文留油田稠油特性及降粘技术应用研究
稠油降黏技术应用研究

式 中 , 为稠 油黏度 , a・S T为绝对 温度 , A, mP ; K; B为常 数 , 同稠 油 A, 不 B常数 不 同 。式 ( ) 明 , 1表 稠
[ 稿 日期 ]2 1-20 收 0 i1—5 [ 金 项 目]克 拉 玛 依 市 科 技 项 目(K2 O—6 基 S O 84 )
21 0 2年 6月
中国 石 油 大 学 胜 利 学 院 学 报
J u n lo h n l Colg iaUnv riyo er lu o r a fS e gi l eChn iest fP to e m e
J n 2 1 u.02
Vo . 6 NO 2 12 .
了较 理 想的效 果 , 明 辽河 中深 层 稠 油油 藏 采 用 先 表 蒸 汽吞 吐后蒸 汽 驱 的开采 方式可 以提 高油 田的最 终 采 收率 , 计 该 区块 最 终 采 收 率 可 达 5 。王 胜 预 6
等 [ 对 孤岛油 田 中二 北稠 油 油 藏 的研究 结 果 表 明 , 2 ]
第2卷 6
第 2 期
稠油降黏 技术应用研 究
王 晓璇 雷 毅 刘 更 民 , ,
( . 国 石油 大学 机 电 工 程 学 院 , 东 青 岛 2 6 8 }. 国 石 油 大学 国 家 大 学 科 技 园 , 东 东 营 2 7 6) 1中 山 6502中 山 50 1
[ 摘 要 ] 稠油具有黏度高、 流动性差的特点。 这是制约稠油开采和集输的主要问题, 而解决这一问题的关
() 1
稠 油 的黏 度 随 温度 的变 化 十分 明显 , 黏 度 与 其
温 度 的关 系 满足 An rd da e方程 , 即
一 。
Ae .
稠油降粘方法及应用情况研究

稠油降粘方法及应用情况研究矿场常用的稠油降粘技术主要包括:加热降粘技术、掺稀降粘技术、乳化降粘技术、油溶性降粘剂。
文章概述了目前常用的稠油降粘工艺技术的研究方向和主要存在的问题。
对稠油降粘技术有了一个准确的总结,在此基础之上指出了今后降粘技术研究方向。
标签:稠油;降粘技术;原理;复合降粘1掺稀油降粘1.1降粘原理一般当稠油和稀油的粘度指数接近时,掺稀油降粘的实测值与计算值接近。
我国辽河高升油田的稠油中,掺入1P3的稀油量,50e时粘度由2~4Pa#s降为150~200mPa#s。
1.2降粘规律(1)轻油掺入稠油后可起到降凝降粘作用,但对于含蜡量和凝固点较低而胶质、沥青质含量较高的高粘原油,其降凝降粘作用较差。
(2)所掺轻油的相对密度和粘度越小,降凝降粘效果也越好;掺入量越大,降凝、降粘作用也越显著。
(3)一般来说,稠油与轻油的混合温度越低,降粘效果越好。
混合温度应高于混合油的凝固点3~5e,等于或低于混合油凝固点时,降粘效果反而变差。
(4)在低温下掺入轻油后可改变稠油流型,使其从屈服假塑性体或假塑性体转变为牛顿流体。
1.3 优缺点轻质稀原油不仅有好的降粘效果,且能增加产油量,并对低产、间隙油井输送更有利。
在油井含水升高后,总液量增加,掺输管可改作出油管,能适应油田的变化。
因此,在有稀油源的油田,轻油稀释降粘,具有更好的经济性和适应性。
采用此种方法大规模地开采稠油时,选用的稀释剂必然是稀原油,因为稀原油来源广泛,可提供的数量大,因此也带来一些问题。
首先,稀原油掺入前,必须经过脱水处理,而掺入后,又变成混合含水油,需再次脱水,这就增加了能源消耗;其次,稀原油作为稀释剂掺入稠油后,降低了稀油的物性。
稠油与稀油混合共管外输时,增加了输量,并对炼油厂工艺流程及技术设施产生不利影响;此外,鉴于稠油与稀油在价格等方面存在的差异,采用掺稀油降粘存在经济方面的损失。
2稠油原油的化学降粘技术的应用2.1稠油原油开发的应用虽然我国稠油的储量丰富,但是由于大多数的油藏区块分散,含油面积不大,导致造成了我国的稠油开采困难,或者通过电热或蒸汽吞吐等经济方法进行开采所得到的效果低下,为了在稠油原油开发的过程中获取更多的经济效益,通常采用化学降粘方式开采或者辅助开采,我国的稠油化学降粘技术主要应用在油层解堵、井筒降粘、蒸汽吞吐以及输油管的降粘等几个方面中,在稠油的开采中应用最多,通过化学降粘技术降低稠油粘度,不仅促进稠油的开发,更是提高了原油的产量以及降低原油的运输成本,还减少稠油中氮、硫等物质产生,大大降低了稠油开采成本。
石油行业中的稠油降黏增效技术

石油行业中的稠油降黏增效技术摘要:稠油是石油工业中常见的一种类型,其特点是粘度高、凝点高、流动性低,使得开采这些油相对困难。
降黏增效是成功提取稠油的必要条件。
粘度降低技术可以降低稠油的粘度,便于提取稠油。
为了充分利用降低粘度的附加价值,有必要提供有针对性的技术手段,了解技术原则,深化实质性原则,全面提高厚油层的开采能力。
因此,本文首先讨论了稠油的概念,然后分析稠油开采中降黏增效技术的原则,最后分析稠油开采中降黏增效的物理化学技术。
关键词:稠油开采;降黏增效;工艺技术;分析研究前言稠油是指在层状条件下粘度大于50 MPa /秒的稠油,或在罐壳温度下粘度介于1000 MPa/秒至10000 MPa /秒之间的空气中释放的原油。
世界石油丰富,储量比传统原油多得多。
但是,含油胶和沥青含量高导致粘度高,流动性低。
为了解决稠油开采和运输问题,降黏增效,提高稠油的流动性至关重要。
一、稠油降黏增效原理分析顾名思义,稠油是高粘度、高密度的油,通常在国外称为稠油。
与稀油相比叫它稠油,稠油难流通,稀油像水一样流动。
稠油粘度极高,甚至高达几百万mpas。
从科学角度来看,很难从地下开采,因为太粘稠了。
在20℃环境温度下,地下粘度大于50 %,密度大于0.92的原油通常称为稠油。
在开采和运输过程中,经常使用热油循环、油层燃烧和蒸汽喷射等方法来增加热量和降低粘度,或混合稀有石油、进行模拟和添加活性制剂来降低粘度。
与普通油罐不同,稠油不是液体而是胶状的,这使得稠油开采非常困难。
此外稠油芯是分散沥青束相,分散介质是轻油的分馏和胶的一部分。
因此,为了降低粘度、提高效率和完成采油工作,有必要采取有针对性的办法降低稠油的粘度。
目前最常用的技术是在π-π作用和氢键作用下,通过橡胶沥青与胶分子有机融合。
稠油的高粘度是由于沥青和胶质的相互作用。
因此,分散介质中束中心的组成过程正在逐步演变。
使用这些力减少沥青和胶质之间的力可以降黏增效,提高稠油产量。
稠油降黏新技术的研究进展

朱静等 : 稠油降黏新技术 的研究 进展
一 6 一 5
表 1 近 几年油溶性降黏剂在 国内的应用情况
Ta 1 Do s i p ia i n o i s l b e v s o i e u e si r c n e r b. me tc a pl to f o l o u l i st r d c r n e e t y a c - c y s
景, 进一步研究开发廉价 、 高效降黏剂是今后油溶性
降黏剂 的研 究方 向.
采用合适 的水热裂解催化剂 , 配合适当的注入方式 , 在蒸汽吞吐的条件 下, 可以实现井下催化降黏开采
稠油 的 目的.
2 水 热催 化 裂解 降黏
2 1 降黏 机理 .
稠油水热催化裂解 降黏技术具有用水量少 , 无
21 0 2年 1 月
第2 7卷第 1 期
西安石油大学学报 ( 自然科学版 ) Jun f i nS i uU iesy N tr cec dtn ora o X hy nvrt( a a Si eE io ) l a o i ul .1 . 7 No
文章 编号 :6 304 2 1 )106 -7 17 -6 X(02 0 -040
稠 油 降黏 新 技 术 的研 究进 展
朱 静 李传宪 , 飞 辛培 刚2 , 杨 ,
(. 1 中国石油大学 ( 华东 )储 运与建筑工程 学院 , 山东 青岛 2 6 5 ; 65 5 2 海洋石油工程 ( 岛) . 青 有限公司 , 山东 青岛 2 6 5 ) 65 5
密度大、 流动性差 , 给稠油的开采和输送造成了很大 困难. 传统降黏方法包括加热降黏 、 稀释降黏及乳化 降黏. 加热 降黏输油能耗 高 , 允许 的输量 变化范 围
稠油油田原油降粘技术探讨

稠油油田原油降粘技术探讨摘要:针对我国的油田开采行业的高速发展,稠油油田现场开发原油降粘技术的创新,对我国的油田开发的意义重大,但是现阶段的我国的稠油油田原油开发的过程中存在一些不足与缺陷,通过全面的分析稠油油田原油开发过程中,提出了通过稠油化学技术降粘技术,并且根据不同稠油油田原油的粘度不同,采取不同的化学降粘对的药剂以达到最佳的降粘效果,其中主要有水溶性的乳化降粘技术和油溶性稠油化学降粘剂的降粘技术,通过深入的研究稠油原油的化学降粘技术,为我国化学的原油降粘技术发展提供经验,更为我国稠油油田原油开发的提供有力的手段。
关键词:稠油原油原油降粘化学技术近年来,我国的常规石油开发技术的已经日渐成熟,加上石油管道集输技术,极大的促进我国的是石油行业的发展,但是油田若是想要加大生产量,就必须采取非常规的原油开采,尤其是对油田稠油的开采,由于稠油中含有大量的沥青质以及胶质物质,使得稠油原油的粘度非常,不适合常规的石油开采,进而加大了稠油油田的开采难度,为了能降低稠油开采的难度以及节约石油开发成本,通过化学试剂实现有效降低稠油原油的粘度,进而实现稠油原油的常规方式开采,实现稠油油田原油大量开采。
一、稠油原油化学降粘技术开发的理论基础1.稠油原油降粘原理稠油原油中的胶质以及沥青质分子物质中具有羟基、羧基、氨基以及羰基等有机化合物,导致胶质分子与沥青质分子间发生剧烈的氢键作用,沥青质分子中的芳杂稠环平面互相堆积使得极性基团间的氢键产生的沥青质粒子,而胶质分子则是相反是通过及受到氢键的固定产生沥青质粒子的包覆层,这两中粒子的氢键可以相互连接,进而导致原油的高粘度增高。
可将稠油的高粘度主要与胶质粒子和沥青质粒子的相互作用有关,或者是与稠油原油中胶质粒子和沥青质粒所形成的高聚化合物有关的,除此之外在稠油中的胶质粒子、沥青质粒子和杂原子、有机金属原子结合形成化合物,导致稠油粘度过高、流动性差,这些高聚化合物或者是混合物的分子量较大、密度高,虽然含量很低但是严重影响了稠油原油的粘度,导致稠油原油开采困难。
文留油田双空心杆稠油开采工艺技术研究

36 一、文南油田稠油开采概况文南油田在稠油开发过程中受到出砂、油稠的影响,开采难度大,给开采工艺的实施提出了很高的要求。
随着文南油田进入高含水期,稠油开发已经成为重要产能接替阵地,稠油井的开发与工艺技术配套研究很有现实意义,找到适合文南油田稠油井开发的工艺技术并推广应用形成文南油田稠油井整体开发新模式,对文南油田的可持续发展具有至关重要的意义。
经过近几年的不断摸索和实践,文南油田形成了一套完善的、节能的稠油开采工艺技术,现场应用效果突出,与以往稠油开采工艺技术相比,节能效果显著。
二、双空心杆稠油开采工艺技术研究1.工作原理在粘度大于500mPa.s的稠油井,加降粘剂后仍不能达到较好的流动状态,不能正常生产,必需配套加热系统,才能使稠油达到很好的流动性。
针对电加热干开采成本较高研究应用了双空心杆循环加热稠油开采工艺技术。
该装置采用同轴式双空心抽油杆内循环热传导加热方式,有一个内外相互密封的独立通道,利用地面燃气加热器把热载体(水)加热,再经循环泵加压后(2MPa 左右),以过缓冲和分离气体后,通过特制四通接头,注入双空心抽油杆的内空心通道,热载体在循环泵的高压驱动下,克服管壁磨擦,高速(约1.5m/s)流至双空心杆的加热尾端,然后通过环空返至地面热交换器内再次加热。
2.装置组成双空心抽油杆循环加热系统分为地面和地下两部分组成,地面部分包括自动加热器、循环泵、储水罐、泄压阀、光杆四通、软管等组成,地下部分主要是双空心抽油杆。
自动加热器:加热器内部为多层螺旋管结构,用耐高温的20铬钼铝材质的无缝钢管浇制。
管体直径40毫米,容积为2乘24升。
热负荷85千瓦,两种加热器均搭载了改进型的意大利产利雅路牌全自动燃气燃烧器。
强制通风型,增加了连续点火装置,能够在2千帕至1.5兆帕压力下,采用任何一种干、湿可燃气体都能正常工作。
加热器配有意大利进口燃烧器自动控温点火装置,采用电子打火的方式点燃(类似于家用燃气灶),如果电子打火失败,还可用引燃装置引燃。
井筒降粘技术在稠油油藏开采中应用及探析

井筒降粘技术在稠油油藏开采中应用及探析摘要:化学降粘是一种经济有效的井筒降粘工艺,是目前国内外井筒降粘的发展趋势;该工艺应着重开展适合不同油田油藏特点的化学降粘剂的研制,结合油田的实际情况,对化学降粘工艺进行完善、配套,对工艺参数进行优化设计。
空心杆电加热是目前井筒电加热降粘的主要工艺,它具有工艺简单、操作成本高的特点,受各种因素影响大,加热深度受限;高矿化度的地层水对降低其使用寿命有一定的影响。
掺稀降粘工艺是以牺牲稀油资源为代价;油井含水达到一定程度,产出液出现反向乳化的情况下,降粘效果较差,本文调研了常用的几种降粘工艺的应用现状关键词:稠油开采;粘度;井筒降粘技术;电加热降粘稠油储量巨大,具有重要的开采价值和需要,但其开采难度大,粘度高流动性差就是一个重要方面。
井筒降粘技术就是通过各种方法降低稠油在开采过程中井筒内的流动阻力问题。
不同的油井不同的油藏特性需要采用不同的降粘措施,因而具�w油井应探索合理的降粘措施以达到更好的经济开采1 井筒化学降粘1. 1 化学降粘原理井筒化学降粘技术是通过向井筒流体加入化学药剂,使流体粘度降低的稠油开采技术。
其作用原理是:在井筒流体中加入一定量的水溶性表面活性剂溶液,使原油以微小的油珠分散在活性水中,形成水包油乳状液或水包油型粗分散体系,同时活性剂溶液在油管壁和抽油杆表面形成一层活性水膜,起到乳化降粘和润湿降阻的作用。
其主要的降粘机理如下:由于原油中含有天然乳化剂(胶质、沥青质等),当原油含水后,易形成W /O型乳状液[2],使原油粘度急骤增加。
原油乳状液的粘度可用Richarson公式表示:式中:μ为乳状液粘度;μ0外相粘度;ψ内相所占体积分数;k为常数,取决于ψ,当ψ≤0. 74时k为7,ψ≥0. 74时k为8。
式中可看出,对于W /O型乳状液,由于乳状液的粘度与油的粘度成正比,并随含水率的增加而呈指数增加,所以含水原油乳状液的粘度远远超过不含水原油的粘度;而O /W型乳状液,由于乳状液的粘度与水的粘度成正比,与原油含水率的增加成反比,而水在50℃的粘度仅为0. 55mPa・s,远远低于原油的粘度,而且含水越高,原油乳状液粘度越小。
稠油开采中降粘技术研究进展李青

稠油开采中降粘技术研究进展李青摘要:我国虽然拥有丰富的稠油资源,但是随着不断地开采,目前也导致能源出现了供应紧张的现状,在实际稠油开采过程中,因为有着较差的流动性,不利于开采的基础上,自然影响了工作人员的开采效率。
出于提高稠油开采质量以及效率的目标下,文章详细分析了降粘技术在其开采当中的应用建议,希望能够给相关人士提供些许参考依据。
关键词:稠油;开采;降粘;降粘机理引言:文章主要对稠油物理降粘开采、改质降粘法开采以及微生物降粘开采方法的优缺点加以阐述,从分析中可以得出,为了能够做好我国稠油资源的开采工作,应用改质降粘和微生物降粘方法实施操作至关重要。
对此,在当前乃至未来很长一段时间内,我国行业人士将重点加强对该两种形式的研究力度。
1.稠油物理降粘开采1.1加热降粘对于加热降粘技术来讲,在实际的使用过程中,首先,因为温度的作用下,会对稠油粘度有直接的影响,相比较常规的原油而言,基于外界温度下,极易导致稠油出现相应的改变。
借助其中的热力性能,将胶质以及沥青质分子中原有的π-π键造成破坏,在稠油原有的较多大分子物质下,将其有效的划分为多量的小分子结构,此时确保稠油具备较强的流动性的特点。
在实际应用过程中,虽然此种形式能够确保稠油的粘度有效的降低,但是通过实际调查发现因为我国大多数的稠油开采地区,存在的比较薄的开采环境,此种形式并不能达到很好的经济效果。
1.2掺稀油降粘在应用掺稀油降粘方式时,主要的原理就是相似相溶,工作人员借助轻质的流体像天然气凝析油等成分,对胶质或者是沥青质量含量进行有效的减少,最终确保稠油的粘度达到不断减少的目的[1]。
另外,对于此种形式的使用规律进行总结,首先,在原油当中含有较低的含腊量或者是凝固点时,此时就会突出此种应用形式的价值,如果此时原油中含有较高的含腊量以及凝固点,此时就会得到较差的降粘效果;同时,对于所使用的稠油以及稀油当中,此时如果要想取得良好的降粘目标,那么两者保证融合温度较低,其效果就会越佳,从根本上而言,其混合油的凝固点,应该要比混合温度的凝固点要低,最好维持在3-5℃,一旦超出或者是小于此范围,那么自然得不到理想的降粘效果;另外,要想取得良好的降粘目的,那么工作人员就必须对加入稀油的密度等进行合理的把控;如果想要更好的达到降粘的效果,此时可以持续的加大掺入量即可。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
文留油田稠油特性及降粘技术应用研究
文留油田稠油特性及降粘技术应用研究
摘要:文留油田稠油井分散,物性差异较大,依据粘度将其分为普通稠油、特稠油和超稠油,本文对这三类稠油的物理特性、开采方式进行了分析和研究。
结合文16-45井,详细介绍了稠油开采和应用油基稠油降粘复合解堵工艺情况。
关键词:文留油田稠油特性降粘热洗解堵
文留油田随着老区滚动扩边及Ⅱ、Ⅲ类储层的不断开发,稠油井日益增多,但比较分散。
不同稠油井之间,物理特性差异较大,50℃脱气原油粘度104~9100 mPa.s,平均粘度814.06 mPa.s;地面脱气原油密度0.8215~0.9350g/cm3,平均密度0.8678g/cm3。
一、文留油田稠油物理特性
按有关稠油分类标准,把文留油田稠油分为三类:普通稠油、特稠油和超稠油(见表1)。
说明:表中粘度取50℃时地面脱气原油粘度;分类以原油粘度为首要指标,相对密度为辅助指标,当两个指标发生矛盾时则按粘度进行分类。
1.普通稠油
普通稠油即50℃温度下脱气原油粘度在100~6000mPa.s之间,能用常规抽油泵生产,表现为粘滞阻力较大,功图肥大,电流较高。
文留油田有普通稠油井32口,占稠油井总数的86.5%。
其中11口井用常规降粘剂或定期热洗降粘后,能维持低能耗长检泵周期持续生产。
有5口井用常规降粘剂降粘后,伴有粘滞力较大的重质油析出集聚,导致泵阀球失灵,常规热洗无效,需要进行作业检泵。
有4口稠油井因粘度相对较低,通过选用或改进抽稠泵即可维持正常生产。
有12口井常规降粘效果较差,频繁洗井扫线,长期高能耗生产;由于粘度降不下来,流动阻力大,泵效低,严重影响原油产量,但通过油套环空投加新型高效专用降粘剂也实现了正常生产。
2. 特稠油
特稠油即50℃温度下脱气原油粘度在6000~10000mPa.s之间。
文留油田有特稠油井4口,分别为文16-45、文25-116、25-112井、文38-75井,50℃时脱气原油粘度分别为7200 mPa.s、9100 mPa.s、6000 mPa.s、7580mPa.s。
这些井,稠油在井筒及地层近井地带流动困难,易堵塞地层孔隙,降低近井地带岩石渗透率,油井产量低,开发难度大。
3.超稠油
文留油田濮深18-1属超稠油井。
濮深18-1油藏,是高温高压泥岩裂缝,藏深3270.5m,藏温130℃,静压55MPa。
地面脱气原油在常温下呈渣油形态,加热至160℃仍不具流动性,与文一联稀油按100:80比例掺稀后,80℃粘度为347×104 mPa?s。
二、稠油开采方式研究及应用
1.开采方式研究
通过对各油田稠油开采状况调研,将蒸汽降粘、天然气吞吐、化学降粘、掺稀等稠油开采方式的优缺点,进行了归类对比分析(见表2)。
文留油田稠油井主要位于老区边部,呈逐渐增多趋势、分布复杂、高度零散、物性差异大、没有规律,不能集中规模开采,不具备整装稠油开发特征。
根据各油藏稠油特点及产出液物性差异,我们对文留油田稠油降粘及开采进行了探索。
针对常规降粘措施效果较差,我们研制了油基复合降粘技术、高增溶强介入分散降粘技术、油基水基乳合降粘技术等,较好的满足了文留油田油藏边部稠油开采技术要求,取得了较好效果。
2.开采应用研究
文16-45井,油稠含蜡高。
42℃时,原油脱气粘度11000mpa.s;50℃时,原油脱气粘度6900 mPa?s。
该井2011年10月20日压裂投产,生产井段3411.5-3423.3m,生产层位S3中7,10.5m/4n。
压裂后初期3mm油咀进站生产,因其油稠10月22日改进罐生产。
11月11日停喷上作业转抽,同时配套上双空心杆加热装置,作业洗井不通。
11月17日下∮73mm平式管顶钻下不去,用87℃热水打压21Mpa憋通后,持续洗井,压力降至
3.0Mpa,完成作业工序。
该井2011年11月21日下泵生产,泵挂深度1751.17m,喇叭口深度1846.84m,工作制度38*4.8*2.5,开抽生产后第9天,油井出液量迅速减少,由正常的7.1m3/d下降到2.1m3/d,液面由531m
上升到井口。
12月4日该井热洗,用700型水泥车+87℃热水洗井,启泵压力12MPa以上,洗井压力最终降至3MPa,热洗后油井出液正常。
之后每天加注常规降粘剂,而且还需经常热洗。
采用热洗加常规降粘剂平均洗井周期只有4天(见表3)
通过对各种生产参数及室内实验数据进行分析,我们判断该井产量低的原因,是由于近井地带压力温度变化,致使分子量较大的重质组份不断析出,堵塞地层孔隙,导致地层渗透率变低,油井产能下降。
为解除文16-45井重质油、垢类以及少量地层粘土类运移到近井地带形成的堵塞,我们将油基稠油降粘剂与低浓度酸液、表面活性剂、互溶剂等配成稳定的乳状液,按酸化施工程序进行解堵施工。
2012年4月7日措施后,泵压由15MPa降至2MPa。
开井生产后,定期在油套环空投加无酸的油基复合降粘剂,维持了后续平稳生产。
实施地层解堵和井筒投加降粘剂后,该井日产液由措施前
2.1m3/d增加到措施后7.3 m3/d,日增液5.2m3,日产油由措施前1.0t/d增加到措施后2.7t/d,日增油1.7t,正常生产268天,累计增油362吨,取得了良好效果。
三、结论与认识
1 开采稠油的核心是降低原油粘度,增加原油的流动性,因此无论采取什么措施都是围绕这一核心开展工作的。
2 文留油田稠油井比较分散,物理特性差异较大,因此需要因井施策,针对不同井的稠油特性,采取不同的降粘方法。
3 油基稠油降粘复合解堵工艺在文16-45井的成功应用,为稠油开采探索了一条成功路径。
参考文献:
[1]王慧敏王积龙化学降粘开采技术在小断块稠油油田的应用石油规划设计 1996(2) 23-25
[2]王云峰张春光侯万国等表面活性剂及其在油气田的应用
北京石油工业出版社 1995 158-164
[3]孟科全唐晓东等稠油降粘技术研究进展天然气与石油2009.3
作者简介:李玉清男汉族 1971年工程师主要从事油田化学与压裂工作
------------最新【精品】范文。