平行线的判定 (3)

合集下载

(必考题)初中数学八年级数学上册第七单元《平行线的证明》检测卷(包含答案解析)(3)

(必考题)初中数学八年级数学上册第七单元《平行线的证明》检测卷(包含答案解析)(3)

一、选择题1.甲、乙、丙、丁四个同学在玩推理游戏,要找出谁在数学测评中获奖.甲说:“是乙获奖.”乙说:“是丙获奖.”丙说:“乙说的不是实话.”丁说:“反正我没有获奖.”如果这四个同学中只有一个人说了实话,请问是谁获奖( )A .甲B .乙C .丙D .丁 2.如图,ABC 中,将A ∠沿DE 翻折,若30A ∠=︒,25BDA '∠=︒,则CEA '∠多少度( )A .60°B .75°C .85°D .90° 3.下列命题中,真命题的是( ) A .同旁内角互补,两直线平行B .相等的角是对顶角C .同位角相等D .直角三角形两个锐角互补4.如图,在ABC 中,100ACB ∠=︒,20A ∠=︒,D 是AB 上一点,将ABC 沿CD 折叠,使点B 落在AC 边上的B '处,则ADB '∠等于( )A .25°B .30°C .40°D .55°5.如图,下列能判定//AB CD 的条件有( )个(1)∠1=∠2;(2)∠3=∠4;(3)∠B =∠5;(4)∠B +∠BCD =180°;(5)∠5=∠DA .1B .2C .3D .4 6.如图,在四边形ABCD 中,要得到AB CD ∥,只需要添加一个条件,这个条件可以是( )A .13∠=∠B .24∠∠=C .BD ∠=∠ D .12180B ∠+∠+∠=︒7.如图,要得到AB ∥CD ,只需要添加一个条件,这个条件不可以...是( )A .∠1=∠3B .∠B +∠BCD =180°C .∠2=∠4D .∠D +∠BAD =180°8.如图,能判定AD ∥BC 的条件是( )A .∠1=∠2B .∠2=∠3C .∠1=∠4D .∠3=∠4 9.如图,//AB EF ,C 点在EF 上,EAC ECA ∠=∠,BC 平分DCF ∠,且AC BC ⊥.下列结论:①AC 平分DCE ∠;②//AE CD ;③190B ∠+∠=︒;④BDC 21∠=∠.其中结论正确的个数有( )A .1个B .2个C .3个D .4个10.如图,下列条件中,不能判断AD ∥BC 的是( )A .∠1=∠3B .∠2=∠4C .∠EAD=∠BD .∠D=∠DCF 11.如图,//AB CD ,BE 交CD 于点F ,48B ∠=︒,20E ∠=︒,则D ∠的度数为( ).A .28B .20C .48D .6812.如图,在ABC ∆中,CD 是ACB ∠的平分线,80A ∠=︒,40ABC ∠=︒,那么BDC ∠=( )A .80︒B .90︒C .100︒D .110︒二、填空题13.如图,点P 是三角形三条角平分线的交点,若∠BPC=100︒,则∠BAC=_________.14.如图,将△ABC 沿着DE 对折,点A 落到A ′处,若∠BDA ′+∠CEA ′=70°,则∠A =_____.15.如图,在△ABC 中,AD 是高,AE 是角平分线,若∠B =72°,∠DAE =16°,则∠C =_____度.16.命题“若11a b=,则a b =”,这个命题是_____命题.(填“真”或“假”)17.如图,下列能判定//AB CD 的条件有_______个.①180B BAD ∠+∠=°;②12∠=∠;③34∠=∠;④5BAD ∠=∠.18.如图,已知△ABC 的∠ABC 和∠ACB 的平分线BE ,CF 交于点G ,若∠BGC =115°,则∠A =______.19.如图,C 是线段AB 上一点,∠DAC =∠D ,∠EBC =∠E ,AO 平分∠DAC ,BO 平分∠EBC .若∠DCE =40°,则∠O =______°.20.如图,∆ABC 中,∠A= 82︒ ,∆ABC 的两条角平分线交于点 P ,∠BPD 的度数是_____;三、解答题21.如图,已知点E 在直线DC 上,射线EF 平分AED ∠,过E 点作EB EF ⊥,G 为射线EC 上一点,连接BG ,且90EBG BEG ︒∠+∠=.(1)求证:DEF EBG ∠=∠;(2)若EBG A ∠=∠,求证://AB EF .22.如图所示,在Rt ABC 中,90ACB ∠=︒,AD 平分BAC ∠交BC 于点D ,BP 平分ABC ∠交AD 于点P .(1)求APB ∠的度数.(2)若56ADC ∠=︒,求ABP ∠的度数.23.已知:直线GH 分别与直线AB ,CD 交于点E ,F .EM 平分BEF ∠,FN 平分CFE ∠,并且//EM FN .(1)如图1,求证://AB CD ;(2)如图2,2AEF CFN ∠=∠,在不添加任何辅助线的情况下,请直接写出图2中四个角,使写出的每个角的度数都为135︒.24.如图,//AD BC ,∠1=∠C ,∠B =60°,DE 平分∠ADC 交BC 于点E ,试说明//AB DE .请完善解答过程,并在括号内填写相应的理论依据.解:∵//AD BC ,(已知)∴∠1=∠ =60°.( )∵∠1=∠C ,(已知)∴∠C =∠B =60°.(等量代换)∵//AD BC ,(已知)∴∠C +∠ =180°.( )∴∠ =180°-∠C =180°-60°=120°.(等式的性质)∵DE 平分∠ADC ,(已知)∴∠ADE =12∠ADC =12×120°=60°.( ) ∴∠1=∠ADE .(等量代换)∴//AB DE .( )25.如图,在四边形ABCD 中,E 、F 分别是CD 、AB 延长线上的点,连接EF ,分别交AD 、BC 于点G 、H .若12∠=∠,A C ∠=∠,试判断AB 与CD 的位置关系,并说明理由.补全解答过程.猜想:AB 与CD 的位置关系是 ① .证明:∵12∠=∠(已知),1AGH ∠=∠(②),∴2AGH ∠=∠(③).∴ ④ (同位角相等,两直线平行).∴ADE C ∠=∠(⑤),∵A C ∠=∠(已知),∴ ⑥ (等量代换).∴ ⑦ (⑧).26.如图,在ABC 中,AD 平分BAC ∠,AE BC ⊥.若40BAD ∠=︒,70C ∠=︒,求DAE ∠的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】若甲说的是真话,则乙是假话,丙说的是真话,和已知不符合.故甲说的是假话,不是乙获奖;若乙说的是真话,则丁说的也是真话,和已知不符合.故乙说的是假话,不是丙获奖.显然丙说的是真话,丁说的是假话,则是丁获奖.【详解】解:本题可分三种情况:①如果甲是真命题,则乙是假命题,丙是真命题,丁是真命题;显然与已知不符; ②如果甲是假命题,乙是真命题,则丙是假命题,丁是真命题;显然与已知不符; ③如果甲是假命题,乙是假命题,则丙是真命题,丁是假命题;在这种情况下,只有丙说了实话,而其他人都说了假话,因此这种情况符合题意.在③的条件下,丁说了假话,因此丁才是真正获奖的人.故选D .【点睛】此题主要考查命题的真假推理,解题的关键是用假设的方法,进行分析排除. 2.C解析:C【分析】根据折叠前后对应角相等可得ADE A DE '∠=∠,AED A ED '∠=∠,再运用平角的定义和三角形内角和定理依次求得ADE ∠、AED ∠,再次运用平角的定义即可求得CEA '∠.【详解】解:∵将A ∠沿DE 翻折,∴ADE A DE '∠=∠,AED A ED '∠=∠,∵D 是线段AB 上的点,25BDA '∠=︒,∴180ADE A D B E DA '∠+∠-'∠=︒,即251280ADE ︒=∠-︒,解得102.5ADE ∠=︒,∵30A ∠=︒,180A AED ADE ∠+∠+∠=︒,∴180180102.53047.5AED ADE A ∠=︒-∠-∠=︒-︒-︒=︒,∴18018047.547.585CEA AED A ED ''∠=︒-∠-∠=︒-︒-︒=︒.故选:C .【点睛】本题考查折叠的性质,三角形内角和定理,平角的定义.理解折叠前后对应角相等是解题关键.3.A解析:A【分析】利用平行线的判定、对顶角的定义及互补的定义分别判断后即可确定正确的选项.【详解】解:A 、同旁内角互补,两直线平行,正确,是真命题;B 、对顶角相等,但相等的角不一定是对顶角,故错误,是假命题;C 、只有当两直线平行时,同位角才会相等;两直线不平行时,同位角不会相等,故错误,是假命题;D 、直角三角形两锐角互余,不会互补,故错误,是假命题.故选:A .【点睛】本题考查了命题与定理的知识,解题的关键是了解平行线的判定、对顶角的定义及互补的定义,难度不大.4.C解析:C【分析】先求出60B ∠=︒,由折叠得60CB D B '∠=∠=︒,得出ADB '∠=40CB D A '∠-∠=︒.【详解】∵100ACB ∠=︒,20A ∠=︒,∴60B ∠=︒,由折叠得60CB D B '∠=∠=︒,∴ADB '∠=40CB D A '∠-∠=︒,故选:C .【点睛】此题考查三角形内角和定理,折叠的性质,三角形的外角性质,熟练掌握折叠的性质是解题的关键.5.C解析:C【分析】根据平行线的判定定理分别进行判断即可得出结论.【详解】解:当12∠=∠时,//AD BC ,不符合题意;当34∠=∠时,//AB CD , 符合题意;当5B ∠=∠时,//AB CD ,符合题意;当180B BCD ∠+∠=︒时,//AB CD ;符合题意;当5D ∠=∠时,//AD BC ;不符合题意;综上所述,能判定//AB CD 的条件有(2)∠3=∠4;(3)∠B =∠5;(4)∠B +∠BCD =180°;共3个.故选:C .【点睛】本题考查了平行线的判定:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.6.B解析:B【解析】A不可以;∵∠1=∠3,∴AD∥BC(内错角相等,两直线平行),不能得出AB∥CD,∴A不可以;B可以;∵∠2=∠4,∴AB∥CD(内错角相等,两直线平行);∴B可以;C、D不可以;∵∠B=∠D,不能得出AB∥CD;∵∠1+∠2+∠B=180°,∴AD∥BC(同旁内角互补,两直线平行),不能得出AB∥BC;∴C、D不可以;故选B.7.A解析:A【分析】根据B、D中条件结合“同旁内角互补,两直线平行”可以得出AB∥CD,根据C中条件结合“内错角相等,两直线平行”可得出AB∥CD,而根据A中条件结合“内错角相等,两直线平行”可得出AD∥BC.由此即可得出结论.【详解】解:A.∵∠1=∠3,∴AD∥BC(内错角相等,两直线平行);B.∵∠B+∠BCD=180°,∴AB∥CD(同旁内角互补,两直线平行);C.∠2=∠4,∴AB∥CD(内错角相等,两直线平行);D.∠D+∠BAD=180°,∴AB∥CD(同旁内角互补,两直线平行).故选A.【点睛】本题考查了平行线的判定,解题的关键是根据四个选项给定的条件结合平行线的性质找出平行的直线.本题属于基础题,难度不大,解决该题型题目时,根据相等或互补的角找出平行的两直线是关键.8.B解析:B【分析】根据平行线的判定方法进行分析即可.【详解】A、∠1=∠2不能判定AD∥BC,故此选项错误;B、∠2=∠3能判定AD∥BC,故此选项正确;C 、∠1=∠4可判定AB ∥CD ,不能判定AD ∥BC ,故此选项错误;D 、∠3=∠4不能判定AD ∥BC ,故此选项错误;故选:B .【点睛】此题主要考查了平行线的判定,关键是掌握内错角相等,两直线平行.9.D解析:D【分析】根据平行线的性质及角度的计算,等腰三角形的性质即可进行一一求解判断.【详解】根据//AB EF , BC 平分DCF ∠,且AC BC ⊥可得∠1+∠BCD=90°,∠BCD=12∠DCF , 又∠DCF+∠ECD=180°,∴∠1=12∠ECD ,故AC 平分DCE ∠,①正确; ∵AC 平分DCE ∠,∴∠1=∠ECA,∵EAC ECA ∠=∠∴EAC ∠=∠1,∴//AE CD ,②正确;∵EF ∥AB ,∴∠FCB=∠B ,∴∠B=∠DCB ,∵∠1+∠DCB=90°,∴190B ∠+∠=︒,③正确;∵EF ∥AB ,∴∠ECA=∠CAD ,∵∠1=∠ECA∴∠1=∠CAD∵∠CDB 是△ACD 的一个外角,∴∠CAD=∠1+∠CAD=2∠1,④正确;故选D【点睛】此题主要考查平行线的角度计算,解题的关键是根据图像的特点进行求解.10.B解析:B【分析】根据各选项中各角的关系及利用平行线的判定定理,分别分析判断AD 、BC 是否平行即可.【详解】解:A 、∵∠1=∠3,∴AD ∥BC (内错角相等,两直线平行);B 、∵∠2=∠4,∴AB ∥CD (内错角相等,两直线平行),但不能判定AD ∥BC ; C 、∵∠EAD=∠B ,∴AD ∥BC (同位角相等,两直线平行);D 、∵∠D=∠DCF ,∴AD ∥BC (内错角相等,两直线平行);故选:B .【点睛】本题考查了平行线的判定,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.11.A解析:A【分析】由//AB CD 和48B ∠=︒,可得到CFB ∠;再由对顶角相等和三角形内角和性质,从而完成求解.【详解】∵//AB CD∴180********CFB B ∠=-∠=-=∴132EFD CFB ∠=∠=∴1801801322028D EFD E ∠=-∠-∠=--=故选:A .【点睛】本题考察了平行线和三角形内角和的知识;求解的关键是熟练掌握三角形内角和、平行线的性质,从而完成求解.12.D解析:D【分析】根据三角形的内角和得出∠ACB 的度数,再根据角平分线的性质求出∠DCA 的度数,再根据三角形内角与外角的关系求出∠BDC 的度数.【详解】解:∵∠A+∠B+∠ACB=180°(三角形内角和定理),∴∠ACB=180°-∠A-∠B=180°-80°-40°=60°,∵CD 是∠ACB 的平分线,∴∠ACD =12∠ACB=30°(角平分线的性质), ∴∠BDC=∠ACD+∠A=30°+80°=110°(三角形外角的性质).故选:D .【点睛】本题主要考查了三角形的内角和定理,角平分线的定义及三角形外角的知识,三角形的一个外角等于与它不相邻的两个内角的和,难度适中.二、填空题13.【分析】先根据三角形的内角和求出∠PBC+∠PCB=故可得到∠ABC+∠ACB=即可得出答案【详解】在△BPC 中∠BPC=∴∠PBC+∠PCB=∵P 是三角形三条角平分线的交点∴∠ABC=2∠PBC ∠解析:20︒【分析】先根据三角形的内角和求出∠PBC+∠PCB=80︒,故可得到∠ABC+∠ACB=160︒,即可得出答案.【详解】在△BPC 中,∠BPC=100︒,∴∠PBC+∠PCB=80︒,∵P 是三角形三条角平分线的交点,∴∠ABC=2∠PBC ,∠ACB=2∠PCB ,∴∠ABC+∠ACB=2∠PBC+2∠PCB=160︒,∴∠BAC=180()20ABC ACB ︒-∠+∠=︒,故答案为:20︒.【点睛】此题考查三角形的内角和定理,角平分线的有关计算,熟练应用定理解决问题是解题的关键.14.35°【分析】先根据折叠性质可求得∠A′DE =∠ADE ∠A′ED =∠AED 再和平角性质可求得根据平角定义和已知可求得∠ADE+∠AED =145°然后利用三角形的内角和定理即可求得∠A 的度数【详解】解解析:35°【分析】先根据折叠性质可求得∠A′DE =∠ADE ,∠A′ED =∠AED ,再和平角性质可求得根据平角定义和已知可求得∠ADE+∠AED =145°,然后利用三角形的内角和定理即可求得∠A 的度数.【详解】解:∵将△ABC 沿着DE 对折,A 落到A′,∴∠A′DE =∠ADE ,∠A′ED =∠AED ,∴∠BDA′+2∠ADE =180°,∠A′EC+2∠AED =180°,∴∠BDA ′+2∠ADE+∠A′EC+2∠AED =360°,∵∠BDA′+∠CEA′=70°,∴∠ADE+∠AED =145°,∴∠A =180°-(∠ADE+∠AED )=180°-145°=35°,故答案为:35°.【点睛】本题考查了折叠的性质、平角定义和三角形的内角和定理,熟练掌握折叠的性质是解答的关键.15.40【分析】根据三角形的内角和得出再利用角平分线得出利用三角形内角和解答即可【详解】是高是角平分线故答案为40【点睛】本题考查了三角形的内角和定理熟悉直角三角形两锐角互余和三角形的内角和等于是解题的 解析:40【分析】根据三角形的内角和得出18BAD ∠=,再利用角平分线得出68BAC ∠=,利用三角形内角和解答即可.【详解】 AD 是高,72B ∠=,18BAD ∴∠=,181634BAE ∴∠=+=, AE 是角平分线,68BAC ∴∠=,180726840C ∴∠=--=.故答案为40.【点睛】本题考查了三角形的内角和定理,熟悉直角三角形两锐角互余和三角形的内角和等于180是解题的关键.16.真【分析】根据题意判断正误即可确定是真假命题【详解】解:命题若则a=b 这个命题是真命题故答案为:真【点睛】本题考查了命题与定理的知识解题的关键是当判断一个命题为假命题时可以举出反例难度不大解析:真【分析】根据题意判断正误即可确定是真、假命题.【详解】解:命题“若11a b=,则a=b”,这个命题是真命题, 故答案为:真.【点睛】 本题考查了命题与定理的知识,解题的关键是当判断一个命题为假命题时可以举出反例,难度不大.17.1【分析】利用判定平行的条件分别判断各个条件是否满足即可【详解】①仅能判断BC ∥AD 错误;②仅能判断BC ∥AD 错误;③可通过内错角相等判断AB ∥CD 正确;④无法判断平行错误故答案为:1个【点睛】本题解析:1【分析】利用判定平行的条件,分别判断各个条件是否满足即可.【详解】①仅能判断BC ∥AD ,错误;②仅能判断BC ∥AD ,错误;③可通过内错角相等,判断AB ∥CD ,正确;④无法判断平行,错误故答案为:1个.【点睛】本题考查平行的判定,需要注意题干中告知的条件到底能判定哪一组线段平行.18.50°【分析】根据三角形内角和定理求出∠GBC+∠GCB根据角平分线的定义求出∠ABC+∠ACB根据三角形内角和定理计算即可【详解】解:∵∠BGC=115°∴∠GBC+∠GCB=180°﹣115°=解析:50°【分析】根据三角形内角和定理求出∠GBC+∠GCB,根据角平分线的定义求出∠ABC+∠ACB,根据三角形内角和定理计算即可.【详解】解:∵∠BGC=115°,∴∠GBC+∠GCB=180°﹣115°=65°,∵BE,CF是△ABC的∠ABC和∠ACB的平分线,∴∠GBC=12∠ABC,∠GCB=12∠ACB,∴∠ABC+∠ACB=130°,∴∠A=180°﹣130°=50°,故答案为50°.19.125【分析】利用平角的定义可得由角平分线的性质易得由三角形的内角和定理可得结果【详解】解:平分平分故答案为:125【点睛】本题主要考查了角平分线的性质和三角形的内角和定理熟练运用定理是解答此题的关键解析:125【分析】利用平角的定义可得180********ACD BCE DCE,由角平分线的性质易得11()1105522OAB OBA DAC CBE,由三角形的内角和定理可得结果.【详解】解:40DCE,180********ACD BCE DCE,DAC D,EBC E∠=∠,221802140220DAC CBE,110DAC CBE,AO平分DAC∠,BO平分EBC∠,∴11()1105522OAB OBA DAC CBE,180()18055125O OAB OBA,故答案为:125.【点睛】本题主要考查了角平分线的性质和三角形的内角和定理,熟练运用定理是解答此题的关键.20.49°【分析】由三角形内角和定理得出∠ABC+∠ACB=180°-∠A=98°由角平分线定义得出∠PBC+∠PCB=(∠ABC+ACB)=49°再由三角形的外角性质即可得出结果【详解】∵△ABC 中∠解析:49°【分析】由三角形内角和定理得出∠ABC+∠ACB=180°-∠A=98°,由角平分线定义得出∠PBC+∠PCB=12(∠ABC+ACB)=49°,再由三角形的外角性质即可得出结果. 【详解】∵△ABC 中,∠A=82°,∴∠ABC+∠ACB=180°-∠A=98°,∵△ABC 的两条角平分线交于点P ,∴∠PBC=12∠ABC ,∠PCB=12∠ACB , ∴∠PBC+∠PCB=12(∠ABC+ACB)=1982⨯︒=49°, ∴∠BPD=∠PBC+∠PCB=49°,故答案为:49°.【点睛】 本题考查了三角形内角和定理、角平分线定义以及三角形的外角性质;熟练掌握三角形内角和定理是解题的关键.三、解答题21.(1)见解析;(2)见解析【分析】(1)根据题意得到90FEB ∠=︒,再根据等量代换的方法求解即可;(2)通过已知条件证明A AEF ∠=∠,即可得到结果;【详解】(1)∵EB EF ⊥,∴90FEB ∠=︒,∴1809090DEF BEG ∠+∠=︒-︒=︒.又∵90EBG BEG ︒∠+∠=,∴DEF EBG ∠=∠.(2)∵EF 平分AED ∠,∴AEF DEF ∠=∠.∵EBG A ∠=∠,DEF EBG ∠=∠,∴A DEF ∠=∠.又∵DEF AEF ∠=∠,∴A AEF ∠=∠,∴//AB EF .【点睛】本题主要考查了平行线的判定,结合角平分线的性质和垂直的性质证明是解题的关键. 22.(1)135︒;(2)11︒【分析】(1)根据角平分线性质可得∠PAB +∠PBA =45°,即可解题;(2)由(1)可知135APB ∠=︒,可得45BPD ∠=︒,然后根据三角形外角性质得出PBD BPD ADC ∠+∠=∠,即可求解;【详解】解:(1)∵90ACB ∠=︒且180ACB ABC CAB ∠+∠+∠=︒,∴90ABC CAB ∠+∠=︒,∵AD 、BP 分别平分CAB ∠、ABC ∠, ∴()1452PBA PAB ABC CAB ∠+∠=∠+∠=︒ ∵180PBA PAB APB ∠+∠+∠=︒∴135APB ∠=︒(2)∵180BPD APB ∠+∠=︒,135APB ∠=︒∴45BPD ∠=︒∵56ADC ∠=︒,且PBD BPD ADC ∠+∠=∠∴564511PBD ∠=︒-︒=︒∵BP 分别平分ABC ∠,∴PBD ABP ∠=∠即11ABP ∠=︒【点睛】本题考查了三角形内角和定理及推论,角平分线的定义及三角形外角的性质,难度适中. 23.(1)见解析;(2)AEM ∠,GEM ∠,DFN ∠,HFN ∠【分析】(1)根据平行线的性质和判定可以解答;(2)由已知及(1)的结论可知∠CFN=45°,然后结合图形根据角度的加减运算可以得到解答.【详解】(1)证明:∵//EM FN ,∴EFN FEM ∠=∠.∵EM 平分BEF ∠,FN 平分CFE ∠,∴2CFE EFN ∠=∠,2BEF FEM ∠=∠. ∴CFE BEF ∠=∠.∴//AB CD .(2)由(1)知AB //CD ,∴∠AEF+∠CFE=180°,∵∠AEF=2∠CFN=∠CFE ,∴∠AEF=∠CFE=90°,∴∠CFN=∠EFN=∠FEM=∠BEM=45°,∠BEG=∠CFH=∠DFE=90°,∴∠AEM=∠GEM=∠HFN=∠DFN=90°+45°=135°,∴度数为135°的角有:AEM ∠、 GEM ∠、 DFN ∠、 HFN ∠.【点睛】本题考查平行线的判定和性质及角平分线的综合运用,熟练掌握平行线的判定和性质定理及角平分线的意义是解题关键.24.B ;两直线平行,同位角相等;ADC ;两直线平行,同旁内角互补;ADC ;角平分线性质;内错角相等,两直线平行.【分析】利用平行线的性质和判定,角平分线的性质去进行填空.【详解】解∵//AD BC ,(已知)∴∠1=∠B=60°.(两直线平行,同位角相等)∵∠1=∠C ,(已知)∴∠C =∠B =60°.(等量代换)∵//AD BC ,(已知)∴∠C +∠ADC=180°.(两直线平行,同旁内角互补)∴∠ADC=180°-∠C =180°-60°=120°.(等式的性质)∵DE 平分∠ADC ,(已知)∴∠ADE =12∠ADC =12×120°=60°.(角平分线性质) ∴∠1=∠ADE .(等量代换)∴//AB DE .(内错角相等,两直线平行)【点睛】本题考查平行线的性质和判定,解题的关键是掌握平行线的性质和判定定理. 25.①//AB CD ;②对顶角相等;③等量代换;④//AD BC ;⑤两直线平行,同位角相等;⑥ADE ∠A =∠;⑦//AB CD ;⑧内错角相等,两直线平行【分析】先根据同位角相等,两直线平行,判定AD ∥BC ,进而得到∠ADE=∠C ,再根据内错角相等,两直线平行,即可得到AB ∥CD .【详解】猜想:AB 与CD 的位置关系是AB ∥CD .证明:∵∠1=∠2(已知)∠1=∠AGH (对顶角相等)∴∠2=∠AGH (等量代换)∴AD ∥BC (同位角相等,两直线平行)∴∠ADE=∠C (两直线平行,同位角相等)∵∠A=∠C (已知)∴∠ADE=∠A (等量代换)∴AB ∥CD (内错角相等,两直线平行)故答案为:①//AB CD ;②对顶角相等;③等量代换;④//AD BC ;⑤两直线平行,同位角相等;⑥ADE ∠A =∠;⑦//AB CD ;⑧内错角相等,两直线平行.【点睛】本题主要考查了平行线的判定与性质,解题时注意:平行线的判定是由角的数量关系判断两直线的位置关系;平行线的性质是由平行关系来寻找角的数量关系.26.20°【分析】由题意,先求出30B ∠=︒,然后得到60=︒∠BAE ,即可求出答案.【详解】解:如图:AD 平分BAC ∠224080BAC BAD ∴∠=∠=⨯︒=︒70C ∠=︒30B ∴∠=︒AE BC ⊥于点E90AED ∴∠=︒903060BAE ∴∠=︒-︒=︒604020DAE BAE BAD ∴∠=∠-∠=︒-︒=︒.【点睛】本题考查了角平分线的定义,三角形的内角和定理,以及余角的定义,解题的关键是正确的求出角的度数进行计算.。

七年级下册数学各章知识点总结

七年级下册数学各章知识点总结

北师大版《数学》(七年级下册)知识点总结第一章整式的运算单项式 整 式 多项式同底数幂的乘法 幂的乘方 积的乘方幂运算 同底数幂的除法 零指数幂 负指数幂 整式的加减 单项式与单项式相乘 单项式与多项式相乘 整式的乘法 多项式与多项式相乘 整式运算 平方差公式 完全平方公式 单项式除以单项式 整式的除法多项式除以单项式一、单项式、单项式的次数:只含有数字与字母的积的代数式叫做单项式。

单独的一个数或一个字母也是单项式。

一个单项式中,所有字母的指数的和叫做这个单项式的次数。

二、多项式1、多项式、多项式的次数、项 几个单项式的和叫做多项式。

其中每个单项式叫做这个多项式的项。

多项式中不含字母的项叫做常数项。

多项式中次数最高的项的次数,叫做这个多项式的次数。

三、整式:单项式和多项式统称为整式。

四、整式的加减法:整式加减法的一般步骤:(1)去括号;(2)合并同类项。

五、幂的运算性质: 1、同底数幂的乘法:a m﹒a n =am+n(m,n 都是正整数);2、幂的乘方:(am)n=amn(m,n 都是正整数); 3、积的乘方:(ab )n=a n bn(n 都是正整数);4、同底数幂的除法:am÷a n=am-n(m,n 都是正整数,a ≠0) ;整 式 的 运算六、零指数幂和负整数指数幂: 1、零指数幂:a=1(a ≠0);2、负整数指数幂:p 是正整数。

七、整式的乘除法:1、单项式乘以单项式:法则:单项式与单项式相乘,把它们的系数、p 是正整数相同字母的幂分别相乘,其余的字母连同它的指数不变,作为积的因式。

2、单项式乘以多项式:法则:单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。

3、多项式乘以多项式: 多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。

4、单项式除以单项式:单项式相除,把系数、同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式。

第二十四章第3-5节平行线的判定定理;平行线的性质定理;三角形内角和定理

第二十四章第3-5节平行线的判定定理;平行线的性质定理;三角形内角和定理
(2)推理的过程要步步有据.
(3)在推理的过程中,已经推出的结论可以作为后面继续推证的依据.
【模拟试题】(答题时间:50分钟)
一.选择题
1.在同一平面内,下列说法:①过两点有且只有一条直线;②两条不同的直线,有且只有一个公共点;③过一点有且只有一条直线与已知直线垂直;④过一点有且只有一条直线与已知直线平行.其中正确的有()
又∵EF∥AB(已知),
∴∠EFC=∠B(两直线平行,同位角相等),
∴∠ADE=∠EFC(等量代换).
评析:本题关键是利用平行线的性质,来证明角度相等,要注意角的位置.
例4.如图所示,直线MN分别和直线AB、CD、EF相交于G、H、P,∠1=∠2,∠2+∠3=180°,求证:AB∥EF.
分析:要证AB∥EF,可先证AB∥CD和EF∥CD.根据平行于同一条直线的两条直线平行可得AB∥EF.
(1)∵CE∥AB(已知),
∴∠1=∠B()
(2)∵CE∥AB(已知),
∴∠2=∠A()
(3)∵∠1=∠B,∠2=∠A(已证),
∴∠1+∠2=∠B+∠A()
即∠ACD=∠B+∠A()
(4)∵BCD是一直线(已知),
∴∠1+∠2+∠ACB=180°(),
∴∠A+∠B+∠ACB=180°().
*2.如图所示,已知AD⊥BC,EF⊥BC,∠1=∠2,求证:DG∥BA.
5.提示:因为∠BAC是△ACD的一个外角,所以∠BAC>∠1.因为∠1=∠2,所以∠BAC>∠2.因为∠2是△BCD的一个外角,所以∠2>∠B.所以∠BAC>∠B.
3.提示:因为AB∥CD,所以∠EMB=∠END,即∠1+∠3=∠2+∠4.因为MG∥NH,所以∠3=∠4.所以∠1=∠2.
4.提示:过点E作EF∥AB,所以∠B+∠BEF=180°,因为AB∥CD,所以EF∥CD(平行于同一条直线的两条直线平行),所以∠D+∠DEF=180°,所以∠B+∠BEF+∠DEF+∠D=360°,即∠B+∠BED+∠D=360°.

浙教版七年级数学下册3平行线的判定同步练习

浙教版七年级数学下册3平行线的判定同步练习

浙教版七年级下 1.3平行线的判定同步练习一.选择题1.(2021秋•文山市期末)下列图形中,由∠1=∠2能得到AB∥CD的是()A.B. C.D.2.(2020秋•盐田区期末)如图,点E在射线AB上,要AD∥BC,只需()A.∠A=∠CBE B.∠A=∠C C.∠C=∠CBE D.∠A+∠D=180°3.(2021秋•于洪区期末)如图,直线a,b被直线c所截,下列条件不能判定直线a与b平行的是()A.∠1=∠3 B.∠2+∠3=180°C.∠1=∠4 D.∠1+∠4=180°4.(2021秋•肇源县期末)如图,下列能判定AB∥CD的条件有()个.(1)∠B+∠BCD=180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B=∠5.A.1 B.2 C.3 D.45.(2020春•岳西县期末)有下列说法:①对顶角相等;②内错角相等;③平面内过一点有且只有一条直线垂直于已知直线;④平面内过一点有且只有一条直线平行于已知直线,其中正确的结论有()个.A.1 B.2 C.3 D.46.(2021春•柳南区校级期末)如图,下面哪个条件不能判断AC∥EF的是()A.∠1=∠2 B.∠4=∠C C.∠1+∠3=180°D.∠3+∠C=180°7.(2021春•孟村县期末)木工师傅用图中的角尺画平行线,他依据的数学道理是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.同旁内角互补,两直线平行D.以上结论都不正确8.(2021•香坊区校级开学)如图,下列条件中能判定AB∥CD的是()A.∠AEC=∠BFD B.∠CEF=∠BFE C.∠AEF+∠CFE=180°D.∠C=∠BFD 9.(2021春•高州市月考)如图所示,已知直线c与a,b分别交于点A、B且∠1=120°,当∠2=()时,直线a∥b.A.60°B.120°C.30°D.150°10.(2021春•瑶海区期末)下列说法中,错误的是()A.平面内,过一点有且只有一条直线垂直于已知直线B.在连接直线外一点与直线上各点的线段中,垂线最短C.经过直线外一点,有且只有一条直线平行于这条直线D.同位角相等,两直线平行二.填空题11.(2021•桂林)如图,直线a,b被直线c所截,当∠1 ∠2时,a∥b.(用“>”,“<”或“=”填空)12.(2021春•思明区校级月考)结合图(不能自己标角),用符号语言表达“同旁内角互补,两直线平行”的推理形式:∵,∴.13.(2021春•兴宾区期末)如图,将两个含30°角的直角三角板的最长边靠在一起滑动,可知直角边AB∥CD,依据是.14.(2021秋•杜尔伯特县期末)如图,不添加辅助线,请写出一个能判定AD∥BC的条件.15.(2021春•呼和浩特期末)如图,下列条件中:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5.能判定AB∥CD的条件为.16.(2020春•夏邑县期末)将一块三角板ABC(∠BAC=90°,∠ABC=30°)按如图方式放置,使A,B两点分别落在直线m,n上.对于给出的四个条件:①∠1=25.5°,∠2=55°30';②∠2=2∠1;③∠1+∠2=90°;④∠ACB=∠1+∠2;⑤∠ABC=∠2﹣∠1.能判断直线m∥n的有.(填序号)三.解答题17.(2021秋•杜尔伯特县期末)完成下面的证明:已知:如图,∠1=30°,∠B=60°,AB⊥AC.求证:AD∥BC.证明:∵AB⊥AC(已知),∴∠=90°(),∵∠1=30°,∠B=60°(已知),∴∠1+∠BAC+∠B=(),即∠+∠B=180°,∴AD∥BC().18.(2021春•普陀区校级月考)如图,点G在CD上,已知∠BAG+∠AGD=180°,EA平分∠BAG,FG 平分∠AGC,请说明AE∥GF的理由.解:因为∠BAG+∠AGD=180°(),∠AGC+∠AGD=180°(),所以∠BAG=∠AGC().因为EA平分∠BAG,所以∠1=().因为FG平分∠AGC,所以∠2=,得∠1=∠2(),所以AE∥GF().19.(2021春•平谷区校级期中)已知:如图,∠1=∠2,∠A=∠2.求证:DF∥AC.20.(2021春•东台市月考)如图,∠CDA=∠CBA,DE平分∠CDA,BF平分∠CBA,且∠1=∠2,试说明DE∥FB.21.(2021春•甘州区校级月考)已知:∠A=∠C=120°,∠AEF=∠CEF=60°,求证:AB∥CD.答案与解析一.选择题1.(2021秋•文山市期末)下列图形中,由∠1=∠2能得到AB∥CD的是()A.B. C.D.【解析】解:A、∠1=∠2,AB∥CD,符合题意;B、∠1+∠2=180°,AB∥CD,不符合题意;C、∠1=∠2,得不出AB∥CD,不符合题意;D、∠1=∠2,得不出AB∥CD,不符合题意;故选:A.2.(2020秋•盐田区期末)如图,点E在射线AB上,要AD∥BC,只需()A.∠A=∠CBE B.∠A=∠C C.∠C=∠CBE D.∠A+∠D=180°【解析】解:要AD∥BC,只需∠A=∠CBE,故选:A.3.(2021秋•于洪区期末)如图,直线a,b被直线c所截,下列条件不能判定直线a与b平行的是()A.∠1=∠3 B.∠2+∠3=180°C.∠1=∠4 D.∠1+∠4=180°【解析】解:A、当∠1=∠3时,有a∥b,故A不符合题意;B、当∠2+∠3=180°时,有a∥b,故B不符合题意;C、当∠1=∠4时,∵∠3=∠4,∴∠1=∠3,∴a∥b,故C不符合题意;D、当∠1+∠4=180°时,不能判定a∥b,故D符合题意.4.(2021秋•肇源县期末)如图,下列能判定AB∥CD的条件有()个.(1)∠B+∠BCD=180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B=∠5.A.1 B.2 C.3 D.4【解析】解:(1)利用同旁内角互补,判定两直线平行,故(1)正确;(2)利用内错角相等,判定两直线平行,∵∠1=∠2,∴AD∥BC,而不能判定AB∥CD,故(2)错误;(3)利用内错角相等,判定两直线平行,故(3)正确;(4)利用同位角相等,判定两直线平行,故(4)正确.故选:C.5.(2020春•岳西县期末)有下列说法:①对顶角相等;②内错角相等;③平面内过一点有且只有一条直线垂直于已知直线;④平面内过一点有且只有一条直线平行于已知直线,其中正确的结论有()个.A.1 B.2 C.3 D.4【解析】解:①对顶角相等是正确的;②内错角相等不一定相等,原来的说法错误;③平面内过一点有且只有一条直线垂直于已知直线是正确的;④平面内过直线外一点有且只有一条直线平行于已知直线,原来的说法错误.故选:B.6.(2021春•柳南区校级期末)如图,下面哪个条件不能判断AC∥EF的是()A.∠1=∠2 B.∠4=∠C C.∠1+∠3=180°D.∠3+∠C=180°【解析】解:当∠1=∠2时,AC∥EF,故选项A不符合题意;当∠4=∠C时,AC∥EF,故选项B不符合题意;当∠1+∠3=180°时,BC∥DE,不能判断AC∥EF,故选项C符合题意;当∠3+∠C=180°时,AC∥EF,故选项D不符合题意;7.(2021春•孟村县期末)木工师傅用图中的角尺画平行线,他依据的数学道理是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.同旁内角互补,两直线平行D.以上结论都不正确【解析】解:木工师傅用图中的角尺画平行线,他依据的数学道理是同位角相等,两直线平行, 故选:A.8.(2021•香坊区校级开学)如图,下列条件中能判定AB∥CD的是()A.∠AEC=∠BFD B.∠CEF=∠BFE C.∠AEF+∠CFE=180°D.∠C=∠BFD 【解析】解:A.由∠AEC=∠BFD,不能判定AB∥CD,故本选项不符合题意;B.由∠CEF=∠BFE,可判定CE∥BF,不能判定AB∥CD,故本选项不符合题意;C.由∠AEF+∠CFE=180°,根据“同旁内角互补,两直线平行”能判定AB∥CD,故本选项符合题意;D.由∠C=∠BFD,可判定CE∥BF,不能判定AB∥CD,故本选项不符合题意;故选:C.9.(2021春•高州市月考)如图所示,已知直线c与a,b分别交于点A、B且∠1=120°,当∠2=()时,直线a∥b.A.60°B.120°C.30°D.150°【解析】解:∵∠1=120°,∠1与∠3是对顶角,∴∠1=∠3=120°,∵∠2=∠3=120°,故选:B.10.(2021春•瑶海区期末)下列说法中,错误的是()A.平面内,过一点有且只有一条直线垂直于已知直线B.在连接直线外一点与直线上各点的线段中,垂线最短C.经过直线外一点,有且只有一条直线平行于这条直线D.同位角相等,两直线平行【解析】解:A.在同一平面内,过一点有且只有一条直线垂直于已知直线,该选项说法正确,故该选项不符合题意;B.在连接直线外一点与直线上各点的线段中,垂线段最短,该选项说法错误,故该选项符合题意;C.经过直线外一点,有且只有一条直线平行于这条直线,该选项说法正确,故该选项不符合题意;D.同位角相等,两直线平行,该选项说法正确,故该选项不符合题意;故选:B.二.填空题11.(2021•桂林)如图,直线a,b被直线c所截,当∠1 =∠2时,a∥b.(用“>”,“<”或“=”填空)【解析】解:要使a∥b,只需∠1=∠2.即当∠1=∠2时,a∥b(同位角相等,两直线平行).故答案为=.12.(2021春•思明区校级月考)结合图(不能自己标角),用符号语言表达“同旁内角互补,两直线平行”的推理形式:∵∠2+∠4=180°,∴a∥b.【解析】解:∵∠2+∠4=180°,∴a∥b(同旁内角互补,两直线平行).故答案为:∠2+∠4=180°;a∥b.13.(2021春•兴宾区期末)如图,将两个含30°角的直角三角板的最长边靠在一起滑动,可知直角边AB∥CD,依据是内错角相等,两直线平行.【解析】解:如图所示:∵∠1=∠2=30°,∴AB∥CD(内错角相等,两直线平行),故答案为:内错角相等,两直线平行.14.(2021秋•杜尔伯特县期末)如图,不添加辅助线,请写出一个能判定AD∥BC的条件∠EAD=∠B或∠DAC=∠C或∠DAB+∠B=180°.【解析】解:∵AD和BC被BE所截,∴当∠EAD=∠B时,AD∥BC,或当∠DAC=∠C时,AD∥BC,或当∠DAB+∠B=180°时,AD∥BC,故答案为:∠EAD=∠B或∠DAC=∠C或∠DAB+∠B=180°.15.(2021春•呼和浩特期末)如图,下列条件中:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5.能判定AB∥CD的条件为①③④.【解析】解:①∠B+∠BCD=180°,同旁内角互补,两直线平行,则能判定AB∥CD;②∠1=∠2,但∠1,∠2不是截AB、CD所得的内错角,所不能判定AB∥CD;③∠3=∠4,内错角相等,两直线平行,则能判定AB∥CD;④∠B=∠5,同位角相等,两直线平行,则能判定AB∥CD.故能判定AB∥CD的条件为①③④.故答案为:①③④.16.(2020春•夏邑县期末)将一块三角板ABC(∠BAC=90°,∠ABC=30°)按如图方式放置,使A,B两点分别落在直线m,n上.对于给出的四个条件:①∠1=25.5°,∠2=55°30';②∠2=2∠1;③∠1+∠2=90°;④∠ACB=∠1+∠2;⑤∠ABC=∠2﹣∠1.能判断直线m∥n的有①⑤.(填序号)【解析】解:①∵∠1=25.5°,∠ABC=30°,∴∠2=∠1+∠ABC=55.5°=55°30',所以,m∥n;②没有指明∠1的度数,当∠1≠30°,∠2≠∠1+30°,不能判断直线m∥n,故∠2=2∠1,不能判断直线m∥n;③∠1+∠2=90°,不能判断直线m∥n;④∠ACB=∠1+∠2,不能判断直线m∥n;⑤∠ABC=∠2﹣∠1,判断直线m∥n;故答案为:①⑤三.解答题17.(2021秋•杜尔伯特县期末)完成下面的证明:已知:如图,∠1=30°,∠B=60°,AB⊥AC.求证:AD∥BC.证明:∵AB⊥AC(已知),∴∠BAC=90°(垂直的定义),∵∠1=30°,∠B=60°(已知),∴∠1+∠BAC+∠B=180°(等量关系),即∠BAD+∠B=180°,∴AD∥BC(同旁内角互补,两直线平行).【解析】解:证明:∵AB⊥AC(已知),∴∠BAC=90°(垂直的定义),∵∠1=30°,∠B=60°(已知),∴∠1+∠BAC+∠B=180°(等量关系),即∠BAD+∠B=180°,∴AD∥BC(同旁内角互补,两直线平行),故答案为:BAC;垂直的定义;180°;等量关系;BAD;同旁内角互补,两直线平行.18.(2021春•普陀区校级月考)如图,点G在CD上,已知∠BAG+∠AGD=180°,EA平分∠BAG,FG 平分∠AGC,请说明AE∥GF的理由.解:因为∠BAG+∠AGD=180°(已知),∠AGC+∠AGD=180°(邻补角的定义),所以∠BAG=∠AGC(同角的补角相等).因为EA平分∠BAG,所以∠1=∠BAG(角平分线的定义).因为FG平分∠AGC,所以∠2=∠AGC,得∠1=∠2(等量代换),所以AE∥GF(内错角相等,两直线平行).【解析】解:因为∠BAG+∠AGD=180°(已知),∠AGC+∠AGD=180°(邻补角的定义),所以∠BAG=∠AGC(同角的补角相等),因为EA平分∠BAG,所以∠1=∠BAG(角平分线的定义),因为FG平分∠AGC,所以∠2=∠AGC,得∠1=∠2(等量代换),所以AE∥GF(内错角相等,两直线平行).故答案为:已知;邻补角的定义;同角的补角相等;∠BAG;角平分线的定义;∠AGC;等量代换;内错角相等,两直线平行.19.(2021春•平谷区校级期中)已知:如图,∠1=∠2,∠A=∠2.求证:DF∥AC.【解析】证明:∵∠1=∠2,∠A=∠2,∴∠1=∠A,∴DF∥AC.20.(2021春•东台市月考)如图,∠CDA=∠CBA,DE平分∠CDA,BF平分∠CBA,且∠1=∠2,试说明DE∥FB.【解析】解:DE∥BF,理由是:∵∠CDA=∠CBA,DE平分∠CDA,BF平分∠CBA,∴∠1=∠ABF,∵∠1=∠2,∴∠2=∠ABF,∴DE∥BF.21.(2021春•甘州区校级月考)已知:∠A=∠C=120°,∠AEF=∠CEF=60°,求证:AB∥CD.【解析】证明:∵∠A=∠C=120°,∠AEF=∠CEF=60°,∴∠A+∠AEF=180°,∠C+∠CEF=180°,∴AB∥EF,CD∥EF,∴AB∥CD.。

第3讲 平行线的性质

第3讲  平行线的性质

全方位教学辅导教案学科:数学任课教师:授课时间: 2020 年月日(星期)【知识讲解】一、平行线的性质1、性质1:两条平行线被第三条直线所截,同位角相等。

2、性质2:两条平行线被第三条直线所截,内错角相等。

3、性质3:两条平行线被第三条直线所截,同旁内角互补。

提示:(1)只有当两条直线平行时,才会有同位角相等、内错角相等、同旁内角互补。

(2)平行线的性质和判定是直线的位置关系和角的数量关系之间的相互转换,不同的是性质以平行为条件,即由平行得到角相等或互补;判定是以平行为结论,即由角相等或互补得到两条直线平行。

二、命题1.命题的定义:判断一件事的语句叫做命题2.命题的构成:(1)命题是由题设和结论两部分组成的,题设是已知事项,结论是由已知事项退出的事项。

(2)命题通常可以写成“如果……那么……”的形式,这时“如果”后接的部分是题设,“那么”后接的部分是结论。

例如,命题是“对顶角相等”,可以改写成:如果两个角使对顶角,那么这两个角相等。

题设:两个角是对顶角,结论:这个两个角相等。

3.命题分类:如果题设成立,结论一定成立,这样的命题是真命题;如果题设成立,结论不一定成立,这样的命题是假命题。

提示:(1)命题是用语句的形式对某件事作出肯定或否定的判断,这些判断包含“是”或“不是”,“具有”或“不具有”的特点。

(2)命题是一种判断,这种判断可能正确也可能错误。

(3)在找命题的题设和结论时,要分清命题的“已知事项”和“推出事项”(4)为了准确表达命题的题设和结论,有时需要对命题的语序进行调整或增减,使语句通顺、语意明确,但是不能改变原意。

总结:判断一个语句是不是命题,关键是看他是否对一件事作出了判断,命题的题设和结论不明显时,通常把语句改写成:如果……那么……的形式,“如果”后面接的是题设,“那么”后面接的是结论。

三、定理和证明1.定理:一些命题,它们的正确性是经过推理证实的,这样得到的真命题叫做定理,即所有的定理都是真命题。

平行线与垂直线的性质与判定

平行线与垂直线的性质与判定

平行线与垂直线的性质与判定平行线和垂直线是几何学中常见的两种特殊线型。

它们具有不同的性质和判定方法,在解决几何问题和证明几何命题时起到重要作用。

本文将介绍平行线和垂直线的性质以及判定方法。

一、平行线的性质与判定1. 平行线的性质平行线是指不相交且位于同一平面内的两条直线,它们具有以下性质:(1)平行线上的任意一对对应角相等;(2)平行线与横截线之间,对应角相等;(3)平行线与平行线之间,内角和等于180度;(4)平行线的任意两条线段之间的比例相等。

2. 平行线的判定方法平行线可以通过以下几种方法进行判定:(1)同位角判定法:若两条直线被一组平行线截断,或者两条直线被一组平行线所包围,那么这两条直线就是平行线。

(2)转角判定法:若两条直线之间的内角和等于180度,则这两条直线是平行线。

(3)斜率判定法:若两条直线的斜率相等并且不相交,那么这两条直线是平行线。

(4)平行线的性质判定法:若两条直线具有平行线的性质,如对应角相等、内角和等于180度等,则这两条直线是平行线。

二、垂直线的性质与判定1. 垂直线的性质垂直线是指两条直线相交,交角等于90度的情况。

垂直线具有以下性质:(1)垂直线构成的交角等于90度;(2)垂直线的斜率之积等于-1。

2. 垂直线的判定方法垂直线可以通过以下几种方法进行判定:(1)直角判定法:若两条直线的交角等于90度,则这两条直线是垂直线。

(2)斜率判定法:若两条直线的斜率之积等于-1,则这两条直线是垂直线。

(3)垂直线的性质判定法:若两条直线具有垂直线的性质,如交角等于90度等,则这两条直线是垂直线。

三、平行线与垂直线的应用平行线和垂直线在几何学中有广泛的应用。

它们能够帮助我们解决与角度、比例和图形相似性等相关的问题。

1. 平行线的应用平行线的性质和判定方法可以应用于以下几个方面:(1)证明两幅图形相似:如果两条直线与另外一组平行线相交,并且相交处的对应角相等,那么这两幅图形是相似的。

平行线的判定例题与讲解

平行线的判定例题与讲解

3 平行线的判定1.平行线的判定公理(1)平行线的判定公理:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简单记为:同位角相等,两直线平行.如图,推理符号表示为:∵∠1=∠2,∴AB∥CD.谈重点同位角相等,两直线平行①平行线的判定公理是证明两直线平行的原始依据;②应用时,应先确定同位角及形成同位角的是哪两条直线;③本判定方法是由两同位角相等(数量关系)来确定两条直线平行(位置关系),所以在推理过程中要先写“两角相等”,然后再写“两线平行”.(2)平行公理的推论:①垂直于同一条直线的两条直线平行.若a⊥b,c⊥b,则a∥c;②平行于同一条直线的两条直线平行.若a∥b,c∥b,则a∥c.【例1】工人师傅想知道砌好的墙壁的上下边缘AB和CD是否平行,于是找来一根笔直的木棍,如图所示将其放在墙面上,那么,他通过测量∠EGB和∠GFD的度数,就知道墙壁的上下边缘是否平行了.请问:∠EGB和∠GFD满足怎样的条件时,墙壁的上下边缘才会平行?你的依据是什么?解析:判定两条直线是否平行,常根据两条直线被第三条直线所截而构成的角来判断.题中∠EGB和∠GFD是直线AB和直线CD(墙的上下边缘)被直线EF所截时形成的同位角,根据“同位角相等,两直线平行”,可知只有∠EGB和∠GFD相等时,墙壁的上下边缘才会平行.答案:∠EGB和∠GFD相等时,墙壁的上下边缘才会平行.其依据是同位角相等,两直线平行.2.平行线的判定定理(1)判定定理1两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简单记为:同旁内角互补,两直线平行.符号表示:如下图,∵∠2+∠3=180°,∴AB∥CD.谈重点同旁内角互补,两直线平行①定理是根据公理推理得出的真命题,可直接应用;②应用时,找准哪两个角是同旁内角,使哪两条直线平行.(2)判定定理2两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简单记为:内错角相等,两直线平行.符号表示:如上图,∵∠2=∠4,∴AB∥CD.【例2-1】如图,小明利用两块相同的三角板,分别在三角板的边缘画直线AB和CD,这是根据________,两直线平行.解析:由题图可看出,直线AB和CD被直线BC所截,此时两块相同的三角板的两个最小角的位置关系正好是内错角,所以这是根据内错角相等,来判定两直线平行的.答案:内错角相等【例2-2】如图,下列说法中,正确的是().A.因为∠A+∠D=180°,所以AD∥BCB.因为∠C+∠D=180°,所以AB∥CDC.因为∠A+∠D=180°,所以AB∥CDD .因为∠A+∠C=180°,所以AB∥CD错解:A或B或D错解分析:判定直线平行所需要的内错角或同旁内角找不准.条件不能推出结论.正解:C正解思路:∠A与∠D是直线AB和CD被直线AD所截得到的同旁内角.因为∠A+∠D =180°,所以AB∥CD.3.平行线的判断方法平行线的判定方法主要有以下六种:(1)平行线的定义(一般很少用).(2)同位角相等,两直线平行.(3)同旁内角互补,两直线平行.(4)内错角相等,两直线平行.(5)同一平面内,垂直于同一条直线的两条直线相互平行.(6)如果两条直线都和第三条直线平行,那么这两条直线平行.析规律如何选择判定两直线平行的方法①在利用平行线的公理或定理判定两条直线是否平行时,要分清同位角、内错角以及同旁内角是由哪两条直线被第三条直线所截而构成的;②证明两条直线平行,关键是看与待证结论相关的同位角或内错角是否相等,同旁内角是否互补.【例3】如图,直线a,b与直线c相交,形成∠1,∠2,…,∠8共八个角,请你填上你认为适当的一个条件:__________,使a∥b.解析:本题主要是考查平行线的三种判定方法.若从“同位角相等,两直线平行”考虑,可填∠1=∠5,∠2=∠6,∠3=∠7,∠4=∠8中的任意一个条件;若从“内错角相等,两直线平行”考虑,可填∠3=∠6,∠4=∠5中的任意一个;若从“同旁内角互补,两直线平行”考虑,可填∠3+∠5=180°,∠4+∠6=180°中的一个条件;从其他方面考虑,还可以填∠1=∠8,∠2=∠7,∠1+∠7=180°,∠2+∠8=180°,∠4+∠7=180°,∠3+∠8=180°,∠2+∠5=180°,∠1+∠6=180°中的任意一个条件.答案:答案不唯一,如可填下列之一:∠1=∠5或∠4=∠5或∠3+∠5=180°…4.平行线判定的应用(1)平行线的生活应用数学来源于生活,同样生活中也有大量的平行线,其判定平行的方法也常在生活中遇到.如木工师傅判定所截得的木板的对边是否平行,工人师傅判定所制造的机器零件是否符合平行的要求……对于生活中的平行线判断,关键是利用工具确定与平行有关的角是否相等,比较常用的是利用直角尺判断同位角是否相等,从而判定两直线是否平行.(2)平行线在数学中的运用平行线判定方法在数学中的运用主要通过角之间的关系判定两条直线平行,进一步解决其他有关的问题.常见的条件探索题就是其应用之一.探索题是培养发散思维能力的题型,它具有开放性,所要求的答案一般不具有唯一性.解决探索性问题,不仅能提高分析问题的能力,而且能开阔视野,增加对知识的理解和掌握.释疑点判定平行的关键判定两直线平行,关键是确定角的位置关系及大小关系.【例4-1】如图,一个零件ABCD需要AB边与CD边平行,现只有一个量角器,测得拐角∠ABC=120°,∠BCD=60°,这个零件合格吗?__________(填“合格”或“不合格”).解析:要判断AB边与CD边平行,则需满足同旁内角互补的条件.∵∠ABC=120°,∠BCD=60°,∴∠ABC+∠BCD=120°+60°=180°.∴AB∥CD.∴这个零件合格.答案:合格【例4-2】已知:如图在四边形ABCD中,∠A=∠D,∠B=∠C,试判断AD与BC的位置关系,并说明理由.分析:根据四边形ABCD的内角和是360°,结合已知条件得到∠A+∠B=180°,根据同旁内角互补,两直线平行得AD∥BC.解:AD与BC的位置关系是平行.理由:∵四边形ABCD的内角和是360°,∴∠A+∠B+∠C+∠D=360°.∵∠A=∠D,∠B=∠C,∴∠A+∠B=180°.∴AD∥BC(同旁内角互补,两直线平行).点评:本题考查四边形的内角和以及利用同旁内角互补,来判定两直线平行.。

平行线四大模型

平行线四大模型

平行线四大模型1、平行线的判定根据平行线的定义,如果平面内的两条直线不相交,就可以判断这两条直线平行,但是,由于直线无限延伸,检验它们是否相交有困难,所以难以直接根据定义来判断两条直线是否平行,这就需要更简单易行的判定方法来判定两直线平行.判定方法1:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简称:同位角相等,两直线平行.判定方法2:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简称:内错角相等,两直线平行,判定方法3:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简称:同旁内角互补,两直线平行,如上图:若已知∠1=∠2,则AB∥CD(同位角相等,两直线平行);若已知∠1=∠3,则AB∥CD(内错角相等,两直线平行);若已知∠1+∠4=180°,则AB∥CD(同旁内角互补,两直线平行).另有平行公理推论也能证明两直线平行:平行公理推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.2、平行线的性质利用同位角相等,或者内错角相等,或者同旁内角互补,可以判定两条直线平行.反过来,如果已知两条直线平行,当它们被第三条直线所截,得到的同位角、内错角、同旁内角也有相应的数量关系,这就是平行线的性质.性质1:两条平行线被第三条直线所截,同位角相等.简称:两直线平行,同位角相等性质2:两条平行线被第三条直线所截,内错角相等.简称:两直线平行,内错角相等性质3:两条平行线被第三条直线所截,同旁内角互补.简称:两直线平行,同旁内角互补平移3.平移是指在平面内,将一个图形沿着某个方向移动一定的距离,这样的图形运动叫做图形的平移(translation),简称平移。

4.平移的性质经过平移,对应线段平行(或共线)且相等,对应角相等,对应点所连接的线段平行且相等;平移变换不改变图形的形状、大小和方向(平移前后的两个图形是全等形)。

(1)图形平移前后的形状和大小没有变化,只是位置发生变化;(2)图形平移后,对应点连成的线段平行且相等(或在同一直线上)(3)多次平移相当于一次平移。

平行线的性质及尺规作图(基础)知识讲解

平行线的性质及尺规作图(基础)知识讲解

平行线的性质及尺规作图(基础)知识讲解【要点梳理】要点一、平行线的性质性质1:两直线平行,同位角相等;性质2:两直线平行,内错角相等;性质3:两直线平行,同旁内角互补.要点诠释:(1)“同位角相等、内错角相等”、“同旁内角互补”都是平行线的性质的一部分内容,切不可忽视前提“两直线平行”.(2)从角的关系得到两直线平行,是平行线的判定;从平行线得到角相等或互补关系,是平行线的性质.要点二、两条平行线的距离同时垂直于两条平行线,并且夹在这两条平行线间的线段的长度,叫做这两条平行线的距离.要点诠释:(1)求两条平行线的距离的方法是在一条直线上任找一点,向另一条直线作垂线,垂线段的长度就是两条平行线的距离.(2) 两条平行线的位置确定后,它们的距离就是个定值,不随垂线段的位置的改变而改变,即平行线间的距离处处相等.要点三、尺规作图1. 定义:尺规作图是指用没有刻度的直尺和圆规作图.要点诠释:(1)只使用圆规和直尺,并且只准许使用有限次,来解决不同的平面几何作图题.(2)直尺必须没有刻度,无限长,且只能使用直尺的固定一侧.只可以用它来将两个点连在一起,不可以在上面画刻度.(3)圆规可以开至无限宽,但上面也不能有刻度.它只可以拉开成之前构造过的长度.2.八种基本作图(有些今后学到):(1)作一条线段等于已知线段.(2)作一个角等于已知角.(3)作已知线段的垂直平分线.(4)作已知角的角平分线.(5)过一点作已知直线的垂线.(6)已知一角、一边做等腰三角形.(7)已知两角、一边做三角形.(8)已知一角、两边做三角形.【典型例题】类型一、平行线的性质1.已知:如图,AB∥DC,点E是BC上一点,∠1=∠2,∠3=∠4.求证:AE⊥DE.【思路点拨】过E作EF∥AB,再由条件AB∥DC,可得EF∥AB∥CD,根据平行线的性质可得∠1=∠5,∠4=∠6,然后可得∠5+∠6=∠BEF+∠FEC=90°,进而得到结论.【答案与解析】证明:过E作EF∥AB,∵AB∥DC,∴EF∥AB∥CD,∴∠1=∠5,∠4=∠6,∵∠1=∠2,∠3=∠4,∴∠5+∠6=∠BEF+∠FEC=90°,∴AE⊥DE.【总结升华】此题主要考查了平行线的性质,关键是掌握两直线平行,内错角相等.举一反三:【变式】如图,直线l1∥l2,∠α=∠β,∠1=40°,则∠2= .【答案】140°.【解析】如图,∵l1∥l2,∴∠3=∠1=40°,∵∠α=∠β,∴AB∥CD,∴∠2+∠3=180°,∴∠2=180°﹣∠3=180°﹣40°=140°.故答案为140°.类型二、两平行线间的距离2.如图所示,直线l1∥l2,点A、B在直线l2上,点C、D在直线l1上,若△ABC的面积为S1,△ABD的面积为S2,则( ) .A.S1>S2 B.S1=S2 C.S1<S2 D.不确定【答案】B【解析】因为l1∥l2,所以C、D两点到l2的距离相等.同时△ABC和△ABD有共同的底AB,所以它们的面积相等.【总结升华】三角形等面积问题常与平行线间距离处处相等相结合.举一反三:【变式】如图,在两个一大一小的正方形拼成的图形中,小正方形的面积是10平方厘米,阴影部分的面积为平方厘米.【答案】5 (提示:连接BF,则BF∥AC)类型三、尺规作图3.已知:∠AOB.利用尺规作:∠A′O′B′,使∠A′O′B′=2∠AOB.【思路点拨】先作一个角等于∠AOB,在这个角的外部再作一个角等于∠AOB,那么图中最大的角就是所求的角.【答案与解析】作法一:如图(1)所示,(1)以点O圆心,任意长为半径画弧,交OA于点A′,交OB于点C;(2)以点C为圆心,以CA′的长为半径画弧,•交前面的弧于点B′;(3)过点B′作射线O B′,则∠A′O′B′就是所求作的角.作法二:如图(2)所示,(1)画射线O′A′;(2)以点O为圆心,以任意长为半径画弧,交OA于点C,交OB于点D;(3)以点O′为圆心,以OC的长为半径画弧,交O′A•′于点E;(4)以点E为圆心,以CD的长为半径画弧,交前面的弧于点F,再以点F为圆心,•以CD 的长为半径画弧,交前面的弧于点B′;(5)画射线O′B′,则∠A′O′B′就是所求作的角.【总结升华】本题考查作一个倍数角等于已知角,需注意作第二个角的时候应在第一个角的外部.•作法一在已知角的基础上作图较为简便一些.类型四、平行的性质与判定综合应用4.如图所示,AB∥EF,那么∠BAC+∠ACE+∠CEF=( )A.180° B.270° C.360° D.540°【答案】C【解析】过点C作CD∥AB,∵ CD∥AB,∴∠BAC+∠ACD=180°(两直线平行,同旁内角互补)又∵ EF∥AB∴ EF∥CD.(平行公理的推论)∴∠DCE+∠CEF=180°(两直线平行,同旁内角互补)又∵∠ACE=∠ACD+∠DCE∴∠BAC+∠ACE+∠CEF=∠BAC+∠ACD+∠DCE+∠CEF=180°+180°=360°【总结升华】这是平行线性质与平行公理的推论的综合应用,利用“两直线平行,同旁内角互补,”可以得到∠BAC +∠ACE+∠CEF=360°.举一反三:【变式】如图所示,如果∠BAC+∠ACE+∠CEF=360°,则AB与EF的位置关系.【答案】平行。

(必考题)初中数学八年级数学上册第七单元《平行线的证明》测试卷(答案解析)(3)

(必考题)初中数学八年级数学上册第七单元《平行线的证明》测试卷(答案解析)(3)

一、选择题1.下列命题中,为真命题的是( )A .13是13的算术平方根B .三角形的一个外角大于任何一个内角C .13是最简二次根式 D .两条直线被第三条直线所截,内错角相等 2.小明和小亮在研究一道数学题,如图EF AB ⊥,CD AB ⊥,垂足分别为E 、D ,G 在AC 上.小明说:“如果CDG BFE ∠=∠,则能得到AGD ACB ∠=∠”;小亮说:“连接FG ,如果//FG AB ,则能得到GFC ADG ∠=∠”.则下列判断正确的是( )A .小明说法正确,小亮说法错误B .小明说法正确,小亮说法正确C .小明说法错误,小亮说法正确D .小明说法错误,小亮说法错误 3.下列命题中,属于假命题的是( )A .相等的角是对顶角B .三角形的内角和等于180°C .两直线平行,同位角相等D .两点之间,线段最短4.下列命题是真命题的个数为( ) ①两条直线被第三条直线所截,内错角相等.②三角形的内角和是180°.③在同一平面内平行于同一条直线的两条直线平行.④相等的角是对顶角.⑤两点之间,线段最短.A .2B .3C .4D .5 5.如图,ABC 中,将A ∠沿DE 翻折,若30A ∠=︒,25BDA '∠=︒,则CEA '∠多少度( )A .60°B .75°C .85°D .90°6.下列命题中真命题有( )①周长相等的两个三角形是全等三角形;②一组数据中,出现次数最多的数据为这组数据的众数;③同位角相等;④方差可以刻画数据的波动程度,方差越大,波动越小;方差越小,波动越大. A .1个 B .2个 C .3个 D .4个7.在下列条件中:①A C B ∠=∠-∠,②::2:3:5A B C ∠∠∠=,③90A B ∠=︒-∠,④90B C ∠-∠=︒中,能确定ABC 是直角三角形的条件有( )A .1个B .2个C .3个D .4个8.如图,下列条件中,不能判断直线a ∥b 的是( )A .∠1=∠3B .∠2=∠3C .∠4=∠5D .∠2+∠4=180° 9.如图,直线a ∥b ,点B 在a 上,且AB ⊥BC ,若∠1=35°,那么∠2等于( )A .45°B .50°C .55°D .60°10.已知下列命题(1)等边三角形的三个内角都相等;(2)平行四边形相邻的两个角都相等;(3)线段垂直平分线上的点到这条线段两个端点距离相等;(4)底角相等的两个等腰三角形全等.其中原命题和逆命题均为真命题的有( )A .1个B .2个C .3个D .4个11.如图,//AB EF ,C 点在EF 上,EAC ECA ∠=∠,BC 平分DCF ∠,且AC BC ⊥.下列结论:①AC 平分DCE ∠;②//AE CD ;③190B ∠+∠=︒;④BDC 21∠=∠.其中结论正确的个数有( )A .1个B .2个C .3个D .4个12.如图,//AB CD ,BE 交CD 于点F ,48B ∠=︒,20E ∠=︒,则D ∠的度数为( ).A .28B .20C .48D .68二、填空题13.命题“如果两个三角形全等,那么这两个三角形的周长相等”的逆命题是_______命题(填“真”或“假”).14.如图,AB ,CD 相交于点E ,ACE AEC ∠=∠,BDE BED ∠=∠,过A 作AF BD ⊥,垂足为F .求证:AC AF ⊥.证明:∵ACE AEC ∠=∠,BDE BED ∠=∠又AEC BED ∠=∠(________________)∴ACE BDE ∠=∠∴//AC DB (________________________)∴CAF AFD ∠=∠(________________________)∵AF DB ⊥∴90AFD ∠=︒(________________________)∴90CAF =︒∠∴AC AF ⊥15.如图,25AOB ∠=︒,点M ,N 分别是边OA ,OB 上的定点,点P ,Q 分别是边OB ,OA 上的动点,记MPQ α∠=,PQN β∠=,当MP PQ QN ++的值最小时,βα-的大小=__________(度).16.如图,在△ABC 中,点O 是△ABC 内一点,且点O 到△ABC 三边的距离相等,若∠A =70°,则∠BOC =________.17.如图,在ABC 中,AD 是BC 边上的高,且ACB BAD ∠=∠,AE 平分CAD ∠,交BC 于点E ,过点E 作EF AC ,分别交AB 、AD 于点F 、G .则下列结论:①90BAC ∠=︒;②AEF BEF ∠=∠;③BAE BEA ∠=∠;④2B AEF ∠=∠,其中正确的有_____.18.把“同角的补角相等”改成“如果···那么···”的形式_________________.19.如图,AB CD ,一副三角尺按如图所示放置,∠AEG =20度,则 HFD ∠为 ______________度.20.在四边形ABCD 中,ADC ∠与BCD ∠的角平分线交于点E ,115DEC ∠=︒,过点B 作//BF AD 交CE 于点F ,2CE BF =,54CBF BCE ∠=∠,连接BE ,254BCE S ∆=,则CE =___.三、解答题21.推理填空:如图,AD BC ⊥于D ,EG BC ⊥于G ,1E ∠=∠,可得AD 平分BAC ∠. 理由如下:∵AD BC ⊥于D ,EG BC ⊥于G ,(已知)∴90ADC EGC ∠=∠=︒,(____________________)∴//AD EG ,(____________________)∴1∠=__________,(____________________)3E ∠=∠,(____________________)又∵1E ∠=∠,(____________________)∴3∠=___________,(____________________)∴AD 平分BAC ∠.(____________________)22.如图,在ABC 中,P 是ABC ∠,ACB ∠的角平分线的交点.(1)若80A ∠=︒,求BPC ∠的度数;(2)有位同学在解答(1)后得出1902BPC A ∠=︒+∠的规律,你认为正确吗?请说明理由.23.填空:(将下面的推理过程及依据补充完整)如图,已知:CD 平分ACB ∠,//AC DE ,//CD EF ,求证:EF 平分DEB ∠.证明:∵CD 平分ACB ∠(已知),DCA DCE ∴∠=∠(角平分线的定义),//AC DE (已知),DCA ∴∠=____(两直线平行,内错角相等)DCA CDE ∴∠==∠(等量代换),//CD EF (已知),∴_____CDE =∠(_________);DCE BEF ∠=∠(__________),∴__________=__________(等量代换),EF ∴平分DEB ∠(______________).24.如图,BAE ∠,CBF ∠,ACD ∠是ABC 的三个外角.求BAE CBF ACD ∠+∠+∠的度数.(要求:写出求解过程,不能直接用外角和公式)25.如图,在四边形ABCD 中,E 、F 分别是CD 、AB 延长线上的点,连接EF ,分别交AD 、BC 于点G 、H .若12∠=∠,A C ∠=∠,试判断AB 与CD 的位置关系,并说明理由.补全解答过程.猜想:AB 与CD 的位置关系是 ① .证明:∵12∠=∠(已知),1AGH ∠=∠(②),∴2AGH ∠=∠(③).∴ ④ (同位角相等,两直线平行).∴ADE C ∠=∠(⑤),∵A C ∠=∠(已知),∴ ⑥ (等量代换).∴ ⑦ (⑧).26.如图已知12B C ∠=∠∠=∠,,求证://AB CD .证明:∵12∠=∠(已知),且14∠=∠(__________),∴24∠∠=(__________).∴//BF _____(__________). ∴∠____3=∠(__________).又∵B C ∠=∠(已知),∴_____________(等量代换).∴//AB CD (__________).【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据算术平方根、三角形外角定理、最简二次根式定义、平行线性质逐项判断即可求解.【详解】解:1313的算术平方根”,判断正确,符合题意;B. “三角形的一个外角大于任何一个内角”,应为“三角形的一个外角大于和它不相邻的任意一个内角”,判断错误,不合题意;13”,不是最简二次根式,判断错误,不合题意;D. “两条直线被第三条直线所截,内错角相等”,两条直线不一定平行,判断错误,不合题意.故选:A【点睛】本题考查了命题、算术平方根、三角形外角定理、最简二次根式定义、平行线性质等知识,熟练掌握相关知识是解题的关键,注意:题设成立,结论一定成立的命题是真命题;题设成立,结论不一定成立的命题是假命题.2.A解析:A【分析】由EF⊥AB,CD⊥AB,知CD∥EF,然后根据平行线的性质与判定即可得出答案.【详解】解:∵EF⊥AB,CD⊥AB,∴CD∥EF,若∠CDG=∠BFE,∵∠BCD=∠BFE,∴∠BCD=∠CDG,∴DG∥BC,∴∠AGD=∠ACB,故小明说法正确;∵FG∥AB,∴∠B=∠GFC,故得不到∠GFC=∠ADG,故小亮说法错误,故选:A.【点睛】本题考查了平行线的判定与性质,属于基础题,关键是掌握平行线的性质与判定.3.A解析:A【分析】利用对顶角、三角形内角和、平行线的性质等分别判断后即可确定正确的选项.【详解】解:A、相等的角不一定是对顶角,原命题是假命题;B、三角形三个内角的和等于180°,是真命题;C、两直线平行,同位角相等,是真命题;D、两点之间,线段最短,是真命题;故选:A.【点睛】本题考查了命题与定理的知识,解题的关键是了解对顶角、平行线的性质和三角形内角和,难度不大.4.B解析:B【分析】首先判断所给命题的真假,再选出正确的选项.【详解】解:∵两条直线被第三条直线所截,两直线平行,内错角相等,∴①错误;∵三角形的内角和是180°,∴②正确;∵在同一平面内平行于同一条直线的两条直线平行,∴③正确;∵相等的角可以是对顶角,也可以是内错角、同位角等等,∴④错误;∵连接两点的所有连线中,线段最短,∴⑤正确;∴真命题为②③⑤,故选B .【点睛】本题考查命题的真假判断,根据所学知识判断一个命题条件成立的情况下,结论是否一定成立来判断命题是真命题还是假命题是解题关键.5.C解析:C【分析】根据折叠前后对应角相等可得ADE A DE '∠=∠,AED A ED '∠=∠,再运用平角的定义和三角形内角和定理依次求得ADE ∠、AED ∠,再次运用平角的定义即可求得CEA '∠.【详解】解:∵将A ∠沿DE 翻折,∴ADE A DE '∠=∠,AED A ED '∠=∠,∵D 是线段AB 上的点,25BDA '∠=︒,∴180ADE A D B E DA '∠+∠-'∠=︒,即251280ADE ︒=∠-︒,解得102.5ADE ∠=︒,∵30A ∠=︒,180A AED ADE ∠+∠+∠=︒,∴180180102.53047.5AED ADE A ∠=︒-∠-∠=︒-︒-︒=︒,∴18018047.547.585CEA AED A ED ''∠=︒-∠-∠=︒-︒-︒=︒.故选:C .【点睛】本题考查折叠的性质,三角形内角和定理,平角的定义.理解折叠前后对应角相等是解题关键.6.A解析:A【分析】根据题意对四个命题作出判断即可求解.【详解】解:①周长相等的两个三角形是全等三角形,是假命题;②一组数据中,出现次数最多的数据为这组数据的众数,是真命题;③同位角相等,是假命题;④方差可以刻画数据的波动程度,方差越大,波动越小;方差越小,波动越大,是假命题.真命题有1个.故选:A【点睛】本题考查全等三角形的判定,众数,方差等知识,熟知相关知识是解题关键.7.C解析:C【分析】根据直角三角形的判定方法对各个选项进行分析,从而得到答案.【详解】①因为∠A+∠B=∠C,则2∠C=180°,∠C=90°,所以△ABC是直角三角形;②因为∠A:∠B:∠C=2:3:5,设∠A=2x,则2x+3x+5x=180,x=18°,∠C=18°×5=90°,所以△ABC是直角三角形;③因为∠A=90°﹣∠B,所以∠A+∠B=90°,则∠C=180°﹣90°=90°,所以△ABC是直角三角形;④因为∠B﹣∠C=90°,则∠B=90°+∠C,所以三角形为钝角三角形.所以能确定△ABC是直角三角形的有①②③.故选:C.【点睛】本题考查了三角形的内角和定理:三角形的内角和为180°;理解三角形内若有一个内角为90°,则△ABC是直角三角形.8.B解析:B【分析】根据平行线的判定定理逐项判断即可.【详解】A、当∠1=∠3时,a∥b,内错角相等,两直线平行,故正确;B、∠2与∠3不是同位角,也不是内错角,无法判断,故错误;C、当∠4=∠5时,a∥b,同位角相等,两直线平行,故正确;D、当∠2+∠4=180°时,a∥b,同旁内角互补,两直线平行,故正确.故选:B.【点睛】本题考查了平行线的判定,熟记判定定理是解题的关键.9.C解析:C【分析】先根据直线平行的性质得到∠BAC=∠1=35°,再由三角形内角和定理求出55BCA ∠=︒,再根据对顶角的性质即可得到答案.【详解】解:∵直线a ∥b ,∴∠BAC=∠1=35°(两直线平行,内错角相等),又∵AB ⊥BC ,∴∠ABC=90°,∴180903555BCA ∠=︒-︒-︒=︒ (三角形内角和定理),∴255BCA ∠=∠=︒(对顶角相等),故选:C .【点睛】本题主要考查了直线平行的性质、三角形内角和定理、对顶角的性质,掌握对顶角相等以及两直线平行内错角相等是解题的关键.10.B解析:B【分析】根据逆命题的概念分别写出各个命题的逆命题,根据等边三角形的判定和直线定理、平行四边形的判定和性质定理、线段垂直平分线的判定和性质、全等三角形的判定和性质定理判断即可.【详解】解:(1)等边三角形的三个内角都相等,是真命题,逆命题为:三个角相等的三角形是等边三角形,是真命题;(2)平行四边形相邻的两个角互补,但不一定相等,本说法是假命题,逆命题为:相邻的两个角都相等的四边形是平行四边形,是真命题;(3)线段垂直平分线上的点到这条线段两个端点距离相等,是真命题,逆命题为:到线段两个端点距离相等的点在线段垂直平分线上,是真命题;(4)底角相等的两个等腰三角形不一定全等,本说法是假命题,逆命题为:两个全等的等腰三角形的底角相等,是真命题;故选:B .【点睛】本题考查的是命题的真假判断、逆命题的概念,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.11.D解析:D【分析】根据平行线的性质及角度的计算,等腰三角形的性质即可进行一一求解判断.【详解】根据//AB EF , BC 平分DCF ∠,且AC BC ⊥可得∠1+∠BCD=90°,∠BCD=12∠DCF , 又∠DCF+∠ECD=180°,∴∠1=12∠ECD ,故AC 平分DCE ∠,①正确; ∵AC 平分DCE ∠,∴∠1=∠ECA,∵EAC ECA ∠=∠∴EAC ∠=∠1,∴//AE CD ,②正确;∵EF ∥AB ,∴∠FCB=∠B ,∴∠B=∠DCB ,∵∠1+∠DCB=90°,∴190B ∠+∠=︒,③正确;∵EF ∥AB ,∴∠ECA=∠CAD ,∵∠1=∠ECA∴∠1=∠CAD∵∠CDB 是△ACD 的一个外角,∴∠CAD=∠1+∠CAD=2∠1,④正确;故选D【点睛】此题主要考查平行线的角度计算,解题的关键是根据图像的特点进行求解.12.A解析:A【分析】由//AB CD 和48B ∠=︒,可得到CFB ∠;再由对顶角相等和三角形内角和性质,从而完成求解.【详解】∵//AB CD∴180********CFB B ∠=-∠=-=∴132EFD CFB ∠=∠=∴1801801322028D EFD E ∠=-∠-∠=--=故选:A .【点睛】本题考察了平行线和三角形内角和的知识;求解的关键是熟练掌握三角形内角和、平行线的性质,从而完成求解.二、填空题13.假;【分析】将原命题的条件与结论对换位置即可得到逆命题然后判断真假【详解】如果两个三角形全等那么这两个三角形的周长相等的逆命题是如果两个三角形的周长相等那么这两个三角形全等根据周长相等无法判定三角形 解析:假;【分析】将原命题的条件与结论对换位置,即可得到逆命题,然后判断真假.【详解】“如果两个三角形全等,那么这两个三角形的周长相等”的逆命题是“如果两个三角形的周长相等,那么这两个三角形全等”,根据周长相等,无法判定三角形全等,故该逆命题是假命题,故答案为:假.【点睛】本题考查逆命题与命题的判断,掌握原命题与逆命题的关系是解题的关键.14.对顶角相等;内错角相等两直线平行;两直线平行内错角相等;垂直定义【分析】依据对顶角相等推出利用平行线的判定定理内错角相等两直线平行利用平行线的性质得由垂直再根据同旁内角互补即可【详解】证明:∵又(对 解析:对顶角相等;内错角相等,两直线平行;两直线平行,内错角相等;垂直定义【分析】依据对顶角相等推出ACE BDE ∠=∠,利用平行线的判定定理内错角相等两直线平行//AC DB ,利用平行线的性质得CAF AFD ∠=∠,由垂直90AFD ∠=︒,再根据同旁内角互补90CAF =︒∠即可.【详解】证明:∵ACE AEC ∠=∠,BDE BED ∠=∠,又AEC BED ∠=∠(对顶角相等),∴ACE BDE ∠=∠,∴//AC DB (内错角相等,两直线平行),∴CAF AFD ∠=∠(两直线平行,内错角相等),∵AF DB ⊥,∴90AFD ∠=︒(垂直定义),∴90CAF =︒∠,∴AC AF ⊥.故答案为:对顶角相等;内错角相等,两直线平行;两直线平行,内错角相等;垂直定义.【点睛】本题主要考查了平行线的判定和性质,对顶角性质,等式的性质,垂直定义,掌握平行线的判定和性质,对顶角性质,等式的性质,垂直定义,解题时注意:两直线平行,同旁内角互补是解题关键.15.50【分析】作M 关于OB 的对称点N 关于OA 的对称点连接交OB 于点P 交OA 于点Q 连接MPQN 可知此时最小此时再根据三角形外角的性质和平角的定义即可得出结论【详解】作M 关于OB 的对称点N 关于OA 的对称点 解析:50【分析】作M 关于OB 的对称点M ',N 关于OA 的对称点N ',连接M N '',交OB 于点P ,交OA于点Q ,连接MP ,QN ,可知此时MP PQ QN ++最小,此时OPM OPM NPQ OQP AQN AQN ''∠=∠=∠∠=∠=∠,,再根据三角形外角的性质和平角的定义即可得出结论.【详解】作M 关于OB 的对称点M ',N 关于OA 的对称点N ',连接M N '',交OB 于点P ,交OA 于点Q ,连接MP ,QN ,如图所示.根据两点之间,线段最短,可知此时MP PQ QN++最小,即MP PQ QN M N ''++=, ∴OPM OPM NPQ OQP AQN AQN ''∠=∠=∠∠=∠=∠,,∵MPQ PQN αβ∠=∠=,, ∴11(180)(180)22QPN OQP αβ∠=︒-∠=︒-,, ∵QPN AOB OQP ∠=∠+∠,25AOB ∠=︒, ∴11(180)25(180)22αβ︒-=︒+︒- , ∴50βα-=︒ . 故答案为:50.【点睛】本题考查轴对称-最短问题、三角形内角和,三角形外角的性质等知识,灵活运用所学知识解决问题是解题的关键,综合性较强.16.125°【分析】求出O 为△ABC 的三条角平分线的交点求出∠OBC=∠ABC ∠OCB=∠ACB 根据三角形内角和定理求出∠ABC+∠ACB 求出∠OBC+∠OCB 再根据三角形内角和定理求出∠BOC 的度数即解析:125°【分析】求出O 为△ABC 的三条角平分线的交点,求出∠OBC=12∠ABC ,∠OCB=12∠ACB ,根据三角形内角和定理求出∠ABC+∠ACB,求出∠OBC+∠OCB,再根据三角形内角和定理求出∠BOC的度数即可;【详解】∵在△ ABC中,点O是△ABC内的一点,且点O到△ ABC三边距离相等,∴ O为△ABC的三条角平分线的交点,∴∠OBC=12∠ABC,∠OCB=12∠ACB,∵∠A=70°,∴∠ABC+∠ACB=180°-∠A=110°,∴∠OBC+∠OCB=55°,∴∠BOC=180°-∠OBC-∠OCB=125°,故答案为:125°.【点睛】本题考查了角平分线的有关计算,三角形内角和定理的应用,能正确掌握与角平分线有关的三角形内角和问题是解题的关键;17.①③④【分析】利用高线和同角的余角相等三角形内角和定理即可证明①再利用等量代换即可得到③④均是正确的②缺少条件无法证明【详解】由已知可知∠ADC=∠ADB=90°∵∠ACB=∠BAD∴90°-∠AC解析:①③④【分析】利用高线和同角的余角相等,三角形内角和定理即可证明①,再利用等量代换即可得到③④均是正确的,②缺少条件无法证明.【详解】由已知可知∠ADC=∠ADB=90°,∵∠ACB=∠BAD∴90°-∠ACB=90°-∠BAD,即∠CAD=∠B,∵三角形ABC的内角和=∠ACB+∠B+∠BAD+∠CAD=180°,∴∠CAB=90°,①正确,∵AE平分∠CAD,EF∥AC,∴∠CAE=∠EAD=∠AEF,∠C=∠FEB=∠BAD,②错误,∵∠BAE=∠BAD+∠DAE,∠BEA=∠BEF+∠AEF,∴∠BAE=∠BEA,③正确,∵∠B=∠DAC=2∠CAE=2∠AEF,④正确,故答案为:①③④.【点睛】本题考查了三角形的综合性质,高线的性质,平行线的性质,综合性强,难度较大,利用角平分线和平行线的性质得到相等的角,再利用等量代换推导角之间的关系是解题的关键.18.如果两个角是同一个角的补角那么这两个角相等【分析】把命题的题设写在如果的后面把命题的结论写在那么的后面即可【详解】解:命题同角的补角相等改成如果…那么…的形式为:如果两个角是同一个角的补角那么这两个解析:如果两个角是同一个角的补角,那么这两个角相等【分析】把命题的题设写在如果的后面,把命题的结论写在那么的后面即可.【详解】解:命题“同角的补角相等”改成“如果…,那么…”的形式为:如果两个角是同一个角的补角,那么这两个角相等.故答案为:如果两个角是同一个角的补角,那么这两个角相等.【点睛】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.19.35【解析】分析:过点G作AB平行线交EF于P根据平行线的性质求出∠EGP求出∠PGF根据平行线的性质平角的概念计算即可详解:过点G作AB平行线交EF于P由题意易知AB∥GP∥CD∴∠EGP=∠AE解析:35【解析】分析:过点G作AB平行线交EF于P,根据平行线的性质求出∠EGP,求出∠PGF,根据平行线的性质、平角的概念计算即可.详解:过点G作AB平行线交EF于P,由题意易知,AB∥GP∥CD,∴∠EGP=∠AEG=20°,∴∠PGF=70°,∴∠GFC=∠PGF=70°,∴∠HFD=180°-∠GFC-∠GFP-∠EFH=35°.故答案为35°.点睛:本题考查的是平行线的性质、三角形内角和定理的应用,掌握两直线平行、内错角相等是解题的关键.20.5【分析】设∠BCE=4x∠CBF=5x设∠ADE=∠EDC=y构建方程组求出xy证明∠CFB=90°再利用三角形的面积公式构建方程即可解决问题【详解】解:∵∴可以假设∠BCE=4x则∠CBF=5x解析:5【分析】设∠BCE=4x ,∠CBF=5x ,设∠ADE=∠EDC=y ,构建方程组求出x ,y ,证明∠CFB=90°,再利用三角形的面积公式构建方程即可解决问题.【详解】解:∵54CBF BCE ∠=∠, ∴可以假设∠BCE=4x ,则∠CBF=5x ,∵DE 平分∠ADC ,CE 平分∠DCB ,∴∠ADE=∠EDC ,∠ECD=∠ECB=4x ,设∠ADE=∠EDC=y ,∵AD ∥BF ,∴∠A+∠ABF=180°,∴∠ADC+∠DCB+∠CBF=180°,∴2y+13x=180°①,∵∠DEC=115°,∴∠EDC+∠ECD=65°,即y+4x=65° ②,联立①②解得x=10°,y=25°,∴∠BCF=40°,∠CBF=50°,∴∠CFB=90°,∴BF ⊥EC ,∴CE=2BF ,设BF=m ,则CE=2m ,12524∆=⨯⨯=BCE S EC BF , ∴125224⨯⨯=m m , 解得52m =(负值舍去), ∴CE=2m =5,故答案为5.【点睛】 本题考查了角平分线的性质,平行线的性质,三角形内角和定理,二元一次方程组等知识,解题的关键是学会利用参数构建方程或方程组组解决问题.三、解答题21.垂直的定义;同位角相等,两直线平行;∠2;两直线平行,内错角相等;两直线平行,同位角相等;已知;∠2;等量代换;角平分线的定义.【分析】根据证明的前后联系填写理由或结论即可.【详解】解:∵AD ⊥BC 于D ,EG ⊥BC 于G ,(已知)∴∠ADC =∠EGC =90°,(垂直的定义)∴AD ∥EG ,(同位角相等,两直线平行)∴∠1=∠2,(两直线平行,内错角相等)∠E =∠3,(两直线平行,同位角相等)又∵∠E =∠1(已知)∴∠3=∠2(等量代换)∴AD 平分∠BAC (角平分线的定义).故答案为:垂直的定义;同位角相等,两直线平行;∠2;两直线平行,内错角相等;两直线平行,同位角相等;已知;∠2;等量代换;角平分线的定义.【点睛】本题考查平行线的判定与性质,正确识别“三线八角”中的同位角、内错角、同旁内角,明确每步说理的原因是正确答题的关键.22.(1)130°;(2)正确,理由见解析.【分析】(1) 在△ABC 内,由三角形内角和定理可求得∠ABC+∠ACB ,再利用角平分线的定义可求得∠PBC+∠PCB ,在△PBC 中由三角形内角和可求得∠BPC ;(2) 由(1) 的过程可证明其正确.【详解】解:(1)80A ∠=︒,得到∠ABC+∠ACB=100° ,BP ,CP 分别平分ABC ∠,ACB ∠,1()502PBC PCB ABC ACB ∴∠+∠=∠+∠=︒, 18050130BPC ∴∠=︒-︒=︒.(2)我认为正确.理由如下:BP ,CP 分别平分ABC ∠,ACB ∠, 1()2PBC PCB ABC ACB ∴∠+∠=∠+∠, 180ABC ACB A ∠+∠=︒-∠()111809022PBC PCB A A ∴∠+∠=︒-∠=︒-∠, 11180909022BPC A A ⎛⎫∴∠=︒-︒-∠=︒+∠ ⎪⎝⎭. 【点睛】本题主要考查与角平分线有关的三角形内角和问题,掌握三角形内角和为180°是解题的关键,注意整体思想的应用.23.∠CDE ;∠DEF ;两直线平行,内错角相等;两直线平行,同位角相等;∠DEF ;∠FEB ;角平分线的定义.【分析】根据平行线的性质和平行线的判定及等量代换等来完成解答即可.【详解】解:证明:∵CD 平分∠ACB (已知),∴∠DCA=∠DCE (角平分线的定义),∵AC ∥DE (已知),∴∠DCA=∠CDE (两直线平行,内错角相等),∴∠DCE=∠CDE ( 等量代换),∵CD ∥EF ( 已知 ),∴∠DEF=∠CDE (两直线平行,内错角相等),∠DCE=∠FEB (两直线平行,同位角相等),∴∠DEF=∠FEB (等量代换),∴EF 平分∠DEB ( 角平分线的定义 ).故答案为:∠CDE ;∠DEF ;两直线平行,内错角相等;两直线平行,同位角相等;∠DEF ;∠FEB ;角平分线的定义.【点睛】本题考查了平行线的性质和平行线的判定在几何证明中的应用,明确相关性质及定理是解题的关键.24.360BAE CBF ACD ∠+∠+∠=︒【分析】利用邻补角的定义以及三角形内角和定理,计算即可求解.【详解】解:∵1180BAE ∠+∠=︒,2180CBF ︒∠+∠=,3180ACD ︒∠+∠=,∴1231803540BAE CBF ACD ∠+∠+∠+∠+∠+∠=︒⨯=︒,又∵123180∠+∠+∠=︒,∴540(123)540180360BAE CBF ACD ︒︒︒︒∠+∠+∠=-∠+∠+∠=-=.【点睛】本题考查了邻补角的定义以及三角形内角和定理,正确的识别图形是解题的关键. 25.①//AB CD ;②对顶角相等;③等量代换;④//AD BC ;⑤两直线平行,同位角相等;⑥ADE ∠A =∠;⑦//AB CD ;⑧内错角相等,两直线平行【分析】先根据同位角相等,两直线平行,判定AD ∥BC ,进而得到∠ADE=∠C ,再根据内错角相等,两直线平行,即可得到AB ∥CD .【详解】猜想:AB 与CD 的位置关系是AB ∥CD .证明:∵∠1=∠2(已知)∠1=∠AGH (对顶角相等)∴∠2=∠AGH (等量代换)∴AD ∥BC (同位角相等,两直线平行)∴∠ADE=∠C (两直线平行,同位角相等)∵∠A=∠C (已知)∴∠ADE=∠A (等量代换)∴AB ∥CD (内错角相等,两直线平行)故答案为:①//AB CD ;②对顶角相等;③等量代换;④//AD BC ;⑤两直线平行,同位角相等;⑥ADE ∠A =∠;⑦//AB CD ;⑧内错角相等,两直线平行.【点睛】本题主要考查了平行线的判定与性质,解题时注意:平行线的判定是由角的数量关系判断两直线的位置关系;平行线的性质是由平行关系来寻找角的数量关系.26.见解析【分析】根据平行线的判定和性质解答.【详解】解:证明:∵∠1=∠2(已知),且∠1=∠4(对顶角相等),∴∠2=∠4(等量代换),∴BF ∥EC (同位角相等,两直线平行),∴∠C=∠3(两直线平行,同位角相等).又∵∠B=∠C (已知),∴∠3=∠B (等量代换),∴AB ∥CD (内错角相等,两直线平行).【点睛】本题考查了平行线的判定与性质,解决本题的关键是掌握平行线的判定与性质.。

沪科版七年级数学下册第十章《10.2 平行线的判定(第3课时)》公开课课件

沪科版七年级数学下册第十章《10.2 平行线的判定(第3课时)》公开课课件
( B) A ①②③④ B ①③④ C ①③ D ④
27 b
83
A
3、如图 ∠ C=61。
当∠ABE= 61
度时,EF∥CN
F
B
E
当∠CBF= 61 度时,EF∥CN
C
N
平行线的判定示意图
判定
同位角相等 内错角相等 同旁内角互补
两直线平行 位置关系
数量关系
课堂作业
必做:课本123第2题
选做:如图,BC、DE分别平分ABD和BDF,
还有其他解法吗?
平行线的判定方法3
两条直线被第三条直线所截,如果同旁内角互补, 那么这两条直线平行. 简单说成:
同旁内角互补,两直线平行
c
a
1
34
b
2
例题1.
如图:
① ∵ ∠1 =___∠_2_ (已知)
C,两直线平行)
② ∵ ∠2 = ∠4 (已知)
∴ CD∥BF (同位角相等,两直线平行)
思考
两条直线被第三条直线所截, 同时得到同位角、内错角和 同旁内角,由同位角相等可 以判定两直线平行,那么, 能否利用内错角和同旁内角 来判定两直线平行呢?
探究1:如果 ∠2 = ∠3,能否推出 a//b呢?
c 1
a
3
2 b
解: ∵ ∵∠2 = ∠3 (已知)
∠ 1= ∠ 3 (对顶角相等) ∴ ∠1= ∠2 (等量代换) ∴ a∥b (同位角相等,两直线平行)
且1=2,请找出平行线,并说明理由。
课外作业
A
C
基础训练同步
D
预习10.3平行线的性质
13
4
2
B
E
F
•不习惯读书进修的人,常会自满于现状,觉得再没有什么事情需要学习,于是他们不进则退。经验丰富的人读书用两只眼睛,一只眼睛看到纸面上的话,另 一眼睛看到纸的背面。2022年3月30日星期三2022/3/302022/3/302022/3/30 •书籍是屹立在时间的汪洋大海中的灯塔。2022年3月2022/3/302022/3/302022/3/303/30/2022 •正确的略读可使人用很少的时间接触大量的文献,并挑选出有意义的部分。2022/3/302022/3/30March 30, 2022 •书籍是屹立在时间的汪洋大海中的灯塔。

人教版七年级下册数学《平行线的判定》相交线与平行线说课研讨复习教学课件

人教版七年级下册数学《平行线的判定》相交线与平行线说课研讨复习教学课件

是为什么?
解题秘方:找出AB,CD 被
AE 所截形成的同旁内角,利
用两个角之间的数量关系来
说明这两条直线平行.
感悟新知
解:因为∠ 1= ∠ AOD(对顶角相等),∠ 1=70°, 所以∠ AOD=70°. 又因为∠ A=110°, 所以∠ A+ ∠ AOD=180°. 所以AB ∥ CD(同旁内角互补,两直线平行).
(3)直线l1,l2位置关系如何?
两直线平行
课件
课件
课件
课件
课件
课件
课件
个人简历:课件/jianli/
课件
课件
手抄报:课件/shouchaobao/
课件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
.P
A
B
1
相关概念:判定1:同位角相等,两直线平行
平行线判定1:
两条直线被第三条直线所截 ,
如果同位角相等, 课件 课件 课件 课件 课件
2. 表达方式:如图5.2-12, 因为∠ 1+ ∠ 2=180°(已 知), 所以a ∥ b(同旁内角互补, 两直线平行).
感悟新知
特别解读 利用同旁内角说明两直线平行时,同旁内角之
间的关系是互补,不是相等.
感悟新知
例 3 如图5.2-13, 直线AE,CD 相交于点O, 如果
∠ A=110°,∠ 1=70°,就可以说明AB ∥ CD,这
【例1】如图,∠1=∠2=35°,
则AB与CD的关系是___A__B_∥_C_D____,
理课 课 课件 件 件 由课课课件件件 是___同___位__角__相__等__,__两__直__线__平__行__.

北师大版初中数学八年级上册《第七章 平行线的证明 3 平行线的判定》 优课教学设计_0

北师大版初中数学八年级上册《第七章 平行线的证明 3 平行线的判定》 优课教学设计_0

7.3平行线的判定(教学设计)【教材分析】本课是义务教育北师大版数学8年级上册第7章《平行线的证明》第3节。

课程内容是7年级下册已学过的《平行线与相交线》的继续,也是后继学习、探究平移及几何推理等内容的基础,是空间与图形的重要组成部分。

教学中,要引导学生区分哪些结论可以作为证明的依据,哪些结论不可以作为证明的依据,要注重引导学生分析命题的条件和结论,并据此准确画出图形,并用符号语言来描述命题的条件和结论。

由于学生第一次学习命题的证明,教师要借助规范的板书进行示范,让学生初步掌握命题证明的一般步骤、格式。

【学情分析】学生在七年级下册已经认识了平行线,并初步探究了两直线平行的条件,并具备了初步的作图能力,对平行线的理解也比较充分,能较顺利的解决相关简单的实际问题,但对问题的分析还处于简单的说理层面。

同时,在本章的学习中,学生已认识并了解了命题的条件和结论,以及公理、定理等相关概念,已具备学习本节课的知识基础。

但对于命题的证明,不论是问题形式还是解决方法,学生都还非常陌生,更缺乏通过合情推理来判断结论正确与否的能力。

【教学目标】1.通过观摩和亲手操作,让学生学会用平行公理证明“内错角相等,两直线平行”、“同旁内角互补,两直线平行”,并能简单应用这些结论.2.使学生经历命题证明的一般步骤和书写格式的训练过程,感受推理的严谨性,发展初步的演绎推理能力.【教学重点、难点】1.重点:使经历命题证明的一般步骤,根据命题的条件和结论,将命题的文字语言转化成图形语言和符号语言.2.难点:根据命题的条件和结论,准确画出图形,写出已知和求证.【教学方法】示范讲解与讨论探究相结合.【教学过程】环节1:复习引入教师活动:同学们,在七年级的学习中,我们认识了平行线,并对平行线的条件和特征做了初步的探究。

请问,什么是平行线(定义)?学生活动:举手口答老师的提问。

教师活动:对学生的回答作适当的评价,并继续追问:那么,除了平行线的定义外,我们还有哪些方法判断两条直线平行呢?学生活动:举手发言(并互相补充)。

人教版七年级下5.3平行线的性质教学设计(3课时)

人教版七年级下5.3平行线的性质教学设计(3课时)

第1课时平行线的性质【教学过程】一、创设实验情境,引发学生学习兴趣,引入本节课要研究的内容.试验1:教师以窗格为例,已知窗户的横格是平行的,用三角尺进行检验,发现同位角相等.这个结论是否具有一般性呢?试验2:学生试验(发印制好的平行线纸单). (1)要求学生任意画一条直线c 与直线a 、b 相交; (2)选一对同位角来度量,看看这对同位角是否相等. 学生归纳:两条平行线被第三条直线所截,同位角相等.二、主体探究,引导学生探索平行线的其他性质以及对命题有一个初步的认识. 活动1 问题讨论:我们知道两条平行线被第三条直线所截,不但形成有同位角,还有内错角、同旁内角.我们已经知道“两条平行线被第三条直线所截,同位角相等”.那么请同学们想一想:两条平行线被第三条直线所截,内错角、同旁内角有什么关系?(分组讨论,每一小组推荐一位同学回答).教师活动设计:引导学生讨论并回答.学生口答,教师板书,并要求学生学习推理的书写格式. 活动2总结平行线的性质.性质2:两条平行线被第三条直线所截,内错角相等. 简单说成:两直线平行,内错角相等.性质3:两条平行直线被第三条直线所截,同旁内角互补. 简单说成:两直线平行,同旁内角互补. 活动3如何理解并记忆性质2、3,谈谈你的看法! (1)性质2、3分别已知什么?得出什么? (2)它与前面学习的平行线的判定有什么区别? (3)性质2、3的应用格式. ∵a //b (已知)∴∠3=∠2(两直线平行,内错角相等). ∵ a //b (已知)∴∠2+∠4=180°(两直线平行,同旁内角互补).三、拓展创新、应用提高,引导学生运用知识解决问题,培养学生思维的灵活性和深刻ab3 c124性活动4解决问题.问题1:如图是举世闻名的三星堆考古中发掘出的一个梯形残缺玉片,工作人员从玉片上已经量得∠A=115°,∠D=100°.请你求出另外两个角的度数.(梯形的两底是互相平行的)学生活动设计:学生思考后请学生回答,注意启发学生回答为什么,进一步细化为较为详细的推理,并书写出.〔解答〕因为ABCD是梯形.所以AD//BC.所以∠A+∠B=180°,∠D+∠C=180°.又∠A=115°,∠D=100°.所以∠B=65°,∠C=80°.问题2:如图,一条公路两次拐弯后,和原来的方向相同,也就是拐弯前后的两条路互相平行.第一次拐的角∠B等于142°,第二次拐的角∠C是多少度?为什么?学生活动设计:学生根据拐弯前后的两条路互相平行容易得到∠B和∠C相等,于是得到∠C=142°问题3:如图,一束平行光线AB与DE射向一个水平镜面后被反射,此时∠1=∠2,∠3=∠4.(1)∠1、∠3的大小有什么关系?∠2与∠4呢?(2)反射光线BC与EF也平行吗?BCA DB C学生活动设计:从图中可以看出:∠1与∠3是同位角,因为AB 与DE 是平行的,所以∠1=∠3.又因为∠1=∠2,∠3=∠4,所以可得出∠2=∠4.又因为∠2与∠4是同位角,所以BC ∥EF .教师活动设计:这个问题是平行线的特征与直线平行的条件的综合应用.由两直线平行,得到角的关系用到的是平行线的特征;反过来,由角的关系得到两直线平行,用到的是直线平行的条件.同学们要弄清这两者的区别.〔解答〕略. 问题4:如图,若AB //CD ,你能确定∠B 、∠D 与∠BED 的大小关系吗?说说你的看法.学生活动设计:由于有平行线,所以要用平行的知识,而∠B 、∠D 与∠DEB 这三个角不是三类角中的任何一类,因此要考虑构造图形,若过点E 作EF //AB ,则由AB //CD 得到EF //CD ,于是图中出现三条平行线,同时出现了三类角,根据平行线的性质可以得到:∠B =∠BEF 、∠D =∠DEF ,因此∠B +∠D =∠BEF +∠DEF =∠DEB .教师活动设计:在学生探索的过程中,特别是构造图形这个环节,适当引导,让学生养成“缺什么补什么”的意识,培养学生的逻辑推理能力.〔解答〕过点E 作EF //AB . 所以∠B =∠BEF . 因为AB //CD . 所以EF //CD . 所以∠D =∠DEF .所以∠B +∠D =∠BEF +∠DEF =∠DEB .即∠B +∠D =∠DEB . 变式思考:如图,AB //CD ,探索∠B 、∠D 与∠BED 的大小关系(∠B +∠D +∠DEB =360°).四、小结与作业.FBDCEAEDCB A小结:1.平行线的三个性质:两直线平行,同位角相等.两直线平行,内错角相等.两直线平行,同旁内角互补.2.平行线的性质与平行线的判定有什么区别?判定:已知角的关系得平行的关系.证平行,用判定.性质:已知平行的关系得角的关系.知平行,用性质.作业:习题5.3.第2课时平行线的性质与判定及其综合运用一、教学目标1.理解平行线的性质与平行线的判定是相反的问题,掌握平行线的性质.2.会用平行线的性质进行推理和计算.3.通过平行线性质定理的推导,培养学生观察分析和进行简单的逻辑推理的能力.4.通过学习平行线的性质与判定的联系与区别,让学生懂得事物是普遍联系又相互区别的辩证唯物主义思想.二、学法引导1.教师教法:采用尝试指导、引导发现法,充分发挥学生的主体作用,体现民主意识和开放意识.2.学生学法:在教师的指导下,积极思维,主动发现,认真研究.三、重点·难点解决办法(一)重点平行线的性质公理及平行线性质定理的推导.(二)难点平行线性质与判定的区别及推导过程.(三)解决办法1.通过教师创设情境,学生积极思维,解决重点.2.通过学生自己推理及教师指导,解决难点.3.通过学生讨论,归纳小结.四、课时安排1课时五、教具学具准备投影仪、三角板、自制投影片.六、师生互动活动设计1.通过引例创设情境,引入课题.2.通过教师指导,学生积极思考,主动学习,练习巩固,完成新授.3.通过学生讨论,完成课堂小结.七、教学步骤(一)明确目标掌握和运用平行线的性质,进行推理和计算,进一步培养学生的逻辑推理能力.(二)整体感知以情境创设导入新课,以教师引导,学生讨论归纳新知,以变式练习巩固新知.(三)教学过程创设情境,复习导入师:上节课我们学习了平行线的判定,回忆所学内容看下面的问题(出示投影片1).1.如图1,(1)∵(已知),∴().(2)∵(已知),∴().(3)∵(已知),∴().2.如图2,(1)已知,则与有什么关系?为什么?(2)已知,则与有什么关系?为什么?图2 图33.如图3,一条公路两次拐弯后,和原来的方向相同,第一次拐的角是,第二次拐的角是多少度?学生活动:学生口答第1、2题.师:第3题是一个实际问题,要给出的度数,就需要我们研究与判定相反的问题,即已知两条直线平行,同位角、内错角、同旁内角有什么关系,也就是平行线的性质.板书课题:【教法说明】通过第1题,对上节所学判定定理进行复习,第2题为性质定理的推导做好铺垫,通过第3题的实际问题,引入新课,学生急于解决这个问题,需要学习新知识,从而激发学生学习新知识的积极性和主动性,同时让学生感知到数学知识来源于生活,又服务于生活.探究新知,讲授新课师:我们都知道平行线的画法,请同学们画出直线的平行线,结合画图过程思考画出的平行线,找一对同位角看它们的关系是怎样的?学生活动:学生在练习本上画图并思考.学生画图的同时教师在黑板上画出图形(见图4),当同学们思考时,教师有意识地重复演示过程.【教法说明】让同学们动手、动脑、观察思考,使学生养成自己发现问题得出规律的习惯.学生活动:学生能够在完成作图后,迅速地答出:这对同位角相等.提出问题:是不是每一对同位角都相等呢?请同学们任画一条直线,使它截平行线与,得同位角、,利用量角器量一下;与有什么关系?学生活动:学生按老师的要求画出图形,并进行度量,回答出不论怎样画截线,所得的同位角都相等.根据学生的回答,教师肯定结论.师:两条直线被第三条直线所截,如果这两条直线平行,那么同位角相等.我们把平行线的这个性质作为公理.[板书]两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等.【教法说明】在教师提出问题的条件下,学生自己动手,实际操作,进行度量,在有了大量感性认识的基础上,动脑分析总结出结论,不仅充分发挥学生主体作用,而且培养了学生分析问题的能力.提出问题:请同学们观察图5的图形,两条平行线被第三条直线所截,同位角是相等的,那么内错角、同旁内角有什么关系呢?学生活动:学生观察分析思考,会很容易地答出内错角相等,同分内角互补.师:教师继续提问,你能论述为什么内错角相等,同旁内角互补吗?同学们可以讨论一下.学生活动:学生们思考,并相互讨论后,有的同学举手回答.【教法说明】在前面复习引入的第2题的基础上,通过学生的观察、分析、讨论,此时学生已能够进行推理,在这里教师不必包办代替,要充分调动学生的主动性和积极性,进而培养学生分析问题的能力,在学生有成就感的同时也激励了学生的学习兴趣.教师根据学生回答,给予肯定或指正的同时板书.[板书]∵(已知),∴(两条直线平行,同位角相等).∵(对项角相等),∴(等量代换).师:由此我们又得到了平行线有怎样的性质呢?学生活动:同学们积极举手回答问题.教师根据学生叙述,板书:[板书]两条平行经被第三条直线所截,内错角相等.简单说成:西直线平行,内错角相等.师:下面清同学们自己推导同分内角是互补的,并归纳总结出平行线的第三条性质.请一名同学到黑板上板演,其他同学在练习本上完成.师生共同订正推导过程和第三条性质,形成正确板书.[板书]∵(已知),∴(两直线平行,同位角相等).∵(邻补角定义),∴(等量代换).即:两条平行线被第三条直线所截,同旁内角互补.简单说成,两直线平行,同旁内角互补.师:我们知道了平行线的性质,在今后我们经常要用到它们去解决、论述一些问题,所需要知道的条件是两条直线平行,才有同位角相等,内错角相等,同旁内角互补,即它们的符号语言分别为:∵(已知见图6),∴(两直线平行,同位角相等).∵(已知),∴(两直线平行,内错角相等).∵(已知),∴.(两直线平行,同旁内角互补)(板书在三条性质对应位置上.)尝试反馈,巩固练习师:我们知道了平行线的性质,看复习引入的第3题,谁能解决这个问题呢?学生活动:学生给出答案,并很快地说出理由.练习(出示投影片2):如图7,已知平行线、被直线所截:图7(1)从,可以知道是多少度?为什么?(2)从,可以知道是多少度?为什么?(3)从,可以知道是多少度,为什么?【教法说明】练习目的是巩固平行线的三条性质.变式训练,培养能力完成练习(出示投影片3).如图8是梯形有上底的一部分,已知量得,,梯形另外两个角各是多少度?图8学生活动:在教师不给任何提示的情况下,让学生思考,可以相互之间讨论并试着在练习本上写出解题过程.【教法说明】学生在小学阶段对于梯形的两底平行就已熟知,所以学生能够想到利用平行线的同旁内角互补来找和的大小.这里学生能够自己解题,教师避免包办代替,可以培养学生积极主动的学习意识,学会思考问题,分析问题.学生板演教师指正,在几何里我们每一步结论的得出都要有理有据,规范学生的解题思路和格式,培养学生严谨的学习态度,修改学生的板演过程,可形成下面的板书.[板书]解:∵(梯形定义),∴,(两直线平行,同旁内角互补).∴.∴.变式练习(出示投影片4)1.如图9,已知直线经过点,,,.(1)等于多少度?为什么?(2)等于多少度?为什么?(3)、各等于多少度?2.如图10,、、、在一条直线上,.(1)时,、各等于多少度?为什么?(2)时,、各等于多少度?为什么?学生活动:学生独立完成,把理由写成推理格式.【教学说明】题目中的为什么,可以用语言叙述,为了培养学生的逻辑推理能力,最好用推理格式说明.另外第2题在求得一个角后,另一个角的解法不惟一.对学生中出现的不同解法给予肯定,若学生未想到用邻补角求解,教师应启发诱导学生,从而培养学生的解题能力.(四)总结、扩展(出示投影片1第1题和投影片5)完成并比较.如图11,(1)∵(已知),∴().(2)∵(已知),∴().(3)∵(已知),∴().学生活动:学生回答上述题目的同时,进行观察比较.师:它们有什么不同,同学们可以相互讨论一下.(出示投影6)学生活动:学生积极讨论,并能够说出前面是平行线的判定,后面是平行线的性质,由角的关系得到两条直线平行的结论是平行线的判定,反过来,由已知直线平行,得到角相等或互补的结论是平行线的性质.【教法说明】通过有形的具体实例,使学生在有充足的感性认识的基础上上升到理性认识,总结出平行线性质与判定的不同.巩固练习(出示投影片7)1.如图12,已知是上的一点,是上的一点,,,.(1)和平行吗?为什么?图12(2)是多少度?为什么?学生活动:学生思考、口答.【教法说明】这个题目是为了巩固学生对平行线性质与判定的联系与区别的掌握.知道什么条件时用判定,什么条件时用性质、真正理解、掌握并应用于解决问题.八、布置作业(一)必做题课本第99~100页A组第11、12题.(二)选做题课本第101页B组第2、3题.作业答案A组11.(1)两直线平行,内错角相等.(2)同位角相等,两直线平行.两直线平行,同旁内角互补.(3)两直线平行,同位角相等.对顶角相等.12.(1)∵(已知),∴(内错角相等,两直线平行).(2)∵(已知),∴(两直线平行,同位角相等),(两直线平行,同位角相等).B组2.∵(已知),∴(两直线平行,同位角相等),(两直线平行,内错角相等).∵(已知),∴(两直线平行,同位角相等),(同上).又∵(已证),∴.∴.又∵(平角定义),∴.3.平行线的判定与平行线的性质,它们的题设和结论正好相反.5.3.2 命题、定理、证明一、教学目标1.了解“证明”的必要性和推理过程中要步步有据.2.了解综合法证明的格式和步骤.3.通过一些简单命题的证明,初步训练学生的逻辑推理能力.4.通过证明步骤中由命题画出图形,写出已知、求证的过程,继续训练学生由几何语句正确画出几何图形的能力.5.通过举例判定一个命题是假命题,使学生学会反面思考问题的方法.二、学法引导1.教师教法:尝试指导,引导发现与讨论相结合.2.学生学法:在教师的指导下,积极思维,主动发现.三、重点·难点及解决办法(-)重点证明的步骤和格式是本节重点.(二)难点理解命题,分清其题设和结论,正确对照命题画出图形,写出已知、求证.(三)解决办法通过学生分组讨论,教师归纳得出证明的步骤和格式,再以练习加以巩固,解决重点、难点及疑点.四、课时安排l课时五、教具学具准备投影仪、三角板、自制胶片.六、师生互动活动设计1.通过引例创设情境,点题,引入新课.2.通过情境教学,学生分组讨论,归纳总结及练习巩固等手段完成新授.3.通过提问的形式完成小结.七、教学步骤(-)明确目标使学生严密推理过程,掌握推理格式,提高推理能力。

专题2.2 平行线的判定【八大题型】(举一反三)(北师大版)(解析版)

专题2.2 平行线的判定【八大题型】(举一反三)(北师大版)(解析版)

合除外).
【变式 1-2】(2023 下·七年级单元测试)同一平面内有三条直线,如果只有两条平行,那么它们交点的个
数为( )
A.0
B.1
C.2
D.3
【答案】C
【分析】根据题意先画出图形即可得到答案.
【详解】解:根据题意,第三条直线与这两条平行直线各有一个交点.如图,
故选:C. 【点睛】本题考查的是平面内,直线的位置关系的理解,相交线的交点的含义,利用数形结合的方法解题
A.内错角相等,两直线平行
B.同位角相等,两直线平行 第7页 共 34页
C.两直线平行,同位角相等
D.两直线平行,内错角相等
【答案】A
【分析】根据内错角相等,两直线平行直接得到答案.
【详解】解:由题意得∠1 = ∠2,
根据内错角相等,两直线平行可得�1 ∥ �2 . 故选:A.
【点睛】此题考查了平行线的判定,熟练掌握内错角相等,两直线平行是解题的关键.
【变式 3-2】(2023 下·河北石家庄·七年级校考期末)数学课上老师要求同学们用三角板画已知直线�的平 行线�,如图是苗苗和小华画图的过程.老师说苗苗和小华两位同学的画法都是正确的.甲、乙两位同学分 别对苗苗和小华画平行线的依据进行了说明: 甲同学说:苗苗的画图依据是“同位角相等,两直线平行”; 乙同学说:小华的画图依据是“在同一平面内,垂直于同一条直线的两条直线平行”. 对于甲、乙两同学的说法,下列判断正确的是( )
(1)过点�画直线� ∥� ;过点�画直线� ∥� ; (2)过点 画直线푀 ⊥ � ; (3)试判断直线� 与直线� 的位置关系. 【答案】(1)见解析;
第4页 共 34页
(2)见解析; (3)� ∥� ,理由见解析. 【分析】(1)根据网格线的特点作图; (2)根据网格线的特点作图; (3)根据平行线的传递性证明. 【详解】(1)解:如图,� ,� 即为所求;

平行线及其判定知识点总结、例题解析

平行线及其判定知识点总结、例题解析

平行线及其判定知识点总结、例题解析知识点1【平行线】在同一平面内,不重合的两条直线的只有两种位置关系:平行和相交。

1、平行线的定义:在同一平面内,不相交的两条直线叫平行线.记作:a∥b;读作:直线a平行于直线b.2、平行线的画法用直尺和三角板作平行线的步骤:①落:用三角板的一条斜边与已知直线重合②靠:用直尺紧靠三角板的一条直角边③推:沿着直尺平移三角板,使与已知直线重合的斜边通过已知点④画:沿着这条斜边画一条直线,所画直线与已知直线平行3、平行线公理及推论(1)平行公理:经过直线外一点,有且只有一条直线与这条直线平行.注意区别垂线的性质:在同一平面内,过一点有且只有一条直线与已知直线垂直。

(2)推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.平行公理的推论可以看做是平行线的一种判定方法,在解题中要注意该结论在证明直线平行时应用。

如果a∥b,b∥c,那么a∥c。

【例题1】下列叙述正确的是()A、两条直线不相交就平行B、在同一平面内,不相交的两条线叫做平行线C、在同一平面内,不相交的两条直线叫做平行线D、在同一平面内,不相交的两条线段叫做平行线【答案】C【例题2】在同一平面内,不重合的两条直线的位置关系有()A、平行或垂直B、平行或相交C、垂直或相交D、平行、垂直或相交【答案】B【例题3】下列说法中正确的序号有_______①一条直线的平行线只有一条:②过一点与已知直线平行的直线只有一条:③因为a∥b,c∥d,所以a∥d:④经过直线外一点有且只有一条直线与己知直线平行【解析】①一条直线有无数条平行线;②必须过直线外一点,如果点在直线上,会出现重合。

【答案】④【例题4】下列说法:①过两点有且只有一条直线;②两条直线不平行必相交;③过一点有且只有一条直线与已知直线垂直;④过一点有且只有一条直线与已知直线平行。

其中正确的有()。

A、1个;B、2个;C、3个;D、4个。

【解析】②③需在同一平面内,④过直线外一点【答案】A知识点2【平行线的判定】(1)判定方法1:两条直线被第三条所截,如果同位角相等,那么这两条直线平行.简称:同位角相等,两直线平行.∵∠3=∠2∴AB∥CD(同位角相等,两直线平行)(2)判定方法2:两条直线被第三条所截,如果内错角相等,那么这两条直线平行.简称:内错角相等,两直线平行.∵∠1=∠2∴AB∥CD(内错角相等,两直线平行)(3)判定方法3:两条直线被第三条所截,如果同旁内角互补,那么这两条直线平行.简称:同旁内角互补,两直线平行.∵∠4+∠2=180°∴AB∥CD(同旁内角互补,两直线平行判定方法补充:①两条直线都和第三条直线平行,那么这两条直线平行.②在同一平面内,如果两条直线同时垂直于同一条直线,那么这两条直线平行.【例题5】如图所示,直线a、b被直线c所截,现给出下列四个条件:①∠1=∠5:②∠1=∠7:③∠2+∠3=180°:④∠4=∠7,其中能判断a∥b的条件的序号是()A、①②B、①③C、①④D、③④【答案】A【例题6】如图,下列条件中,不能判断直线l1∥l2的是()A、∠1=∠3B、∠2=∠3C、∠4=∠5D、∠2+∠4=180°【答案】B【例题7】如图,已知BE平分∠ABC,CF平分∠BCD,∠1=∠2,求证:AB∥CD【答案】∵∠1=∠2∴2∠1=2∠2,即∠ABC=∠BCD∴AB∥CD(内错角相等,两直线平行)【例题8】如图,在四边形ABCD中,AD∥BC,∠ABC=∠CDA,BE、DF分别是∠ABC和∠ADC 的平分线,求证:BE∥DF【解析】想要证明EB∥DF,根据平行钱的判定方法,只要证明∠AEB=∠ADF即可【答案】证明:∵AD∥BC∴∠AEB=∠EBC∵∠ABC=∠ADC,BE、DF分别是∠ABC和∠ADC的平分线∴∠EBC=∠ADF∴∠AEB=∠ADF∴EB∥DE【例题9】已知,如图,EF⊥EG,GM⊥EG,∠1=∠2,AB与CD平行吗?请说明理由【答案】解:AB∥CD。

(压轴题)初中数学八年级数学上册第七单元《平行线的证明》检测卷(包含答案解析)(3)

(压轴题)初中数学八年级数学上册第七单元《平行线的证明》检测卷(包含答案解析)(3)
∵∠1+∠2+∠B=180°,
∴AD∥BC(同旁内角互补,两直线平行),
不能得出AB∥BC;
∴C、D不可以;
故选B.
10.D
解析:D
【解析】
因为∠DAM和∠CBM是直线AD和BC被直线AB的同位角,因为∠DAM=∠CBM根据同位角相等,两直线平行可得AD∥BC,所以D选项错误,故选D.
11.B
解析:B
7.C
解析:C
【分析】
根据平行线的判定定理判断即可.
【详解】
解:∵OE平分∠BOD,∠BOE=55°,
∴∠BOD=2∠BOE=110°,
∵∠D=110°,
∴∠BOD=∠D,
∴CD∥AB,故A不符合题意;
∵OF⊥OE,
∴∠FOE=90°,∠DOF=35°,
∴∠DOE=55°,
∵OE平分∠BOD,
∴∠DOB=2∠DOE=110°,
A.∵∠1=∠3,∴AB∥CD(内错角相等,两直线平行)
B.∵AB∥CD,∴∠1=∠3(两直线平行,内错角相等)
C.∵AD∥BC,∴∠BAD+∠ABC=180°(两直线平行,同旁内角互补)
D.∵∠DAM=∠CBM,∴AB∥CD(两直线平行,同位角相等)
11.如图,AB∥DE, 则 的度数为()
A. B. C. D.
【详解】
解:①∵
∴ 故①正确;
②∵
∴ 即: ,故②正确;
③∵
∴ ;
∴ 即: ,故③正确;
④∵
∴ ;
∴ ,故④正确;
⑤∵
∴ ,故⑤正确;
⑥根据已知条件不能证得 ,故⑥错误;
⑦∵
∴ ;
∴ ,故⑦正确;
故①②③④⑤⑦,正确的6个.

人教版七年级下册数学课本知识点归纳完整版(最新最全)

人教版七年级下册数学课本知识点归纳完整版(最新最全)

人教版七年级下册数学课本知识点归纳第五章相交线与平行线一、相交线两条直线相交,形成4个角。

1.邻补角:两个角有一条公共边,它们的另一条边互为反向延长线。

具有这种关系的两个角,互为邻补角。

如:∠1、∠2。

2.对顶角:两个角有一个公共顶点,并且一个角的两条边,分别是另一个角的两条边的反向延长线,具有这种关系的两个角,互为对顶角。

如:∠1、∠3。

3.对顶角相等。

二、垂线1.垂直:如果两条直线相交成直角,那么这两条直线互相垂直。

2.垂线:垂直是相交的一种特殊情形,两条直线垂直,其中一条直线叫做另一条直线的垂线。

3.垂足:两条垂线的交点叫垂足。

4.垂线特点:过一点有且只有一条直线与已知直线垂直。

5.点到直线的距离:直线外一点到这条直线的垂线段的长度,叫点到直线的距离。

连接直线外一点与直线上各点的所有线段中,垂线段最短。

三、同位角、内错角、同旁内角两条直线被第三条直线所截形成8个角。

1.同位角:在两条直线的上方,又在直线EF的同侧,具有这种位置关系的两个角叫同位角。

如:∠1和∠5。

2.内错角:在在两条直线之间,又在直线EF的两侧,具有这种位置关系的两个角叫内错角。

如:∠3和∠5。

3.同旁内角:在在两条直线之间,又在直线EF的同侧,具有这种位置关系的两个角叫同旁内角。

如:∠3和∠6。

四、平行线(一) 平行线1.平行:两条直线不相交。

互相平行的两条直线,互为平行线。

a∥b(在同一平面内,不相交的两条直线叫做平行线。

)2.平行公理:经过直线外一点,有且只有一条直线与这条直线平行。

3.平行公理推论:①平行于同一直线的两条直线互相平行。

②在同一平面内,垂直于同一直线的两条直线互相平行。

(二)平行线的判定:1.同位角相等,两直线平行。

2.内错角相等,两直线平行。

3.同旁内角互补,两直线平行。

(三)平行线的性质1.两条平行线被第三条直线所截,同位角相等。

2.两条平行线被第三条直线所截,内错角相等。

3.两条平行线被第三条直线所截,同旁内角互补。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平行线的判定
班级:教科院07教技专升本
小组成员:许向琴刘伟伟曹磊程妮张文文
设计时间:2020年.6
指导教师:刘志华
一、教学目标
(一)知识与技能
1.能说出平行线的判定公理,即“同位角相等,两直线平行”;能说出判定公理的第一个推论,即“内错角相等,两直线平行”。

2.会用数学语言表示平行线判定公理及其推论,并能根据它们做简单的推理证明。

此外,本节课的教学中还介绍了两种重要的数学思想方法,即化归和分类的思想方法。

3.结合现实生活中一些平行线的例子,能够运用判定定理进行具体的分析。

(二)过程与方法
1.能够通过自主提出问题、老师引导、动脑思考、同桌交流、表达反馈的学习过程,体验和感悟探究的一般学习过程;
2.通过体验,将学生学到的数学知识、方法用于解决生活中的实际问题,感受数学的价值。

(三)情感态度价值观
1.培养学生合作的意识和能力,能从学习中体验合作的乐趣。

2. 使学生了解知识来源于实践,又服务于实践,只有学好文化知识,才有解决实际问题的本领,从而对学生进行学习目的的教育
二、学习者特征分析
(一)知识基础
本节课是平行线的判定的第一课时,学生对平行线的概念已有了一定的了解;能够结合现实生活进行举例;
(二)能力基础
1.学生思维活跃,能积极参与讨论,口头表达能力一般。

2.已具有一定的抽象思维能力,但还需要借助一些具体形象事物的支持。

3.具备一定的分析、概括、归纳的能力。

4.在教师给予一定支持的情况下,学生具有一定的自主学习能力与合作学习能力。

5.学生的自控能力还不强,需要教师做好课堂的调控。

(三)情感态度
1.学生能够认识到数学知识对个人学习和生活的重要性以及数学在各门课程学习中的重要地位,所以大多数学生乐于并能够认真学习数学。

2.学生对枯燥的数学知识的学习兴趣不浓,但对数学知识的实际应用内容非常感兴趣。

三、教学重点、难点
1.能够推导出判定直线平行的主法。

2.会进行简易地逻辑推理。

3.能够从比较复杂的图形中找出符合平行线判定方法的基本图形。

四、教学方法:探究式,合作学习,
五、教学过程
(一)复习回顾
通过上一节课的学习,学生对平行线的意义已有了较深的认识,了解了平行线的概念,对它有了直观的、感性的认识,首先,在学习新课前,我们先进行简单的复习回顾,思考如下的问题:
参照教科书第12页图,制作三根木条组成的教具模型,或让学生用纸条制作类似的教具。

展示时,可先摆成一般情况的三条直线相交,让学生指出“三线八角”中各对角的关系名称,既复习旧知,又为后面新课学习作好准备。

随后按照教科书第13页所述对其进行旋转变化,并提问:两个同位角(或内错角)的大小有什么关系时,这两根木条互相平行?(让学生大胆猜想。


(二)创设情境
参考教科书第13页的思考,再次引发思考,进行小组讨论,合作交流。

(三)新课讲授
【教法说明】通过教科书12页的思考,使学生回顾上节所学知识,在于强化平行线的定义,建立感性的认识。

再由13页的思考,引入新课。

教师给出类似现实生活中两条直线被第三条直线所截的模型,转动,让学生观察,转动到不同位置时,的大小有无变化,再让从小变大,说出直线与的位置关系变化规律.
【教法说明】让学生充分观察,在教师的启发式提问下,分析、思考、总结出结论.
学生活动:转动到不同位置时,也随着变化,当从小变大时,直线从原来在右边与直线相交,变到在左边与相交.
师:在这个过程中,存在一个与不相交即与平行的位置,那么多大时,直线呢?也就是说,我们若判定两条直线平行,需要找角的关系.师:下面先请同学们回忆平行线的画法,过直线外一点画的平行线.
学生活动:学生在练习本上完成,教师在黑板上演示.
师:由刚才的演示,请同学们考虑,画平行线的过程,实际上是保证了什么?
学生:保证了两个同位角相等.
师:由此你能得到什么猜想?
学生:两条直线被第三条直线所截,如果同位角相等,那么两条直线平行.
师:我们的猜想正确吗?会不会有某一特定的时刻,即使同位角不等,而两条直线也平行呢?
教师用计算机演示运动变化过程.在观察实验之前,让学生看清角和角,而后开始实验,让学生充分观察并讨论能得出什么结论.
学生活动:学生小组观察、讨论、分析.
总结了,当时,不平行,而无论取何值,只要,、就平行.
教师引导学生以小组表达出结论,并告诉学生这个结论称为平行线的判定公理.
[板书]两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.
简单说成:同位角相等,两直线平行.
即:∵,
∴(同位角相等,两直线平行).
【教法说明】通过实际画图和用计算机演示运动—变化过程,让学生确信公理的正确.尝试反馈,巩固练习(出示投影).
1.如图所示,直线a,b,任意画一条直线C,使与a,b,相交,量得∠1=65, ∠2=65,那么a//b,为什么?
(出示投影)
2.直线、被直线所截.
1.见图,如果,那么与有什么关系?
2.与有什么关系?
3.与是什么位置关系的一对角?
学生活动:学生观察,思考分析,给出答案:时,,与相等,与是内错角.
师:与满足什么条件,可以得到?为什么?
学生活动:,因为,通过等量代换可以得到.
师:时,你进而可以得到什么结论?
学生活动:.
师:由此你能总结出什么正确结论?
学生活动:内错角相等,两直线平行.
师:也就是说,我们得到了判定两直线平行的另一个方法:
[板书]两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.
简单说成:内错角相等,两直线平行.
【教法说明】通过教师的启发、引导式提问法,引导学生自己去发现角之间的关系,进而归纳总结出结论,主要采用探讨问题的方式,能够培养学生积极思考、善于动脑分析的良好学习习惯.
师:上面的推理过程,可以写成
∵(已知),
(对顶角相等),
∴.
[∵(已证)],
∴(同位角相等,两直线平行).
【教法说明】这里的推理过程可以放手让学生试着说,这样才能使学生大胆尝试,培养他们勇于进取的精神.
教师指出:方括号内的“∵”,就是上面刚刚得到的“∴
”,在这种情况下,方括号内这一步可以省略.
尝试反馈,巩固练习(出示投影)
1.如图1,直线、被直线所截.
(1)量得,,就可以判定,它的根据是什么?
(2)量得,,就可以判定,它的根据是什么?
`
图1
学生活动:学生口答.
【教法说明】这组题旨在巩固平行线的判定公理和判定方法的掌握,使学生熟悉并会用于解决简单的说理问题.
变式训练,培养能力
(出示投影)
观察如图所示的长方体,用符号表示下列两棱的位置关系:
A1B1___AB,AA1___AB,A1D1___C1D1,AD___BC,你能在教室里找到这些位置关系的实例吗?与同学讨论一下。

学生活动:学生思考后回答问题.教师给以指正并启发、引导得出答案.【教法说明】这组题不仅让学生认识变式图形,加强识图能力,同时培养学生的发散思维,也就是培养学生从多角度、全方位考虑问题,从而得到一题多解.提高了学生的解题能力.
(四)总结扩展
1.熟知判定平行线的两个判定定理
2.结合判一定理的证明过程,熟悉表达推理证明的要求,初步了解推理证明的格式.
六、布置作业
课本第16页习题5.2第1.2.3题.
七、评价
同位角相等,两直线平行
内错角相等,两直线平行。

相关文档
最新文档