天体运动复习题——开普勒三大定律
天体运动复习题开普勒三大定律
天体运动复习题:开普勒三大定律引言:开普勒三大定律是描述天体运动的基本定律,由德国天文学家开普勒在17世纪提出。
这些定律揭示了行星运动和其他天体的运动规律,对于我们理解天体运动和宇宙的结构至关重要。
本文将对开普勒三大定律进行详细的复习和解析。
一、第一定律(椭圆轨道定律)开普勒第一定律,也称为椭圆轨道定律,说明了行星绕太阳运动的轨道形状。
根据这一定律,行星的运动轨道是一个椭圆,其中太阳位于椭圆的一个焦点上。
另外一个焦点则没有任何物体或者天体。
这个定律的重要性在于,它改变了人们过去对于天体运动的简单的圆形轨道观念。
二、第二定律(面积定律)开普勒第二定律,也称为面积定律,描述了行星在运动过程中的速度变化情况。
根据这一定律,行星在其轨道上运动时,其和太阳连线所扫过的面积速度是恒定的。
也就是说,当行星距离太阳最远的时候,它的运动速度最慢;而当行星离太阳最近的时候,它的运动速度最快。
这一定律揭示了行星在轨道上运动的非均匀性。
三、第三定律(调和定律)开普勒第三定律,也称为调和定律,揭示了行星的轨道周期和其半长轴长度的关系。
根据这一定律,行星绕太阳运行的周期平方和它的平均轨道半长轴的立方成正比。
换句话说,行星轨道的周期越长,它离太阳的距离越远。
结论:开普勒三大定律对我们理解天体运动和宇宙结构的影响不可忽视。
它们改变了我们对于天体运动的观念,揭示了行星运动和其他天体的规律。
通过深入理解开普勒三大定律,我们能更加全面地认识宇宙的运行机制,为进一步的天文研究提供基础。
然而,需要注意的是,开普勒三大定律是以太阳系天体为基础推导出来的,适用于类似太阳系这样的星系。
对于其他类型的星系或者宇宙尺度的运动,可能需要其他的物理定律来描述。
在实际应用中,开普勒三大定律被广泛运用于航天工程、卫星轨道设计等领域。
通过精确地计算行星的轨道参数,科学家和工程师能够更好地规划和控制空间飞行器的运动轨迹。
综上所述,开普勒三大定律对于我们理解天体运动和宇宙的结构具有重要意义。
高中物理高考题解析-认识天体运动-考题及答案
课时分层作业(八)认识天体运动题组一开普勒定律的理解1.某行星绕太阳运行的椭圆轨道如图所示,F1和F2是椭圆轨道的两个焦点,行星在A点的速率比在B点的大,则太阳是位于()A.B B.F1C.A D.F2B[根据开普勒第二定律,对任意一个行星来说,它与太阳的连线在相等时间内扫过相等的面积。
行星在近日点速率大于在远日点速率,即A为近日点,B 为远日点,太阳位于F1,故B正确。
]2.开普勒行星运动定律为万有引力定律的发现奠定了基础,根据开普勒定律可知,以下说法中正确的是()A.开普勒定律只适用于行星绕太阳的运动,不适用于卫星绕地球的运动B.若某一人造地球卫星的轨道是椭圆,则地球处在该椭圆的一个焦点上C.开普勒第三定律a3T2=k中的k值,不仅与中心天体有关,还与绕中心天体运动的行星(或卫星)有关D.在探究太阳对行星的引力规律时,得到了开普勒第三定律a3T2=k,它是可以在实验室中得到证明的B[开普勒定律既适用于行星绕太阳的运动,也适用于卫星绕行星的运动,故A错误;根据开普勒第一定律知,人造地球卫星的轨道是椭圆时,地球处在椭圆的一个焦点上,故B正确;开普勒第三定律a3T2=k中的k值只与中心天体有关,与绕中心天体运动的行星(或卫星)无关,故C错误;开普勒第三定律是通过观测到的数据研究归纳出来的,不能在实验室中得到证明,故D错误。
]3.(多选)以下关于开普勒行星运动的公式a3T2=k的理解正确的是()A.k是一个与环绕天体无关的量B.T表示行星运动的自转周期C.T表示行星运动的公转周期D.若地球绕太阳运转轨道的半长轴为a地,周期为T地;月球绕地球运转轨道的半长轴为a月,周期为T月,则a3地T2地=a3月T2月AC[公式a3T2=k中的k与中心天体有关,与环绕天体无关,中心天体不一样时,k值不一样,地球公转的中心天体是太阳,月球公转的中心天体是地球,故A正确,D错误。
T表示行星运动的公转周期,故B错误,C正确。
高考考点专题复习五(圆周运动及开普勒三大定律)内含word版本的答案
高考考点专题复习五:开普勒三大定律与圆周运动1、开普勒三定律1.发现过程(1). 两种学说地心说认为地球是宇宙的中心,是静止不动的,太阳、月亮及其他行星都绕地球运动。
日心说认为太阳是静止不动的,地球和其他行星都绕太阳运动。
丹麦天文学家开普勒信奉日心说,通过四年多的刻苦计算,最终发现了三个定律。
2、开普勒三定律内容1. 开普勒第一定律(轨道定律):所有行星绕太阳运动的轨道都是椭圆,太阳位于椭圆轨道的一个焦点上。
使用条件:椭圆或圆,若轨道为圆则太阳位于圆心。
(1)知识深化:对应地球的四季,时间变化。
2. 开普勒第二定律(面积定律):对任意一个行星来说,它与太阳的连线在相等的时间内扫过相等的面积。
(1)知识深化(1)近日点速度最大,远日点速度最小。
因为:S1=S2,所以:近日点速度最大,远日点速度最小。
从力和速度夹角考虑:由远日点到近日点夹角小于90°;有近日点到远日点夹角大于90°。
(2)使用条件:椭圆或圆,若为圆则速度大小相同。
3. 开普勒第三定律(周期定律):行星轨道半长轴的三次方跟它的公转周期的二次方的比值是一个常量。
k Tr 23(1)使用条件:椭圆或圆,若为圆则r 为半径,如果是椭圆则r 为半长轴。
(2)k 只与太阳的质量有关,与行星的参数(v 、T 、r 、m )无关。
二:圆周运动1.概念:物体沿着圆周的运动,它的运动轨迹为圆,圆周运动为曲线运动,故一定是变速运动。
(这里的变速运动指的四速度,速度是矢量,方向改变时,其速度的大小也会跟着改变)2.线速度(1)物理意义:描述圆周运动物体的运动快慢. (2)定义公式:v =Δs Δt. (3)方向:线速度是矢量,其方向和半径垂直,和圆弧相切. 3.角速度(1)物理意义:描述物体绕圆心转动的快慢. (2)定义公式:ω=ΔθΔt. (3)单位:弧度/秒,符号是rad/s. 4.转速和周期(1)转速:物体单位时间内转过的圈数. (2)周期:物体转过一周所用的时间.二、匀速圆周运动1.定义:线速度大小处处相等的圆周运动. 2.特点(1)线速度大小不变,方向不断变化,是一种变速运动. (2)角速度不变(选填“变”或“不变”). (3)转速、周期不变(选填“变”或“不变”).3.涉及到的公式转化:2.线速度与角速度之间关系的理解:由v=ω·r知,r一定时,v∝ω;v一定时,ω∝1r;ω一定时,v∝r.[跟进训练]1.高速或超速离心机是基因提取中的关键设备,当超速离心机转速达80 000 r/min时,则关于距离超速离心机转轴12 cm处的质点,下列说法正确的是()A.周期为180 000sB .线速度大小为320π m/sC .角速度为160 000π rad/sD .角速度为4 0003rad/sA 、B 两点在同轴的一个圆盘上两个轮子用皮带连接,A 、B 两点分别是两个轮子边缘的点两个齿轮轮齿啮合,A 、B 两点分别是两个齿轮边缘上的点(两齿轮的齿数分别为n 1、n 2)角速度、周期相同线速度大小相同线速度大小相同{跟进训练}1.(多选)对于做匀速圆周运动的物体,下列说法正确的是( ) A .根据T =2πRv ,线速度越大,则周期越小 B .根据T =2πω,角速度越大,则周期越小 C .角速度越大,速度的方向变化越快D.线速度越大,速度的方向变化越快2.如图所示为某齿轮传动装置中的A、B、C三个齿轮,三个齿轮的齿数分别为32、12、20,当齿轮绕各自的轴匀速转动时,A、B、C三个齿轮转动的角速度之比为()A.8∶3∶5B.5∶3∶8C.15∶40∶24D.24∶40∶153.【例2】如图所示的传动装置中,B、C两轮固定在一起同轴转动,A、B两轮用皮带传动,三个轮的半径关系是r A=r C=2r B.若皮带不打滑,求A、B、C三轮边缘上a、b、c三点的角速度之比和线速度之比.答案解析:一;P4 (跟进训练)B[离心机转速n=80 000 r/min=4 0003r/s,半径r=0.12 m.故周期T=1n=34 000s=7.5×10-4s,A错.角速度ω=2π·n=8 000π3rad/s,C、D错.线速度v=ω·r=8 000π3×0.12 m/s=320 π m/s,B对.]二:(跟进训练)1.BC[根据T=2πRv,当轨道半径一定时,才有线速度越大,周期越小,选项A错误;角速度越大,周期越小,选项B正确;单位时间内质点与圆心的连线(圆半径)转过的角度越大,速度的方向变化越快,选项C正确、D错误.]2.C[三个齿轮同缘转动,所以三个齿轮边缘的线速度相等,即为:v A=v B=v C三个齿轮的齿数分别为32、12、20,根据ω=vr得A、B、C三个齿轮转动的角速度之比为132∶112∶120=15∶40∶24,故C正确.]3.[解析]A、B两轮通过皮带传动,皮带不打滑,则A、B两轮边缘的线速度大小相等,即v a=v b或v a∶v b =1∶1①由v=ωr得ωa∶ωb=r B∶r A=1∶2②B、C两轮固定在一起同轴转动,则B、C两轮的角速度相等,即ωb=ωc或ωb∶ωc=1∶1③由v=ωr得v b∶v c=r B∶r C=1∶2④由②③得ωa∶ωb∶ωc=1∶2∶2由①④得v a∶v b∶v c=1∶1∶2[答案]1∶2∶21∶1∶2。
开普勒三定律的应用
万有引力及天体运动一.开普勒行星运动三大定律 1、开普勒第一定律(轨道定律):所有的行星围绕太阳运动的轨道都是椭圆,太阳处在所有椭圆的一个焦点上。
2、开普勒第二定律(面积定律):对于每一个行星而言,太阳和行星的联线在相等的时间内扫过相等的面积。
3、开普勒第三定律(周期定律):所有行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等。
1、如图所示是行星m 绕恒星M 运动的情况示意图,则下面的说法正确的是: A 、速度最大的点是B 点 B 、速度最小的点是C 点C 、m 从A 到B 做减速运动D 、m 从B 到A 做减速运动 二、万有引力定律1、万有引力定律的建立①太阳与行星间引力公式 ②月—地检验③卡文迪许的扭秤实验——测定引力常量G 2、万有引力定律①内容:自然界中任何两个物体都相互吸引,引力的大小与物体的质量1m 和2m 的乘积成正比,与它们之间的距离r的二次方成反比。
即: ②适用条件(Ⅰ)可看成质点的两物体间,r 为两个物体质心间的距离。
(Ⅱ)质量分布均匀的两球体间,r 为两个球体球心间的距离。
③运用地上:忽略地球自转可得: 2)计算重力加速度地球上空距离地心r=R+h 处 方法:在质量为M ’,半径为R ’的任意天体表面的重力加速度''g方法:(3)计算天体的质量和密度利用自身表面的重力加速度:天上:利用环绕天体的公转: 等等(注:结合 得到中心天体的密度)(4)双星:两者质量分别为m 1、m 2,两者相距L特点:距离不变,向心力相等,角速度相等,周期相等。
双星轨道半径之比:双星的线速度之比:三、宇宙航行1、人造卫星的运行规律2Mm F G r =11226.6710/G N m kg -=⨯⋅122m mF G r =2R Mm Gmg =2''''''R m M G mg =mg R MmG =2r T m r m r v m r Mm G 222224πω===334R M πρ⋅=2')(h R Mm G mg +=122121m m v v R R ==22(1) :M m GM v G m v r r r==卫地地卫由得rTm r m r v m r Mm G 222224πω===332T=2.GM GM GM r M v a G r r rωπ=== , , ,例.两颗人造卫星A 、B 绕地球作圆周运动,周期之比为T A :T B =1:8,则轨道半径之比和运动速率之比分别为( ) 2、宇宙速度第一宇宙速度:V 1=7.9km/s 第二宇宙速度:V 2=11.2km/s 脱离速度 第三宇宙速度:V 3=16.7km/s 逃逸速度注:(1)宇宙速度均指发射速度(2)第一宇宙速度为在地面发射卫星的最小速度,也是环绕地球运行的最大速度(环绕速度) 3、地球同步卫星(通讯卫星)(1)运动周期与地球自转周期相同,且T=24h ;(2)运转角速度等于地球自转的角速度,周期等于地球自转的周期; (3)同步卫星高度不变,运行速率不变(因为T 不变); (4)同步卫星的轨道平面必须与赤道平面平行,在赤道正上方。
天体运动试题及答案
天体运动试题及答案1. 请简述开普勒第一定律的内容。
答案:开普勒第一定律,也称为椭圆定律,指出所有行星围绕太阳运动的轨道都是椭圆形状,太阳位于椭圆的一个焦点上。
2. 根据开普勒第三定律,行星公转周期与其轨道半长轴的关系是怎样的?答案:开普勒第三定律,也称为调和定律,表明所有行星绕太阳公转周期的平方与它们轨道半长轴的立方成正比。
3. 描述牛顿万有引力定律的主要内容。
答案:牛顿万有引力定律指出,宇宙中任何两个物体之间都存在引力,其大小与两物体的质量的乘积成正比,与它们之间的距离的平方成反比。
4. 请解释什么是地球的公转和自转。
答案:地球的公转是指地球围绕太阳的运动,周期大约为一年。
地球的自转是指地球围绕自己的轴线旋转,周期大约为一天。
5. 简述潮汐现象是如何产生的。
答案:潮汐现象是由于地球、月球和太阳的引力作用,导致地球上的海水周期性地涨落。
6. 为什么我们通常看不到月球的背面?答案:月球的自转周期与公转周期相同,这种现象称为潮汐锁定,因此我们总是看到月球的同一面。
7. 描述地球在太阳系中的位置。
答案:地球是太阳系中的第三颗行星,位于金星和火星之间。
8. 请解释什么是日食和月食。
答案:日食是指月球位于地球和太阳之间,遮挡住太阳的现象;月食是指地球位于太阳和月球之间,地球的阴影遮挡住月球的现象。
9. 简述恒星和行星的区别。
答案:恒星是能够通过核聚变产生能量的天体,而行星是围绕恒星运行的较小天体,不能产生能量。
10. 请解释什么是黑洞。
答案:黑洞是一种天体,其质量极大,引力极强,以至于连光都无法逃逸,因此无法直接观测到。
物理试题天体运动及答案
物理试题天体运动及答案一、选择题(每题2分,共10分)1. 以下哪项不是开普勒描述的行星运动定律?A. 行星沿椭圆轨道绕太阳运动B. 行星绕太阳运动的角速度是恒定的C. 行星绕太阳运动的周期的平方与轨道半长轴的立方成正比D. 行星与太阳的连线在相等时间内扫过的面积相等2. 根据牛顿的万有引力定律,两个物体之间的引力大小与它们的质量的乘积成正比,与它们之间的距离的平方成反比。
以下哪个选项正确描述了这一定律?A. 引力与两物体质量的乘积成正比,与距离的平方成正比B. 引力与两物体质量的乘积成反比,与距离的平方成反比C. 引力与两物体质量的乘积成正比,与距离的平方成反比D. 引力与两物体质量的乘积成反比,与距离的平方成正比3. 地球的自转周期大约是24小时,这导致了什么现象?A. 季节变化B. 潮汐现象C. 昼夜交替D. 地球的公转4. 月球绕地球公转的周期大约是27.3天,这与地球自转周期的不同步导致了什么现象?A. 季节变化B. 潮汐现象C. 月食D. 日食5. 根据牛顿的第二定律,以下哪个选项正确描述了力与加速度的关系?A. 力与加速度成正比B. 力与加速度成反比C. 力与加速度成正比,与质量成反比D. 力与加速度成反比,与质量成正比二、填空题(每题2分,共10分)1. 地球绕太阳公转的轨道近似为_________。
2. 根据开普勒第三定律,行星绕太阳运动的周期的平方与轨道半长轴的立方成正比,这个定律也被称为_________定律。
3. 牛顿的万有引力定律公式为_________,其中G是引力常数,m1和m2是两个物体的质量,r是它们之间的距离。
4. 地球的自转轴与公转轨道平面的夹角称为_________,其大小约为23.5°。
5. 潮汐现象是由于_________和_________之间的引力作用造成的。
三、简答题(每题5分,共10分)1. 简述牛顿的万有引力定律及其在天体运动中的应用。
天体运动练习题
天体运动练习题一、选择题1. 下列关于天体运动的说法,正确的是:A. 地球自转的方向是自西向东B. 地球公转的方向是自东向西C. 月球绕地球转动的周期为24小时D. 太阳系共有九大行星2. 在开普勒定律中,第一定律描述的是:A. 行星轨道为圆形B. 行星轨道为椭圆形,太阳位于椭圆的一个焦点上C. 行星轨道速度恒定D. 行星轨道半径与公转周期成正比二、填空题1. 地球自转的周期约为____小时,地球公转的周期约为____天。
2. 太阳系中,距离太阳最近的行星是____,距离太阳最远的行星是____。
3. 开普勒第三定律表明,行星公转周期的平方与其轨道半长轴的立方成____比。
三、判断题1. 地球自转产生的现象是昼夜更替。
()2. 所有行星的轨道都是完全相同的椭圆。
()3. 月球绕地球转动的速度始终不变。
()四、简答题1. 简述地球自转和公转的方向。
2. 请列举开普勒定律的三个主要内容。
3. 为什么地球上有季节变化?五、计算题1. 已知地球公转周期为365天,轨道半长轴为1个天文单位,求地球轨道的偏心率。
2. 一颗行星的轨道半长轴为2个天文单位,公转周期为1440天,求该行星的轨道偏心率。
3. 月球绕地球转动的周期为27.3天,求月球轨道的平均半径。
六、综合题1. 分析地球自转和公转产生的地理现象。
2. 试述太阳系八大行星的排列顺序及其特点。
3. 结合实际,解释为什么地球上的昼夜温差较大。
七、应用题1. 假设地球公转速度突然增加一倍,会对地球的气候和生态系统产生哪些影响?2. 如果月球停止绕地球转动,地球上的潮汐现象会发生哪些变化?3. 请设计一个实验方案,验证开普勒第二定律(面积定律)。
八、分析题1. 分析太阳系中行星轨道的形状与太阳的位置关系,并解释其原因。
2. 试比较地球自转和公转速度的变化对地球表面温度的影响。
3. 从天体运动的角度,分析地球极地地区和赤道地区气候差异的原因。
九、论述题1. 论述地球自转和公转在天文学和地理学中的意义。
高一物理之天体运动
天体运动问题:1,开普勒第三定律:=k例:月球环绕地球运动的轨道半径约为地球半径的60倍,运行周期约为27天,应用开普勒第三定律计算:在赤道平面离地多高时,人造卫星随地球一起转动,就像是停留在天空中不动一样。
规律总结:若将天体的运动看成圆周运动,则=k,解题时常用两星体比较,此时有=因此利用开普勒第三定律可以求解运动时间,轨道半径,绕行速度的比值问题。
注意点:公式中的k是一个与行星无关的常量,但不是恒量,在不同的星系中,k的值不同,k的值与中心天体有关。
练习:对于开普勒第三定律的表达式=k的理解,正确的是()A.k与成正比B.k与成反比C,k的值是与a和T无关的量D,k值与行星自身无关2,太阳对行星引力规律的推导基本思想:引力作为合外力提供向心力。
(合外力提供向心力是解决天体运动问题的核心思想)结论:F正比于例1:地球质量约为月球质量的81倍,宇宙飞船从地球飞往月球,当飞至某一位置时,宇宙飞船所受到的合力为零,问:此时飞船在空间的什么位置?(已知地球与月球之间的距离是3.84x km)例2:已知太阳光从太阳射到地球需要500s,地球绕太阳的公转周期约为3.2x s,地球的、质量约为6x kg,求太阳对地球的引力为多少?练习:把火星和地球绕太阳运行的轨道视为圆周,有火星和地球绕太阳运动的周期之比可以求得()A,火星和地球的质量之比B,火星和太阳的质量之比C.火星和地球到太阳的距离之比D.火星和地球绕太阳运行速度大小之比3,万有引力定律注意点:1,万有引力定律公式适用的条件;1:万有引力公式适用于质点间的引力大小计算2:对于可视为质点的物体间的引力求解也可以利用万有引力公式,如两物体间的距离远小于物体本身的大小时,物体可以视为质点:均匀球体可以视为质量集中于球心的质点3:当物体不能看成是质点时,可以把物体假想分割成无数个质点,理论上讲,求出两个物体上每个质点与另一个物体上所有质点的万有引力,然后求合力在通常情况下,万有引力非常小,只有在质量巨大的星球之间或天体与天体附近的物体间,它的存在才有实际意义,故在分析地球表面上物体间的受力时,不考虑物体间的万有引力,只考虑地球对物体的引力。
开普勒的三大定律典型例题
典型例题关于开普勒的三大定律例1 月球环绕地球运动的轨道半径约为地球半径的60倍,运行周期约为27天。
应用开普勒定律计算:在赤道平面内离地面多少高度,人造地球卫星可以随地球一起转动,就像停留在无空中不动一样.分析:月球和人造地球卫星都在环绕地球运动,根据开普勒第三定律,它们运行轨道的半径的三次方跟圆周运动周期的二次方的比值都是相等的.解:设人造地球卫星运行半径为R,周期为T,根据开普勒第三定律有:同理设月球轨道半径为,周期为,也有:由以上两式可得:在赤道平面内离地面高度:km点评:随地球一起转动,就好像停留在天空中的卫星,通常称之为定点卫星.它们离地面的高度是一个确定的值,不能随意变动。
利用月相求解月球公转周期例2 若近似认为月球绕地球公转与地球绕日公转的轨道在同一平面内,且都为正圆.又知这两种转动同向,如图所示,月相变化的周期为29.5天(图是相继两次满月,月、地、日相对位置示意图).解:月球公转(2π+)用了29.5天.故转过2π只用天.由地球公转知.所以=27.3天.例3如图所示,A、B、C是在地球大气层外的圆形轨道上运行的三颗人造地球卫星,下列说法中正确的是哪个?()A.B、C的线速度相等,且大于A的线速度B.B、C的周期相等,且大于A的周期C.B、C的向心加速度相等,且大于A的向心加速度D.若C的速率增大可追上同一轨道上的B分析:由卫星线速度公式可以判断出,因而选项A是错误的.由卫星运行周期公式,可以判断出,故选项B是正确的.卫星的向心加速度是万有引力作用于卫星上产生的,由,可知,因而选项C是错误的.若使卫星C速率增大,则必然会导致卫星C偏离原轨道,它不可能追上卫星B,故D也是错误的.解:本题正确选项为B。
点评:由于人造地球卫星在轨道上运行时,所需要的向心力是由万有引力提供的,若由于某种原因,使卫星的速度增大。
则所需要的向心力也必然会增加,而万有引力在轨道不变的时候,是不可能增加的,这样卫星由于所需要的向心力大于外界所提供的向心力而会作离心运动。
专题10 天体运动-2023届高考物理一轮复习热点题型专练(解析版)
专题10天体运动目录题型一开普勒定律的应用 (1)题型二万有引力定律的理解 (3)类型1万有引力定律的理解和简单计算 (3)类型2不同天体表面引力的比较与计算 (4)类型3重力和万有引力的关系 (5)类型4地球表面与地表下某处重力加速度的比较与计算 (7)题型三天体质量和密度的计算 (8)类型1利用“重力加速度法”计算天体质量和密度 (8)类型2利用“环绕法”计算天体质量和密度 (9)类型3利用椭圆轨道求质量与密度 (11)题型四卫星运行参量的分析 (13)类型1卫星运行参量与轨道半径的关系 (13)类型2同步卫星、近地卫星及赤道上物体的比较 (15)类型3宇宙速度 (17)题型五卫星的变轨和对接问题 (19)类型1卫星变轨问题中各物理量的比较 (19)类型2卫星的对接问题 (22)题型六天体的“追及”问题 (23)题型七星球稳定自转的临界问题 (25)题型八双星或多星模型 (26)类型1双星问题 (27)类型2三星问题 (29)类型4四星问题 (31)题型一开普勒定律的应用【解题指导】1.行星绕太阳运动的轨道通常按圆轨道处理.2.由开普勒第二定律可得12Δl1r1=12Δl2r2,12v1·Δt·r1=12v2·Δt·r2,解得v1v2=r2r1,即行星在两个位置的速度之比与到太阳的距离成反比,近日点速度最大,远日点速度最小.3.开普勒第三定律a3T2=k中,k值只与中心天体的质量有关,不同的中心天体k值不同,且该定律只能用在同一中心天体的两星体之间.【例1】(2022·山东潍坊市模拟)中国首个火星探测器“天问一号”,已于2021年2月10日成功环绕火星运动。
若火星和地球可认为在同一平面内绕太阳同方向做圆周运动,运行过程中火星与地球最近时相距R0、最远时相距5R0,则两者从相距最近到相距最远需经过的最短时间约为()A.365天B.400天C.670天D.800天【答案】B【解析】设火星轨道半径为R1,公转周期为T1,地球轨道半径为R2,公转周期为T2,依题意有R1-R2=R0,R1+R2=5R0,解得R1=3R0,R2=2R0,根据开普勒第三定律有R31T21=R32T22,解得T1=278年,设从相距最近到相距最远需经过的最短时间为t,有ω2t-ω1t=π,ω=2πT,代入数据可得t=405天,故选项B正确。
物理 考点一遍过 专题20 开普勒行星运动定律(含解析)
专题20 开普勒行星运动定律一、开普勒行星运动定律1.开普勒第一定律:所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。
行星的近日点到太阳的距离r 1=a –c ,行星的远日点到太阳的距离r 2=a +c ,其中a 为椭圆轨道的半长轴,c 为半焦距。
2.开普勒第二定律:对任意一个行星来说,它与太阳的连线在相等的时间内扫过相等的面积。
由于轨道不是圆,故行星离太阳距离较近时速度较大(势能小而动能大),对近日点和远日点的线速度大小有v 1r 1=v 2r 23.开普勒第三定律:所有行星的轨道的半长轴的三次方跟它的公转周期的二次方的比值都相等.若轨道周期为T ,则有32a k T =,比值k 为对所有行星都相同(与太阳有关)的常量.若轨道为圆,半径为r ,则有32r k T =,结合万有引力定律可得24πGMk =(G 为引力常量,M 为中心天体质量)二、开普勒行星运动定律的适用范围开普勒行星运动定律不仅适用于太阳–行星系统,类似的绕中心天体转动的系统一般都适用,如地–月系统、行星–卫星系统、恒星–彗星系统等.自古以来,当人们仰望星空时,天空中壮丽璀璨的景象便吸引了他们的注意。
智慧的头脑开始探索星体运动的奥秘,人类对这种运动规律的认识经历了漫长的历程,它随着认识的深入而不断地发展。
下列关于对星体运动认识的叙述中符合现代认识观点的是A.人们观测到太阳每天都要东升西落,这说明地球是静止不动的,是宇宙的中心B.人们观测到行星绕太阳做圆周运动,这说明太阳是静止不动的,是宇宙的中心C.人们认为天体的运动是神圣的,因此天体的运动是最完美、最和谐的匀速圆周运动D.开普勒通过对第谷大量观测数据的深入研究,得出了行星绕太阳运动的轨道是椭圆的结论【参考答案】D【详细解析】在太阳系中,地球及所有的行星都绕太阳运转,故太阳是太阳系的中心,而在整个宇宙中,太阳也不断绕着其他天体运转,故太阳不是宇宙的中心,AB错误;天体的运动轨道有很多是椭圆的,或更为复杂的轨迹,C错误;开普勒通过对第谷大量观测数据的深入研究,得出了行星绕太阳运动的轨道是椭圆的结论,D 正确.【名师点睛】日心说由哥白尼在《天体运行论》中提出,开普勒在日心说和第谷的观察数据基础上得到了三条行星运动定律,伽利略对木星的观察彻底否定了地心说.1.某行星绕恒星运行的椭圆轨道如图所示,E和F是椭圆的两个焦点,O是椭圆的中心,行星在B点的速度比在A点的速度大。
3.1 天体运动 开普勒三定律
第三章万有引力定律 3.1 行星的运动知识点一天体运动的学说1.下列说法错误的是( )A.希腊科学家托勒密认为地球是宇宙的中心,是静止不动的,太阳、月亮以及其他行星都绕地球运动B.波兰天文学家哥白尼提出了“日心说”,认为太阳是宇宙的中心C.“日心说”是德国天文学家开普勒提出的D.开普勒定律描述了行星运动的规律,推动了对天体动力学的研究2.探索宇宙的奥秘,一直是人类孜孜不倦的追求.下列关于宇宙及星体运动的说法正确的是( ) A.地球是宇宙的中心,太阳、月亮及其他行星都绕地球运动B .地球是绕太阳运动的一颗行星C.太阳是静止不动的,地球和其他行星都绕太阳运动D.地心说是正确的,日心说是错误的知识点二开普勒第一、第二定律3.关于太阳系中各行星的轨道,以下说法中正确的是( ).A.所有行星绕太阳运动的轨道都是椭圆B.有的行星绕太阳运动的轨道是圆C.不同行星绕太阳运动的椭圆轨道的半长轴是不同的D.不同的行星绕太阳运动的轨道各不相同4.如图所示是行星m绕恒星M运动情况示意图,下列说法正确的是( )A.速度最大点是A点B.速度最小点是C点C.m从A到B做减速运动D.m从B到A做减速运动知识点三开普勒第三定律5. 开普勒关于行星运动规律的表达式为,以下理解正确的是()A.是一个与行星无关的常量B. 代表行星运动的轨道半径C.T代表行星运动的自转周期D.T代表行星绕太阳运动的公转周期6.一颗小行星环绕太阳做匀速圆周运动,其轨道半径是地球公转半径的4倍,则这颗小行星的运转周期是( ).A.1年 B.4年 C.6年 D.8年7.两颗人造卫星A、B绕地球做圆周运动,周期之比为T A∶T B=1∶8,则轨道半径之比和运动速率之比分别为( ).A.R A∶R B=4∶1,v A∶v B=1∶2 B.R A∶R B=4∶1,v A∶v B=2∶1C.R A∶R B=1∶4,v A∶v B=1∶2 D.R A∶R B=1∶4,v A∶v B=2∶18.太阳系中的8大行星的轨道均可以近似看成圆轨道.下列4幅图是用来描述这些行星运动所遵从的某一规律的图象.图中坐标系的横轴是lg(T/T0),纵轴是lg(R/R0);这里T和R分别是行星绕太阳运行的周期和相应的圆轨道半径,T0和R0分别是水星绕太阳运行的周期和相应的圆轨道半径.下列4幅图中正确的是( )9.1990年4月25日,科学家将哈勃天文望远镜送上距地球表面约600 km的高空,使得人类对宇宙中星体的观测与研究有了极大的进展.假设哈勃望远镜沿圆轨道绕地球运行.已知地球半径为6.4×106 m,利用地球同步卫星与地球表面的距离为3.6×107 m这一事实可得到哈勃望远镜绕地球运行的周期,以下数据中最接近其运行周期的是( ).A.0.6小时 B.1.6小时 C.4.0小时 D.24小时。
开普勒三大定律
开普勒
开
普
勒
第
一
定
所有的行星围绕太阳运动的轨道都是
律 椭圆,太阳处在所有椭圆的一个焦点上
【问题】:第一定律说明了行星运动轨 迹的形状,那不同的行星绕 大阳运行时椭圆轨道相同吗?
【牢记】:不同行星绕太阳运行的椭圆 轨道不一样,但这些轨道有 一个共同的焦点,即太阳所 处的位置。
【牢记】:k与中心天体(太阳)有关
扩展及注意
1、开普勒定律不仅适用于行星绕太阳运
动,同时它适用于所有的天体运动。
只不过对于不同的中心天体,R3 k 中的 太k阳值的不一R如3样金是。星一绕样太的阳,的因为TR它23 与们T地的2 球中绕心
T2
天体一样,均是太阳。但月球绕地球
运动的 R3
T2
与地球绕太阳的 R3 是不一样
追寻牛顿的足迹
一、太阳对行星的引力
1、设行星的质量为m,速度为v,行星 到太阳的距离为r,则行星绕太阳做匀 速圆周运动的向心力太阳对行星的引力 来提供
追寻牛顿的足迹
2、天文观测难以直接得到行星的速度 v,但可以得到行星的公转周期T
有
代入
追寻牛顿的足迹
3、根据开普勒第三定律 即 代入
所以
追寻牛顿的足迹 4、太阳对行星的引力
飞船沿着以地心为焦点的椭圆轨道运动,椭 圆和地球表面在B点相切,如图所示,如果地 球半径为R,求飞船由A点到B点所需要的时 间。
❖ 月球环绕地球运动的轨道半径约为地球半径 的60倍,运行周期约为27天。应用开普勒定 律计算:在赤道平面内离地面多少高度,人 造地球卫星可以随地球一起转动,就像停留 在空中不动一样.
T火=671天
3、行星绕恒星的运动轨道如果是圆形,
开普勒三大定律
1.行星绕太阳运动的轨道十 分接近圆,太阳处在圆心
2. 对于每一个行星而言,太 阳和行星的联线在相等的时 间内扫过相等的面积
3.所有行星的轨道的半长轴 的三次方跟公转周期的二次 方的比值都相等
2024/5/24
2.对于某一行星来说,它绕 太阳做圆周运动的角速度 (或线速度)不变,即行星 做匀速圆周运动
3.所有行星的轨道的半长轴
的三次方跟公转周期的二次
方的比值都相等
即R³/T²=k
返回
6
开普勒三定律
例.有两个人造地球卫星,它们
绕地球运转的轨道半径之比是1:
2,则它们绕地球运转的周期之
比为 。
12 2
2024/5/24
返回
7
2024/5/24
8
开普勒三大定律
开普勒第一定律
开普勒第二定律
开普勒第三定律
动手算一算
课后例题
2024/5/24
1
开普勒三定律
1. 开普勒第一定律:
所有的行星围绕太阳运动的轨道都是椭圆, 太阳处在所有椭圆的一个焦点上。
行星
太阳
F
F
2024/5/24
椭圆有两个焦点
返回
2
2.开普勒第二定律: 太阳和行星的连线在相等的时间内扫过的面积相等。
S1
S2
S1=S2
近日点速度快,远日点速度慢
返回
2024/5/24
3
3.开普勒第三定律:
所有行星的轨道半长轴的三次方跟公转周期的 二次方的比值都相等。
行星 太阳
F
O F
R
2024/5/24
R3 =K T2
R:半长轴 T:公转周期
返回
开普勒三大定律考题
开普勒三大定律考题
开普勒三大定律是描述行星运动的基本规律,下面我将从多个角度全面回答与开普勒三大定律相关的考题。
1. 第一定律(椭圆轨道定律):
开普勒第一定律指出,行星绕太阳运动的轨道是一个椭圆,其中太阳位于椭圆的一个焦点上。
这一定律的数学表达式是,行星轨道的形状可以用椭圆的离心率来描述,离心率越接近于0,轨道越接近于圆形;离心率越接近于1,轨道越扁平。
此外,行星在轨道上的运动速度是不均匀的,它在离太阳较远的位置运动较慢,在离太阳较近的位置运动较快。
2. 第二定律(面积速度定律):
开普勒第二定律又称为面积速度定律,它描述了行星在轨道上的运动速度与它与太阳连线所扫过的面积之间的关系。
具体来说,行星在相同时间内扫过的面积是相等的。
这意味着当行星离太阳较远时,它的线速度较慢,但它在单位时间内扫过的面积较大;而当行星离太阳较近时,它的线速度较快,但它在单位时间内扫过的面
积较小。
3. 第三定律(调和定律):
开普勒第三定律是描述行星运动周期与轨道半长轴之间的关系。
根据这一定律,行星绕太阳运动的周期的平方与它的轨道半长轴的
立方成正比。
换句话说,行星绕太阳公转的周期越短,它的轨道半
长轴就越小;反之,行星绕太阳公转的周期越长,它的轨道半长轴
就越大。
总结起来,开普勒三大定律提供了描述行星运动的基本规律。
第一定律说明了行星轨道的形状和行星在轨道上的运动速度的不均
匀性;第二定律描述了行星在轨道上扫过的面积相等的规律;第三
定律则揭示了行星运动周期与轨道半长轴之间的关系。
这些定律的
发现对于后来的天体力学和宇宙学的发展起到了重要的推动作用。
高中物理天体运动经典习题
第三讲知识点梳理一、开普勒三大定律1、第一:2、第二:3、第三:二、万有引力定律三、万有引力和重力的关系四、解决天体问题的两条主线1、万有引力等于重力2、万有引力提供向心力五、“开三”推导及比例问题速算1、开普勒第三定律的推导2、比例问题速算六、三大宇宙速度1、第一宇宙速度2、第二宇宙速度3、第三宇宙速度七、卫星问题1、近地卫星2、同步卫星(六一定)3、赤道表面物体、近地卫星和同步卫星向心加速度大小比较八、卫星的对接及对接1、卫星对接2、卫星变轨九、双星问题经典习题练习一、选择题1、关于行星运动的规律,下列说法符合史实的是()A.开普勒在牛顿定律的基础上,导出了行星运动的规律B.开普勒在天文观测数据的基础上,总结出了行星运动的规律C.开普勒总结出了行星运动的规律,找出了行星按照这些规律运动的原因D.开普勒总结出了行星运动的规律,发现了万有引力定律2、理论和实践证明,开普勒定律不仅适用于太阳系中的天体运动,而且对一切天体(包括卫星绕行星的运动)都适用。
下面对于开普勒第三定律的公式,下列说法正确的是:()A.公式只适用于轨道是椭圆的运动B.式中的K值,对于所有行星(或卫星)都相等C.式中的K值,只与中心天体有关,与绕中心天体旋转的行星(或卫星)无关D.若已知月球与地球之间的距离,根据公式可求出地球与太阳之间的距离3、如图所示,椭圆为某行星绕太阳运动的轨道,A、B分别为行星的近日点和远日点,行星经过这两点时的速率分别为v A和v B;阴影部分为行星与太阳的连线在相等时间内扫过的面积,分别用S A和S B表示.根据开普勒第二定律可知()A.v A>v BB.v A<v BC.S A>S BD.S A<S B4、如图所示,在火星与木星轨道之间有一小行星带.假设该带中的小行星只受到太阳的引力,并绕太阳做匀速圆周运动.下列说法正确的是()A.太阳对小行星的引力相同B.各小行星绕太阳运动的周期小于一年C.小行星带内侧小行星的向心加速度值大于小行星带外侧小行星的向心加速度值D.小行星带内各小行星圆周运动的线速度值大于地球公转的线速度值5、如图,a、b两颗人造地球卫星分别在如图所示的两个不同的轨道上运行,下列说法中正确的是()A.a卫星的运行速度比第一宇宙速度大B.b卫星的运行速度较小C.b卫星受到的向心力较大6、探测器绕月球做匀速圆周运动,变轨后在周期较大的轨道上仍做匀速圆周运动,则变轨后与变轨前相比()A.轨道半径变小B.向心加速度变小C.线速度变大D.角速度变大7、天宫一号是中国第一个目标飞行器,已于2011年9月29日21时16分3秒在酒泉卫星发射中心发射成功,它的发射标志着中国迈入中国航天“三步走”战略的第二步第二阶段.21时25分,天宫一号进入近地点约200公里,远地点约346.9公里,轨道倾角为42.75度,周期为5382秒的运行轨道.由此可知()A.天宫一号在该轨道上的运行周期比同步卫星的运行周期长B.天宫一号在该轨道上任意一点的运行速率比同步卫星的运行速率小C.天宫一号在该轨道上任意一点的运行加速度比同步卫星的运行加速度小D.天宫一号在该轨道上远地点距地面的高度比同步卫星轨道距地面的高度小8、地球质量大约是月球质量的81倍,在登月飞船通过月、地之间的某一位置时,月球和地球对它的引力大小相等,该位置到月球中心和地球中心的距离之比为()A.1:81 B.1:27 C.1:9 D.1:39、宇航员在地球表面,以一定初速度竖直上抛一小球,测得小球从抛出到返回的时间为t;若他在某星球表面以相同的初速度竖直上抛同一小球,小球从抛出到返回时间为25t。
开普勒行星运动定律 万有引力定律(解析版)--高一物理专题练习(内容+练习)
开普勒行星运动定律万有引力定律高一物理专题练习(内容+练习)一、开普勒定律1.开普勒第一定律:所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上.2.开普勒第二定律:对任意一个行星来说,它与太阳的连线在相等的时间内扫过的面积相等.3.开普勒第三定律:所有行星轨道的半长轴的三次方跟它的公转周期的二次方的比都相等.其表达式为a3T2=k,其中a代表椭圆轨道的半长轴,T代表公转周期,比值k是一个对所有行星都相同的常量.二、行星运动的近似处理行星的轨道与圆十分接近,在中学阶段的研究中我们可按圆轨道处理.这样就可以说:1.行星绕太阳运动的轨道十分接近圆,太阳处在圆心.2.行星绕太阳做匀速圆周运动.3.所有行星轨道半径r的三次方跟它的公转周期T的二次方的比值都相等,即r3T2=k.三、万有引力定律1.内容:自然界中任何两个物体都相互吸引,引力的方向在它们的连线上,引力的大小与物体的质量m1和m2的乘积成正比、与它们之间距离r的二次方成反比.2.表达式:F=G m1m2r2,其中G叫作引力常量.四、引力常量牛顿得出了万有引力与物体质量及它们之间距离的关系,但没有测出引力常量G的值.英国物理学家卡文迪什通过实验推算出引力常量G的值.通常取G=6.67×10-11N·m2/kg2.一、单选题1.对于开普勒行星运动定律的理解,下列说法正确的是()A.开普勒进行了长期观测,记录了大量数据,通过对数据研究总结得出了万有引力定律B.根据开普勒第一定律,行星围绕太阳运动的轨迹是圆,太阳处于圆心位置C.根据开普勒第二定律,行星距离太阳越近,其运动速度越大:距离太阳越远,其运动速度越小D.根据开普勒第三定律,行星围绕太阳运行的轨道半径跟它公转周期成正比【答案】C【解析】A .第谷进行了长期观测,记录了大量数据,开普勒通过对数据研究总结得出了开普勒行星运动定律,故A 错误;B .根据开普勒第一定律,行星围绕太阳运动的轨迹是椭圆,太阳处于椭圆的一个焦点上,故B 错误;C .根据开普勒第二定律,行星距离太阳越近,其运动速度越大,距离太阳越远,其运动速度越小,故C 正确;D .根据开普勒第三定律,行星围绕太阳运行轨道半长轴的三次方跟它公转周期的二次方成正比,故D 错误。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
天体运动复习题(1)——开普勒三大定律
1.关于行星绕太阳运动,下列说法正确的是()
A.行星在椭圆轨道上绕太阳运动的过程中,其速度与行星和太阳之间的距离有关,距离小时速度小,距离大时速度大
B.所有行星在椭圆轨道上绕太阳运动,太阳在椭圆轨道的一个焦点上
C.所有行星绕太阳运动的周期都是相等的
D.行星之所以在椭圆轨道上绕太阳运动,是由于太阳对行星的引力作用
2.关于开普勒行星运动的公式a3
T2=k,以下理解正确的是()
A.k是一个与行星无关的量
B.T表示行星运动的自转周期
C.T表示行星运动的公转周期
D.若地球绕太阳运转轨道的半长轴为a地,周期为T地;月球绕地球运转轨道的半长轴为a月,
周期为T
月.则
a3地
T2地
=
a3月
T2月
3.据报道,2009年4月29日,美国亚利桑那州一天文观测机构发现一颗与太阳系其他行星逆向运行的小行星,代号为2009HC82.该小行星绕太阳一周的时间为T年,直径2~3千米,而地球与太阳之间的距离为R0.如果该行星与地球一样,绕太阳运动可近似看做匀速圆周运动,则小行星绕太阳运动的半径约为()
A.R03
T2B.R0
31
T C.R0
31
T2D.R0
3
T
4.长期以来“卡戎星(Charon)”被认为是冥王星唯一的卫星,它的公转轨道半径r1=19 600 km,公转周期T1=6.39天。
2006年3月,天文学家新发现两颗冥王星的小卫星,其中一颗的公转轨道半径r2=48 000 km,则它的公转周期T2最接近于()
A.15天 B.25天C.35天 D.45天
5. 如图所示是行星m绕恒星M运动情况的示意图,下列说法正确的是()
A.速度最大点是B点
B.速度最小点是C点
C.m从A到B做减速运动
D.m从B到A做减速运动
6.有两颗行星环绕某恒星转动,它们的运动周期之比为27∶1,则它们的轨道半径之比为() A.1∶27 B.9∶1 C.27∶1 D.1∶9
7.某行星绕太阳沿椭圆轨道运行,如图所示,在这颗行星的轨道上有a、b、c、d四个对称点,其中a为近日点,c为远日点,若行星运动周期为T,则该行星()
A.从a到b的运动时间等于从c到d的运动时间
B.从d经a到b的运动时间等于从b经c到d的运动时间
C.a到b的时间t ab <T/4
D.c到d的时间t cd >T/4
8.两颗人造卫星A、B绕地球做圆周运动,周期之比为T A∶T B=1∶8,则轨道半径之比和运动速率之比分别为()
A.R A∶R B=4∶1,v A∶v B=1∶2 B.R A∶R B=4∶1,v A∶v B=2∶1
C.R A∶R B=1∶4,v A∶v B=1∶2 D.R A∶R B=1∶4,v A∶v B=2∶1
9.月球环绕地球运动的轨道半径约为地球半径的60倍,运行周期约为27天。
应用开普勒定律计算:在赤道平面内离地面多少高度,人造地球卫星可以随地球一起转动,就像停留在无空中不动一样.
10.飞船沿半径为R的圆周绕地球运动,其周期为T,如果飞船要返回地面,可在轨道上的某一
点A处,将速率降低到适当数值,从而使飞船沿着以地心为焦点的特殊椭圆轨道运动,椭圆和地球表面在B点相切,如图所示,如果地球半径为R0,求飞船由A点到B点所需的时间。