九年级数学 第二章 二次函数检测题
人教版九年级上册数学第二单元二次函数单元测试卷(含答案)
人教版九年级上册数学第二单元二次函数单元测试卷一.选择题(共10小题)1.二次函数y=x2+px+q,当0≤x≤1时,设此函数最大值为8,最小值为t,w=s-t,(s为常数)则w的值()A.与p、q的值都有关B.与p无关,但与q有关C.与p、q的值都无关D.与p有关,但与q无关2.二次函数y=ax2+bx+c(a≠0)的大致图象如图所示,顶点坐标为(-2,-9a),下列结论:①abc>0;②4a+2b+c>0;③9a-b+c=0;④若方程a(x+5)(x-1)=-1有两个根x1和x2,且x1<x2,则-5<x1<x2<1;⑤若方程|ax2+bx+c|=1有四个根,则这四个根的和为-8.其中正确的结论有()个A.2 B.3 C.4 D.53.二次函数y=ax2+bx+c的图象如图所示,那么一次函数y=ax+b的图象大致是()A.B.C.D.4.将抛物线y=x2-4x-4向左平移3个单位,再向上平移3个单位,得到抛物线的表达式为()A.y=(x+1)2-13 B.y=(x-5)2-5C.y=(x-5)2-13 D.y=(x+1)2-55.如果二次函数y=x2+2x+t与一次函数y=x的图象两个交点的横坐标分别为m、n,且m <1<n,则t的取值范围是()A.t>-2 B.t<-2 C.t>14D.t<146.已知抛物线y=-x2+mx+2m,当x<1时,y随x的增大而增大,则抛物线的顶点在()A.第一象限B.第二象限C.第三象限D.第四象限7.定义:在平面直角坐标系中,点P(x,y)的横、纵坐标的绝对值之和叫做点P(x,y)的勾股值,记[P]=|x|+|y|.若抛物线y=ax2+bx+1与直线y=x只有一个交点C,已知点C在第一象限,且2≤[C]≤4,令t=2b2-4a+2020,则t的取值范围为()A.2017≤t≤2018B.2018≤t≤2019C.2019≤t≤2020D.2020≤t≤20212x的增大而增大;④方程ax2+bx+c=0有一个根大于4.其中正确的结论有()A.1个B.2个C.3个D.4个9.将函数y=-x2+2x+m(0≤x≤4)在x轴下方的图象沿x轴向上翻折,在x轴上方的图象保持不变,得到一个新图象.新图象对应的函数最大值与最小值之差最小,则m的值为()A.2.5 B.3 C.3.5 D.410.定义符号min{a,b}的含义为:当a≥b时min{a,b}=b;当a<b时min{a,b}=a.如:min{1,-3}=-3,min{-4,-2}=-4.则min{-x2+1,-x}的最大值是()A.√5−12B.√5+12C.1 D.0二.填空题(共6小题)11.抛物线y=(k-1)x2-x+1与x轴有交点,则k的取值范围是12.对于任意实数m,抛物线y=x2+4mx+m+n与x轴都有交点,则n的取值范围是13.当-1≤x≤3时,二次函数y=x2-4x+5有最大值m,则m=14.在平面直角坐标系中,已知A(-1,m)和B(5,m)是抛物线y=x2+bx+1上的两点,将抛物线y=x2+bx+1的图象向上平移n(n是正整数)个单位,使平移后的图象与x轴没有交点,则n的最小值为15.已知抛物线y=ax2+bx+c(a<0)的对称轴为x=-1,与x轴的一个交点为(2,0),若关于x的一元二次方程ax2+bx+c=p(p>0)有整数根,则p的值有个16.对于一个函数,如果它的自变量x与函数值y满足:当-1≤x≤1时,-1≤y≤1,则称这个函数为“闭函数”.例如:y=x,y=-x均是“闭函数”.已知y=ax2+bx+c(a≠0)是“闭函数”,且抛物线经过点A(1,-1)和点B(-1,1),则a的取值范围是三.解答题(共7小题)17.已知抛物线C:y=x2+mx+n(m,n为常数).(1)如图,若抛物线C的顶点坐标为P(1,2),求m,n的值;(2)在(1)的条件下,设点Q(a,b)在抛物线C上,且点Q离y轴的距离不大于2,直接写出b的取值范围;(3)将抛物线C向左平移2个单位得到抛物线C1,将抛物线C向右平移2个单位得到抛物线C2,若C1与C2的交点坐标为(1,3),求抛物线C的函数解析式.18.在平面直角坐标系xOy中,抛物线y=x2-2x-3与x轴相交于A,B(点A在点B的左边),与y轴相交于C.(1)求直线BC的表达式.(2)垂直于y轴的直线l与直线BC交于点N(x1,y1),与抛物线相交于点P(x2,y2),Q (x3,y3).若x1<x2<x3,结合函数图象,求x1+x2+x3的取值范围.19.某公司开发出一款新的节能产品,该产品的成本价为6元/件,该产品在正式投放市场前通过代销点进行了为期一个月(30天)的试营销,售价为8元/件,工作人员对销售情况进行了跟踪记录,并将记录情况绘成图象.图中的折线ODE表示日销售量y(件)与销售时间x(天)之间的函数关系,已知线段DE表示的函数关系中,时间每增加1天,日销售量减少5件.(1)第26天的日销售量是件,日销售利润是元.(2)求y与x之间的函数关系式,并写出x的取值范围;(3)日销售利润不低于600元的天数共有多少天?试销售期间,日销售最大利润是多少元?20.某商场销售一批衬衫,进货价为每件40元,按每件50元出售,一个月内可售出500件.已知这种衬衫每涨价1元,其销售量要减少10件.(1)为在月内赚取8000元的利润,售价应定为每件多少元?(2)要想获得的利润最大,该商场应当如何定价销售?21.某工艺品厂设计了一款每件成本为11元的工艺品投放市场进行试销,经过市场调查,得出每天销售量y(件)是每件售价x(元)(x为正整数)的一次函数,其部分对应数据如下表所示:(1)求y关于x的函数解析式;(2)若用w(元)表示工艺品厂试销该工艺品每天获得的利润,试求w关于x的函数解析式;(3)该工艺品每件售价为多少元时,工艺品厂试销该工艺品每天获得的利润最大,最大利润是多少元?22.如图,在平面直角坐标系中,抛物线y=-√33x2−2√33x+√3与x轴交于A,B两点,与y轴交于点C.(1)若点P为直线AC上方抛物线上的动点,当△PAC的面积最大时,求此时P点的坐标;(2)若点Q是抛物线对称轴上的动点,点M是抛物线上的动点,当以点M、A、C、Q为顶点的四边形是平行四边形时,直接写出此时Q点的坐标.x2+2x+2的顶点为A,且与y轴于点B,将抛物线C1沿y=a 23.如图,抛物线C1:y=-12对称后,得到抛物线C2与y轴交于点C.(1)求A、B两点坐标;(2)若抛物线C2上存在点D,使得△BCD为等腰直角三角形,求出此时抛物线C2的表达式.参考答案一、选择题二、填空题11、k≤54且k≠112、n≤−16413、1014、4 15、3 16、−12≤a<0或0<a≤12三、解答题17、18、19、20、21、22、23、。
九年级数学上册第二单元《二次函数》测试卷(含答案解析)
一、选择题1.抛物线y =ax 2+bx +c (a ≠0)的图象大致如图所示,下列说法: ①2a +b =0;②当﹣1<x <3时,y <0;③若(x 1,y 1)(x 2,y 2)在函数图象上,当x 1<x 2时,y 1<y 2; ④9a +3b +c =0, 其中正确的是( )A .①②④B .①④C .①②③D .③④2.对于二次函数()()2140y ax a x a =+->,下列说法正确的是( ) ①抛物线与x 轴总有两个不同的交点;②对于任何满足条件的a ,该二次函数的图象都经过点()4,4和()0,0两点; ③若该函数图象的对称轴为直线0x x =,则必有012x <<; ④当2x ≥时,y 随x 的增大而增大,则102a <≤ A .①②B .②③C .①④D .③④3.某同学在利用描点法画二次函数y =ax2+bx+c (a≠0)的图象时,先取自变量x 的一些值,计算出相应的函数值y ,如下表所示: x … 0 1 2 3 4 … y…﹣3﹣13…)A .03x y =⎧⎨=-⎩B .21x y =⎧⎨=-⎩C .30x y =⎧⎨=⎩D .43x y =⎧⎨=⎩4.设函数()()12y x x m =--,23y x=,若当1x =时,12y y =,则( ) A .当1x >时,12y y < B .当1x <时,12y y > C .当0.5x <时,12y y <D .当5x >时,12y y >5.将抛物线22y x =平移,得到抛物线22(4)1y x =-+,下列平移方法正确的是( ) A .先向左平移4个单位,在向上平移1个单位 B .先向左平移4个单位,在向下平移1个单位 C .先向右平移4个单位,在向上平移1个单位D .先向右平移4个单位,在向下平移1个单位6.如图所示,二次函数2y ax bx c =++的图象中,对称轴是直线1x =,王刚同学观察得出了下面四条信息:①1c >;②若()12,y ,()24,y 是抛物线上两点,则12y y >;③420a b c -+<;④方程20ax bx c ++=的两根是11x =-,23x =.其中说法正确的有( )A .①②③④B .②④C .①②④D .①③④7.若()14,A y -,()21,B y -,()30,C y 为二次函数2(2)3y x =-++的图象上的三点,则1y ,2y ,3y 的大小关系是( ) A .123y y y <=B .312y y y =<C .312 y y y <<D .123y y y =<8.已知二次函数22(0)y ax bx a =--≠的图象的顶点在第四象限,且过点(1,0)-,当-a b 为整数时,ab 的值为( )A .34或1 B .14或1 C .34或12D .14或129.已知抛物线y =ax 2+bx +c 上部分点的横坐标与纵坐标的对应值如下表,给出下列结论:①抛物线y =ax 2+bx +c 经过原点;②2a +b =0;③当y >0时,x 的取值范围是x <0或x >2;④若点P (m ,n )在该抛物线上,则am 2+bm ≤a +b .其中正确结论的个数是( ) x … ﹣1 0 1 2 3 … y…3﹣13…A .4个B .3个C .2个D .1个10.抛物线2(3)y a x k =++的图象如图所示.已知点()15,A y -,()22,B y -,()36.5,C y -三点都在该图象上,则1y ,2y ,3y 的大小关系为( )A .123y y y >>B .321y y y >>C .213y y y >>D .231y y y >>11.据省统计局公布的数据,安徽省2019年第二季度GDP 总值约为7.9千亿元人民币,若我省第四季度GDP 总 值为y 千亿元人民币,平均每个季度GDP 增长的百分率为x ,则y 关于x 的函数表达式是( )A .7.9(12)y x =+B .27.9(1)y x =-C .27.9(1)y x =+D .27.97.9(1)7.9(1)y x x =++++12.抛物线2288y x x =-+-的对称轴是( ) A .2x =B .2x =-C .4x =D .4x =-二、填空题13.将抛物线2yx 向上平移1个单位,再向左平移2个单位后,得到的抛物线的顶点坐标是__________.14.已知函数y =ax 2﹣(a ﹣1)x +1,当0<x <2时,y 随x 的增大而增大,则实数a 的取值范围是_____.15.抛物线23y x =先向上平移1个单位,再向左平移1个单位,所得的抛物线为________16.二次函数2y ax bx c =++的图象经过(1,0)A ,对称轴为1x =-,其图像如图所示,则化简2244||b bc c a b c +++-+的结果为___________.17.已知抛物线243y x x =-+与x 轴交于A 、B 两点,P 为抛物线上一点,且1APB S ∆=,则P 的坐标为_______.18.若123(4,),(1,),(1,)A y B y C y --为二次函数245y x x =-+的图象上的三点,则123,,y y y 的大小关系为__________.19.二次函数2y x bx =+的对称轴为直线2x =,若关于x 的一元二次方程20x bx t +-=(t 为实数)在1-<x <4的范围内有解,则t 的取值范围是________.20.如图,在平面直角坐标系xOy 中,抛物线y =-2x 2+bx +c 与x 轴交于A ,B 两点.若顶点C 到x 轴的距离为6,则线段AB 的长为______.三、解答题21.已知抛物线23y ax bx =++经过点()3,0-,()2,5-.求此抛物线的解析式. 22.某商店销售一种商品,经市场调研发现,当该商品每件的售价为60元时,每天可销售200件;如果调整价格,每件的售价每增加1元,每天的销售数量将减少10件.已知该商品的进价为每件50元.(1)当每件商品的售价为64元时,求该商品每天的销售数量;(2)当每件商品的售价为多少时,销售该商品每天获得的利润最大?并求出最大利润.23.某超市经销一种销售成本为每件40元的商品.据市场调查分析,如果按每件50元销售,一周能卖出500件;若销售单价每涨1元,每周销量就减少10件.设每件涨价(0)x x ≥元.(1)写出一周销售量y (件)与x (元)的函数关系式.(2)设一周销售获得毛利润w 元,写出w 与x 的函数关系式,并确定当x 在什么取值范围内变化时,毛利润w 随x 的增大而增大.(3)超市扣除销售额的20%作为该商品的经营费用,为使得纯利润(纯利润=毛利润-经营费用)最大,超市对该商品售价为______元,最大纯利润为______元.24.如图已知抛物线2y x bx c =-++与x 轴交于(1,0)A -,(3,0)B 两点与y 轴交于C 点,点P 是抛物线上在第一象限内的一个动点,且点P 的横坐标为t .(1)求抛物线的表达式;(2)如图,连接BC ,PB ,PC ,设PBC 的面积为S . ①求S 关于t 的函数表达式;②求P 点到直线BC 的距离的最大值,并求出此时点P 的坐标.25.如图①,抛物线23y ax bx =++与x 轴交于()3,0A 、()1,0B -两点,与y 轴交于点C .(1)求抛物线23y ax bx =++的解析式;(2)如图②,连接AC ,点E 是第一象限内抛物线上的动点,过点E 作EF AC ⊥于点F ,//EG y 轴交AC 于点G ,求EFG 面积的最大值及此时点E 的坐标;(3)如图③,若抛物线的顶点坐标为点D ,点P 是抛物线对称轴上的动点,在坐标平面内是否存在点Q ,使得以A 、D 、P 、Q 为顶点的四边形是菱形?若存在,求出点P 的坐标;若不存在,请说明理由.26.已知抛物线的顶点为()1,4-,且过点()2,5-. (1)求抛物线的解析式;(2)当0y >时,自变量x 的取值范围是______(直接写出结果).【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断. 【详解】①由图示知,对称轴是直线x =3122ba-=-,则2a+b =0,故说法正确; ②由图示知,当﹣1<x <3时,y <0,故说法正确;③若(x 1,y 1)(x 2,y 2)在函数图象上,当1<x 1<x 2时,y 1<y 2,故说法错误;④由图示知,当x =3时,y =0,即9a+3b+c =0,故说法正确.综上所述,正确的说法是①②④. 故选:A . 【点睛】本题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a 与b 的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.2.B解析:B 【分析】①由y=0,一元二次方程()214=0ax a x +-,判别式()2=14a ∆-=0即可判断①;②抛物线中c=0,恒过原点,当x=4,函数值为4即可判断②;③抛物线对称轴为:122x a =-当11222a<-<时,解得102a <<,求出12a >即可判断③;④0a >,对称轴为:1222x a=-<,由抛物线开口向上,在对称轴的右侧,y 随着x 的增大而增大即可判断④. 【详解】①由y=0,()214=0ax a x +-,()2=14a ∆-,当1=04a >时,()2=14=0a ∆-有一个交点,为此抛物线与x 轴总有两个不同的交点不正确;②由()()2140y ax a x a =+->中c=0,抛物线恒过原点(0,0),当x=4,()4=1166144416y a a a a ⨯-=++=-,抛物线恒过(4,4),为此对于任何满足条件的a ,该二次函数的图象都经过点()4,4和()0,0两点正确; ③()()2140y ax a x a =+->对称轴为:1441122222b a a x a a a a--=-=-==-, 当11222a<-<时,解得102a <<,∴12a >, 为此当12a >,若该函数图象的对称轴为直线0x x =,则必有012x <<正确; ④()()2140y ax a x a =+->对称轴为:122x a=-, ∵0a >,抛物线开口向上,在对称轴的右侧,y 随着x 的增大而增大, 由此1222x a=-≤, 解得10a>即0a >,为此当2x ≥时,y 随x 的增大而增大,则102a <≤不正确. 故选择:B . 【点睛】本题考查抛物线与一元二次方程的关系,抛物线过定点,抛物线的对称轴,抛物线的增减性等问题,掌握抛物线的性质以及一元二次方程根的判别式是解题关键.3.A解析:A 【分析】根据二次函数的对称性知:抛物线的对称轴为直线x =2,且抛物线的开口向上,由此确定答案. 【详解】∵x =1和x =3时,y =0; ∴抛物线的对称轴为直线x =2, ∴顶点坐标为(2,﹣1), ∴抛物线的开口向上,∴x =0和x =4的函数值相等且大于0, ∴x =0,y =﹣3错误. 故选:A . 【点睛】此题考查抛物线的对称性,抛物线的性质,读懂表格掌握二次函数的对称性解决问题是解题的关键.4.D解析:D 【分析】当y 1=y 2,即(x ﹣2)(x ﹣m )=3x,把x =1代入得,(1﹣2)(1﹣m )=3,则m =4,画出函数图象即可求解. 【详解】 解:当y 1=y 2, 即(x ﹣2)(x ﹣m )=3x, 把x =1代入得,(1﹣2)(1﹣m )=3, ∴m =4,∴y 1=(x ﹣2)(x ﹣4), 抛物线的对称轴为:x =3,如下图:设点A 、B 的横坐标分别为1,5,则点A、B关于抛物线的对称轴对称,从图象看在点B处,即x=5时,y1>y2,故选:D.【点睛】本题考查的是二次函数与不等式(组),主要要求学生通过观察函数图象的方式来求解不等式.5.C解析:C【分析】先利用顶点式得到两抛物线的顶点式,然后通过点平移的规律得到抛物线平移的情况.【详解】解:抛物线y=2x2的顶点坐标为(0,0),抛物线y=2(x-4)2+1的顶点坐标为(4,1),而点(0,0)先向右平移4个单位,再向上平移1个单位可得到点(4,1),所以抛物线y=2x2先向右平移4个单位,再向上平移1个单位得到抛物线y=2(x+4)2+1.故选:C.【点睛】本题考查了二次函数与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.6.A解析:A【分析】由OC与OA的大小对①进行判断;利用二次函数的性质对②进行判断;利用x=-2时,y <0可对③进行判断;利用抛物线的对称性得到抛物线与x轴的另一个交点为(3,0),然后根据抛物线与x轴的交点问题可对④进行判断.【详解】∵抛物线与y轴的交点在x轴的上方,且OC>1,∴c>1,所以①正确;∵抛物线的对称轴为直线x=1,而点(2,y1)到直线x=1的距离小于点(4,y2)到直线x=1的距离相等,∴y1>y2,所以②正确;∵x=-2时,y<0,∴4a-2b+c <0,所以③正确;∵抛物线的对称轴为直线x=1,而抛物线与x 轴的一个交点为(-1,0), ∴抛物线与x 轴的另一个交点为(3,0),∴方程ax 2+bx+c=0的两根是x 1=-1,x 2=3,所以④正确. 故选:A . 【点睛】考查了二次函数图象与系数的关系,解题关键是熟记二次项系数a 决定抛物线的开口方向和大小.当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时,对称轴在y 轴左; 当a 与b 异号时,对称轴在y 轴右.常数项c 决定抛物线与y 轴交点:抛物线与y 轴交于(0,c ).抛物线与x 轴交点个数由判别式确定:△=b 2-4ac >0时,抛物线与x 轴有2个交点;△=b 2-4ac=0时,抛物线与x 轴有1个交点;△=b 2-4ac <0时,抛物线与x 轴没有交点.7.B解析:B 【分析】根据二次函数的解析式可得图象开口向下,对称轴为2x =-,故点()14,A y -与点()30,C y 关于对称轴对称,即13y y =,再根据点()21,B y -与点()30,C y 在对称轴右侧,y 随x 增大而减小即可得出结论. 【详解】解:二次函数2(2)3y x =-++的图象开口向下,对称轴为2x =-, ∴点()14,A y -与点()30,C y 关于对称轴对称, ∴13y y =,∵点()21,B y -与点()30,C y 在对称轴右侧,y 随x 增大而减小, ∴23y y >, ∴312y y y =<, 故选:B . 【点睛】本题考查二次函数的性质,根据二次函数解析式得到对称轴是解题的关键.8.A解析:A 【分析】由题意易得20a b +-=,且0,0a b >>,则有当x=1时,y<0,即20a b --<,进而可得22a b -<-<,然后由-a b 为整数,则有1a b -=或0或-1,最后求解即可. 【详解】解:∵二次函数()220y ax bx a =--≠的图象的顶点在第四象限,且过点()1,0-,∴20a b +-=,且0,0a b >>,当x=1时,y<0,即20a b --<,∴2a b +=,且0,2a a b >-<, ∴02,02a b <<<<, ∴22a b -<-<, ∵-a b 为整数,∴1a b -=或0或-1,若1a b -=时,则有31,22a b ==,从而34ab =;若0a b -=时,则有1,1a b ==,从而1ab =;若1a b -=-时,则有13,22a b ==,从而34ab =;故选A . 【点睛】本题主要考查二次函数的图像与性质,熟练掌握二次函数的图像与性质是解题的关键.9.B解析:B 【分析】根据二次函数的性质和表格中的数据,可以判断各个小题中的结论是否成立,本题得以解决. 【详解】解:由表格数据可知:当x=0时,y=0,∴抛物线y =ax 2+bx +c 经过原点;①正确;抛物线对称轴为:直线0212x +==,即12b a-=,∴2a +b =0,②正确; 当y=0时,x=0或x=2且抛物线顶点坐标为(1,-1)∴抛物线开口向上,当y >0时,x 的取值范围是x <0或x >2;③正确 由以上分析可知当x=1时,y 取得最小值为a+b+c若点P (m ,n )在该抛物线上,则am 2+bm+c≥a+b+c .即am 2+bm≥a+b ,④错误 故选:B 【点睛】本题考查抛物线与x 轴的交点、二次函数的性质、二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答.10.C解析:C 【分析】根据函数解析式的特点为顶点式,其对称轴为x=-3,图象开口向下;根据二次函数图象的对称性,利用在对称轴的左侧,y 随x 的增大而增大,可判断y 2>y 1>y 3. 【详解】由二次函数y =a (x +3)2+k 可知对称轴为x =−3,根据二次函数图象的对称性可知,()22,B y -与2(4,)D y -对称,∵点()15,A y -,()36.5,C y -, 2(4,)D y -)在对称轴的左侧,y 随x 的增大而增大, ∵-4>-5>-6.5,∴y 2>y 1>y 3,故选C.【点睛】本题考查了函数图象上的点的坐标与函数解析式的关系,同时考查了函数的对称性及增减性.11.C解析:C【分析】根据平均每个季度GDP 增长的百分率为x ,第三季度季度GDP 总值约为7.9(1+x )元,第四季度GDP 总值为7.9(1+x )2元,则函数解析式即可求得.【详解】解:设平均每个季度GDP 增长的百分率为x ,则y 关于x 的函数表达式是:y=7.9(1+x )2.故选:C .【点睛】此题主要考查了根据实际问题列二次函数关系式,正确理解增长率问题是解题关键. 12.A解析:A【分析】利用抛物线对称轴公式求解即可.【详解】解:∵2288y x x =-+-,∴对称轴为直线x=-822(2)=⨯-, 故选:A .【点睛】本题主要考查二次函数的性质,掌握二次函数的对称轴公式是解题的关键.二、填空题13.【分析】根据二次函数图象左加右减上加下减的平移规律进行求解【详解】解:将抛物线y=x2向上平移1个单位再向左平移2个单位后得到的抛物线y=(x+2)2+1此时抛物线顶点坐标是(-21)故答案为:(-解析:()2,1-【分析】根据二次函数图象左加右减,上加下减的平移规律进行求解.【详解】解:将抛物线y=x 2向上平移1个单位,再向左平移2个单位后,得到的抛物线y=(x+2)2+1.此时抛物线顶点坐标是(-2,1).故答案为:(-2,1).【点睛】本题考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.14.【分析】分a <0a=0及a >0三种情况考虑:当a <0时利用二次函数的性质可得出﹣≥2解之可得出a 的取值范围;当a=0时原函数为一次函数y=x+1由一次函数的性质可得出y 随x 的增大而增大进而可得出a= 解析:113a -≤≤ 【分析】分a <0,a=0及a >0三种情况考虑:当a <0时,利用二次函数的性质可得出﹣()12a a --≥2,解之可得出a 的取值范围;当a=0时,原函数为一次函数y=x+1,由一次函数的性质可得出y 随x 的增大而增大,进而可得出a=0符合题意;当a >0时,利用二次函数的性质可得出,﹣()12a a --≤0,解之可得出a 的取值范围.综上此题得解. 【详解】解:根据题意得:当a <0时,﹣()12a a --≥2, 解得:﹣13≤a <0; 当a =0时,原函数为一次函数y =x +1,∵1>0,∴y 随x 的增大而增大,∴a =0符合题意;当a >0时,﹣()12a a --≤0, 解得:a ≤1.综上所述:a 的取值范围是﹣13≤a ≤1, 故答案为﹣13≤a ≤1. 【点睛】本题考查了二次函数图象与系数的关系,分a <0,a=0及a >0三种情况,找出a 的取值范围是解题的关键.15.【分析】根据二次函数的平移规律上加下减左加右减即可求解【详解】解:抛物线先向上平移1个单位再向左平移1个单位所得的抛物线为故答案为:【点睛】本题考查抛物线的平移掌握二次函数的平移规律上加下减左加右减解析:()2311y x =++【分析】根据二次函数的平移规律“上加下减,左加右减”即可求解.【详解】解:抛物线23y x =先向上平移1个单位,再向左平移1个单位,所得的抛物线为()2311y x =++,故答案为:()2311y x =++.【点睛】本题考查抛物线的平移,掌握二次函数的平移规律“上加下减,左加右减”是解题的关键. 16.【分析】根据二次函数的性质及绝对值的非负性二次根式的性质求解即可【详解】解:观察图象得:a<0c>0把A(10)代入得a+b+c=0∴c=-a-b ∵=-1∴b=2a<0∴c=-a-2a=-3a>0∴解析:2a b c -+-【分析】根据二次函数的性质及绝对值的非负性,二次根式的性质求解即可.【详解】解:观察图象得:a<0,c>0,把A(1,0)代入2y ax bx c =++得a+b+c=0,∴c= -a-b , ∵2b a -= -1,∴b=2a<0,∴c=-a-2a=-3a>0,∴2b+c=4a-3a=a<0,a-b+c=a-2a-3a=-4a>0,∴||a b c -+=a b c -+=-(2b+c)+a-b+c=-2b-c+a-b+c= -3b+a=-5a ,故答案为-5a .【点睛】本题考查了二次函数的性质及绝对值的非负性,解题的关键是熟练掌握二次函数的性质.17.(2-1)或(2-1)或(2+1)【分析】当y=0时求得x 的值确定AB 的长设点P 坐标为根据三角形面积公式列方程求解即可【详解】解:当y=0时解得:∴AB=2设点P 坐标为∴∴当时解得x=2此时P 点坐标解析:(2,-1)或(1),或(,1).【分析】当y=0时,求得x 的值,确定AB 的长,设点P 坐标为2(,43)x x x -+,根据三角形面积公式列方程求解即可.【详解】解:当y=0时,243=0x x -+解得:121,3x x ==∴AB=2设点P 坐标为2(,43)x x x -+, ∴214312APB S AB x x ∆=-+= ∴2431x x -+=当2431x x -+=-时,解得x=2,此时P 点坐标为(2,-1)当2431x x -+=时,解得122x x =P 点坐标为(,1),或(,1)综上,P 的坐标为:(2,-1)或(1),或(,1)故答案为:(2,-1)或(,1),或(,1).【点睛】本题考查二次函数与图形,利用数形结合思想列方程求解是解题关键.18.【分析】先将二次函数的解析式化成顶点式再根据二次函数的增减性即可得【详解】二次函数化成顶点式为由二次函数的性质可知当时y 随x 的增大而减小点在此二次函数的图象上且故答案为:【点睛】本题考查二次函数的顶 解析:123y y y >>【分析】先将二次函数的解析式化成顶点式,再根据二次函数的增减性即可得.【详解】二次函数245y x x =-+化成顶点式为22()1y x =-+,由二次函数的性质可知,当2x ≤时,y 随x 的增大而减小,点123(4,),(1,),(1,)A y B y C y --在此二次函数的图象上,且4112-<-<<, 123y y y ∴>>,故答案为:123y y y >>.【点睛】本题考查二次函数的顶点式和增减性,熟练掌握二次函数的性质是解题关键.19.-4≤t<5【分析】先由对称轴求b 的值则二次函数关于的一元二次方程(为实数)在<<的范围内有解△=16+4t≥0在<<在x=-1时y=5当x=4时y=0用y=t 与有交点t 的范围即可求出【详解】∵二次解析:-4≤t<5.【分析】先由对称轴求b 的值,则二次函数2-4y x x =,关于x 的一元二次方程240x x t --=(t 为实数)在1-<x <4的范围内有解,△=16+4t≥0,在1-<x <4()22-424y x x x ==--在x=-1时,y=5,当x=4时,y=0,用y=t 与()22-424y x x x ==--有交点,t 的范围即可求出.【详解】∵二次函数2y x bx =+的对称轴为直线2x =, ∴222b b x a =-=-=, ∴b =-4,∴二次函数2-4y x x =,∵关于x 的一元二次方程240x x t --=(t 为实数)在1-<x <4的范围内有解, ∴△=16+4t≥0,∴t≥-4,∵()22-424y x x x ==--,在x=-1时,y=5,当x=4时,y=0, ∴y=t 与()22-424y x x x ==--有交点,t 满足条件为-4≤t<5, 则t 的取值范围是-4≤t<5.故答案为:-4≤t<5.【点睛】本题考查二次函数与一元二次方程的关系,掌握二次函数的性质,与一元二次方程的解的条件,利用对称轴会求b 的值,关于x 的一元二次方程240x x t --=(t 为实数)有解,会用△=16+4t≥0,会用y=t 与()22-424y x x x ==--有交点,求t 满足条件是解决问题的关键.20.2【分析】先确定抛物线的解析式令得到AB 两点的坐标即可得到结果;【详解】∵抛物线y =-2x2+bx +c 顶点C 到x 轴的距离为6∴化二次函数解析式为顶点式为:∴令得解得:∵抛物线y =-2x2+bx +c 与解析:【分析】先确定抛物线的解析式,令0y =,得到A ,B 两点的坐标,即可得到结果;【详解】∵抛物线y =-2x 2+bx +c 顶点C 到x 轴的距离为6,∴化二次函数解析式为顶点式为:()226y x h =--+, ∴令0y =,得()2260x h --+=,解得:1x h =+2x h =-,∵抛物线y =-2x 2+bx +c 与x 轴交于A ,B 两点,∴()A h +,()B h -,∴(AB h h =+--=故答案是【点睛】本题主要考查了二次函数的性质,抛物线与坐标轴的交点,准确分析计算是解题的关键.三、解答题21.223y x x =--+【分析】将点3,0,2,5代入抛物线23y ax bx =++解方程组求出b 、c 的值即可得答案.【详解】 由题意得,93304235a b a b -+=⎧⎨++=-⎩ 解得,12a b =-⎧⎨=-⎩, 则二次函数的解析式为223y x x =--+.【点睛】本题考查待定系数法求二次函数解析式,把抛物线上的点的坐标代入解析式确定字母的值是解题关键.22.(1)当每件商品的售价为64元时,该商品每天的销售数量为160件;(2)当每件商品的售价为65元时,销售该商品每天获得的利润最大,最大利润为2250元.【分析】(1)根据“当每件的销售价每增加1元,每天的销售数量将减少10件”,即可解答; (2)根据等量关系“利润=(售价-进价)×销量”列出函数关系式,根据二次函数的性质,即可解答.【详解】解:()1当每件商品的售价为64元时,该商品每天的销售数量为()200106460160-⨯-=(件).()2设每件商品的售价为x 元,销售该商品每天获得的利润为W ,则()()502001060W x x ⎡⎤=---⎣⎦221013004000010(65)2250x x x =-+-=--+,∵100-<,∴当65x =时,W 取得最大值,最大值为2250.答:当每件商品的售价为65元时,销售该商品每天获得的利润最大,最大利润为2250元.【点睛】本题考查的是二次函数在实际生活中的应用.此题难度不大,解题的关键是理解题意,找到等量关系,求得二次函数解析式.23.(1)50010y x =-;(2)2104005000w x x =-++,当020x ≤≤时,毛利润w 随x 的增大而增大;(3)75,5000.【分析】(1)根据每件涨价x 元,每周销量就减少10x 件即可得;(2)根据“毛利润=(每件的售价-每件的成本)⨯销售量”可得w 与x 的函数关系式,再根据二次函数的性质即可得;(3)设一周销售获得的纯利润为Q 元,先根据纯利润的计算公式求出Q 与x 的函数关系式,再利用二次函数的性质求解即可得.【详解】(1)由题意,每件涨价x 元,每周销量就减少10x 件,则50010y x =-;(2)由题意得:(5040)(10)(50010)w x y x x =+-=+-,整理得:2104005000w x x =-++,将此二次函数的解析式化成顶点式为210(20)9000w x =--+,由二次函数的性质可知,当020x ≤≤时,毛利润w 随x 的增大而增大;(3)设一周销售获得的纯利润为Q 元,则220%(50)1040050000.2(50)(50010)Q w x y x x x x =-+=-++-+-, 整理得:28400Q x x =-+,即28(25)5000Q x =--+,由二次函数的性质可知,当25x =时,Q 取得最大值,最大值为5000,则此时该商品售价为50502575x +=+=(元),故答案为:75,5000.【点睛】本题考查了一次函数与二次函数的应用、二次函数的性质,熟练掌握二次函数的性质是解题关键.24.(1)2y x 2x 3=-++;(2)①23922S t t =-+;②最大值928,此时P 坐标315,24⎛⎫ ⎪⎝⎭【分析】(1)由点A 、B 坐标,利用待定系数法求解抛物线的表达式即可;(2)①过点P 作PH ⊥x 轴于H ,设点P 坐标为(t ,223t t -++),由PBC PHB BOC OCPH S S S S ∆∆∆=+-梯形即可表示出S 关于t 的函数表达式;②由于BC 为定值,所以点P 到直线BC 的距离最大时即为S 最大,根据二次函数的性质求出S 的最大值,利用勾股定理求出线段BC 的长,再利用等面积法求出点P 到直线BC 的距离的最大值,进而可求出此时的点P 坐标.【详解】解:(1)将点A (﹣1,0)、B (3,0)代入2y x bx c =-++中,得:10930b c b c --+=⎧⎨-++=⎩,解得:23b c =⎧⎨=⎩, ∴,抛物线的表达式为2y x 2x 3=-++;(2)①过点P 作PH ⊥x 轴于H ,如图,当x=0时,y=3,∴C (0,3),OC=3,∵点P 的坐标为(t ,223t t -++)且点P 在第一象限,∴PH=223t t -++,OH=t ,BH=3﹣t ,∴PBC PHB BOC OCPH S S S S ∆∆∆=+-梯形=22111(233)(3)(23)33222t t t t t t ⋅-+++⋅+⋅-⋅-++-⨯⨯ =23922t t -+, ∴S 关于t 的函数关系式为S=23922t t -+(t >0); ②由S=23922t t -+= 23327()228t --+,且32-<0,得: 当t= 32时,S 有最大值,最大值为278,∵OB=3,OC=3,∴=∵当t=32时,223t t -++=23315()23224-+⨯+= ∴点P 到直线BC2728⨯=,此时,点P 的坐标为(32,154). 【点睛】本题考查了待定系数法求二次函数的解析式、坐标与图形的性质、二次函数的性质、割补法求三角形的面积,解答的关键是认真审题,寻找知识点的关联点,利用待定系数法、割补法和数形结合思想进行推理、探究和计算.25.(1)2y x 2x 3=-++;(2)最大面积8164,315,24E ⎛⎫ ⎪⎝⎭;(3)()1,4P -或 21,3⎛⎫ ⎪⎝⎭或(1,4+或(1,4-【分析】(1)把A,B 坐标代入即可求解;(2)先求出直线AC 解析式,证明△EFG 是等腰直角三角形,再得到当EG 最大时,EFG 面积的最大故可列出EG 关于x 的二次函数,即可求解;(3)根据菱形的性质作图,分情况讨论即可求解.【详解】(1)把()3,0A 、()1,0B -代入23y ax bx =++得093303a b a b =++⎧⎨=-+⎩,解得12a b =-⎧⎨=⎩ ∴抛物线解析式为2y x 2x 3=-++;(2)令x=0,解得y=3∴C (0,3)设直线AC 解析式为y=mx+n ,把()3,0A ,C (0,3)代入得033m n n =+⎧⎨=⎩解得13n n =-⎧⎨=⎩∴直线AC 解析式为y=-x+3,∵CO=OA∴△AOC 是等腰直角三角形,∴∠ACO=45°∵//EG y∴∠FGE=45°∵EF AC ⊥∴△EFG 是等腰直角三角形,∴EF=FG,EG 2=EF 2+FG 2=2EF 2∴S △EFG =12EF×FG=12EF 2=14EG 2 ∴当EG 最大时,EFG 面积的最大设E (x, 223x x -++)则G (x ,-x+3)∴EG=(223x x -++)-(-x+3)=-(x-32)2+94 ∴当x=32,EG 最大值为94,故此时EFG 最大面积为14×(94)2=8164,315,24E ⎛⎫ ⎪⎝⎭; (3)如图①AD=DP 时,∵2y x 2x 3=-++=-(x-1)2+4∴D (1,4)又A (3,0)∴==DP∴P 1(1,4+,P 2(1,4-②DP=AP 时设P (1,y )∵DP 2=AP 2,A (3,0)∴(4-y )2=(3-1)2+(0-y )2解得y=23 ∴P 321,3⎛⎫ ⎪⎝⎭③当AD=AP 时,设P (1,y )∵AD 2=AP 2,A (3,0)∴(2=(3-1)2+(0-y )2解得y=-4(4舍去)∴P 4()1,4-综上,P 点坐标为()1,4P -或 21,3⎛⎫ ⎪⎝⎭或 (1,4+或(1,4-.【点睛】此题主要考查二次函数综合,解题的关键是熟知二次函数的性质、等腰直角三角形及菱形的性质.26.(1)()214y x =--或223y x x =--; (2)1x <-或3x >【分析】(1)直接利用顶点式求出二次函数解析式即可;(2)首先求出图象与x 轴交点,再利用抛物线图象得出当函数值y >0时,自变量x 的取值范围.【详解】(1)设抛物线的解析式为()214y a x =--把点()2,5-代入得 ()25214a =---∴1a =∴()214y x =--或223y x x =-- (2)(2)当y =0可得,0=(x−1)2−4,解得:1x=3,2x=−1,故抛物线与x轴的交点为:(−1,0),(3,0),如图所示:可得:当函数值y>0时,自变量x的取值范围为:x<−1或x>3.【点睛】此题主要考查了利用顶点式求抛物线解析式以及抛物线与x轴的交点,正确画出函数图象是解题关键.。
人教版初中数学九年级数学上册第二单元《二次函数》检测卷(含答案解析)
一、选择题1.已知抛物线()20y ax bx c a =++<过()30A -,、()1,0O 、()15,B y -、()25,C y 四点,则1y 与2y 的大小关系是( ) A .12y y >B .12y y <C .12y y =D .不能确定2.如图是函数y =x 2+bx+c 与y =x 的图象,有下列结论:(1)b 2﹣4c >0;(2)b+c+1=0;(3)方程x 2+(b ﹣1)x+c =0的解为x 1=1,x 2=3;(4)当1<x <3时,x 2+(b ﹣1)x+c <0.其中正确结论的个数为( )A .1B .2C .3D .43.若飞机着陆后滑行的距离()s m 与滑行的时间()t s 之间的关系式为s=60t-1.5t 2,则函数图象大致为( )A .B .C .D .4.根据下列表格中的对应值:x1.98 1.992.00 2.01 2y ax bx c =++-0.06-0.05-0.030.01判断方程0ax bx c ++=(,a ,b ,c 为常数)一个根x 的范围是( )A .1.00 1.98x <<B .1.98 1.99x <<C .1.99 2.00x <<D .2.00 2.01x <<5.已知函数235y x =-+经过A (m ,1y )、B (m−1,2y ),若12y y >.则m 的取值范围是( ) A .0m ≤B .12m <C .102m <<D .12m <<6.如图为二次函数()20y ax bx c a =++≠的图象,与x 轴交点为()()3,0,1,0-,则下列说法正确的有( )①a >0 ②20a b +=③a b c ++>0 ④当1-<x <3时,y >0A .1B .2C .3D .47.如图,已知抛物线2(0)y ax bx c a =++≠的部分图象如图所示,则下列结论:①0abc >;②关于x 的一元二次方程20ax bx c ++=的根是-1,3;③2a b c +=;④y 最大值43c =;其中正确的有( )个.A .4B .3C .2D .18.函数()20y ax a a =-≠与()0y ax a a =-≠在同一平面直角坐标系中的图象可能是( )A .B .C .D .9.二次函数2y ax bx c =++的图象如图所示,那么一次函数y ax b =+的图象大致是( ).A .B .C .D .10.关于抛物线223y x x =-+-,下列说法正确的是( ) A .开口方向向上 B .顶点坐标为()1,2- C .与x 轴有两个交点D .对称轴是直线1x =-11.二次函数2y ax bx c =++的图象如图所示,下列结论中:①20a b +>;②()a b m am b +≠+(1m ≠的实数);③2a c +>;④在10x -<<中存在一个实数0x 、使得0a bx a+=-其中正确的有( )A .1个B .2个C .3个D .4个12.对于二次函数2(2)7y x =---,下列说法正确的是( ) A .图象开口向上B .对称轴是直线2x =-C .当2x >时,y 随x 的增大而减小D .当2x <时,y 随x 的增大而减小二、填空题13.抛物线y =﹣12(x +1)2+3的顶点坐标是_____. 14.已知抛物线243y x x =-+与x 轴相交于点A ,B (点A 在点B 左侧),顶点为M平移该抛物线,使点M 平移后的对应点M '落在x 轴上,点B 平移后的对应点B '落在y 轴上,则平移后的抛物线解析式为______.15.已知函数223y x x =--,当函数值y 随x 的增大而减小时,x 的取值范围是______.16.已知二次函数()20y ax bx c a =++≠的图象如图所示,给出以下结论:①24b ac >;②abc>0;③20a b -=;④80a c +<;⑤930a b c ++>,其中结论正确的是__________.(填正确结论的序号)17.如图所示为抛物线223y ax ax =-+,则一元二次方程2230ax ax -+=两根为______.18.在平面直角坐标系中,点A 是抛物线()24y a x k =-+与y 轴的交点,点B 是这条抛物线上的另一点,且//AB x 轴,则以AB 为边的等边三角形ABC 的周长为_____.19.已知(-3,y 1),(-2,y 2),(1,y 3)是抛物线2312y x x m =++上的点,则y 1,y 2,y 3的大小关系为__.20.抛物线y =x 2+2x-3与x 轴的交点坐标为____________________.三、解答题21.如图,在平面直角坐标系中,点1A ,2A ,3A ,……,n A 和1C ,2C ,3C ,……,n C 均在抛物线2yx 上,点1B ,2B ,3B ,……,n B 在y 轴的正半轴上,若四边形111OA B C ,四边形1222B A B C ,四边形2333B A B C ,……,四边形1n n n n B A B C -都是正方形. (1)分别写出点1A ,1B ,1C 的坐标;(2)分别求出正方形2333B A B C 和正方形1n n n n B A B C -的面积.22.如图,已知抛物线y =ax 2+bx +c (a ≠0)经过A (﹣1,0),B (3,0),C (0,﹣3)三点,直线l 是抛物线的对称轴.(1)求抛物线的函数解析式;(2)在抛物线的对称轴上是否存在一点M ,使得△ACM 的周长最短?若存在,求点M 的坐标;若不存在,请说明理由.23.如图,在平面直角坐标系中,二次函数2y x bx c =++的图象与x 轴交于A ,B 两点,与y 轴交于点C ()0,3-,A 点的坐标为(-1,0).(1)求二次函数的解析式;(2)若点P 是抛物线在第四象限上的一个动点,当四边形ABPC 的面积最大时,求点P 的坐标,并求出四边形ABPC 的最大面积;(3)若Q 为抛物线对称轴上一动点,当Q 在什么位置时QA+QC 最小,求出Q 点的坐标,并求出此时△QAC 的周长. 24.阅读下列材料:我们知道,一次函数y kx b =+的图象是一条直线,而y kx b =+经过恒等变形可化为直线的另一种表达形式0Ax By C ++=(A 、B 、C 是常数,且A 、B 不同时为0).如图1,点()P m n ,到直线l :0Ax By C ++=的距离(d )计算公式是:22A mB n Cd A B⨯+⨯+=+.例:求点()1,2P 到直线51126y x =-的距离d 时,先将51126y x =-化为51220x y --=,再由上述距离公式求得()()()225112222113512d ⨯+-⨯+-==+-. 解答下列问题: 如图2,已知直线443y x =--与x 轴交于点A ,与y 轴交于点B ,抛物线245y x x =-+上的一点()3,2M .(1)请将直线443y x =--化为“0Ax By C ++=”的形式; (2)求点M 到直线AB 的距离;(3)抛物线上是否存在点P ,使得PAB △的面积最小?若存在,求出点P 的坐标及PAB △面积的最小值;若不存在,请说明理由.25.若二次函数2y ax bx c =++的x 与y 的部份对应值如下表:x… -4 -3 -2 -1 0 1 … y…-5343…(2)画出此函数图象(不用列表);(3)结合函数图象,当41x -≤<时,直接写出y 的取值范围.26.某超市销售一款洗手液,这款洗手液成本价为每瓶16元,当销售单价定为每瓶20元时,每天可售出60瓶.市场调查反应:销售单价每上涨1元,则每天少售出5瓶.若设这款洗手液的销售单价上涨x 元,每天的销售量利润为y 元.(1)每天的销售量为___瓶,每瓶洗手液的利润是___元;(用含x 的代数式表示) (2)若这款洗手液的日销售利润y 达到300元,则销售单价应上涨多少元?(3)当销售单价上涨多少元时,这款洗手液每天的销售利润y 最大,最大利润为多少元?【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】根据A (-3,0)、O (1,0)两点可确定抛物线的对称轴,再根据开口方向,B 、C 两点与对称轴的远近,判断y 1与y 2的大小关系. 【详解】解:∵抛物线过A (-3,0)、O (1,0)两点, ∴抛物线的对称轴为x=312-+=-1, ∵a <0,抛物线开口向下,离对称轴越远,函数值越小,由()15,B y -、()25,C y 可知C 点离对称轴远,对应的纵坐标值小, 即y 1>y 2. 故选:A . 【点睛】此题主要考查了二次函数图象上点的坐标特征,比较抛物线上两点纵坐标的大小,关键是确定对称轴,开口方向,两点与对称轴的远近.2.B解析:B 【分析】根据函数图象与x 轴交点个数判断(1);利用待定系数法求出函数解析式,代入计算判断(2);由二次函数与一次函数的交点求出方程的解,判断(3)即可;利用函数图象比较函数值判断(4). 【详解】由图象知,二次函数过(3,3)(0,3),(1,1),∴93313a b c a b c c ++=⎧⎪++=⎨⎪=⎩, 解得:133a b c =⎧⎪=-⎨⎪=⎩,∴b+c+1=﹣3+3+1=1,故②错误; ∵a =1,∴抛物线为y =x 2-3x+3, ∵函数y =x 2+bx+c 与x 轴无交点, ∴b 2﹣4c <0,故①错误;由图象知,抛物线y =x 2+bx+c 与直线y =x 的交点坐标为(1,1)和(3,3), ∴方程x 2+(b ﹣1)x+c =0的解为x 1=1,x 2=3,故③正确; ∵当1<x <3时,二次函数值小于一次函数值, ∴x 2+bx+c <x ,∴x 2+(b ﹣1)x+c <0.故④正确; 故选:B . 【点睛】此题考查待定系数法求二次函数的解析式,二次函数的性质,二次函数与一元二次方程的关系,图象法比较函数值的大小,是一道较为基础的二次函数题.3.C解析:C 【分析】根据关系式可得图象的开口方向,可求出函数的顶点坐标,根据s 从0开始到最大值时停止,可得t 的取值范围,即可得答案. 【详解】∵滑行的距离()s m 与滑行的时间()t s 之间的关系式为s=60t-1.5t 2,-1.5<0, ∴图象的开口向下,∵s=60t-1.5t 2=-1.5(t-20)2+600, ∴顶点坐标为(20,600),∵s 从0开始到最大值时停止, ∴0≤t≤20, ∴C 选项符合题意, 故选:C . 【点睛】本题考查二次函数的应用,熟练掌握二次函数的图象与性质是解题关键.4.D解析:D 【分析】根据二次函数的性质、二次函数与一元二次方程的联系即可得. 【详解】由表格可知,在1.98 2.01x ≤≤内,y 随x 的增大而增大, 当 2.00x =时,0.030y =-<, 当 2.01x =时,0.010y =>,∴在2.00 2.01x <<内,必有一个x 的值对应的函数值0y =,∴方程20ax bx c ++=(0a ≠,,,a b c 为常数)一个根x 的范围是2.00 2.01x <<,故选:D . 【点睛】本题考查了二次函数的性质、二次函数与一元二次方程的联系,熟练掌握二次函数的性质是解题关键.5.B解析:B 【分析】由235y x =-+图像开口向下,对称轴为y =0知,要使12y y >,需使A 点更靠近对称轴y轴,由此列出关于m 的不等式解之即可 . 【详解】解:∵235y x =-+图像开口向下,对称轴为y =0且12y y >∴1m m <-,下面解此不等式.第一种情况,当m <0时,得1m m -<-,解得m <0; 第二种情况,当01m ≤<时,得1m m <-,解得12m <; 第三种情况,当m 1≥时,得1m m <-,解得,无解; 综上所述得12m <. 故选:B . 【点睛】此题考查二次函数的图像与性质,比较图像上两点的函数值.其关键是,当二次函数开口向下时,图像上的点越靠近对称轴时,函数值越大;当二次函数开口向上时,图像上的点越靠近对称轴时,函数值越小.6.C解析:C【分析】由开口方向可判断①;由对称轴为直线x=1可判断②;由x=1时y >0可判断③;由1-<x <3时,函数图像位于x 轴上方可判断④.【详解】解:∵抛物线的开口向下∴a <0,故①错误;∵抛物线的对称轴x=2b a-=1 ∴b=-2a ,即2a+b=0,故②正确;由图像可知x=1时,y=a+b+c >0,故③正确;由图像可知,当1-<x <3时,函数图像位于x 轴上方,即y >0,故④正确; 故选C .【点睛】本题主要考查图像与二次函数之间的关系,会利用对称轴的范围求2a 与b 的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.7.C解析:C【分析】利用抛物线开口方向得到a <0,利用抛物线的对称轴方程得到b=-2a >0,利用抛物线与y 轴的交点在x 轴上方得到c >0,则可对①进行判断;利用抛物线的对称性得到抛物线与x 轴的另一个交点坐标为(-1,0),则根据抛物线与x 轴的交点问题可对②进行判断;由于x=-1时,a-b+c=0,再利用b=-2a 得到c=-3a ,则可对③④进行判断.【详解】解:∵抛物线开口向下,∴a <0,∵抛物线的对称轴为直线x=﹣b 2a=1, ∴b=-2a >0,∵抛物线与y 轴的交点在x 轴上方,∴c >0,∴abc <0,所以①错误;∵抛物线的对称轴为直线x=1,抛物线与x 轴的一个交点坐标为(3,0),∴抛物线与x 轴的另一个交点坐标为(-1,0),∴关于x 的一元二次方程ax 2+bx+c=0的根是-1,3,所以②正确;∵当x=-1时,y=0,∴a-b+c=0,而b=-2a ,∴a+2a+c=0,即c=-3a ,∴a+2b-c=a-4a+3a=0,即a+2b=c ,所以③正确;a+4b-2c=a-8a+6a=-a ,所以④错误;故选:C .【点睛】本题考查了二次函数图象与系数的关系:二次项系数a 决定抛物线的开口方向和大小.当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时,对称轴在y 轴左; 当a 与b 异号时,对称轴在y 轴右.常数项c 决定抛物线与y 轴交点:抛物线与y 轴交于(0,c ).抛物线与x 轴交点个数由判别式确定:△=b 2-4ac >0时,抛物线与x 轴有2个交点;△=b 2-4ac=0时,抛物线与x 轴有1个交点;△=b 2-4ac <0时,抛物线与x 轴没有交点.8.C解析:C【分析】分a >0与a <0两种情况考虑两函数图象的特点,再对照四个选项中图形即可得出结论.【详解】解:①当a >0时,二次函数y=ax 2-a 的图象开口向上、对称轴为y 轴、顶点在y 轴负半轴,一次函数y=ax-a(a≠0)的图象经过第一、三、四象限,且两个函数的图象交于y 轴同一点;②当a <0时,二次函数y=ax 2-a 的图象开口向下、对称轴为y 轴、顶点在y 轴正半轴,一次函数y=ax-a(a≠0)的图象经过第一、二、四象限,且两个函数的图象交于y 轴同一点. 对照四个选项可知C 正确.故选:C .【点睛】本题考查了一次函数的图象以及二次函数图象与系数的关系,根据二次函数及一次函数系数找出其大概图象是解题的关键.9.C解析:C【分析】根据二次函数图象,知道开口和对称轴,判断a 、b 的符号,再进行判断一次函数的图象.【详解】解:根据二次函数图象知:开口向下,则0a < 故一次函数从左往右是下降趋势.对称轴再y 轴左边,故02b a-< 即得:0b < 故一次函数交y 轴的负半轴. 则一次函数y ax b =+图象便为C 选项故本题选择C .【点睛】本题属于二次函数与一次函数的综合,关键在意找到系数的正负.10.B解析:B【分析】根据抛物线的解析式和二次函数的性质,可以判断各个选项中的说法是否正确,从而可以解答本题.【详解】解:∵抛物线y=-x 2+2x-3=-(x-1)2-2,∴该抛物线的开口向下,故选项A 错误;顶点坐标为()1,2-,故选项B 正确;当y=0时,△=22-4×(-1)×(-3)=-8<0,则该抛物线与x 轴没有交点,故选项C 错误; 对称轴是直线x=1,故选项D 错误;故选:B .【点睛】本题考查抛物线与x 轴的交点、二次函数的额性质,解答本题的关键是明确题意,利用二次函数的性质解答.11.B解析:B【分析】根据二次函数的图象与性质逐项判定即可求出答案.【详解】解:①由抛物线的对称轴可知:12b a-< 由抛物线的图象可知:a >0,∴-b <2a ,∴2a+b >0,故①正确;②当x=1时,y=a+b+c=0,当y=ax 2+bx+c=0,∴x=1或x=m ,∴当m≠1时,a+b=am 2+bm ,故②错误;③由图象可知:x=-1,y=2,即a-b+c=2,∵a+b+c=0,∴b=-1,∴c=1-a∴a+c=a+1-a=1<2,故③错误;④由于a+b=-c=a-1,∵c <0,∴a-1>0,∴a >1,∴0<11a< ∵x 0=111,a a a--=-+ ∴-1<-1+1a <0 ∴-1<x 0<0,故④正确;故选:B .【点睛】本题考查二次函数的图象与性质,解题的关键是应用数形结合思想解题.12.C解析:C【分析】由抛物线解析式可求得开口方向、对称轴、顶点坐标,可求得答案.【详解】解:∵2(2)7y x =---,∵a <0,∴抛物线开口向下,对称轴为x=2,顶点坐标为(2,-7),当2x >时,y 随x 的增大而减小,当2x <时,y 随x 的增大而增大,∴A 、B 、D 都不正确,C 正确,故选:C .【点睛】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a (x-h )2+k 中,对称轴为x=h ,顶点坐标为(h ,k ).二、填空题13.(﹣13)【分析】根据y =a (x ﹣h )2+k 的顶点是(hk )可得答案【详解】y =﹣(x+1)2+3的顶点坐标是(﹣13)故答案为:(﹣13)【点睛】本题考查了二次函数的性质熟记抛物线解析式的顶点式:解析:(﹣1,3)【分析】根据y =a (x ﹣h )2+k 的顶点是(h ,k ),可得答案.【详解】y =﹣12(x+1)2+3的顶点坐标是(﹣1,3), 故答案为:(﹣1,3).【点睛】本题考查了二次函数的性质.熟记抛物线解析式的顶点式:y =a (x−h )2+k ,顶点坐标为(h ,k )是解答此题的关键.14.;【分析】先令y=0求得点AB 的坐标再求得顶点M 的坐标根据题意即可得出平移的方向和距离进而可求得平移后的解析式【详解】解:令y=0则有解得:x1=1x2=3∴A(10)B(30)∵=(x ﹣2)2﹣1解析:221y x x =++; 【分析】先令y=0求得点A 、B 的坐标,再求得顶点M 的坐标,根据题意即可得出平移的方向和距离,进而可求得平移后的解析式.【详解】解:令y=0,则有2043x x =-+,解得:x 1=1,x 2=3,∴A(1,0),B(3,0),∵243y x x =-+=(x ﹣2)2﹣1,∴顶点M 的坐标为(2,﹣1),∵平移该抛物线,使点M 平移后的对应点M '落在x 轴上,点B 平移后的对应点B '落在y 轴上,∴将原抛物线向上平移1个单位长度,再向左平移3个单位长度,即可得到平移后的抛物线,∴平移后的顶点坐标为(﹣1,0),即平移后的解析式为y=(x+1)2=x 2+2x+1,故答案为:221y x x =++.【点睛】本题考查了二次函数的图像与几何变换,会求抛物线与坐标轴的交点和顶点坐标,熟练掌握抛物线平移的变换规律是解答的关键. 15.【分析】先求出函数图像的对称轴然后根据二次函数的增减性即可解答【详解】解:∵函数图像的对称轴为x=1∴当数值随的增大而减小故答案为【点睛】本题考查了二次函数的增减性确定二次函数的对称轴是解答本题的关键解析:1x <【分析】先求出函数图像的对称轴,然后根据二次函数的增减性即可解答.【详解】解:∵函数223y x x =--图像的对称轴为x=1∴当1x <,数值y 随x 的增大而减小.故答案为1x <.【点睛】本题考查了二次函数的增减性,确定二次函数的对称轴是解答本题的关键.16.①②【分析】由抛物线的开口方向判断a 与0的关系由抛物线与y 轴的交点判断c 与0的关系然后根据对称轴及抛物线与x 轴交点情况进行推理进而对所得结论进行判断即可【详解】解:①由图知:抛物线与x 轴有两个不同的 解析:①②.【分析】由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断即可.【详解】解:①由图知:抛物线与x 轴有两个不同的交点,则△=b 2−4ac >0,∴b 2>4ac ,故①正确;②抛物线开口向上,得:a >0;抛物线的对称轴为x =2b a-=1,b =−2a ,故b <0;抛物线交y 轴于负半轴,得:c <0;所以abc >0;故②正确; ③∵抛物线的对称轴为x =2b a-=1,b =−2a ,∴2a +b =0,故③错误; ④根据②可将抛物线的解析式化为:y =ax 2−2ax +c (a≠0); 由函数的图象知:当x =−2时,y >0;即4a−(−4a )+c =8a +c >0,故④错误; ⑤根据抛物线的对称轴方程可知:(−1,0)关于对称轴的对称点是(3,0); 当x =−1时,y <0,所以当x =3时,也有y <0,即9a +3b +c <0;故⑤错误; 所以正确的结论有:①②.故答案为:①②.【点睛】本题主要考查了图象与二次函数系数之间的关系,,掌握二次函数()20y ax bx c a =++≠系数符号与抛物线开口方向、对称轴、抛物线与y 轴的交点、抛物线与x 轴交点的个数的关系是解题的关键.17.【分析】先求得对称轴再根据抛物线的对称性求得抛物线与x 轴的另一个交点的坐标即可求解【详解】抛物线的对称轴由图象得抛物线与轴的一个交点的坐标为(30)∴抛物线与轴的另一个交点的坐标为(-10)∴元二次解析:11x =-,23x =【分析】先求得对称轴1x =,再根据抛物线的对称性求得抛物线与x 轴的另一个交点的坐标,即可求解.【详解】 抛物线的对称轴212a x a-=-=,由图象得抛物线与x 轴的一个交点的坐标为(3,0),∴抛物线与x 轴的另一个交点的坐标为(-1,0),∴元二次方程2230ax ax -+=两根为1213x x =-=,.故答案为:1213x x =-=,.【点睛】本题考查了二次函数的性质,抛物线与x 轴的交点,理解方程20ax bx c ++=的根就是函数2y ax bx c =++(0a ≠)的图象与x 轴的交点的横坐标是解题的关键. 18.24【分析】根据抛物线的解析式即可确定对称轴则可以确定AB 的长度然后根据等边三角形的周长公式即可求解【详解】抛物线的对称轴是过点作于点如下图所示则则则以为边的等边的周长为故答案为24【点睛】此题考查 解析:24【分析】根据抛物线的解析式即可确定对称轴,则可以确定AB 的长度,然后根据等边三角形的周长公式即可求解.【详解】抛物线2(4)y a x k =-+的对称轴是4x =过C 点作CD AB ⊥于点D ,如下图所示则4=AD ,则28AB AD ==则以AB 为边的等边ABC 的周长为2483=⨯.故答案为24.【点睛】此题考查了二次函数的性质,根据抛物线的解析式确定对称轴,从而求得AB 的长是关键.19.【分析】根据二次函数图象上点的坐标特征比较y1y2y3的大小比较后即可得出结论【详解】解:∵A(-3y1)B(-2y2)C (1y3)在二次函数y=3x+12x+m 的图象上∵y=3x+12x+m 的对解析:312y y y >>【分析】根据二次函数图象上点的坐标特征比较y 1、y 2、y 3的大小,比较后即可得出结论【详解】解:∵A (-3,y 1)、B (-2,y 2 )、C (1,y 3)在二次函数y= 3x 2+12x+m 的图象上,∵y= 3x 2+12x+m 的对称轴x=b 2a-=-2,开口向上, ∴当x=-3与x=-1关于x=-2对称,∵A 在对称轴左侧,y 随x 的增大而减小,则y 1>y 2,C 在对称轴右侧,y 随x 的增大而增大,∵1>-1,∴y 3>y 1,,∴y 3>y 1>y 2,故答案为:y 3>y 1>y 2.【点睛】本题考查了二次函数图象上点的坐标特征,利用二次函数图象上点的坐标关于对称轴对称的特征比较y 1、y 2、y 3的大小是解题的关键.20.【分析】要求抛物线与x 轴的交点即令y =0解方程即可【详解】令y =0则x2+2x ﹣3=0解得x1=﹣3x2=1则抛物线y =x2+2x ﹣3与x 轴的交点坐标是(﹣30)(10)故答案为:(﹣30)(10)解析:()()3.0,1,0-【分析】要求抛物线与x 轴的交点,即令y =0,解方程即可.【详解】令y =0,则x 2+2x ﹣3=0,解得x 1=﹣3,x 2=1.则抛物线y =x 2+2x ﹣3与x 轴的交点坐标是(﹣3,0),(1,0).故答案为:(﹣3,0),(1,0).【点睛】此题考察二次函数与一元二次方程的关系,一元二次方程的解即为二次函数图像与x 轴交点的横坐标.三、解答题21.(1)1A (1,1),1B (0,2),1C (-1,1)(2)223⨯ ,22n ⨯.【分析】(1)直接根据图象以及二次函数的解析式求出点的坐标即可;(2)表示出正方形所在的直线解析式,求出每一个正方形的面积,找出规律即可;【详解】解:(1)∵四边形111A OC B 是正方形且关于y 轴对称,∴ ∠11AOB =45°,又∵点1A 在二次函数图象上,设1A (x ,x),∴2x x = 且x >0,∴x=1即点1A (1,1),∴1OA,12OB = ,∴1A (1,1),1B (0,2),1C (-1,1);(2)根据正方形的性质,1OA 与y 轴的夹角为45°,故直线1OA 解析式为y x =,∵1B (0,2),求得直线11C B 的解析式为2y x =+,进而求得2A (2,4),2C (-2,4),2B (0,6),同时求得3B (0,12) ,于是12OB =,124B B =,236B B =,正方形111OA B C 面积=12222⨯⨯=, 正方形1222B A B C 面积=21448=222⨯⨯=⨯, 正方形2333B A B C 面积=216618=232⨯⨯=⨯, 正方形1n n n n B A B C -的面积=212222n n n ⨯⨯=⨯; 【点睛】本题考查了二次函数的对称性,正方形的性质,表示出正方形所在的直线解析式,求出每一个正方形的面积,找出规律是解题的关键;22.(1)223y x x =--;(2)存在,M (1,﹣2)【分析】(1)把A (﹣1,0),B (3,0),C (0,﹣3)代入y =ax 2+bx +c 可求出a 、b 、c 的值,即可确定二次函数关系式;(2)由对称可知,直线BC 与直线x =1的交点就是要求的点M ,求出直线BC 的关系式即可.【详解】解:(1)把A (﹣1,0),B (3,0),C (0,﹣3)代入y =ax 2+bx +c 得,09303a b c a b c c -+=⎧⎪++=⎨⎪=-⎩,解得,123a b c =⎧⎪=-⎨⎪=-⎩, ∴抛物线的关系式为223y x x =--;(2)抛物线223y x x =--的对称轴为212x -=-=, ∵点M 在对称轴x =1上,且△ACM 的周长最短,∴MC +MA 最小,∵点A 、点B 关于直线x =1对称, ∴连接BC 交直线x =1于点M ,此时MC +MA 最小,设直BC 的关系式为y =kx +b ,∵B (3,0),C (0,﹣3),∴303k b b +=⎧⎨=-⎩,解得,13k b =⎧⎨=-⎩, ∴直线BC 的关系式为3y x =-,当x =1时,132y =-=-,∴点M (1,﹣2),∴在抛物线的对称轴上存在一点M ,使得△ACM 的周长最短,此时M (1,﹣2).【点睛】本题考查二次函数综合,解题的关键是掌握抛物线解析式的方法和利用轴对称的性质解决线段和最短问题.23.(1)二次函数的解析式为223y x x =--;(2)375(,)28P ,四边形ABPC 的面积的最大值为758;(3)Q(1,-2),三角形QAC 1032+ 【分析】(1)根据待定系数法把A 、C 两点坐标代入2y x bx c =++可求得二次函数的解析式;(2)由抛物线解析式可求得B 点坐标,由B 、C 坐标可求得直线BC 解析式,可设出P 点坐标,用P 点坐标表示出四边形ABPC 的面积,根据二次函数的性质可求得其面积的最大值及P 点坐标;(3)求出点A 关于直线x=1对称点B ,再求直线BC 与对称轴交点Q ,将AQ+CQ 转化为BC ,在RtΔAOC 中求AC ,在RtΔBOC 中求BC 即可.【详解】(1)()()1,0,0,3A C --在曲线上,∴103b c c -+=⎧⎨=-⎩, 解得:23b c =-⎧⎨=-⎩, ∴二次函数的解析式为223y x x =--;(2)在223y x x =--中,令y=0,得x=3或x=-1,∴B(3,0),且C(0,-3),设BC 的直线为y=kx+b , 330b k b =-⎧⎨+=⎩, 解得31b k =-⎧⎨=⎩, ∴经过点B ,C 的直线为y=x-3,设点P 的坐标为()2,23x x x --,如图,过点P 作PD x ⊥轴,垂足为D ,与直线BC 交于点E ,则(),3E x x -,∵23375(x )228ABC BCP ABPC S S S ∆∆=+=--+四边形, ∴当32x =时,四边形ABPC 的面积的最大值为758; (3) ∵点A 关于直线x=1对称点B (3,0),∴直线BC 与对称轴的交点为Q ,则Q 为QA+QC 最小时位置,有(2)BC 的直线为y=x-3,当x=1,y=1-3=-2,∴Q(1,-2), ()221310AC =+-=2232AQ CQ CB OC OB +==+=∴三角形QAC 1032【点睛】本题考查了待定系数法、三角形的面积、二次函数的性质、勾股定理,掌握这些知识与方法,会用它们解决问题是关键.24.(1)43120x y ++=;(2)点M 到直线AB 的距离为6;(3)存在,413,39P ⎛⎫ ⎪⎝⎭,△PAB 面积最小值为656. 【分析】(1)根据题意可直接进行化简;(2)根据题中所给公式可直接进行代值求解;(3)设点()2,45P a a a -+,根据题意可得点P 到直线AB 的距离,然后根据三角形面积计算公式可得2327422PAB Sa a =-+,最后根据二次函数的性质可进行求解. 【详解】 解:(1)由443y x =--可得:43120x y ++=; (2)由公式22A m B n Cd A B ⨯+⨯+=+()3,2M 可得:点M 到直线AB 的距离为:22312306543d 3⨯4+⨯2+===+; (3)存在点P ,使△PAB 的面积最小,理由如下:设点()2,45P a a a -+,则有:点P 到直线AB 的距离为:2222431215123827543a a a a a d +-++-+==+,由图像可得当y>0时,x 的值为全体实数,∴238270a a -+>,∵直线443y x =--与x 轴交于点A ,与y 轴交于点B , ∴当x=0时,y=-4,当y=0时,x=-3,∴()()3,0,0,4A B --, ∴22345AB =+=, ∴22132734654222236PAB S AB d a a a ⎛⎫=⋅=-+=-+ ⎪⎝⎭, ∴当43a =时,△PAB 的面积最小,即为656PAB S =, ∴此时点P 的坐标为413,39⎛⎫ ⎪⎝⎭. 【点睛】本题主要考查二次函数的图像与性质及点到直线的距离公式,关键是根据题中所给点到直线的距离公式进行分析和求解问题即可.25.(1)y =−x 2−2x +3;(2)见详解;(3)−5≤y≤4.【分析】(1)利用表中数据和抛物线的对称性可得到抛物线的顶点坐标为(−1,4),则可设顶点式y =a (x +1)2+4,然后把(0,3)代入求出a 的值即;(2)利用描点法画二次函数图象;(3)观察函数函数图象,当41x -≤<时,函数的最大值为4,于是可得到y 的取值范围为−5≤y≤4.【详解】解:(1)由表知,抛物线的顶点坐标为(−1,4),设y =a (x +1)2+4,把(0,3)代入得a (0+1)2+4=3,解得a =−1,∴抛物线的解析式为y =−(x +1)2+4,即y =−x 2−2x +3;(2)如图,(3)如图:当−4≤x <1时,−5≤y≤4.【点睛】本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x 轴有两个交点时,可选择设其解析式为交点式来求解.也考查了二次函数的性质.26.(1)()605x -,()4x +;(2)应上涨2元或6元;(3)当销售单价上涨4元时,这款洗手液每天的销售利润y 最大,最大利润为320元.【分析】(1)根据销售单价上涨x 元,每天销售量减少5x 瓶即可得,再根据“每瓶的利润=售价-成本价”即可得;(2)结合(1)的结论,根据“这款洗手液的日销售利润y 达到300元”可建立关于x 的一元二次方程,再解方程即可得;(3)根据“每天的利润=(每瓶的售价-每瓶的成本价)⨯每天的销售量”可得y 与x 的函数关系式,再利用二次函数的性质求最值即可得.【详解】(1)由题意得:当销售单价上涨x 元时,每天销售量会减少5x 瓶,则每天的销售量为()605x -瓶,每瓶洗手液的利润是20164x x +-=+(元),故答案为:()605x -,()4x +;(2)由题意得:()()6054300x x -+=,解得16x =,22x =,答:销售单价应上涨2元或6元;(3)由题意得:(605)(4)y x x =-+,化成顶点式为25(4)320x y =--+,由二次函数的性质可知,当4x =时,y 取得最大值,最大值为320,答:当销售单价上涨4元时,这款洗手液每天的销售利润y 最大,最大利润为320元.【点睛】本题考查了一元二次方程的应用、二次函数的应用,依据题意,正确建立方程和函数关系式是解题关键.。
最新人教版初中数学九年级数学上册第二单元《二次函数》检测题(有答案解析)(2)
一、选择题1.函数y =ax 2与y =ax +a ,在第一象限内y 随x 的减小而减小,则它们在同一直角坐标系中的图象大致位置是( )A .B .C .D .2.()11,y -()20,y ()34,y 是抛物线22y x x c =-++上三点的坐标,则1y ,2y ,3y 之间的大小关系为( ) A .123y y y <<B .213y y y <<C .312y y y <<D .321y y y << 3.将抛物线2y x 先向上平移2个单位长度,再向左平移1个单位长度,则得到新抛物线的解析式为( ) A .()212y x =-+B .()212y x =--C .()212y x =++D .()=+-2y x 12 4.若整数a 使得关于x 的分式方程12322ax x x x -+=--有整数解,且使得二次函数y =(a ﹣2)x 2+2(a ﹣1)x +a +1的值恒为非负数,则所有满足条件的整数a 的值之和是( ) A .12 B .15 C .17 D .205.二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,下列结论:①ac <0;②b <0;③4ac ﹣b 2<0;④当x >﹣1时,y 随x 的增大而减小.其中正确的有( )A .4个B .3个C .2个D .1个6.根据下列表格中的对应值:x 1.98 1.99 2.00 2.012y ax bx c =++ -0.06 -0.05 -0.03 0.01 判断方程20ax bx c ++=(0a ≠,a ,b ,c 为常数)一个根x 的范围是( ) A .1.00 1.98x <<B .1.98 1.99x <<C .1.99 2.00x <<D .2.00 2.01x <<7.一次函数y cx b =-与二次函数2y ax bx c =++在同一平面直角坐标系中的图象可能是( )A .B .C .D . 8.在平面直角坐标系中抛物线2y x =的图象如图所示,已知点A 坐标为(1,1),过点A 作1//AA x 轴交抛物线于点A ,过点1A 作12//A A OA 交抛物线于点2A ,过点2A 作23//A A x 轴交抛物线于点3A 过点3A 作34//A A OA 交抛物线于点4A ,……则点2020A 的坐标为( )A .(1011, 21011)B .(-1011, 21011)C .(-1010, 21011)D .(1010, 21011)9.已知函数235y x =-+经过A (m ,1y )、B (m−1,2y ),若12y y >.则m 的取值范围是( )A .0m ≤B .12m < C .102m << D .12m << 10.下列各图象中有可能是函数()20y ax a a =+≠的图象( )A .B .C .D . 11.设()12,A y -,()21,B y ,()32,C y 是抛物线2(1)y x =-+上的三点,1y ,2y ,3y 的大小关系为( )A .123y y y >>B .132y y y >>C .321y y y >>D .312y y y >> 12.抛物线()2526y x =-+-可由25y x =-如何平移得到( )A .先向右平移2个单位,再向下平移6个单位B .先向右平移2个单位,再向上平移6个单位C .先向左平移2个单位,再向下平移6个单位D .先向左平移2个单位,再向上平移6个单位二、填空题13.小明研究抛物线y =﹣(x ﹣a )2﹣a +1(a 为常数)性质时得到如下结论: ①这条抛物线的顶点始终在直线y =x +1上;②当﹣1<x <2时,y 随x 的增大而增大,则a 的取值范围为a ≥2;③点A (x 1,y 1)与点B (x 2,y 2)在函数图象上,若x 1<x 2,x 1+x 2>2a ,则y 1>y 2; ④只存在一个a 的值,使得抛物线与x 轴的两个交点及抛物线的顶点构成等腰直角三角形;其中正确结论的序号是____.14.对于抛物线243y x x =-+,当712x -<<时,关于x 的一元二次方程2430x x t -+-=有解,则t 的取值范围是 ______.15.将抛物线2(3)2y x =--向左平移3个单位后的解析式为______.16.设A (﹣1,y 1),B (0,y 2),C (2,y 3)是抛物线y =﹣x 2+2a 上的三点,则y 1,y 2,y 3由小到大关系为_____.17.单行隧道的截面是抛物线形,且抛物线的解析式为21 3.258y x =-+,一辆车高3米,宽4米,该车________(填“能”或“不能”)通过该隧道.18.写出一个二次函数,其图像满足:①开口向下;②与y 轴交于点(0,3)-,这个二次函数的解析式可以是_______________________.19.已知(-3,y 1),(-2,y 2),(1,y 3)是抛物线2312y x x m =++上的点,则y 1,y 2,y 3的大小关系为__.20.二次函数2y x bx =+的对称轴为直线2x =,若关于x 的一元二次方程20x bx t +-=(t 为实数)在1-<x <4的范围内有解,则t 的取值范围是________.三、解答题21.如图,在平面直角坐标系中,抛物线(部分)刻画了某果园年初以来累积利润y (万元)与销售时间x (月)之间的关系(即当年前x 个月的利润总和为y ,y 和x 之间的关系).根据图象提供的信息,请解答下列问题:(1)求y 与x 的函数关系式;(2)求第8个月该果园所获利润是多少万元?(3)求到哪个月末时,该果园累积利润可达到30万元?22.已知关于x 的方程(k-1)x 2+(2k-1)x+2=0.(1)求证:无论k 取任何实数时,方程总有实数根;(2)当抛物线y =(k-1)x 2+(2k-1)x+2图象与x 轴两个交点的横坐标均为整数,且k 为正整数时,若P (a ,y 1),Q (1,y 2)是此抛物线上的两点,且y 1>y 2,请结合函数图象确定实数a 的取值范围.(3)已知抛物线y =(k-1)x 2+(2k-1)x+2恒过定点,求出定点坐标23.如图,四边形ABCD 的两条对角线AC 、BD 互相垂直,10AC BD ,当AC 、BD 的长是多少时,四边形ABCD 的面积最大?24.已知抛物线2221y x x m =--+,直线2y x =-与x 轴交于点M ,与y 轴交于点N . (1)求证:抛物线与x 轴必有公共点;(2)若抛物线与x 轴交于A 、B 两点,且抛物线的顶点C 落在此直线上,求ABC 的面积;(3)若线段MN 与抛物线有且只有一个公共点,求m 的取值范围.25.已函数21y x x=+,请结合学习函数的经验,探究它的相关性质: (1)自变量x 的取值范围是________;(2)x 与y 的几组对应值如下表,请补全表格: x … -2.5 -2 -1.5 -1-0.5 -0.2 0.2 0.5 1 1.5 2 2.5 … y … 5.85 3.5 1.58 0 -1.75 -4.96 5.04 m n2.92 4.5 6.65 …其中m =________,n =________.(3)下图中画出了函数的一部份图象,请根据上表数据,用描点法补全函数图象; (4)请写出这个函数的一条性质:________________________;(5)结合图象,直接写出方程2120x xx-+=的所有实根:________.26.为了在体育中考中取得更好地成绩,小明积极训练.在某次试投中,实心球经过的路线是如图所示的抛物线的一部份.已知实心球出手处A距离地面的高度是169米,当实心球运行的水平距离为3米时,达到最大高度259米的B处,实心球的落地点为C.(1)如图,已知AD CD⊥于D,以D为原点,CD所在直线为x轴建立平面直角坐标系,在图中画出坐标系,点B的坐标为________;(2)小明此次投掷的成绩是多少米?【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】先根据二次函数y=ax2的增减性确定出 a >0,然后判断出二次函数的开口方向,再根据一次函数的性质确定出一次函数图象经过的象限与 y 轴的交点,然后判断即可.【详解】解:∵函数y=ax2在第一象限内y随x的减小而减小,∴a>0,∴y=ax2的图象经过原点且开口方向向上,y=ax+a经过第一三象限,且与y轴的正半轴相交.A.二次函数开口向上,一次函数与y轴的负半轴相交,不符合题意B .二次函数开口向上,一次函数与y 轴的正半轴相交,符合题意C .二次函数开口向下,一次函数与y 轴的负半轴相交,不符合题意D .二次函数开口向下,一次函数与y 轴的正半轴相交,不符合题意故选:B .【点睛】本题考查了二次函数的图象,一次函数的图象,是基础题,根据二次函数的增减性确定出 a 是正数是解题的关键.2.C解析:C【分析】先判断函数的开口向下,对称轴为x=1,从而得出距离对称轴越远,函数值越小,再结合三点坐标即可判断1y ,2y ,3y 之间的大小关系.【详解】解:∵在22y x x c =-++中,21,122b a a =--=-=-, ∴该函数开口向下,对称轴为x=1,且距离对称轴越远,函数值越小,∵()11,y -、()20,y 、()34,y 三点距离对称轴的距离为:2,1,3,∴312y y y <<,故选:C .【点睛】本题考查比较二次函数值的大小.理解二次函数当a<0时距离对称轴越远的点,函数值越小是解题关键.3.C解析:C【分析】根据二次函数图象左加右减,上加下减的平移规律进行解答即可.【详解】解:将抛物线2y x 先向上平移2个单位长度,再向左平移1个单位长度,就得到抛物线:2(1)2y x =++.故答案为:C .【点睛】本题考查二次函数的图象与性质,图象平移规律“左加右减,上加下减”是解题关键. 4.B解析:B【分析】由抛物线的性质得到20a ->,2=4(1)4(2)(1)0a a a ∆---+≤然后通过解分式方程求得a 的取值,然后求和.【详解】解:∵二次函数y =(a -2)x 2+2(a -1)x +a +1的值恒为非负数,∴20a ->,2=4(1)4(2)(1)0a a a ∆---+≤解得3a ≥ 解分式方程12322ax x x x -+=--解得:62x a =- 由x ≠2得,a ≠5,由于a 、x 是整数,所以a =3,x =6,a =4,x =3,a =8,x =1,同理符合a ≥3的a 值共有3,4,8,故所有满足条件的整数a 的值之和=3+4+8=15,故选:B .【点睛】 本题考查的是抛物线和x 轴交点,涉及到解分式方程,正确理解二次函数的值恒为非负数是解题的关键.5.B解析:B【分析】由抛物线的开口方向判定a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 交点情况进行推理,进而对所得结论进行判断.【详解】解:①∵由二次函数的图象可知:抛物线的开口向上,∴a >0;又∵二次函数的图象与y 轴的交点在负半轴,∴c <0;∴ac <0,即①正确;②由图象知,对称轴x =2b a-=1,则b =﹣2a <0.故②正确; ③由图象知,抛物线与x 轴有2个交点,则b 2﹣4ac >0,故③正确;④由图象可知当x >1时,y 随x 的增大而增大;故④错误.综上所述,正确的结论是:①②③.故选:B .【点睛】此题考查学生掌握二次函数的图像与性质,考查了数形结合的数学思想,解本题的关键是根据图像找出抛物线的对称轴.6.D解析:D【分析】根据二次函数的性质、二次函数与一元二次方程的联系即可得.【详解】由表格可知,在1.98 2.01x ≤≤内,y 随x 的增大而增大,当 2.00x =时,0.030y =-<,当 2.01x =时,0.010y =>,∴在2.00 2.01x <<内,必有一个x 的值对应的函数值0y =,∴方程20ax bx c ++=(0a ≠,,,a b c 为常数)一个根x 的范围是2.00 2.01x <<, 故选:D .【点睛】本题考查了二次函数的性质、二次函数与一元二次方程的联系,熟练掌握二次函数的性质是解题关键.7.D解析:D【分析】先假设0c <,根据二次函数2y ax bx c =++图象与y 轴交点的位置可判断A ,C 是否成立;再假设0c >,0b <,判断一次函数y cx b =-的图象位置及增减性,再根据二次函数2y ax bx c =++的开口方向及对称轴位置确定B ,D 是否成立.【详解】解:若0c <,则一次函数y cx b =-图象y 随x 的增大而减小,此时二次函数2y ax bx c =++的图象与y 轴的交点在y 轴负半轴,故A ,C 错;若0c >,0b <,则一次函数y cx b =-图象y 随x 的增大而增大,且图象与y 的交点在y 轴正半轴上,此时二次函数2y ax bx c =++的图象与y 轴的交点也在y 轴正半轴,若0a >,则对称轴b x 02a =->,故B 错;若0a <,则对称轴02b x a=-<,则D 可能成立.故选:D .【点睛】本题考查一次函数图象与二次函数图象的综合判断问题,解答时可假设一次函数图象成立,分析二次函数的图象是否符合即可. 8.A解析:A【分析】根据二次函数性质可得出点A 1的坐标,求得直线A 1A 2为y =x +2,联立方程求得A 2的坐标,即可求得A 3的坐标,同理求得A 4的坐标,即可求得A 5的坐标,根据坐标的变化找出变化规律,即可找出点A 2020的坐标.【详解】∵A 点坐标为(1,1),∴直线OA 为y =x ,A 1(−1,1),∵A 1A 2∥OA ,设直线A 1A 2为y =x +b把A 1(−1,1)代入得1=-1+b解得b=2∴直线A 1A 2为y =x +2,解22y x y x =+⎧⎨=⎩得11x y =-⎧⎨=⎩或24x y =⎧⎨=⎩, ∴A 2(2,4),∴A 3(−2,4),∵A 3A 4∥OA ,设直线A 3A 4为y =x +n ,把A 3(−2,4)代入得4=-2+n ,解得n=6∴直线A 3A 4为y =x +6,解26y x y x =+⎧⎨=⎩得24x y =-⎧⎨=⎩或39x y =⎧⎨=⎩, ∴A 4(3,9),∴A 5(−3,9)同理求出A 6(4,16),A 7(-4,16)A 8(5,25),A 9(-5,25)A 10(6,36),A 11(-6,36) …,∴A 2n 为22222,22n n ⎡⎤++⎛⎫⎢⎥ ⎪⎝⎭⎢⎥⎣⎦ ∴A 2020(1011,10112),故选A .【点睛】本题考查了二次函数图象上点的坐标特征、一次函数的图象以及交点的坐标,根据坐标的变化找出变化规律是解题的关键.9.B解析:B【分析】由235y x =-+图像开口向下,对称轴为y =0知,要使12y y >,需使A 点更靠近对称轴y 轴,由此列出关于m 的不等式解之即可 .【详解】解:∵235y x =-+图像开口向下,对称轴为y =0且12y y >∴1m m <-,下面解此不等式.第一种情况,当m <0时,得1m m -<-,解得m <0;第二种情况,当01m ≤<时,得1m m <-,解得12m <; 第三种情况,当m 1≥时,得1m m <-,解得,无解; 综上所述得12m <. 故选:B .【点睛】此题考查二次函数的图像与性质,比较图像上两点的函数值.其关键是,当二次函数开口向下时,图像上的点越靠近对称轴时,函数值越大;当二次函数开口向上时,图像上的点越靠近对称轴时,函数值越小. 10.B解析:B【分析】从0a >和0a <两种情况进行分析图象的开口方向和顶点坐标,选出正确的答案.【详解】解:当0a >时,开口向上,顶点在y 轴的正半轴;当0a <时,开口向下,顶点在y 轴的负半轴,故选:B .【点睛】本题考查的是二次函数系数与图象的关系,熟练掌握二次函数的有关性质:开口方向、对称轴、顶点坐标与系数的关系是解题的关键.11.A解析:A【分析】根据二次函数的对称性、增减性即可得.【详解】由二次函数的性质可知,当1x ≥-时,y 随x 的增大而减小,抛物线2(1)y x =-+的对称轴为1x =-, ∴0x =时的函数值与2x =-时的函数值相等,即为1y ,∴点()10y ,在此抛物线上, 又点()21,B y ,()32,C y 在此抛物线上,且1012-<<<,123y y y ∴>>,故选:A .【点睛】本题考查了二次函数的对称性、增减性,熟练掌握二次函数的性质是解题关键.12.C解析:C【分析】按照“左加右减,上加下减”的规律求则可.【详解】解:因为()2526y x =-+-.所以将抛物线25y x =-先向左平移2个单位,再向下平移6个单位即可得到抛物线()2526y x =-+-.故选:C .【点睛】考查了抛物线的平移以及抛物线解析式的变化规律:左加右减,上加下减. 二、填空题13.②③④【分析】由题意易得顶点坐标为(a ﹣a+1)所以这个函数图象的顶点始终在直线y=﹣x+1上抛物线开口向下对称轴为直线x=a 由此可判定②由可判定③假设存在一个a 的值使得函数图象的顶点与x 轴的两个交解析:②③④【分析】由题意易得顶点坐标为(a ,﹣a +1),所以这个函数图象的顶点始终在直线y =﹣x +1上,抛物线开口向下,对称轴为直线x =a ,由此可判定②,由122x x a +>可判定③,假设存在一个a 的值,使得函数图象的顶点与x 轴的两个交点构成等腰直角三角形,令y =0,得﹣(x ﹣a )2﹣a +1=0,其中a ≤1,进而可求解.【详解】解:抛物线y =﹣(x ﹣a )2﹣a +1(a 为常数),①∵顶点坐标为(a ,﹣a +1),∴这个函数图象的顶点始终在直线y =﹣x +1上,故结论①错误;②∵抛物线开口向下,对称轴为直线x =a ,当﹣1<x <2时,y 随x 的增大而增大,∴a 的取值范围为a ≥2,故结论②正确;③∵x 1+x 2>2a , ∴122x x a +>, ∵抛物线对称轴为直线x =a ,∴点A 离对称轴的距离小于点B 离对称轴的距离,∴y 1>y 2,故结论③正确;④假设存在一个a 的值,使得函数图象的顶点与x 轴的两个交点构成等腰直角三角形, 令y =0,得﹣(x ﹣a )2﹣a +1=0,其中a ≤1,解得:x 1=a ,x 2=a .∵顶点坐标为(a ,﹣a +1),且顶点与x 轴的两个交点构成等腰直角三角形,∴|﹣a +1|=|a ﹣(a )|,解得:a =0或1,当a =1时,二次函数y =﹣(x ﹣1)2,此时顶点为(1,0),与x 轴的交点也为(1,0),不构成三角形,舍去;∴存在a =0,使得函数图象的顶点与x 轴的两个交点构成等腰直角三角形,故结论④正确.故答案为:②③④.【点睛】本题主要考查二次函数的图像与性质,熟练掌握二次函数的图像与性质是解题的关键. 14.﹣1≤t <8【分析】结合直角坐标系将一元二次方程转化成二次函数与一次函数图象相交的问题确定二次函数在上的取值范围即可求解【详解】解:当时关于x 的一元二次方程有解∴即在图象上和在相交∵当x=2时有最小解析:﹣1≤t <8【分析】结合直角坐标系,将一元二次方程转化成二次函数与一次函数图象相交的问题,确定二次函数 21=43y x x -+在712x -<<上的取值范围即可求解. 【详解】 解:当712x -<<时,关于x 的一元二次方程2430x x t -+-=有解, ∴243x x t -+= 即在图象上21=43y x x -+和2=y t 在712x -<<相交, ∵()21=21y x -- 当x=2时,1y 有最小值﹣1当x =﹣1是,1y 有最大值8 即当712x -<<是,﹣1≤y 1<8 ∴﹣1≤t <8故答案为:﹣1≤t <8【点睛】本题主要考查二次函数与一次函数交点的问题,解题的关键是正确理解题意,将方程转化为二次函数与一次函数相交的问题.15.【分析】根据得到该抛物线的顶点坐标为(3-2)将该点向左平移3个单位后得到的点的坐标为(0-2)即可得到解析式;【详解】∵抛物线∴顶点坐标为(3-2)∴向左平移3个单位后得到新的坐标为(0-2)∴平解析:22y x =-【分析】根据2(3)2y x =--得到该抛物线的顶点坐标为(3,-2),将该点向左平移3个单位后得到的点的坐标为(0,-2),即可得到解析式;【详解】∵抛物线2(3)2y x =--∴顶点坐标为(3,-2),∴向左平移3个单位后得到新的坐标为(0,-2),∴平移后的解析式22(33)22y x x =-+-=-.【点睛】本题考查了二次函数图象的平移变换,正确掌握二次函数平移的方法是解题的关键; 16.y3<y1<y2【分析】先根据抛物线解析式得到抛物线的开口方向和对称轴然后根据二次函数的性质通过三点与对称轴距离的远近来比较函数值的大小【详解】∵∴抛物线开口向下对称轴为y 轴∵而B (0y2)在对称轴解析:y 3<y 1<y 2【分析】先根据抛物线解析式得到抛物线的开口方向和对称轴,然后根据二次函数的性质,通过三点与对称轴距离的远近来比较函数值的大小.【详解】∵22y x a =-+,∴抛物线开口向下,对称轴为y 轴,∵而B (0,y 2)在对称轴上,A (﹣1,y 1)到对称轴的距离比C (2,y 3)近,∴y 3<y 1<y 2.故答案为:y 3<y 1<y 2.【点睛】本题考查了二次函数的图象和性质,能熟记二次函数的性质是解此题的关键.17.不能【分析】根据题意将x=2代入求出相应的y 值然后与车高比较大小即可解答本题【详解】解:将x=2代入y=-x2+325得y=-×22+325=275∵275<3∴该车不能通过隧道故答案为:不能【点睛解析:不能.【分析】根据题意,将x=2代入求出相应的y 值,然后与车高比较大小即可解答本题.【详解】解:将x=2代入y=-18x 2+3.25,得 y=-18×22+3.25=2.75, ∵2.75<3,∴该车不能通过隧道,故答案为:不能.【点睛】本题考查二次函数的应用,解题的关键是明确题意,找出所求问题需要的条件. 18.【分析】根据二次函数的性质可得出a <0利用二次函数图象上点的坐标特征可得出c=-3取a=-1b=0即可得出结论【详解】解:设二次函数的解析式为y=ax2+bx+c ∵抛物线开口向下∴a <0∵抛物线与y解析:23=--y x【分析】根据二次函数的性质可得出a <0,利用二次函数图象上点的坐标特征可得出c=-3,取a=-1,b=0即可得出结论.【详解】解:设二次函数的解析式为y=ax 2+bx+c .∵抛物线开口向下,∴a <0.∵抛物线与y 轴的交点坐标为(0,-3),∴c=-3.取a=-1,b=0时,二次函数的解析式为y=-x 2-3.故答案为:y=-x 2-3(答案不唯一).【点睛】本题考查了二次函数的性质以及二次函数图象上点的坐标特征,利用二次函数的性质及二次函数图象上点的坐标特征,找出a <0,c=-3是解题的关键.19.【分析】根据二次函数图象上点的坐标特征比较y1y2y3的大小比较后即可得出结论【详解】解:∵A(-3y1)B(-2y2)C (1y3)在二次函数y=3x+12x+m 的图象上∵y=3x+12x+m 的对解析:312y y y >>【分析】根据二次函数图象上点的坐标特征比较y 1、y 2、y 3的大小,比较后即可得出结论【详解】解:∵A (-3,y 1)、B (-2,y 2 )、C (1,y 3)在二次函数y= 3x 2+12x+m 的图象上,∵y= 3x 2+12x+m 的对称轴x=b 2a-=-2,开口向上,∴当x=-3与x=-1关于x=-2对称,∵A 在对称轴左侧,y 随x 的增大而减小,则y 1>y 2,C 在对称轴右侧,y 随x 的增大而增大,∵1>-1,∴y 3>y 1,,∴y 3>y 1>y 2,故答案为:y 3>y 1>y 2.【点睛】本题考查了二次函数图象上点的坐标特征,利用二次函数图象上点的坐标关于对称轴对称的特征比较y 1、y 2、y 3的大小是解题的关键.20.-4≤t<5【分析】先由对称轴求b 的值则二次函数关于的一元二次方程(为实数)在<<的范围内有解△=16+4t≥0在<<在x=-1时y=5当x=4时y=0用y=t 与有交点t 的范围即可求出【详解】∵二次解析:-4≤t<5.【分析】先由对称轴求b 的值,则二次函数2-4y x x =,关于x 的一元二次方程240x x t --=(t 为实数)在1-<x <4的范围内有解,△=16+4t≥0,在1-<x <4()22-424y x x x ==--在x=-1时,y=5,当x=4时,y=0,用y=t 与()22-424y x x x ==--有交点,t 的范围即可求出.【详解】∵二次函数2y x bx =+的对称轴为直线2x =, ∴222b b x a =-=-=, ∴b =-4,∴二次函数2-4y x x =,∵关于x 的一元二次方程240x x t --=(t 为实数)在1-<x <4的范围内有解, ∴△=16+4t≥0,∴t≥-4,∵()22-424y x x x ==--,在x=-1时,y=5,当x=4时,y=0, ∴y=t 与()22-424y x x x ==--有交点,t 满足条件为-4≤t<5, 则t 的取值范围是-4≤t<5.故答案为:-4≤t<5.【点睛】本题考查二次函数与一元二次方程的关系,掌握二次函数的性质,与一元二次方程的解的条件,利用对称轴会求b 的值,关于x 的一元二次方程240x x t --=(t 为实数)有解,会用△=16+4t≥0,会用y=t 与()22-424y x x x ==--有交点,求t 满足条件是解决问题的关键. 三、解答题21.(1)2122y x x =-;(2)第8个月该果园所获利是5.5万元;(3)截止到第10月末该果园累积利润可达30万元.【分析】 (1)通过构建函数模型解答销售利润的问题,应根据图象以及题目中所给的信息来列出y 与x 之间的函数关系式;(2)分别把x =7,x =8,代入函数解析式2122y x x =-,再把总利润相减就可得出; (3)把y =30代入2122y x x =-的函数关系式里,求得月份. 【详解】解:(1)由图象可知其顶点坐标为(2,-2),故可设其函数关系式为:2(2)2ya x ∵所求函数关系式的图象过(0,0), 于是得:20(02)2=--a , 解得12a =, ∴所求函数关系式为:21(2)22y x =--,即2122y x x =-. (2)把7x =代入2122y x x =-, 得1492710.52y =⨯-⨯=, 把8x =代入2122y x x =-, 得16428162y =⨯-⨯=, 第8个月该果园所获利润是:16﹣10.5=5.5万元,答:第8个月该果园所获利是5.5万元.(3)把30y =代入2122y x x =-,化简得 24600x x --=,解得12106x x ==-,(舍去).答:截止到第10月末该果园累积利润可达30万元.【点睛】此题主要考查了二次函数的性质在实际生活中的应用,读懂题目意思,确定变量,建立函数模型,尤其是注意本题图象中所给的信息是解决问题的关键.22.(1)证明见解析;(2)a >1或a <﹣4;(3)(0,2)、(﹣2,0).【分析】(1)分类讨论:该方程是一元一次方程和一元二次方程两种情况.当该方程为一元二次方程时,根的判别式△≥0,方程总有实数根;(2)通过解(k-1)x 2+(2k-1)x+2=0得到k =2,由此得到该抛物线解析式为y =x 2+3x+2,结合图象回答问题.(3)根据题意得到(k-1)x 2+(2k-1)x+2﹣y =0恒成立,由此列出关于x 、y 的方程组,通过解方程组求得该定点坐标.【详解】(1)证明:①当k =1时,方程为x+2=0,所以x =﹣2,方程有实数根,②当k≠1时,∵△=(2k-1)2﹣4x(k-1)×2=4k 2-12k+9=(2k-3)2≥0,即△≥0,∴无论k 取任何实数时,方程总有实数根(2)解:令y =0,则(k-1)x 2+(2k-1)x+2=0,(x-2)[(k-1)x+1]=0解关于x 的一元二次方程,得x 1=﹣2,x 2=11-k, ∵二次函数的图象与x 轴两个交点的横坐标均为整数,且k 为正整数,∴1-k =-1,k=2.∴该抛物线解析式为y =x 2+3x+2,由图象得到:当y 1>y 2时,a >1或a <﹣4.(3)依题意得(k-1)x 2+(2k-1)x+2﹣y =0恒成立,即k (x 2+2x )-x 2-x ﹣y+2=0恒成立,得:x 2+2x=0;x 1=0,y 1=2;x 2=-2,y 2=0所以该抛物线恒过定点(0,2)、(﹣2,0).【点睛】本题考查了抛物线与x 轴的交点与判别式的关系及二次函数图象上点的坐标特征,解答(1)题时要注意分类讨论.23.当AC=BD=5时,四边形ABCD 的面积最大.【分析】 直接利用对角线互相垂直的四边形面积求法得出12S AC BD =⋅,再利用配方法求出二次函数最值即可.【详解】解:设AC=x ,四边形ABCD 面积为S ,则BD=10-x , 则:211125(10)(5)2222S AC BD x x x =⋅=-=--+, ∴当x=5时,S 最大=252, 所以当AC=BD=5时,四边形ABCD 的面积最大.【点睛】本题考查二次函数的应用.理解对角线互相垂直的四边形面积等于对角线乘积的一半是解题关键.24.(1)见解析;(2)1;(3)32m =±或13m <或31m -<- 【分析】(1)根据根的判别式2=4∆-b ac 的正负性,即可求证;(2)利用顶点的特点,求得点C 的坐标,将点C 坐标代入抛物线即可求得抛物线解析式,继而可得抛物线与x 的交点A 、B 坐标,继而根据三角形面积公式即可求解; (3)先求出点M 、N 的坐标,再分两种情况讨论即可:【详解】解:(1)∵()222(2)4140m m ∆=---+=≥∴抛物线与x 轴必有公共点.(2)∵2221y x x m =--+∴其定点C 的横坐标为1212--⨯= 又∵定点C 在直线2y x =-上,所以定点C 的坐标为(1,1)- 把点(1,1)-代入抛物线2221y x x m =--+中,解得21m =∴抛物线方程为22(2)y x x x x =-=-∴抛物线与x 轴的交点分别为(0,0)和(2,0)∴2AB = ∴1121122ABC C S AB y =⋅=⨯⨯= (3)当0x =时,2y =-,则N 为(0,2)- 当0y =时,20x -=,即M 为(2,0)∵拋物线的对称轴为1x =∴分两种情况:①由22221y x y x x m =-⎧⎨=--+⎩,得22330x x m --+=∴()22(3)410m ∆=---+=,解得2m =±时, 线段MN 与抛物线有且只有一个公共点;②当2210m --+<,解得13m <或1m <-时,线段MN 与抛物线有且只有一个公共点.综上所述,m 的取值范围是m =或13m <或1m <-. 【点睛】本题考查二次函数与一次函数的综合问题,涉及到根的判别式,解题的关键是综合运用所学知识,特别是二次函数的性质,有一定的难度.25.(1)0x ≠;(2)2.25,2;(3)见解析;(4)答案不唯一;(5)10.6x =-,21x =,3 1.6x =.【分析】(1)观察解析式可直接得出结果;(2)分别带入相应自变量的值即可计算出;(3)先描点,然后用平滑的曲线连接各点;(4)可根写增减性,也可写相应取值范围内的最值;(5)看作两个函数交点问题来解决即可.【详解】(1)0x ≠;(2)分别将0.5x =和1x =带入解析式,得 2.25m =,2n =;(3)如图;(4)答案不唯一,如:当0x <时,y 随x 的增大而减小;(5)对于方程2120x x x-+=,可变形为212x x x +=,求该方程的实数根,即为求函数1y 与2y 交点的横坐标,其中211y x x=+,22y x =,故在图中做出22y x =的图象,如图,直接可读出三个交点得横坐标为10.6x =-,21x =,3 1.6x =.【点睛】本题考查的是新函数探究问题,但本质上考查的是对函数的研究方法和逻辑;掌握函数求自变量取值范围,以及根据函数解析式求确定自变量时的函数值是基础;画函数图象,并且注意根据自变量的取值范围来确定图象形式是关键;利用作好的图象解决问题是此类题型考查的基本核心,注重数形结合的思想,将复杂的方程或不等式简单化,是本题的目的.26.(1)253,9B ⎛⎫ ⎪⎝⎭;(2)8米 【分析】(1)根据题意直接写出坐标即可;(2)求出二次函数表达式,求C 点横坐标即可;【详解】(1)坐标系253,9B ⎛⎫ ⎪⎝⎭(2)设抛物线的表达式为225(3)(0)9y a x a =-+≠ 由抛物线经过点160,9A ⎛⎫ ⎪⎝⎭ 得21625(3)99a =-+解得19a =- 2125(3)99y x =--+ 0y =时,18x =,22x =-(舍) 答:小明此次投掷的成绩是8米【点睛】此题考查利用二次函数解决实际问题,理解函数定义是关键。
九年级数学二次函数测试题含答案(精选5套)
九年级数学 二次函数 单元试卷(一)时间90分钟 满分:100分一、选择题(本大题共10小题,每小题3分,共30分) 1.下列函数不属于二次函数的是( )A.y=(x -1)(x+2)B.y=21(x+1)2C. y=1-3x 2D. y=2(x+3)2-2x 22. 函数y=-x 2-4x+3图象顶点坐标是( )A.(2,-1)B.(-2,1)C.(-2,-1)D.(2, 1)3. 抛物线()12212++=x y 的顶点坐标是( )A .(2,1)B .(-2,1)C .(2,-1)D .(-2,-1)4. y=(x -1)2+2的对称轴是直线( )A .x=-1B .x=1C .y=-1D .y=1 5.已知二次函数)2(2-++=m m x mx y 的图象经过原点,则m 的值为 ( ) A . 0或2 B . 0 C . 2 D .无法确定6. 二次函数y =x 2的图象向右平移3个单位,得到新的图象的函数表达式是( )A. y =x 2+3B. y =x 2-3C. y =(x +3)2D. y =(x -3)27.函数y=2x 2-3x+4经过的象限是( )A.一、二、三象限B.一、二象限C.三、四象限D.一、二、四象限 8.下列说法错误的是( )A .二次函数y=3x 2中,当x>0时,y 随x 的增大而增大B .二次函数y=-6x 2中,当x=0时,y 有最大值0 C .a 越大图象开口越小,a 越小图象开口越大D .不论a 是正数还是负数,抛物线y=ax 2(a ≠0)的顶点一定是坐标原点9.如图,小芳在某次投篮中,球的运动路线是抛物线=-15x 2+3.5的一部分,若命中篮圈中心,则他与篮底的距离l 是( )A .3.5mB .4mC .4.5mD .4.6m10.二次函数y=ax 2+bx +c 的图象如图所示,下列结论错误的是( ) A .a >0. B .b >0. C .c <0. D .abc >0.(第9题) (第10题)3.05m xyx y o二、填空题(本大题共4小题,每小题3分,共12分)11.一个正方形的面积为16cm 2,当把边长增加x cm 时,正方形面积为y cm 2,则y 关于x 的函数为 。
九年级数学第二章二次函数单元测试试卷(含答案)
3.若y =(2-m)23m x -是二次函数,且开口向上,则m 的值为( )A. BCD .05.如果二次函数y ax bx c =++2(a >0)的顶点在x 轴上方,那么( )A .b 2-4ac ≥0B .b 2-4ac <0C .b 2-4ac >0D .b 2-4ac =06.已知h 关于t 的函数关系式为h =12gt 2(g 为正常数,t 为时间), 则如图2中函数的图像为( )8.关于二次函数y =x 2+4x -7的最大(小)值,叙述正确的是( )A .当x =2时,函数有最大值B .x =2时,函数有最小值C .当x =-1时,函数有最大值D .当x =-2时,函数有最小值二、填空题(每题3分,共24分)10.抛物线y =x 2+8x -4与直线x =4的交点坐标是__________. 12.已知抛物线22b x x y ++=经过点1()4a -,和1()a y -,,则1y 的值是 . 15.函数y =9-4x 2,当x =_________时有最大值________.16.两数和为10,则它们的乘积最大是_______,此时两数分别为________.三、解答题(共52分)18.已知抛物线C 1的解析式是5422+-=x x y ,抛物线C 2与抛物线C 1关于x 轴对称,求抛物线C 2的解析式.20.已知抛物线y =x 2-2x -8.(1)试说明该抛物线与x 轴一定有两个交点.(2)若该抛物线与x 轴的两个交点分别为A 、B (A 在B 的左边),且它的顶点为P , 求△ABP 的面积.21.已知:如图3,在Rt △ABC 中,∠C =90°,BC =4,AC =8,点D 在斜边AB 上, 分别作DE ⊥AC ,DF ⊥BC ,垂足分别为E 、F ,得四边形DECF ,设DE =x ,DF =y .(1)用含y 的代数式表示AE .(2)求y 与x 之间的函数关系式,并求出x 的取值范围.(3)设四边形DECF 的面积为S ,求出S 的最大值. 0t h A 0t h B 0t h D0t h C 图 2 D EA22.(2005年浙江省丽水市中考试题)某校的围墙上端由一段段相同的凹曲拱形栅栏组成,如图4所示,其拱形图形为抛物线的一部分,栅栏的跨径AB间,按相同的间距0.2米用5根立柱加固,拱高OC为0.6米.(1) 以O为原点,OC所在的直线为y轴建立平面直角坐标系,请根据以上的数据,求出抛物线y=ax2的解析式;(2)计算一段栅栏所需立柱的总长度(精确到0.1米).。
九年级数学二次函数测试题含答案(精选5套)
九年级数学二次函数测试题含答案(精选5套)九年级数学二次函数测试题含答案(精选5套)第一套:1. 将函数 $y = 2x^2 - 3x - 2$ 化简为标准形式,并求出它的顶点坐标。
答案:将函数化简为标准形式得到 $y = 2(x-\frac{3}{4})^2 -\frac{33}{8}$,顶点坐标为 $(\frac{3}{4}, -\frac{33}{8})$。
2. 求函数 $y = -x^2 + 4x + 1$ 的零点。
答案:将函数化简为标准形式得到 $y = -(x-2)^2 + 5$,令 $y = 0$,解得 $x = 2 \pm \sqrt{5}$,即零点为 $x_1 = 2 + \sqrt{5}$ 和 $x_2 = 2 -\sqrt{5}$。
3. 给定函数 $y = x^2 - 6x + 5$,求其对称轴的方程式。
答案:对称轴的方程式为 $x = \frac{-b}{2a}$,代入 $a = 1$ 和 $b = -6$ 得到 $x = \frac{6}{2} = 3$。
4. 若函数 $y = ax^2 + bx - 9$ 与 $y = -x^2 + 7x$ 有相同的图像,求$a$ 和 $b$ 的值。
答案:由于两个函数有相同的图像,所以它们的系数相等。
比较两个函数的对应系数得到 $a = -1$ 和 $b = 7$。
5. 已知函数 $y = x^2 - 4x + 5$ 的图像上存在一点 $(h, k)$,使得 $x= h - 3$ 时,$y = 2k + 12$,求点 $(h, k)$ 的坐标。
答案:将 $x = h - 3$ 代入函数得到 $y = (h-3)^2 - 4(h-3) + 5$。
代入$y = 2k + 12$ 得到 $(h-3)^2 - 4(h-3) + 5 = 2k + 12$。
整理得到 $(h-3)^2 -4(h-3) - 2k - 7 = 0$。
由于该方程为二次方程,必然存在实数解。
2023年春学期北师大版九年级数学下册第二章【二次函数】检测卷附答案解析
2023年春学期九年级数学下册第二章【二次函数】检测卷一、单选题(本大题共12小题,每小题3分,共36分)1.抛物线2y ax bx c =++经过点()1,0-、()3,0,且与y 轴交于点()0,5-,则当2x =时,y 的值为()A .5-B .3-C .1-D .52.在羽毛球比赛中,某次羽毛球的运动路线呈抛物线形,羽毛球距地面的高度()m y 与水平距离()m x 之间的关系如图所示,点B 为落地点,且1m OA =,4m OB =,羽毛球到达的最高点到y 轴的距离为3m 2,那么羽毛球到达最高点时离地面的高度为()A .25m 4B .9m 4C .3m2D .25m 163.二次函数222=++y x x 的图象的对称轴是()A .=1x -B .2x =-C .1x =D .2x =4.已知二次函数()20y ax bx c a =+-≠,其中0b >、0c >,则该函数的图象可能为()A .B .C .D .5.如图,抛物线2(0)y ax bx c a =++≠的对称轴为2x =-,下列结论正确的是()A .a<0B .0c >C .当<2x -时,y 随x 的增大而减小D .当2x >-时,y 随x 的增大而减小6.已知抛物线22()1y x =-+,下列结论错误的是()A .抛物线开口向上B .抛物线的对称轴为直线2x =C .抛物线的顶点坐标为(2,1)D .当2x <时,y 随x 的增大而增大7.关于二次函数22(4)6y x =-+的最大值或最小值,下列说法正确的是()A .有最大值4B .有最小值4C .有最大值6D .有最小值68.抛物线y =x 2+3上有两点A (x 1,y 1),B (x 2,y 2),若y 1<y 2,则下列结论正确的是()A .0≤x 1<x 2B .x 2<x 1≤0C .x 2<x 1≤0或0≤x 1<x 2D .以上都不对9.如图是拱形大桥的示意图,桥拱与桥面的交点为O ,B ,以点O 为原点,水平直线OB 为x 轴,建立平面直角坐标系,桥的拱形可以近似看成抛物线y =-0.01(x -20)2+4,桥拱与桥墩AC 的交点C 恰好位于水面,且AC ⊥x 轴,若OA =5米,则桥面离水面的高度AC 为()A .5米B .4米C .2.25米D .1.25米10.下表中列出的是一个二次函数的自变量x 与函数y 的几组对应值:x …-2013…y …6-4-6-4…下列各选项中,正确的是A .这个函数的图象开口向下B .这个函数的图象与x 轴无交点C .这个函数的最小值小于-6D .当1x >时,y 的值随x 值的增大而增大11.用配方法将二次函数21242y x x =--化为2()y a x h k =-+的形式为()A .21(2)42y x =--B .21(1)32y x =--C .21(2)52y x =--D .21(2)62y x =--12.向空中发射一枚炮弹,经x 秒后的高度为y 米,且时间与高度的函数表达式为()20y ax bx c a =++≠,若此炮弹在第6秒与第13秒时的高度相等,则下列时间中炮弹所在高度最高的是()A .第7秒B .第9秒C .第11秒D .第13秒二、填空题(本大题共8小题,每小题3分,共24分)13.某快餐店销售A 、B 两种快餐,每份利润分别为12元、8元,每天卖出份数分别为40份、80份.该店为了增加利润,准备降低每份A 种快餐的利润,同时提高每份B 种快餐的利润.售卖时发现,在一定范围内,每份A 种快餐利润每降1元可多卖2份,每份B 种快餐利润每提高1元就少卖2份.如果这两种快餐每天销售总份数不变,那么这两种快餐一天的总利润最多是______元.14.如图,在平面直角坐标系中,菱形ABCD 的一边AB 在x 轴上,顶点B 在x 轴正半轴上.若抛物线y =x 2﹣5x +4经过点C 、D ,则点B 的坐标为______.15.已知二次函数2(0)y ax bx c a =++≠,图象的一部分如图所示,该函数图象经过点(2,0)-,对称轴为直线12x =-.对于下列结论:①<0abc ;②240b ac ->;③0a b c ++=;④21(2)4am bm a b +<-(其中12m ≠-);⑤若()11,A x y 和()22,B x y 均在该函数图象上,且121x x >>,则12y y >.其中正确结论的个数共有_______个.16.二次函数23y ax ax c =-+(a<0,a ,c 均为常数)的图象经过()12A y -,、()22B y ,、()30C y ,三点,则1y ,2y ,3y 的大小关系是_____.17.如图,是一名男生推铅球时,铅球行进过程中形成的抛物线.按照图中所示的平面直角坐标系,铅球行进高度y (单位:m )与水平距离x (单位:m )之间的关系是21251233y x x =-++,则铅球推出的水平距离OA 的长是_____m .18.抛物线y =ax 2+bx +c (a ≠0)的部分图象如图所示,其与x 轴的一个交点坐标为(﹣3,0),对称轴为x =﹣1,则当y <0时,x 的取值范围是_____.19.如图,一位篮球运动员投篮,球沿抛物线20.2 2.25y x x =-++运行,然后准确落入篮筐内,已知篮筐的中心离地面的高度为3.05m ,则他距篮筐中心的水平距离OH 是_________m .20.如图是一个横断面为抛物线形状的拱桥,当水面在正常水位的情况下,拱顶(拱桥洞的最高点)离水面2m ,水面宽4m .则当水位下降m=________时,水面宽为5m ?三、解答题(本大题共5小题,每小题8分,共40分)21.如图,隧道的截面由抛物线DEC 和矩形ABCD 构成,矩形的长AB 为4m ,宽BC 为3m ,以DC 所在的直线为x 轴,线段CD 的中垂线为y 轴,建立平面直角坐标系.y 轴是抛物线的对称轴,最高点E 到地面距离为4米.(1)求出抛物线的解析式.(2)在距离地面134米高处,隧道的宽度是多少?(3)如果该隧道内设单行道(只能朝一个方向行驶),现有一辆货运卡车高3.6米,宽2.4米,这辆货运卡车能否通过该隧道?通过计算说明你的结论.22.2022年北京冬奥会即将召开,激起了人们对冰雪运动的极大热情.如图是某跳台滑雪训练场的横截面示意图,取某一位置的水平线为x 轴,过跳台终点A 作水平线的垂线为y 轴,建立平面直角坐标系.图中的抛物线2117C :1126y x x =-++近似表示滑雪场地上的一座小山坡,某运动员从点O 正上方4米处的A 点滑出,滑出后沿一段抛物线221:8C y x bx c =-++运动.(1)当运动员运动到离A 处的水平距离为4米时,离水平线的高度为8米,求抛物线2C 的函数解析式(不要求写出自变量x 的取值范围);(2)在(1)的条件下,当运动员运动水平线的水平距离为多少米时,运动员与小山坡的竖直距离为1米?(3)当运动员运动到坡顶正上方,且与坡顶距离超过3米时,求b 的取值范围.23.如图,抛物线y =x 2+x ﹣2与x 轴交于A 、B 两点,与y 轴交于点C .(1)求点A ,点B 和点C 的坐标;(2)抛物线的对称轴上有一动点P ,求PB +PC 的值最小时的点P 的坐标.24.李大爷每天到批发市场购进某种水果进行销售,这种水果每箱10千克,批发商规定:整箱购买,一箱起售,每人一天购买不超过10箱;当购买1箱时,批发价为8.2元/千克,每多购买1箱,批发价每千克降低0.2元.根据李大爷的销售经验,这种水果售价为12元/千克时,每天可销售1箱;售价每千克降低0.5元,每天可多销售1箱.(1)请求出这种水果批发价y(元/千克)与购进数量x(箱)之间的函数关系式;(2)若每天购进的这种水果需当天全部售完,请你计算,李大爷每天应购进这种水果多少箱,才能使每天所获利润最大?最大利润是多少?25.如图,抛物线的顶点为A(h,-1),与y轴交于点B1(0,)2 ,点F(2,1)为其对称轴上的一个定点.(1)求这条抛物线的函数解析式;(2)已知直线l是过点C(0,-3)且垂直于y轴的定直线,若抛物线上的任意一点P(m,n)到直线l的距离为d,求证:PF=d;(3)已知坐标平面内的点D(4,3),请在抛物线上找一点Q,使△DFQ的周长最小,并求此时 DFQ周长的最小值及点Q的坐标.参考答案:1.A2.D3.A4.C5.C6.D7.D8.D9.C10.C11.D12.B13.126414.(2,0)15.316.132y y y <<17.1018.﹣3<x <119.420.1.12521.(1)2114y x =-+(2)23(3)能通过22.(1)213482y x x =-++;(2)12米;(3)3524b ≥.23.(1)A (﹣2,0),B (1,0),C (0,﹣2).(2)P (12-,12-)24.(1)0.28.4y x =-+(110x ≤≤且x 为整数).(2)李大爷每天应购进这种水果7箱,获得的利润最大,最大利润是140元.25.(1)()21218y x =--;(2)1(3)26,14,2⎛⎫- ⎪⎝⎭。
人教版初中数学九年级数学上册第二单元《二次函数》检测(包含答案解析)
一、选择题1.对于二次函数()()2140y ax a x a =+->,下列说法正确的是( )①抛物线与x 轴总有两个不同的交点;②对于任何满足条件的a ,该二次函数的图象都经过点()4,4和()0,0两点; ③若该函数图象的对称轴为直线0x x =,则必有012x <<; ④当2x ≥时,y 随x 的增大而增大,则102a <≤ A .①②B .②③C .①④D .③④2.已知抛物线()20y ax bx c a =++<过()30A -,、()1,0O 、()15,B y -、()25,C y 四点,则1y 与2y 的大小关系是( ) A .12y y >B .12y y <C .12y y =D .不能确定3.二次函数()20y ax bx c a =++≠的图象如图所示,对称轴是直线1x =-.下列结论:①240b ac ->,②0abc <,③420a b c -+>.其中正确的是( )A .①②B .①③C .②③D .①②③4.将二次函数221y x x =+-化为2()y x h k =-+的形式时,结果正确的是( )A .2(1)2y x =+-B .2(1)2y x =--C .2(1)2y x =-+D .2(1)3y x =++5.如果二次函数2112y x ax =-+,当1x ≤时,y 随x 的增大而减小,且关于x 的分式方程4311x ax x ++=--有正整数解,则所有符合条件的a 的值之和为( ). A .9 B .8 C .4 D .36.如图为二次函数2y ax bx c =++的图象,此图象与x 轴的交点坐标分别为(-1,0)、(3,0).下列说法:0abc >;方程20ax bx c ++=的根为11x =-,23x =;当1x >时,y 随着x 的增大而增大;420a b c ++<.正确的个数是( )A .1B .2C .4D .37.如图,在ABC 中,∠B =90°,AB =3cm ,BC =6cm ,动点P 从点A 开始沿AB 向点B 以1cm /s 的速度移动,动点Q 从点B 开始沿BC 向点C 以2cm /s 的速度移动,若P ,Q 两点分别从A ,B 两点同时出发,P 点到达B 点运动停止,则PBQ △的面积S 随出发时间t 的函数图象大致是( )A .B .C .D .8.如图所示的抛物线形构件为某工业园区的新厂房骨架,为了牢固起见,构件需要每隔0.4m 加设一根不锈钢的支柱,构件的最高点距底部0.5m ,则该抛物线形构件所需不锈钢支柱的总长度为( )A .0.8mB .1.6mC .2mD .2.2m9.如图是二次函数2(,,y ax bx c a b c =++是常数,0a ≠)图象的一部分,与x 轴的交点A 在点()2,0和()3,0之间,对称轴是1x =.对于下列说法:①0abc <;②20a b +=;③30a c +>;④()(a b m am b m +≥+为实数)﹔⑤当13x时,0y >,其中正确的是( )A .①②⑤B .①②④C .②③④D .③④⑤10.据省统计局公布的数据,安徽省2019年第二季度GDP 总值约为7.9千亿元人民币,若我省第四季度GDP 总 值为y 千亿元人民币,平均每个季度GDP 增长的百分率为x ,则y 关于x 的函数表达式是( )A .7.9(12)y x =+B .27.9(1)y x =-C .27.9(1)y x =+D .27.97.9(1)7.9(1)y x x =++++11.已知一次函数y ax c =+与2y ax bx c =++,它们在同一坐标系内的大致图象是( )A .B .C .D .12.抛物线y=2(x -1)2-3向左平移3个单位长度,此时抛物线的对称轴是直线( ) A .x =-3B .x =-1C .x =-2D .x =4二、填空题13.如图,抛物线y =﹣x 2+bx+c 交x 轴于A ,B 两点,交y 轴于点C ,则bc 的值为_____(填正或负).14.已知函数y =ax 2﹣(a ﹣1)x +1,当0<x <2时,y 随x 的增大而增大,则实数a 的取值范围是_____.15.如图,抛物线224y x x =-+与x 轴交于点O ,A ,把抛物线在x 轴及其上方的部分记为1C ,将1C 以y 轴为对称轴作轴对称得到2C ,2C 与x 轴交于点B ,若直线y = m 与1C ,2C 共有4个不同的交点,则m 的取值范围是_______________.16.如图,抛物线()()13y a x x =+-与x 轴交于A ,B 两点(点A 在B 的左侧),点C 为抛物线上任意一点....(不与A ,B 重合),BD 为ABC 的AC 边上的高线,抛物线顶点E 与点D 的最小距离为1,则抛物线解析式为______.17.某种洒杯的轴截面是一条抛物线段,在酒杯中加酒,当酒水深为lcm 时,液面宽为2cm ,将酒杯装满酒后,再倾斜至与水平面成30°,此时酒杯中余下酒深度为2cm ,这个酒杯的杯口直径为______cm .18.写出一个二次函数,其图像满足:①开口向下;②与y 轴交于点(0,3)-,这个二次函数的解析式可以是_______________________. 19.设A (-3,y 1),B (-2,y 2),C (12,y 3)是抛物线y =(x+1)2-m 上的三点,则y 1,y 2,y 3的大小关系为_______.(用“>”连接) 20.抛物线y =x²-x 的顶点坐标是________三、解答题21.如图,点O 是矩形ABCD 对角线的交点,过点O 的两条互相垂直的直线分别交矩形与动点E 、F 、G 、H ,点E 在线段AB 上运动,4=AD ,2AB =,设AE x =,AH y =(1)四边形EFGH 是什么特殊四边形?请说明理由; (2)写出y 关于x 的关系式,并写出y 的取值范围; (3)求四边形EFGH 的面积及其最值. 22.如图,在平面直角坐标系中,抛物线2y x bx c =++与x 轴交于点A ,B (点A 在B的左侧),与y 轴交于点C .(1)若OB=OC=3,求抛物线的解析式及其对称轴;(2)在(1)的条件下,设点P 在抛物线的对称轴上,求PA+PC 的最小值和点P 的坐标.23.某车间生产以甲、乙两种水果为原料的某种罐头,在一次进货中得知,花费1.8万元购进的甲种水果与2.4万元购进的乙种水果质量相同,乙种水果每千克比甲种水果多2元.(1)求甲、乙两种水果的单价;(2)车间将水果制成罐头投入市场进行售卖,已知一听罐头需要甲乙水果各0.5千克,而每听罐头的成本除了水果成本之外,其他所有成本是水果成本的57还要多3元.调查发现,以28元的定价进行销售,每天只能卖出3000听,超市对它进行促销,每降低1元,平均每天可多卖出1000听,当售价为多少元时,利润最大?最大利润为多少? (3)若想使得该种罐头的销售利润每天达到6万元,并且保证降价的幅度不超过定价的15%,每听罐头的价钱应为多少钱?24.已知关于x 的方程(k-1)x 2+(2k-1)x+2=0. (1)求证:无论k 取任何实数时,方程总有实数根;(2)当抛物线y =(k-1)x 2+(2k-1)x+2图象与x 轴两个交点的横坐标均为整数,且k 为正整数时,若P (a ,y 1),Q (1,y 2)是此抛物线上的两点,且y 1>y 2,请结合函数图象确定实数a 的取值范围.(3)已知抛物线y =(k-1)x 2+(2k-1)x+2恒过定点,求出定点坐标25.疫情期间,某防疫物晶销售量y (件)与售价x (元)满足一次函数关系,部分对应值如下麦,当售价为70元时,每件商品能获得40%的利润. 售价x (元) ... 70 65 60 ... 销售量y (个)...300350400...(2)售价为多少时利润最大?最大利润为多少?26.如图,已知抛物线2y ax c =+过点()2,2-,()4,5,过定点()0,2F 的直线y kx b =+与抛物线交于A 、B 两点,点B 在点A 的右侧,过点B 作x 轴的垂线,垂足为C .(1)直接写出抛物线的解析式. (2)求证:BF BC =.(3)若1k =,在直线y kx b =+下方抛物线上是否存在点Q ,使得QBF 的面积最大?若存在,求出点Q 的坐标及QBF 的最大面积;若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】①由y=0,一元二次方程()214=0ax a x +-,判别式()2=14a ∆-=0即可判断①;②抛物线中c=0,恒过原点,当x=4,函数值为4即可判断②;③抛物线对称轴为:122x a =-当11222a<-<时,解得102a <<,求出12a >即可判断③;④0a >,对称轴为:1222x a=-<,由抛物线开口向上,在对称轴的右侧,y 随着x 的增大而增大即可判断④. 【详解】①由y=0,()214=0ax a x +-,()2=14a ∆-,当1=04a >时,()2=14=0a ∆-有一个交点,为此抛物线与x 轴总有两个不同的交点不正确;②由()()2140y ax a x a =+->中c=0,抛物线恒过原点(0,0),当x=4,()4=1166144416y a a a a ⨯-=++=-,抛物线恒过(4,4),为此对于任何满足条件的a ,该二次函数的图象都经过点()4,4和()0,0两点正确; ③()()2140y ax a x a =+->对称轴为:1441122222b a a x a a a a--=-=-==-, 当11222a<-<时,解得102a <<,∴12a >, 为此当12a >,若该函数图象的对称轴为直线0x x =,则必有012x <<正确; ④()()2140y ax a x a =+->对称轴为:122x a=-, ∵0a >,抛物线开口向上,在对称轴的右侧,y 随着x 的增大而增大, 由此1222x a=-≤, 解得10a>即0a >, 为此当2x ≥时,y 随x 的增大而增大,则102a <≤不正确. 故选择:B . 【点睛】本题考查抛物线与一元二次方程的关系,抛物线过定点,抛物线的对称轴,抛物线的增减性等问题,掌握抛物线的性质以及一元二次方程根的判别式是解题关键.2.A解析:A 【分析】根据A (-3,0)、O (1,0)两点可确定抛物线的对称轴,再根据开口方向,B 、C 两点与对称轴的远近,判断y 1与y 2的大小关系. 【详解】解:∵抛物线过A (-3,0)、O (1,0)两点, ∴抛物线的对称轴为x=312-+=-1, ∵a <0,抛物线开口向下,离对称轴越远,函数值越小,由()15,B y -、()25,C y 可知C 点离对称轴远,对应的纵坐标值小, 即y 1>y 2. 故选:A . 【点睛】此题主要考查了二次函数图象上点的坐标特征,比较抛物线上两点纵坐标的大小,关键是确定对称轴,开口方向,两点与对称轴的远近.3.B解析:B 【分析】先由抛物线与x 轴的交点个数判断出结论①,再根据二次函数图像的开口方向,及与y 轴的交点位置,对称轴的位置分别判断出,,a b c 的符号可判断结论②,最后用2x =-时,抛物线再x 轴上方判断结论③. 【详解】由图象知,抛物线与x 轴有两个交点, 方程ax 2+bx+c=0有两个不相等的实数根, ∴b 2-4ac>0,故①正确,由图象知抛物线的开口向下0a <, 抛物线与y 轴交于正半轴0c >, 对称轴直线为1x =-, ∴102ba-=-<,可推出0b <, ∴0abc >,故②错误,由图象知,当x=-2与x=0对应的y 值相同,0y >, ∴420a b c -+>,故③正确. 故选:B . 【点睛】本题主要考查了二次函数图形与系数的关系,抛物线的开口方向,与y 轴的交点,抛物线的对称轴,掌握抛物线的性质是解题的关键4.A解析:A 【分析】加上一次项系数的一半的平方凑成完全平方式,把一般式化为顶点式. 【详解】221y x x =+-=22111x x ++--=2(1)2y x =+-,故选:A . 【点睛】此题考查二次函数的一般式转化为顶点式,掌握方法是解题的关键.5.C解析:C 【分析】由二次函数的性质可先确定出a 的范围,再由二次函数的性质可确定出a 的范围,解分式方程确定出a 的取值范围,从而可确定出a 的取值,可求得答案. 【详解】 解:∵二次函数2112y x ax =-+, ∴抛物线开口向上,对称轴为x =a , ∴当x <a 时,y 随x 的增大而减小, ∵当x≤1时,y 随x 的增大而减小, ∴a≥1,解分式方程4311x ax x ++=--可得x =72a -, ∵关于x 的分式方程4311x ax x++=--有正整数解, ∵x≠1,∴满足条件的a 的值为1,3,∴所有满足条件的整数a 的值之和是1+3=4, 故选:C . 【点睛】本题考查了二次函数的性质、分式方程的解,通过解分式方程以及二次函数的性质,找出a 的值是解题的关键.6.C解析:C 【分析】①由抛物线的开口方向、与y 轴的交点判定a 、c 的符号,根据对称轴确定b 的符号; ②根据二次函数图象与x 轴的交点解答; ③利用对称轴和二次函数的图象的性质作出判断; ④将x=2代入函数关系式,结合图象判定y 的符号. 【详解】解:①∵抛物线的开口向上,对称轴在y 轴的右边,与y 轴的交点在y 的负半轴上, ∴a >0,-b2a>0,c <0, 即b <0, ∴abc >0,正确;②二次函数y=ax 2+bx+c 的图象与x 轴的交点是(-1,0)、(3,0), ∴方程ax 2+bx+c=0的根为x 1=-1,x 2=3 故本选项正确;③函数对称轴是直线x=1,根据图象当x >1时,y 随x 的增大而增大;④根据图象可知抛物线与x 轴的交点坐标是(-1,0),(3,0), ∴当x=2时,y <0∴当x=1时4a+2b+c <0,正确. 共有四个正确的, 故选:C . 【点睛】本题考查了二次函数与系数的关系的应用,主要考查学生对二次函数的图象与系数的关系的理解和运用,同时也考查了学生观察图象的能力,本题是一道比较典型的题目,具有一定的代表性,还是一道比较容易出错的题目.7.D解析:D【分析】先根据运动速度和AB 、BC 的长可得t 的取值范围,再根据运动速度可得,2AP tcm BQ tcm ==,然后利用直角三角形的面积公式可得S 与t 之间的函数关系式,最后根据二次函数的图象特点即可得.【详解】设运动时间为ts ,点P 到达点B 所需时间为31AB s =,点Q 到达点C 所需时间为32BC s =, ∴点P 、Q 同时停止运动,且t 的取值范围为03t ≤≤, 由题意,,2AP tcm BQ tcm ==,3AB cm =,()3BP AB AP t cm ∴=-=-,()21132322S BP BQ t t t t ∴=⋅=-⋅=-+, 则S 与t 之间的函数图象是抛物线在03t ≤≤的部分,且开口向下,观察四个选项可知,只有选项D 符合,故选:D .【点睛】本题考查了二次函数的图象,正确求出S 与t 之间的函数关系式是解题关键.8.B解析:B【分析】根据题意建立平面直角坐标系,得出B 、C 的坐标,然后根据待定系数法求出抛物线解析式,然后求出当当0.2x =和0.6x =时y 的值,然后即可求解.【详解】如图,由题意得()0,0.5B ,()1,0C .设抛物线的解析式为2y ax c =+,代入得12a =-,12c =,∴抛物线的解析式为21122y x =-+. 当0.2x =时,0.48y =,当0.6x =时,0.32y =. ∴()1122334420.480.32 1.6BC B C B C B C m +++=⨯+=,故选B .【点睛】本题考查了二次函数的拱桥问题,关键是要根据题意作出平面直角坐标系,并根据所建立的平面直角坐标系求出函数解析式.9.B解析:B【分析】由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断出c 的大小,然后根据对称轴判断b 的大小,然后根据特殊值求出式子的大小即可;【详解】∵对称轴在y 轴的右侧,∴a 、b 异号,∵开口向下,∴0a <,0b >,∵函数图像与y 轴正半轴相交,∴0c >,∴0abc <,故①正确;∵对称轴12b x a=-=, ∴20a b +=,故②正确;∵20a b +=,∴2b a =-,∵当1x =-时,0y a b c =-+<,∴()23<0a a c a c --+=+,故③错误;根据图示,当1m =时,有最大值;当1m ≠时,有2am bm c a b c ++≤++,∴()(a b m am b m +≥+为实数),故④正确;根据图示,当13x 时,y 不只是大于0,故⑤错误;故正确的答案是①②④;故选:B .【点睛】本题主要考查了二次函数图象与系数的关系,准确分析判断是解题的关键.10.C解析:C【分析】根据平均每个季度GDP 增长的百分率为x ,第三季度季度GDP 总值约为7.9(1+x )元,第四季度GDP 总值为7.9(1+x )2元,则函数解析式即可求得.【详解】解:设平均每个季度GDP 增长的百分率为x ,则y 关于x 的函数表达式是:y=7.9(1+x )2.故选:C .【点睛】此题主要考查了根据实际问题列二次函数关系式,正确理解增长率问题是解题关键. 11.D解析:D【分析】先根据各项中一次函数与二次函数的图象判断a 、c 的正负,二者一致的即为正确答案.【详解】解:A 、由一次函数图象可得:a >0,c <0,由二次函数图象可得a <0,c >0,矛盾,故本选项不符合题意;B 、由一次函数图象可得:a >0,c >0,由二次函数图象可得a >0,c <0,矛盾,故本选项不符合题意;C 、由一次函数图象可得:a <0,c >0,由二次函数图象可得a >0,c >0,矛盾,故本选项不符合题意;D 、由一次函数图象可得:a <0,c >0,由二次函数图象可得a <0,c >0,故本选项符合题意;故选:D .【点睛】本题考查了一次函数与二次函数的图象与性质,属于常考题型,熟练掌握二者的图象是解题的关键.12.C解析:C【分析】根据二次函数图象的平移规律得出平移后的抛物线的解析式,由此即可得出答案.【详解】由题意,平移后的抛物线的解析式为2213()3y x =-+-,即22(2)3y x =+-, 则此时抛物线的对称轴是直线2x =-,故选:C .【点睛】本题考查了二次函数图象的平移、二次函数的对称轴,熟练掌握二次函数图象的平移规律是解题关键.二、填空题13.正【分析】根据抛物线的开口方向判定a<0根据对称轴位于y 轴左侧判定ab 同号根据抛物线与y 轴交点位置判定c 的符号【详解】解:由图可知抛物线的开口方向向下则a <0抛物线的对称轴位于y 轴的左侧则ab 同号即 解析:正【分析】根据抛物线的开口方向判定a<0,根据对称轴位于y 轴左侧判定a 、b 同号,根据抛物线与y 轴交点位置判定c 的符号.【详解】解:由图可知,抛物线的开口方向向下,则a <0,抛物线的对称轴位于y 轴的左侧,则a 、b 同号,即b <0,抛物线与y 轴交于负半轴,则c <0,所以bc >0,即bc 的值为正,故答案为:正.【点睛】本题考察抛物线与x 轴的交点、二次函数图像上点的坐标特征,解题此题的关键是掌握抛物线()20y ax bx c a =++≠中a 、b 、c 所表示的几何意义. 14.【分析】分a <0a=0及a >0三种情况考虑:当a <0时利用二次函数的性质可得出﹣≥2解之可得出a 的取值范围;当a=0时原函数为一次函数y=x+1由一次函数的性质可得出y 随x 的增大而增大进而可得出a= 解析:113a -≤≤ 【分析】分a <0,a=0及a >0三种情况考虑:当a <0时,利用二次函数的性质可得出﹣()12a a --≥2,解之可得出a 的取值范围;当a=0时,原函数为一次函数y=x+1,由一次函数的性质可得出y 随x 的增大而增大,进而可得出a=0符合题意;当a >0时,利用二次函数的性质可得出,﹣()12a a --≤0,解之可得出a 的取值范围.综上此题得解. 【详解】解:根据题意得:当a <0时,﹣()12a a --≥2, 解得:﹣13≤a <0; 当a =0时,原函数为一次函数y =x +1,∵1>0,∴y 随x 的增大而增大,∴a =0符合题意;当a >0时,﹣()12a a --≤0, 解得:a ≤1.综上所述:a 的取值范围是﹣13≤a ≤1, 故答案为﹣13≤a ≤1. 【点睛】本题考查了二次函数图象与系数的关系,分a <0,a=0及a >0三种情况,找出a 的取值范围是解题的关键. 15.【分析】首先求出点A 和点B 的坐标然后求出解析式分别求出直线过抛物线顶点时m 的值以及直线过原点时m 的值结合图形即可得到答案【详解】令解得:或则A (20)B (-20)∵与关于y 轴对称:顶点为(12)∴的解析:02m <<【分析】首先求出点A 和点B 的坐标,然后求出2C 解析式,分别求出直线y m =过抛物线顶点时m的值以及直线y m =过原点时m 的值,结合图形即可得到答案. 【详解】令2240y x x =-+=,解得:0x =或2x =,则A (2,0),B (-2,0),∵1C 与2C 关于y 轴对称,1C :()2224212y x x x =-+=--+,顶点为(1,2), ∴2C 的解析式为()2221224y x x x =-++=--(20x -≤≤),顶点为(-1,2),当直线y m =过抛物线顶点时,它与1C ,2C 共有2个不同的交点,此时2m =;当直线y m =过原点时,它与1C ,2C 共有3个不同的交点,此时0m =; ∴当02m <<时,直线y m =与1C ,2C 共有4个不同的交点. 故答案为:02m <<.【点睛】本题考查了抛物线与x 轴的交点、二次函数的图象与几何变换、一次函数与二次函数的关系,数形结合是解题的关键.16.【分析】根据题意可确定出AB 两点的坐标从而求出对称轴为x=1依题意要使DE 最小则D 点必在对称轴上从而根据题意画出图形求解即可【详解】解:如图所示使DE 最小则D 点必在对称轴x=1上过点E 作EF ⊥AB 则 解析:2339424y x x =-- 【分析】根据题意可确定出A ,B 两点的坐标,从而求出对称轴为x=1,依题意要使DE 最小则D 点必在对称轴上,从而根据题意画出图形求解即可.【详解】解:如图所示,使DE 最小则D 点必在对称轴x=1上,过点E 作EF ⊥AB ,则AF=BF ,∴AD=BD ,∵BD 为ABC 的AC 边上的高线,∴∠ADB=90°,∴∠DBF=∠BDF=45°,∴DF=BF=2.当x=1时,y=-4a ,∵抛物线开口向上,∴a>0,∴EF=4a .∵DE=1,∴4a-2=1解得:a=34.∴抛物线解析式为3(1)(3)4y x x =+- 即2339424y x x =-- 故答案为:2339424y x x =--. 【点睛】 本题考查了二次函数的综合题,结图象求最值问题,利用好数形结合找出最小值的点是解题的关键.17.【分析】建立如下图所示的平面直角坐标系相当于抛物线经过点(00)(11)求得解析式为y=x²设杯口直径为2d 设倒满酒时酒的高度为m 相当于抛物线经过(dm)再由倾斜30°时杯中酒深度为2cm 时将m 用d解析:319+【分析】建立如下图所示的平面直角坐标系,相当于抛物线经过点(0,0),(1,1)求得解析式为y=x²,设杯口直径为2d ,设倒满酒时酒的高度为m ,相当于抛物线经过(d,m),再由倾斜30°时杯中酒深度为2cm 时将m 用d 代数式表示,再代入解析式中求出d 即可.【详解】解:如下图所示以酒杯内最低点为原点建立直角坐标系,故抛物线的顶点坐标为原点,设抛物线解析式为y=ax²,当酒水深为lcm 时,液面宽为2cm ,相当于抛物线且经过点(1,1),代入解析式中,a=1, 故抛物线解析式为:y=x²,设杯口直径为2d ,设倒满酒时酒的高度为m ,相当于抛物线经过(d,m),由“倾斜至与水平面成30°,此时酒杯中余下酒深度为2cm”,如下图所示:此时FH=EC=2,∠DEF=30°,DF=d ,在Rt △EDF 中,EF=2DF=2d ,3d ,在Rt △OEC 中,OE=2EC=4,∴OD=OE+ED=43d , ∴m=OD=43d , ∴将点(,43d d ),代入y=x², 即:243d d ,解得:3192d (负值舍去), 319【点睛】本题考查了二次函数的实际应用,读懂题目意思,学会建立直角坐标系并求出对应解析式是解决本题的关键.18.【分析】根据二次函数的性质可得出a <0利用二次函数图象上点的坐标特征可得出c=-3取a=-1b=0即可得出结论【详解】解:设二次函数的解析式为y=ax2+bx+c ∵抛物线开口向下∴a <0∵抛物线与y解析:23=--y x【分析】根据二次函数的性质可得出a <0,利用二次函数图象上点的坐标特征可得出c=-3,取a=-1,b=0即可得出结论.【详解】解:设二次函数的解析式为y=ax 2+bx+c .∵抛物线开口向下,∴a <0.∵抛物线与y 轴的交点坐标为(0,-3),∴c=-3.取a=-1,b=0时,二次函数的解析式为y=-x 2-3.故答案为:y=-x 2-3(答案不唯一).【点睛】本题考查了二次函数的性质以及二次函数图象上点的坐标特征,利用二次函数的性质及二次函数图象上点的坐标特征,找出a <0,c=-3是解题的关键.19.【分析】根据题目中的函数解析式和二次函数图像性质即可得到答案【详解】解:∵二次函数的解析式为∴抛物线的对称轴是直线∴当时随的增大而减小;当时随的增大而增大∵是抛物线上的三个点∴∴∴故答案是:【点睛】 解析:132y y y >>【分析】根据题目中的函数解析式和二次函数图像性质即可得到答案.【详解】解:∵二次函数的解析式为()21y x m =+-∴抛物线的对称轴是直线1x =- ,10a =>∴当1x <-时,y 随x 的增大而减小;当1x >-时,y 随x 的增大而增大∵()13,A y -、()22,B y -、31,2C y ⎛⎫ ⎪⎝⎭是抛物线()21y x m =+-上的三个点 ∴()132---=,()121---=,()13122--= ∴3212>> ∴132y y y >>.故答案是:132y y y >>【点睛】本题考查了二次函数图像与系数的关系、二次函数图像上点的坐标特征,解答本题的关键是明确题意,能利用图像的增减性进行解答.20.【分析】先把函数解析式配成顶点式得到然后根据顶点式即可得到顶点坐标【详解】解:所以抛物线的顶点坐标为故答案为:【点睛】本题考查了二次函数的性质解题的关键是熟练掌握将二次函数的一般形式化为顶点式 解析:11,24⎛⎫- ⎪⎝⎭【分析】 先把函数解析式配成顶点式得到21124()y x =--,然后根据顶点式即可得到顶点坐标. 【详解】 解:2211()24y x x x =-=--,所以抛物线的顶点坐标为11,24⎛⎫- ⎪⎝⎭, 故答案为:11,24⎛⎫- ⎪⎝⎭. 【点睛】本题考查了二次函数的性质,解题的关键是熟练掌握将二次函数的一般形式化为顶点式.三、解答题21.(1)菱形;(2)522x y =-35()22y ≤≤;(3)2 (1)4EFGH S x =-+菱,最大值为5,最小值为4.【分析】(1)由矩形的性质可得AO =CO ,BO =DO ,AB ∥CD ,AD ∥BC ,由“AAS ”可证△AEO ≌△CGO ,△DHO ≌△BFO ,可得EO =GO , HO =FO ,可证四边形EHGF 是平行四边形,且EG ⊥HF ,可得四边形EHGF 是菱形;(2)由菱形的性质可得EH GH =,由勾股定理可得2222AE AH DH DG +=+,即可求解;(3)由面积的和差关系可得四边形EFGH 的面积=x 2﹣2x +5=(x ﹣1)2+4,由二次函数的性质可求解.【详解】解:(1)在矩形ABCD 中, OD OB =,AD BC ∥∴ADB DBC ∠=∠在ODH 和OBF 中,ADB DBC OD OB HOD FOB ∠=∠⎧⎪=⎨⎪∠=∠⎩∴()ODH OBF ASA ≌∴OH OF =在OAE △和OCG 中,同理可得OE OG =∴四边形EFGH 为平行四边形又∵EG FH ⊥∴平行四边形EFGH 为菱形(2)∵AE x =,AH y =,4=AD ,2AB =∴4DH y =-,2DG BE x ==-由(1)可知EH GH =∴2222AE AH DH DG +=+即2222(4)(2)x y y x +=-+- 25x y +=522x y =- 又52x y =-,0x ≥,20x -≥,即02x ≤≤,∴0522y ≤-≤3522y ≤≤ ∴522x y =-,3522y ≤≤ (3) EFGH 112422(4)(2)22S x y y x =⋅-⋅⋅⋅-⋅⋅--菱 422x y xy =+-5542222x x x x --=+⋅-⋅ 225x x =-+2(1)4x =-+∵02x ≤≤,∴当0x =或2x =时, 5S =最大;当1x =时, 4S =最小.【点睛】本题考查了矩形的性质,菱形的判定和性质,勾股定理,一次函数的性质,二次函数的性质,利用勾股定理列出方程是解本题的22.(1)243y x x =-+,对称轴为直线2x =;(2)最小值为P 坐标(2,1).【分析】(1)根据题意得到B 、C 两点坐标,利用待定系数法及对称轴公式求解即可;(2)连接BC 交对称轴于点P ,根据对称性及两点之间线段最短可知此时PA+PC 最小,根据勾股定理可求出最小值,再由B 、C 两点坐标求出解析式,从而求得点P 坐标.【详解】解:(1)由题意知,B(3,0),C(0,3), 将B 、C 坐标代入可得:3930c b c =⎧⎨++=⎩, 解得:43b c =-⎧⎨=⎩, ∴抛物线的解析式为243y x x =-+, ∴对称轴为直线42221b x a -=-=-=⨯;(2)∵点A ,B 关于直线2x =对称,∴连接BC 交对称轴于点P ,此时PA+PC=PB+PC 的值最小,最小值为BC ,在Rt OBC 中,OB=OC=3, ∴22223332BC OB OC =+=+=,∵B(3,0),C(0,3),∴直线BC 的解析式为3y x =-+,把x =2代入3y x =-+得:y =1,∴点P(2,1),∴PA+PC 的最小值为32,点P 的坐标为(2,1).【点睛】本题考查了二次函数的性质,待定系数法求表达式,轴对称最短,勾股定理等知识,熟练掌握二次函数的性质及待定系数法求解析式是解题的关键.23.(1)甲、乙两种水果的单价分别为6元/千克、8元/千克;(2)售价为23元时,利润最大,最大利润为64000元;(3)每听罐头的价钱应为25元【分析】(1)设甲种水果的单价为x 元/千克,乙种水果的单价为()2x +元/千克,列出分式方程进行求解;(2)先根据(1)中的结果算出水果成本,然后设降价m 元,表示出销量和单个利润,列出总利润的表达式,最后求出最值;(3)令(2)中的利润为6万元,列式求出m 的值,取范围内的值求出罐头价钱.【详解】解:(1)设甲种水果的单价为x 元/千克,乙种水果的单价为()2x +元/千克,根据题意得,180********x x =+, 解得:6x =,经检验,6x =是方程的根,28x ∴+=,答:甲、乙两种水果的单价分别为6元/千克、8元/千克;(2)由(1)知每听罐头的水果成本为:60.580.57⨯+⨯=元, 每听罐头的总成本为:5773157+⨯+=元, 设降价m 元,则利润()()22815300010001000W m m m =--+=-+()210000390001000564000m m +=--+, 10000-<,∴当5m =时,W 有最大值为64000,∴当售价为23元时,利润最大,最大利润为64000元;(3)由(2)知,()2100056400060000W m =--+=,解得:7m =或3m =,但是降价的幅度不超过定价的15%,3m ∴=, ∴售价为28325-=(元),答:每听罐头的价钱应为25元.【点睛】本题考查分式方程的应用和二次函数的应用,解题的关键是根据题意列出方程或者函数表达式进行求解.24.(1)证明见解析;(2)a >1或a <﹣4;(3)(0,2)、(﹣2,0).【分析】(1)分类讨论:该方程是一元一次方程和一元二次方程两种情况.当该方程为一元二次方程时,根的判别式△≥0,方程总有实数根;(2)通过解(k-1)x 2+(2k-1)x+2=0得到k =2,由此得到该抛物线解析式为y =x 2+3x+2,结合图象回答问题.(3)根据题意得到(k-1)x 2+(2k-1)x+2﹣y =0恒成立,由此列出关于x 、y 的方程组,通过解方程组求得该定点坐标.【详解】(1)证明:①当k =1时,方程为x+2=0,所以x =﹣2,方程有实数根,②当k≠1时,∵△=(2k-1)2﹣4x(k-1)×2=4k 2-12k+9=(2k-3)2≥0,即△≥0,∴无论k 取任何实数时,方程总有实数根(2)解:令y =0,则(k-1)x 2+(2k-1)x+2=0,(x-2)[(k-1)x+1]=0解关于x 的一元二次方程,得x 1=﹣2,x 2=11-k, ∵二次函数的图象与x 轴两个交点的横坐标均为整数,且k 为正整数,∴1-k =-1,k=2.∴该抛物线解析式为y =x 2+3x+2,由图象得到:当y 1>y 2时,a >1或a <﹣4.(3)依题意得(k-1)x 2+(2k-1)x+2﹣y =0恒成立,即k (x 2+2x )-x 2-x ﹣y+2=0恒成立,得:x 2+2x=0;x 1=0,y 1=2;x 2=-2,y 2=0所以该抛物线恒过定点(0,2)、(﹣2,0).【点睛】本题考查了抛物线与x 轴的交点与判别式的关系及二次函数图象上点的坐标特征,解答(1)题时要注意分类讨论.25.(1) y=-10x+1000;(2)售价为75元时有最大利润为6250元【分析】(1)设一次函数的解析式为y=kx+b ,然后再代入点(70,300)和点(65,350)即可求解;(2)由售价为70元时,每件商品能获得40%的利润求出商品的成本为50元,进而得出商品的单个利润为(x-50),再乘以销售量y 即得到关于x 的二次函数,再利用二次函数求出最大利润即可.【详解】解:(1)设一次函数的解析式为y=kx+b ,代入点(70,300)和点(65,350),∴3007035065k b k b =+⎧⎨=+⎩,解得101000k b =-⎧⎨=⎩, ∴y 与x 的函数关系式为:y=-10x+1000;(2)∵售价为70元时,每件商品能获得40%的利润求出商品的成本为50元,∴商品的成本为:70÷(1+40%)=50元,∴商品的单个利润为:(x-50)元,设销售额为w 元,则w=(x-50)y=(x-50)(-10x+1000)=-10x²+1500x-50000,此时w 是关于x 的二次函数,且对称轴为x=75,∴当x=75时,w 有最大值为:-10×75²+1500×75-50000=6250元,故答案为:售价为75元时有最大利润为6250元.【点睛】本题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常常利函数的增减性来解答,我们首先要读懂题意,确定变量,建立函数模型,然后结合实际选择最优方案.其中要注意应该在自变量的取值范围内求最大值(或最小值).26.(1)2114y x =+;(2)见解析;(3)存在,最大值为222+,此时Q 点坐标为。
人教版九年级上册数学第二单元二次函数单元测试卷(含答案)
人教版九年级上册数学第二单元二次函数单元测试卷一.选择题(共10小题)1 •二次函数y=χ2+px+q l 当0WXWl 时,设此函数最大值为8,最小值为匸w=s-t, (S 为 常数)则VV 的值()A •与p 、q 的值都有关B •与P 无关,但与q 有关C •与p 、q 的值都无关D •与P 有关,但与q 无关 2 •二次函数y=ax'+bx+c (a≠0)的大致图象如图所示,顶点坐标为(-2, -9a)l 下列结论:φabc > 0 ; 24a+2b+c> 0 ; @9a-b+c=0 ;④若方程a (x+5) (X-I)二有两个根X 丄和X=且Xi < Xz 1则-5 < Xi<‰<1;⑤若方程IaX =+bx+c ∣=l 有四个根,则这四个根的和为-8 •其中正确的结论有()个C . 4D ・ 54・将抛物线y=x^4x∙4向左平移3个单位,再向上平移3个单位,得到抛物线的表达式为 () A . y= (x+l) z -13 B ・ y 二(x∙5) 2-5C . y= (x-5) z -13D ・ y 二(x÷l)【5 5 .如果二次函数y=x =+2x+t 与一次函数y=x 的图象两个交点的横坐标分别为m 、n,且m <l<n,则t 的取值范围是() 6 •已知抛物线y=-x z ÷mx÷2m t 当x < 1时,y 随X 的增大而增大,则抛物线的顶点在() A.第一象限 B•第二象限 C.第三象限 D.第四象限7 •定义:在平面直角坐标系中,点P (X t y)的横、纵坐标的绝对值之和叫做点P (X J y) 的勾股值,记[P]=∣x ∣+∣y ∣ •若抛物线y=ax 2÷bx÷2与直线y=x 只有一个交点C,已知点C 在 第一3 .二次函数y=aχ2÷bx+c 的图象如图所示, 那么一次函数y 二ax+b 的图象大致是(A . t> -2B . t<-2 D・象限,且2≤[C]≤4,令t=2b z-4a+2020,则t的取值范围为()A ・2017≤t≤2018B ・2018≤t≤2019C ・2019≤t≤2020D ・2020≤t≤2021X的增大而增大;④方程aχz÷bx÷c=0有一个根大于4・其中正确的结论有()A.1个B.2个 C . 3个 D.4个9 .将函数y=-χz+2x+m (OWXW4)在X轴下方的图象沿X轴向上翻折,在X轴上方的图象保持不变,得到一个新图象一新图象对应的函数最大值与最小值之差最小,则m的值为()A・2-5 B・3 C・35 D・410 .定义符号min{a, b}的含义为:当aNb 时min{a, b}=b ;当a < b 时min{a, b}=a .如:min{l, -3}=-3, min{-4, -2}=-4 •则min{-χz+l, ∙x}的最大值是( )v,z5-l2二・填空题(共6小题)H •抛物线尸(k-l) x=-x+l与X轴有交点,则k的取值范围是____________________12 .对于任意实数m,抛物线y=x2+4mx+m+n与X轴都有交点,则n的取值范围是__________13 •当-lWχW3时,二次函数y二x2-4x+5有最大值m,则m二______________24 •在平面直角坐标系中,已知A (-1, m)和B (5, m)是抛物线y=x2+bx÷l上的两点,将抛物线y=x2+bx÷l的图象向上平移n (n是正整数)个单位,使平移后的图象与X轴没有交点,则n的最小值为______________________________15 •已知抛物线y=a×2+bx+c (a<0)的对称轴为X二-1,与X轴的一个交点为(2, 0),若关于X的一元二次方程ax2+bx+c=p (P > 0)有整数根,则P的值有______________ 个16 •对于一个函数,如果它的自变量X与函数值y满足:当JWXWl时,-l≤y≤l,则称这个函数为“闭函数”.例如:y=x, y二-X均是“闭函数・.已知y=ax2+bx+c (a≠0)是-闭函数",且抛物线经过点A (1, -1)和点B (-1, 1),则a的取值范围是_____________________三•解答题(共7小题)17 •已知抛物线C : y=x3+mx+n (m, n为常数).(1) 如图,若抛物线C的顶点坐标为P (1, 2).求m, n的值;(2) 在(1)的条件下,设点Q (a, b)在抛物线C±,且点Q离y轴的距离不大于2, 直接写出b的取值范围;(3) 将抛物线C向左平移2个单位得到抛物线Cl,将抛物线C向右平移2个单位得到拋物线C2,若Cl与C2的交点坐标为(1, 3),求抛物线C的函数解析式-18 •在平面直角坐标系XOy中,抛物线y二x^2x∙3与X轴相交于A, B (点A在点B的左边),与y轴相交于C •(1)求直线BC的表达式.(2)垂直于y轴的直线I与直线BC交于点N (Xl I yι),与抛物线相交于点P (冷,y=)1 Q (X3, y≡).若Xl < Xz < X3,结合函数图象.求X1 + ×2÷X3的取值范围・19・某公司开发出一款新的节能产品,该产品的成本价为6元/件,该产品在正式投放市场前通过代销点进行了为期一个月(30天)的试营销,售价为8元/件,工作人员对销售情况进行了跟踪记录,并将记录情况绘成图象-图中的折线ODE表示日销售量y (件)与销售时间X (天)之间的函数关系,已知线段DE表示的函数关系中,时间每增加1天,日销售量减少5件・(1)_____________________ 第26天的日销售量是_______ 件,日销售利润是元. (2)求y与X之间的函数关系式,并写出X的取值范围;⑶日销售利润不低于600元的天数共有多少天?试销售期间,日销售最大利润是多少元?20・某商场销售一批衬衫,进货价为每件40元按每件50元出售:一个月内可售出500 件•已知这种衬衫每涨价1元,其销售量要减少10件•(1) 为在月内赚取8000元的利润,售价应定为每件多少元?(2) 要想获得的利润最大,该商场应当如何定价销售?21 .某工艺品厂设计了一款每件成本为11元的工艺品投放市场进行试销,经过市场调查, 得出每天销售量y (件)是每件售价X (元)(X为正整数)的一次函数,其部分对应数据如下表所示:(1) 求y关于X的函数解析式;(2) 若用W (元)表示工艺品厂试销该工艺品每天获得的利润,试求W关于X的函数解析式;(3) 该工艺品每件售价为多少元时,工艺品厂试销该工艺品每天获得的利润最大,最大利润是多少元?22.如图,在平面直角坐标系中,抛物线y=-⅛-^χ + √3与X轴交于A, B两点,与y 轴交于点C ・(1) 若点P为直线AC上方抛物线上的动点,当APAC的面积最大时,求此时P点的坐标;(2) 若点Q是抛物线对称轴上的动点,点M是抛物线上的动点,当以点M、A、C、Q为顶点的四边形是平行四边形时,直接写出此时Q点的坐标・备用图23 •如图,抛物线CI : y=-∣√ + 2x + 2的顶点为A,且与y轴于点B,将抛物线C丄沿y=a 对称后,得到抛物线G与y轴交于点C .(1)求A、B两点坐标;(2)若抛物线G上存在点D,使得ABCD为等腰直角三角形,求出此时抛物线G的表达参考答案->选择题12345678910D C C D B A B A C A二.填空题11. k≤⅛k≠ 112、n≤-^713. 104 6414、4 15、3 16、-詁QVo 或OVQ 今三、解答题17、毎:(1 )・・・挞物袋C : y=x2+wx÷n ( Jn t H为学数)顶庶坐标为P (1,2) J•—巴一1 4n~rr,2-->,∙ 2 ~ 「 ----------⅞?得巾二―2 f刃二3 ;(2 )在(1 )的条件下.≡∣S¾)^C为:y=x2-2x+3 ,・・•拋物线与》轴的交点为(0,3),过点(0 , 3 )作;C轴的平行线r与抛物线的另一个交点为(2,3) r 此时忌(2,3)到卩柏的距离为2 I••焉Q (.a t b)衽抛物线C上,目葱畑的距离不大于2 •田图象可知r2≤6≤3・(3 )将牠搦线C向左平移2个单位得到枷物线C1⅛v= (Λ+2 ) 2+m (Λ+2 )卄;将拋物钱C向右平移2个单位得到抛物线C伪y=(x-2 ) 2 + m ( x-2 ) +” ;由(x+2 ) ‘―加(x+2 ) +Λ=(Λ-2)^+m ( x-2 ) ÷n ,解得K二一:加r・・•若G与G的交点坐标为(1 r 3 ),・•・-;/«二1 ,解得加二-2 r乙rB⅛S (1,3)代入y= ( x+2 ) ‘一2 ( x+2 ) + 刃得3=9-6+Λ T.∖Λ⊂O r•・•抛物袋f的函数解忻式⅛y=r2-2x •18劣:(I )由y=x i -2r-3⅛到:y=(才一3 ) ( x+ 1 ) i C ( O z -3 )・ SrUU (-1,0) .5(3,0) I设宜线的表达式为:y=Aχ÷h (A≠O),(6=7则 •(3*÷Λ=0解得FJ , lfr=-3 隔以克进BC 的去达式⅛j=x -3 ;(2 )由y=x*-2r-3⅛到:y= (T-I) J -4 R晤以拋物賤y=X-2x-3的对称⅛⅛≡⅛x=l r 顶点坐标昱(1 r -4 )・ β∙yτ=yj.• ∙X 2*t*X ∖ = 2 •令y=_4 ” y=x-3 r J=-I ・VXl < Xz < X ),.*.-l <r ∣ < 0 r §Dl <xι+x 2+x 3 < 2 ・19、^Z(I) 340- ( 26-22 ) ×5=320 (件},320X ( 8-6 ) =640 (元)・故答崟为:320 ; 64& ;C 2 )设逹段OD 才麦示的上m 之同的函姿关系式为尸虹,»( 17 - 340}代入V 二虹中P340 = 17* . ⅜≡i5 : *-20 I.∙.⅛⅛□D 所表示的FMr 之间的函数关系式无尸2(h .很据埜京得:农段%所表示的」却之间的函散矢君弍为尸340-5 (—22 > =-α+450 . 鉄立鬲遜既所耒示的函敕关系式成方程运I(3) 当0≤x≤∣8时 I 浪据SSrS : (8-6}×20x⅞60ft i ft≡zx>iS; 当 I R < x≤30ffif I 唄据蕊爲扫:C8-6)x(-5x-450 ) ^600 I teS :x<30.Λ∣5≤x≤3G ・3O-I5+L = lft(天),-■■ B^S 利润不低亍600元的天或共有托天-••・点D 的坐标为(I & r 360),「•日矗大销皆量方3创件I360X2=720 (元)l••试销宫姿间I 日销官最大利润是720元.⅛=X÷450 •疯: -V=IK V=360 ・••交点D 的坐标为< 18 j 360 } 与X 之间的屈数关系式为P 2Ojf(O≤x≤3O)-5κ+450(l8<x≤30)20、解:(1 )设涨工元Z 根据题意得(50-40十Jr ) ( 500-IOJr ) =SOoo f 整理‰2-40r+300=0 J 解‰1=10 * x 2=^0 J 当工二 10时 J 50+10=60 ;当X 二30时.50+30=80 r此时售价应走为每件60元或80元,利润为8000元;(2 )设每件涨X 元r 利润为F 元,贝D= ( 50-40+κ ) ( 500- IX )= -I0√+400^+5000= -10 (x-20 ) 2+9000 fVa=-IO <0 Z当x=20时J 丿有最大值,最大值为9000 r•・,要想获得的利润最大J 销售价应左为70元•21、解;(1 )设y 二层十b "由表可知:当x=l5时f y = ↑ 50 ,当X=I 6时J y= 140 Z 则(150二 L5 屮[140 二 16上+6关于X 的函数解析式为:卩二-10卄300;(2〉由题意可得:w=(-10工+300) (X-Il ) =-10X 2+410X -3300 R关于X 的函数解析式为:W= -1 Ox 2+41 Ox-3300 ;(3 )・・・对称轴工二一 二20.5 J ZZ=-IO<0 J X 是整数,一 2x(-10)・・二二20或21时,W 有最大值J当x=20或21时Z 代入l 可得:w=900 ,.∙.该工艺品每件售价为20元或21元时f 工艺品厂试销该工艺品每天获得的利润最大,最大利润是900元. 22、: ( 1 ) ••物线”=一斗与话由立于/1 ■ 8两点Z.∙.0=-^2-≡^X ÷√3..∙.X ∣= 1 r X≡ = -3 r ・・・E 的坐琢为(一3 , O ),卫的坐标为(1,0) ••・•池物线,=—x 2 ~ ~3~x 轴交于点 C r・•・点C 的坐転为(O j √3 ),・・•点/的坐标为(一3 , O ) ■点C 的坐标为(O , √3 ),Ic 解析式为:y=^x÷√3 ,SO 医1 r IZt 原P 作PE 丄/18 r 态/ C 于点E ,,解得寸fc ^1°6=300⅛√i).∙.FE二一—¥“十近一(⅛+√3 ) =-^-α2-α , V∆P4C的面积二fxFEx3二一孚(°+匸)$十誓 ,<2 2 2 o.∙.当α二-耳时,"AC的面机有最大值J .俑P(W,1 召);C 2 )设烏M坐标为(X I y)t•・・点”的坐标为(一3 , O ),点〃的坐标为(1,0)r・•・抛物线的对称轴为直线χ=-l ZT点0是抛物线对称轴上的动点(「•设点。
初三二次函数综合测试题及答案
二次函数单元测评一、选择题(每题3分,共30分)1.下列关系式中,属于二次函数的是(x为自变量)( )A. B. C. D.2. 函数y=x2-2x+3的图象的顶点坐标是( )A. (1,-4)B.(-1,2)C. (1,2)D.(0,3)3. 抛物线y=2(x-3)2的顶点在( )A. 第一象限B. 第二象限C. x轴上D. y轴上二、4. 抛物线的对称轴是( )A. x=-2B.x=2C. x=-4D. x=45. 已知二次函数y=ax2+bx+c的图象如图所示,则下列结论中,正确的是(A. ab>0,c>0B. ab>0,c<0C. ab<0,c>0D. ab<0,c<06.二次函数y=ax2+bx+c的图象如图所示,则点在第___象限( ) A. 一B. 二C. 三 D. 四7. 如图所示,已知二次函数y=ax2+bx+c(a≠0)的图象的顶点P的横坐标是4,图象交x轴于点A(m,0)和点B,且m>4,那么AB的长是( )A. 4+mB. mC. 2m-8D. 8-2m8. 若一次函数y=ax+b 的图象经过第二、三、四象限,则二次函数y=ax 2+bx 的图象只可能是( )9. 已知抛物线和直线 在同一直角坐标系中的图象如图所示,抛物线的对称轴为直线x=-1,P 1(x 1,y 1),P 2(x 2,y 2)是抛物线上的点,P 3(x 3,y 3)是直线 上的点,且-1<x 1<x 2,x 3<-1,则y 1,y 2,y 3的大小关系是( )A. y 1<y 2<y 3 B. y 2<y 3<y 1 C. y 3<y 1<y 2 D. y 2<y 1<y 3 10.把抛物线的图象向左平移2个单位,再向上平移3个单位,所得的抛物线的函数关系式是( ) A. B. C. D.二、填空题(每题4分,共32分)11. 二次函数y=x 2-2x+1的对称轴方程是______________.12. 若将二次函数y=x 2-2x+3配方为y=(x-h)2+k 的形式,则13. 若抛物线y=x2-2x-3与x轴分别交于A、B两点,则AB的长为_________.14. 抛物线y=x2+bx+c,经过A(-1,0),B(3,0)两点,则这条抛物线的解析式为_____________.15. 已知二次函数y=ax2+bx+c的图象交x轴于A、B两点,交y轴于C点,且△ABC是直角三角形,请写出一个符合要求的二次函数解析式________________.(m/s)竖直向上抛物16. 在距离地面2m高的某处把一物体以初速度v出,在不计空气阻力的情况下,其上升高度s(m)与抛出时间t(s)满足:=10m/s,则该物体在运(其中g是常数,通常取10m/s2).若v动过程中最高点距地面_________m.17. 试写出一个开口方向向上,对称轴为直线x=2,且与y轴的交点坐标为(0,3)的抛物线的解析式为______________.的值是18. 已知抛物线y=x2+x+b2经过点,则y1三、解答下列各题(19、20每题9分,21、22每题10分,共38分)19. 若二次函数的图象的对称轴方程是,并且图象过A(0,-4)和B(4,0) (1)求此二次函数图象上点A关于对称轴对称的点A′的坐标(2)求此二次函数的解析式;20.在直角坐标平面内,点 O为坐标原点,二次函数 y=x2+(k-5)x-(k+4)的图象交 x轴于点A(x1,0)、B(x2,0),且(x1+1)(x2+1)=-8.(1)求二次函数解析式;(2)将上述二次函数图象沿x轴向右平移2个单位,设平移后的图象与y轴的交点为C,顶点为P,求△POC的面积.21.已知:如图,二次函数y=ax2+bx+c的图象与x轴交于A、B两点,其中A点坐标为(-1,0),点C(0,5),另抛物线经过点(1,8),M为它的顶点.(1)求抛物线的解析式;.(2)求△MCB的面积S△MCB1.考点:二次函数概念.选A.2.考点:求二次函数的顶点坐标.解析:法一,直接用二次函数顶点坐标公式求.法二,将二次函数解析式由一般形式转换为顶点式,即y=a(x-h)2+k的形式,顶点坐标即为(h,k),y=x2-2x+3=(x-1)2+2,所以顶点坐标为(1,2),答案选C.3. 考点:二次函数的图象特点,顶点坐标.解析:可以直接由顶点式形式求出顶点坐标进行判断,函数y=2(x-3)2的顶点为(3,0),所以顶点在x轴上,答案选C.4. 考点:数形结合,二次函数y=ax2+bx+c的图象为抛物线,其对称轴为.解析:抛物线,直接利用公式,其对称轴所在直线为答案选B.5.考点:二次函数的图象特征.解析:由图象,抛物线开口方向向下,抛物线对称轴在y轴右侧,抛物线与y轴交点坐标为(0,c)点,由图知,该点在x轴上方,答案选C.6.考点:数形结合,由抛物线的图象特征,确定二次函数解析式各项系数的符号特征.解析:由图象,抛物线开口方向向下,抛物线对称轴在y轴右侧,抛物线与y轴交点坐标为(0,c)点,由图知,该点在x轴上方在第四象限,答案选D.7.考点:二次函数的图象特征.解析:因为二次函数y=ax2+bx+c(a≠0)的图象的顶点P的横坐标是4,所以抛物线对称轴所在直线为x=4,交x轴于点D,所以A、B两点关于对称轴对称,因为点A(m,0),且m>4,所以AB=2AD=2(m-4)=2m-8,答案选C.8.考点:数形结合,由函数图象确定函数解析式各项系数的性质符号,由函数解析式各项系数的性质符号画出函数图象的大致形状.解析:因为一次函数y=ax+b的图象经过第二、三、四象限,所以二次函数y=ax2+bx的图象开口方向向下,对称轴在y轴左侧,交坐标轴于(0,0)点.答案选C.9. 考点:一次函数、二次函数概念图象与性质.解析:因为抛物线的对称轴为直线x=-1,且-1<x1<x2,当x>-1时,由图象知,y随x的增大而减小,所以y2<y1;又因为x3<-1,此时点P3(x3,y3)在二次函数图象上方,所以y2<y1<y3.答案选D.10.考点:二次函数图象的变化.抛物线的图象向左平移2个单位得到,再向上平移3个单位得到.答案选C.考点:二次函数性质.解析:二次函数y=x2-2x+1,所以对称轴所在直线方程.答案x=1.12.考点:利用配方法变形二次函数解析式.解析:y=x2-2x+3=(x2-2x+1)+2=(x-1)2+2.答案y=(x-1)2+2.13. 考点:二次函数与一元二次方程关系.解析:二次函数y=x2-2x-3与x轴交点A、B的横坐标为一元二次方程x2-2x-3=0的两个根,求得x1=-1,x2=3,则AB=|x2-x1|=4.答案为4.14.考点:求二次函数解析式.解析:因为抛物线经过A(-1,0),B(3,0)两点,解得b=-2,c=-3,答案为y=x2-2x-3.15.考点:此题是一道开放题,求解满足条件的二次函数解析式,.解析:需满足抛物线与x轴交于两点,与y轴有交点,与△ABC是直角三角形,但没有确定哪个角为直角,答案不唯一,如:y=x2-1.16.考点:二次函数的性质,求最大值.解析:直接代入公式,答案:7.考点:此题是一道开放题,求解满足条件的二次函数解析式,答案不唯一.解析:如:y=x2-4x+3.18.考点:二次函数的概念性质,求值.答案:.19. 考点:二次函数的概念、性质、图象,求解析式.解析:(1)A′(3,-4)(2)由题设知:∴y=x2-3x-4为所求(3)20.考点:二次函数的概念、性质、图象,求解析式. 解析:(1)由已知x 1,x 2是x 2+(k-5)x-(k+4)=0的两根又∵(x 1+1)(x 2+1)=-8 ∴x 1x 2+(x 1+x 2)+9=0 ∴-(k+4)-(k-5)+9=0 ∴k=5∴y=x 2-9为所求(2)由已知平移后的函数解析式为: y=(x-2)2-9 且x=0时y=-5 ∴C(0,-5),P(2,-9).21. 解:(1)依题意:。
九年级数学上册第二章《二次函数》测试卷-北师大版(含答案)
九年级数学上册第二章《二次函数》测试卷-北师大版(含答案)一、选择题(共10小题)1. 下列函数中是二次函数的是( )A. y=x−1B. y=1x2C. y=(x−2)2−x2D. y=x(x−1)2. 为了减少空气污染,国家要求限制塑料玩具生产,这样有时企业会被迫停产,黄山市某塑料玩具生产公司一年中每月获得的利润y(万元)和月份n之间满足函数关系式y=−n2+14n−24,则企业停产的月份为( )A. 2月和12月B. 2月至12月C. 1月D. 1月、2月和12月3. 如果函数y=kx+b的图象经过第一、二、四象限,那么函数y=kx2+b的大致图象是( )A. B.C. D.4. 若t是一元二次方程ax2+bx+c=0(a≠0)的根,则判别式Δ=b2−4ac和完全平方式M=(2at+b)2的关系是( )A. Δ=MB. Δ>MC. Δ<MD. 大小关系不能确定5. 已知抛物线y=(x+2)2−1向左平移ℎ个单位,再向下平移k个单位,得到抛物线y=(x+3)2−4,则ℎ和k的值分别为( )A. 1,3B. 3,−4C. 1,−3D. 3,−36. 如图,在平面直角坐标系中抛物线y=(x+1)(x−3)与x轴相交于A,B两点,若在抛物线上有且只有三个不同的点C1,C2,C3,使得△ABC1,△ABC2,△ABC3的面积都等于m,则m的值是( )A. 6B. 8C. 12D. 167. 若二次函数 y =x 2−x −2 的图象如图所示,则函数值 y <0 时 x 的取值范围是 ( )A. x <−1B. x >2C. −1<x <2D. x <−1 或 x >28. 定义运算“⋇”:a ⋇b ={ab 2,b >0−ab 2,b ≤0,如:1⋇(−2)=−1×(−2)2=−4,则函数 y =2⋇x 的图象大致是 ( )A. B.C. D.9. 如图所示,边长为2的等边△ABC是三棱镜的一个横截面.一束光线ME沿着与AB边垂直的方向射入到BC边上的点D处(点D与B,C不重合),反射光线沿DF的方向射出去,DK与BC 垂直,且入射光线和反射光线使∠MDK=∠FDK.设BE的长为x,△DFC的面积为y,则下列图象中能大致表示y与x的函数关系的是( )A. B.C. D.10. 设函数y=a(x−ℎ)2+k(a,ℎ,k是实数,a≠0),当x=1时,y=1;当x=8时,y=8,( )A. 若ℎ=4,则a<0B. 若ℎ=5,则a>0C. 若ℎ=6,则a<0D. 若ℎ=7,则a>0二、填空题(共7小题)11. 已知抛物线y=x2−6x+5,则满足y<0的x取值范围是.12. 已知方程ax2+bx+cy=0(a≠0,b,c为常数),请你通过变形把它写成你所熟悉的一个函数表达式的形式,则函数表达式为,成立的条件是,是函数.13. 二次函数y=5(x−3)2−2的图象可由函数y=5x2的图象沿x轴向平移个单位,再沿y轴向平移个单位得到.14. 如图是二次函数y=ax2+bx+c(a≠0)的图象的一部分,给出下列命题:①a+b+c=0;②b>2a;③ax2+bx+c=0的两根分别为−3和1;④a−2b+c>0.其中正确的命题是(填序号).15. 炮弹从炮口射出后,飞行的高度ℎ(m)与飞行时间t(s)之间的关系是:ℎ=v0tsinα−5t2,其中v0是炮弹发射的初速度,α是炮弹的发射角,当v0=300(m/s),sinα=1时,炮弹飞行的最大2高度是米.的图象与x轴围成的封闭区域内(包括边界),横纵坐标都是整数16. 二次函数y=−(x−2)2+94的点有个.(提示:可在下图中画出图象进行分析)17. 已知二次函数y=(a−1)x2+2ax+3a−2的图象的最低点在x轴上,则a等于.三、解答题(共5小题)x2的图象,通过怎样的平移得到下列函数的图象:18. 试分别说明将抛物线y=12(x+1)2(1)y=12x2−4(2)y=12(x−1)2+5(3)y=1219. 已知二次函数y=x2−x−1满足当x=m时,y=0,求代数式m2−m+2020的值.20. 请回答下列问题:(1)将抛物线y=2x2+4向下平移5个单位,写出所得新抛物线的表达式.x2,把它的顶点移到点A(0,−3)的位置,写出所得新抛物线的表达式.(2)平移抛物线y=−1321. 某跳水运动员进行10米跳台跳水训练时,身体(看成一点)在空中的运动路线是如图所示坐标系不经过原点O的一条抛物线(图中标出的数据为已知条件).在跳某个规定动作时,正常情况下该运动员在空中的最高处距水面102米,入水处距池边的距离为4米,同时,运动员在距3水面高度5米以前,必须完成规定的翻腾动作,并调整好入水姿势,否则就会出现失误.(1)求这条抛物线的解析式;米,问此次跳(2)在某次试跳中,运动员在空中调整好入水姿势时,距池边的水平距离为335水会不会失误?并通过计算说明理由.22. 不画出图象,你能说明抛物线y=−3x2与抛物线y=−3(x+2)2之间的关系吗?参考答案1. D2. D【解析】利润为 0 或小于 0 的月份停产.当 y =−n 2+14n −24=0 时,n =2 或 n =12; 当 n =1 时,y <0.所以企业停产的月份为 1 月、 2 月和 12 月. 3. D 4. A【解析】t 是一元二次方程 ax 2+bx +c =0(a ≠0) 的根,则 at 2+bt +c =0 , 所以 4a 2t 2+4abt +4ac =0 , 4a 2t 2+4abt =−4ac , 4a 2t 2+4abt +b 2=b 2−4ac , (2at +b)2=b 2−4ac =Δ . 5. A【解析】抛物线 y =(x +2)2−1 的顶点坐标是 (−2,−1),则向左平移 ℎ 个单位,再向下平移 k 个单位后的坐标为 (−2−ℎ,−1−k ),∴ 平移后抛物线的解析式为 y =(x +2+ℎ)2−k −1. ∵ 平移后抛物线的解析式为 y =(x +3)2−4, ∴2+ℎ=3,−k −1=−4, ∴ℎ=1,k =3. 6. B【解析】∵ 抛物线 y =(x +1)(x −3) 与 x 轴相交于 A ,B 两点,∴ 点 A (−1,0),点 B (3,0),该抛物线的对称轴是直线 x =−1+32=1,∴AB =3−(−1)=4,该抛物线顶点的纵坐标是:y =(1+1)×(1−3)=−4,∵ 在抛物线上有且只有三个不同的点 C 1,C 2,C 3,使得 △ABC 1,△ABC 2,△ABC 3 的面积都等于 m , ∴m =4×∣−4∣2=8.7. C8. C【解析】y =2⋇x ={2x 2,x >0−2x 2,x ≤0,当 x >0 时,图象是 y =2x 2 图象的对称轴右侧的部分; 当 x ≤0 时,图象是 y =−2x 2 图象的对称轴上及其左侧的部分. 9. A【解析】由题可知,等边三角形 ABC 的边长为 2. ∵ME ⊥AB ,∠B =60∘,∴△BED 是直角三角形,∠BED =90∘,∠B =60∘,∠BDE =30∘, ∵BE =x ,∴BD =2x ,CD =2−2x . 又 ∵DK ⊥BC ,∠MDK =∠FDK , ∴∠BDE =∠CDF =30∘. ∵∠C =60∘, ∴∠DFC =90∘, ∴△DFC 是直角三角形, ∴CF =12CD =2−2x 2=1−x ,∴cos∠CDF =DFDC =cos30∘=√32, ∴DF =√32DC =√32(2−2x )=√3−√3x ,∴y =12×DF ×CF =12(√3−√3x)(1−x ), 即 y =√32x 2−√3x +√32, 则 y 与 x 的函数关系图象是开口向上的二次函数,且过点 (0,√32). 10. C【解析】当 x =1 时,y =1; 当 x =8 时,y =8;代入函数式得:{1=a (1−ℎ)2+k,8=a (8−ℎ)2+k,∴a (8−ℎ)2−a (1−ℎ)2=7, 整理得:a (9−2ℎ)=1, 若 ℎ=4,则 a =1,故A 错误; 若 ℎ=5,则 a =−1,故B 错误; 若 ℎ=6,则 a =−13,故C 正确;若 ℎ=7,则 a =−15,故D 错误.11. 1<x <512. y =−a c x 2−bc x ,a ≠0,c ≠0,二次 13. 右,3,下,214. ①③15. 112516. 717. 218. (1)沿x轴向左平移1个单位(2)沿y轴向下平移4个单位(3)先沿x轴向右平移1个单位,再沿y轴向上平移5个单位19. 202120. (1)y=2x2−1.(2)y=−13x2−3.21. (1)y=−256x2+103x;(2)会失误,因为这时候运动员距水面423米.22. 抛物线y=−3x2的顶点坐标为(0,0);抛物线y=−3(x+2)2的顶点坐标为(2,0).抛物线y=−3x2与抛物线y=−3(x+2)2形状相同,开口方向都向下,对称轴分别是y轴和直线x=−2.抛物线y=−3(x+2)2是由抛物线y=−3x2向左平移2个单位长度而得到的.。
最新人教版初中数学九年级数学上册第二单元《二次函数》测试(答案解析)
一、选择题1.将抛物线2y x 先向上平移2个单位长度,再向左平移1个单位长度,则得到新抛物线的解析式为( ) A .()212y x =-+ B .()212y x =--C .()212y x =++ D .()=+-2y x 12 2.一次函数y =ax +c 与二次函数y =ax 2+bx +c 在同一个平面坐标系中图象可能是( ) A . B .C .D .3.若整数a 使得关于x 的分式方程12322ax x x x -+=--有整数解,且使得二次函数y =(a ﹣2)x 2+2(a ﹣1)x +a +1的值恒为非负数,则所有满足条件的整数a 的值之和是( ) A .12 B .15 C .17 D .20 4.已知函数235y x =-+经过A (m ,1y )、B (m−1,2y ),若12y y >.则m 的取值范围是( )A .0m ≤B .12m <C .102m <<D .12m << 5.设()12,A y -,()21,B y ,()32,C y 是抛物线2(1)y x =-+上的三点,1y ,2y ,3y 的大小关系为( )A .123y y y >>B .132y y y >>C .321y y y >>D .312y y y >> 6.将抛物线22y x =先向右平移1个单位长度,再向下平移3个单位长度后,所得的抛物线对应的函数关系式是 ( )A .2(2-1)-3y x =B .22(-1)-3y x =C .2(21)-3y x =+D .22(1)-3y x =+ 7.如图所示,一段抛物线:()233044y x x x =-+≤≤记为1C ,它与x 轴交于两点O ,1A ;将1C 绕1A 旋转180°得到2C ,交x 轴于2A ;将2C 绕2A 旋转180°得到3C ,交x 轴于3A ;⋅⋅⋅如此进行下去,直至得到506C ,则抛物线506C 的顶点坐标是( )A .()2020,3B .()2020,3-C .()2022,3D .()2022,3- 8.二次函数2y ax bx c =++的图象如图所示,那么一次函数y ax b =+的图象大致是( ).A .B .C .D .9.据省统计局公布的数据,安徽省2019年第二季度GDP 总值约为7.9千亿元人民币,若我省第四季度GDP 总 值为y 千亿元人民币,平均每个季度GDP 增长的百分率为x ,则y 关于x 的函数表达式是( )A .7.9(12)y x =+B .27.9(1)y x =-C .27.9(1)y x =+D .27.97.9(1)7.9(1)y x x =++++ 10.抛物线()2526y x =-+-可由25y x =-如何平移得到( )A .先向右平移2个单位,再向下平移6个单位B .先向右平移2个单位,再向上平移6个单位C .先向左平移2个单位,再向下平移6个单位D .先向左平移2个单位,再向上平移6个单位11.二次函数2y ax bx c =++的图象如图所示,则下列关于该函数说法中正确的是( )A .0b <B .0c >C .0a b c ++=D .240b ac -< 12.在平面直角坐标系中,将函数22y x =-的图象先向右平移1个单位长度,再向上平移5个单位长度,得到图象的函数解析式是( )A .22(1)5y x =-++B .22(1)5y x =--+C .22(1)5y x =-+-D .22(1)5y x =---第II 卷(非选择题)请点击修改第II 卷的文字说明参考答案二、填空题13.抛物线y =﹣12(x +1)2+3的顶点坐标是_____. 14.公园广场前有一喷水池,喷水头位于水池中央,从喷头喷出水珠的路径可近似看作抛物线.如图是根据实际情境抽象出的图象,水珠在空中划出的曲线恰好是抛物线26y x x =-+(单位:m )的一部分,则水珠落地点(点P )到喷水口(点O )的距离为________m .15.已知抛物线y =x 2+9的最小值是y =_____.16.将二次函数 ()2213y x =-+ 的图象先向左平移2个单位,再向下平移4个单位,则所得图象的函数表达式为________.17.若抛物线256y x x =--与x 轴分别交于A 、B 两点,则AB 的长为_______________.18.如图,在平面直角坐标系中,点A ,B 是一次函数y x =图像上两点,它们的横坐标分别为1,4,点E 是抛物线248y x x =-+图像上的一点,则ABE △的面积最小值是______.19.已知关于x 的一元二次方程x 2﹣(2m +1)x +m 2﹣1=0有实数根a ,b ,则代数式a 2﹣ab +b 2的最小值为_____.20.过点()0,2,()2,2,()2,1--的二次函数图象开口向_______(填“上”或“下”)三、解答题21.如图,点O 是矩形ABCD 对角线的交点,过点O 的两条互相垂直的直线分别交矩形与动点E 、F 、G 、H ,点E 在线段AB 上运动,4=AD ,2AB =,设AE x =,AH y =(1)四边形EFGH 是什么特殊四边形?请说明理由;(2)写出y 关于x 的关系式,并写出y 的取值范围;(3)求四边形EFGH 的面积及其最值.22.(1)若抛物线23y x x a =++与x 轴只有一个交点,求实数a 的值;(2)已知点()3,0在抛物线()233y x k x k =-++-上,求此抛物线的对称轴. 23.在平面直角坐标系xOy 中,抛物线223=+-y mx mx 与x 轴交于A ,B 两点(点A 在点B 左侧),与y 轴交于点C ,4AB =.(1)直接写出抛物线的对称轴为直线____,点A 的坐标为___.(2)求抛物线的解析式(化为一般式);(3)若将抛物线223=+-y mx mx 沿x 轴方向平移()0n n >个单位长度,使得平移后的抛物线与线段AC 恰有一个公共点,结合函数图象,回答下列问题:①若向左平移,则n 的取值范围是______.②若向右平移,则n 的取值范围是______.24.如图,四边形ABCD 的两条对角线AC 、BD 互相垂直,10AC BD ,当AC 、BD 的长是多少时,四边形ABCD 的面积最大?25.某超市销售一款洗手液,这款洗手液成本价为每瓶16元,当销售单价定为每瓶20元时,每天可售出60瓶.市场调查反应:销售单价每上涨1元,则每天少售出5瓶.若设这款洗手液的销售单价上涨x 元,每天的销售量利润为y 元.(1)每天的销售量为___瓶,每瓶洗手液的利润是___元;(用含x 的代数式表示) (2)若这款洗手液的日销售利润y 达到300元,则销售单价应上涨多少元?(3)当销售单价上涨多少元时,这款洗手液每天的销售利润y 最大,最大利润为多少元? 26.某服装批发市场销售一种衬衫,衬衫每件进货价为50元,规定每件售价不低于进货价,经市场调查,每月的销售量y (件)与每件的售价x (元)满足一次函数关系202600y x =+.(1)该批发市场每月想从这种衬衫销售中获利24000元,又想尽量给客户实惠,该如何给这种衬衫定价?(2)物价部门规定,该衬衫的每件利润不允许高于进货价的30%,设这种衬衫每月的总利润为w (元),那么售价定为多少元可获得最大利润?最大利润是多少?【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据二次函数图象左加右减,上加下减的平移规律进行解答即可.【详解】解:将抛物线2y x 先向上平移2个单位长度,再向左平移1个单位长度,就得到抛物线:2(1)2y x =++.故答案为:C .【点睛】本题考查二次函数的图象与性质,图象平移规律“左加右减,上加下减”是解题关键. 2.B解析:B【分析】根据两个函数图象与y 轴交于同一点可排除选项A ,再根据抛物线的开口方向和对应一次函数的增减性即可做出选择.【详解】解:∵一次函数和二次函数都经过y 轴上的(0,c ),∴两个函数图象交于y 轴上的同一点,故A 不符合题意;当a >0时,二次函数y =ax 2+bx +c 的图象开口向上,一次函数y =ax +c 中y 值随x 值的增大而增大,故D 不符合题意;当a <0时,二次函数y =ax 2+bx +c 的图象开口向上,一次函数y =ax +c 中y 值随x 值的增大而减小,故C 不符合题意.故选:B .【点睛】本题考查二次函数及一次函数的图象与性质,熟练掌握两个函数图象与系数的关系是解答的关键.3.B解析:B由抛物线的性质得到20a ->,2=4(1)4(2)(1)0a a a ∆---+≤然后通过解分式方程求得a 的取值,然后求和.【详解】解:∵二次函数y =(a -2)x 2+2(a -1)x +a +1的值恒为非负数,∴20a ->,2=4(1)4(2)(1)0a a a ∆---+≤解得3a ≥ 解分式方程12322ax x x x -+=--解得:62x a =- 由x ≠2得,a ≠5,由于a 、x 是整数,所以a =3,x =6,a =4,x =3,a =8,x =1,同理符合a ≥3的a 值共有3,4,8,故所有满足条件的整数a 的值之和=3+4+8=15,故选:B .【点睛】 本题考查的是抛物线和x 轴交点,涉及到解分式方程,正确理解二次函数的值恒为非负数是解题的关键.4.B解析:B【分析】由235y x =-+图像开口向下,对称轴为y =0知,要使12y y >,需使A 点更靠近对称轴y轴,由此列出关于m 的不等式解之即可 .【详解】解:∵235y x =-+图像开口向下,对称轴为y =0且12y y > ∴1m m <-,下面解此不等式.第一种情况,当m <0时,得1m m -<-,解得m <0;第二种情况,当01m ≤<时,得1m m <-,解得12m <; 第三种情况,当m 1≥时,得1m m <-,解得,无解; 综上所述得12m <. 故选:B .【点睛】此题考查二次函数的图像与性质,比较图像上两点的函数值.其关键是,当二次函数开口向下时,图像上的点越靠近对称轴时,函数值越大;当二次函数开口向上时,图像上的点越靠近对称轴时,函数值越小. 5.A【分析】根据二次函数的对称性、增减性即可得.【详解】由二次函数的性质可知,当1x ≥-时,y 随x 的增大而减小,抛物线2(1)y x =-+的对称轴为1x =-, ∴0x =时的函数值与2x =-时的函数值相等,即为1y ,∴点()10y ,在此抛物线上, 又点()21,B y ,()32,C y 在此抛物线上,且1012-<<<,123y y y ∴>>,故选:A .【点睛】本题考查了二次函数的对称性、增减性,熟练掌握二次函数的性质是解题关键. 6.B解析:B【分析】先确定出原抛物线的顶点坐标,然后根据向右平移横坐标加,向下平移纵坐标减求出新图象的顶点坐标,然后写出即可.【详解】解:抛物线y =22x 的顶点坐标为(0,0),向右平移1个单位,再向下平移3个单位后的图象的顶点坐标为(1,−3),所以,所得图象的解析式为y =22(1)x - -3.故选:B【点睛】本题考查了函数图象的平移,根据平移规律“左加右减,上加下减”利用顶点的变化确定图象的变化是解题的规律.7.D解析:D【分析】 解方程2334x x -+=0得A 1(4,0),再利用旋转的性质得A 2(4×2,0),A 3(4×3,0),依此规律得到A 505(4×505,0),A 506(4×506,0),且抛物线C 506的开口向上,利用交点式,设抛物线C 506的解析式为y =34(x−2020)(x−2024),然后确定此抛物线顶点坐标即可.【详解】当y =0时,2334x x -+=0,解得x 1=0,x 2=4, ∴A 1(4,0), ∵将C 1绕A 1旋转180°得到C 2,交x 轴于A 2,将C 2绕A 2旋转180得到C 3,∴A 2(4×2,0),A 3(4×3,0),∴A 505(4×505,0),A 506(4×506,0),即A 505(2020,0),A 506(2024,0), ∵抛物线C 506的开口向上,∴抛物线C 506的解析式为y =34(x−2020)(x−2024), ∵抛物线的对称轴为直线x =2022, 当x =2022时,y =34(2022−2020)(2022−2024)=−3, ∴抛物线C 506的顶点坐标是(2022,−3).故选:D .【点睛】 本题考查了抛物线与x 轴的交点:把求二次函数y =ax 2+bx +c (a ,b ,c 是常数,a≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程.也考查了二次函数的几何变换和二次函数的性质.8.C解析:C【分析】根据二次函数图象,知道开口和对称轴,判断a 、b 的符号,再进行判断一次函数的图象.【详解】解:根据二次函数图象知:开口向下,则0a < 故一次函数从左往右是下降趋势.对称轴再y 轴左边,故02b a-< 即得:0b < 故一次函数交y 轴的负半轴. 则一次函数y ax b =+图象便为C 选项故本题选择C .【点睛】本题属于二次函数与一次函数的综合,关键在意找到系数的正负.9.C解析:C【分析】根据平均每个季度GDP 增长的百分率为x ,第三季度季度GDP 总值约为7.9(1+x )元,第四季度GDP 总值为7.9(1+x )2元,则函数解析式即可求得.【详解】解:设平均每个季度GDP 增长的百分率为x ,则y 关于x 的函数表达式是:y=7.9(1+x )2.故选:C .【点睛】此题主要考查了根据实际问题列二次函数关系式,正确理解增长率问题是解题关键. 10.C解析:C【分析】按照“左加右减,上加下减”的规律求则可.【详解】解:因为()2526y x =-+-.所以将抛物线25y x =-先向左平移2个单位,再向下平移6个单位即可得到抛物线()2526y x =-+-.故选:C .【点睛】考查了抛物线的平移以及抛物线解析式的变化规律:左加右减,上加下减. 11.C解析:C【分析】由抛物线的开口方向判断a 与0,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断.【详解】A .因为抛物线的开口向下,则a<0;又因为抛物线的对称轴在y 轴右侧,则-2b a>0,所以b>0,故A 错误;B .抛物线与y 轴的交点在y 轴负半轴,则c<0,故B 错误;C .抛物线与x 轴一个交点为(1,0),则x=1时,0y a b c =++=,故C 正确;D .抛物线与x 轴有两个交点,则240b ac ∆=->,故D 错误,故选C.【点睛】本题考查了二次函数的图象与系数的关系、二次函数的图象与×轴的交点等知识点,明确二次函数的相关性质是解题的关键. 12.B解析:B【分析】直接根据“上加下减,左加右减”的原则进行解答即可.【详解】解:由“左加右减”的原则可知,抛物线y=2x 2的图象向右平移1个单位所得函数图象的关系式是:y=-2(x-1)2;由“上加下减”的原则可知,抛物线y=-2(x-1)2的图象向上平移5个单位长度所得函数图象的关系式是:y=-2(x-1)2+5.故选:B.【点睛】本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.二、填空题13.(﹣13)【分析】根据y=a(x﹣h)2+k的顶点是(hk)可得答案【详解】y=﹣(x+1)2+3的顶点坐标是(﹣13)故答案为:(﹣13)【点睛】本题考查了二次函数的性质熟记抛物线解析式的顶点式:解析:(﹣1,3)【分析】根据y=a(x﹣h)2+k的顶点是(h,k),可得答案.【详解】y=﹣12(x+1)2+3的顶点坐标是(﹣1,3),故答案为:(﹣1,3).【点睛】本题考查了二次函数的性质.熟记抛物线解析式的顶点式:y=a(x−h)2+k,顶点坐标为(h,k)是解答此题的关键.14.6【分析】根据题意可以得到水珠落地点(点P)到喷水口(点O)的距离就是OP的长度利用配方法或公式法求得其顶点坐标的横坐标的2倍即为本题的答案【详解】解:∵水在空中划出的曲线是抛物线y=-x2+6x∴解析:6【分析】根据题意可以得到水珠落地点(点P)到喷水口(点O)的距离就是OP的长度,利用配方法或公式法求得其顶点坐标的横坐标的2倍即为本题的答案.【详解】解:∵水在空中划出的曲线是抛物线y=-x2+6x,∴y=-x2+6x=-(x-3)2+9,∴顶点坐标为:(3,9),∴水珠落地点(点P)到喷水口(点O)的距离为OP=3×2=6(米),故答案为:6.【点睛】本题考查了二次函数的应用,解决此类问题的关键是从实际问题中整理出函数模型,利用函数的知识解决实际问题.15.9【分析】直接利用二次函数的最值问题求解【详解】解:∵y=x2+9∴当x=0时y 有最小值最小值为9故答案为:9【点睛】本题考查了二次函数的最值:对于二次函数y=a (x-k )2+h 当a >0时x=ky 有解析:9【分析】直接利用二次函数的最值问题求解.【详解】解:∵y =x 2+9,∴当x =0时,y 有最小值,最小值为9.故答案为:9.【点睛】本题考查了二次函数的最值:对于二次函数y=a (x-k )2+h ,当a >0时,x=k ,y 有最小值h ;当a <0时,x=k ,y 有最大值h .16.y=2(x+1)2-1【分析】利用二次函数图像平移规律:上加下减左加右减可得平移后的函数解析式【详解】解:将二次函数 的图象先向左平移2个单位再向下平移4个单位则所得图象的函数表达式为:y=2(x解析:y=2(x+1)2-1【分析】利用二次函数图像平移规律:上加下减,左加右减,可得平移后的函数解析式.【详解】解:将二次函数 ()2213y x =-+ 的图象先向左平移2个单位,再向下平移4个单位,则所得图象的函数表达式为:y=2(x-1+2)2+3-4∴y=2(x+1)2-1.故答案为:y=2(x+1)2-1.【点睛】本题考查了二次函数与几何变换,正确掌握平移规律是解题关键. 17.7【分析】根据抛物线y=x2-5x-6与x 轴分别交于AB 两点可以令y=0求得点AB 的坐标从而可以求得AB 的长【详解】解:∵y=x2-5x-6∴y=0时x2-5x-6=0解得x1=-1x2=6∵抛物线解析:7【分析】根据抛物线y=x 2-5x-6与x 轴分别交于A 、B 两点,可以令y=0求得点A 、B 的坐标,从而可以求得AB 的长.【详解】解:∵y=x 2-5x-6,∴y=0时,x 2-5x-6=0,解得,x 1=-1,x 2=6.∵抛物线y=x 2-5x-6与x 轴分别交于A 、B 两点,∴点A 的坐标为(-1,0),点B 的坐标为(6,0),∴AB 的长为:6-(-1)=7.故答案为:7.【点睛】本题考查抛物线与x 轴的交点,以及数轴上两点间的距离,解题的关键是明确抛物线与x 轴相交时,y=0.18.【分析】设点E (mm2﹣4m+8)过E 作EM 垂直于x 轴交AB 于点M 作BF ⊥EMAG ⊥EM 垂足分别为FG 由题意可得M (mm )从而可用含m 的式子表示出EM 的长根据二次函数的性质及三角形的面积公式可得答案 解析:218【分析】设点E (m ,m 2﹣4m +8),过E 作EM 垂直于x 轴交AB 于点M ,作BF ⊥EM ,AG ⊥EM ,垂足分别为F ,G ,由题意可得M (m ,m ),从而可用含m 的式子表示出EM 的长,根据二次函数的性质及三角形的面积公式可得答案.【详解】解:设点E (m ,m 2﹣4m +8),过E 作EM 垂直于x 轴交AB 于点M ,作BF ⊥EM ,AG ⊥EM ,垂足分别为F ,G ,由题意得:M (m ,m ),∴EM =m 2﹣4m +8﹣m=m 2﹣5m +8=257()24m -+, ∴S △ABE =S △AEM +S △EMB=1122EM AG EM BF ⋅+⋅ 1()2EM AG BF =+12=(m 2﹣5m +8)×(4-1) 32=(m 2﹣5m +8) =23521()228m -+, 由302>,得S △ABE 有最小值. ∴当m =52时,S △ABE 的最小值为218. 故答案为:218. 【点睛】本题考查了二次函数的最值、一次函数与二次函数图象上的点与坐标的关系及三角形的面积计算等知识点,熟练掌握相关性质及定理并数形结合是解题的关键.19.【分析】由韦达定理得出ab 与m 的关系式由一元二次方程的根与判别式的关系得出m 的取值范围再对代数式a2﹣ab+b2配方并将a+b 和ab 整体代入化简然后再配方结合m 的取值范围可得出答案【详解】∵关于x 的 解析:916【分析】由韦达定理得出a ,b 与m 的关系式、由一元二次方程的根与判别式的关系得出m 的取值范围,再对代数式a 2﹣ab +b 2配方并将a +b 和ab 整体代入化简,然后再配方,结合m 的取值范围可得出答案.【详解】∵关于x 的一元二次方程x 2﹣(2m +1)x +m 2﹣1=0有实数根a ,b ,∴a +b =2m +1,ab =m 2﹣1,△≥0,∴△=[﹣(2m +1)]2﹣4×1×(m 2﹣1)=4m 2+4m +1﹣4m 2+4=4m +5≥0,∴m ≥54-. ∴a 2﹣ab +b 2 =(a +b )2﹣3ab=(2m +1)2﹣3(m 2﹣1)=4m 2+4m +1﹣3m 2+3=m 2+4m +4=(m +2)2,∴a2﹣ab+b2的最小值为:2592416⎛⎫-+=⎪⎝⎭.故答案为:9 16.【点睛】本题考查了一元二次方程根与系数的关系,以及利用二次函数的性质求解代数的最值,灵活利用韦达定理及根的判别式,是解决本题的关键,熟悉用函数的思想解决最值问题也是关键点.20.下【分析】先用待定系数法确定二次函数的解析式然后根据二次项系数即可解答【详解】解:设一般式y=ax2+bx+c由题意得:解得由<0则该函数图像开口向下故答案为:下【点睛】本题考查了二次函数图像的性质解析:下【分析】先用待定系数法确定二次函数的解析式,然后根据二次项系数即可解答.【详解】解:设一般式y=ax2+bx+c,由题意得:2=c2=42142a b ca b c ⎧⎪++⎨⎪-=-+⎩解得3=-83 =42 abc⎧⎪⎪⎪⎨⎪=⎪⎪⎩由3=-8a<0,则该函数图像开口向下.故答案为:下.【点睛】本题考查了二次函数图像的性质,根据题意确定二次函数的解析式是解答本题的关键.三、解答题21.(1)菱形;(2)522xy=-35()22y≤≤;(3)2(1)4EFGHS x=-+菱,最大值为5,最小值为4.【分析】(1)由矩形的性质可得AO=CO,BO=DO,AB∥CD,AD∥BC,由“AAS”可证△AEO≌△CGO,△DHO≌△BFO,可得EO=GO, HO=FO,可证四边形EHGF是平行四边形,且EG ⊥HF ,可得四边形EHGF 是菱形;(2)由菱形的性质可得EH GH =,由勾股定理可得2222AE AH DH DG +=+,即可求解;(3)由面积的和差关系可得四边形EFGH 的面积=x 2﹣2x +5=(x ﹣1)2+4,由二次函数的性质可求解.【详解】解:(1)在矩形ABCD 中,OD OB =,AD BC ∥∴ADB DBC ∠=∠在ODH 和OBF 中,ADB DBC OD OB HOD FOB ∠=∠⎧⎪=⎨⎪∠=∠⎩∴()ODH OBF ASA ≌∴OH OF =在OAE △和OCG 中,同理可得OE OG =∴四边形EFGH 为平行四边形又∵EG FH ⊥∴平行四边形EFGH 为菱形(2)∵AE x =,AH y =,4=AD ,2AB =∴4DH y =-,2DG BE x ==-由(1)可知EH GH =∴2222AE AH DH DG +=+即2222(4)(2)x y y x +=-+- 25x y +=522x y =- 又52x y =-,0x ≥,20x -≥,即02x ≤≤,∴0522y ≤-≤3522y ≤≤ ∴522x y =-,3522y ≤≤ (3) EFGH 112422(4)(2)22S x y y x =⋅-⋅⋅⋅-⋅⋅--菱 422x y xy =+-5542222x x x x --=+⋅-⋅ 225x x =-+2(1)4x =-+∵02x ≤≤,∴当0x =或2x =时, 5S =最大;当1x =时, 4S =最小.【点睛】本题考查了矩形的性质,菱形的判定和性质,勾股定理,一次函数的性质,二次函数的性质,利用勾股定理列出方程是解本题的22.(1)94a =;(2)2x = 【分析】(1)由根的判别式进行计算,即可求出答案;(2)先求出k 的值,然后代入计算,即可求出对称轴.【详解】解:(1)抛物线23y x x a =++与x 轴只有一个交点, 0∴∆=,即940a -=, ∴94a =. (2)点()3,0在抛物线()233y x k x k =-++-上, ()203333k k ∴=-⨯++-,9k ∴=,∴抛物线的解析式为:23129y x x =-+-,∴对称轴为:1222(3)x =-=⨯-. 【点睛】 本题考查了一元二次方程根的判别式,二次函数的性质,解题的关键是掌握所学的知识,正确的求出参数的值.23.(1)1x =-,()3,0-;(2)223y x x =+-;(3)①04n <≤,②02n <≤【分析】(1)由对称轴为直线x=-2b a,可求解; (2)将点B 坐标代入可求解; (3)设向左平移后的解析式为:y =(x +1+n )2-4,设向右平移后的解析式为:y =(x +1-n )2-4,利用特殊点代入可求解.【详解】解:(1)∵抛物线y=mx2+2mx-3的对称轴为直线x=22mm-=-1,AB=4,∴点A(-3,0),点B(1,0),故答案为:x=-1,(-3,0);(2)∵抛物线y=mx2+2mx-3过点B(1,0),∴0=m+2m-3,∴m=1,∴抛物线的解析式:y=x2+2x-3,(3)如图,∵y=x2+2x-3=(x+1)2-4,∴设向左平移后的解析式为:y=(x+1+n)2-4,把x=-3,y=0代入解析式可得:0=(-3+1+n)2-4,∴n=0(舍去),n=4,∴向左平移,则n的取值范围是0<n≤4;设向右平移后的解析式为:y=(x+1-n)2-4,把x=0,y=-3代入解析式可得:-3=(1-n)2-4,∴n=0(舍去),n=2,∴向右平移,则n的取值范围是0<n≤2,故答案为:0<n≤4;0<n≤2.【点睛】本题是二次函数综合题,考查了待定系数法求解析式,二次函数的性质,平移的性质等知识,灵活运用这些性质解决问题是本题的关键.24.当AC=BD=5时,四边形ABCD的面积最大.【分析】直接利用对角线互相垂直的四边形面积求法得出12S AC BD=⋅,再利用配方法求出二次函数最值即可.【详解】解:设AC=x,四边形ABCD面积为S,则BD=10-x,则:211125(10)(5)2222S AC BD x x x =⋅=-=--+, ∴当x=5时,S 最大=252, 所以当AC=BD=5时,四边形ABCD 的面积最大.【点睛】本题考查二次函数的应用.理解对角线互相垂直的四边形面积等于对角线乘积的一半是解题关键.25.(1)()605x -,()4x +;(2)应上涨2元或6元;(3)当销售单价上涨4元时,这款洗手液每天的销售利润y 最大,最大利润为320元.【分析】(1)根据销售单价上涨x 元,每天销售量减少5x 瓶即可得,再根据“每瓶的利润=售价-成本价”即可得;(2)结合(1)的结论,根据“这款洗手液的日销售利润y 达到300元”可建立关于x 的一元二次方程,再解方程即可得;(3)根据“每天的利润=(每瓶的售价-每瓶的成本价)⨯每天的销售量”可得y 与x 的函数关系式,再利用二次函数的性质求最值即可得.【详解】(1)由题意得:当销售单价上涨x 元时,每天销售量会减少5x 瓶,则每天的销售量为()605x -瓶,每瓶洗手液的利润是20164x x +-=+(元),故答案为:()605x -,()4x +;(2)由题意得:()()6054300x x -+=,解得16x =,22x =,答:销售单价应上涨2元或6元;(3)由题意得:(605)(4)y x x =-+,化成顶点式为25(4)320x y =--+,由二次函数的性质可知,当4x =时,y 取得最大值,最大值为320,答:当销售单价上涨4元时,这款洗手液每天的销售利润y 最大,最大利润为320元.【点睛】本题考查了一元二次方程的应用、二次函数的应用,依据题意,正确建立方程和函数关系式是解题关键.26.(1)这种衬衫定价为70元;(2)售价定为65元可获得最大利润,最大利润是19500元【分析】(1)根据“总利润=每件商品的利润×销售量”列出方程并求解,最后根据尽量给客户实惠,对方程的解进行取舍即可;(2)求出w 的函数解析式,将其化为顶点式,然后求出定价的取值,即可得到售价为多少万元时获得最大利润,最大利润是多少.【详解】解:(1)()()5020260024000x x --+=,解得,170x =,2110x =,∵尽量给客户优惠,∴这种衬衫定价为70元;(2)由题意可得,()()()250202600209032000w x x x =--+=--+,∵该衬衫的每件利润不允许高于进货价的30%,每件售价不低于进货价,∴50x ≤,()505030%x -÷≤,解得,5065x ≤≤,∴当65x =时,w 取得最大值,此时19500w =,答:售价定为65元可获得最大利润,最大利润是19500元,【点睛】本题考查二次函数的应用,解答本题的关键是明确题意,求出相应的函数解析式,利用二次函数的性质和二次函数的顶点式解答.。
(必考题)初中数学九年级数学下册第二单元《二次函数》检测题(含答案解析)
一、选择题1.二次函数2(0)y ax bx c a =++≠的图象如图,给出下列四个结论:①20ac b -<;②320b c +<;③()m am b b a ++≤;④22()a c b +<;其中正确结论的个数有( )A .1B .2C .3D .42.若二次函数22y x x c =-+的图象与x 轴有两个交点,与y 轴交于正半轴,则下列说法中正确的是( )A .该函数图象的对称轴是直线2x =B .该函数图象与y 轴有可能交于点()0,2C .若点()11,A c y -,()2,B c y 是该函数图象上的两点,则12y y <D .该函数图象与x 轴的交点一定位于y 轴的右侧3.已知二次函数2(0)y ax bx c a =++≠的图象如图所示,在下列六个结论中:①20a b -<;②0abc <;③0a b c ++<;④0a b c -+>;⑤420a b c ++>;⑥240b ac -<.其中正确的个数有( )A .1个B .2个C .3个D .4个4.如图,二次函数()20y ax bx c a =++≠图象的顶点为D ,其图像与x 轴的交点A 、B 的横坐标分别为-1,3,与y 轴负半轴交于点C .在下面四个结论中:①0a b c ++<; ②13a c =-;③只有当12a =时,ABD △是等腰直角三角形; ④使ACB △为等腰三角形的a 值可以有两个.其中正确的结论有A .1个B .2个C .3个D .4个5.抛物线221y x =--的顶点坐标是( ) A .(2,1)--B .(2,1)C .(0,1)-D .(0,1)6.如图,现要在抛物线y =x (﹣x +2)上找点P (m ,n ),针对n 的不同取值,所找点P 的个数,四人的说法如下,甲:若n =﹣1,则点P 的个数为2;乙:若n =0,则点P 的个数为1;丙:若n =1,则点P 的个数为1;丁:若n =2,则点P 的个数为0.其中说法正确的有( )A .0个B .1个C .2个D .3个7.如图是二次函数y =mx 2+nx +k 图象的一部分且过点P (3,0),二次函数图象的对称轴是直线x =1,下列结论正确的是( )A .n 2﹣4mk <0B .mk >0C .n =2mD .m ﹣n +k =0 8.抛物线y =x 2﹣2x ﹣1的对称轴是( )A .直线x =﹣2B .直线x =﹣1C .直线x =1D .直线x =29.如图所示,二次函数2y ax bx c =++的图象经过点(-1,2),且与x 轴交点的横坐标分别为1x ,2x ,其中121x -<<-,201x <<,下列结论:①0abc >;②420a b c -+<;③20a b -<;④284b a ac +>.其中正确的有( )A .1个B .2个C .3个D .4个10.如图,抛物线22y x x m =-+交x 轴于点(),0A a ,(),0B b ,交y 轴于点C ,抛物线的顶点为D ,下列四个结论:①无论m 取何值,2CD =恒成立;②当0m =时,ABD △是等腰直角三角形;③若2a =-,则6b =;④()11,P x y ,()22,Q x y 是抛物线上的两点,若121x x ,且122x x +>,则12y y <.正确的有( )A .①②③④B .①②④C .①②D .②③④11.已知函数223y x x =+-及一次函数y x m =-+的图象如图所示,当直线y x m =-+与函数223y x x =+-的图象有2个交点时,m 的取值范围是( )A .3m <-B .31m -<<C .134m >或3m <- D .31m -<<或134m >12.如图,二次函数2y ax bx c =++的图象与x 轴交于,A B 两点,与y 轴负半轴交于点C ,它的对称轴为直线12x =,则下列选项中正确的是( )A .0abc <B .0a b -=C .40a c ->D .当2(1x n n =+为实数)时,y c ≤二、填空题13.将抛物线243y x x =-+沿y 轴向下平移3个单位,则平移后抛物线的顶点坐标为_____.14.如图,已知在边长为6的正方形FCDE 中,A 为EF 的中点,点B 在边FC 上,且2BF =,连接AB ,P 是AB 上的一动点,过点P 作PM DE ⊥,PN DC ⊥,垂足分别为M ,N ,则矩形PNDM 面积的最大值是______.15.如图,二次函数2y ax bx c =++与反比例函数ky x=的图象相交于点()()()1231,1,3,A y B y C y -、、三个点,则不等式2k ax bx c x++>的解是____.16.用一根长为24cm 的绳子围成一个矩形,则围成矩形的最大面积是_____cm 2.17.抛物线()20y ax bx c a =++≠的部分图象如图所示,其与x 轴的一个交点坐标为()4,0-,对称轴为1x =-,则0y >时,x 的取值范围________.18.将抛物线21:23C y x x =-+向左平移一个单位长度,得到抛物线2C ,抛物线2C 与抛物线3C 关于y 轴对称,则抛物线3C 的表达式为____.19.抛物线2y ax bx c =++上部分点的横坐标x ,纵坐标y 的对应值如表所示,下列说法:x··· 3-2-1- 0 1 ··· y···6-466···①抛物线与轴的交点为0,6;②抛物线的对称轴是在轴右侧;③在对称轴左侧,y 随x 增大而减小;④抛物线一定过点()3,0.上述说法正确的是____(填序号).20.如图,抛物线()()1244y x x =+-与x 轴交于A B 、两点,P 是以点()0,3C 为圆心,2为半径的圆上的动点,Q 是线段PA 上靠近点A 的三等分点,连结OQ ,则线段OQ 的最大值是__________.三、解答题21.定义:对于已知的两个函数,任取自变量x 的一个值,当0x ≥时,它们对应的函数值互为相反数;当0x <时,它们对应的函数值相等,我们称这样的两个函数互为相关函数.例如:正比例函数y x =,它的相关函数为(0)(0)x x y x x -≥⎧=⎨<⎩. (1)已知点(1,3)A -在一次函数2y ax =-的相关函数的图象上,求a 的值;(2)已知二次函数2283y x x =-+-.①当点(,4)B m -在这个函数的相关函数的图象上时,求m 的值;②当23x -≤≤时,求函数2283y x x =-+-的相关函数的最大值和最小值. 22.已知:抛物线y 1=﹣x 2﹣2x +3的图象交x 轴于点A ,B (点A 在点B 的左侧). (1)请在平面直角坐标系内画出二次函数y 1=﹣x 2﹣2x +3的草图,并标出点A 的位置; (2)点C 是直线y 2=﹣x +1与抛物线y 1=﹣x 2﹣2x +3异于B 的另一交点,则点C 的坐标为 ;当y 1≥y 2时x 的取值范围是 .23.商场购进某种新商品的每件进价为120元,在试销期间发现,当每件商品的售价为130元时,每天可销售70件;当每件商品的售价高于130元时,每涨价1元,日销售量就减少1件,据此规律,请回答下列问题.(1)当每件商品的售价为140元时,每天可销售_________件商品,商场每天可盈利______元;(2)设销售价定为x 元时,商品每天可销售________件,每件..盈利_______元; (3)在销售正常的情况下,每件商品的销售价定为多少时,商场每天盈利达到1500元; (4)这次活动中,1500元是最高日盈利吗?若是,请说明理由;若不是,请试求最高盈利.24.如图,抛物线()220y ax bx a =++≠与x 轴交于()()1,0,3,0A B -两点,与y 轴交于点C .(1)求该抛物线的表达式;(2)若点D 是抛物线上第一象限内的一动点,设点D 的横坐标为m ,连接,,,CD BD BC AC ,当BCD ∆的面积等于AOC ∆面积的2倍时,求m 的值.25.已知直线y =x +3分别交x 轴和y 轴于点A 和B ,抛物线y =ax 2+bx +c 经过点A 和B ,且抛物线的对称轴为直线x =﹣2.(1)抛物线与x 轴的另一个交点C 的坐标为 ; (2)试确定抛物线的解析式;(3)在同一平面直角坐标系中分别画出两个函数的图象(请用2B 铅笔或黑色水笔加黑加粗),观察图象,写出二次函数值小于一次函数值的自变量x 的取值范围 . 26.某商店销售一种纪念册,每本进价30元,规定销售单价不低于32元,且获利不高于60%,在销售期间发现销售数量y (件)与销售单价x (元)的关系如下表:x32 33 3435y420 410400390()1请你根据表格直接写出y 与x 之间的函数关系式,并写出自变量x 的取值范围; ()2当每本纪念册销售单价是多少元时,商店每天获利3400元?()3将这种纪念册销售单价定为多少元时,商店每天销售纪念册获得的利润w (元)最大?最大利润是多少元?【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】利用二次函数图象的相关知识与函数系数的联系,需要根据图形,逐一判断. 【详解】解:∵抛物线开口向下,所以a<0,与y 轴交于正半轴,所以c >0, ∴ac<0,∵b²≥0,∴20ac b -<,∴①正确; ∵把x=1代入抛物线得:y=a+b+c <0, ∴2a+2b+2c <0,∵-2ba -=-1, ∴b=2a ,∴3b+2c <0,∴②正确; ∵抛物线的对称轴是直线x=-1, ∴y=a-b+c 的值最大,即把x=m 代入得:y=am 2+bm+c≤a -b+c , ∴am 2+bm+b≤a ,即m (am+b )+b≤a ,∴③正确; ∵a+b+c <0,a-b+c >0, ∴(a+c+b )(a+c-b )<0, 则(a+c )2-b 2<0, 即(a+c )2<b 2,故④正确; 故选:D . 【点睛】本题考查了二次函数图象与系数的关系,在解题时要注意二次函数的系数与其图象的形状,对称轴,特殊点的关系,也要掌握在图象上表示一元二次方程ax 2+bx+c=0的解的方法,同时注意特殊点的运用.2.D解析:D 【分析】根据二次函数的对称轴公式可判断A ,根据函数图像与x 轴的交点求出c 的取值范围,可判断B ,根据c 的取值范围,结合函数的增减性可判断C ,根据函数的开口方向,对称轴,以及与y 轴交于正半轴可判断D . 【详解】解:在二次函数22y x x c =-+中, 对称轴为直线x =221--⨯=1,开口向上, ∵二次函数22y x x c =-+的图象与x 轴有两个交点, 则对应方程220x x c -+=中, △=()224c -->0,∴c <1,∵与y 轴交于正半轴, ∴c >0,即0<c <1,∴该函数图象与y 轴不可能交于点()0,2, ∴-1<c -1<0, ∵函数开口向上, ∴当x <1时,y 随x 的增大而减小,∴点()11,A c y -,()2,B c y 都在对称轴左侧, ∴12y y >,∵对称轴为直线x =221--⨯=1,与y 轴交于正半轴,开口向上, ∴该函数图象与x 轴的交点一定位于y 轴的右侧, 故选D . 【点睛】本题考查了二次函数的对称轴,增减性,图像性质,解题的关键是掌握二次函数的性质,结合图像回答问题.3.D解析:D 【分析】由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,利用图象判断1,-1,2所对应的y 的值,进而对所得结论进行判断. 【详解】解:①∵由函数图象开口向下可知,a <0,由函数的对称轴12b a ->-,故12b a<, ∵a <0,∴b >2a ,∴2a -b <0,①正确;②∵a <0,对称轴在y 轴左侧,a ,b 同号,图象与y 轴交于负半轴,则c <0,故abc <0;②正确;③当x=1时,y=a+b+c <0,③正确; ④当x=-1时,y=a -b+c <0,④错误; ⑤当x=2时,y=4a+2b+c <0,⑤错误; ⑥∵图象与x 轴无交点, ∴b 2-4ac <0,⑥正确;故正确的有①②③⑥,共4个. 故选:D . 【点睛】此题主要考查了二次函数图象与系数的关系,熟练利用数形结合得出是解题关键.4.D解析:D 【分析】先根据图象与x 轴的交点A ,B 的横坐标分别为﹣1,3确定出AB 的长及对称轴,再由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断. 【详解】解:①由抛物线的开口方向向上可推出a >0, ∵图像与x 轴的交点A 、B 的横坐标分别为-1,3, ∴对称轴x =1, ∴当x =1时,y <0, ∴a +b +c <0; 故①正确;②∵点A 的坐标为(﹣1,0), ∴a ﹣b +c =0, 又∵b =﹣2a , ∴a ﹣(﹣2a )+c =0, ∴c =﹣3a , ∴13a c =- ∴结论②正确.③如图1,连接AD ,BD ,作DE ⊥x 轴于点E ,,要使△ABD 是等腰直角三角形,则AD =BD ,∠ADB =90°,∵DE ⊥x 轴,∴点E 是AB 的中点,∴DE =BE ,即|244ac b a -|()312--==2,又∵b =﹣2a ,c =﹣3a ,∴|()()24324a a a a⨯---|=2,a >0, 解得a 12=, ∴只有当a 12=时,△ABD 是等腰直角三角形, 结论③正确 ④要使△ACB 为等腰三角形,则AB =BC =4,AB =AC =4,或AC =BC ,Ⅰ、当AB =BC =4时,在Rt △OBC 中,∵OB =3,BC =4,∴OC 2=BC 2﹣OB 2=42﹣32=16﹣9=7,即c 2=7,∵抛物线与y 轴负半轴交于点C ,∴c <0,c 7=-,∴a 73c =-=. Ⅱ、当AB =AC =4时,在Rt △OAC 中,∵OA =1,AC =4,∴OC 2=AC 2﹣OA 2=42﹣12=16﹣1=15,即c 2=15,∵抛物线与y 轴负半轴交于点C ,∴c <0,c=,∴a 33c =-=. Ⅲ、当AC =BC 时,∵OC ⊥AB ,∴点O 是AB 的中点,∴AO =BO ,这与AO =1,BO =3矛盾,∴AC =BC 不成立.∴使△ACB 为等腰三角形的a . 结论④正确.故答案选:D【点睛】二次函数y =ax 2+bx +c 系数符号的确定:(1)a 由抛物线开口方向确定:开口方向向上,则a >0;否则a <0;(2)b 由对称轴和a 的符号确定:由对称轴公式x 2b a=-判断符,(3)c 由抛物线与y 轴的交点确定:交点在y 轴正半轴,则c >0;否则c <0;(4)b 2﹣4ac 由抛物线与x 轴交点的个数确定:①2个交点,b 2﹣4ac >0;②1个交点,b 2﹣4ac =0;③没有交点,b 2﹣4ac <0.5.C解析:C【分析】根据题目中的函数解析式可以直接写出该抛物线的顶点坐标.【详解】解:∵y=-2x 2-1,∴该抛物线的顶点坐标为(0,-1),故选:C .【点睛】本题考查了二次函数的性质,解答本题的关键是明确题意,利用二次和函数的性质解答. 6.D解析:D【分析】把P 点的坐标代入函数的解析式,再根据根的判别式或解方程逐个判断即可.【详解】解:甲:当n =﹣1时,m (﹣m +2)=﹣1,整理得:m2﹣2m﹣1=0,△=(﹣2)2﹣4×1×(﹣1)=8>0,方程有两个不相等的实数根,即此时点P的个数为2,故甲的说法正确;乙:当n=0时,m(﹣m+2)=0,解得:m=0或2,即此时点P的个数为2,故乙的说法错误;丙:当n=1时,m(﹣m+2)=1,整理得:m2﹣2m+1=0,△=(﹣2)2﹣4×1×1=0,方程有两个相等的实数根,即此时点P的个数为1,故丙的说法正确;丁:当n=2时,m(﹣m+2)=2,整理得:m2﹣2m+2=0,△=(﹣2)2﹣4×1×2=﹣4<0,方程没有实数根,即此时点P的个数为0,故丁的说法正确;所以正确的个数是3个,故选:D.【点睛】本题考查了二次函数的图象上点的坐标特征和一元二次方程的根的判别式、解一元二次方程,能熟记根的判别式的内容是解此题的关键.7.D解析:D【分析】根据抛物线与x轴有两个交点可对A进行判断;由抛物线开口向上得m>0,由抛物线与y 轴的交点在x轴下方得k<0,则可对B进行判断;根据抛物线的对称轴是x=1对C选项进行判断;根据抛物线的对称性得到抛物线与x轴的另一个交点为(−1,0),所以m−n+k=0,则可对D选项进行判断.【详解】解:A.∵抛物线与x轴有两个交点,∴n2﹣4mk>0,所以A选项错误;B.∵抛物线开口向上,∴m>0,∵抛物线与y轴的交点在x轴下方,∴k<0,∴mk<0,所以B选项错误;C.∵二次函数图象的对称轴是直线x=1,∴﹣2n m=1, ∴n =﹣2m ,所以C 选项错误;D .∵抛物线过点A (3,0),二次函数图象的对称轴是x =1,∴抛物线与x 轴的另一个交点为(﹣1,0),∴m ﹣n +k =0,所以D 选项正确;故选:D .【点睛】本题考查了二次函数的图象与系数的关系:二次函数y =ax 2+bx +c (a≠0)的图象为抛物线,当a >0,抛物线开口向上;对称轴为直线2b x a=-;抛物线与y 轴的交点坐标为(0,c );当b 2−4ac >0,抛物线与x 轴有两个交点;当b 2−4ac =0,抛物线与x 轴有一个交点;当b 2−4ac <0,抛物线与x 轴没有交点.8.C解析:C【分析】先将抛物线化为顶点式,即可解决问题.【详解】解:因为抛物线y =x 2﹣2x ﹣1=x 2﹣2x +1﹣2=(x ﹣1)2﹣2,所以对称轴是直线x =1.故选:C .【点睛】本题考查了二次函数的性质,解题的关键是能将抛物线化为顶点式.9.D解析:D【分析】由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断.【详解】解:①∵a <0,2b a-<0, ∴b <0.∵抛物线交y 轴与正半轴,∴c >0.∴abc >0,故①正确.②根据图象知,当x=-2时,y <0,即4a-2b+c <0;故②正确;③∵该函数图象的开口向下,∴a <0;又∵对称轴-1<x=2b a-<0, ∴2a-b <0,故③正确; ④∵y=244ac b a->2,a <0, ∴4ac-b 2<8a ,即b 2+8a >4ac ,故④正确.综上所述,正确的结论有①②③④.故答案为:D .【点睛】本题主要考查对二次函数图象与系数的关系,抛物线与x 轴的交点,二次函数图象上点的坐标特征等知识点的理解和掌握,掌握相关性质是解题的关键.10.B解析:B【分析】①先求出C 、D 的坐标,再根据两点距离公式求得CD ,便可判断;②当m=0时,可得抛物线与x 轴的两个交点坐标和顶点坐标即可判断;③根据抛物线与x 轴的一个交点坐标和对称轴即可得另一个交点坐标即可判断; ④根据二次函数图象当x 1<1<x 2,且x 1+x 2>2,根据离对称越远的点的纵坐标就越大得出结论.【详解】解:①∵y=x 2-2x+m=(x-1)2+m-1,∴C (0,m ),D (1,m-1),∴,故①正确;②当m=0时,抛物线与x 轴的两个交点坐标分别为A (0,0)、B (2,0),顶点D (1,-1),∴,∴△ABD 是等腰直角三角形,故②正确;③当a=-2时,抛物线与x 轴的一个交点坐标为(-2,0),∵对称轴x=1,∴另一个交点坐标为(4,0),∴b=4,故③错误;④观察二次函数图象可知:当x 1<1<x 2,且x 1+x 2>2,则1-x 1<x 2-1∴y 1<y 2.故④正确.故选:B .【点睛】本题考查了二次函数图象与系数的关系、二次函数图象上点的坐标特征、抛物线与x 轴的交点、等腰直角三角形,解决本题的关键是综合利用以上知识.11.D解析:D【分析】 作出函数223y x x =+-及一次函数y x m =-+的图象,根据图象性质讨论即可求出. 【详解】解:如图:函数223y x x =+-,当0y =时,1x =或3-, ()()3010A B ∴-,,,,当31x -<<时,223y x x =--+,当直线过点A 时,1个交点,此时()03m =--+,即3m =-,当3m >-时,有2个交点,当直线过点B 时,有3个交点,此时01m =-+,即1m =, ∴1m <时有2个交点,31m ∴-<<,当直线与抛物线相切时,有3个交点,223y x x y x m⎧=--+∴⎨=-+⎩, 由()1430m =--+=,解得:134m =, 134m ∴>时有2个交点,综上所述,31m -<<或134m >. 【点睛】 本题考查了一次函数与二次函数的交点问题,熟练掌握二次函数的性质是解题的关键. 12.D解析:D【分析】根据二次函数的图像和性质,分别对每个选项进行判断,即可得到答案.【详解】解:由图象开口向上,可知a<0,与y 轴的交点在x 轴的下方,可知c<0, 又对称轴方程为12x =,所以122b a -=>0,所以b >0, ∴abc >0,故A 错误; ∵122b a -= ∴=-a b , ∴0a b +=,故B 错误; 当12x =时,则11042y a b c =++>, ∵=-a b , ∴11042a a c -+>, ∴104a c -+>, ∴40a c -<,故C 错误;当21x n =+时,222(1)(1)y a n b n c =++++4222an an a an a c =++--+42an an c =++22(1)an n c =++;∵n 为实数,∴20an ≤,211n +≥,∴22(1)an n c c ++≤,即y c ≤,故D 正确;故选:D .【点睛】本题主要考查二次函数的图象和性质.熟练掌握图象与系数的关系以及二次函数与方程的关系是解题的关键.第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题13.(2-4)【分析】首先根据二次函数解析式写成顶点式可得顶点坐标再根据平移得性质得出平移后得顶点坐标即可【详解】∵y=x2-4x+3=(x-2)2-1∴顶点坐标为(2-1)∵将抛物线y=x2-4x+3解析:(2,-4)【分析】首先根据二次函数解析式写成顶点式,可得顶点坐标,再根据平移得性质得出平移后得顶点坐标即可.【详解】∵y=x 2-4x+3=(x-2)2-1,∴顶点坐标为(2,-1),∵将抛物线y=x 2-4x+3沿y 轴向下平移3个单位,∴平移后得抛物线得顶点坐标为(2,-4),故答案为:(2,-4)【点睛】本题考查了抛物线的平移与抛物线解析式的关系,关键是把抛物线的平移转化为顶点的平移.14.24【分析】以FE 为x 轴以FC 为y 轴先建立平面直角坐标系求出AB 的解析式为设P (a )用含a 的式子表示出PMPN 根据矩形面积公式列式根据二次函数的性质即可求解【详解】解:以FE 为x 轴以FC 为y 轴建立平解析:24【分析】以FE 为x 轴,以FC 为y 轴,先建立平面直角坐标系,求出A B 的解析式为223AB y x =--,设P (a ,223a --),用含a 的式子表示出PM ,PN ,根据矩形面积公式列式,根据二次函数的性质即可求解.【详解】解:以FE 为x 轴,以FC 为y 轴,建立平面直角坐标系,∵边长为6的正方形FCDE 中,A 为EF 的中点,2BF =,∴A (-3,0),B (0,-2),C (0,-6),E (-6,0),设A B 的解析式为AB y kx b =+,则032k b b =-+⎧⎨=-⎩,解得232k b ⎧=-⎪⎨⎪=-⎩, ∴223AB y x =--(30x -≤≤), 设P (a ,223a --)(30a -≤≤),则PM=6+a ,PN=()2226433a a ----=-, ∴()2PNDM 22=642433S a a a ⎛⎫+-=-+ ⎪⎝⎭矩形, ∴当a =0时,矩形PNDM 面积的最大值是24.故答案为:24.【点睛】本题考查了二次函数的应用问题,用待定系数法求一次函数的解析式,矩形的面积,正方形的性质等知识点,能灵活运用知识点是解此题的关键.15.或【分析】不等式的解集对应图象上面为二次函数图象比反比例函数图象高的部分找出x 的范围即可【详解】解:不等式的解对应图象上面为二次函数图象比反比例函数图象高的部分∴不等式的解为或故答案为:或【点睛】本 解析:10x -<<或13x <<【分析】不等式的解集对应图象上面为二次函数图象比反比例函数图象高的部分,找出x 的范围即可.【详解】 解:不等式2k ax bx c x++>的解对应图象上面为二次函数图象比反比例函数图象高的部分,∴不等式2k ax bx c x++>的解为10x -<<或13x <<, 故答案为:10x -<<或13x <<.【点睛】本题考查利用函数图象解不等式,即比较图象的高低.16.36【分析】设围成矩形的长为xcm 则宽为=(12﹣x )cm 设围成矩形的面积为Scm2根据矩形的面积公式列出S 关于x 的二次函数将其写成顶点式根据二次函数的性质可得答案【详解】解:设围成矩形的长为xcm解析:36【分析】设围成矩形的长为xcm ,则宽为2422x -=(12﹣x ) cm ,设围成矩形的面积为Scm 2,根据矩形的面积公式列出S 关于x 的二次函数,将其写成顶点式,根据二次函数的性质可得答案.【详解】解:设围成矩形的长为xcm ,则宽为2422x - =(12﹣x ) cm , 设围成矩形的面积为Scm 2,由题意得:S =x (12﹣x )=﹣x 2+12x=﹣(x ﹣6)2+36,∵二次项系数为负,抛物线开口向下,∴当x =6cm 时,S 有最大值,最大值为36cm 2.故答案为:36.【点睛】本题考查了二次函数在几何图形问题中的应用,熟练掌握二次函数的性质是解题的关键; 17.或【分析】根据抛物线与x 轴的一个交点坐标和对称轴由抛物线的对称性可求抛物线与x 轴的另一个交点再根据抛物线的增减性可求当y <0时x 的取值范围【详解】解:∵抛物线y=ax2+bx+c (a≠0)与x 轴的一解析:4x <-或2x >【分析】根据抛物线与x 轴的一个交点坐标和对称轴,由抛物线的对称性可求抛物线与x 轴的另一个交点,再根据抛物线的增减性可求当y <0时,x 的取值范围.【详解】解:∵抛物线y=ax 2+bx+c (a≠0)与x 轴的一个交点坐标为(-4,0),对称轴为x=-1, ∴抛物线与x 轴的另一个交点为(2,0),由图象可知,当y >0时,x 的取值范围是x <-4或x >2.故答案为:x <-4或x >2.【点睛】本题考查了抛物线与x 轴的交点,二次函数的性质,关键是得到抛物线与x 轴的另一个交点.18.【分析】根据抛物线的解析式得到顶点坐标根据顶点式及平移前后二次项的系数不变可得抛物线的顶点坐标而根据关于y 轴对称的两条抛物线的顶点的纵坐标相等横坐标互为相反数由此可得到抛物线所对应的函数表达式【详解 解析:22y x =+【分析】根据抛物线1C 的解析式得到顶点坐标,根据顶点式及平移前后二次项的系数不变可得抛物线 2C 的顶点坐标,而根据关于y 轴对称的两条抛物线的顶点的纵坐标相等,横坐标互为相反数,由此可得到抛物线3C 所对应的函数表达式.【详解】抛物线1C :2223=(1)2y x x x =-+-+, ∴抛物线1C 的顶点为(1,2),向左平移一个单位长度,得到抛物线2C ,∴抛物线2C 的顶点为(0,2),抛物线2C 与抛物线3C 关于y 轴对称,∴抛物线3C 的开口方向相同,顶点为(0,2),∴抛物线3C 的解析式为22y x =+.故答案为22y x =+.【点睛】本题主要考查了二次函数的图像的平移问题,只需看顶点坐标是如何平移得到的即可,关于y 轴对称的两条抛物线的顶点的纵坐标相等,横坐标互为相反数,难度适中. 19.①②④【分析】由表格中数据x=0时y=6x=1时y=6;可判断抛物线的对称轴是x=05根据函数值的变化判断抛物线开口向下再由抛物线的性质逐一判断【详解】解:由表格中数据可知x=0时y=6x=1时y=解析:①②④.【分析】由表格中数据x=0时,y=6,x=1时,y=6;可判断抛物线的对称轴是x=0.5,根据函数值的变化,判断抛物线开口向下,再由抛物线的性质,逐一判断.【详解】解:由表格中数据可知,x=0时,y=6,x=1时,y=6,①抛物线与y 轴的交点为(0,6),正确;②抛物线的对称轴是x=0.5,对称轴在y 轴的右侧,正确;③由表中数据可知在对称轴左侧,y 随x 增大而增大,错误.④根据对称性可知,抛物线的对称轴是x=0.5,点(-2,0)的对称点为(3,0),即抛物线一定经过点(3,0),正确;正确的有①②④.故答案为①②④.主要考查了二次函数的性质.要熟练掌握函数的特殊值对应的特殊点.解题关键是根据表格中数据找到对称性以及数据的特点求出对称轴,图象与x ,y 轴的交点坐标等. 20.【分析】当BCP 三点共线且C 在BP 之间时BP 最大连接PB 此时△OAQ ∽△BAP 且相似比为1:3由此即可求得求出BP 的最大值即可求解【详解】解:如下图所示连接BP 当BCP 三点共线且C 在BP 之间时BP 最 解析:73【分析】当B 、C 、P 三点共线,且C 在BP 之间时,BP 最大,连接PB ,此时△OAQ ∽△BAP ,且相似比为1:3,由此即可求得13=OQ BP ,求出BP 的最大值即可求解. 【详解】 解:如下图所示,连接BP ,当B 、C 、P 三点共线,且C 在BP 之间时,BP 最大,令()()12404=+-=y x x ,求得1224,==x x , ∴B(4,0),A(-2,0), ∵21===63AO AQ AB AP,且∠QAO=∠PAB , ∴△OAQ ∽△BAP , ∴13=OQ BP ,故只要BP 最大,则OQ 就最大, 此时BP 最大值为:224327++=BC CP , ∴OQ 的最大值为:73.本题考查了抛物线与x 轴的交点坐标,相似三角形的性质和判定,本题的关键是根据圆的基本性质,确定BP 的最大值,进而求解.三、解答题21.(1)-5;(2)①m =22-,m =2+m =2-②最大值为3,最小值为-27【分析】(1)先得到2y ax =-的相关函数,再将点A 代入计算即可;(2)①写出二次函数2283y x x =-+-的相关函数,再代入计算; ②根据二次函数的最大值和最小值的求法解答.【详解】解:(1)2y ax =-的相关函数为2(0)2(0)ax x y ax x -+≥⎧=⎨-<⎩, 将(1,3)A -代入2y ax =-,得5a =-; (2)①二次函数2283y x x =-+-的相关函数为22283(0)283(0)x x x y x x x ⎧-+≥=⎨-+-<⎩, 当0m <时,将(,4)B m -代入2283y x x =-+-,得:m =22+(舍去)或m =22-, 当0m ≥时,将(,4)B m -代入2283y x x =-+,得:m =22+m =22-,∴m =22-或m =2+m =2- ②当20x -≤<时,2283y x x =-+-,抛物线的对称轴为2x =,此时y 随x 的增大而增大,∴此时273y -≤<-,当03x ≤≤时,函数2283y x x =-+,抛物线的对称轴为2x =,当2x =有最小值,最小值为-5,当0x =时,有最大值,最大值3y =,∴当23x -≤≤时,函数2283y x x =-+-的相关函数的最大值为3,最小值为-27.【点睛】本题考查的是互为相关函数的定义,掌握二次函数的性质、二次函数与一元二次方程的关系是解题的关键.22.(1)见解析;(2)()2,3-,21x -≤≤【分析】(1)利用五点法作出二次函数的图像,然后令x=0求出A 点坐标即可;(2)将两个函数联立形成新的一元二次方程,然后求解C 点坐标,最后利用图像判断x 的取值范围即可.【详解】 (1)由题意得:x... -3 -2 -1 0 1 ... y .. 0 3 4 3 0 (1)由上图得A 点坐标为()3,0-;(2)由题意得:2123x x x -+=--+,解得12x =-,21x =,当2x =-时,()213y =--+=,∴C 点坐标为()2,3-,由上图得,当y 1≥y 2时,21x -≤≤.【点睛】本题考查了二次函数的图像和性质,重点是根据五点法作出二次函数的图像,然后利用数形结合思想进行判断.23.(1)60,1200;(2)200-x ,x -120;(3)150元或170元;(4)不是,最高盈利为1600元【分析】(1)根据当每件商品的售价高于130元时,每涨价1元,日销售量就减少1件,即可求得每天的销量,然后根据盈利=销量×(售价-进价)求出每天的盈利;(2)根据销量=70-(销售价-130)可求出每天的销量,根据盈利=售价-进价可求出每件盈利;(3)设每天盈利为y ,销售价定为x 元,根据盈利=销量×(售价-进价)列出函数关系式,求出当y =1500时x 的值即可;(4)根据(3)求出的函数关系式,利用配方法求出最大值,并求出此时x 的值.【详解】解:(1)由题意得,每天可销售:70-(140-130)=60(件),商场可盈利为:60×(140-120)=1200(元),(2)设销售价定为x 元,则销售量为:70-(x -130)=200-x ,每件盈利为:x -120,(3)设每天盈利为y ,销售价定为x 元,由题意得,y =(200-x )(x -120)=-x 2+320x -24000,当y =1500时,解得:x 1=150,x 2=170,答:每件商品的销售价定为150元或170元时,商场每天盈利可达到1500元. (4)不是.y =-x 2+320x -24000=-(x -160)2+1600,∵-1<0,∴函数图象开口向下,函数有最大值,即当售价160元时,每天盈利最大,每天最大盈利为1600元.故答案为:60,1200;:(200-x ),(x -120).【点睛】本题考查了二次函数的应用,解答本题的关键是根据题意得到每天的销量及每件的利润,得出函数表达式,要求熟练掌握配方法求最值的运用.24.(1)224233y x x =-++;(2)1或2. 【分析】(1)利用待定系数法,转化为二元一次方程组求解即可;(2)利用抛物线的解析式,用含有m 的代数式表示BCD ∆的面积,建立数量关系等式求解即可.【详解】.解:(1)把()()1,0,3,0A B -代入22y ax bx =++中,得209320a b a b -+=⎧⎨++=⎩, 解得2343a b ⎧=-⎪⎪⎨⎪=⎪⎩∴抛物线的表达式为224233y x x =-++;(2)过点D 作y 轴平行线交BC 于点E ,把0x =代入224233y x x =-++中, 得2y =,∴()0,2C ,又∵()3,0B ,∴直线BC 的表达式为223y x =-+. ∵224,233⎛⎫-++ ⎪⎝⎭D m m m , ∴2,23⎛⎫-+ ⎪⎝⎭E m m , ∴2224222223333DE m m m m m ⎛⎫⎛⎫=-++--+=-+ ⎪ ⎪⎝⎭⎝⎭. 由2BCD AOC S S ∆∆=得:11222DE OB OA OC =, ∴212123212232m m ⎛⎫⨯-+⨯=⨯⨯⨯ ⎪⎝⎭, 整理得2320m m -+=,解得121,2m m ==,∵03m <<,∴m 的值为1或2.【点睛】本题考查了二次函数解析式的确定,用二次函数的解析式表示三角形的面积,熟练利用二次函数的解析式表示指定三角形的面积是解题的关键.25.(1)(﹣1,0);(2)y =x 2+4x +3;(3)﹣3<x <0.【分析】(1)先求出点B ,点A 坐标,由对称性可求点C 坐标;(2)利用待定系数法可求解析式;(3)由图象可求解.【详解】。
(常考题)北师大版初中数学九年级数学下册第二单元《二次函数》检测题(包含答案解析)
一、选择题1.已知二次函数2(21)1y mx m x m =+++-的图象与x 轴有两个交点,则m 的取值范围是( )A .18m >B .18mC .18m >-且0m ≠ D .18m 且0m ≠ 2.在同一坐标系中,函数y ax b =+与2(0)y ax bx a =+≠的图象可能是( ) A . B . C . D . 3.对称轴为y 轴的二次函数是( )A .y=(x+1)2B .y=2(x-1)2C .y=2x 2+1D .y=-(x-1)2 4.已知二次函数()222y mx m x =+-,它的图象可能是( )A .B .C .D .5.如图,二次函数()20y ax bx c a =++≠图象的顶点为D ,其图像与x 轴的交点A 、B 的横坐标分别为-1,3,与y 轴负半轴交于点C .在下面四个结论中:①0a b c ++<;②13a c =-;③只有当12a =时,ABD △是等腰直角三角形; ④使ACB △为等腰三角形的a 值可以有两个.其中正确的结论有 A .1个B .2个C .3个D .4个 6.抛物线221y x =--的顶点坐标是( )A .(2,1)--B .(2,1)C .(0,1)-D .(0,1)7.二次函数223y x =-+在14x -≤≤内的最小值是( )A .3B .2C .-29D .-308.汽车刹车后行驶的距离s (单位:m )关于行驶的时间t (单位:s )的函数解析式是2156s t t =-.汽车刹车后到停下来前进了多远?( )A .10.35mB .8.375mC .8.725mD .9.375m 9.已知二次函数y =ax 2+bx +c (a ≠0)的图像如图所示,则下列结论:①abc >0;②a ﹣b +c >0;③4a ﹣2b +c <0,其中结论正确的个数为( )A .0个B .1个C .2个D .3个10.已知二次函数223y x x =--+,下列叙述中正确的是( )A .图象的开口向上B .图象的对称轴为直线1x =C .函数有最小值D .当1x >-时,函数值y 随自变量x 的增大而减小11.二次函数2y ax bx c =++的图像如图,现有以下结论:①0abc >;②42a c b +<;③320b c +<;④()(1)m am b b a m ++<≠-,其中正确结论序号为( )A .①③④B .②③④C .①②③D .①②③④ 12.如图,二次函数2y ax bx c =++的图象与x 轴交于,A B 两点,与y 轴负半轴交于点C ,它的对称轴为直线12x =,则下列选项中正确的是( )A .0abc <B .0a b -=C .40a c ->D .当2(1x n n =+为实数)时,y c ≤二、填空题13.如图,直线334y x =-+与x 轴交于点C ,与y 轴交于点B ,抛物线233384y x x =-++经过B ,C 两点,点E 是直线BC 上方抛物线上的一动点,过点E 作y 轴的平行线交直线BC 于点M ,则EM 的最大值为_____.14.如图,二次函数2y x mx =-+的图象与x 轴交于坐标原点和()4,0,若关于x 的方程20x mx t -+=(t 为实数)在14x <<的范围内有解,则t 的取值范围是_______.15.二次函数2y ax bx c =++的图象如图所示,有如下结论:①0abc >;②20a b -=;③320b c +>;④2(am bm a b m +≤-为实数).其中正确结论是_____________(只填序号).16.如图1,AO ,BC 是两根垂直于地面的立柱,且长度相等.在两根立柱之间悬挂着一根绳子,如图2建立坐标系,绳子形如抛物线21410y x x =-+的图象.因实际需要,在OA 与BC 间用一根高为2.5m 的立柱MN 将绳子撑起,若立柱MN 到OA 的水平距离为3m ,MN 左侧抛物线的最低点D 与MN 的水平距离为1m ,则点D 到地面的距离为______.17.已知抛物线2(0)y ax bx c a =++>经过(2,0)A ,(4,0)B 两点.若()15,P y ,()2,Q m y 是抛物线上的两点,且12y y >,则m 的取值范围是______.18.写出一个二次函数,使其满足:①图象开口向下;②当0x >时,y 随着x 的增大而减小.这个二次函数的解析式可以是______.19.若函数2(1)42y a x x a =+-+的图像与x 轴有且只有一个交点,则a 的值为____. 20.把函数y =x 2+3的图像向下平移1个单位长度得到的图像对应的函数关系式为________.三、解答题21.某产品的成本是120元/件,在试销阶段,当产品的售价为x (元/件)时,日销售量为(200-x )件.(1)写出用售价x (元/件)表示每日的销售利润y (元)的表达式(2)当日销售利润是1500元时,产品的售价是多少?日销售量是多少件?(3)当售价定位多少时,日销售利润最大?最大日销售利润是多少元?22.已知地物线2y x bx c =-++()0a ≠与y 轴交于点A ,点()3,2B 在该抛物线上 (1)若抛物线的对称轴是直线x m =,请用含b 的式子表示m ;(2)如图1,过点B 作x 轴的垂线段,垂足为点C .连结AB 和AC ,当ABC 为等边三角形时,求抛物线解析式;(3)如图2,在(2)条件下,已知P 为x 轴上的一动点,连结AP 和BP ,当30APB ∠=︒时,求满足条件的点P 的坐标.23.抛物线y =2x 2+4mx +m -5的对称轴为直线x =1,求m 的值及抛物线的顶点坐标. 24.已知抛物线的顶点坐标是()1,4-,且过点(0,3).()1求这个抛物线对应的函数表达式.()2在所给坐标系中画出该函数的图象.()3当x 取什么值时,函数值小于0?25.已知抛物线2y ax c =+经过点()0,2A 和点()1,0B -.(1)求抛物线的解析式;(2)将(1)中的抛物线平移,使其顶点坐标为()2,1,平移后的抛物线与x 轴的两个交点分别为点,C D (点C 在点D 的左边).求点,C D 的坐标;(3)将(1)中的抛物线平移,设其顶点的纵坐标为m ,平移后的抛物线与x 轴两个交点之间的距离为n .若15m <≤,直接写出n 的取值范围.26.如图,已知某二次函数的顶点坐标是(1,4)-,且经过点(4,5)A(1)求该二次函数的表达式;(2)点(,)P m n 是该二次函数图象上一点,若点P 到y 轴的距离不大于4,请根据图象直接写出n 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据二次函数2(21)1y mx m x m =+++-的图象与x 轴有两个交点,可得△=221410m m m -⨯->(+)()且0m ≠求解后即可得出结论.【详解】解:∵原函数是二次函数,∴0m ≠,∵二次函数2(21)1y mx m x m =+++-的图象与x 轴有两个交点,则△=240b ac ->,即221410m m m -⨯->(+)(), 解得18m >-. ∴m 的取值范围是18m >-且0m ≠. 故选:C .【点睛】本题考查了抛物线与x 轴的交点问题,掌握抛物线与x 轴的交点问题与一元二次方程根之间的关系是解题的关键.2.A解析:A【分析】根据二次函数的c 值为0,确定二次函数图象经过坐标原点,再根据a 值确定出二次函数的开口方向与一次函数所经过的象限即可得解.【详解】解:2(0)y ax bx a =+≠,0c ,∴二次函数经过坐标原点,故B 、C 选项错误; A 、根据二次函数开口向上0a >,对称轴b x 02a =->, 所以,0b <,一次函数经过第一三象限,0a >,与y 轴负半轴相交,所以,0b <,符合,故本选项正确;D 、二次函数图象开口向下,0a <,一次函数经过第一三象限,0a >,矛盾,故本选项错误.故选:A .【点睛】本题考查了二次函数的图象,一次函数的图象,熟练掌握函数解析式的系数与图象的关系是解题的关键.3.C解析:C【分析】由已知可知对称轴为x =0,从而确定函数解析式y =ax 2+bx +c 中,b =0,由选项入手即可.【详解】解:二次函数的对称轴为y 轴,则函数对称轴为x =0,即函数解析式y =ax 2+bx +c 中,b =0,故选:C .【点睛】本题考查二次函数的性质;熟练掌握二次函数的图象及性质是解题的关键.4.B解析:B【分析】分m >0,m <0两种情形,判断对称轴与x=14的位置关系即可. 【详解】∵()222y mx m x =+-, ∴抛物线一定经过原点,∴选项A 排除;∵()222y mx m x =+- , ∴对称轴为直线x=22224m m m m ---=⨯, ∵24m m --14=24m m m --=24m-, 当m >0时,抛物线开口向上,24m -<0, ∴对称轴在直线x=14的左边, B 选项的图像符合;C 选项的图像不符合; 当m <0时,抛物线开口向下,24m ->0, ∴对称轴在直线x=14的右边, D 选项的图像不符合;故选B.【点睛】 本题考查了二次函数的图像,熟练掌握抛物线经过原点的条件,抛物线对称轴的位置与定直线的关系的判定是解题的关键.5.D解析:D【分析】先根据图象与x 轴的交点A ,B 的横坐标分别为﹣1,3确定出AB 的长及对称轴,再由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断.【详解】解:①由抛物线的开口方向向上可推出a >0,∵图像与x 轴的交点A 、B 的横坐标分别为-1,3,∴对称轴x =1,∴当x =1时,y <0,∴a +b +c <0;故①正确;②∵点A 的坐标为(﹣1,0),∴a ﹣b +c =0,又∵b =﹣2a ,∴a ﹣(﹣2a )+c =0,∴c =﹣3a ,∴13a c =-∴结论②正确.③如图1,连接AD ,BD ,作DE ⊥x 轴于点E , ,要使△ABD 是等腰直角三角形,则AD =BD ,∠ADB =90°,∵DE ⊥x 轴,∴点E 是AB 的中点,∴DE =BE ,即|244ac b a -|()312--==2,又∵b =﹣2a ,c =﹣3a ,∴|()()24324a a a a⨯---|=2,a >0, 解得a 12=, ∴只有当a 12=时,△ABD 是等腰直角三角形, 结论③正确 ④要使△ACB 为等腰三角形,则AB =BC =4,AB =AC =4,或AC =BC ,Ⅰ、当AB =BC =4时,在Rt △OBC 中,∵OB =3,BC =4,∴OC 2=BC 2﹣OB 2=42﹣32=16﹣9=7,即c 2=7,∵抛物线与y 轴负半轴交于点C ,∴c <0,c 7=-,∴a 73c =-=.Ⅱ、当AB =AC =4时,在Rt △OAC 中,∵OA =1,AC =4,∴OC 2=AC 2﹣OA 2=42﹣12=16﹣1=15,即c 2=15,∵抛物线与y 轴负半轴交于点C ,∴c <0,c=,∴a 3c =-= Ⅲ、当AC =BC 时,∵OC ⊥AB ,∴点O 是AB 的中点,∴AO =BO ,这与AO =1,BO =3矛盾,∴AC =BC 不成立.∴使△ACB 为等腰三角形的a . 结论④正确.故答案选:D【点睛】二次函数y =ax 2+bx +c 系数符号的确定:(1)a 由抛物线开口方向确定:开口方向向上,则a >0;否则a <0;(2)b 由对称轴和a 的符号确定:由对称轴公式x 2b a=-判断符,(3)c 由抛物线与y 轴的交点确定:交点在y 轴正半轴,则c >0;否则c <0;(4)b 2﹣4ac 由抛物线与x 轴交点的个数确定:①2个交点,b 2﹣4ac >0;②1个交点,b 2﹣4ac =0;③没有交点,b 2﹣4ac <0.6.C解析:C【分析】根据题目中的函数解析式可以直接写出该抛物线的顶点坐标.【详解】解:∵y=-2x 2-1,∴该抛物线的顶点坐标为(0,-1),故选:C .【点睛】本题考查了二次函数的性质,解答本题的关键是明确题意,利用二次和函数的性质解答. 7.C解析:C【分析】根据图象,直接代入计算即可解答 【详解】解:由图可知,当x=4时,函数取得最小值y 最小值=-2×16+3=-29.故选:C . 【点睛】本题考查二次函数最小(大)值的求法.求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法.8.D解析:D 【分析】求出函数的最大值即可得求解. 【详解】∵22575156648s t t t ⎛⎫--- ⎪⎝⎭==+, ∴当54t =时,s 取得最大值759.3758=,即汽车刹车后到停下来前进的距离是9.375m 故选D . 【点睛】本题主要考查二次函数的应用,根据题意理解其最大值的实际意义是解题的关键.9.D解析:D 【分析】由抛物线开口向下,得到a <0,再由对称轴在y 轴左侧,得到a 与b 同号,可得出b <0,又抛物线与y 轴交于正半轴,得到c >0,可得出abc >0,得到①正确;根据图象知,当x =﹣1时,y >0,即a ﹣b +c >0,得到②正确;根据图象知,当x =﹣2时,y <0,即4a ﹣2b +c <0,得到③正确,从而得出结论. 【详解】解:∵抛物线的开口向下,∴a <0.∵02ba -<, ∴b <0.∵抛物线与y 轴交于正半轴, ∴c >0,∴abc >0,故①正确;根据图象知,当x =﹣1时,y >0,即a ﹣b +c >0,故②正确; 根据图象知,当x =﹣2时,y <0,即4a ﹣2b +c <0,故③正确. 则其中正确的有3个,为①②③. 故选:D . 【点睛】本题考查了二次函数图象与系数的关系,对于二次函数y =ax 2+bx +c (a ≠0)来说,a 的符号由抛物线开口方向决定;b 的符号由对称轴的位置及a 的符号决定;c 的符号由抛物线与y 轴交点的位置决定;此外还要注意利用抛物线的对称性及x =﹣1,﹣2时对应函数值的正负.10.D解析:D 【分析】将函数图形变成顶点式,依照二次函数的性质对比四个选项即可得出结论. 【详解】解:A. 2223=(1)4y x x x =--+-++∵a=-1<0,∴图象的开口向下,故选项A 错误; B.2223=(1)4y x x x =--+-++∴图象的对称轴为直线1x =-,故选项B 错误; C.2223=(1)4y x x x =--+-++ ∵a=-1<0,∴图象的开口向下,函数有最大值,故选项C 错误; D. 2223=(1)4y x x x =--+-++∴当1x >-时,函数值y 随自变量x 的增大而减小,故选项D 正确; 故选:D . 【点睛】本题考查二次函数的性质,解题的关键是将二次函数关系式变为顶点式,联立二次函数性质对比四个选项即可.11.A解析:A 【分析】由函数图像与对称轴的方程结合可判断①,由抛物线的对称性结合点()2,42a b c --+的位置可判断②,由抛物线的图像结合点()1,a b c ++的位置,对称轴方程,可判断③,由函数的最大值可判断④,从而可得答案. 【详解】 解:图像开口向下, a ∴<0,12bx a=-=-<0, b ∴<0,函数图像与y 轴交于正半轴,c ∴>0,abc ∴>0,故①符合题意; 抛物线与x 轴的一个交点在0~1之间,由抛物线的对称性可得:抛物线与x 轴的另一个交点在3~2--之间,∴ 当2x =-时,42y a b c =-+>0,4a c ∴+>2,b 故②不符合题意;12bx a=-=-, 2,b a ∴= 即1,2a b =当1x =时,y a b c =++<0, 12b bc ∴++<0, 32b c ∴+<0,故③符合题意; 当1x =-时,函数有最大值,y a b c =-+当1x m =≠-,2,y am bm c =++2am bm c ∴++<,a b c -+()m am b b ∴++<,a 故④符合题意.故选:.A 【点睛】本题考查的是抛物线的图像与系数之间的关系,二次函数的性质,掌握以上知识是解题的关键.12.D解析:D 【分析】根据二次函数的图像和性质,分别对每个选项进行判断,即可得到答案. 【详解】解:由图象开口向上,可知a<0, 与y 轴的交点在x 轴的下方,可知c<0,又对称轴方程为12x =,所以122b a -=>0,所以b >0, ∴abc >0,故A 错误;∵122b a -= ∴=-a b ,∴0a b +=,故B 错误;当12x =时,则11042y a b c =++>,∵=-a b ,∴11042a a c -+>, ∴104a c -+>, ∴40a c -<,故C 错误; 当21x n =+时,222(1)(1)y a n b n c =++++ 4222an an a an a c =++--+ 42an an c =++22(1)an n c =++;∵n 为实数,∴20an ≤,211n +≥, ∴22(1)an n c c ++≤, 即y c ≤,故D 正确; 故选:D . 【点睛】本题主要考查二次函数的图象和性质.熟练掌握图象与系数的关系以及二次函数与方程的关系是解题的关键.第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题13.【分析】设出E 的坐标表示出M 坐标进而表示出EM 化成顶点式即可求得EM 的最大值【详解】解:∵点E 是直线BC 上方抛物线上的一动点∴点E 的坐标是(m )点M 的坐标是(m )∴EM =﹣()==(m2﹣4m )=(解析:32【分析】设出E 的坐标,表示出M 坐标,进而表示出EM ,化成顶点式即可求得EM 的最大值. 【详解】解:∵点E 是直线BC 上方抛物线上的一动点, ∴点E 的坐标是(m ,233384m m -++),点M 的坐标是(m ,334m -+), ∴EM =233384m m -++﹣(334m -+)=23382m m -+=38-(m 2﹣4m )=38-(m ﹣2)2+32, ∴当m =2时,EM 有最大值为32, 故答案为32. 【点睛】本题考查了二次函数图象上点的坐标特征,一次函数图象上点的坐标特征,熟练掌握二次函数的性质是解题的关键.14.【分析】求出函数解析式求出函数值取值范围把t 的取值范围转化为函数值的取值范围【详解】先由已知可得二次函数y=−x2+mx 的图象与x 轴交于坐标原点和(40)所以对称轴x==所以m=4代入方程y=−x2 解析:04t <≤【分析】求出函数解析式,求出函数值取值范围,把t 的取值范围转化为函数值的取值范围. 【详解】先由已知可得,二次函数 y=−x 2+mx 的图象与 x 轴交于坐标原点和 (4,0) 所以对称轴 x=2b a-=()221m -=⨯-, 所以m=4,代入 方程y=−x 2+mx 得, y=-x 2+4x , 当x=2时,y=4 即顶点坐标是(2,4) 当x=1时,y=3, 当x=4时,y=0 由x 2−mx+t=0 得 t=-x 2+4x=y因为当 1<x<4 时, 0<y≤4,所以在 1<x<4 范围内有实数解,则 t 的取值范围是0<t≤4, 故答案为:0<t≤4 . 【点睛】本题考查了二次函数和一元二次方程数形结合分析问题,注意函数的最低点和最高点.15.①②④【分析】根据抛物线开口向下对称轴抛物线与轴相交于正半轴可得可以判断①和②正确;当时有解得由图像可知化简后可判断得③错误;由图像可知当时抛物线有最大值当时根据得到化简后得故④正确【详解】解:抛物解析:①②④. 【分析】根据抛物线开口向下,对称轴12bx a=-=-,抛物线与y 轴相交于正半轴,可得0a <,20b a =<,0c >,可以判断①和②正确;当0y =时,有210a x c a ,解得11a cx a ,21a cx a,由图像可知,011a c a,化简后可判断得③错误;由图像可知,当1x =-时,抛物线有最大值1y a bc ,当x m =时,22y am bmc ,根据12y y ≥得到20a bcam bmc化简后得2am bm a b +≤-,故④正确.【详解】 解:抛物线开口向下,0a ∴<,抛物线的对称轴12bx a=-=-, 20b a ∴=<,抛物线与y 轴相交于正半轴,0c ∴>,∴0abc >,故①正确;∴2220a b a a -=-=,故②正确;当0y =时,2220ax bx c ax ax c ,∴210a x c a∴11a cx a, 21a cx a由图像可知,011a c a∴14a c a则有30a c +<,∴62320a c b c +=+<,故③错误; 由图像可知,当1x =-时,抛物线有最大值1y a bc ,当x m =时,22y am bmc ,∵12y y ≥ ∴20a bcam bmc则2am bm a b +≤-,故④正确; 故答案是:①②④. 【点睛】本题考查了二次函数的图象与系数的关系,熟悉相关性质是解题的关键.16.2m 【分析】根据起始抛物线确定点A 的坐标结合已知确定N 的坐标从而确定新抛物线的解析式即可求解【详解】∵抛物线解析式为∴点A 的坐标为(04)∵立柱到的水平距离为左侧抛物线的最低点与的水平距离为∴新抛物解析:2m . 【分析】根据起始抛物线,确定点A 的坐标,结合已知确定N 的坐标,从而确定新抛物线的解析式即可求解. 【详解】∵抛物线解析式为21410y x x =-+, ∴点A 的坐标为(0,4),∵立柱MN 到OA 的水平距离为3m ,MN 左侧抛物线的最低点D 与MN 的水平距离为1m ,∴新抛物线的顶点坐标的横坐标为2,点N 的坐标为(3,52), 设抛物线的解析式为y=a 2(2)x k -+,把(0,4),(3,52)分别代入解析式,得 5a 244k a k ⎧+=⎪⎨⎪+=⎩, 解得1a 22k ⎧=⎪⎨⎪=⎩,∴抛物线的解析式为y=21(2)22x -+, ∴抛物线的最小值为2即点D 到地面的距离为2, 故答案为:2. 【点睛】本题考查了二次函数的生活应用,解析式的确定,熟练把生活问题转化为函数问题,灵活确定抛物线的解析式是解题的关键.17.【分析】根据图像经过的两点确定抛物线的对称轴利用对称轴确定P 的对称点利用数形结合思想确定m 的范围即可【详解】∵抛物线经过两点∴解得b=-6a ∴抛物线的对称轴为直线x==3∴的对称点为∵∴故填【点睛】解析:15m <<. 【分析】根据图像经过的两点,确定抛物线的对称轴,利用对称轴,确定P 的对称点,利用数形结合思想,确定m 的范围即可. 【详解】∵抛物线2(0)y ax bx c a =++>经过(2,0)A ,(4,0)B 两点,∴4201640a b c a b c ++=⎧⎨++=⎩, 解得b=-6a ,∴抛物线的对称轴为直线x=2ba-=3, ∴()15,P y 的对称点为()11,P y ', ∵12y y >, ∴15m <<, 故填15m <<. 【点睛】本题考查了二次函数的对称性,熟记二次函数的性质是解题的关键.18.y=-x2-2x-1【分析】首先由①得到a <0;由②得到-≤0;只要举出满足以上两个条件的abc 的值即可得出所填答案【详解】解:二次函数y=ax2+bx+c①开口向下∴a <0;②当x >0时y 随着x 的解析:y=-x 2-2x-1. 【分析】首先由①得到a <0;由②得到-2ba≤0;只要举出满足以上两个条件的a 、b 、c 的值即可得出所填答案. 【详解】解:二次函数y=ax 2+bx+c , ①开口向下, ∴a <0;②当x >0时,y 随着x 的增大而减小,-2ba≤0,即b <0; ∴只要满足以上两个条件就行,如a=-1,b=-2,c=-1时,二次函数的解析式是y=-x 2-2x-1.故答案为:y=-x2-2x-1.【点睛】本题主要考查了二次函数的性质,熟练运用性质进行计算是解此题的关键.此题是一道开放型的题目.19.或或【分析】分该函数是一次函数和二次函数两种情况求解若为二次函数由抛物线与x轴只有一个交点时b2−4ac=0据此求解可得【详解】解:当a+1=0即a=−1时函数解析式为y=−4x−2与x轴只有一个交-或1解析:2-或1【分析】分该函数是一次函数和二次函数两种情况求解,若为二次函数,由抛物线与x轴只有一个交点时b2−4ac=0,据此求解可得.【详解】解:当a+1=0,即a=−1时,函数解析式为y=−4x−2,与x轴只有一个交点;当a+1≠0,即a≠−1时,根据题意知,(−4)2−4×(a+1)×2a=0,整理,得:a2+a−2=0,解得:a=1或a=−2;综上,a的值为−1或−2或1.-或1.故答案为:2-或1【点睛】本题考查了抛物线与x轴的交点:求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x 轴的交点坐标,令y=0,即ax2+bx+c=0,解关于x的一元二次方程即可求得交点横坐标.二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的交点与一元二次方程ax2+bx+c=0根之间的关系:△=b2−4ac决定抛物线与x轴的交点个数:△=b2−4ac>0时,抛物线与x轴有2个交点;△=b2−4ac=0时,抛物线与x轴有1个交点;△=b2−4ac<0时,抛物线与x轴没有交点.20.y=x2+2【分析】根据向下平移纵坐标减求出平移后函数的顶点坐标再利用顶点式写出解析式即可【详解】解:函数y=x2+3的顶点坐标为(03)∵函数图象向下平移1个单位长度∴得到的函数图象顶点坐标为(0解析:y=x2+2.【分析】根据向下平移纵坐标减求出平移后函数的顶点坐标,再利用顶点式写出解析式即可.【详解】解:函数y=x2+3的顶点坐标为(0,3),∵函数图象向下平移1个单位长度,∴得到的函数图象顶点坐标为(0,2),∴得到函数解析式为y=x2+2.故答案为:y=x2+2.【点睛】本题考查了二次函数的平移变换,通过平移求出新图象顶点坐标是关键.三、解答题21.(1)y=-x 2+320x-24000 ;(2)当日销售利润1500元时,产品的售价是170元/件或150元/件,日销售量是30件或50件;(3)当售价定为160元/件时,日销售利润最大,最大日销售利润是1600元. 【分析】(1)根据利润=(销售价-成本价)×销售量可以得到解答;(2)令(1)中y=1500可以得到关于x 的一元二次方程,解方程即可得到产品售价x 的值,并进一步得到日销售量;(3)把(1)得到的函数配方,再根据二次函数的性质即可得到解答 . 【详解】解:(1)y =(x -120)(200-x )=-x 2+320x-24000 ; (2)日销售利润是1500元,即y=1500,则 1500=-x 2+320x-24000 解得:x 1=170,x 2=150当x=170时,日销售量是30件,当x=150时,日销售量是50件∴当日销售利润1500元时,产品的售价是170元/件或150元/件,日销售量是30件或50件 .(3)∵y=-x 2+320x-24000 =-(x-160)2+1600∴当售价定为160元/件时,日销售利润最大,最大日销售利润是1600元. 【点睛】本题考查二次函数的综合应用,由题意列出二次函数关系式,然后根据二次函数的性质求解即可.22.(1)2b m =;(2)21y x =-+;(3))12,0P ,)22,0P【分析】(1)直接根据对称轴为2bx a=-代入a ,b 计算即可得出答案; (2)首先根据点B 的坐标及等边三角形求出AC ,OC 的长度,然后利用勾股定理求出AO 的长度,从而得出c 的值,最后将点B 代入解析式中即可求解;(3)根据等边三角形的性质及圆周角定理确定出点P 的位置从而可确定出点P 的坐标. 【详解】 (1)∵22b b x a =-=, ∴2b m =.(2)∵ABC 为等边三角形,BC x ⊥轴,)B ,∴2AC BC ==,3OC =, 在Rt AOC 中, 221AO AC OC =-=∴1c =把()3,2B 代入21y x bx =-++,得43b =, ∴2431y x x =-++. (3)如图,由(2)知ABC 为等边三角形,∴60ACB ∠=︒,∵30APB ∠=︒,∴2ACB APB =∠∠,由同弦所对圆周角等于圆心角的一半可知,以点C 为圆心,BC 为半径作圆,经过点P . ∵P 在x 轴上,∴点P 即为圆C 与x 轴的交点,∵2BC =,∴2r,2CP = ∵()3,0C, ∴()132,0P -, 由轴对称性可知,()232,0P +.【点睛】本题主要考查二次函数与几何综合,掌握待定系数法,等边三角形的性质及圆的有关性质是解题的关键.23.m 的值是-1,抛物线的顶点坐标是(1,-8).【分析】根据y=2x 2+4mx+m-5的对称轴为直线x=1,可以求得m 的值,然后代入原来的解析中,将解析式化为顶点式即可解答本题.【详解】解:∵y =2x 2+4mx +m -5的对称轴为直线x =1,∴-422m ⨯=1, 解得m =-1, ∴y =2x 2-4x -6=2(x -1)2-8,∴此抛物线的顶点坐标为(1,-8),∴m 的值是-1,抛物线的顶点坐标是(1,-8).【点睛】本题考查二次函数的性质,解答本题的关键是知道抛物线的对称轴是直线x=-2b a,由二次函数的顶点式可以写出它的顶点坐标.24.()()2114y x =-++或223y x x =--+;()2见解析;()33x <-或1x > 【分析】(1)由抛物线的顶点坐标是()1,4-,设抛物线的解析式为()214y a x =++,由抛物线()214y a x =++过点(0,3),1a =-即可;(2)列表,描点在平面直角坐标系中描出点(-3,0),(-2,3),(-1,4),(0,3),(1,0)用平滑曲线连接即可;(3)由函数值小于0,可得函数图像再x 轴下方,在-3左侧和1右侧即可.【详解】解:(1)∵抛物线的顶点坐标是()1,4-,设抛物线的解析式为()214y a x =++,抛物线()214y a x =++过点(0,3), 4=3a +,1a =-,抛物线的解析式为()214y x =-++;(2)列表:0)连线:用平滑曲线连接,(3)∵函数值小于0,∴函数图像再x 轴下方,在-3左侧和1右侧,当x<-3或x>1时,函数值小于0.【点睛】本题考查抛物线的解析式,画函数图像,函数图像的位置关系,掌握抛物线的解析式的求法,描点画函数图像的方法,函数图像与x 轴关系自变量范围是解题关键.25.(1)222y x =-+;(2)222,0,222C D ⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭;(3210n <≤【分析】(1)把点A 、B 的坐标分别代入函数解析式,列出关于a 、c 的方程组,通过解方程求得它们的值;(2)根据平移的规律写出平移后抛物线的解析式,然后令0y =,则解关于x 的方程,即可求得点C 、D 的横坐标;(3)根据抛物线与x 轴两个交点之间的距离为2211212||()4x x x x x x -+-的关系来即可求n 的取值范围;【详解】解:(1)抛物线2y ax c =+经过点(0,2)A 和点(1,0)B -, ∴20c a c =⎧⎨+=⎩, 解得:22a c =-⎧⎨=⎩, ∴此抛物线的解析式为222y x =-+;(2)此抛物线平移后顶点坐标为(2,1),∴抛物线的解析式为22(2)1y x =--+,令0y =,即22(2)10x --+=,解得 1222x =+,2222x =-,点C 在点D 的左边,(C ∴ 2-0),(2D +,0); (3)设平移后抛物线的解析式是22y x m =-+,该抛物线与x 轴的两交点横坐标为1x ,2x ,整理为:220x m -=.此时120x x +=,122m x x =-.则21||x x n -==.当1m =时,n =当5m =时,n =.所以,n n <≤【点睛】本题考查了待定系数法求二次函数解析式,二次函数图象的几何变换.要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.会利用方程求抛物线与坐标轴的交点.26.(1)223y x x =--;(2)421n -.【分析】(1)设二次函数的解析式是y=a (x-h )2+k ,先代入顶点A 的坐标,再把B 的坐标代入,即可求出a ,即可得出解析式;(2)由点P 到y 轴的距离不大于4,得出 ,结合二次函数的图象可知,请根据图象直接写出n 的取值范围.【详解】解:(1)某二次函数的顶点坐标是(1,4)-,且经过点(4,5)A ,设二次函数的解析式为2(1)4y a x =--,把(4,5)A 代入得:25(41)4a =--解得:1a =,所以函数表达式为:223y x x =--.(2)点P 到y 轴的距离为||m ,∴||m ≤4,∴44m -,∵2223(1)4y x x x =--=--,在44m -时,当m=1时,有最小值n=-4;当m=-4时,有最大值n=21,∴421n -.【点睛】本题考查了待定系数法求二次函数的表达式,二次函数求最值,二次函数图象和性质的应用,求二次函数的取值范围,掌握二次函数的图象和性质的应用是解题的关键.。
第二章 二次函数数学九年级下册-单元测试卷-北师大版(含答案)
第二章二次函数数学九年级下册-单元测试卷-北师大版(含答案)一、单选题(共15题,共计45分)1、已知烟花弹爆炸后某个残片的空中飞行轨迹可以看成为二次函数y=﹣x2+2x+5 图象的一部分,其中x为爆炸后经过的时间(秒),y为残片离地面的高度(米),请问在爆炸后1秒到6秒之间,残片距离地面的高度范围为()A.0米到8米B.5米到8米C. 到8米D.5米到米2、某超市一月份的营业额是100万元,月平均增加的百分率相同,第一季度的总营业额是364万元,若设月平均增长的百分率是,那么可列出的方程是()A. ;B. ;C. ;D. .3、二次函数y=3x2-6x+5的图象的顶点坐标是()A.(1,2)B.(1,8)C.(﹣1,2)D.(1,﹣4)4、二次函数y=ax2+bx+c的图象如图所示,则一次函数y=ax+c的图象可能是()A. B. C. D.5、二次函数y=ax2+bx+c(a≠0)图象如图所示,下列结论:①abc>0;②2a+b=0;③a ﹣b+c>0;④当x≠1时,a+b>ax2+bx;⑤4ac<b2.其中正确的有()个A.1个B.2个C.3个D.4个6、在下列函数关系式中,y是x的二次函数的是()A. B. C. D.7、如图所示是一个抛物线形桥拱的示意图,在所给出的平面直角坐标系中,当水位在AB 位置时,水面宽度为10m,此时水面到桥拱的距离是4m,则抛物线的函数关系式为()A.y=B.y=﹣C.y=﹣D.y=8、已知某二次函数的图象与轴相交于A,B两点.若该二次函数图象的对称轴是直线,且点A的坐标是,则AB的长为()A.5B.8C.10D.119、如图,排球运动员站在点O处练习发球,将球从O点正上方2m的A处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式y=a(x﹣k)2+h.已知球与D点的水平距离为6m时,达到最高2.6m,球网与D点的水平距离为9m.高度为2.43m,球场的边界距O点的水平距离为18m,则下列判断正确的是()A.球不会过网B.球会过球网但不会出界C.球会过球网并会出界 D.无法确定10、如图,抛物线y=ax2+bx+3(a≠0)的对称轴为直线x=1,如果关于x的方程ax2+bx﹣8=0(a≠0)的一个根为4,那么该方程的另一个根为()A.﹣4B.﹣2C.1D.311、抛物线y=(x﹣1)2+3的顶点坐标是()A.(1,3)B.(﹣1,3)C.(﹣1,﹣3)D.(1,﹣3)12、小明在解二次函数时,只抄对了,,求得图象过点.他核对时,发现所抄的比原来的值大2.则抛物线与轴交点的情况是()A.只有一个交点B.有两个交点C.没有交点D.不确定13、二次函数y=﹣3x2﹣2的图象经过哪几个象限()A.一、三象限B.二、四象限C.一、二象限D.三、四象限14、将抛物线y=﹣2(x+3)2+1向左平移2个单位,再向上平移1个单位后所得到的抛物线的解析式为()A.y=2(x+1)2B.y=﹣2(x+5)2+2C.y=﹣2(x+5)2+3 D.y=﹣2(x﹣5)2﹣115、下列函数是二次函数的是()A.y=﹣B.y=x 2+xz+1C.x 2+2y﹣1=0D.xy=x 2﹣y二、填空题(共10题,共计30分)16、已知二次函数y=ax2﹣2ax+c(a<0)图象上的两点(x1, y1)和(3,y2),若y1>y2,则x1的取值范围是________.17、已知二次函数y=ax2+bx+c(a≠0)经过点A(1,-1)、B(3,3),且当1≤x≤3时,-1≤y≤3,则a的取值范围是________18、如图,抛物线与x轴正半轴交于点A, 点B的坐标为(0,-3),线段AB绕点P旋转180°,A,B的对应点C,D均落在抛物线上,则点P的坐标为________19、如果抛物线的开口向下,那么的取值范围是________.20、二次函数y=ax2﹣12ax+36a﹣5的图象在4<x<5这一段位于x轴下方,在8<x<9这一段位于x轴上方,则a的值为________21、某个函数具有性质:当x<0时,y随x的增大而减小,这个函数的表达式可以是________(只要写出一个符合题意的答案即可).22、如果是二次函数,则m=________.23、将抛物线:向下平移3个单位,再向右平移4个单位得到的抛物线是________.24、抛物线y=ax2+bx+c中,已知a:b:c=1:2:3,y最小值为6,则此抛物线的解析式为________.25、某同学在用描点法画二次函数y=ax2+bx+c的图象时,列出下面的表格:x …﹣5 ﹣4 ﹣3 ﹣2 ﹣1 …y …﹣7.5 ﹣2.5 0.5 1.5 0.5 …根据表格提供的信息,有下列结论:①该抛物线的对称轴是直线x=﹣2;②该抛物线与y轴的交点坐标为(0,﹣2.5);③b2﹣4ac=0;④若点A(0.5,y1)是该抛物线上一点.则y1<﹣2.5.则所有正确的结论的序号是________.三、解答题(共5题,共计25分)26、一个二次函数y=(k﹣1).求k值.27、已知二次函数图象顶点坐标(﹣3,)且图象过点(2,),求二次函数解析式及图象与y轴的交点坐标.28、如果二次函数y=x2﹣x+c的图象过点(1,2),求这个二次函数的解析式,并求出该函数图象的顶点坐标.29、矩形的长和宽分别是4cm, 3cm ,如果将长和宽都增加x cm ,那么面积增加ycm2(1)求y与x之间的关系式.(2)求当边长增加多少时,面积增加8 cm230、如图,用50m长的护栏全部用于建造一块靠墙的长方形花园,写出长方形花园的面积y(m2)与它与墙平行的边的长x(m)之间的函数.参考答案一、单选题(共15题,共计45分)1、B2、B4、C5、C6、C7、C8、C9、C10、B11、A12、B13、D14、B15、C二、填空题(共10题,共计30分)16、17、18、19、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、29、。
北师大版九年级数学下册第二章《二次函数》单元练习题(含答案)
北师大版九年级数学下册第二章《二次函数》单元练习题(含答案)1.在平面直角坐标系中,抛物线y=(x+5)(x-3)经变换后得到抛物线y=(x+3)(x-5),则这个变换可以是( )A.向左平移2个单位B.向右平移2个单位C.向左平移8个单位D.向右平移8个单位2.抛物线y=2x2-5x+3与坐标轴的交点共有( )A.4个 B.3个 C.2个 D.1个3.若二次函数y=x2-6x+c的图象过A(-1,y1)、B(2,y2)、C(5,y3),则y1、y2、y3的大小关系是( )A.y1>y2>y3B.y1>y3>y2C.y2>y1>y3D.y3>y1>y24.若函数y=mx2+(m+2)x+12m+1的图象与x轴只有一个交点,则m的值为( )A.0 B.0或2 C.2或-2 D.0,2或-25.已知二次函数y=-x2+2bx+c,当x>1时,y的值随x值的增大而减小,则实数b的取值范围是( )A.b>1 B.b<1 C.b≥1 D.b≤16.设计师以y=2x2-4x+8的图形为灵感设计杯子如图所示.若AB=4,DE=3,则杯子的高CE 等于( )A.17 B.11 C.8 D.77.已知抛物线y=-x2-2x+3,当-2≤x≤2时,对应的函数值y的取值范围为 .8.如图是二次函数y=ax2+bx+c的部分图象,由图象可知不等式y<0的解集是 .9. 二次函数y=-3x2-6x+5的图象的顶点坐标是 .10. 已知抛物线y=ax2+bx+c(a>0)的对称轴为直线x=1,且经过点(-1,y1),(2,y2),试比较y1和y2的大小:y1y2(填“>”“<”或“=”).11. 已知抛物线:y=ax2+bx+c(a>0)经过A(-1,1)、B(2,4)两点,顶点坐标(m,n),有下列结论:①b<1;②c<2;③0<m<12;④n≤1.则所有正确结论的序号是 .12. 如图所示,在平面直角坐标系中,二次函数y=ax2+bx+c的图象顶点为A(-2,-2),且过点B(0,2),则二次函数的表达式为 .13. 如图,用一段长为30m的篱笆围成一个一边靠墙的矩形菜园,墙长14m,当矩形的长、宽各取某个特定的值时,菜园的面积最大,这个最大面积是 m2.14. 如图,抛物线的顶点为A(2,1),且经过原点O,与x轴的另一个交点为B.(1)求抛物线的解析式;(2)在抛物线上是否存在点M,使△MOB的面积是△AOB面积的3倍?若存在,求出点M的坐标;若不存在,请说明理由.15. 某工厂制作A、B两种手工艺品,B每件获利比A多105元,获利30元的A与获利240元的B 数量相等.(1)制作一件A和一件B分别获利多少元?(2)工厂安排65人制作A、B两种手工艺品,每人每天制作2件A或1件B.现在在不增加工人的情况下,增加制作C.已知每人每天可制作1件C(每人每天只能制作一种手工艺品),要求每天制作A、C两种手工艺品的数量相等.设每天安排x人制作B,y人制作A,写出y与x之间的函数关系式;(3)在(1)(2)的条件下,每天制作B不少于5件.当每天制作5件时,每件获利不变.若每增加1件,则当天平均每件获利减少2元.已知C每件获利30元,求每天制作三种手工艺品可获得的总利润W(元)的最大值及相应x的值.参考答案:1-6 BBBDDB 7. -5≤y ≤4 8. x >5或x <-1 9. (-1,8) 10. >11. ① ② ④12. y =(x +2)2-2 13. 11214. 解:(1)设抛物线的解析式为y =a(x -2)2+1,把(0,0)代入得4a +1=0,解得a =-14.所以抛物线的解析式为y =-14(x -2)2+1,即y =-14x 2+x ;(2)存在.因为抛物线的对称轴为直线x =2,则B(4,0),设M(x ,-14x 2+x),根据题意得12×4×|-14x 2+x|=12×4×1×3,所以-14x 2+x =3(舍)或-14x 2+x =-3,解-14x 2+x =-3得x 1=-2,x 2=6,此时M 点的坐标为(-2,-3)或(6,-3).15. (1) 解:设制作一件A 获利x 元,则制作一件B 获利(105+x)元,由题意得:30x =240x +105,解得:x =15,经检验,x =15是原方程的根,当x =15时,x +105=120,答:制作一件A 获利15元,制作一件B 获利120元;(2) 解:设每天安排x 人制作B ,y 人制作A ,则2y 制作C ,于是有:y +x +2y =65,∴y =-13x+653,答:y 与x 之间的函数关系式为:y =-13x +653; (3) 解:由题意得:W =15×2×y +[120-2(x -5)]x +2y ×30=-2x 2+130x +90y ,又∵y =-13x+653, ∴W =-2x 2+130x +90y =-2x 2+130x +90(-13x +653)=-2x 2+100x +1950,∵W =-2x 2+100x +1950,对称轴为x =25,而x =25时,y 的值不是整数,根据抛物线的对称性可得:当x =26时,W 最大=-2×262+100×26+1950=3198元,此时制作A 产品的13人,B 产品的26人,C 产品的26人,获利最大,最大利润为3198元.。
人教版初中数学九年级数学上册第二单元《二次函数》检测(含答案解析)
一、选择题1.在同一直角坐标系中,一次函数y=ax+c 和二次函数y=ax 2+c 的图象大致为( )A .B .C .D .2.二次函数(2)(3)y x x =--与x 轴交点的个数为( ) A .1个B .2个C .3个D .4个3.如果二次函数2112y x ax =-+,当1x ≤时,y 随x 的增大而减小,且关于x 的分式方程4311x ax x ++=--有正整数解,则所有符合条件的a 的值之和为( ). A .9 B .8 C .4 D .34.二次函数y =ax 2+bx +c 的部分图象如图,图象过点A (3,0),对称轴为直线x =1,下列结论:①a ﹣b +c =0;②2a +b =0; ③4ac ﹣b 2>0;④a +b ≥am 2+bm (m 为实数);⑤3a +c >0.则其中正确的结论有( )A .2个B .3个C .4个D .5个5.若整数a 使得关于x 的分式方程12322ax xx x -+=--有整数解,且使得二次函数y =(a ﹣2)x 2+2(a ﹣1)x +a +1的值恒为非负数,则所有满足条件的整数a 的值之和是( ) A .12 B .15 C .17 D .20 6.根据下列表格中的对应值:x1.98 1.992.00 2.01 2y ax bx c =++-0.06-0.05-0.030.01判断方程(,,,为常数)一个根的范围是()A .1.00 1.98x << B .1.98 1.99x << C .1.99 2.00x <<D .2.00 2.01x <<7.如图是二次函数y =ax 2+bx +c 的图像,对于下列说法:①abc >0,②240b ac ->,③a +b +c <0,④当x >0时,y 随x 的增大而增大,其中正确的个数是( )A .1B .2C .3D .48.一次函数y cx b =-与二次函数2y ax bx c =++在同一平面直角坐标系中的图象可能是( )A .B .C .D .9.函数()20y ax a a =-≠与()0y ax a a =-≠在同一平面直角坐标系中的图象可能是( )A .B .C .D .10.若二次的数2y ax bx c =++的x 与y 的部分对应值如下表: x7-6-5- 4-3-2-y 27- 13-3- 3 5 3则当1x =时,y 的值为( ) A .5B .3-C .13-D .27-11.已知二次函数2y ax bx c =++的图象如图所尔,对称轴为直线x=1,则下列结论正确的是( )A .0ac >B .方程20ax bx c ++=的两根是1213x x =-=, C .20a b -=D .当x>0时,y 随x 的增大而减小.12.若关于x 的不等式组232x a x a ≥+⎧⎨<-⎩有解,则函数21(3)4y x x a =--+-图象与x 轴的交点个数为( ) A .0个 B .1个 C .2个 D .1或2个 二、填空题13.如果抛物线y =x 2﹣6x +c 的顶点到x 轴的距离是3,那么c 的值等于____. 14.如图是二次函数2(0)y ax bx c a =++≠图象的一部分,有下列4个结论:①0abc >;②240b ac ->;③关于x 的方程20ax bx c ++=的两个根是12x =-,23x =;④关于x 的不等式20ax bx c ++>的解集是2x >-.其中正确的结论是___________.15.已知点P (m ,n )在抛物线2y ax x a =--上,当1m 时,总有1n ≥-成立,则实数a 的取值范围是_______.16.写出一个二次函数,其图像满足:①开口向下;②与y 轴交于点(0,3)-,这个二次函数的解析式可以是_______________________.17.已知二次函数246y x x =--,若16x -≤≤,则y 的取值范围为____. 18.抛物线y =x 2+2x-3与x 轴的交点坐标为____________________.19.定义:在平面直角坐标系中,若点A 满足横、纵坐标都为整数,则把点A 叫做“整点”.如:()3,0B 、()1,3C -都是“整点”.抛物线()2220y ax ax a a =++->与x 轴交于点M ,N 两点,若该抛物线在M 、N 之间的部分与线段MN 所围的区域(包括边界)恰有5个整点,则a 的取值范围是_______. 20.设A (-3,y 1),B (-2,y 2),C (12,y 3)是抛物线y =(x+1)2-m 上的三点,则y 1,y 2,y 3的大小关系为_______.(用“>”连接)三、解答题21.如图,二次函数2y x bx c =++的图象与x 轴交于A 、B 两点,与y 轴交于点C ,OB OC =.点D 在函数图象上,//CD x 轴,且2CD =,直线l 是抛物线的对称轴,E 是抛物线的顶点.(1)求b 、c 的值.(2)如图①,连接BE ,线段OC 上的点F 关于直线l 的对称点F '恰好在线段BE 上,求点F 的坐标.(3)如图②,动点P 在线段OB 上,过点P 作x 轴的垂线分别与BC 交于点M ,与抛物线交于点N .试问:抛物线上是否存在点Q ,使得PQN 与APM △的面积相等,且线段NQ 的长度最小?如果存在,求出点Q 的坐标;如果不存在,说明理由.22.已知抛物线2(0)y ax bx a =+≠经过点(4,8)A -和点(,0)(0)P m m ≠.(1)若点A 是抛物线的顶点,则m =______.(2)如图,若2m =,设此时抛物线的顶点为B ,求OAB 的面积.23.如图,在平面直角坐标系中,有抛物线y=ax2+bx+3,已知OA=OC=3OB,动点P在过 A、B、C三点的抛物线上.(1)求抛物线的解析式;(2)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标,若不存在,说明理由;24.如图,在一面靠墙的空地上用长为24米的篱笆,围成中间隔有一道篱笆的长方形花圃,设花圃的宽AB为x米,面积为y平方米.(1)求y与x的函数关系式及自变量x的取值范围;(2)若墙的最大可用长度为9米,求此时当AB为多少米时长方形花圃的面积最大,最大面积是多少?25.某超市经销一种商品,每千克成本为40元,经试销发现,该种商品的每天销售量y(千克)与销售单价x(元/千克)满足一次函数关系,其每天销售单价,销售量的四组对应值如下表所示:销售单价x(元/千克)45505560销售量y(千克)70605040y x(2)为了尽可能提高销量且保证某天获得600元的销售利润,则该天的销售单价应定为多少?(3)当销售单价定为多少时,才能使当天的销售利润最大?最大利润是多少?26.某滑雪场在滑道上设置了几个固定的计时点.一名滑雪者从山坡滑下,测得了滑行距离s(单位:m)与滑行时间t(单位:s)的若干数据,如下表所示:位置1位置2位置3位置4位置5位置6位置7t0 1.07 1.40 2.08 2.46 2.79 3.36滑行时间/ss0510********滑行距离/mt t点(如图).可以看出,其中绝大部分的点都近似位于某条抛物线上.于是,我们可以用二次函数()20s at bt c t =++≥来近似地表示s 与t 的关系.(1)有一个计时点的计时装置出现了故障,这个计时点的位置编号可能是_________; (2)当0t =时,0s =,所以c =________;(3)当此滑雪者滑行距离为30m 时,用时约为________s (结果保留一位小数).【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据二次函数的开口方向,与y 轴的交点;一次函数经过的象限,与y 轴的交点可得相关图象. 【详解】解:∵一次函数和二次函数都经过y 轴上的(0,c ), ∴两个函数图象交于y 轴上的同一点,故B 选项错误;当a >0,c <0时,二次函数开口向上,一次函数经过一、三、四象限,故C 选项错误; 当a <0,c >0时,二次函数开口向下,一次函数经过一、二、四象限,故A 选项错误,D 选项正确; 故选:D . 【点睛】本题考查二次函数及一次函数的图象的性质;用到的知识点为:二次函数和一次函数的常数项是图象与y 轴交点的纵坐标;一次函数的一次项系数大于0,图象经过一、三象限;小于0,经过二、四象限;二次函数的二次项系数大于0,图象开口向上;二次项系数小于0,图象开口向下.2.B解析:B 【分析】根据△=24b ac -与零的关系即可判断出二次函数的图象与x 轴的交点问题; 【详解】∵ ()()22356y x x x x =--=-+,∴ △=24b ac -=25-24=1>0∴二次函数()()23y x x =--与x 轴有两个交点; 故选:B . 【点睛】本题考查了二次函数与x 轴的交点问题,熟练掌握判别式△=24b ac -是解题的关键;3.C解析:C 【分析】由二次函数的性质可先确定出a 的范围,再由二次函数的性质可确定出a 的范围,解分式方程确定出a 的取值范围,从而可确定出a 的取值,可求得答案. 【详解】 解:∵二次函数2112y x ax =-+, ∴抛物线开口向上,对称轴为x =a , ∴当x <a 时,y 随x 的增大而减小, ∵当x≤1时,y 随x 的增大而减小, ∴a≥1, 解分式方程4311x ax x ++=--可得x =72a -, ∵关于x 的分式方程4311x ax x++=--有正整数解, ∵x≠1,∴满足条件的a 的值为1,3,∴所有满足条件的整数a 的值之和是1+3=4, 故选:C . 【点睛】本题考查了二次函数的性质、分式方程的解,通过解分式方程以及二次函数的性质,找出a 的值是解题的关键.4.B解析:B 【分析】由抛物线过点A(3,0)及对称轴为直线x=1,可得抛物线与x 轴的另一个交点,则可判断①②是否正确;由抛物线与x 轴有两个交点,可得△>0,据此可判断③是否正确;由x=1时,函数取得最大值,可判断④是否正确;把b=-2a 代入a-b+c=0得3a+c=0,则可判断⑤是否正确.解:∵二次函数y =ax 2+bx +c 的图象过点A (3,0),对称轴为直线x =1,∴点A (3,0)关于直线x =1对称点为(﹣1,0),∴当x =﹣1时,y =0,即a ﹣b +c =0.故①正确;∵对称轴为直线x =1,∴﹣2ba=1,∴b =﹣2a ,∴2a +b =0,故②正确; ∵抛物线与x 轴有两个交点,∴△=b 2﹣4ac >0,∴4ac ﹣b 2<0,故③错误; ∵当x =1时,函数有最大值,∴a +b +c ≥am 2+bm +c ,∴a +b ≥am 2+bm ,故④正确; ∵b =﹣2a ,a ﹣b +c =0,∴a +2a +c =0,即3a +c =0,故⑤错误; 综上,正确的有①②④. 故选:B . 【点睛】本题考查了二次函数图象与系数的关系,二次函数图象上点的坐标特征,数形结合并明确二次函数的相关性质是解题的关键.5.B解析:B 【分析】由抛物线的性质得到20a ->,2=4(1)4(2)(1)0a a a ∆---+≤然后通过解分式方程求得a 的取值,然后求和. 【详解】解:∵二次函数y =(a -2)x 2+2(a -1)x +a +1的值恒为非负数, ∴20a ->,2=4(1)4(2)(1)0a a a ∆---+≤ 解得3a ≥解分式方程12322ax xx x -+=--解得:62x a =- 由x ≠2得,a ≠5, 由于a 、x 是整数,所以a =3,x =6,a =4,x =3,a =8,x =1, 同理符合a ≥3的a 值共有3,4,8,故所有满足条件的整数a 的值之和=3+4+8=15, 故选:B . 【点睛】本题考查的是抛物线和x 轴交点,涉及到解分式方程,正确理解二次函数的值恒为非负数是解题的关键.6.D解析:D 【分析】根据二次函数的性质、二次函数与一元二次方程的联系即可得.由表格可知,在1.98 2.01x ≤≤内,y 随x 的增大而增大, 当 2.00x =时,0.030y =-<, 当 2.01x =时,0.010y =>,∴在2.00 2.01x <<内,必有一个x 的值对应的函数值0y =,∴方程20ax bx c ++=(0a ≠,,,a b c 为常数)一个根x 的范围是2.00 2.01x <<,故选:D . 【点睛】本题考查了二次函数的性质、二次函数与一元二次方程的联系,熟练掌握二次函数的性质是解题关键.7.C解析:C 【分析】根据抛物线的开口向上,对称轴在y 轴的右边,与y 轴的交点在y 的负半轴上即可求出a 、b 、c 的正负,即可判断①;根据抛物线与x 轴的交点坐标即可判断②;把x=1代入抛物线即可判断③;求出抛物线的对称轴,根据图象即可判断④. 【详解】解:∵抛物线的开口向上,对称轴在y 轴的右边,与y 轴的交点在y 的负半轴上, ∴a >0,-2ba>0,c <0, 即b <0, ∴abc >0, ∴①正确;由抛物线与x 轴有两个交点, ∴△=b 2-4ac >0,故②正确; 由图象可知:x=1时,y=a+b+c <0, 故③正确;由图象可得,当0<x<-2ba时,y 随着x 的增大而减小,故④错误; ∴正确的个数有3个. 故选:C . 【点睛】本题考查了二次函数与系数的关系的应用,主要考查学生对二次函数的图象与系数的关系的理解和运用,同时也考查了学生观察图象的能力.8.D解析:D 【分析】先假设0c <,根据二次函数2y ax bx c =++图象与y 轴交点的位置可判断A ,C 是否成立;再假设0c >,0b <,判断一次函数y cx b =-的图象位置及增减性,再根据二次函数2y ax bx c =++的开口方向及对称轴位置确定B ,D 是否成立.【详解】解:若0c <,则一次函数y cx b =-图象y 随x 的增大而减小,此时二次函数2y ax bx c =++的图象与y 轴的交点在y 轴负半轴,故A ,C 错;若0c >,0b <,则一次函数y cx b =-图象y 随x 的增大而增大,且图象与y 的交点在y 轴正半轴上,此时二次函数2y ax bx c =++的图象与y 轴的交点也在y 轴正半轴,若0a >,则对称轴b x 02a =->,故B 错;若0a <,则对称轴02b x a=-<,则D 可能成立. 故选:D . 【点睛】本题考查一次函数图象与二次函数图象的综合判断问题,解答时可假设一次函数图象成立,分析二次函数的图象是否符合即可.9.C解析:C 【分析】分a >0与a <0两种情况考虑两函数图象的特点,再对照四个选项中图形即可得出结论. 【详解】解:①当a >0时,二次函数y=ax 2-a 的图象开口向上、对称轴为y 轴、顶点在y 轴负半轴,一次函数y=ax-a(a≠0)的图象经过第一、三、四象限,且两个函数的图象交于y 轴同一点;②当a <0时,二次函数y=ax 2-a 的图象开口向下、对称轴为y 轴、顶点在y 轴正半轴,一次函数y=ax-a(a≠0)的图象经过第一、二、四象限,且两个函数的图象交于y 轴同一点. 对照四个选项可知C 正确. 故选:C . 【点睛】本题考查了一次函数的图象以及二次函数图象与系数的关系,根据二次函数及一次函数系数找出其大概图象是解题的关键.10.D解析:D 【分析】首先观察表格可得二次函数2y ax bx c =++过点(4,3)-与(2,3)-,则可求得此抛物线的对称轴,然后由对称性求得答案. 【详解】 解:二次函数2y ax bx c =++过点(4,3)-与(2,3)-,∴此抛物线的对称轴为:直线4(2)32x -+-==-, ∴横坐标为1x =的点的对称点的横坐标为7x =-,∴当1x =时,27y =-.故选:D .【点睛】此题考查了二次函数的对称性,根据表格中的数据找到对称轴是解题的关键. 11.B解析:B【解析】解:A 、∵抛物线开口向下,与y 轴交于正半轴,∴a <0,c >0,ac <0,故本选项错误;B 、∵抛物线对称轴是x=1,与x 轴交于(3,0),∴抛物线与x 轴另一交点为(-1,0),即方程ax2+bx+c=0的两根是x1=-1,x2=3,故本选项正确;C 、∵抛物线对称轴为,∴b=-2a ,∴2a+b=0,故本选项错误;D 、∵抛物线对称轴为x=1,开口向下,∴当x >1时,y 随x 的增大而减小,故本选项错误. 故选B .根据抛物线的开口方向,对称轴,与x 轴、y 轴的交点,逐一判断. 12.C解析:C【分析】根据解不等式组的一般步骤得到a 的取值范围,然后求出函数21(3)4y x x a =--+-的判别式,根据根的判别式的正负即可得到图象与x 轴的交点个数.【详解】 解:∵关于x 的不等式组232x a x a ≥+⎧⎨<-⎩有解, ∴3a-2>a+2,即a >2,令y=0,21(3)4x x a --+-=0, △=(-1)2-4×(a-3)×(-14)=a-2, ∵a >2,∴a-2>0,∴函数图象与x 轴的交点个数为2.故选:C .【点睛】解答此题要熟知以下概念:(1)解不等式组应遵循的原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.(2)一元二次方程ax 2+bx+c=0(a≠0)的解与二次函数y=ax 2+bx+c 的关系.二、填空题13.c=6或12【分析】根据题意得顶点的纵坐标是3或-3列出方程求出解则可【详解】解:根据题意得:±3解得:c=6或12故答案为:c=6或12【点睛】本题考查了二次函数的性质熟记顶点的纵坐标公式是解题的解析:c =6或12【分析】根据题意得顶点的纵坐标是3或-3,列出方程求出解则可.【详解】解:根据题意得:24(6)4c --=±3, 解得:c =6或12.故答案为:c =6或12.【点睛】本题考查了二次函数的性质,熟记顶点的纵坐标公式是解题的关键.14.②③【分析】根据抛物线开口方向对称轴的位置以及与y 轴的交点可对①减小判断;利用抛物线与x 轴的交点个数可对②进行判断;根据二次函数的性质可对③进行判断;利用图象则可对④进行判断【详解】解:∵抛物线开口解析:②③【分析】根据抛物线开口方向,对称轴的位置以及与y 轴的交点可对①减小判断;利用抛物线与x 轴的交点个数可对②进行判断;根据二次函数的性质可对③进行判断;利用图象则可对④进行判断.【详解】解:∵抛物线开口向下,交y 轴的正半轴,∴a <0,c >0,∵-2b a =12, ∴b =-a >0,∴abc<0,所以①错误;∵抛物线与x轴有2个交点,∴△=b2-4ac>0,即b2>4ac,所以②正确;∵抛物线y=ax2+bx+c经过点(-2,0),而抛物线的对称轴为直线x=12,∴点(-2,0)关于直线x=12的对称点(3,0)在抛物线上,∴关于x的一元二次方程ax2+bx+c=0的两根是x1=-2,x2=3,所以③正确.由图象可知当-2<x<3时,y>0,∴不等式ax2+bx+c>0的解集是-2<x<3,所以④错误;故答案为②③.【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a 决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点位置:抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.15.0<a≤【分析】依照题意画出图形分0<<1及≥1两种情况考虑结合函数图形以及已知条件可得出关于a的一元一次不等式组(或一元一次不等式)解之即可得出a的取值范围综上即可得出结论【详解】当≥1时有解得:解析:0<a≤1 2【分析】依照题意画出图形,分0<12a<1及12a≥1两种情况考虑,结合函数图形以及已知条件可得出关于a的一元一次不等式组(或一元一次不等式),解之即可得出a的取值范围,综上即可得出结论.【详解】当12a≥1时,有11aa a⎧⎨--≥-⎩>,解得:a>0,∴0<a≤12;当0<12a<1时,有()224114aa--≥--,解得:a=12 ∴0<a≤12. 综上所述:0<a≤12. 故答案为:0<a≤12.【点睛】本题考查了二次函数的性质以及二次函数图象上点的坐标特征,分0<12a <1及12a≥1两种情况找出关于a 的一元一次不等式(一元一次不等式组)是解题的关键. 16.【分析】根据二次函数的性质可得出a <0利用二次函数图象上点的坐标特征可得出c=-3取a=-1b=0即可得出结论【详解】解:设二次函数的解析式为y=ax2+bx+c ∵抛物线开口向下∴a <0∵抛物线与y解析:23=--y x【分析】根据二次函数的性质可得出a <0,利用二次函数图象上点的坐标特征可得出c=-3,取a=-1,b=0即可得出结论.【详解】解:设二次函数的解析式为y=ax 2+bx+c .∵抛物线开口向下,∴a <0.∵抛物线与y 轴的交点坐标为(0,-3),∴c=-3.取a=-1,b=0时,二次函数的解析式为y=-x 2-3.故答案为:y=-x 2-3(答案不唯一).【点睛】本题考查了二次函数的性质以及二次函数图象上点的坐标特征,利用二次函数的性质及二次函数图象上点的坐标特征,找出a <0,c=-3是解题的关键.17.【分析】先利用配方法求得抛物线的顶点坐标从而可得到y 的最小值然后再求得最大值即可【详解】解:y=x2-4x-6=x2-4x+4-10=(x-2)2-10∴当x=2时y 有最小值最小值为-10∵∴当x=解析:106y -≤≤【分析】先利用配方法求得抛物线的顶点坐标,从而可得到y 的最小值,然后再求得最大值即可.【详解】解:y=x 2-4x-6=x 2-4x+4-10=(x-2)2-10.∴当x=2时,y 有最小值,最小值为-10.∵16x -≤≤,∴当x=6时,y 有最大值,最大值为y=(6-2)2-10=6.∴y 的取值范围为106y -≤≤.故答案为:106y -≤≤.【点睛】本题主要考查的是二次函数的性质,熟练掌握二次函数的性质是解题的关键. 18.【分析】要求抛物线与x 轴的交点即令y =0解方程即可【详解】令y =0则x2+2x ﹣3=0解得x1=﹣3x2=1则抛物线y =x2+2x ﹣3与x 轴的交点坐标是(﹣30)(10)故答案为:(﹣30)(10)解析:()()3.0,1,0-【分析】要求抛物线与x 轴的交点,即令y =0,解方程即可.【详解】令y =0,则x 2+2x ﹣3=0,解得x 1=﹣3,x 2=1.则抛物线y =x 2+2x ﹣3与x 轴的交点坐标是(﹣3,0),(1,0).故答案为:(﹣3,0),(1,0).【点睛】此题考察二次函数与一元二次方程的关系,一元二次方程的解即为二次函数图像与x 轴交点的横坐标.19.1<a≤2【分析】画出图象找到该抛物线在MN 之间的部分与线段MN 所围的区域(包括边界)恰有5个整点的边界利用与y 交点位置可得a 的取值范围【详解】解:抛物线y =ax2+2ax +a−2(a >0)化为顶点解析:1<a≤2【分析】画出图象,找到该抛物线在M 、N 之间的部分与线段MN 所围的区域(包括边界)恰有5个整点的边界,利用与y 交点位置可得a 的取值范围.【详解】解:抛物线y =ax 2+2ax +a−2(a >0)化为顶点式为y =a (x +1)2−2,∴函数的对称轴:x =−1,顶点坐标为(−1,−2),∴M 和N 两点关于x =−1对称,根据题意,抛物线在M 、N 之间的部分与线段MN 所围的区域(包括边界)恰有5个整点,这些整点是(0,0),(−1,0),(−1,−1),(−1,−2),(−2,0), 如图所示:∵当x =0时,y =a−2,∴−1<a−2≤0,当x =1时,y =4a−2>0,即:120420a a --≤-⎧⎨⎩<>, 解得1<a≤2,故答案为:1<a≤2.【点睛】本题考查抛物线与x 轴的交点、配方法确定顶点坐标、待定系数法等知识,利用函数图象确定与y 轴交点位置是本题的关键.20.【分析】根据题目中的函数解析式和二次函数图像性质即可得到答案【详解】解:∵二次函数的解析式为∴抛物线的对称轴是直线∴当时随的增大而减小;当时随的增大而增大∵是抛物线上的三个点∴∴∴故答案是:【点睛】 解析:132y y y >>【分析】根据题目中的函数解析式和二次函数图像性质即可得到答案.【详解】解:∵二次函数的解析式为()21y x m =+-∴抛物线的对称轴是直线1x =- ,10a =>∴当1x <-时,y 随x 的增大而减小;当1x >-时,y 随x 的增大而增大 ∵()13,A y -、()22,B y -、31,2C y ⎛⎫ ⎪⎝⎭是抛物线()21y x m =+-上的三个点 ∴()132---=,()121---=,()13122--= ∴3212>> ∴132y y y >>.故答案是:132y y y >>【点睛】本题考查了二次函数图像与系数的关系、二次函数图像上点的坐标特征,解答本题的关键是明确题意,能利用图像的增减性进行解答.三、解答题21.(1)2b =-,3c =-;(2)点F 坐标为(0,2)-;(3)存在,Q 的坐标为115,24⎛⎫- ⎪⎝⎭和315,24⎛⎫- ⎪⎝⎭ 【分析】(1)由条件可求得抛物线对称轴,则可求得b 的值;由OB=OC ,可用c 表示出B 点坐标,代入抛物线解析式可求得c 的值;(2)可设F (0,m ),则可表示出F′的坐标,由B 、E 的坐标可求得直线BE 的解析式,把F′坐标代入直线BE 解析式可得到关于m 的方程,可求得F 点的坐标;(3)设点P 坐标为(n ,0),可表示出PA 、PB 、PN 的长,作QR ⊥PN ,垂足为R ,则可求得QR 的长,用n 可表示出Q 、R 、N 的坐标,在Rt △QRN 中,由勾股定理可得到关于n 的二次函数,利用二次函数的性质可知其取得最小值时n 的值,则可求得Q 点的坐标,【详解】解:(1)∵CD//x 轴,2CD =,∴抛物线对称轴为直线:1l x =, ∴12b -=,即2b =-, ∵OB OC =,(0,)C c ,∴B 点坐标为(,0)c -, ∴202c c c =++,解得3c =-或0c(舍去);∴3c =-.(2)设点F 坐标为(0,)m ,∵对称轴是直线:1l x =,∴点F 关于直线l 的对称点F '的坐标为(2,)m ,由(1)可知抛物线解析式为y=x 2-2x-3=(x-1)2-4,∴E (1,-4),∵直线BE 经过点(3,0)B ,(1,4)E -,∴直线BE 的表达式为26y x =-,∵点F '在BE 上,∴2262m =⨯-=-,即点F 坐标为(0,2)-.(3)存在点Q 满足题意.设点P 坐标为(,0)n ,则1PA n =+,3PB PM n ==-,223PN n n =-++, 如解图,连接QN ,过点Q 作QR PN ⊥,垂足为R ,∵PQN APM SS =, ∴1(1)(3)2n n +- ()21232n n QR =-++⋅, ∴1QR =,①点Q 在直线PN 的左侧时,Q 点坐标为()21,4n n n --,R 点坐标为()2,4n n n -,N 点坐标为()2,23n n n --,∴()2242323RN n n n n n =----=-+∴在Rt QRN 中,221(23)NQ n =+-,∴当3n 2=时,NQ 取得最小值1, 此时Q 点坐标为115,24⎛⎫-⎪⎝⎭; ②点Q 在直线PN 的右侧时,Q 点坐标为()21,4n n +-,同理21RNn =-,221(21)NQ n =+-, ∴当12n =时,NQ 取得最小值1, 此时Q 点坐标为315,24⎛⎫-⎪⎝⎭, 综上所述:满足题意的点Q 的坐标为115,24⎛⎫- ⎪⎝⎭和315,24⎛⎫- ⎪⎝⎭.【点睛】本题为二次函数的综合应用,涉及待定系数法、轴对称、三角形的面积、勾股定理、二次函数的性质、方程思想及分类讨论思想等知识.在(1)中求得抛物线的对称轴是解题的关键,在(2)中用F 点的坐标表示出F′的坐标是解题的关键,在(3)中求得QR 的长,用勾股定理得到关于n 的二次函数是解题的关键.本题考查知识点较多,综合性较强,特别是最后一问,难度很大.22.(1)8;(2)6.【分析】(1)先将点(4,8)A -代入抛物线的解析式可得1648a b +=-,再根据点A 是抛物线的顶点可得其对称轴42b x a=-=,从而可得8b a =-,求出a 、b 的值,然后将点P 的坐标代入抛物线的解析式即可得; (2)如图(见解析),先利用待定系数法求出抛物线的解析式,从而可得顶点B 的坐标,再利用待定系数法求出直线AB 的函数解析式,从而可得点C 的坐标,然后根据OAB 的面积等于OAC 与OBC 的面积之和即可得.【详解】(1)由题意,将点(4,8)A -代入抛物线的解析式得:1648a b +=-,点A 是抛物线的顶点,∴抛物线的对称轴为42b x a=-=,即8b a =-, 联立16488a b b a +=-⎧⎨=-⎩,解得124a b ⎧=⎪⎨⎪=-⎩, 则抛物线的解析式为2142y x x =-, 将(,0)(0)P m m ≠代入2142y x x =-得:21402m m -=, 解得8m =或0m =(不符题意,舍去),故答案为:8;(2)2m =,(2,0)P ∴, 将点(4,8),(2,0)A P -代入抛物线的解析式得:1648420a b a b +=-⎧⎨+=⎩, 解得12a b =-⎧⎨=⎩, 则此时抛物线的解析式为222(1)1y x x x =-+=--+,∴顶点B 的坐标为(1,1)B ,设直线AB 的函数解析式为y kx c =+,将点(4,8),(1,1)A B -代入得:481k c k c +=-⎧⎨+=⎩,解得34k c =-⎧⎨=⎩,则直线AB 的函数解析式为34y x =-+,当0y =时,340x -+=,解得43x =,即4(,0)3C , 43OC ∴=, (4,8)(1),1,B A -,OAC ∴的OC 边上的高为8,OBC 的OC 边上的高为1, OAC OB B COA S S S ∴=+, 1414812323=⨯⨯+⨯⨯, 6=,即OAB 的面积为6.【点睛】本题考查了利用待定系数法求二次函数和一次函数的解析式、二次函数的性质等知识点,熟练掌握待定系数法是解题关键.23.(1)2y x 2x 3=-++;(2)存在,()1,4P 或()2,5--.【分析】(1)根据A 的坐标,即可求得OA 的长,则B 、C 的坐标即可求得,然后利用待定系数法即可求得函数的解析式;(2)分点A 为直角顶点时,和C 的直角顶点两种情况讨论,根据等腰三角形的性质得到两直角边相等,即可列方程分别求解.【详解】解:(1)由题意可知:c =3∴OC =OA =3OB=3,∴点A 、B 、C 的坐标分别为:(0,3)、(﹣1,0)、(3,0),将点B、C代入抛物线的表达式为:09a33 03ba b=++⎧⎨=-+⎩,解得:a12 b=-⎧⎨=⎩∴抛物线的表达式为:y=﹣x2+2x+3;(2)过点A、C分别作直线AC的垂线,分别交抛物线于P1、P2.过点P1作P1M⊥ y轴,垂足为M.∵OC=OA∴∠OAC=∠OCA=45º∴∠MAP1=∠MP1A=45º∴MA=MP1设P1点坐标(a,﹣a2+2a+3)则MP1=a,OP1=﹣a2+2a+3∵OA=3∴MA=﹣a2+2a+3-3=﹣a2+2a∴﹣a2+2a=a解之得:a1=0(舍去),a2=1∴﹣a2+2a+3=4∴P的坐标为(1,4)过点P2作P2N⊥ x轴,垂足为N.∵OC=OA ∴∠OAC=∠OCA=45º∴∠NAP2=∠NP2C=45º∴CN=NP2设P2点坐标(a,﹣a2+2a+3)则NP2=a2-2a-3,ON=﹣a∵a2-2a-3=3-a解之得:a1=3(舍去), a2=-2,∴﹣a2+2a+3=-5∴点P的坐标为(﹣2,﹣5)∴当点P的坐标为(1,4)或(﹣2,﹣5)时,使得△ACP是以AC为直角边的直角三角形.【点睛】本题是二次函数的综合题型,其中涉及到的知识点有待定系数法求抛物线的解析式,以及等腰三角形的性质.在求有关动点问题时要注意分析题意分情况讨论结果.24.(1)()232408y x x x =-+<<;(2)当5x = 时,45max y =平方米.【分析】(1)花圃的面积=AB×(篱笆长-3AB ),根据边长为正数可得自变量的取值范围;(2)先结合(1)及AD 不大于9可得自变量的取值范围,再根据二次函数图像性质,在自变量范围内变化取最值.【详解】解:(1)∵(2)·43S BC AB x x ==-, ∴2324y x x =-+,由题意00AB BC >>,,即02430x x >>,-,解得08x << ;(2)∵墙的最大可用长度为9米,即02439x <≤- ,解得,58x ≤<,∴()232458y x x x -+=≤<, 二次函数图像开口向下,对称轴为()24423x =-=⨯-, 58x ≤<在对称轴右侧,y 随着x 的增大而减小,∴当5x =时,长方形花圃的面积最大,235448=45y =+⨯-(-),∴当AB 为5米时,长方形花圃的面积最大,最大面积是45平方米.【点睛】本题主要考查实际问题与二次函数图形问题、二次函数的最值、一元一次不等式等.得到BC 边长的关系式和熟练掌握二次函数图像的性质是解答本题关键;得到自变量的取值是解本题的易错点.25.(1)2160y x =-+;(2)50元;(3)定价60元,最大利润800元.【分析】(1)利用待定系数法来求一次函数的解析式即可;(2)依题意可列出关于销售单价x 的方程,然后解一元二次方程组,得出解后根据x 求出对应的y ,即可求解;(3)利用每件的利润乘以销售量可得总利润,然后根据二次函数的性质来进行计算即可.【详解】(1)设y 与x 之间的函数表达式为y kx b =+(0k ≠),将表中数据(45,70)、(50,60)代入得:45705060k b k b +=⎧⎨+=⎩, 解得:2160k b =-⎧⎨=⎩, ∴y 与x 之间的函数表达式为2160y x =-+;(2)由题意得:()()402160600x x --+=,整理得212035000x x -+=,解得125070x x ==,,∵要求尽可能提高销量,当150x =时,销量为70千克,当270x =时,销量为20千克 ∴270x =不合题意,舍去答:为保证某天获得600元的销售利润,则该天的销售单价应定为50元/千克; (3)设当天的销售利润为w 元,则:()()402160w x x =--+22(60)800x =--+,∵﹣2<0∴当60x =时,w 最大值=800.答:当销售单价定为60元/千克时,才能使当天的销售利润最大,最大利润是800元.【点睛】本题考查了待定系数法求一次函数的解析式、一元二次方程和二次函数在实际问题中的应用,理清题中的数量关系是解题的关键.26.(1)3;(2)0;(3)3.1【分析】(1)由图像及表格可直接进行解答;(2)把t=0代入求解即可;(3)从表格选两个点代入函数解析式求解即可.【详解】解:(1)由表格及图像可得:出现故障的位置编号可能是位置3;故答案为3;(2)把t=0,s=0代入()20s at bt c t =++≥得:c=0; 故答案为0;(3)由(2)可得:把t=1.07,s=5和t=2.08,s=15代入()20s at bt t =+≥得:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 二次函数检测题 班级: 姓名:(试卷满分为150分,考试时间为120分钟.)一、选择题(本大题共12小题,每小题3分,共36分)1.下列各式中,y 是x 的二次函数的是 ( )A . 21xy x +=B . 220x y +-=C . 22y ax -=-D . 2210x y -+= 2.把二次函数122--=x x y 配方成顶点式为( ) A .2)1(-=x yB . 2)1(2--=x yC .1)1(2++=x yD .2)1(2-+=x y3.已知22y x =的图象是抛物线,若抛物线不动,把x 轴,y 轴分别向上、向右平移2个单位,那么在新坐标系下抛物线的解析式是( ).A.22(2)2y x =-+ B.22(2)2y x =+-C.22(2)2y x =-- D.22(2)2y x =++4.若二次函数22(1)23y m x m m =++--的图象经过原点,则m 的值为 ( ) A .-1或3 B .一1 C.3 D .无法确定5.二次函数y=-x 2+bx +c 图象的最高点是(-1,-3),则b 、c 的值是( ) A .b=2,c=4 B .b=2,c=-4 C .b=-2,c=4 D .b=-2,c =-46.已知二次函数2y ax bx c =++的图象如图所示,对称轴是1x =,则下列结论中正确的是( ). A.0ac > B.0b <C.240b ac -<D.20a b +=7.小敏在今年的校运动会跳远比赛中跳出了满意一跳,函数h=3.5t -4.9t 2(t 的单位:秒;h 的单位:米)可以描述他跳跃时重心高度的变化,则他起跳后到重心最高时所用的时间是( )A .0.71秒 B .0.70秒 C .0.63秒 D .0.36秒 8、抛物线22n mx x y --=)0(≠mn 则图象与x 轴交点为 ( )A . 二个交点B . 一个交点C . 无交点D . 不能确定 9、已知函数222y x x =--的图象如图所示,根据其中提供的信息,可求得使1y ≥成立的x 的取值范围是( ) A.13x -≤≤ B.31x -≤≤ C.3x -≥ D.1x -≤或3x ≥ 10、二次函数2y ax bx c =++中,2b ac =,且0x =时4y =-,则( ) A .4y =-最大B .4y =-最小C . 3y =-最大D .3y =-最小11、在同一平面直角坐标系中,一次函数y ax b =+和二次函数2y ax bx =+的图象可能为( )12、一位篮球运动员站在罚球线后投篮,球入篮得分.下列图象中,可以大致反映篮球出手后到入篮框这一时间段内,篮球的高度()h 米与时间()t 秒之间变化关系的是( )二、填空题(本大题共8小题,每小题4分,共32分)13.函数.)21(122++-=k kxk y 是二次函数则k= .14. 二次函数y=21x 2+3x +25的图象是函数y=21x 2的图象先向 平移 个单位,再向 平移 个单位得到的。
15. 已知二次函数y=41x 2-25x +6,当x = 时,y 最小= ;当x 时,y 随x 的增大而减小。
16. 当m =_____时,抛物线y =mx 2+2(m +2)x +m +3的对称轴是y 轴;当m =_____时,图象与y 轴交点的纵坐标是1;当m =_____时,函数的最小值是-2.17. 若抛物线m x x y +--=22,的顶点在x 轴上,则=m ;若抛物线()4152322---+=x m m x y 的顶点在y 轴上, 则 m 的值是 .抛物线()()4222-+-+=m x m x y 的顶点在原点,则=m18.已知二次函数()()m mx x m y --+-=3222的图象的开口向上,顶点在第三象限,且交于y 轴的负半轴,则m 的取值范围是 .19.已知抛物线c bx x y ++=2与y 轴的正半轴交于点A ,与x 轴的正半轴交于B 、C 两点,且BC=2,S△ABC=3,则b = ,c = .20.请选择一组你喜欢的a b c ,,的值,使二次函数2(0)y ax bx c a =++≠的图象同时满足下列条件:①开口向上,②当x <3时,y 随x 的增大而减小;当时x >3,y 随x 的增大而增大.这样的二次函数的解析式可以是 .A.B. D.C.三、解答题(共7小题,满分82分)21、(10分)求二次函数221y x x =--的顶点坐标及它与x 轴的交点坐标。
22、(12分)抛物线2(1)y x m x m =-+-+与y 轴交于(03),点. (1)该抛物线的对称轴是 ,顶点坐标是 ; (2)填表并画出这条抛物线;(3)x 取什么值时,y 的值大于0?(4)x 取什么值时,y 的值随x 值的增大而减小?23.(12分)如图是把一个抛物线形桥拱,量得两个数据,画在纸上的情形.小明说只要建立适当的坐标系,就能求出此抛物线的表达式.你认为他的说法正确吗?如果不正确,请说明理由;如果正确,请你帮小明求出该抛物线的表达式.24、(12分)如图直线l 经过点A(4,0)和B(0,4)两点,它与二次函数y=ax 2的图像在第一象限内相交于P 点,若△AOP 的面积为6.求二次函数的解析式.25.(12分)恩施州绿色、富硒产品和特色农产品在国际市场上颇具竞争力,其中香菇远销日本和韩国等地.上市时,外商李经理按市场价格10元/千克在我州收购了2000千克香菇存放入冷库中.据预测,香菇的市场价格每天每千克将上涨0.5元,但冷库存放这批香菇时每天需要支出各种费用合计340元,而且香菇在冷库中最多保存110天,同时,平均每天有6千克的香菇损坏不能出售.(1)若存放x 天后,将这批香菇一次性出售,设这批香菇的销售总金额为y 元,试写出y 与x 之间的函数关系式.(2)李经理想获得利润22500元,需将这批香菇存放多少天后出售?(利润=销售总金额-收购成本-各种费用)(3)李经理将这批香菇存放多少天后出售可获得最大利润?最大利润是多少?26、(12分)如图,在矩形ABCD 中,AB =6㎝,BC =12㎝,点P 从点A 出发,沿AB 边向点B 以1㎝/(s )的速度移动,同时点Q 从点B 出发沿BC 边向点C 以2㎝/(s )的速度移动,如果P 、Q 两点分别到达B 、C 后就停止移动,回答下列问题:(1)设运动开始后第t (s )时,五边形APQCD 的面积为S ㎝2,写出S 与t 的关系式,并写出t 的取值范围; (2)t 为何值时,S 最小?求出S 的最小值。
27.(12分)在平面直角坐标系中,已知抛物线经过A )0,4(-,B )4,0(-,C )0,2(三点.(1)求抛物线的解析式;(2)若点M 为第三象限内抛物线上一动点,点M 的横坐标为m ,△AMB 的面积为S .求S 关于m 的函数关系式,并求出S 的最大值.(3)若点P 是抛物线上的动点,点Q 是直线x y -=上的动点,判断有几个位置能够使得点P 、Q 、B 、O 为顶点的四边形为平行四边形,直接写出相应的点Q 的坐标.x22. 解:(1)由题意得y 与x 之间的函数关系式为y =()()x x 620005.010-+=2000094032++-x x (1≤x ≤110,且x 为整数) ·············································· 2分 (不写取值范围不扣分)(2)由题意得:2000094032++-x x -10×2000-340x =22500 ································ 4分解方程得:1x =50 2x =150(不合题意,舍去) 李经理想获得利润2250元需将这批香菇存放50天后出售。
······································· 6分(2)设最大利润为W ,由题意得W =2000094032++-x x-10 ×2000-340x23(100)30000x =--+∴当100=时,30000W =最大·································································································· 8分 100天<110天∴存放100天后出售这批香菇可获得最大利润30000元.。