直线与平面垂直教学设计

合集下载

8.6.2直线与平面垂直(1)教学设计—必修第二册

8.6.2直线与平面垂直(1)教学设计—必修第二册

8.6.2 直线与平面垂直(第1课时)教学设计课题8.6.2直线与平面垂直(第1课时)教学目标 1.通过实例感知、操作,抽象归纳出线面垂直的定义;了解点到平面的距离概念2.通过感知、确认发现线面垂直的判定定理,能够利用判定定理证明直线与平面垂直.教材分析直线与平面垂直是直线与平面相交中一种特殊情况,它是空间直线与直线位置关系的拓展,又是平面与平面垂直的基础,是空间垂直关系转化的核心.直线与平面垂直也是定义点到平面的距离、直线与平面所成角、直线到平面的距离与两个平行平面之间的距离等内容的基础,具有承上启下的作用.直线与平面垂直是通过直线和平面内的任意一条直线都垂直来定义的,定义本身也表明了直线与平面垂直的意义,即如果一条直线垂直于一个平面,那么这条直线就垂直于这个平面内的所有直线,这也可以看成是线线垂直的一个判定方法.直线与平面垂直的判定定理把定义中要求的与任意一条直线转化成只要求与两条相交直线垂直,其中蕴含了由复杂向简单,无限问题向有限问题,直线与平面垂直向直线与直线垂直的转化.基于以上分析,确定本节课的教学重点:①直线与平面垂直定义的抽象②直线与平面垂直判定定理的发现与验证.教学手段借助生活中大量实物图片,直观想象,动手操作抽象概括直线与平面垂直的定义,对于直线与平面垂直的判定定理,让学生通过探究和动手实践,初步认识到当直线与平面内两条相交直线垂直时,直线与这个平面垂直.但在缺少逻辑推证的情况下,如果马上把这个猜想作为定理来对待,学生可能会怀疑解困的正确性.教学时需要引导学生通过亲身反复验证并结合直线与平面垂直的定义进行思辨来解决以上问题,也可以结合平面向量基本定理,从向量的角度让学生体会利用“两条相交直线”来判断的合理性.本节课的教学难点:发现并验证直线与平面垂直的判定定理.(一)创设情境感知,抽象出直线与平面垂直的定义问题1:在日常生活中,我们对直线与平面垂直有很多感性认识,比如,图片中旗杆与地面的位置关系,给我们以直线与平面垂直的形象.那么怎么去定义直线与平面垂直呢?预设学生的可能回答。

《直线与平面垂直的性质》教案、导学案、课后作业

《直线与平面垂直的性质》教案、导学案、课后作业

《8.6.2 直线与平面垂直》教案第2课时直线与平面垂直的性质【教材分析】在直线与平面的位置关系中,垂直是一种非常重要的关系,本节内容既是直线与直线垂直关系延续和提高,也是后续研究平面与平面垂直的基础,既巩固了前面所学的内容,又为后面内容的学习做了知识上和方法上的准备,在教材中起着承前启后的作用。

【教学目标与核心素养】课程目标1.理解直线和平面垂直的性质定理并能运用其解决相关问题.2.通过对空间距离的理解和应用,培养学生的空间转化能力和逻辑推理能力.数学学科素养1.逻辑推理:探究归纳直线和平面垂直的性质定理,线线垂直与线面垂直转化;2.数学运算:求空间点面、线面、面面距离.3.直观想象:题中几何体的点、线、面的位置关系.【教学重点和难点】重点:直线和平面垂直的性质定理.难点:直线和平面垂直的性质定理的应用.【教学过程】一、情景导入问题1:长方体ABCD—A1B1C1D1中,棱AA1、BB1、CC1、DD1所在直线都垂直于平面ABCD,它们之间是有什么位置关系?问题2:已知直线a⊥α 、b⊥α、那么直线a、b一定平行吗?要求:让学生自由发言,教师不做判断。

而是引导学生进一步观察.研探.二、预习课本,引入新课阅读课本153-155页,思考并完成以下问题1、垂直与同一条直线的两条直线有什么位置关系?2、与线面垂直有关的结论有哪些?3、怎样定义直线与平面的距离、平面与平面的距离?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。

三、新知探究1、直线与平面平行的性质定理常用结论:(1)过一点有且仅有一条直线与已知平面垂直.(2)已知a⊥α.若平面α外的直线b与直线a垂直,则b//α.(3)已知a⊥α.β//α,则a⊥β.2、距离(1)直线与平面的距离:一条直线与一个平面平行时,这条直线上任意一点到这个平面的距离.(2)平面与平面的距离:两个平面平行时,其中一个平面内任意一点到另一个平面的距离.四、典例分析、举一反三题型一直线与平面垂直的性质定理的应用例1 如图所示,在正方体ABCD-A1B1C1D1中,M是AB上的一点,N是A1C的中点,MN⊥平面A1DC.求证:(1)MN∥AD1;(2)M 是AB 的中点. 【答案】证明见解析【解析】(1)因为ABCD-A 1B 1C 1D 1为正方体,所以AD 1⊥A 1D.又因为CD ⊥平面ADD 1A 1,AD 1⊂平面ADD 1A 1,所以CD ⊥AD 1. 因为A 1D∩CD=D,所以AD 1⊥平面A 1DC. 又因为MN ⊥平面A 1DC,所以MN ∥AD 1. (2)设AD 1∩A 1D=O,连接ON,在△A 1DC 中, A 1O=OD,A 1N=NC.所以ONCDAB,即ON ∥AM.又因为MN ∥OA,所以四边形AMNO 为平行四边形,所以ON=AM. 因为ON=AB,所以AM=AB,即M 是AB 的中点.解题技巧(证明两条直线平行的常见方法) (1)公理4:平行于同一条直线的两条直线平行;(2)线面平行的性质定理:如果一条直线与一个平面平行,那么经过这条直线的任一平面与此平面的交线与该直线平行;(3)面面平行的性质定理:如果两个平行平面同时和第三个平面相交,那么它们的交线平行;(4)线面垂直的性质定理:垂直于同一个平面的两条直线平行. 跟踪训练一1、如图,已知平面α∩平面β=l ,EA ⊥α,垂足为A ,EB ⊥β,B 为垂足,直线a ⊂β,a ⊥AB.求证:a ∥l .12121212【答案】证明见解析【解析】因为EB⊥β,a⊂β,所以EB⊥a. 又因为a⊥AB,AB∩EB=B,所以a⊥平面ABE.因为α∩β=l,所以l⊂α,l⊂β.因为EA⊥α,EB⊥β,所以EA⊥l,EB⊥l. 又因为EA∩EB=E,所以l⊥平面ABE.所以a∥l.题型二空间中的距离问题例2 如图,长方体ABCD-A1B1C1D1的底面ABCD是正方形,点E在棱AA1上,BE⊥EC1.若AE=A1E,AB=3,求四棱锥E-BB1C1C的体积.【答案】18.【解析】由长方体ABCD-A1B1C1D1,可知B1C1⊥平面ABB1A1,BE⊂平面ABB1A1,所以B1C1⊥BE,因为BE⊥EC1,B1C1∩EC1=C1,所以BE⊥平面EB1C1,所以∠BEB1=90°,由题设可知Rt△ABE≌Rt△A1B1 E,所以∠AEB=∠A1EB1=45°,所以AE=AB=3,AA1=2AE=6,因为在长方体ABCD-A1B1C1D1中,AA1∥平面BB1C1C,E∈AA1,AB⊥平面BB1C1C,所以E到平面BB1C1C的距离即为点A到平面BB1C1C的距离,AB=3,所以四棱锥E-BB1C1C的体积V=13×3×6×3=18.解题技巧 (空间中距离的转化)(1)利用线面、面面平行转化:利用线面距、面面距的定义,转化为直线或平面上的另一点到平面的距离.(2)利用中点转化:如果条件中具有中点条件,将一个点到平面的距离,借助中点(等分点),转化为另一点到平面的距离.(3)通过换底转化:一是直接换底,以方便求几何体的高;二是将底面扩展(分割),以方便求底面积和高.跟踪训练二1、如图,四棱锥P-ABCD中,PA⊥菱形ABCD所在的平面,∠ABC=60°,E 是BC的中点,M是PD的中点.(1)求证:AE⊥平面PAD.(2)若AB=AP=2,求三棱锥P-ACM的体积.【答案】(1)证明见解析,(2)√33.【解析】解析 (1)连接AC,因为底面ABCD为菱形,∠ABC=60°,所以△ABC为正三角形,因为E是BC的中点,所以AE⊥BC,因为AD∥BC,所以AE⊥AD,因为PA⊥平面ABCD,AE⊂平面ABCD,所以PA⊥AE,又因为PA∩AD=A,所以AE⊥平面PAD.(2)因为AB=AP=2,则AD=2,AE=√3,所以VP-ACM =VC-PAM= 13S△PAM·AE= 13×12×12×2×2×√3=√33五、课堂小结让学生总结本节课所学主要知识及解题技巧六、板书设计七、作业课本155页练习,162页习题8.6的13、14、15、16题.【教学反思】通过本节课性质定理的学习,使学生进一步了解线线垂直和线面垂直时刻相互转化的,即空间问题和平面问题可以相互转化.《8.6.2 直线与平面垂直》教案第2课时直线与平面垂直的性质【学习目标】知识目标1.理解直线和平面垂直的性质定理并能运用其解决相关问题.2.通过对空间距离的理解和应用,培养学生的空间转化能力和逻辑推理能力.核心素养1.逻辑推理:探究归纳直线和平面垂直的性质定理,线线垂直与线面垂直转化;2.数学运算:求空间点面、线面、面面距离.3.直观想象:题中几何体的点、线、面的位置关系.【学习重点】:直线和平面垂直的性质定理.【学习难点】:直线和平面垂直的性质定理的应用.【学习过程】一、预习导入阅读课本153-155页,填写。

直线与平面垂直教案

直线与平面垂直教案

直线与平面垂直教案教案标题:直线与平面垂直教案教学目标:1. 理解直线与平面垂直的概念及特征。

2. 能够判断给定直线与平面是否垂直。

3. 掌握求解直线与平面垂直关系的方法。

教学重点:1. 直线与平面垂直的概念理解。

2. 判断直线与平面垂直的方法。

教学难点:1. 求解直线与平面垂直关系的方法。

教学准备:1. 教师准备:黑板、彩色粉笔、投影仪、教学PPT。

2. 学生准备:课本、笔记本。

教学过程:Step 1: 引入新知识 (5分钟)1. 教师使用投影仪或黑板上展示一条直线和一个平面的图形,引导学生观察并思考直线与平面之间的关系。

2. 教师提问:“你们观察到了什么?”学生回答后,教师引导学生,让他们意识到直线与平面之间可能存在的垂直关系。

Step 2: 直线与平面垂直的概念讲解 (10分钟)1. 教师使用教学PPT或黑板,讲解直线与平面垂直的定义:如果一条直线与平面上的任意一条直线都垂直相交,那么这条直线与该平面垂直。

2. 教师通过示例图形和实际生活中的例子,帮助学生更好地理解直线与平面垂直的概念。

Step 3: 判断直线与平面垂直的方法 (15分钟)1. 教师讲解判断直线与平面垂直的方法:a. 方法一:直线上的两个向量与平面上的法向量的点积为零。

b. 方法二:直线上的一点到平面上的任意一点的向量与平面的法向量的点积为零。

2. 教师通过具体的例子,演示如何使用这两种方法来判断直线与平面的垂直关系。

3. 教师鼓励学生进行思考和讨论,解决一些实际问题,以加深他们对判断直线与平面垂直关系的理解。

Step 4: 练习与巩固 (15分钟)1. 教师提供一些练习题,让学生独立或小组合作完成。

2. 学生完成练习后,教师进行讲解和答疑。

Step 5: 拓展应用 (10分钟)1. 教师提供一些拓展应用题,让学生运用所学知识解决实际问题。

2. 学生进行思考和解答,教师引导学生讨论和分享答案。

Step 6: 总结与反思 (5分钟)1. 教师对本节课的重点内容进行总结,并强调直线与平面垂直的判断方法。

直线与平面垂直教案

直线与平面垂直教案

直线与平面垂直教案一、教学目标1.理解直线与平面垂直的概念;2.掌握判断直线与平面垂直的方法;3.能够应用垂直的概念解决实际问题。

二、教学重点1.直线与平面垂直的概念;2.判断直线与平面垂直的方法。

三、教学难点1.应用垂直的概念解决实际问题。

四、教学过程1. 导入教师通过提问的方式,引导学生回忆直线和平面的概念,并询问学生是否知道直线与平面垂直的概念。

2. 讲解1.直线与平面垂直的概念直线与平面垂直是指直线与平面的交角为90度。

垂直的概念是几何学中非常重要的概念,它在很多实际问题中都有应用。

2.判断直线与平面垂直的方法(1)法向量法如果一条直线的方向向量与平面的法向量垂直,则这条直线与这个平面垂直。

(2)两个向量的点积为0如果一条直线的方向向量与平面上的任意一个向量的点积为0,则这条直线与这个平面垂直。

3. 实例演练1.判断直线与平面是否垂直已知直线L的方向向量为(1,2,3),平面P的法向量为(2,4,6),判断直线L是否与平面P垂直。

解:由法向量法可知,如果直线L的方向向量与平面P的法向量垂直,则直线L与平面P垂直。

因为(1,2,3)与(2,4,6)不垂直,所以直线L与平面P不垂直。

2.应用垂直的概念解决实际问题已知一根高度为3米的杆子,离地面的水平距离为4米,求杆子与地面的夹角。

解:设杆子与地面的夹角为x,则有tanx=3/4,解得x=36.87度。

因为杆子与地面垂直,所以杆子与地面的夹角为90度。

4. 总结教师对本节课的重点、难点进行总结,并强调垂直的概念在实际问题中的应用。

五、作业1.完成课堂练习;2.思考并解决一个实际问题,应用垂直的概念。

六、教学反思本节课通过讲解直线与平面垂直的概念和判断方法,以及实例演练和应用垂直的概念解决实际问题,使学生掌握了垂直的概念和应用方法。

但是,本节课的实例演练和应用垂直的概念解决实际问题的部分还需要更多的练习和巩固。

在以后的教学中,需要更多地注重实际问题的应用,提高学生的应用能力。

直线与平面垂直的判定教学设计

直线与平面垂直的判定教学设计

直线与平面垂直的判定教学设计【教学目标】知识与技能1、明白得直线与平面垂直的相关概念。

2、把握直线与平面垂直的判定定理。

过程与方法1、通过定理的探究过程,培养和提高学生的探究能力和动手能力。

2、通过对直线与平面垂直的感性认识进一步培养学生的空间想象能力。

情感态度价值观通过探究过程进一步培养学生学习空间几何的爱好。

【重点难点】重点1、直线与平面垂直的相关概念。

2、直线与平面垂直的判定定理。

难点直线与平面垂直的判定定理的应用。

【教学过程】一、新课引入与讲授I 直线与平面垂直的定义教学1、举现实生活中直线与平面垂直的实例,并结合课件中图片在课堂展现,给学生直线与平面垂直的感性认识。

进而提出问题:一条直线与一个平面垂直的数学定义是什么?2、课件展现课本P67图2.3-2,并进行相关的分析说明,从而引出直线与平面垂直的定义。

3、引出定义后介绍相关名词,如垂足等。

4、叫几个学生上台在黑板上表示一条直线与一平面垂直,这时学生可能会画出多种表示形式,再依照学生的画法,纠正错误的,确信正确的(要是有正确画法的话),再引导学生给出正确的表示方法。

II 直线与平面垂直的判定定理教学1、学习过定义后,提出问题:定义尽管能够判定一条直线与一个平面垂直,然而比较困难,那么除此之外还有什么方法呢?2、带领学生带着上述问题做课本P68的探究试验(该试验已于上次课布置学生作了必要的预备,如三角形纸片等)。

3、在试验中引导学生发觉当折痕AD是BC边上的高时,AD所在直线与桌面所在平面垂直;引导学生这时AD的特点:与BD、CD垂直,顺势引出判定定理。

4、结合图形,让学生上台写出定理的符号形式,并加以更正讲解。

5、点评定理的地位:表达线面垂直与线线垂直互相转化的数学思想;及注意点:两条直线要相交。

6、讲解例1及例2,其中讲解例2时补充一个证明方法(利用定理直截了当证明)并点评。

7、让给一定时刻让学生做课堂练习并讲解。

二、小结1、回忆直线与平面垂直的定义。

直线与平面垂直的性质教案

直线与平面垂直的性质教案

直线与平面垂直的性质教案教案要求:1. 学生年级:高中数学或几何学课程2. 课时:1课时3. 主题:直线与平面垂直的性质教学目标:1. 了解什么是直线与平面垂直的几何关系;2. 掌握直线与平面垂直的判定条件;3. 能够解答直线与平面垂直相关的数学问题。

教学准备:1. 平面几何教材;2. 黑板、白板或投影设备;3. 教学PPT或展示素材。

教学过程:1. 导入(5分钟)- 引入问题:什么是直线与平面垂直的几何关系?- 引导学生回顾直线与平面的定义,根据直观经验,直线与平面垂直表示什么意思?2. 探究(10分钟)- 提示学生思考:如何判定一条直线与一个平面垂直?- 引导学生尝试给出判定准则,并解释其原理。

- 让学生讨论并交流,引导他们总结判定直线与平面垂直的条件。

3. 讲解(15分钟)- 结合学生的讨论结果,给出判定直线与平面垂直的条件,并用几何公式或示意图进行解释。

- 强调判定条件的重要性并给出几个典型的示例。

4. 示例分析(10分钟)- 提供一些例题或实际问题,让学生运用所学的知识判定直线与平面之间的垂直关系。

- 引导学生分析和解答问题,让他们积极思考并应用所学知识。

5. 拓展应用(10分钟)- 提供一些更复杂或具有挑战性的问题,让学生应用所学知识解决。

- 引导学生思考解决问题的方法和步骤,并鼓励他们进行讨论和合作。

6. 小结(5分钟)- 总结本节课所学的内容和思考问题,并强调直线与平面垂直的判定条件。

- 提醒学生复习和巩固所学的知识,并鼓励他们提出对直线与平面垂直性质的理解和感悟。

教学延伸:如果时间允许,可以让学生进行实践活动或小组讨论,进一步探究直线与平面垂直性质的应用。

可以使用动画或虚拟现实技术来展示直线与平面垂直的几何关系,以增加学生的兴趣和参与度。

直线与平面垂直的判定(教学设计)

直线与平面垂直的判定(教学设计)

教学设计直线与平面垂直的判定一.教材分析直线与平面垂直是直线和平面相交中的一种特殊情况,它是空间中直线与直线垂直位置关系的拓展,又是平面与平面垂直的根底,是空间中垂直关系转化的重心,同时它又是直线和平面所成的角、直线与平面、平面与平面距离等内容的根底,因而它是空间点、直线、平面间位置关系中的核心概念之一。

二.学情分析学生已经学习了直线、平面平行的判定及性质,学习了两直线〔共面或异面〕互相垂直的位置关系,有了“通过观察、操作并抽象概括等活动获得数学结论〞的体会,有了一定的空间想象能力、几何直观能力和推理论证能力。

三.教学目标根据新课标要求和和教学内容的构造特征,学生获得知识、技能、方法及情感、态度、价值观等方面的要求,结合学生的实际水平,制定本节课的教学目标如下:〔1〕使学生掌握直线和平面垂直的定义及判定定理;〔2〕使学生掌握判定直线和平面垂直的方法;〔3〕引导学生学会观察、发现问题、提炼结论,使他们在直观感知,操作确认的根底上学会归纳、概括结论。

〔1〕通过教学活动,使学生了解,感受直线和平面垂直的定义的形成过程;〔2〕通过学生动手实践,亲身经历数学知识的形成过程,体验探究的乐趣,增强学习数学的兴趣。

培养学生学会从“感性认识〞到“理性认识〞过程中获取新知。

培养学生认真参与积极交流的主观意识;勇于探索新知的精神。

渗透由具体到抽象的思想及事物间相互转化和理论联系实际的辩证唯物主义观点。

四.教学重点、难点依据新课标要求及本节课在高中数学中的地位和作用确定以下重点和难点教学重点:直线与平面垂直的定义和判定定理。

教学难点:直线与平面垂直定义的正确理解;判定定理的探究和线线垂直与线面垂直关系的灵活相互转化。

五.教法和学法教法:讲授法;探究法;多媒体辅助教学法。

学法:本节课注重让学生认真观察分析、积极思考、主动探索、合作交流,尽可能增加学生参与课堂的时间;通过练习使学生稳固知识,熟练应用知识解决简单问题。

六.教学环境和教学用具教学环境:多媒体教室;教学用具:利用计算机多媒体课件辅助教学,黑板、三角板,自制三角形纸片,正方体模型,课本〔表示平面、书脊表示直线〕。

《直线与平面垂直判定定理》教学设计

《直线与平面垂直判定定理》教学设计
A.①②B.②③④
C.①②④D.①②③
通过例1的铺垫,进一步感受如何运用直线与平面垂直的判定定理证明线面垂直,体会转化思想的应用。
进一步深化理解概念。
【教师设计4】
教学环节
教学过程
设计意图
四.总结回顾,布置作业
(六)总结反思——提高认识
(1)通过本节课的学习,你学会了哪些判断直线与平面垂直的方法?
(2)上述判断直线与平面垂直的方法体现了什么数学思想?
生:折痕AD是BC边上的高的时候,折痕AD所在的直线与桌面所在的平面垂直。
师:由折痕AD⊥BC,翻折之后垂直关系AD⊥CD,AD⊥BD发生变化了么?
问题2:在你翻折纸片的过程中,纸片的形状发生了变化,这是变的一面,那么不变的一面是什么呢?(可从线与线的关系考虑)如果我们把折痕抽象为直线 ,把BD、CD抽象为直线 ,把桌面抽象为平面 (如图3),那么你认为保证直线 与平面 垂直的条件是什么?
2.动手操作——确认定理
(学生实验)请同学们拿出一块三角形纸片,我们一起做一个试验:过三角形的顶点A翻折纸片,得到折痕AD(如图1),将翻折后的纸片竖起放置在桌面上(BD、DC与桌面接触)
问题1:(1)折痕AD与桌面垂直吗?
(2)如何翻折才能使折痕AD与桌面所在的平面垂直?
师:请同学到台前来演示一下你的实验
思考:如图6,已知 ,则 吗?请说明理由.
师生活动:学生思考讨论,教师适时引导,最后教师给出详细的证明过程,给学生以示范。
(五)练习巩固与升华
1、下列命题正确的是()
①如果直线l与平面α内的无数条直线垂直,则l⊥α ;
②如果直线l与平面α内的一条直线垂直,则l⊥α;
③如果直线不垂直于α,则α内没有直线与l垂直;

直线与平面垂直教案

直线与平面垂直教案

直线与平面垂直教案
一、教学目标
1.借助对图片、实例的观察,抽象概括出直线与平面垂直的定义,并能正确理解直线与平面垂直的定义。

2.通过直观感知,操作确认,归纳直线与平面垂直判定的定理,并能运用判定定理证明一些空间位置关系的简单命题,进一步培养学生的空间观念。

3.让学生亲身经历数学研究的过程,体验探索的乐趣,增强学习数学的兴趣。

二、教学重点、难点
1.教学重点:操作确认并概括出直线与平面垂直的定义和判定定理。

2.教学难点:操作确认并概括出直线与平面垂直的判定定理及初步运用。

三、课前准备
1.教师准备:
教学课件。

2.学生自备:
三角形纸片、铁丝(代表直线)、纸板(代表平面)、三角板。

四、教学过程设计
1.直线与平面垂直定义的建构:
(1)创设情境:
①请同学们观察图片,说出旗杆与地面、高楼的侧棱与地面的位置有什么关系?
②请把自己的数学书打开直立在桌面上,观察书脊与桌面的位置有什么关系?
③请将①中旗杆与地面的位置关系画出相应的几何图形。

(2)观察归纳:
①思考:一条直线与平面垂直时,这条直线与平面内的直线有什么样的位置关系?
②多媒体演示:旗杆与它在地面上影子的位置变化。

③归纳出直线与平面垂直的定义及相关概念。

定义:如果直线l与平面α内的任意一条直线都垂直,我们就说直线l与平面α互相垂直,记作:l⊥α。

直线l叫做平面α的垂线,平面α叫做直线l的垂面.直线与平面垂直时,它们唯一的公共点P叫做垂足。

《平面与平面垂直的性质》教学设计(5篇范文)

《平面与平面垂直的性质》教学设计(5篇范文)

《平面与平面垂直的性质》教学设计(5篇范文)第一篇:《平面与平面垂直的性质》教学设计《平面与平面垂直的性质》教学设计一、教材分析:直线与平面垂直问题是直线与平面的重要内容,也是高考考查的重点,求解的关键是根据线与面之间的互化关系,借助创设辅助线与面,找出符号语言与图形语言之间的关系把问题解决。

通过对有关概念和定理的概括、证明和应用,使学生体会“转化”的观点,提高学生的空间想象力和逻辑推理能力。

二、学情分析:1.学生思维活跃,参与意识和自主探究能力较强,故采用启发、探究式教学方法;通过一系列的问题及层层递进的的教学活动,引导学生进行主动的思考、探究。

帮助学生实现从具体到抽象、从特殊到一般的过度,从而完成定义的建构和定理的发现。

2.学生抽象概括能力和空间想象能力有待提高,故采用多媒体辅助教学。

让学生在认知过程中,着重掌握原认知过程,使学生把独立思考与多向交流相结合。

三、根据本课教材的特点,新大纲对本节课的教学要求,结合学生身心发展的合理需要,确定了以下教学目标:(1)知识与技能目标:①让学生在观察物体模型的基础上,进行操作确认,获得对性质定理的正确认识;②能运用性质定理证明一些空间位置关系的简单命题,进一步培养学生空间观念.(2)过程与方法目标:①了解直线与平面、平面与平面垂直的判定定理和性质定理间的相互联系,掌握等价转化思想在解决问题中的运用.②通过“直观感知、操作确认,推理证明”,培养学生逻辑推理能力。

③发展学生的合情推理能力和空间想象力,培养学生的质疑思辨、创新的精神.(3)情感、态度与价值观目标:让学生亲身经历数学研究的过程,体验探索的乐趣,增强学习数学的兴趣.四、教学重点与难点:(1)教学重点:理解掌握面面垂直的性质定理和内容和推导。

(2)教学难点:运用性质定理解决实际问题。

五、教学设计思路:1、复习导入:(1)线面垂直判定定理:如果一条直线和一个平面内两条相交直线都垂直,则这条直线垂直于这个平面.(2)面面垂直判定定理:如果一个平面经过另一个平面的一条垂线,则这两个平面互相垂直.2、探究发现:(1)创设情境:已知黑板面与地面垂直,你能在黑板面内找到一条直线与地面平行、相交或垂直吗这样的直线分别有什么性质?试说明理由!设计说明:感知在相邻的两个相互垂直的平面内,有哪些特殊的直线和平面关系,然后通过操作,确定两个平面垂直的性质定理的合理性,引导学生通过模型观察,讨论在两个平面相互垂直的情况下,能够推出一些什么样的结论。

新人教A版 必修第二本 8.6.2《直线与平面垂直》第一节课 教案

新人教A版 必修第二本 8.6.2《直线与平面垂直》第一节课 教案

8.6.2《直线与平面垂直》教案一、教学目标1.理解直线与平面垂直的定义。

2.理解直线与平面垂直的判定定理。

3.理解直线与平面垂直的性质定理,并能够证明。

4.能运用判定定理证明直线与平面垂直的简单命题。

5.能运用性质定理证明一些空间位置关系的简单命题。

二、教学重难点1.教学重点直观感知、操作确认,概括出直线与平面垂直的判定定理、性质定理。

2.教学难点直线与平面垂直的判定定理的应用、性质定理的证明。

黑色是讲话内容,红色是回答内容,蓝色是课件内容,紫色是动作内容上课,同学们好!请坐!三、教学准备1.《直线与平面垂直》PPT2.每人发一张三角形纸片四、教学过程黑色是讲话内容,红色是回答内容,蓝色是课件内容,紫色是动作内容上课,同学们好!请坐!【提问】有同学认识它吗?(手指着日晷)(学生:认识)(学生:不认识)可能有同学不认识,它叫日晷。

【PPT演示】日晷日晷是中国古代用来测定时间的仪器,日晷通常由晷针指到和晷盘组成(手指着部位)。

如果我们把晷针看成一条直线,晷面看成一个平面,这里就体现了直线与平面的一种非常特殊的位置关系。

同学们知道是什么位置关吗?(学生:垂直)对,直线与平面重直,这就是我们今天所要学习的内容——《直线与平面垂直》【PPT演示图片】课题《8.6.2直线与平面垂直》【板书】8.6.2直线与平面垂直在我们的实际生活中,有许多场景都能给我们以直线与平面重直的直观形象。

同学们你能举出几个例子吗?(让学生多举几个)如:①把老师我看成一条直线,把讲台看成一个平面;②教室里相邻墙面的交线与地面的位置关系【PPT演示图片】③旗杆所在直线与地面的位置关系④港珠澳大桥雄伟壮观,桥墩所在直线与海面所在平面的位置关系⑤美丽的上海东方明珠塔,如果把塔身看成一条直线,海面看成一个平面。

这些都能给我们以直线与平面重直的形象。

⑥意大利萨斜塔,它能体现直线与平面垂直的形象吗?(学生:不能)对,不能,塔身所在直线与地面所在平面是不重直的。

《直线与平面垂直、平面与平面垂直的性质》教学设计(优质课)

《直线与平面垂直、平面与平面垂直的性质》教学设计(优质课)

直线与平面垂直、平面与平面垂直的性质(一)教学目标1.知识与技能(1)使学生掌握直线与平面垂直,平面与平面垂直的性质定理;(2)能运用性质定理解决一些简单问题;(3)了解直线与平面、平面与平面垂直的判定定理和性质定理间的相互关系.2.过程与方法(1)让学生在观察物体模型的基础上,进行操作确认,获得对性质定理正确性的认识;3.情感、态度与价值观通过“直观感知、操作确认、推理证明” ,培养学生空间概念、空间想象能力以及逻辑推理能力.(二)教学重点、难点两个性质定理的证明.(三)教学方法学生依据已有知识和方法,在教师指导下,自主地完成定理的证明、问题的转化.1.问题:已知直线a、b 和平面,如果a ,b ,那么直线a、b 一定平行吗?已知 a ,b 求证:b∥a.证明:假定b 不平行于a,设b =0 b′是经过O与直线a 平行的直线∵a∥b′,a∴b′⊥a即经过同一点O 的两线b、b′都与垂直这是不可能的,因此b∥a.2.直线与平面垂直的性质定理垂直于同一个平面的两条直线平行简化为:线面垂直线线平行AA′、BB′、CC′、DD′ 所在直线都垂直于平面ABCD,它们之间相互平行,所以结论成立.师:怎么证明呢?由于无法把两条直线a、b 归入到一个平面内,故无法应用平行直线的判定知识,也无法应用公理4,有这种情况下,我们采用“反证法” 师生边分析边板书.学,培养几何直观能力. ,反证法证题是一个难点,采用以教师为主,能起到一个示范作用,并提高上课效率.探索新知二、平面与平面平行的性质定理1.问题黑板所在平面与地面所在平面垂直,你能否在黑板上画一条直线与地面垂直?2.例1 设,=CD,AB ,教师投影问题,学生思考、观察、讨论,然后回答问题生:借助长方体模型,在长方体ABCD–A′B′C′D′中,面A′ADD′⊥面本例题的难点是构造辅助线,采用分析综合法能较好地解决这个问题.2.平面和平面垂直的性质补充完善 .归纳知识提高3.面面垂直 线面垂直 线线垂直自我整合知识的能力. 课后作业2.3 第三课时 习案 学生独立完成固化知识提升能力备选例题例 1 把直角三角板 ABC 的直角边 BC 放置桌面,另一条直 桌面所在的平面 垂直,a 是 内一条直线,若斜边 AB 与 a 垂 是否与 a 垂直?a AC 解析】 ACa AB aAC AB A评析】若 BC 与 垂直,同理可得 AB 与 也垂直,其实质是三垂线定理及逆定理,证明过程体现了一种重要的数学转化思想方法: “线线垂直→线面垂直→线线垂直”例 2 求证:如果两个平面都垂直于第三个平面,则它们的交线垂直于第三个平面.已 知 ⊥r , ⊥r , ∩ = l ,求证: l ⊥r .【分析】根据直线和平面垂直的判定定理可在 r 内构造两相交直线分别与平面 、 垂 直.或由面面垂直的性质易在 、 内作出平面 r 的垂线,再设法证明 l 与其平行即可.【证明】法一:如图,设 ∩r = a , ∩r = b ,在 r P .过点 P 在r 内作直线 m ⊥ a ,n ⊥b .∵ ⊥r , ⊥r ,∴ m ⊥ a ,n ⊥ (面面垂直的性质) 又 ∩ = l ,a 平面 ABC BC 平面 ABCa BC角边 AC 与 直,则 BC内任取一点∴ l ⊥ m ,l ⊥n .又 m ∩n = P ,m ,n r ∴l ⊥r .法二:如图,设 ∩r = a , ∩r ∵ ⊥r , ⊥r , ∴m ⊥r ,n ⊥r . ∴ m ∥ n ,又 n ,m , ∴ m ∥ ,又 ∩ = l ,m ,b ,在 内作 m ⊥a ,在 内作 n ⊥ b .∴ m ∥ l , 又 m ⊥r ,∴l ⊥r .【评析】充分利用面面垂直的性质构造线面垂直是解决本题的关键.证法 面垂直、线面垂直、线线垂直相互转化;证法二涉及垂直关系与平行关系之间的转化.此题是线线、面面垂直转化的典型题,通过一题多解,对沟通知识和方法,开拓解题思路是有益 的.充分利用面。

直线与平面垂直的判定教案

直线与平面垂直的判定教案

直线与平面垂直的判定教案一、教学目标1. 知识目标:掌握直线与平面垂直的定义,能够判定直线与平面是否垂直。

2. 技能目标:能够应用垂直的概念解决实际问题。

3. 情感目标:培养学生严谨的思维习惯,提高学生对几何学科的兴趣和热爱。

二、教学重难点1. 教学重点:掌握直线与平面垂直的定义和判定方法。

2. 教学难点:运用垂直概念解决实际问题。

三、教学过程1. 导入新知识(5分钟)通过引导问题,让学生回顾了解几何中的垂线和垂足,并引入本节课的新知识——直线与平面垂直。

2. 概念讲解(15分钟)(1)定义:“如果一条直线在平面内,且这条直线与这个平面上所有的点都相交成90度角,则称这条直线与这个平面相互垂直。

”(2)示例:“AB是一个平面内的一条不在该平面内的直线,CD是该平面内任意一点到AB上的垂线,则CD与AB垂直。

”3. 判定方法(20分钟)(1)方法一:判断直线是否在平面内,且直线上有一点到平面上的垂线。

(2)方法二:判断直线是否与平面内两条相交的直线垂直。

(3)示例:“如何判定一条直线是否与一个平面相互垂直?”4. 实例演练(20分钟)通过多组实例让学生掌握如何应用垂直概念解决实际问题。

5. 拓展应用(15分钟)通过课堂小组讨论,让学生探究如何利用垂足、垂线等概念解决实际问题。

6. 总结归纳(5分钟)回顾本节课所学知识点,总结归纳各种情况下的判定方法。

四、教学方式1. 讲授法2. 实践操作法3. 课堂小组讨论法五、教学评价1. 课堂表现评价:包括对问题的理解和回答、对概念和方法的掌握程度等。

2. 作业评价:布置相关作业,检查学生对知识点的掌握情况。

3. 考试评价:通过测试、考试等方式,检查学生对知识点的掌握情况。

六、教学后记本节课主要让学生掌握直线与平面垂直的定义和判定方法,并能够应用垂直概念解决实际问题。

通过多组实例演练和课堂小组讨论,让学生更好地理解和掌握了相关知识点。

在教学评价方面,可以通过多种方式进行评价,以全面检查学生对知识点的掌握情况。

直线与平面垂直教案

直线与平面垂直教案

直线与平面垂直教案一、教学目标1. 知识与技能:了解直线与平面垂直的定义及性质;掌握确定直线与平面垂直的方法。

2. 过程与方法:通过讲解、实例分析、讨论、解题等活动,引导学生主动探究直线与平面垂直的概念与性质,培养学生的逻辑思维和解决问题的能力。

3. 情感、态度与价值观:培养学生的观察、分析、解决问题的兴趣和能力,促使学生养成严谨的思维习惯,培养学生的合作精神和探索精神。

二、教学重难点1. 教学重点:直线与平面垂直的概念与性质。

2. 教学难点:确定直线与平面垂直的方法。

三、教学过程1. 导入新知教师用一个简单的实例引出直线与平面垂直的概念:在黑板上画一条直线,然后在直线上选取两点A、B,再在直线的两侧各画一平面,问学生这两平面与直线有什么关系。

2. 探究直线与平面垂直的概念学生进行小组讨论,根据教师的引导,讨论直线与平面垂直的概念。

教师在黑板上列出不同小组的结论,引导学生给出明确的定义。

3. 引入直线与平面垂直的性质通过实例让学生观察直线与平面垂直的性质,如直线的切线垂直于直线所在平面等。

教师引导学生总结性质,并进一步讲解、解释。

4. 确定直线与平面垂直的方法(1)方法一:判断直线与平面垂直的充分必要条件是直线上的一条线段垂直于平面。

教师给出示意图并解释,然后引导学生通过实例进行练习。

(2)方法二:判断直线与平面垂直的充分必要条件是直线的方向向量与平面的法向量垂直。

教师给出示意图并解释,然后引导学生通过实例进行练习。

5. 深化与拓展教师引导学生分组讨论,探究与直线与平面垂直相关的问题,如平面上的直线与直线垂直的条件、直线与平面垂直的判定等,并向全班展示讨论结果。

6. 归纳总结教师引导学生总结本节课的重点内容,并澄清学生可能存在的疑惑。

四、教学方法本课采用探究教学法,通过引入导入、讨论、解题等方式,培养学生的观察、思考和解决问题的能力。

同时,采用小组合作学习,促使学生主动、积极参与,培养学生的合作意识和团队精神。

直线与平面垂直 教学设计

直线与平面垂直 教学设计

直线与平面垂直一、新知导学:1、两直线垂直:如果两条直线相交于一点或经过平移后,并且交角为,则称这两条直线O2、线面垂直:如果一条直线(AB)和一个平面α相交于点0,并且和这个平面内过交点(0)的任何直线都,我们就说.若直线I与平面α垂直记作o画直线和平面垂直时,通常要__________________________________________ 3、线面垂直的判定定理:如果一条直线与一个平面内的两条____ 直线都垂直,则该直线与这个平面_________ . ______ 1用符号语言表示为:∕⅛⅜推论1:如果在两条平行直线中,有一条垂直于平面,那么另一条直线也_________ .推论2:如果两条直线垂直于同一个平面,那么4、线面垂直的性质:如果一条直线垂直于一个平面,那么它就和平面内的任意一条直线O用符号语言表示为:___________________________二、典例分析例1、有一根旗杆高8阳,它的顶端A挂一条长IOm的绳子,拉紧绳子并把它的下端放在地面上的两点(和旗杆脚不在同一直线上)GO ,如果这两点都和旗杆脚8的距离是6小,那么旗杆就和地面垂直,为什么?变式:如图,点P是平行四边形ABCD所在平面外一点,。

是对角线AC与BD的交点,且PA=PC, PB=PD. 求证:PO_L平面ABCD例2过一点和已知平面垂直的直线只有一条已知:平面α和一点P求证:过点P与α垂直的直线只有一条例3、已知:空间四边形ABCO, AB = AC f求证:BC-LAD0变式:已知:点。

是ΔABC的垂心,PO_L平面ABC,垂足为。

, 求证:PAYBC.三、课堂小结:证明线面垂直的方法:。

《直线与平面垂直的性质》教学设计、导学案、同步练习

《直线与平面垂直的性质》教学设计、导学案、同步练习

《8.6.2 直线与平面垂直》教学设计第2课时直线与平面垂直的性质【教材分析】本节课选自《普通高中课程标准数学教科书-必修第二册》(人教A版)第八章《立体几何初步》,本节课主要直线与平面垂直的性质及其应用,直线到平面的距离、两平行平面间的距离。

课本从长方体的侧棱垂直与底面,考虑侧棱之间的关系入手,通过用反证法证明垂直与一个平面的两直线平行,引入直线与平面垂直的性质定理,通过例题引入直线到平面的距离的定义以及两平行平面之间的距离定义。

直线与平面垂直的性质定理是判断两直线平行的一种方法。

【教学目标与核心素养】【教学重点】:直线与平面平行的性质定理,直线到平面的距离,两平行平面的距离;【教学难点】:用直线与平面平行的性质定理解决相关问题。

【教学过程】2.直线与平面垂直的判定定理【答案】一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。

二、探索新知观察:如图,长方体ABCD —A 1B 1C 1D 1中,棱AA 1,BB 1,CC 1,DD 1所在直线与底面ABCD 的位置关系如何?它们彼此之间具有什么位置关系?【答案】平行思考:如图,已知直线a ,b 和平面α,如果a ⊥α,b ⊥α,则那么直线a ,b 一定平行吗?已知:a ⊥α, b ⊥α 求证:a ∥b . 证明:假设b 不平行于a,是经过点O 与直线a 平行的直线。

因为。

即经过同一个点O 的两条直线b,c 都垂直于平面,这是不可能的。

因此,a//b.1.直线和平面垂直的性质定理: 垂直于同一个平面的两条直线平行. 符号语言:图形语言:作用:证线线平行。

例1.如图,直线平行于平面,求证:直线上各点到平面的距通过观察与思考,得到直线与平面平行性质定理,的提高学生的解决问题、分析问题的能力。

通过符号语言与图形语言,让学生进一步理解直线与平面垂直的性质定理,提高学生的概括能力。

c O b ,=α αα⊥⊥c a c a 所以,,//αb a b a //,⇒⊥⊥ααl αl α离相等。

直线与平面垂直的性质教案

直线与平面垂直的性质教案

直线与平面垂直的性质教案教案:直线与平面垂直的性质一、教学目标1.知识目标:了解直线与平面的垂直关系,并掌握直线与平面垂直的性质。

2.能力目标:能够判断直线与平面是否垂直,并能够运用垂直的性质解决问题。

3.情感目标:培养学生对数学的兴趣,激发学习的主动性。

二、教学重点三、教学难点如何判断直线与平面是否垂直。

四、教学准备教师准备:教学课件、黑板、白板、绘图工具等。

学生准备:课本、笔记本等。

五、教学过程Step1:导入新知1.通过引入两个概念:“直线”和“平面”,并介绍其定义、性质和符号表示。

2.通过实际示例,引导学生思考并提出问题:“直线与平面之间是否存在一种特殊的关系?”“你认为直线与平面有什么样的垂直关系?”3.引导学生观察周围环境中直线与平面的垂直关系,并与学生一起讨论。

Step2:理论讲解1.引入直线与平面垂直的定义:“如果直线与平面上的任意一条直线都垂直相交,那么称这条直线与这个平面垂直。

”2.讲解直线与平面垂直的性质:(1)直线与平面垂直的定理:在同一个平面内,如果一条直线与另一条直线垂直相交,则它们与该平面垂直。

(2)直线与平面垂直的判定定理:一条直线与一个平面垂直的充分必要条件是这条直线上有一点在这个平面上,且在这个平面上有一般的直线与这条直线垂直。

3.讲解直线飞平面垂直的表示方法:以垂直符号“⊥”表示。

Step3:示例演练1.给出一些具体问题,引导学生分析并判断直线与平面是否垂直,并用判定定理进行解答。

例如:过一个点作平面外的一条直线,该直线与这个平面有什么样的关系?2.引导学生根据给定的条件使用垂直的性质进行证明,以锻炼思维能力。

Step4:归纳总结1.让学生复习并总结判定直线与平面垂直的方法和性质。

2.强化学生对垂直符号“⊥”的理解和应用。

Step5:拓展应用将所学的直线与平面垂直的知识应用到实际问题中,例如建筑工程、地理测量等领域,培养学生运用数学知识分析和解决实际问题的能力。

教学设计2:1.2.3 第1课时 直线与平面垂直

教学设计2:1.2.3 第1课时 直线与平面垂直

1.2.3 第1课时直线与平面垂直三维目标1.知识与技能(1)经历对实例、图片的观察,提炼直线与平面垂直的定义,并能正确理解直线与平面垂直的定义.(2)通过直观感知、操作确认,归纳直线与平面垂直的判定定理,并能运用判定定理证明一些空间位置关系的简单命题.2.过程与方法(1)通过类比空间的平行关系提高提出问题、分析问题的能力.(2)在探索直线与平面垂直判定定理的过程中发展合情推理能力,同时感悟和体验“空间问题转化为平面问题”、“线面垂直转化为线线垂直”、“无限转化为有限”等化归的数学思想.(3)尝试用数学语言(文字、符号、图形语言)对定义和定理进行准确表述和合理转换.3.情感、态度与价值观经历线面垂直的定义和定理的探索过程,培养严谨与求实的学习作风,形成锲而不舍的钻研精神和科学态度.重点、难点重点:直线与平面垂直的定义和判定定理、性质定理.难点:掌握直线和平面垂直的判定定理和性质定理,并会用他们解决垂直问题.重难点突破:以日常生活中见到的线面垂直的实例为切入点,通过“展示物体的支架图片直观感知”和“折纸的操作探究”两条途径让学生经历由特殊到一般,由具体到抽象,让学生增加线面垂直的感性认识的同时突出重点、突破难点.通过学生观察长方体侧棱及侧面同底面的关系,提出直线和平面垂直的性质定理及平面和平面垂直的性质定理的猜想,然后通过逻辑论证,证明猜想的正确性,从而得到性质定理,最后通过题组训练,采用师生互动、讲练结合的方式,帮助学生突出重点、化解难点.教学建议直线与平面垂直是直线与平面相交中的一种特殊情况,它是空间中线线垂直位置关系的拓展.也是连接线线垂直和面面垂直的纽带,在教材中起到了承上启下的作用.鉴于本节知识的特点,建议采用“启发——探究”的教学方法,先利用投影仪展示多幅图片,使学生直观感知线面垂直的定义;紧接着让学生动手参与折纸试验,并对试验现象进行观察分析和归纳概括;通过一系列的双边活动,帮助学生实现从具体到抽象、从特殊到一般的过渡,从而完成定义的建构和定理的发现.最后通过典例及变式训练突出线面垂直判定定理和性质定理的应用.知识梳理1.两条直线互相垂直如果两条直线相交于一点或经过平移后相交于一点,且______________,则称这两条直线互相垂直.2.空间直线与平面垂直定义:如果一条直线和一个平面相交于一点,并且和这个平面内过交点的____________________,我们说这条直线和这个平面互相垂直,这条直线叫________________,这个平面叫________________,交点叫________,垂线上任意一点到垂足间的线段,叫做这个点到这个平面的__________,垂线段的长度叫这个点到平面的________.3.直线与平面垂直的判定定理定理:如果________________________________________________,则这条直线与这个平面垂直.4.直线与平面垂直的性质定理①线面垂直⇒线线平行【提示】12.任何直线都垂直平面的垂线直线的垂面垂足垂线段距离3.一条直线与平面内的两条相交直线垂直4.①线面垂直⇒线线平行知识点1 直线与直线垂直、直线与平面垂直的定义【问题导思】在阳光下观察直立于地面的旗杆及它在地面上的影子,随着时间的变化,影子BC的位置在移动,在各个时刻旗杆AB所在的直线与其影子BC所在的直线什么关系?【提示】垂直.1.直线与直线垂直如果两条直线相交于一点或相交于一点,并且交角为,则称这两条直线互相垂直.2.直线与平面垂直的定义及性质把直线AB 画成和表示平面的平行四边形的一边.【提示】1.经过平移后直角 2.任何直线都垂直ABα垂直垂线垂面垂足垂线段距离任意一条例1 下面叙述中:①若直线垂直于平面内的两条直线,则这条直线与平面垂直;②若直线与平面内的任意一条直线都垂直,则这条直线与平面垂直;③若直线垂直于梯形的两腰所在的直线,则这条直线垂直于两底边所在的直线;④若直线垂直于梯形的两底边所在的直线,则这条直线垂直于两腰所在的直线.其中正确的有()A.1个B.2个C.3个D.4个【思路探究】与线面垂直的定义及线面垂直的判定定理进行对照,区分异同,分析条件变换的影响,辨析正误.【自主解答】①中若两条直线为平行直线,则这条直线不一定与平面垂直,所以不正确;②由定义知正确;③中直线与梯形的两腰所在直线垂直,则与梯形所在平面垂直,由定义知也与两底边所在直线垂直,所以正确;④中直线与梯形两底边所在直线垂直,则不一定与梯形所在平面垂直,故不一定与两腰所在直线垂直,不正确.故选B.【答案】B规律方法总结1.直线和平面垂直的定义是描述性定义,对直线的任意性要注意理解.实际上,“任何一条”与“所有”表达相同的含义.当直线与平面垂直时,该直线就垂直于这个平面内的任何直线.由此可知,如果一条直线与一个平面内的一条直线不垂直,那么这条直线就一定不与这个平面垂直.2.由定义可得线面垂直⇒线线垂直,即若a⊥α,b⊂α,则a⊥b.变式训练1 有下列说法:①如果一条直线和一个平面平行,那么它和这个平面内的任意直线都不垂直.②如果一条直线垂直于平面内的无数条直线,那么这条直线和这个平面垂直.③过点A垂直于直线a的所有直线都在过点A且垂直于a的平面内.其中错误的是()A.①②B.①③C.②③D.①②③【解析】①直线与平面平行,过该直线任作平面与已知平面相交,则直线与交线平行,可知平面内与交线垂直的所有直线都与已知直线垂直,①错误;②如果平面内的无数条直线是平行的,那么就不能得到直线和平面垂直的结论,②错误;③因为过一点有且只有一个平面与已知直线垂直,所以过点A与直线a垂直的直线都在过点A且与a垂直的平面内,③正确.【答案】A知识点2 直线与平面垂直的判定与性质【问题导思】将一块三角形纸片ABC沿折痕AD折起,将翻折后的纸片竖起放置在桌面上(BD,DC 与桌面接触).观察折痕AD与桌面的位置关系.1.折痕AD与桌面一定垂直吗?【提示】不一定.2.当折痕AD满足什么条件时,AD与桌面垂直?【提示】 当AD ⊥BD 且AD ⊥CD 时,折痕AD 与桌面垂直. 1.直线与平面垂直的判定定理定理:如果一条直线与平面内的 直线垂直,则这条直线与这个平面垂直. 推论1:如果在两条 中,有一条垂直于平面,那么另一条直线也垂直于这个平面;推论2:如果两条直线 ,那么这两条直线平行. 2.直线与平面垂直的性质定义:如果一条直线垂直于一个平面,那么它就和平面内的 一条直线垂直. 符号表示:⎭⎪⎬⎪⎫a ⊥αb ⊂α⇒a ⊥b .【提示】1.两条相交 平行直线 垂直于同一个平面 2.任意 例2 在平面α内有直角∠BCD ,AB ⊥平面α,求证CD ⊥平面ABC .【思路探究】【自主解答】 如图所示.⎭⎪⎬⎪⎫⎭⎪⎬⎪⎫AB ⊥αCD ⊂α⇒AB ⊥CD∠BCD =90°⇒BC ⊥CDAB ∩BC =B⇒CD ⊥平面ABC .规律方法总结1.使用直线与平面垂直的判定定理的关键是在平面内找到两条相交直线都与已知直线垂直,即把线面垂直转化为线线垂直来解决.2.线面垂直的定义具有双重作用:判定和性质,证题时常用它作为性质使用,即“如果一条直线垂直于一个平面,那么这条直线就垂直于平面内的任意一条直线”.变式训练2 如图1-2-24,在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是棱AB ,BC 的中点,O 是底面ABCD 的中心,求证:EF ⊥平面BB 1O .图1-2-24【证明】∵ABCD为正方形,∴AC⊥BO.又∵BB1⊥平面ABCD,AC⊂平面ABCD,∴AC⊥BB1,又∵BO∩BB1=B,∴AC⊥平面BB1O,又EF是△ABC的中位线,∴EF∥AC,∴EF⊥平面BB1O.例3 如图1-2-25所示,ABCD为正方形,SA⊥平面ABCD,过A且垂直于SC的平面分别交SB、SC、SD于点E、F、G.求证:AE⊥SB.图1-2-25【思路点拨】要证AE⊥SB,只要证AE⊥面SBC,∵SC⊥面AGFE,∴SC⊥AE,故只要证AE⊥BC,只要证BC⊥面SAB.∵BC⊥AB.SA⊥BC.显然得证.【自主解答】∵SA⊥面ABCD,∴SA⊥BC.∵ABCD是正方形,∴AB⊥BC.∵SA∩AB=A,∴BC⊥面SAB.∵AE⊂面SAB,∴BC⊥AE.∵SC⊥面AGFE,∴SC ⊥AE . 又∵BC ∩SC =C , ∴AE ⊥面SBC . 而SB ⊂面SBC , ∴AE ⊥SB .规律方法总结1.线线垂直的证明,常转化为线面垂直来证明,即:把两条直线中一条放在某个平面内,然后证明另一条垂直于这个平面.要证线面垂直,可通过线面垂直的定义及判定定理,体现了线线垂直→线面垂直→线线垂直转化,解题时要注意这种相互转化关系的合理应用.2.要学会逆向分析的方法,从要证明的结论入手,层层递推,这是解决问题的有效方法. 变式训练3如图1-2-26,已知P A ⊥矩形ABCD 所在的平面,M 、N 分别是AB 、PC 的中点.图1-2-26(1)求证:MN ⊥CD ;(2)若∠PDA =45°,求证:MN ⊥平面PCD .【证明】 (1)如图,取PD 的中点E ,连接NE ,AE . 因为N 为PC 的中点,E 为PD 的中点, 所以NE ∥CD 且NE =12CD ,而AM ∥CD 且AM =12AB =12CD ,所以NE ∥AM 且NE =AM . 所以四边形AMNE 为平行四边形, 所以MN ∥AE . 因为P A ⊥平面ABCD , 所以P A ⊥CD .又因为ABCD 为矩形, 所以CD ⊥AD .而AD∩P A=A,所以CD⊥平面P AD,所以CD⊥AE,又AE∥MN,所以CD⊥MN.(2)由(1)知,CD⊥AE,MN∥AE.因为∠PDA=45°,在等腰直角三角形P AD中,E为PD的中点,所以AE⊥PD.又PD∩CD=D,所以AE⊥平面PCD,而AE∥MN,所以MN⊥平面PCD.课堂小结1.直线与平面垂直的判定方法:(1)利用定义;(2)利用判定定理,其关键是在面内找两条相交直线.2.对于线面垂直的性质定理(推论2)的理解:(1)直线与平面垂直的性质定理(推论2)给出了判定两条直线平行的另一种方法.(2)定理揭示了空间中“平行”与“垂直”关系的内在联系,提供了“垂直”与“平行”关系转化的依据.当堂检测1.下列命题中正确的个数是()①如果直线l与平面α内的无数条直线垂直,则l⊥α;②如果直线l与平面α内的一条直线垂直,则l⊥α;③如果直线l不垂直于α,则α内没有与l垂直的直线;④如果直线l不垂直于α,则α内也可以有无数条直线与l垂直.A.0 B.1 C.2 D.3【答案】B2.直线a⊥直线b,b⊥平面β,则a与β的关系是()A.a⊥β B.a∥βC.a⊂β D.a⊂β或a∥β【答案】D3.线段AB在平面α的同侧,A、B到α的距离分别为3和5,则AB的中点到α的距离为________.【答案】4【解析】由直线与平面垂直的性质定理知AB中点到α距离为以3和5为上、下底的直角梯形的中位线的长.4.直线a和b在正方体ABCD-A1B1C1D1的两个不同平面内,使a∥b成立的条件是________.(只填序号)①a和b垂直于正方体的同一个面;②a和b在正方体两个相对的面内,且共面;③a 和b平行于同一条棱;④a和b在正方体的两个面内,且与正方体的同一条棱垂直.【答案】①②③【解析】①为直线与平面垂直的性质定理的应用,②为面面平行的性质,③为基本性质4的应用.5.如图所示,在直三棱柱ABC-A1B1C1中,AC⊥BC,AC=BC=CC1,M,N分别是A1B,B1C1的中点.求证:MN⊥平面A1BC.证明如图所示,由已知BC⊥AC,BC⊥CC1,得BC⊥平面ACC1A1.连接AC1,则BC⊥AC1.由已知,可知侧面ACC1A1是正方形,所以A1C⊥AC1.又BC∩A1C=C,所以AC1⊥平面A1BC.因为侧面ABB1A1是正方形,M是A1B的中点,连接AB1,则点M是AB1的中点.又点N是B1C1的中点,则MN是△AB1C1的中位线,所以MN∥AC1.故MN⊥平面A1BC.反思感悟1.运用化归思想,将直线与平面垂直的判定转化为直线与平面内两条相交直线的判定,而同时还由此得到直线与直线垂直.即“线线垂直⇔线面垂直”.2.直线和平面垂直的判定方法(1)利用线面垂直的定义.(2)利用线面垂直的判定定理.(3)利用下面两个结论:①若a∥b,a⊥α,则b⊥α;②若α∥β,a⊥α,则a⊥β.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题:1.2.3 直线与平面垂直【教学内容解析】本节课是苏教版教材必修2中第一章第二节的内容,属于新授概念原理课.其中直线与平面垂直的概念、判定定理的形成是教学重点.这是直线与平面垂直在本节中的位置.线面垂直是在学生掌握了线在面内,线面平行之后紧接着研究的线面相交位置关系中的特例.线面平行研究了定义、判定定理以及性质定理,为本节课提供了研究内容和研究方法上的范式.线面垂直是线线垂直的拓展,又是面面垂直的基础,且后续内容如:空间的角和距离等又都使用它来定义,在本章中起着承上启下的作用.通过本节课的学习研究,可进一步完善学生的知识结构,更好地培养学生观察发现、空间想象、推理能力,体会由特殊到一般、类比、归纳、猜想、化归等数学思想方法.因此,学习这部分知识有着非常重要的意义.【教学目标设置】1.学生通过对实例、模型的观察、抽象,概括出直线与平面垂直的定义,发现、猜想、归纳直线与平面垂直的判定定理.2.在定义、定理的探究活动中,学生通过独立思考和合作交流,发展类比、归纳等合情推理能力、逻辑思维能力和空间想象能力.3.学生运用特殊化、类比、化归等数学思想,体验了研究空间关系的一般方法.4.在探究线面垂直的定义和判定的过程中,体会数学的严谨、简洁之美,体验探究发现的乐趣,培养善于观察、勇于探索的良好习惯.【学生学情分析】1.学生已有的认知基础学生能够感知生活中有大量的线面垂直关系,已经掌握了线线垂直、线面平行的相关知识,从而具备了研究空间位置关系的经验,也体会了立体几何中化归的数学思想方法.2.达成标所需要的认知基础要达成本节课的目标,这些已有的知识和经验基础不可或缺,还需要整体上把握本节课的研究内容、方法和途径,能运用类比、化归等数学思想,同时具备较好地观察发现、空间想象、合情推理、抽象概括等能力,以及独立思考、合作交流、反思质疑等良好的数学学习习惯.我校为普通高中,招收的学生大部分基础薄弱,自主学习能力差.进入高一,虽然能领悟一些基本的数学思想与方法,但还没有形成完整、严谨的数学思维习惯,对问题的探究能力也有待培养.3.难点及突破策略难点:1.运用类比、化归等数学思想方法来研究直线与平面垂直的定义,突破“任意”的生成和理解.3.探究、归纳、理解直线与平面垂直判定定理,突破“无限”与“有限”的转化.突破策略:1.启发学生明确研究的内容与方法,从总体上认识研究的目标与手段.2.引导学生经过直观感知、操作确认、思辨论证的过程形成线面垂直的定义和判定定理.3.发动学生通过问题串交流、汇报、展示思维过程,相互启发.【教学策略分析】根据学生已有学习基础,为提升学生的学习能力,本节课的教学,采用教法和学法如下:1.教师创设情境,学生列举实例,形成关于线面垂直的直观感知.2.教师启发引导,学生明确按照“定义——判定——性质”的研究程序,强化空间位置关系的常用研究策略——降维化归.3.教师以问题串为载体,驱动学生主动参与知识建构、合作探究.4.教师分层设计知识应用,引导反思,学生深化理解,形成知识体系.【教学过程】一、创设情境、建构定义1.回顾旧知引入课题[问题1]直线和平面有几种位置关系?[问题2] 已经掌握了直线和平面平行的哪些内容?[问题3]直线与平面相交中最特殊的一种位置关系是什么?[问题4] 研究关于“直线与平面垂直”的什么内容?[问题5] 怎样研究“直线与平面垂直”呢?师生活动:通过问题让学生复习了已经学过的知识,让学生利用手中的工具摆出“线面相交”的情形,并指出其中最特殊的情况,并进行命名.学生能说出研究“线面垂直”的哪些内容和怎样去进行研究.设计意图:简单回顾直线与平面的三种位置关系和线面平行的研究内容、研究方法,引出直线与平面相交时的特殊情况——“直线与平面垂直”及其研究内容.2.创设情境启发定义情境 1 “直线与平面垂直”在我们的生活中有许多直观的感知,请举例.几何体中“直线与平面垂直”形象吗?请举例.情境2 有没有与地面不垂直的建筑物呢?请举例.[问题6] 为什么感觉斜塔与地面不垂直?[问题7] 关于“垂直”我们已知的是什么?[问题8] 能不能用已知的“线与线的垂直关系”来刻画未知的“线与面的垂直关系”呢?师生活动:学生能够从直观感知入手,通过教师的追问,引起学生思考,何刻画出斜塔与地面不垂直的原因,进而抓住线面“垂直”就是平面内找不到与它不垂直的直线.设计意图:旨在让学生直观感知“线面垂直”.学生自由举例,列举生活中,几何体中“线面垂直”的例子.大量丰富的正面例子有助于学生观察不同的例子所具有的共同特征,形成关于线面垂直的直观感知.再从反例——“比萨斜塔”,借助“比萨斜塔”的“斜”启发定义.正反例的对比中更容易抓住事物的本质与核心.3. 验证猜想建构定义[问题9] 一条直线真的能与一个平面内的所有直线都垂直吗?有这样的实际模型吗?师生活动:通过教师提问:“圆锥的轴所在的直线与底面内所有的直线都垂直吗?”学生独立思考,小组交流,汇报.教师再用几何画板演示,进行说明猜想的合理性.设计意图:对于定义合理性的解释、猜想正确性的检验,直观演示能起到不可替代的效果.因此通过圆锥的实例,说明一条直线与平面内的所有直线都垂直的状态是存在的,也让学生的认知结构中拥有了关于概念的实际模型.4.认识定义巩固深化[问题10] 你能给“直线与平面垂直”下个定义吗?师生活动:通过辨析定义——“‘任意’的含义是什么?等价于‘所有’吗?等价于‘无数’吗?”;通过三种语言表示定义;通用利用定义证明例题1——“求证:如果两条平行线中的一条垂直于一个平面,那么另一条也垂直与这个平面.”等多个环节进一步认识定义,体会定义中“双向叙述”的功能.并在作图的同时介绍垂线,垂面,垂足等概念.设计意图:对定义进行多角度和深入理解,对数学思维方法的渗透和对研究问题的方法的指导能在教学中达到事半功倍的效果.例题1的教学,在学生独立思考后,让学生板演展示和相互评价,让学生得到充分的训练和表达,同时对证明格式提出规范性要求.证明之后,再对此题重新深刻理解,从直观的判断变为理性的思考,符合学生的认知规律.定义的认识和例题的证明中多次使用三种语言转换,也有助于学生空间想象能力的培养.二、简化定义获得猜想[问题11] 工人怎样检验旗杆是否与地面垂直呢?师生活动:通过检验“旗杆与地面是否垂直”的问题激发学生寻求判定线面垂直的新方法.学生有要简化定义中的“任意一条直线”为“有限条直线”的想法. 教师进而追问:简化成“一条直线”行吗?“两条直线”呢?学生进行思考,辩证. 学生能够猜想到:一条直线垂直于平面内的两条相交直线就可以得到一条直线垂直于这个平面.设计意图:通过询问学生工人如何检验旗杆是否与地面垂直的?让学生感受到了寻求判断线面垂直新方法的必要性,又开启了他们简化定义中“任意一条”的想法,于此同时对每一种想法进行辨析,培养了学生的空间想象能力,而后获得关于线面垂直判定定理的猜想.三、汇报交流形成定理1.直观感知师生活动:学生带着猜想,寻找辅证的实例.2.操作试验师生活动:学生带着猜想,通过实验:“(1)怎样将一本书立在桌面上,使得书脊能与桌面垂直?这样的书至少需要几页呢?(2)将手中的练习纸折叠,折痕满足什么条件,折痕与桌面垂直?”进行动手操作,确认猜想.3.直观演示师生活动:教师通过几何画板演示进一步说明猜想的合理性,学生进一步增加直观体验.4.形成判定师生活动:学生叙述线面垂直的判定定理,并用图形语言和符号语言表示“直线与平面垂直”的判定定理.教师进行点评与总结.am n,,a m a nm nA a mn师:如图,哪一幅作图更具有一般性?说明理由.师:判定定理也是由线“线”垂直推出线“面”垂直.这里的“线”较之定义发生了怎样的变化?生:已经简化为了“面”内两条相交直线.师:“线不在多,相交则行”.现在去判断线面垂直有哪些方法? 生:可以用定义,也可以用判定定理.师:这样,除了定以外,我们就又增加了一个判定“线面垂直”的方法.在这里,我们把“线面垂直的问题转化为线线垂直”来解决,充分体现了“降维转化”的思想.我们解决问题时也要选择最佳方法.设计意图:获得猜想是合情推理的第一步,如何让学生在不加证明的情况下,心悦诚服的接受“判定定理”呢?于是引导学生带着猜想,寻找实例验证,再通过折纸试验和几何画板演示双重操作确认,进一步增强学生的直观感受的同时进行理性思考,最终形成定理.接着同样要求学生用三种语言表示它,认识定理.四、数学应用 巩固深化[问题11] 现在你是工人,怎样检验旗杆是否与地面垂直呢?例2:在正方体ABCD-A1B1C1D1中,求证:(1)AC ⊥平面BDD1(2)求证:AC ⊥BD1师生活动:学生分析条件以及要证明的结论,合理选择方法,独立求解,教师板书示范解题过程,线面垂直.设计意图:判定定理的应用分为三个层次进行:第一层次让学生理解、记忆定理并进行简单运用;第二层次通过空间简单位置关系的证明,培养学生逻辑推理能力,重视对学生思考策略的引导和启发,通过教师示范、学生互评规范证明题的书写;第三层次是训练学生灵活应用判定定理和定义,能适当的进行线线和线面位置关系之间的转化.五、概括总结分层作业[问题12]本节课我们学习了哪些知识?掌握了哪些方法?体会了哪些思想?今后我们还要学习什么呢?师生活动:学生思考、回答,教师适当点拨、补充.设计意图:开放式小结,使得不同的学生有不同的学习体验和收获. 引导学生主动建构,形成知识体系;预测未来的学习内容,旨在进一步感悟数学思想;规范立几学习,提出能力要求.课后作业必做题:第34页第1(1)(2),3题;第36页第6,7题选做题:第37页第10题拓展题:运用今天的研究方法,你还能进行其它位置关系的探究吗?设计意图:分层布置作业,满足不同学生的学习能力要求.。

相关文档
最新文档