解与多边形和圆有关的概念.2.会计算扇形圆心角的度数.3.经历从现实世界中抽象出平面图形的过程,感受图形世界的丰富多彩,在丰富的活动中训练发散思维和逻辑思维.4.结合本课教学特点,教育学生热爱生活,热爱学习,体验数学与生活的密切联系,激发学生学习数学的兴趣.【教学重点】掌握正多边形的边、角特点和扇形圆心角的求法.【教学难点】多边形对角线条数计算公式的推导.一、情境导入,初步认识教材第122页最上方的彩图及相关问题.【教学说明】学生很容易从生活中的例子找到多边形和圆,使学生有一个初步认识.二、思考探究,获取新知1.多边形及有关概念教材第122页彩图下方的内容.问题1 (1)n边形有多少个顶点、多少条边、多少个内角?(2)过n边形的每一个顶点有几条对角线?【教学说明】学生通过观察,动手操作,与同伴进行交流,找出一般规律.【归纳结论】n边形有n个顶点,n条边,n个内角.过n边形的每一个顶点有(n-3)条对角线.n边形一共有32n n()条对角线.问题2 各边相等,各角也相等的多边形叫做正多边形.【教学说明】学生通过观察、比较、度量,验证自己的猜测. 【归纳结论】各边相等,各角也相等的多边形叫做正多边形.2.圆及有关概念问题3 教材第123页下方的“做一做”.【教学说明】学生通过观察生活中的例子,再通过画图,初步认识圆和扇形.【归纳结论】平面上,一条线段,绕着它固定的一个端点旋转一周,另一个端点形成的图形叫做圆.固定的端点O称为圆心,线段OA称为半径.圆上任意两点A,B间的部分叫做圆弧,简称弧.记作AB,读作“圆弧AB”或“弧AB”;由一条弧AB和经过这条弧的端点的两条半径OA,OB所组成的图形叫做扇形,顶点在圆心的角叫做圆心角.3.求扇形的圆心角和扇形面积问题4 将一个圆分割成三个扇形,它们的圆心角的度数比为1∶2∶3,求这三个扇形的圆心角的度数.【教学说明】学生通过计算,掌握扇形圆心角的求法.【归纳结论】把一个圆分成若干个扇形,这些扇形的圆心角度数之和为360°.问题5(1)将一个圆分成三个大小相同的扇形,你能算出它们的圆心角的度数吗?你知道每个扇形的面积和整个圆的面积的关系吗?与同伴进行交流.(2)画一个半径是2cm的圆,并在其中画一个圆心角为60°的扇形,你会计算这个扇形的面积吗?与同伴进行交流.【教学说明】学生通过思考、分析,进一步掌握扇形圆心角和扇形面积的求法.三、运用新知,深化理解1.从六边形的一个顶点出发可引____条对角线,它们将这个六边形分割成___个三角形.六边形一共有___条对角线.2.教材第124页下方的“随堂练习”第1题.3.教材第124页下方的“随堂练习”第2题.【教学说明】学生自主完成,加深对新学知识的理解,检测对多边形和圆的有关知识的掌握情况,对学生的疑惑,教师应及时指导.完成上述题目后,教师引导学生完成练习册中本课时练习的课堂作业部分.【答案】1.3,4,92.如地板砖是正方形,蜂巢是正六边形.3.∠AOB=72°,∠AOC=108°,∠BOC=180°.四、师生互动,课堂小结1.师生共同回顾多边形和圆及有关概念.2.通过这节课的学习,你掌握了哪些新知识?还有哪些疑问?【教学说明】教师引导学生回顾知识点,让学生大胆发言,积极与同伴交流,加深对知识的理解.【板书设计】1.布置作业:从教材“习题4.5”中选取.2.完成练习册中本课时的相应作业.本节课从学生了解多边形和圆的相关概念,到计算扇形圆心角的度数,培养学生分析问题、解决问题的能力,激发学生学习兴趣.章末复习1.掌握本章重要知识,能灵活运用所学知识解决具体问题.2.通过梳理本章知识,感受图形世界的丰富多彩,回顾解决问题中所涉及的分类和类比思想.体会由感性认识上升到理性认识的过程,发展学生的符号感和数感.3.在运用本章知识解决具体问题过程中,进一步体会数学与生活的密切联系,增强数学应用意识,激发学生学习兴趣.【教学重点】回顾本章知识,构建知识体系.【教学难点】利用本章相关知识解决具体问题教学过程.一、知识框图,整体把握二、释疑解感,加深理解1.直线的性质经过两点有且只有一条直线,即两点确定一条直线.2.线段公理两点之间的所有连线中,线段最短,即两点之间,线段最短.3.线段的中点把线段分成相等的两条线段的点,叫做线段的中点.4.角的平分线从一个角的顶点引出一条射线,把这个角分成两个相等的角.这条射线叫做这个角的平分线.三、典例精析,复习新知例1过平面内的四个点中的任意两个点可以画直线的条数是().A.4B.6C.4或6D.1,4或6【分析】平面内的四个点的位置关系有三种:①四个点在同一直线上,②有三个点在同一直线上,③任意三个点都不在同一直线上,所以应分三种情况讨论,故选D.例2 如图,从A到B最短的路线是().A.A—G—E—BB.A—C—E—BC.A—D—G—E—BD.A—F—E—B【分析】从A到B,EB这一段是必走的,关键是看从A到E哪条路最近,由“两点之间线段最短”可知应选D.例3计算:(1)47°53′43″+53°47′42″;(2)22°30′16″×6;(3)92°56′3″-46°57′54″;(4)176°52′÷3.【分析】角之间的运算是60进制,加减运算要将度与度、分与分、秒与秒之间分别加减;分、秒相加时逢60要进位,相减时要借1当60;乘法运算要用乘数分别与度、分、秒相乘,然后逢60进位;除法运算要用除数分别去除度、分、秒,度、分的余数乘60分别化为分、秒,一般除到秒,然后四舍五入.解:(1)47°53′43″+53°47′42″=(47°+53°)+(53′+47′)+(43″+42″)=100°+100′+85″=101°41′25″;(2)22°30′16″×6;=(22°+30′+16″)×6=132°+180′+96″=135°1′36″;(3)92°56′3″-46°57′54″;=(91°-46°)+(115′-57′)+(63″-54″)=45°+58′+9″=45°58′9″;(4)176°52′÷3=58°+(2°+52′)÷3=58°+172′÷3=58°+57′+1′÷3=58°57′20″.例4 在同一个小学的小明、小伟、小红三位同学住在A、B、C三个在住宅区,如图所示:A、B、C三点共线,且AB=60m,BC=100m.他们打算合租一辆车去上学,准备只设一个停靠点,为使三位同学步行到停靠点的路程之和最小,你认为停靠点应该设在_____________.【分析】若设在A处,三人步行路程之和为60+(60+100)=220m;若设在B处,则三人步行路程之和为60+100=160m;若设在C处,三人步行路程之和为(60+100)+100=260m.解:B处例5 已知线段AB=8cm,在直线AB上有一点C,且BC=4cm,M是线段AC的中点,求线段AM的长度.【分析】题中说明A、B、C三点共线,但无法判断点C是线段AB上,还是在AB 的延长线上,所以要分两种情况,求AM的长.例6 如图所示,已知AB为一条直线,O是AB上一点,OC是∠AOD的平分线,OE在∠BOD内,∠DOE=13∠BOD,∠COE=72°,求∠EOB的度数.【分析】本题主要考查角的平分线与角的和、差、倍分问题的应用,找准各角之间的关系,列等式解决.四、复习训练,巩固提高1.如图,A,B,C三点共线,图中有___条线段,___条射线,能用字母表示的射线有____条.第1题图第2题图2.比较如图所示的线段的长度:(1)DC_____AC;(2)AD+DC_____AC;(3)AD+BD______AB.其依据是___________________________.3.下列说法中,错误的是().A.经过一点的直线可以有无数条B.经过两点的直线只有一条C.一条直线只能用一个字母表示D.线段CD和线段DC是同一条线段4.如图所示,如果∠AOD>∠BOC,那以下列说法正确的是().A.∠COD>∠AOBB.∠AOB>∠CODC.∠COD=∠AOBD.∠COD与∠AOB的大小关系不能确定5.已知:如图所示,点A、B、C、D,按下列要求画图:(1)射线AD,直线BC;(2)射线BA,射线CD;(3)连接AC,并延长AC.第5题图第6题图6.如图所示,已知线段a、b、c,用圆规和直尺画线段.使它等于2a+b-c.(只需画图,不要求写画法).7.计算:(1)43°25′+54°46′;(2)90°3′-57°21′44″;(3)33°15′6″×4;(4)176°52′÷3.8.半径为6的圆中,扇形AOB的圆心角为150°,请在图中圆内画出这个扇形,并求出它的面积(结果保留π).9.如图,已知点C为线段AB上一点,AC=12cm,CB=23AC,D、E分别为AC、AB的中点,求DE的长.【教学说明】这部分安排了几个比较典型的重点题型,加深对本章知识的理解,进一步提高学生综合运用所学知识的能力,前几题可由学生自主完成,最后两题可由师生共同探讨得出结论.【答案】1. 3 6 42. <= >两点之间,线段最短3.C4.B5.6.如图所示,线段AE就是所求作的线段2a+b-c.7.(1)98°11′(2)32°41′16″(3)133°24″(4)58°57′20″8.如图,扇形∠AOB的面积为:π×62×150360=15π.五、师生互动,课堂小结本课堂你能完整地回顾本章所学的有关知识吗?你学会了哪些与本章有关的数学思想方法?你还有哪些困惑与疑问?【教学说明】学生回顾本章知识,积极与同伴交流,对于学生的困惑与疑问,教师应及时指导.1.布置作业:从教材“复习题4”中选取.2.完成练习册中本章复习课的练习.。

基本平面图形复习教案

基本平面图形复习教案

基本平面图形复习教案以下是查字典数学网为您推荐的基本平面图形复习教案,希望本篇文章对您学习有所帮助。

基本平面图形复习教案一、线段、射线、直线1.直线:表示为:直线AB ,(或)直线BA.表示为:直线c2.射线:表示为:射线OM,注意端点字母一定要写在前边.表示为: 射线m3.线段:表示为:线段AB ,(或)线段BA.表示为: 线段m4.直线的性质:经过两点只有一条直线.5.线段的性质: 在两点的所有连接的线中,线段最段.两点之间线段的长度叫两点间的距离.6.线段的中点: 把一条线段分成两条相等的两条线段的点叫作线段的中点.例如: M是线段AB的中点,则AM = MB =二、角7.角的定义:具有公共端点的两条射线所组成的图形叫做角.8.角的表示:(1). 三个大写字母表示:AOB, ABD, ABC, DBC(2). 一个大写字母表示:A, B, C(3).希腊字母表示:(4). 数字表示:2 39.角也可以看做是一条射线绕端点旋转得到的.10、锐角、直角、钝角、平角、周角的概念和大小(1)平角:角的两边成一条直线时,这个角叫平角。

(2)周角:角的一边旋转一周,与另一边重合时,这个角叫周角。

(3)0锐角,直角=90,90钝角,平角=180,周角=360。

11.角的度量: 1= 60, 1= 6012. 角平分线意义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做角平分线∵AOC=BOC= AOB13.点方位:1.北偏东602.北偏西303.西偏南604.南偏东455.东偏南45三、平行线和垂线14.同一平面内两直线的位置:相交或平行.15. 平行线的表示:直线a∥b或直线AB∥CD直线m与直线相n交于O.16.平行线的性质:(1).经过直线外一点,有且只有一条直线与这条直线平行.(2).如果两条直线都与第三条直线平行,那么这两条直线互相平行.∵ l1∥l2, l2∥l3 l1∥l317.垂直的定义:如果两条直线相交成直角,那么这两条直线互相垂直.18.垂直的表示:直线AB垂直于直线CD表示为:ABCD或ab19.垂线的性质:(1).平面内经过一点有且只有一条直线和已知直线垂直.(2).直线外一点与直线上各点的连线中,垂线段最短.垂线段的长度叫做点到直线的距离.如图:PAPCPD, 线段PD的长度就是P点到直线AB的距离.四、七巧板七巧板的制作:七巧板由5块三角形,1块正方形,一块平行四边形组成。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基本平面图形复习课
知识要求:1、经历观察、测量、折叠、模型制作与图案设计等活动,发展空间概念;
2、在现实情景中认识线段、射线、直角、角等简单平面图形,
3、能用数学符号表示角、线段
4、会进行线段或角的比较,能估计一个角的大小,会进行角的单位的简单换算;
5、经历在操作活动中探索图形性质的过程;丰富数学学习的成功体验,积累操作活动经验,发展有条理的思考与表达;
知识重点:线段长短及角大小的比较。

知识难点:角的单位换算,准确理解线段、直线、射线等概念,进行简单的图案设计,这些都是本章的难点。

考点:本章在考察中往往单独成题,多以填空题的形式出现,对线段、直线、射线概念的理解,根据图形对线段的长度和角的度数进行推理计算,对角度关系进行换算,是考试的重点。

主要考察学生对基本概念和基本要领的掌握情况。

知识点:
一、线段、射线、直线 1、线段、射线、直线的定义
(1)线段:线段可以近似地看成是一条有两个端点的崩直了的线。

线段可以量出长度。

(2)射线:将线段向一个方向无限延伸就形成了射线,射线有一个端点。

射线无法量出长度。

(3)直线:将线段向两个方向无限延伸就形成了直线,直线没有端点。

直线无法量出长度。

2、线段、射线、直线的表示方法
(1)线段的表示方法有两种:一是用两个端点来表示,二是用一个小写的英文字母来表示。

(2)射线的表示方法只有一种:用端点和射线上的另一个点来表示,端点要写在前面。

(3)直线的表示方法有两种:一是用直线上的两个点来表示,二是用一个小写的英文字母来表示。

3、直线公理:过两点有且只有一条直线。

简称两点确定一条直线。

4、线段的比较(1)叠合比较法;(2)度量比较法。

5、线段公理:“两点之间,线段最短”。

连接两点的线段的长度,叫做这两点的距离。

6、线段的中点:如果线段上有一点,把线段分成相等的两条线段,这个点叫这条线段的中点。

若C 是线段AB 的中点,则:AC=BC=2
1
AB 或AB=2AC=2BC 。

二、角
1、角的概念:(1)角可以看成是由两条有共同端点的射线组成的图形。

两条射线叫角的边,共同
的端点叫角的顶点。

(2)角还可以看成是一条射线绕着他的端点旋转所成的图形。

2、角的表示方法:角用“∠”符号表示
(1)分别用两条边上的两个点和顶点来表示。

(顶点必须在中间) (2)在角的内部写上阿拉伯数字,然后用这个阿拉伯数字来表示角。

(3)在角的内部写上小写的希腊字母,然后用这个希腊字母来表示角。

(4)直接用一个大写英文字母来表示。

3、角的度量:会用量角器来度量角的大小。

4、角的单位:角的单位有度、分、秒,用°、′、″表示,角的单位是60进制与时间单位是类似的。

度、分、秒的换算:1°=60′,1′=60″。

5、锐角、直角、钝角、平角、周角的概念和大小
(1)平角:角的两边成一条直线时,这个角叫平角。

(2)周角:角的一边旋转一周,与另一边重合时,这个角叫周角。

(3)0°<锐角<90°,直角=90°,90°<钝角<180°,平角=180°,周角=360°。

6、画两个角的和,以及画两个角的差
(1)用量角器量出要画的两个角的大小,再用量角器来画。

(2)三角板的每个角的度数,30°、60°、90°、45°。

7、角的平分线从角的顶点出发将一个角分成两个相等的角的射线叫角的平分线。

若BD 是∠ABC 的平分线,则有:∠ABD=∠CBD=2
1
∠ABC ;∠ABC=2∠ABD=2∠CBD 8、角的计算。

三、多边形和圆的初步认识
1、多边形是由一些不在同一条直线上的线段依次首尾相连组成的封闭平面图形。

2、平面上,一条线段绕着它固定的一个端点旋转一周,另一个端点形成的图形叫做圆(circle ).固定的端点O 称为圆心(centerofacircle ),线段OA 称为半径(radius ).圆上A ,B 两点之间的部分叫做圆弧(arc ),由一条弧和经过这条弧的端点的两条半径所组成的图形叫做扇形(sector).定点在圆心的角叫做圆心角 课堂练习
1如图,∠AOC 和∠BOD 都是直角,且∠AOB=150°,求∠COD 的度数。

40︒
60︒


(4)

西


C
A B C
A
D
B
2、下列说法正确的是()
A.两点之间的连线中,直线最短
B.若P 是线段AB 的中点,则AP=BP
C.若AP=BP,则P 是线段AB 的中点
D.两点之间的线段叫做者两点之间的距离 3、已知线段AB=6cm,C 是AB 的中点,D 是AC 的中点,则DB 等于()
A. 1.5cm
B.4.5 cmC3 cm.D.3.5cm
4、如图3,下列表示角的方法,错误的是()
A.∠1与∠AOB 表示同一个角;
B.∠AOC 也可用∠O 来表示
C.图中共有三个角:∠AOB 、∠AOC 、∠BOC;
D.∠β表示的是∠BOC 5、如图4,在A 、B 两处观测到的C 处的方位角分别是() A.北偏东60°,北偏西40°
B.北偏东60°,北偏西50°
C.北偏东30°,北偏西40°
D.北偏东30°,北偏西50°
6、已知平面上四点A 、B 、C 、D,如图: (1)画直线AD;
(2)画射线BC ,与AD 相交于O 。

(3)连结AC 、BD 相交于点F.
7、已知D 是AC 的中点,AD=2,CB=5,求AB 的长度。

小结;
世上没有一件工作不辛苦,没有一处人事不复杂。

不要随意发脾气,谁都不欠你的
β
(3)1
O
C A
B。

相关文档
最新文档