数学必修二概念知识点大全
必修二数学知识点整理
必修二数学知识点整理一、立体几何初步。
(一)空间几何体。
1. 结构特征。
- 棱柱。
- 有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行。
- 棱柱的底面、侧面、侧棱、顶点等概念。
按底面多边形的边数可分为三棱柱、四棱柱、五棱柱等。
- 棱锥。
- 有一个面是多边形,其余各面都是有一个公共顶点的三角形。
- 棱锥的底面、侧面、侧棱、顶点等概念。
按底面多边形的边数可分为三棱锥(四面体)、四棱锥等。
- 棱台。
- 用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分。
- 棱台的上底面、下底面、侧面、侧棱、顶点等概念。
- 圆柱。
- 以矩形的一边所在直线为轴旋转,其余三边旋转所成的曲面所围成的几何体。
- 圆柱的轴、底面、侧面、母线等概念。
- 圆锥。
- 以直角三角形的一条直角边所在直线为轴旋转,其余两边旋转所成的曲面所围成的几何体。
- 圆锥的轴、底面、侧面、母线等概念。
- 圆台。
- 用一个平行于圆锥底面的平面去截圆锥,底面与截面之间的部分。
- 圆台的上底面、下底面、侧面、母线等概念。
- 球。
- 以半圆的直径所在直线为轴,半圆面旋转一周形成的几何体。
- 球心、半径、直径等概念。
2. 三视图和直观图。
- 三视图。
- 正视图(主视图)、侧视图(左视图)、俯视图的概念。
- 画三视图的规则:长对正、高平齐、宽相等。
- 通过三视图还原空间几何体的方法:先根据视图的轮廓想象出基本的几何体形状,再根据视图中的线段长度等确定几何体的具体尺寸。
- 直观图。
- 斜二测画法的步骤:- 在已知图形中取互相垂直的x轴和y轴,两轴相交于点O。
画直观图时,把它们画成对应的x'轴和y'轴,两轴相交于点O',且∠x'O'y' = 45°(或135°)。
- 已知图形中平行于x轴或y轴的线段,在直观图中分别画成平行于x'轴或y'轴的线段。
- 已知图形中平行于x轴的线段,在直观图中长度不变;平行于y轴的线段,长度变为原来的一半。
数学必修二知识点归纳
数学必修二知识点归纳一、函数的概念与性质1. 函数的定义:函数是从一个集合(称为定义域)到另一个集合(称为值域)的映射,每个定义域中的元素都有一个唯一的值与之对应。
2. 函数的表示方法:常用f(x) = y,其中x是自变量,y是因变量。
3. 函数的性质:包括单调性、奇偶性、周期性和有界性等。
- 单调性:函数在某个区间内单调递增或递减。
- 奇偶性:函数可能是奇函数(f(-x) = -f(x))或偶函数(f(-x) = f(x))。
- 周期性:函数如果存在一个非零常数T,使得对于所有x都有f(x + T) = f(x),则称函数具有周期T。
- 有界性:函数的值在某个范围内,即存在上界和下界。
二、基本初等函数1. 幂函数:形如y = x^n的函数,其中n是实数。
2. 指数函数:形如y = a^x的函数,其中a > 0且a ≠ 1。
3. 对数函数:形如y = log_a(x)的函数,其中a > 0且a ≠ 1。
4. 三角函数:包括正弦函数、余弦函数、正切函数等。
- 正弦函数:y = sin(x)- 余弦函数:y = cos(x)- 正切函数:y = tan(x)三、函数的图像与变换1. 函数图像的绘制:通过坐标系中的点来表示函数的图像。
2. 函数的平移:包括水平平移(左加右减)和垂直平移(上加下减)。
3. 函数的伸缩:包括水平伸缩(y = af(x))和垂直伸缩(y =f(bx))。
4. 函数的对称性:函数图像关于x轴、y轴或原点的对称性。
四、函数的应用1. 实际问题的建模:将实际问题转化为函数关系式进行求解。
2. 最值问题:求解函数的最大值和最小值。
3. 函数的复合:两个或多个函数的组合,如(f ∘ g)(x) = f(g(x))。
五、极限与连续性1. 极限的概念:描述函数在某一点附近的行为。
2. 极限的性质:包括唯一性、局部有界性、保号性等。
3. 连续函数:在定义域内任意一点都连续的函数。
高中必修二数学知识点
高中必修二数学知识点高中必修二数学知识1不等关系了解现实世界和日常生活中的不等关系,了解不等式(组)的实际背景.(2)一元二次不等式①会从实际情境中抽象出一元二次不等式模型.②通过函数图象了解一元二次不等式与相应的二次函数、一元二次方程的联系.③会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图.(3)二元一次不等式组与简单线性规划问题①会从实际情境中抽象出二元一次不等式组.②了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组.③会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.(4)基本不等式:①了解基本不等式的证明过程.②会用基本不等式解决简单的最大(小)值问题圆的辅助线一般为连圆心与切线或者连圆心与弦中点.数列(1)数列的概念和简单表示法①了解数列的概念和几种简单的表示方法(列表、图象、通项公式).②了解数列是自变量为正整数的一类函数.(2)等差数列、等比数列①理解等差数列、等比数列的概念.②掌握等差数列、等比数列的通项公式与前项和公式.③能在具体的问题情境中,识别数列的等差关系或等比关系,并能用有关知识解决相应的问题.④了解等差数列与一次函数、等比数列与指数函数的关系.高中数学必修二知识点总结:不等式高中必修二数学知识2空间直线与直线之间的位置关系①异面直线定义:不同在任何一个平面内的两条直线②异面直线性质:既不平行,又不相交.③异面直线判定:过平面外一点与平面内一点的直线与平面内不过该店的直线是异面直线④异面直线所成角:作平行,令两线相交,所得锐角或直角,即所成角.两条异面直线所成角的范围是(0°,90°],若两条异面直线所成的角是直角,我们就说这两条异面直线互相垂直.求异面直线所成角步骤:A、利用定义构造角,可固定一条,平移另一条,或两条同时平移到某个特殊的位置,顶点选在特殊的位置上.B、证明作出的角即为所求角C、利用三角形来求角(7)等角定理:如果一个角的两边和另一个角的两边分别平行,那么这两角相等或互补.(8)空间直线与平面之间的位置关系直线在平面内——有无数个公共点.三种位置关系的符号表示:aαa∩α=Aa‖α(9)平面与平面之间的位置关系:平行——没有公共点;α‖β相交——有一条公共直线.α∩β=b2、空间中的平行问题(1)直线与平面平行的判定及其性质线面平行的判定定理:平面外一条直线与此平面内一条直线平行,则该直线与此平面平行.线线平行线面平行线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.线面平行线线平行(2)平面与平面平行的判定及其性质两个平面平行的判定定理(1)如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行(线面平行→面面平行),(2)如果在两个平面内,各有两组相交直线对应平行,那么这两个平面平行.(线线平行→面面平行),(3)垂直于同一条直线的两个平面平行,两个平面平行的性质定理(1)如果两个平面平行,那么某一个平面内的直线与另一个平面平行.(面面平行→线面平行)(2)如果两个平行平面都和第三个平面相交,那么它们的交线平行.(面面平行→线线平行)3、空间中的垂直问题(1)线线、面面、线面垂直的定义①两条异面直线的垂直:如果两条异面直线所成的角是直角,就说这两条异面直线互相垂直.②线面垂直:如果一条直线和一个平面内的任何一条直线垂直,就说这条直线和这个平面垂直.③平面和平面垂直:如果两个平面相交,所成的二面角(从一条直线出发的两个半平面所组成的图形)是直二面角(平面角是直角),就说这两个平面垂直.(2)垂直关系的判定和性质定理①线面垂直判定定理和性质定理判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直这个平面.性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行.②面面垂直的判定定理和性质定理判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.性质定理:如果两个平面互相垂直,那么在一个平面内垂直于他们的交线的直线垂直于另一个平面.4、空间角问题(1)直线与直线所成的角①两平行直线所成的角:规定为.②两条相交直线所成的角:两条直线相交其中不大于直角的角,叫这两条直线所成的角.③两条异面直线所成的角:过空间任意一点O,分别作与两条异面直线a,b平行的直线,形成两条相交直线,这两条相交直线所成的不大于直角的角叫做两条异面直线所成的角.(2)直线和平面所成的角①平面的平行线与平面所成的角:规定为.②平面的垂线与平面所成的角:规定为.③平面的斜线与平面所成的角:平面的一条斜线和它在平面内的射影所成的锐角,叫做这条直线和这个平面所成的角.求斜线与平面所成角的思路类似于求异面直线所成角:“一作,二证,三计算”.在“作角”时依定义关键作射影,由射影定义知关键在于斜线上一点到面的垂线,在解题时,注意挖掘题设中两个主要信息:(1)斜线上一点到面的垂线;(2)过斜线上的一点或过斜线的平面与已知面垂直,由面面垂直性质易得垂线.(3)二面角和二面角的平面角①二面角的定义:从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,这两个半平面叫做二面角的面.②二面角的平面角:以二面角的棱上任意一点为顶点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫二面角的平面角.③直二面角:平面角是直角的二面角叫直二面角.两相交平面如果所组成的二面角是直二面角,那么这两个平面垂直;反过来,如果两个平面垂直,那么所成的二面角为直二面角④求二面角的方法定义法:在棱上选择有关点,过这个点分别在两个面内作垂直于棱的射线得到平面角垂面法:已知二面角内一点到两个面的垂线时,过两垂线作平面与两个面的交线所成的角为二面角的平面角高中必修二数学知识3圆的方程1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径.2、圆的方程(1)标准方程,圆心,半径为r;(2)一般方程当时,方程表示圆,此时圆心为,半径为当时,表示一个点;当时,方程不表示任何图形.(3)求圆方程的方法:一般都采用待定系数法:先设后求.确定一个圆需要三个独立条件,若利用圆的标准方程,需求出a,b,r;若利用一般方程,需要求出D,E,F;另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置.3、高中数学必修二知识点总结:直线与圆的位置关系:直线与圆的位置关系有相离,相切,相交三种情况:(1)设直线,圆,圆心到l的距离为,则有;;(2)过圆外一点的切线:①k不存在,验证是否成立②k存在,设点斜式方程,用圆心到该直线距离=半径,求解k,得到方程一定两解(3)过圆上一点的切线方程:圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)=r24、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定.设圆,两圆的位置关系常通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定.当时两圆外离,此时有公切线四条;当时两圆外切,连心线过切点,有外公切线两条,内公切线一条;当时两圆相交,连心线垂直平分公共弦,有两条外公切线;当时,两圆内切,连心线经过切点,只有一条公切线;当时,两圆内含;当时,为同心圆.注意:已知圆上两点,圆心必在中垂线上;已知两圆相切,两圆心与切点共线5、空间点、直线、平面的位置关系公理1:如果一条直线的两点在一个平面内,那么这条直线是所有的点都在这个平面内.应用:判断直线是否在平面内用符号语言表示公理1:公理2:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线符号:平面α和β相交,交线是a,记作α∩β=a.符号语言:公理2的作用:①它是判定两个平面相交的方法.②它说明两个平面的交线与两个平面公共点之间的关系:交线必过公共点.③它可以判断点在直线上,即证若干个点共线的重要依据.公理3:经过不在同一条直线上的三点,有且只有一个平面.推论:一直线和直线外一点确定一平面;两相交直线确定一平面;两平行直线确定一平面.公理3及其推论作用:①它是空间内确定平面的依据②它是证明平面重合的依据公理4:平行于同一条直线的两条直线互相平行高中必修二数学知识4直线与方程(1)直线的倾斜角定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角.特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度.因此,倾斜角的取值范围是0°≤α<180°(2)直线的斜率①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率.直线的斜率常用k表示.即.斜率反映直线与轴的倾斜程度.当时,;当时,;当时,不存在.②过两点的直线的斜率公式:注意下面四点:(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;(2)k与P1、P2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到.(3)直线方程①点斜式:直线斜率k,且过点注意:当直线的斜率为0°时,k=0,直线的方程是y=y1.当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l 上每一点的横坐标都等于x1,所以它的方程是x=x1.②斜截式:,直线斜率为k,直线在y轴上的截距为b③两点式:()直线两点,④截矩式:其中直线与轴交于点,与轴交于点,即与轴、轴的截距分别为.⑤一般式:(A,B不全为0)注意:各式的适用范围特殊的方程如:(4)平行于x轴的直线:(b为常数);平行于y轴的直线:(a为常数);(5)直线系方程:即具有某一共同性质的直线(一)平行直线系平行于已知直线(是不全为0的常数)的直线系:(C为常数)(二)垂直直线系垂直于已知直线(是不全为0的常数)的直线系:(C为常数)(三)过定点的直线系(ⅰ)斜率为k的直线系:,直线过定点;(ⅱ)过两条直线,的交点的直线系方程为(为参数),其中直线不在直线系中.(6)两直线平行与垂直注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否.(7)两条直线的交点相交交点坐标即方程组的一组解.方程组无解;方程组有无数解与重合(8)两点间距离公式:设是平面直角坐标系中的两个点(9)点到直线距离公式:一点到直线的距离(10)两平行直线距离公式在任一直线上任取一点,再转化为点到直线的距离进行求解.高中必修二数学知识51、柱、锥、台、球的结构特征(1)棱柱:几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形.(2)棱锥几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方.(3)棱台:几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形.(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形.(6)圆台:定义:以直角梯形的垂直与底边的腰为旋转轴,旋转一周所成几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形.(7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径.2、空间几何体的三视图定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图(从上向下)注:正视图反映了物体的高度和长度;俯视图反映了物体的长度和宽度;侧视图反映了物体的高度和宽度.3、空间几何体的直观图——斜二测画法斜二测画法特点:①原来与x轴平行的线段仍然与x平行且长度不变;②原来与y轴平行的线段仍然与y平行,长度为原来的一半.4、柱体、锥体、台体的表面积与体积(1)几何体的表面积为几何体各个面的面积的和.(2)特殊几何体表面积公式(c为底面周长,h为高,为斜高,l为母线)(3)柱体、锥体、台体的体积公式高中必修二数学知识点。
高中数学必修二知识点总结及公式大全
高中数学必修二知识点总结及公式大全高中数学是培养学生逻辑思维和抽象能力的重要学科。
《必修二》作为高中数学课程的重要组成部分,涉及了许多核心知识点和基础公式。
本文将为您详细总结《必修二》的知识点,并整理出一份公式大全,帮助您更好地掌握这门学科。
一、高中数学必修二知识点总结1.函数概念与性质- 函数的定义、表示方法、分类- 函数的性质(单调性、奇偶性、周期性、对称性等)- 反函数及其求法2.指数函数与对数函数- 指数函数的定义、性质、图像- 对数函数的定义、性质、图像- 指数方程与对数方程的解法3.三角函数- 角度制与弧度制互换- 三角函数的定义、图像、性质- 三角恒等变换- 三角方程与不等式的解法4.数列- 等差数列与等比数列的定义、性质、求和公式- 数列的通项公式与求和公式- 数列的极限5.平面向量- 向量的定义、表示、线性运算- 向量的坐标表示与几何表示- 向量的数量积与垂直关系- 向量的平行四边形法则与三角形法则6.解析几何- 直线方程的求法(点斜式、截距式、一般式等)- 圆的方程与性质- 常见图形的面积、周长、体积计算二、高中数学必修二公式大全1.函数类- y=f(x) 的反函数:y=f^(-1)(x)- 幂函数:y=x^a(a 为常数)- 指数函数:y=a^x(a>0 且a≠1)- 对数函数:y=log_a(x)(a>0 且a≠1)2.三角函数类- 正弦函数:y=sin(x)- 余弦函数:y=cos(x)- 正切函数:y=tan(x)- 三角恒等变换公式(和差公式、倍角公式、半角公式等)3.数列类- 等差数列通项公式:a_n=a_1+(n-1)d- 等差数列求和公式:S_n=n/2(a_1+a_n)- 等比数列通项公式:a_n=a_1q^(n-1)- 等比数列求和公式:S_n=a_1(1-q^n)/(1-q)(q≠1)4.向量类- 向量加法:A+B=(a_x+b_x, a_y+b_y)- 向量减法:A-B=(a_x-b_x, a_y-b_y)- 向量数量积:A·B=a_xb_x+a_yb_y- 向量模长:|A|=√(a_x^2+a_y^2)5.解析几何类- 点斜式直线方程:y-y_1=k(x-x_1)- 截距式直线方程:x/a+y/b=1- 圆的标准方程:(x-a)^2+(y-b)^2=r^2总结:本文为您详细总结了高中数学必修二的知识点,并整理了一份公式大全。
数学必修二知识点总结
必修1第一章集合与函数概念1.集合的概念及其表示意思;2.集合间的关系;3.函数的概念及其表示;4.函数性质(单调性、最值、奇偶性)第二章基本初等函数(I)一.指数与对数1.根式;2.指数幂的扩充;3.对数;4.根式、指数式、对数式之间的关系;5.对数运算性质与指数运算性质二.指数函数与对数函数1.指数函数与对数函数的图像与性质;2.指数函数y=ax的关系三.幂函数(定义、图像、性质)第三章函数的应用一.方程的实数解与函数的零点三.几类不同增长的函数模型四.函数模型的应用必修2知识点一、直线与方程(1)直线的倾斜角定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。
特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。
因此,倾斜角的取值范围是0°≤α<180°(2)直线的斜率①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。
直线的斜率常用k表示。
即。
斜率反映直线与轴的倾斜程度。
当直线与x轴平行时,k=0;当直线与x轴垂直时;k不存在。
②过两点的直线的斜率公式:k =(y2-y1)/(x2-x1)注意下面四点:(1)当x1=x2时,公式右边无意义,直线的斜率不存在,倾斜角为90°;(2)k与点P1、P2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。
(3)直线方程①点斜式:直线斜率k,且过(x1,y1)点注意:当直线的斜率为0°时,k=0,直线的方程是y=y1。
当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1。
②斜截式:y1=0,直线斜率为k,直线在y轴上的截距为b③两点式:(y-y1)/(x-x1)=(y2-y1)/(x2-x1)④截矩式:x/a+y/b=1其中直线与x轴交于点,与y轴交于点,即与x轴、y轴的截距分别为a、b。
数学必修二第一章知识点总结
数学必修二第一章知识点总结数学必修二第一章知识1一、集合(一)集合有关概念1.集合的含义2.集合的中元素的三个特性:确定性、互异性、无序性3.集合的表示: (1)常用数集及其记法 (2)列举法 (3)描述法4、集合的分类:有限集、无限集、空集5.常见集合的符号表示(二)集合间的基本关系1.子集、真子集、空集;2.有n个元素的集合,含有2n个子集,2n-1个真子集;3.空集是任何集合的子集,是任何非空集合的真子集.(三)集合的运算二、函数(一)函数的有关概念1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作:y=f(x),x∈A.其中,x 叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.定义域:能使函数式有意义的实数x的集合称为函数的定义域.2.常用的函数表示法及各自的优点:解析法:必须注明函数的定义域;图象法:描点法作图要注意:确定函数的定义域;化简函数的解析式;观察函数的特征;列表法:选取的自变量要有代表性,应能反映定义域的特征.优点:解析法:便于算出函数值.列表法:便于查出函数值.图象法:便于量出函数值.相同函数的判断方法:(以下两点必须同时具备)(1)表达式相同(与表示自变量和函数值的字母无关);(2)定义域一致.求函数值域方法:(先考虑其定义域)(1)函数的值域取决于定义域和对应法则,不论采取什么方法求函数的值域都应先考虑其定义域.(2)应熟练掌握一次函数、二次函数、指数函数、对数函数的值域,它是求解复杂函数值域的基础.(3)求函数值域的常用方法有:直接法、换元法、配方法、分离常数法、判别式法、单调性法等.2. 函数图象知识归纳(1)定义:在平面直角坐标系中,以函数y=f(x) , (x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数y=f(x),(x∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上.函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等等,注意判断一个图形是否是函数图象的依据.(2) 画法:描点法;图象变换法常用变换方法有三种:平移变换;对称变换;3.区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;(3)区间的数轴表示.4.映射对于映射f:A→B来说,则应满足:(1)集合A中的每一个元素,在集合B中都有象,并且象是唯一的;(2)集合A中不同的元素,在集合B中对应的象可以是同一个;(3)不要求集合B中的每一个元素在集合A中都有原象.5.分段函数(1)在定义域的不同部分上有不同的解析表达式的函数;(2)各部分的自变量的取值情况;(3)分段函数的定义域是各段定义域的交集,值域是各段值域的并集.(二)函数的性质1.函数的单调性(局部性质)(1)定义设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说f(x)在区间d上是增函数.区间d称为y=f(x)的单调增区间.< p="">如果对于区间D上的任意两个自变量的值x1,x2,当x1f(x2),那么就说f(x)在这个区间上是减函数.区间D称为y=f(x)的单调减区间.注意:函数的单调性是函数的局部性质.(2)图象的特点如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的.数学必修二第一章知识2函数单调区间与单调性的判定方法(A) 定义法:任取x1,x2∈D,且x1<x2;< p="">作差f(x1)-f(x2);变形(通常是因式分解和配方);定号(即判断差f(x1)-f(x2)的正负);下结论(指出函数f(x)在给定的区间D上的单调性).(B)图象法(从图象上看升降)(C)复合函数的单调性复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律:“同增异减”注意:函数的单调区间只能是其定义域的子区间,不能把单调性相同的区间和在一起写成其并集.2.函数的奇偶性(整体性质)(1)偶函数一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.(2)奇函数一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数.(3)具有奇偶性的函数的图象的特征偶函数的图象关于y轴对称;奇函数的图象关于原点对称.数学必修二第一章知识3利用定义判断函数奇偶性的步骤:首先确定函数的定义域,并判断其是否关于原点对称;确定f(-x)与f(x)的关系;作出相应结论:若f(-x) = f(x) 或f(-x)-f(x) = 0,则f(x)是偶函数;若f(-x) =-f(x)或f(-x)+f(x) = 0,则f(x)是奇函数.注意:函数定义域关于原点对称是函数具有奇偶性的必要条件.首先看函数的定义域是否关于原点对称,若不对称则函数是非奇非偶函数.若对称,(1)再根据定义判定; (2)由f(-x)±f(x)=0或f(x)/f(-x)=±1来判定; (3)利用定理,或借助函数的图象判定.3.函数的解析表达式(1)函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域.(2)求函数的解析式的主要方法有:凑配法; 待定系数法;换元法;消参法.如果已知函数解析式的构造时,可用待定系数法;已知复合函数f[g(x)]的表达式时,可用换元法,这时要注意元的取值范围;当已知表达式较简单时,也可用凑配法;若已知抽象函数表达式,则常用解方程组消参的方法求出f(x)4.函数最大(小)值(1)利用二次函数的性质(配方法)求函数的最大(小)值;(2)利用图象求函数的最大(小)值;(3)利用函数单调性的判断函数的最大(小)值:函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b处有最大值f(b);函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b).数学必修二第一章知识点。
人教版高中数学必修二知识点大全[整理版]
人教版高中数学必修二知识点大全[整理版]知识点1: 函数的概念和性质- 函数的定义:函数是一种特殊的关系,每个自变量都对应唯一的一个因变量。
- 函数的符号表示:通常用字母 f、g、h 等表示函数。
- 定义域和值域:函数的定义域是指自变量的取值范围,值域是函数的所有可能的因变量值。
- 奇函数和偶函数:对于任意的 x,若有 f(-x) = -f(x) 成立,则函数 f(x) 是奇函数;若有 f(-x) = f(x) 成立,则函数 f(x) 是偶函数。
知识点2: 一次函数与二次函数- 一次函数:一次函数的一般形式为 y = kx + b,其中 k 是斜率,b 是截距。
一次函数的图像是一条直线。
- 二次函数:二次函数的一般形式为 y = ax^2 + bx + c,其中 a、b、c 是常数且a ≠ 0。
二次函数的图像是一条抛物线。
知识点3: 指数函数和对数函数- 指数函数:指数函数的一般形式为 y = a^x,其中 a 是底数,x 是指数。
指数函数的图像呈现递增或递减的特点。
- 对数函数:对数函数的一般形式为 y = loga(x),其中 a 是底数,x 是函数值。
对数函数是指数函数的反函数,可以互相转化。
知识点4: 三角函数- 正弦函数:正弦函数是一个周期为2π 的周期函数,一般形式为 y = A sin(Bx + C),其中 A 是振幅,B 是周期系数,C 是相位角。
- 余弦函数:余弦函数也是一个周期为2π 的周期函数,一般形式为 y = A cos(Bx + C)。
- 正切函数:正切函数是一个无穷区间上的周期函数,一般形式为 y = A tan(Bx + C),其中 A 是振幅,B 是周期系数,C 是相位角。
以上是人教版高中数学必修二的知识点大全。
希望对你的学习有所帮助!。
高中数学必修2知识点总结
高中数学必修2知识点总结高中数学必修二知识点总结1. 一元二次方程一元二次方程的标准形式为ax^2+bx+c=0,并且a≠0。
求解一元二次方程的方法是配方法、公式法和因式分解法。
2. 三角函数常用的三角函数有正弦函数、余弦函数、正切函数和余切函数。
三角函数的定义域和值域以及其性质和图像都是必须掌握的。
3. 三角恒等式包括正弦、余弦和正切等三角函数的恒等式,例如正弦函数的和差公式、倍角公式、半角公式等。
三角恒等式是解决三角函数问题的重要工具。
4. 二次函数的图像和性质二次函数的标准形式为y=ax^2+bx+c,其中a≠0。
二次函数的图像是一个开口朝上或开口朝下的抛物线,其对称轴为x=-b/2a。
必须掌握二次函数的顶点、零点、对称轴等性质,这些性质是判断图像和求解问题的重要方法。
5. 平面向量平面向量包括向量的定义、向量之间的运算、向量的坐标表示等。
向量的运算包括向量的加法、减法、数量积和向量积。
向量的坐标表示是将向量投影在坐标轴上来表示的。
6. 点、直线、平面和空间几何点、直线、平面和空间几何的基本概念和性质是必须掌握的,例如点的坐标、直线的一般式方程、平面的法向量等。
此外,必须掌握两条直线和两个平面之间的位置关系、垂直平分线以及中垂线等概念。
7. 三视图和轴测图三视图是立体图形的三个视图,包括正视图、左视图和俯视图。
轴测图是用于三维图形表示的一种图形表示方法,包括斜二测和等轴测。
8. 四边形和圆的性质四边形和圆的主要性质包括四边形内角和定理、对角线定理、圆的周长和面积计算公式、圆内部和圆外部点与圆的位置关系等。
9. 三角形和圆的性质三角形和圆的主要性质包括三角形内角和、三角形的面积计算公式、圆心角和圆弧、圆的切线和切点等。
10. 函数及其应用函数的概念和图像、定义域和值域、单调性等性质必须掌握。
函数的应用包括函数的极值、最大值和最小值等问题。
以上是高中数学必修二知识点的总结,这些知识点是高中数学教育的重点和难点,学好这些知识点对于提高数学成绩和发展数学思维能力都具有重要的意义。
必修二数学知识点归纳
必修二数学知识点归纳第一章空间几何1. 直线和平面的方程2. 直线与平面的位置关系3. 直线与平面的交点4. 直线与平面的夹角和距离5. 空间中的平行和垂直关系6. 直线与空间中的曲面的位置关系7. 空间中的投影和距离第二章解析几何1. 平面直角坐标系2. 点、直线和曲线的坐标表示3. 点、直线和曲线的性质4. 直线的斜率和截距5. 直线的倾斜角和斜率的关系6. 直线与圆的位置关系7. 圆的标准方程和一般方程8. 曲线的一般方程和特殊方程第三章函数与导数1. 函数的概念和表示方法2. 函数的性质和分类3. 函数的图像与性质4. 极坐标系和参数方程5. 函数的单调性和极值点6. 幂函数、指数函数与对数函数7. 三角函数及其性质8. 函数的复合与反函数9. 导数的定义和性质10. 导数的计算和应用第四章导数的应用1. 函数的极值与最值2. 函数的单调性与凹凸性3. 高阶导数与函数的泰勒展开式4. 函数的图形与导数5. 函数的极限和连续性6. 驻点和拐点的判断7. 函数的应用问题:最优化问题,曲线的切线与法线,函数的估值与逼近第五章不等式与函数图像1. 代数不等式的基本性质2. 一元二次不等式的解法3. 高次多项式不等式的解法4. 绝对值不等式的解法5. 不等式的证明方法6. 函数图像的性质与变化趋势7. 函数的奇偶性与对称性8. 根据函数的图像作函数不等式的解第六章概率与统计1. 随机事件与样本空间2. 概率的基本概念和性质3. 条件概率与乘法定理4. 全概率公式与贝叶斯公式5. 随机变量的概念和性质6. 随机变量的分布函数与概率密度函数7. 期望值与方差的概念和计算8. 典型离散分布和连续分布9. 抽样分布与统计推断10. 统计图表和统计量的应用。
高中数学必修2知识点归纳
高中数学必修2知识点归纳高中数学必修2知识点归纳高中数学必修2是数学学科的一门重要课程,主要内容包括函数、二次函数与一元二次方程、直线和三角形的研究等。
下面是对这些知识点的归纳总结。
一、函数1. 函数的概念:函数是具有输入输出关系的一种映射关系。
通常用f(x)表示函数关系,其中x是自变量,f(x)是因变量。
2. 函数的性质:可递性、奇偶性、周期性、单调性等。
3. 特殊函数:常数函数、一次函数、幂函数、指数函数、对数函数、三角函数等。
4. 函数的运算:函数的四则运算、复合函数、反函数等。
5. 函数的图像:函数的图像可以通过函数的定义域和值域来确定,常见的有常数函数图像、线性函数图像、幂函数图像、指数函数图像、对数函数图像、三角函数图像等。
二、二次函数与一元二次方程1. 二次函数的概念:二次函数是一个带有二次项的函数,一般定义为f(x) = ax² + bx + c,其中a、b、c为常数,a ≠ 0。
2. 二次函数的性质:最值、对称轴、开口方向、零点等。
3. 一元二次方程:一元二次方程是一个以变量x为未知数的二次方程,一般表示为ax² + bx + c = 0,其中a、b、c为常数,且a ≠ 0。
4. 一元二次方程的解:一元二次方程有两个解,可以通过求根公式或配方法求得。
5. 一元二次方程与二次函数的关系:一元二次方程的解即为对应二次函数的零点,可以通过一元二次方程的解来求二次函数的零点。
三、直线1. 直线的表示:直线可以通过斜率截距式、一般式、点斜式等表示。
2. 直线的性质:平行直线、垂直直线、两直线交点的坐标、直线的倾斜角等。
3. 直线方程的求解:通过已知条件,可以利用直线的性质来求解直线的方程。
四、三角形1. 三角形的分类:根据边的长、内角的大小,三角形可以分为等边三角形、等腰三角形、直角三角形、锐角三角形、钝角三角形等。
2. 三角函数:正弦函数、余弦函数、正切函数等。
3. 三角函数关系:倍角公式、半角公式、和差化积公式等。
最全最全最新高中数学必修二基础知识点大全完整版
知识点串讲必修二第一章:空间几何体§1.1.1 棱柱、棱锥、棱台的结构特征1、由若干个平面多边形围成的几何体叫做多面体.围成多面体的各个多边形叫做多面体的面,如面ABCD;相邻两个面的公共边叫多面体的棱,如棱AB;棱与棱的公共点叫多面体的顶点,如顶点A.2、由一个平面图形绕它所在平面内的一条定直线旋转所形成的封闭几何体叫旋转体,这条定直线叫旋转体的轴.3、一般地,有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱(prism).棱柱中,两个互相平行的面叫做棱柱的底面,简称底;其余各面叫做棱柱的侧面;相邻侧面的公共边叫做棱柱的侧棱;侧面与底面的公共顶点叫做棱柱的顶点.(两底面之间的距离叫棱柱的高)4、有一个面是多边形,其余各个面都是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥(pyramid).这个多边形面叫做棱锥的底面或底;有公共顶点的各个三角形面叫做棱锥的侧面;各侧面的公共顶点叫做棱锥的顶点;相邻侧面的公共边叫做棱锥的侧棱.顶点到底面的距离叫做棱锥的高;棱锥也可以按照底面的边数分为三棱锥(四面体)、四棱锥…等等,棱锥可以用顶点和底面各顶点的字母表示5、用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分形成的几何体叫做棱台(frustum of a pyramid).原棱锥的底面和截面分别叫做棱台的下底面和上底面.其余各面是棱台的侧面,相邻侧面的公共边叫侧棱,侧面与两底面的公共点叫顶点.两底面间的距离叫棱台的高.棱台可以用上、下底面的字母表示,分类类似于棱锥.6、例由棱柱的定义你能得到棱柱下列的几何性质吗?①侧棱都相等,侧面都是平行四边形;②两个底面与平行于底面的截面是全等的多边形;③过不相邻的两条侧棱的截面是平行四边形.仿照棱柱,棱锥、棱台有哪些几何性质呢?7、知识拓展1. 平行六面体:底面是平行四边形的四棱柱;2. 正棱柱:底面是正多边形的直棱柱;3. 正棱锥:底面是正多边形并且顶点在底面的射影是底面正多边形中心的棱锥;4. 正棱台:由正棱锥截得的棱台叫做正棱台.8、已知集合A={正方体},B={长方体},C={正四棱柱},D={直四棱柱},E={棱柱},F={直平行六面体},则().A.EFDCBA⊆⊆⊆⊆⊆ B.EDFBCA⊆⊆⊆⊆⊆C.EFDBAC⊆⊆⊆⊆⊆ D.它们之间不都存在包含关系§1.1.2 圆柱、圆锥、圆台、球及简单组合体的结构特征1、以矩形的一边所在直线为旋转轴,其余三边旋转形成的曲面所围成的几何体,叫做圆柱(circular cylinder),旋转轴叫做圆柱的轴;垂直于轴的边旋转而成的圆面叫做圆柱的底面;平行于轴的边旋转而成的曲面叫做圆柱的侧面;无论旋转到什么位置,不垂直于轴的边都叫做圆柱侧面的母线圆柱用表示它的轴的字母表示,图中的圆柱可表示为OO .圆柱和棱柱统称为柱体.2、以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的面所围成的旋转体叫圆锥.圆锥也用表示它的轴的字母表示.棱锥与圆锥统称为锥体.3、直角梯形以垂直于底边的腰所在的直线为旋转轴,其余三边旋转形成的面所围成的旋转体叫圆台(frustum of a cone).棱台与圆台统称为台体.4、以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体叫做球体(solid sphere),简称球;半圆的圆心叫做球的球心,半圆的半径叫做球的半径,半圆的直径叫做球的直径;球通常用表示球心的字母O表示,如球O.5、由具有柱、锥、台、球等简单几何体组合而成的几何体叫简单组合体.现实生活中的物体大多是简单组合体.简单组合体的构成有两种方式:由简单几何体拼接而成;由简单几何体截去或挖去一部分而成.6、知识拓展圆柱、圆锥的轴截面:过圆柱或圆锥轴的平面与圆柱或圆锥相交得到的平面形状,通常圆柱的轴截面是矩形,圆锥的轴截面是三角形.7、一个球内有一内接长方体,其长、宽、高分别为5、4、3,则球的直径为().A.8、圆锥母线长为R,则高等于__________.§1.2.1 中心投影与平行投影 §1.2.2 空间几何体的三视图1、由于光的照射,在不透明物体后面的屏幕上可以留下这个物体的影子,这种现象叫做投影.其中光线叫投影线,留下物体影子的屏幕叫投影面.光由一点向外散射形成的投影叫做中心投影,中心投影的投影线交于一点.在一束平行光照射下形成的投影叫做平行投影,平行投影的投影线是平行的.在平行投影中,投影线正对着投影面时叫正投影,否则叫斜投影.2、结论:中心投影其投影的大小随物体与投影中心间距离的变化而变化;平行投影其投影的大小与这个平面图形的形状和大小是完全相同的.3、为了能较好把握几何体的形状和大小,通常对几何体作三个角度的正投影.一种是光线从几何体的前面向后面正投影得到投影图,这种投影图叫几何体的正视图;一种是光线从几何体的左面向右面正投影得到投影图,这种投影图叫几何体的侧视图;第三种是光线从几何体的上面向下面正投影得到投影图,这种投影图叫几何体的俯视图.几何体的正视图、侧视图和俯视图称为几何体的三视图. 一般地,侧视图在正视图的右边,俯视图在正视图的下边.三视图中,能看见的轮廓线和棱用实线表示,不能看见的轮廓线和棱用虚线表示. 下图是一个长方体的三视图.4、小结:1.正视图反映物体的长度和高度,俯视图反映的是长度和宽度,侧视图反映的是宽度和高度;2.正视图和俯视图高度相同,俯视图和正视图长度相同,侧视图和俯视图宽度相同;3.三视图的画法规则:①正视图、侧视图齐高,正视图、俯视图长对正,俯视图、侧视图宽相等,即“长对正”、“高平齐”、“宽相等”;②正、侧、俯三个视图之间必须互相对齐,不能错位.5、 下列哪种光源的照射是平行投影( ).A.蜡烛B.正午太阳C.路灯D.电灯泡6、 右边是一个几何体的三视图,则这个几何体是( ).A.四棱锥B.圆锥C.三棱锥D.三棱台7、 如图是个六棱柱,其三视图为( ).A. B. C. D.§1.2.3 空间几何体的直观图1、斜二测画法的规则及步骤如下:(1)在已知水平放置的平面图形中取互相垂直的x 轴和y 轴,建立直角坐标系,两轴相交于O .画直观图时,把它们画成对应的x '轴与y '轴,两轴相交于点O ',且使x O y '''∠=45°(或135°).它们确定的平面表示水平面;(2) 已知图形中平行于x 轴或y 轴的线段,在直观图中分别画成平行于x '轴或y '轴的线段;(3)已知图形中平行于x 轴的线段,在直观图中保持原长度不变,平行于y 轴的线段,长度为原来的一半;(4) 图画好后,要擦去x 轴、y 轴及为画图添加的辅助线(虚线).2、用斜二测画法画空间几何体的直观图时,通常要建立三条轴:x 轴,y 轴,z 轴;它们相交于点O ,且45xOy ∠=°,90xOz ∠=°;空间几何体的底面作图与水平放置的平面图形作法一样,即图形中平行于x 轴的线段保持长度不变,平行于y 轴的线段长度为原来的一半,但空间几何体的“高”,即平行于z 轴的线段,保持长度不变.3、用斜二测画法画底面半径为4cm ,高为3cm 的圆柱.4、一个长方体的长、宽、高分别是4、8、4,则画其直观图时对应为( ).A. 4、8、4B. 4、4、4C. 2、4、4D.2、4、25、 利用斜二测画法得到的①三角形的直观图是三角形②平行四边形的直观图是平行四边形③正方形的直观图是正方形④菱形的直观图是菱形,其中正确的是( ).A.①②B.①C.③④D.①②③④6、一个三角形的直观图是腰长为4的等腰直角三角形,则它的原面积是( ).A. 8B. 16C.7、等腰梯形ABCD 上底边CD=1,腰AD=CB=2, 下底AB=3,按平行于上、下底边取x 轴,则直观图A B C D ''''的面积为________.§1.3.1 柱体、锥体、台体的表面积与体积(1)1、(1)设圆柱的底面半径为r ,母线长为l ,则它的表面积等于圆柱的侧面积(矩形)加上底面积(两个圆),即2222()S r rl r r l πππ=+=+. (2)设圆锥的底面半径为r ,母线长为l ,则它的表面积等于圆锥的侧面积(扇形)加上底面积(圆形),即2()S r rl r r l πππ=+=+. 2、设圆台的上、下底面半径分别为r ',r ,母线长为l ,则它的表面积等上、下底面的面积(大、小圆)加上侧面的面积(扇环),即2222()()S r r r l rl r r r l rl ππππ''''=+++=+++.3、正方体的表面积是64,则它对角线的长为( ).A.B.164、一个圆柱的侧面展开图是一个正方形,这个圆柱的表面积与侧面积的比是( ). A.122ππ+ B.144ππ+ C.12ππ+ D.142ππ+5、一个正四棱台的两底面边长分别为m ,n ()m n >,侧面积等于两个底面积之和,则这个棱台的高为( ). A.mn m n + B.mn m n - C.m n mn + D.m nmn -6、如图,在长方体中,AB b =,BC c =,1CC a =,且a b c >>,求沿着长方体表面A 到1C 的最短路线长.7、柱体体积公式为:V Sh =,(S 为底面积,h 为高)锥体体积公式为:13V Sh =,(S 为底面积,h 为高) 台体体积公式为:1()3V S S h '=(S ',S 分别为上、下底面面积,h 为高)8、补充:柱体的高是指两底面之间的距离;锥体的高是指顶点到底面的距离;台体的高是指上、下底面之间的距离.9、如图(1)所示,三棱锥的顶点为P ,,,PA PB PC 是它的三条侧棱,且,,PA PB PC 分别是面,,PBC PAC PAB 的垂线,又2PA =,3,4PB PC ==,求三棱锥P ABC -的体积V .10、如图(2),在边长为4的立方体中,求三棱锥B A BC '''-的体积.11、在△ABC 中,32,,1202AB BC ABC ==∠=°,若将△ABC 绕直线BC 旋转一周,求所形成的旋转体的体积.§1.3.2 球的体积和表面积1、球的体积公式 343V R π= 球的表面积公式 24S R π=其中,R 为球的半径.显然,球的体积和表面积的大小只与半径R 有关.2、若三个球的表面积之比为1﹕2﹕3,则它们的体积之比为多少?3、如图,圆柱的底面直径与高都等于球的直径(即圆柱内有一内切球),求证(1)球的体积等于圆柱体积的23;(2)球的表面积等于圆柱的侧面积.4、记与正方体各个面相切的球为1O ,与各条棱相切的球为2O ,过正方体各顶点的球为3O 则这3个球的体积之比为( ).232233第二章:点线面的位置关系§2.1.1 平面1、平面(plane)是平的;平面是可以无限延展的;平面没有厚薄之分.2、⑴点A 在平面α内,记作A α∈;点A 在平面α外,记作A α∉.⑵点P 在直线l 上,记作P l ∈,点P 在直线外,记作P l ∉.⑶直线l 上所有点都在平面α内,则直线l 在平面α内(平面α经过直线l ),记作l α⊂;否则直线就在平面外,记作l α⊄.3、公理1 如果一条直线上的两点在一个平面内,那么这条直线在此平面内.用集合符号表示为: ,,A l B l ∈∈且,A B l ααα∈∈⇒⊂公理2 过不在一条直线上的三点,有且只有一个平面.公理3如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.如下图所示:平面α与平面β相交于直线l ,记作l αβ=.公理3用集合符号表示为,P a ∈且P β∈⇒l αβ=,且P l ∈4、知识拓展 平面的三个性质是公理(不需要证明,直接可以用),是用公理化方法证明命题的基础.其中公理1可以用来判断直线或者点是否在平面内;公理2用来确定一个平面,判断两平面重合,或者证明点、线共面;公理3用来判断两个平面相交,证明点共线或者线共点的问题.5、下列结论正确的是().①经过一条直线和这条直线外一点可以确定一个平面②经过两条相交直线,可以确定一个平面③经过A.1个B.2个C.3个D.4个6、如图在四面体中,若直线EF和GH相交,则它们的交点一定(A.在直线DB上B.在直线AB上C.在直线CB上D.都不对/4511 1、像直线A B '与CC '这样不同在任何一个平面内的两条直线叫做异面直线(skew lines).2、异面直线的画法有如下几种(,a b 异面):图2-13、公理4 (平行公理)平行于同一条直线的两条直线互相平行.4、定理 空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.5、如图2-2,已知两条异面直线,a b ,经过空间任一点O 作直线 a '∥a ,b '∥b ,把a '与b '所成的锐角(或直角)叫做异面直线,a b 所成的角(夹角).如果两条异面直线所成的角是直角,就说这两条直线互相垂直,记作a b ⊥.6、正方体ABCD A B C D ''''-的棱长为a ,求异面直线AC 与A D ''所成的角.7、正方体ABCD A B C D ''''-的十二条棱中,与直线AC '是异面直线关系的有___________条.8、长方体1111ABCD A B C D -中,3AB =,2,BC =1AA =1,异面直线AC 与11A D 所成角的余弦值是______.§2.1.4平面与平面之间的位置关系1、直线与平面位置关系只有三种:⑴直线在平面内——⑵直线与平面相交——⑶直线与平面平行——其中,⑵、⑶两种情况统称为直线在平面外.2、两个平面的位置关系只有两种:⑴两个平面平行——没有公共点⑵两个平面相交——有一条公共直线3、下列命题中正确的个数是()①若直线l上有无数个点不在平面α内,则l∥α.②若直线l与平面α平行,则l与平面α内的任意一条直线都平行.③如果两条平行直线中的一条与一个平面平行,那么另一条也与这个平面平行.④若直线l与平面α平行,则l与平面α内的任意一条直线都没有公共点.A.0B.1C.2D.3⊄,则下列结论成立的是()4、若直线a不平行于平面α,且aαA.α内的所有直线与a异面B.α内不存在与a平行的直线C.α内存在唯一的直线与a平行D.α内的直线与a都相交.5、证明点共线的基本方法有两种⑴找出两个面的交线,证明若干点都是这两个平面的公共点,由公理3可推知这些点都在交线上,即证若干点共线.⑵选择其中两点确定一条直线,证明另外一些点也都在这条直线上.6、如图4-2,空间四边形ABCD中,E,F分别是AB和CB上的点,G,H分别是CD和AD上的点,与相交于点K.求证:EH,BD,FG三条直线相交于同一点.且EH FG12图4-27、如图4-3,如果两条异面直线称作“一对”,那么在正方体的12条棱中,共有异面直线多少对? 图4-313/4514§2.2.1 直线与平面平行的判定1、直线与平面平行的判定定理定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行.2、如图5-8,在空间四边形ABCD 中,P 、Q 分别是ABC ∆和BCD ∆的重心.求证:PQ ∥平面ACD .图5-8§2.2. 2 平面与平面平行的判定1、两个平面平行的判定定理 一个平面内的两条相交直线与另一个平面平行,则这两个平面平行. 如图6-4所示,α∥β. ※ 典型例题例1 已知正方体1111ABCD A B C D -,如图6-5,求证: 平面11AB D ∥1CB D .图6-52、如图6-7,正方体中,,,,M N E F 分别是棱A B '',A D '',B C '',C D ''的中点,求证:平面AMN ∥ 平面EFDB .图6-7F EMNB 'C 'A 'DCBAD '/4515 3、 如图6-9,A '、B '、C '分别是PBC ∆、PCA ∆、PAB ∆的重心.求证:面A B C '''∥ABC 面.图6-9§2.2.3 直线与平面平行的性质1、直线与平面平行的性质定理 一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线都与该直线平行.2、如图7- 6,在ABC ∆所在平面外有一点P ,D 、E 分别是PB AB 与上的点,过,D E 作平面平行于BC ,试画出这个平面与其它各面的交线,并说明画法的依据.图7-6§2.2.4 平面与平面平行的性质1、两个平面平行的性质定理 如果两个平行平面同时和第三个平面相交,那么它们的交线平行. 2. 设,P Q 是单位正方体1AC 的面11AA D D、面1111A B C D 的中心,如图8-4,证明:⑴PQ ∥平面11AA B B;⑵面1D PQ ∥面1C DB .图8-416§2.3.1 直线与平面垂直的判定1、如果直线l 与平面α内的任意一条直线都垂直,就说直线l 与平面α互相垂直,记做l α⊥.l 叫做垂线,α叫垂面,它们的交点P 叫垂足.如图10-3所示.图10-32、直线和平面垂直的判定定理 一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直.3、如图10-6,直线PA 和平面α相交但不垂直,PA 叫做平面的斜线,PA 和平面的交点A 叫斜足;PO α⊥,AO 叫做斜线PA 在平面α上的射影.平面的一条斜线和它在平面上的射影所成的锐角,叫这条直线和平面所成的角.图10-6直线垂直于平面,则它们所成的角是直角;直线和平面平行或在平面内,则它们所成的角是0°角. A B '和平面A B CD ''所成的角.图10-85、如图10-9,在三棱锥中,,VA VC AB BC ==,求证:VB AC ⊥.O A P αD B 'C 'A ' CBA D '/4517图10-96、,a b 是异面直线,那么经过b 的所有平面( ). A.只有一个平面与α平行 B.有无数个平面与α平行 C.只有一个平面与α垂直 D.有无数个平面与α垂直§2.3.2 平面与平面垂直的判定1、从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫二面角的棱,这两个半平面叫二面角的面.图11-2中的二面角可记作:二面角AB αβ--或l αβ--或P AB Q --.图11-22、如图11-3,在二面角l αβ--的棱l 上任取一点O ,以点O 为垂足,在半平面α和β内分别作垂直于棱l 的射线,OA OB ,则射线OA 和OB 构成的AOB ∠叫做二面角的平面角.平面角是直角的二面角叫直二面角.图11-33、两个平面所成二面角是直二面角,则这两个平面互相垂直.如图11-4,α垂直β,记作αβ⊥.l18图11-44、两个平面垂直的判定定理 一个平面过另一个平面的垂线,则这两个平面垂直.5、如图11-5,AB 是⊙O 的直径,PA 垂直于⊙O所在的平面,C 是圆周上不同于,A B 的任意一点,求证:平面PAC ⊥平面PBC .图11-56、如图11-6,在正方体中,求面A D CB ''与面ABCD 所成二面角的大小(取锐角).图11-67、如图11-7,在空间四边形SABC 中,ASC ∠ =90°,60ASB BSC ∠==°,SA SB SC ==,⑴求证:平面ASC ⊥平面ABC .⑵求二面角S AB C --的平面角的正弦值. 图11-7B 'C 'A 'DCBA D ' SCBA/4519 1、直线与平面垂直的性质定理 垂直于同一个平面的两条直线平行.2、 判断下列命题是否正确,并说明理由.⑴两条平行线中的一条垂直于某条直线,则另一条也垂直于这条直线; ⑵两条平行线中的一条垂直于某个平面,则另一条也垂直于这个平面; ⑶两个平行平面中的一个垂直于某个平面,则另一个也垂直与这个平面; ⑷垂直于同一条直线的两条直线互相平行; ⑸垂直于同一条直线的两个平面互相平行; ⑹垂直于同一个平面的两个平面互相平行. 3、知识拓展设,a m 和l 是直线,,αβ是平面,则直线与平面垂直还有下列性质: (1)l l a a αα⊥⎫⇒⊥⎬⊂⎭; (2)//l m m l αα⊥⎫⇒⊥⎬⎭(3)//l l ααββ⊥⎫⎬⊥⎭你能把它们用图形表示出来吗?4、如图12-5,在三棱锥中,PA PB =,AB BC ⊥,若M 是PC 的中点,试确定AB 上点N 的位置,使得MN AB ⊥.图12-51、平面与平面垂直的性质定理两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直.-的底面是个矩形,2、如图13-4,四棱锥P ABCD==PAB是等边三角形,且侧面PAB垂直于底面ABCD.AB BC2,⑴证明:侧面PAB⊥侧面PBC;⑵求侧棱PC与底面ABCD所成的角.图13-420第三章:直线与方程 §3.1直线的倾斜角与斜率1、当直线l 与x 轴相交时,取x 轴作为基准,x 轴正向与直线l 向上方向之间所成的角α叫做直线l 的倾斜角(angle of inclination ).关键:①直线向上方向;②x 轴的正方向;③小于平角的正角. 注意:当直线与x 轴平行或重合时,我们规定它的倾斜角为0度.. 2、一条直线的倾斜角()2παα≠的正切值叫做这条直线的斜率(slope).记为tan k α=.3、已知直线上两点111222(,),(,)Px y P x y 12()x x ≠的直线的斜率公式:2121y y k x x -=-.5、任何一条直线都有唯一确定的倾斜角,直线斜角的范围是[0,180)︒. 6、已知点(2,3),(3,2)A B --,若直线l 过点(1,1)P 且与线段AB 相交,求直线l 的斜率k 的取值范围.§ 3.2两直线平行与垂直的判定1、两条直线有斜率且不重合,如果它们平行,那么它们的斜率相等;反之,如果它们的斜率相等,则它们平行,即12//l l ⇔1k =2k注意,上面的等价是在两直线不重合且斜率存在的前提下才成立的,缺少这个前提,结论并不存立. 2、两条直线都有斜率,如果它们互相垂直,则它们的斜率互为负倒数;反之,如果它们的斜率互为负倒数,则它们互相垂直. 即12l l ⊥⇔121k k =-⇔121k k =-3、已知三点(,2),(5,1),(4,2)A a B C a -在同一直线上,则a 的值为 .§ 3.2.1直线的点斜式方程1、已知直线l 经过点00(,)P x y ,且斜率为k ,则方程00()y y k x x -=-为直线的点斜式方程.2、直线l 与y 轴交点(0,)b 的纵坐标b 叫做直线l 在y 轴上的截距(intercept ).直线y kx b =+叫做直线的斜截式方程.注意:截距b 就是函数图象与y 轴交点的纵坐标.3、直线l 过点(2,3)P -且与x 轴、y 轴分别交于,A B 两点,若P 恰为线段AB 的中点,求直线l 的方程.§ 3.2.2直线的两点式方程1、已知直线上两点112222(,),(,)Px x P x y 且1212(,)x x y y ≠≠,则通过这两点的直线方程为1112122121(,)y y x x x x y y y y x x --=≠≠--,由于这个直线方程由两点确定,所以我们把它叫直线的两点式方程,简称两点式(two-point form ).2、已知直线l 与x 轴的交点为(,0)A a ,与y 轴的交点为(0,)B b ,其中0,0a b ≠≠,则直线l 的方程1=+b y a x 叫做直线的截距式方程.注意:直线与x 轴交点(a ,0)的横坐标a 叫做直线在x 轴上的截距;直线与y 轴交点(0,b )的纵坐标b 叫做直线在y 轴上的截距.3、a ,b 表示截距,是不是表示直线与坐标轴的两个交点到原点的距离?4、直线方程的各种形式总结为如下表格:5、过点P(2,1)作直线l 交,x y 正半轴于AB 两点,当||||PA PB ⋅取到最小值时,求直线l 的方程.6、 已知一直线被两直线1:460l x y ++=,2l :3x 560y --=截得的线段的中点恰好是坐标原点,求该直线方程.§ 3.2.3直线的一般式方程1、关于,x y 的二元一次方程0Ax By C ++=(A ,B 不同时为0)叫做直线的一般式方程,简称一般式(general form ).注意:直线一般式能表示平面内的任何一条直线2、光线由点(1,4)A -射出,在直线:2360l x y +-=上进行反射,已知反射光线过点62(3,)13B ,求反射光线所在直线的方程.§ 3.1两条直线的交点坐标1、求直线20x y --=关于直线330x y -+=对称的直线方程.2、直线54210x y m +--=与直线230x y m +-=的交点在第四象限,求m 的取值范围.§ 3.3.2两点间的距离1、已知平面上两点111222(,),(,)P x y P x y ,则12PP =特殊地:(,)P x y 与原点的距离为OP2、 已知点(1,2),A B -,在x 轴上存在一点P ,使PA PB =,则PA =.§ 3.3点到直线的距离及两平行线距离1、已知点00(,)P x y 和直线:0l Ax By C ++=,则点P 到直线l 的距离为:d =.注意:⑴点到直线的距离是直线上的点与直线外一点的连线的最短距离; ⑵在运用公式时,直线的方程要先化为一般式.2、已知两条平行线直线1l 10Ax By C ++=,2:l 20Ax By C ++=,则1l 与2l 的距离为d =注意:应用此公式应注意如下两点:(1)把直线方程化为一般式方程;(2)使,x y 的系数相等. 3、 求两平行线1l :2380x y +-=,2l :46x y +10-=的距离.第四章:圆与方程 4.1.1圆的标准方程1、圆的标准方程(x -a)2+(y -b)2=r2中,有三个参数a 、b 、r,只要求出a 、b 、r 且r >0,这时圆的方程就被确定,因此确定圆的标准方程,需三个独立条件,其中圆心是圆的定位条件,半径是圆的定形条件.2、确定圆的方程主要方法是待定系数法,即列出关于a 、b 、r 的方程组,求a 、b 、r 或直接求出圆心(a,b)和半径r,一般步骤为:1°根据题意,设所求的圆的标准方程(x -a)2+(y -b)2=r2; 2°根据已知条件,建立关于a 、b 、r 的方程组;3°解方程组,求出a 、b 、r 的值,并把它们代入所设的方程中去,就得到所求圆的方程. 3、点M(x0,y0)与圆(x-a)2+(y-b)2=r2的关系的判断方法:当点M(x0,y0)在圆(x-a)2+(y-b)2=r2上时,点M 的坐标满足方程(x-a)2+(y-b)2=r2. 当点M(x0,y0)不在圆(x-a)2+(y-b)2=r2上时,点M 的坐标不满足方程(x-a)2+(y-b)2=r2. 用点到圆心的距离和半径的大小来说明应为:1°点到圆心的距离大于半径,点在圆外⇔(x0-a)2+(y0-b)2>r2,点在圆外; 2°点到圆心的距离等于半径,点在圆上⇔(x0-a)2+(y0-b)2=r2,点在圆上; 3°点到圆心的距离小于半径,点在圆内⇔(x0-a)2+(y0-b)2<r2,点在圆内.4、写出圆心为A(2,-3),半径长等于5的圆的方程,并判断点M1(5,-7),M2(-5,-1)是否在这个圆上. 解:圆心为A(2,-3),半径长等于5的圆的标准方程是 (x-2)2+(y+3)2=25,把点M1(5,-7),M2(-5,,-1)分别代入方程(x-2)2+(y+3)2=25,则M1的坐标满足方程,M1在圆上.M2的坐标不满足方程,M2不在圆上.5、 △ABC 的三个顶点的坐标是A(5,1),B(7,-3),C(2,-8),求它的外接圆的方程.解法一:设所求的圆的标准方程为(x-a)2+(y-b)2=r2,因为A(5,1),B(7,-3),C(2,-8)都在圆上, 它们的坐标都满足方程(x-a)2+(y-b)2=r2,于是⎪⎩⎪⎨⎧=--+-=--+-=-+-)3(.)8()2()2()3()7()1(,)1()5(222222222r b a r b a r b a解此方程组得⎪⎩⎪⎨⎧=-==.5,3,2r b a 所以△ABC 的外接圆的方程为(x-2)2+(y+3)2=25.解法二:线段AB 的中点坐标为(6,-1),斜率为-2,所以线段AB 的垂直平分线的方程为y+1=21(x-6).①同理线段AC 的中点坐标为(3.5,-3.5),斜率为3,所以线段AC 的垂直平分线的方程为y+3.5=3(x-3.5). ②解由①②组成的方程组得x=2,y=-3,所以圆心坐标为(2,-3),半径r=22)31()25(++-=5,所以△ABC 的外接圆的方程为(x-2)2+(y+3)2=25.点评:△ABC 外接圆的圆心是△ABC 的外心,它是△ABC 三边的垂直平分线的交点,它到三顶点的距离相等,就是圆的半径,利用这些几何知识,可丰富解题思路.6、 求与圆x2+y2-2x=0外切,且与直线x+3y=0相切于点(3,-3)的圆的方程.解:设所求圆的方程为(x-a)2+(y-b)2=r2.圆x2+y2-2x=0的圆心为(1,0),半径为1.因为两圆外切,所以圆心距等于两圆半径之和,即22)0()1(-+-b a =r+1, ①由圆与直线x+3y=0相切于点(3,-3),得⎪⎪⎩⎪⎪⎨⎧=++-=-•-+)3(.)3(1|3|)2(,1)31(332r b a a b解得a=4,b=0,r=2或a=0,b=-43,r=6.故所求圆的方程为(x-4)2+y2=4或x2+(y+43)2=36.4.1.2 圆的一般方程1、方程x 2+y 2+Dx+Ey+F=0表示的曲线不一定是圆,由此得到圆的方程都能写成x 2+y 2+Dx+Ey+F=0的形式,但方程x 2+y 2+Dx+Ey+F=0表示的曲线不一定是圆,只有当D 2+E 2-4F >0时,它表示的曲线才是圆.因此x 2+y 2+Dx+Ey+F=0表示圆的充要条件是D 2+E 2-4F >0.我们把形如x 2+y 2+Dx+Ey+F=0表示圆的方程称为圆的一般方程. 2、圆的一般方程形式上的特点:x 2和y 2的系数相同,不等于0.没有xy 这样的二次项.3、判断下列二元二次方程是否表示圆的方程?如果是,请求出圆的圆心及半径.(1)4x 2+4y 2-4x+12y+9=0;(2)4x 2+4y 2-4x+12y+11=0.解:(1)由4x 2+4y 2-4x+12y+9=0,得D=-1,E=3,F=49,。
数学高中必修二知识点总结必看
数学高中必修二知识点总结必看各个科目都有自己的学习方法,但其实都是万变不离其中的,基本离不开背、记,练,数学作为最烧脑的科目之一,也是一样的。
下面是小编给大家整理的一些数学高中必修二知识点的学习资料,希望对大家有所帮助。
高一年级数学必修二知识点总结【两个平面的位置关系】(1)两个平面互相平行的定义:空间两平面没有公共点(2)两个平面的位置关系:两个平面平行-----没有公共点;两个平面相交-----有一条公共直线。
a、平行两个平面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。
两个平面平行的性质定理:如果两个平行平面同时和第三个平面相交,那么交线平行。
b、相交二面角(1)半平面:平面内的一条直线把这个平面分成两个部分,其中每一个部分叫做半平面。
(2)二面角:从一条直线出发的两个半平面所组成的图形叫做二面角。
二面角的取值范围为[0°,180°](3)二面角的棱:这一条直线叫做二面角的棱。
(4)二面角的面:这两个半平面叫做二面角的面。
(5)二面角的平面角:以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角。
(6)直二面角:平面角是直角的二面角叫做直二面角。
【两平面垂直】两平面垂直的定义:两平面相交,如果所成的角是直二面角,就说这两个平面互相垂直。
记为⊥两平面垂直的判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直两个平面垂直的性质定理:如果两个平面互相垂直,那么在一个平二面角求法:直接法(作出平面角)、三垂线定理及逆定理、面积射影定理、空间向量之法向量法(注意求出的角与所需要求的角之间的等补关系)。
高二数学必修二知识点归纳一、直线与圆:1、直线的倾斜角的范围是在平面直角坐标系中,对于一条与轴相交的直线,如果把轴绕着交点按逆时针方向转到和直线重合时所转的最小正角记为,就叫做直线的倾斜角。
高中数学必修2知识点总结归纳
高中数学必修2知识点总结归纳
1、二次函数及其图像的性质:二次函数的定义,形式,及其未知量的解析解,二次
函数图像的性质,凹凸性和极值点位置,及其判定方法。
2、三角函数及其图形:正弦函数、余弦函数、正切函数的定义,平面直角坐标系下
的正弦余弦正切函数图像的性质及其判定方法,正弦定理,余弦定理,根据图形求三角函
数值,及其应用。
3、小数和分数的运算:常用的小数转分数的方法,小数和分数的加减乘除运算,及
其规律性的分析。
4、指数及对数:指数的定义,特殊指数的运算及其规律性,指数函数的图像及性质,对数的定义及其特殊性质,对数函数及其图形性质,及其一元二次多项式的变换。
5、多项式及其因子分解:多项式的基本定义,及其分母和分子的几何概念,多项式
的因子分解,及其唯一性的判断。
6、不定积分及其应用:不定积分的定义及其特殊性,常用的不定积分计算方法,及
其实际应用,求积分近似值的方法,以及实际的应用案例。
7、应用题中的数字变换:应用题中常见的实数变化,及其最高次数的判定,同时变
化的最小公倍数及其关系,求解应用题中特殊方程组的方法,及其实际案例。
8、圆的参数方程及极坐标方程:圆的定义,参数方程与极坐标方程的转换,园的性质,及其圆上点的定位方法,过定点且与圆的关系及应用。
9、高等函数及应用:高次函数的定义,及其图像的特点,高次函数的求解及其实际
应用,对数及指数函数的求解及应用,以及多项式、二次曲线等拟合应用。
10、三角型函数与几何图形的关系:三角型函数的定义及其特殊性质,三角型函数的
变换及其图形改变,及其三角函数与几何图形联系的应用。
必修二数学知识点归纳
必修二是高中数学课程的重要组成部分,通常包括代数、几何、概率等多个领域。
以下是对必修二数学知识点的归纳:一、代数1. 函数的概念:函数的定义、函数的表示方法、函数的性质。
2. 基本函数:线性函数、二次函数、指数函数、对数函数、三角函数。
3. 函数的图像:函数图像的绘制、函数图像的性质。
4. 函数的性质:单调性、奇偶性、周期性、极值、最值。
5. 方程与不等式:一元一次方程、一元二次方程、不等式的解法、不等式的性质。
6. 数列:数列的概念、等差数列、等比数列、数列的求和。
7. 复数:复数的概念、复数的运算、复数的几何表示。
二、几何1. 平面几何:点、线、面的基本概念、几何图形的性质、几何图形的相互关系。
2. 解析几何:坐标系、直线的方程、圆的方程、几何图形的坐标表示。
3. 空间几何:空间图形的基本概念、空间图形的性质、空间图形的相互关系。
4.几何变换:平移、旋转、对称变换、相似变换。
5.几何证明:证明的基本方法、证明的策略。
三、概率与统计1. 概率的基本概念:随机事件、概率、条件概率、独立事件。
2. 概率的计算:古典概型、几何概型、条件概率的计算。
3. 统计的基本概念:数据、样本、总体、频率分布。
4. 统计量的计算:平均数、中位数、众数、方差、标准差。
5. 统计图表:条形图、折线图、饼图、散点图。
四、数学应用1. 数学在自然科学中的应用:物理、化学、生物、地理等领域的数学模型。
2. 数学在社会科学中的应用:经济学、社会学、心理学等领域的数学模型。
3. 数学在日常生活中的应用:时间计算、货币计算、测量计算等。
这些知识点是必修二数学学习的重要内容,学生需要通过课堂学习、课后练习和实际应用来掌握这些知识。
必修二数学的知识点不仅要求学生理解概念和原理,还要求学生能够将这些知识应用到实际问题中,解决实际问题。
高一数学必修二复习知识点归纳
高一数学必修二复习知识点归纳(实用版)编制人:__审核人:__审批人:__编制单位:__编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如教案大全、书信范文、述职报告、合同范本、工作总结、演讲稿、心得体会、作文大全、工作计划、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as lesson plans, letter templates, job reports, contract templates, work summaries, speeches, reflections, essay summaries, work plans, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!高一数学必修二复习知识点归纳本店铺为各位同学整理了《高一数学必修二复习知识点归纳》,希望对你的学习有所帮助!1.高一数学必修二复习知识点归纳篇一(1)线线、面面、线面垂直的定义①两条异面直线的垂直:如果两条异面直线所成的角是直角,就说这两条异面直线互相垂直。
必修二数学知识点归纳
必修二数学知识点归纳高中数学必修二的内容主要包括立体几何初步、平面解析几何初步。
以下是对这些知识点的详细归纳:一、立体几何初步1、空间几何体多面体:由若干个平面多边形围成的几何体叫做多面体。
旋转体:一条平面曲线绕着它所在的平面内的一条定直线旋转所形成的曲面叫作旋转面,封闭的旋转面围成的几何体叫作旋转体。
2、棱柱、棱锥、棱台棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱。
棱锥:有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥。
棱台:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分叫做棱台。
3、圆柱、圆锥、圆台、球圆柱:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体叫做圆柱。
圆锥:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体叫做圆锥。
圆台:用一个平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台。
球:以半圆的直径所在直线为轴,半圆面旋转一周形成的旋转体叫做球体,简称球。
4、中心投影与平行投影中心投影:光由一点向外散射形成的投影,叫做中心投影。
平行投影:在一束平行光线照射下形成的投影,叫做平行投影。
5、直观图斜二测画法:建立直角坐标系,在已知水平放置的平面图形中取互相垂直的 x 轴和 y 轴,两轴相交于点 O。
画直观图时,把它们画成对应的 x'轴和 y'轴,两轴交于点 O',且使∠x'O'y' = 45°(或 135°),它们确定的平面表示水平平面。
已知图形中平行于 x 轴或 y 轴的线段,在直观图中分别画成平行于 x'轴或 y'轴的线段。
已知图形中平行于 x 轴的线段,在直观图中长度不变;平行于 y 轴的线段,长度变为原来的一半。
6、三视图正视图:光线从几何体的前面向后面正投影得到的投影图。
数学必修二知识点总结框架
数学必修二知识点总结框架
一、直线与方程
直线的倾斜角和斜率
倾斜角:x轴正向与直线向上方向之间的角。
斜率:倾斜角不是90°的直线的倾斜角的正切。
直线方程
点斜式:y - y1 = k(x - x1),其中k是斜率,(x1, y1)是直线上的一点。
斜截式:y = kx + b,其中k是斜率,b是y轴上的截距。
两点式:通过两个已知点来确定直线方程。
截距式:当直线与坐标轴有截距时,利用截距来确定直线方程。
一般式:Ax + By + C = 0,其中A, B不全为0。
二、数列
数列是定义在自然数集或其有限子集上的函数。
数列的项按照一定顺序排列,形成有序数列。
数列的递推关系、求和公式、通项公式等都是重要的知识点。
三、向量
向量的基本概念
向量、零向量、平行向量、共线向量、单位向量、相等向量等概念。
向量的几何表示和运算规则。
平面向量的基本定理
向量的线性组合和线性表示。
向量的共线定理和基底概念。
这只是一个大致的框架,每个知识点下都还有具体的子知识点和详细的概念、定理和公式需要学习和掌握。
建议参考教科书、教学辅导书或在线资源来深入学习这些知识点,并通过练习来巩固和加深理解。
数学必修二所有知识点总结
数学必修二所有知识点总结数学必修二是高中数学课程的一部分,主要涵盖了解析几何、三角函数、数列和递推、概率统计等知识点。
这些知识点既有理论基础又有实际应用,对学生的数学思维能力和解决问题的能力有较高要求。
下面将对数学必修二中的各知识点进行总结和归纳。
一、函数与方程1.函数的概念函数是一种对应关系,将自变量的值映射到因变量的值。
函数通常用f(x)表示,其中x为自变量,f(x)为因变量。
函数的定义域、值域、性质等都是研究函数的重要内容。
2.特殊函数常见的特殊函数有一次函数、二次函数、幂函数、指数函数、对数函数和三角函数等。
这些函数在数学中有着广泛的应用,学生需要了解它们的图像、性质和变化规律。
3.方程与不等式一元一次方程、一元二次方程、一元一次不等式、一元二次不等式等都是学生需要掌握的内容。
解方程和不等式是数学中的基本技能,对于建模和解决实际问题有着重要的意义。
二、直线和圆1.直线的性质直线是解析几何中的基本对象,学生需要了解直线的斜率、方程、位置关系等内容。
直线的方程可以用点斜式、截距式、一般式等形式表示,学生需要熟练掌握这些表示方法并能灵活运用。
2.圆的性质圆是解析几何中的常见图形,学生需要了解圆的半径、直径、周长、面积等基本概念,同时还要掌握圆的方程和位置关系,以及与直线的关系等内容。
三、三角函数1.三角函数的概念三角函数是数学中的重要分支,是三角学的基础。
学生需要了解正弦函数、余弦函数、正切函数、余切函数等三角函数的定义和性质,包括周期性、奇偶性、单调性、图像等方面。
2.三角函数的变换学生需要了解三角函数的基本变换,包括平移、伸缩、反转等操作,以及将三角函数图像与三角函数方程相联系的应用问题。
四、数列和递推1.数列的概念数列是由一系列按照一定规律排列的数构成的序列。
学生需要了解等差数列、等比数列、等差数列和等比数列的和等基本概念,以及它们的性质和应用。
2.递推公式递推公式是数列中常见的一种表示方法,通过递推公式可以方便地表示数列的通项公式和前n项和。
高中数学必修二知识点
高中数学必修二知识点
一、函数基本概念
函数是一种中介关系,即一个输入和另一个输出之间的数学关系,是由一个变量与另一个变量之间的对应关系组成,也可用“自变量与因变量之间的函数关系”来表示。
自变量表示“输入”,因变量表示“输出”,函数则表示输入与输出之间的关系
二、函数的基本性质
1、唯一性。
假定函数f(x)是定义在D上的连续函数,若对x∈D有f(x)=f(y)(x≠y),那么令x=y,从而可得矛盾结论,即函数的值有唯一性。
2、有界性。
函数值的范围是定义域D或定义域D的子集,取值有边界,且返回的值不会超出这个范围。
3、连续性。
函数取值连续,不可突变,这是状态变化的基础。
三、函数的表达式
1、定义式。
定义式表示指定某函数时用来决定函数关系的公式。
常用的函数定义式包括一次函数式,二次函数式,指数函数式,对数函数式等。
2、函数图像。
函数图像就是将函数定义式替换成对应的点对连线图形,可以帮助我们更好地理解函数表达式与函数关系。
四、函数的分类
1、多项式函数。
多项式函数是按照指数大小进行组合,其图像是一段一段连续的连线图形。
2、三角函数。
三角函数是通过极坐标和直角坐标间的关系来研究函数关系的函数,其图像是一段一段的波浪曲线。
3、指数函数。
指数函数是按照指数的大小组成的函数,其图像是一条以负斜率上升的连线图形。
4、对数函数。
对数函数就是以底数为参数,参数为10时为常用对数,其图像是一条以正斜率上升的连线图形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学必修二知识整理1. 空间几何的结构棱柱的结构特征棱柱的定义:一般地,有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱。
棱柱中,两个互相平行的面叫做棱柱的底面,简称底;其余各面叫做棱柱的侧面;相邻侧面的公共边叫做棱柱的侧棱;侧面及底面的公共顶点叫做棱柱的顶点(如下图)。
详解:“有两个面互相平行,其余各面都是平行四边形的几何体”不一定是棱柱。
底面是三角形、四边形、五边形……的棱柱分别叫做三棱柱、四棱柱、五棱柱……我们用表示底面各顶点的字母表示棱柱。
如上图的棱柱表示为棱柱棱柱的特点:两个底面是全等的多边形,且对应边互相平行,侧面都是平行四边形。
棱柱的一些相关概念:棱柱两底面之间的距离,叫做棱柱的高。
侧棱及底面不垂直的棱柱叫做斜棱柱。
侧棱及底面垂直的棱柱叫做直棱柱。
底面是正多边形的直棱柱叫做正棱柱。
棱柱的本质特征棱柱的两个本质特征:⑴有两个平面互相平行的面;⑵侧棱互相平行。
由这两个特征可以推出棱柱的所有侧面都是平行四边形,侧棱平行且相等,所有对角面都是平行四边形。
详解:直棱柱是特殊的棱柱,“直”体现在侧棱及地面垂直;正棱柱是特殊的直棱柱,“正”体现在底面是正多边形。
棱锥的结构特征棱锥的定义:一般地,有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥。
这个多边形叫做棱锥的底面或底;有公共顶点的各个三角形面叫做棱锥的侧面;各侧面的公共顶点叫做棱锥的顶点;相邻侧面的公共边叫做棱锥的侧棱。
顶点到底面的距离叫做棱锥的高(如下图)。
底面是三角形、四边形、五边形……的棱锥分别叫做三棱锥、四棱锥、五棱锥……其中三棱锥又叫四面体。
棱锥也用表示顶点和底面各顶点的字母表示。
如上图中的四棱锥,表示为棱锥S-ABCD.棱锥的特点:底面是多边形,侧面是有一个公共顶点的三角形。
如果棱锥的底面是正多边形,它的顶点又在过底面中心的垂线上,则这个棱锥叫做正棱锥。
正棱锥各侧面都是全等的等腰三角形,这些等腰三角形边上的高都相等,叫做棱锥的斜高。
详解:特殊的棱锥——正棱锥,即地面是正多边形,并且顶点在底面上的投影是底面的中心,这样的棱锥叫做正棱锥。
两个条件缺一不可。
棱台的定义:用一个平行于棱锥底面的平面去截棱锥,底面及截面之间的部分,这样的多面体叫做棱台。
原棱锥的底面和截面分别叫做棱台的下底面和上底面;其他各面叫做棱台的侧面;相邻两侧面的公共边叫做棱台的侧棱;两底面间的距离叫做棱台的高(如下图)。
由三棱锥、四棱锥、五棱锥……截得的棱台分别叫做三棱台、四棱台、五棱台……及棱柱的表示一样,上图中的棱台表示为棱台由正棱锥截得的棱台叫做正棱台,正棱台各侧面都是全等的等腰梯形,这些等腰梯形的高叫做棱台的斜高。
详解:棱台的结构特征是:各侧棱延长后相交于同一点;两底面是平行的相似多边形圆柱的结构特征圆柱的定义:以矩形的一边所在直线为旋转轴,其余三边旋转形成的面所围成的旋转体叫做圆柱。
旋转轴叫做圆柱的轴;在轴上的这条边(或它的长度)叫做这个圆柱的高;垂直于轴的边旋转而成的圆面叫做侧面;无论旋转到什么位置,不垂直于轴的边都叫做圆柱的母线(如下图)。
圆柱用表示它的轴的字母表示,如上图中的圆柱表示为圆柱.棱柱及圆柱统称为柱体。
详解:圆柱有两个大小相同的底面,有无数条母线,而且圆柱的所有母线都平行且相等。
圆柱有两个本质特征:平行于底面的截面是圆;过轴的截面是全等的矩形。
圆锥的结构特征圆锥的定义:以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的面所围成的旋转体叫做圆锥。
圆锥也有轴、底面、高、侧面和母线(如下图)。
圆锥也用表示它的轴的字母表示,如上图中的圆锥表示为圆锥SO.棱锥及圆锥统称为锥体。
详解:圆锥的简单性质:平行于底面的截面都是圆;过轴的截面是全等的等腰三角形。
圆锥的轴截面包含了圆锥的各个元素,是解决圆锥问题常用的平面图形,它可以把空间问题转化为平面问题,这是解决空间几何问题的常用方法。
圆台的结构特征圆台定义:用一个平行于圆锥底面的平面去截圆锥,底面及截面之间的部分叫做圆台。
及圆柱、圆锥一样,圆台也有轴、高、底面、侧面、母线(如下图)。
圆台也用表示它的轴的字母表示,如上图中的圆台表示为圆台.棱台及圆台统称为台体。
详解:圆台可以看作是由圆锥截得的,也可以看作是直角梯形绕其直角边旋转而成的。
圆台的结构特征:平行于底面的截面都是圆;过轴的截面是全等的等腰梯形;圆台的母线长都相等,每条母线延长后,都及轴相交同一点。
球的结构特征?????????????球的定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的旋转体叫做球体,简称球。
半圆的圆心叫做球的球心,半圆的半径叫做球的半径,半圆的直线叫做球的直径(如下图)。
球常用表示球心的字母O表示,如上图中的球表示为球O.球面距离:球面上两点之间的最短距离,就是经过两点的大圆在这两点间的一段劣弧的长度。
我们把这个弧长叫做两点的球面距离。
详解:球体及球面是不同的,球体是几何体,球面是曲面,但两者也有联系,球面是球体的表面。
简单组合体的结构特征简单组合体的构成有两种基本形式:一种是由几何体拼接而成,一种是有简单几何体截去或挖去一部分而成。
详解:简单组合体的分类:多面体及多面体的组合:由两个或两个以上的多面体组成的几何体。
多面体及旋转体的组合:由一个多面体及一个旋转体组合而成。
旋转体及旋转体的组合体:由两个或两个以上的旋转体组合而成。
2、空间几何体的表面积及体积空间几何体的表面积及体积1.柱体、锥体、台体的表面积⑴对于棱柱、棱锥、棱台等多面体,它们的表面积是其各个面的面积之和.因此,可以把它们展开成平面图形,利用平面图形求面积的方法,求立体图形的表面积⑵圆柱的侧面展开图是一个矩形(如下图),如果圆柱的底面半径为r,母线长为l,那么圆柱的底面面积为,侧面积为,此时圆柱的表面积.(3)圆锥的侧面展开图是一个扇形(如下页图),如果圆锥的底面半径为r,母线为l,那么它的表面积.(4)圆台的侧面展开图是一个扇环(如下图),它的表面积等于上、下两个底面的面积和加上侧面的面积,即.2.柱体、锥体、台体的体积(S为底面积,h为柱体的高);(S为底面积,h为锥体的高);(、S分别为上、下底面面积,h为台体的高)。
球的体积和表面积设球的半径为R,那么它的表面积,球的体积.详解:利用球的半径、球心到截面的距离、截面圆的半径所构成的直角三角形求出截面圆的半径,即.3、空间点、直线、平面之间的位置关系平面的概念及其表示法为了表示平面,我们常把希腊字母等写在代表平面的平行四边形的一个角上,如平面α、平面β;也可以用代表平面的平行四边形的四个顶点,或者相对的两个顶点的大写英文字母作为这个平面的简称,图(1)的平面α也可以表示为平面、平面AC平面BD.平面内有无数个点,平面可以看成点的集合。
点A在平面α内,记作外,点在平面α外,记作.详解:通常把希腊字母等写在代表平面的平行四边形的一个角上,如平面α、平面β来表示平面。
平面的基本性质公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内。
公理2:经过不在一条直线上的三点,有且只有一个平面。
推论1:经过一条直线和这条直线外的一点,有且只有一个平面。
推论2:经过两条相交直线,有且只有一个平面。
推论3:经过两条平行直线,有且只有一个平面。
公理3:如果两个不重合的平面有一个公共点,那么它们且只有一条过该点的公共直线。
详解:公理1可以用来判断直线是否在平面内。
如果直线l上的所有点都在平面α内,就说直线l在平面α内,或者说平面α经过直线l,记作;否则,就说直线l在平面α外,记作.公理1也可以用符号表示:.公理2刻画了平面特有的基本性质,它给出了确定一个平面的依据。
不在一条直线上的三个点A、B、C所确定的平面,可以记成“平面ABC”。
公理3告诉我们如果两个平面有一个公共点,那么它们必定还有另一个公共点,只要找出这两个平面的两个公共点,就找出了它们的交线。
公理3是判定两个平面相交的依据,即要证明两个平面相交,必须且只需证明这两个平面有一个公共点。
公理3是证明点在直线上的依据,即要证明一个点在某条直线上,可证该点是某两个平面的公共点,而该直线是这两个平面的交线。
公理3是证明几个点共线的依据,即要证明几个点共线,可证这几个点都是某两个平面的公共点。
实例:如果一条直线及两条平行直线都相交,那么这三条直线是否共面?解:两条平行直线确定一个平面,第三条直线有两点在此平面内,所以也在这个平面内。
于是,这三条直线共面。
异面直线及其相关性质异面直线的定义:我们把不同在任何一个平面内的两条直线叫做异面直线。
如下图所示,已知两条异面直线a,b,经过空间任一点O作直线,,我们把及所成的锐角(或直角)叫做异面直线a及b所成的角(或夹角)。
?????????????如果两条异面直线所成的角是直角,那么我们就说这两条异面直线互相垂直。
两条互相垂直的异面直线a,b,记作.详解:(1)两异面直线所成的角及点O的选取无关。
(2)两异面直线所成角θ的范围是.(3)判定空间两条直线是异面直线的方法:①判定定理:平面外一点A及平面内一点B连成的直线及平面内不过点B的直线是异面直线。
②反证法:证明两直线共面不可能。
平行直线公理4:平行于同一条直线的两条直线互相平行(传递性)。
等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补。
详解:公理4表明空间中平行于一条已知直线的所有直线都互相平行,它给出了判断两条直线平行的依据。
经过直线外一点,有且只有一条直线和这条直线平行。
由等角定理可以得到如下两个推论:推论1:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成的锐角(或直角)相等。
推论2:如果一个角的两边及另一个角的两边分别平行,那么这两组直线所成的角相等或互补。
证明空间两条直线平行的方法:方法1:利用定义用定义证明两条直线平行,须证两件事:一是两直线在同一平面内;二是两直线没有公共点。
方法2:利用公理4用公理4证明两条直线平行,只须证一件事:就是须找到直线c,使得,同时,由公理4,得到.空间中直线及直线的位置关系、直线及平面的位置关系空间中直线及直线的位置关系、直线及平面的位置关系:1.空间中直线及直线的位置关系如下图:2.直线及平面的位置关系如下图:详解:直线a及平面α相交或平行的情况统称为直线在平面外,记作.直线及平面平行的判定定理:平面外一条直线及此平面内的一条直线平行,则该直线及此平面平行。
用符号表示:.详解:利用判定定理证明直线及平面平行必须具备三个条件:1 直线a在平面外,即;2 直线b在平面内,即;3 两直线a,b平行,即.判定直线及平面平行的方法:(1)利用定义:证明直线及平面无公共点;(2)利用判定定理:从直线及直线平行得到直线及平面平行。