人教版-2018年-七年级数学下册-一元一次不等式应用题-培优练习(含答案)

合集下载

人教版七年级下册数学一元一次不等式解决实际问题应用题专项训练(含答案)

人教版七年级下册数学一元一次不等式解决实际问题应用题专项训练(含答案)

人教版七年级下册数学一元一次不等式解决实际问题应用题专项训练1.某校组织290名师生进行野外考察活动,行李共有100件.学校计划租用甲、乙两种型号的汽车共8辆,经了解,甲种汽车每辆最多能载40人和10件行李;乙种汽车每辆最多能载30人和20件行李.请你帮助学校设计所有可能的租车方案.2.为加快老旧小区改造,某企业需运输一批物资.据调查得知,2辆大货车与3辆小货车一次可以运输60箱物资:5辆大货车与6辆小货车一次可以运输135箱物资.(1)求1辆大货车和1辆小货车一次分别运输多少箱物资;(2)计划用两种货车共12辆运输这批物资,每辆大货车一次需费用500元,每辆小货次需费用300元.若运输物资不少于150箱,且总费用小于5400元.请你列出所有运输方案,并指出哪种方案所需费用最少.最少费用是多少?3.为了更好地治理水质,保护环境,市治污公司决定购买10台污水处理设备,现有A、B两种设备,A、B的单价分别为a万元/台和b万元/台,月处理污水分别为240吨/月和200吨/月,经调查,买一台A型设备比买一台B 型设备多2万元,购买2台A型设备比购买3台B型设备少6万元.(1)求a、b的值;(2)经预算,市治污公司购买污水处理器的资金不超过105万元,你认为该公司有哪几种购买方案?(3)在(2)的条件下,若每月处理的污水不低于2040吨,为了节约资金,请你为治污公司设计一种最省钱的方案.4.疫情形势依然严峻,我们需要继续坚持常态化防控.卫生专家建议多补充维生素增强身体免疫力以抵御病菌,现有甲、乙、丙3种食物的维生素含量和成本如下表:某食品公司欲用这3种食物研制100千克食品,要求研制成的食品中至少含有36000单位的维生素A和40000单位的维生素B.(1)研制100千克食品,甲种食物至少要用多少千克?丙种食物至多能用多少千克?(2)若限定甲种食物用50千克,则研制这100千克食品的总成本S的取值范围是多少?5.某校开展以感恩为主题的有奖征文活动,并为获奖的同学颁发奖品.小红与小明去文化商店购买甲、乙两种笔记本作为奖品,若买甲种笔记本20个,乙种笔记本10个,则需110元;且买甲种笔记本30个比买乙种笔记本20个少花10元.(1)求甲、乙两种笔记本的单价各是多少元;(2)若本次购进甲种笔记本的数量比乙种笔记本的数量的2倍还少10个,且购进两种笔记本的总金额不超过320元,则最多购进乙种笔记本多少个?6.为共产党建党一百周年,某校举行“礼赞百年,奋斗有我”演讲比赛,准备购买甲、乙两种纪念品奖励在活动中表现优秀的学生,已知购买2个甲种纪念品和3个乙种纪念品共需35元,购买1个甲种纪念品和4个乙种纪念品共需30元.(1)求购买一个甲种纪念品和一个乙种纪念品各需多少元?(2)若要购买这两种纪念品共100个,投入货金不多于900元,最多买多少个甲种纪念品?7.有甲、乙两种客车,2辆甲种客车与3辆乙种客车的总载客量为170人,1辆甲种客车与2辆乙种客车的总载客量为100人.(1)请问1辆甲种客车与1辆乙种客车的载客量分别为多少人?(2)某单位组织180名员工到某革命家传统教育基地开展“纪念建党100周年”活动,拟租用甲、乙两种客车共5辆,总费用在1950元的限额内,一次将全部员工送到指定地点.若每辆甲种客车的租金为400元,每辆乙种客车的租金为320元,有哪几种租车方案,最少租车费用是多少?8.由甲、乙两运输队承包运输6000立方米沙石的任务.要求10天之内(含10天)完成,已知两队共有15辆汽车且全部参与运输,甲队每辆车每天能够运输50立方米的沙石,乙队每辆车每天能够运输40立方米的沙石,前3天两队一共运输了2070立方米.(1)甲队有________辆汽车,乙队有________辆汽车;(2)3天后,另有紧急任务要从甲队调出车辆支援,在不影响工期的情况下,利用(1)的结论求最多可以从甲队调出汽车多少辆?9.某学校计划从商店购买A,B两种商品,购买一个A种商品比购买一个B种商品多用20元,且购买10个A种商品和5个B种商品共需275元.(1)求购买一个A种商品、一个B种商品各需要多少元;(2)根据学校实际情况,该学校需要购买B种商品的个数是购买A种商品个数的3倍还多18个,经与商店洽谈,商店决定在该学校购买A种商品时给予八折优惠,如果该学校本次购买A,B两种商品的总费用不超过1000元,那么该学校最多可购买多少个A种商品?10.下表是某奶茶店的一款奶茶近两天的销售情况.(1)根据表格数据,这款奶茶中杯和大杯的销售单价各是多少元?(2)已知这款奶茶中杯成本3元/杯,大杯成本4元/杯,奶茶店每天最多供应200杯奶茶,如果奶茶店老板希望每天该款奶茶的利润不低于2000元,则至少需卖出多少杯大杯奶茶?11.某汽车贸易公司销售A,B两种型号的新能源汽车,A型车进货价格为每台12万元,B型车进货价格为每台15万元,该公司销售2台A型车和5台B型车,可获利3.1万元,销售1台A型车和2台B型车,可获利1.3万元.(1)求销售一台A型、一台B型新能源汽车的利润各是多少万元?(2)该公司准备用300万元资金,采购A,B两种新能源汽车,可能有多少种采购方案?(3)该公司准备用不超过300万,采购A,B两种新能源汽车共22台,问最少需要采购A型新能源汽车多少台?12.为为发展校园足球运动,我县城区四校决定联合购买一批足球运动装备,市场调查发现:甲、乙两商场以同样的价格出售同种品牌的足球队服和足球,已知每个足球比每套队服多60元,5套队服与3个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球;乙商场优惠方案是:若购买队服超过80套,则购买足球打八折.(1)求每套队服和每个足球的价格是多少?(2)若城区四校联合购买100套队服和a(a大于10)个足球,请用含a的式子分别表示出到甲商场和乙商场购买装备所花的费用;(3)在(2)的条件下,假如你是本次购买任务的负责人,你认为到哪家商场购买更优惠?13.深圳某校6名教师和234名学生外出参加集体活动,学校准备租用45座大车和30座小车若干辆.已知租用1辆大车、2辆小车的租车费用是1000元,租用2辆大车、1辆小车的租车费用是1100元.(1)求大、小客车每辆的租车费各是多少元?(2)学校要求每辆车上至少要有一名教师,且租车总费用不超过2300元,请问有几种符合条件的租车方案?14.某商店销售A,B两种型号的钢笔.下表是近两周的销售情况:(1)求A,B两种型号钢笔的销售单价;(2)某公司购买A,B两种型号钢笔共45支,若购买总费用不少于2600元,则B型号钢笔最少买几支?15.小明与小红开展读书比赛.小明找出了一本以前已读完84页的古典名著打算继续往下读,小红上个周末恰好刚买了同一版本的这本名著,不过还没开始读.于是,两人开始了读书比赛.他们利用右表来记录了两人5天的读书进程.例如,第5天结束时,小明还领先小红24页,此时两人所读到位置的页码之和为424.已知两人各自每天所读页数相同.(1)表中空白部分从左到右2个数据依次为,;(2)小明、小红每人每天各读多少页?(3)已知这本名著有488页,问:从第6天起,小明至少平均每天要比原来多读几页,才能确保第10天结束时还不被小红超过?(答案取整数)16.2021年元旦新冠病毒肆虐,为抗疫救灾,甲、乙两运输队接受了运输20000箱抗疫物资的任务,任务要求在11天之内(包含11天)完成.已知两队共有18辆汽车,甲队每辆车每天能够运输120箱的抗疫物资,乙队每辆车每天能够运输100箱的抗疫物资,前4天两队一共运输了8000箱.(1)求甲、乙两队各有多少辆汽车;(2)4天后,甲队另有紧急任务需要抽调车辆支援,在不影响工期的情况下,甲队最多可以抽调多少辆汽车走?17.巴蜀中学两江校区和鲁能校区联合准备重庆市中学生新年文艺汇演.准备参加汇演的学生共102人(其中鲁能校区人数多于两江校区人数,且鲁能校区人数不足100人),按要求准备统一购买服装(一人买一套)参加演出,下面是服装厂给出的演出服装的价格表:如果两校区分别单独购买服装,一共应付7500元.(1)如果两校区联合起来购买服装,那么比各自单独购买服装共可以节省多少钱?(2)两江校区和鲁能校区各有多少学生准备参加演出?(3)如果鲁能校区有7名参加演出的同学临时接到通知将参加某大学的自主招生考试而不能参加演出,那么你认为有几种购买方案,通过比较,你该如何购买服装才能最省钱?18.某水果店以4元/千克的价格购进一批水果,由于销售状况良好,该店又再次购进同一种水果,第二次进货价格比第一次每千克便宜了0.5元,所购水果重量恰好是第一次购进水果重量的2倍,这样该水果店两次购进水果共花去了2200元.(1)该水果店两次分别购买了多少元的水果?(2)在销售中,尽管两次进货的价格不同,但水果店仍以相同的价格售出,若第一次购进的水果有3%的损耗,第二次购进的水果有5%的损耗,该水果店希望售完这些水果获利不低于1244元,则该水果每千克售价至少为多少元?19.某社区拟建甲,乙两类摊位以激活“地摊经济”,1个甲类摊位和2个乙类摊位共占地面积14平方米,2个甲类摊位和3个乙类摊位共占地面积24平方米.(1)求每个甲,乙类摊位占地面积各为多少平方米?(2)该社区拟建甲,乙两类摊位共100个,且乙类摊位的数量不多于甲类摊位数量的3倍,求甲类摊位至少建多少个?20.某班计划购买A、B两款文具盒作为期末奖品.若购买3盒A款的文具盒和1盒B款的文具盒需用22元;若购买2盒A款的文具盒和3盒B款的文具盒需用24元.(1)每盒A款的文具盒和每盒B款的文具盒各多少元.(2)某班决定购买以上两款的文具盒共40盒,总费用不超过210元,那么该班最多可以购买多少盒A款的文具盒?参考答案:1.第一种是租用甲种汽车5辆,乙种汽车3辆;第二种是租用甲种汽车6辆,乙种汽车2辆.2.(1)1辆大货车一次运输15箱物资,1辆小货车一次运输10箱物资;(2)方案①6辆大货车,6辆小货车,方案①7辆大货车,5辆小货车,方案①8辆大货车,4辆小货车;方案①,即当有6辆大货车,6辆小货车时,费用最小,最小费用为4800元.3.(1)a=12,b=10(2)三种方案,4.(1)即至少要用甲种食物35千克,丙种食物至多能用45千克(2)研制这100千克食品的总成本S的取值范围是470≤S≤5005.(1)甲种笔记本的单价是3元,乙种笔记本的单价是5元;(2)本次最多购买31个乙种笔记本.6.(1)购买一个甲种纪念品需10元,一个乙种纪念品需5元.(2)80个7.(1)1辆甲种客车的载客量为40人,1辆乙种客车的载客量为30人.(2)有2种租车方案,最少租车费用是1840元.8.(1)9;6;(2)最多可以从甲队调出汽车2辆.9.(1)购买一个A种商品需要25元,购买一个B种商品需要5元.(2)最多可购买26个A种商品.10.(1)这杯奶茶中杯和大杯的销售单价分别为12元,15元(2)至少需卖出100杯大杯奶茶11.(1)一台A型、一台B型新能源汽车的利润各0.3,0.5万元(2)可能有5种采购方案(3)最少需要采购A型新能源汽车10台12.(1)设每套队服售价90元,则每个足球售价为150元(2)甲商场购买装备所花费用(150a+7500)元,乙商场购买装备所花费用:(120a+9000)元(3)当购买足球数大于10而小于50时,到甲商场更优惠;当购买足球数等于50时,到甲、乙商场一样优惠;当购买足球数大于50时,到乙商场更优惠13.(1)大车每辆的租车费是400元、小车每辆的租车费是300元;(2)有两种租车方案,方案一:4辆大车,2辆小车;方案二:5辆大车,1辆小车.14.(1)A型号的钢笔销售单价为50元/支,B型号的钢笔销售单价为80元/支(2)最少买B型号的钢笔12支15.(1)288,356(2)小明每天读28页,小红每天读40页(3)小明至少平均每天要比原来多读8页,才能确保第10天结束时还不被小红超过16.(1)甲队有10辆汽车,乙队有8辆汽车(2)甲队最多可以抽调2辆汽车走17.(1)1380元(2)两江校区有学生36人,则鲁能校区有学生66人.(3)两校联合起来选择按60元每套一次购买100套服装最省钱.18.(1)水果店两次分别购买了800元和1400元的水果(2)6元19.(1)每个甲类摊位占地6平方米,每个乙类摊位占地4平方米(2)甲摊位至少建25个20.(1)每盒A款的文具盒为6元,每盒B款的文具盒为4元(2)该班最多可以购买25盒A款的文具盒。

人教版七年级数学下册第九章第二节一元一次不等式作业习题(含答案) (54)

人教版七年级数学下册第九章第二节一元一次不等式作业习题(含答案) (54)

人教版七年级数学下册第九章第二节一元一次不等式作业习题(含答案) 解不等式:2116x x --≥ 【答案】78x ≤【解析】试题分析:解一元一次不等式的解的步骤:①去分母;②去括号;③移项;④合并同类项;⑤系数化为1.解:去分母,得:6-2x+1≥6x移项且合并同类项,得:-8x ≥7系数化为1,得x ≤−78 所以原不等式的解集为x ≤78, 32.(1)因式分解:2()()mn m n m n m ---(2)解不等式57123x x +-->,并把它的解集表示在数轴上. 【答案】(1)()(2)m m n n m --;(2)不等式的解集为1x >,在数轴上表示见解析.【解析】试题分析:(1)只需提取()m m n -,便可分解因式(2)由去分母、去括号、移项合并同类项、系数化为1可得不等式的解集,再在数轴上表示即可.试题解析:(1)原式=()()2mn m n m m n --- =()m m n -[n-(m-n)]=()()m m n 2n m -- (2)去分母,得:()3x 562(7x +->-去括号,得:3x 156142x +->-移项合并得:5x 5>系数化为1得:x 1>将不等式的解集表示在数轴上:33.多肉植物是指植物营养器官肥大的植物,又称肉质植物或多肉花卉,由于体积小、外形萌、色彩斑斓,茶几阳台摆放方便,近年来越来越受到广大养花爱好者的喜爱.多肉植物则被亲切地称为“肉肉”、“多肉君”.大学毕业生陈江河发现这个商机后,第一次果断购进甲乙两种多肉植物共500株.甲种多肉植物每株成本5元,售价10元;乙种多肉植物每株成本8元,售价10元.(1)由于启动资金有限,第一次购进多肉植物的金额不得超过3400元,则甲种多肉植物至少购进多少株?(2)多肉植物一经上市,十分抢手,陈江河决定第二次购进甲乙两种多肉植物,它们的进价不变.甲种多肉植物进货量在(1)的最少进货量的基础上增加了2%m ,售价也提高了%m ;乙种多肉植物的售价和进货量不变,但是由于乙种多肉植物的耐热性不强,导致销售完之前它的成活率为95%.结果第二次共获利2700元.求m 的值.【答案】(1)甲至少购进200株;(2)=25m【解析】试题分析:(1)设甲种多肉购进x 株,则乙种多肉购进(500-x)株,由不等关系:购进甲种多肉的费用+购进乙种多肉的费用≤3400,即可得解;(2)由总利润=(甲的售价-进价)×进货量+(乙的售价-进价)×进货量,可得到关于m 的一元二次方程,求解即可,注意m 的实际意义.试题析解:(1)设甲种多肉购进x 株,由题意得:()5x 8500x 3400+-≤∴x 200≥∴甲至少购进200株(2)()()20012m%101m%530095%1030082700⎡⎤++-+⨯⨯-⨯=⎣⎦(m 1= 25, m 2= -125(舍)∴m 25=即m 的值为25.34.为了保护环境,某企业决定购买10台污水处理设备,现有A 、B 两种型号的设备,其中A 种型号的设备每台价格为12万元,B 种型号的设备每台价格为10万元;A 种型号的设备每台每月可以处理污水240吨,B 种型号的设备每台每月可以处理污水200吨,经预算,该企业购买设备的资金不高于..........105...万.元...(1)写出购买设备的资金y 万元与购买A 型设备的台数x 之间的函数关系(不需要写出自变量的取值范围)(2)该企业有几种购买方案,写出每种方案,并说明理由(3)若该企业每月产生的污水量为2040吨,利用函数的知识.....说明,应该选哪种购买方案?【答案】(1)y =2x +100;(2)有三种购买方案:①购A 型0台,B 型10台;②购A 型1台,B 型9台;③购A 型2台,B 型8台;(3)为节约资金,应选购A 型1台,B 型9台【解析】解:(1)y =12x +10(10-x )即 y =2x +100(2)∵y =2x +100≤105∴ x ≤2.5又∵x 是非负整数∴x 可取0、1、2∴有三种购买方案:①购A 型0台,B 型10台;②购A 型1台,B 型9台;③购A 型2台,B 型8台(3)解:由题意得240x +200(10-x ) ≥2040解得x ≥1∴x 为1或2∵k >0∴y 随x 增大而增大即: 为节约资金,应选购A 型1台,B 型9台35.x 为何值时,代数式23123x x ++-的值不大于1? 【答案】x ≤-14【解析】代数式的值的不大于1,即代数式小于或等于1,即可列不等式求解. 解:根据题意,得:232x +- 13x +≤1, 解这个不等式,得6x +9- 2x -2≤6,4x ≤-1,x ≤- 14, 即当 x ≤-14时,23123x x ++-232x +13x +的值不大于1. “点睛”本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.36.解方程组或不等式(组)(1)2+3=53-=2{x y x y (代入法);(2)3+4=104+=9{x y x y ;(3);(4)解不等式组,()112331{122?3x x x x --≥--->() 并把解集表示在数轴上,再写出这个不等式组的整数解.【答案】(1)11x y =⎧⎨=⎩;(2)21x y =⎧⎨=⎩;(3)x ≥ -115;(4)75< x ≤ 4,这个不等式组的整数解是:2、3、4 .【解析】(1) 方程组利用代入消元法求出解即可.(2)首先联立方程组消去x 求出y 的值,然后再把y 的值代入其中一个方程求出x 的值即可.(3)根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项可得.(4)首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.解:(1)由②得:y=3x-2 ③把③代入①得2x+3(3x-2)=5,x=1,把x=1代入③得y=1,∴1 {1xy==.(2) 由②×4-①得13x=26,x=2,把x=2代入②得y=1,∴2 {1 xy==(3)去分母:6+3(x+1)≥12-2(x+7)去括号:6+3x+3≥12-2x-14移项:3x+2x≥12-14-6-3合并同类项:5x≥-11系数化为1:x≥- 115,解:解不等式①得x≤4,解不等式②得x >75.75把①、②的解集在数轴上表示:从数轴上可以看出不等式组的解集是:75<x ≤4, 所以这个不等式组的整数解是:2、3、4 .37.解不等式25(1)7x x >-+ 【答案】23x <- 【解析】()2517x x >-+2523223x x x x >+<-<-38.(2016四川省资阳市)某大型企业为了保护环境,准备购买A 、B 两种型号的污水处理设备共8台,用于同时治理不同成分的污水,若购买A 型2台、B 型3台需54万,购买A 型4台、B 型2台需68万元.(1)求出A 型、B 型污水处理设备的单价;(2)经核实,一台A 型设备一个月可处理污水220吨,一台B 型设备一个月可处理污水190吨,如果该企业每月的污水处理量不低于1565吨,请你为该企业设计一种最省钱的购买方案.【答案】(1)A 型污水处理设备的单价为12万元,B 型污水处理设备的单价为10万元;(2)购进2台A 型污水处理设备,购进6台B 型污水处理设备最省钱.【解析】【分析】(1)根据题意结合购买A 型2台、B 型3台需54万,购买A 型4台、B 型2台需68万元分别得出等式求出答案;(2)利用该企业每月的污水处理量不低于1565吨,得出不等式求出答案.【详解】设A 型污水处理设备的单价为x 万元,B 型污水处理设备的单价为y 万元,根据题意可得:2354{4268x y x y +=+=, 解得:12{10x y ==.答:A 型污水处理设备的单价为12万元,B 型污水处理设备的单价为10万元;(2)设购进a 台A 型污水处理器,根据题意可得:220a+190(8﹣a )≥1565,解得:a ≥1.5,∵A 型污水处理设备单价比B 型污水处理设备单价高,∵A 型污水处理设备买越少,越省钱,∵购进2台A 型污水处理设备,购进6台B 型污水处理设备最省钱.【点睛】此题主要考查了一元一次不等式的应用以及二元一次方程组的应用,根据题意得出正确等量关系是解题关键.39.阅读下面的材料,并解答问题:问题1:已知正数,有下列命题2,1;a b 若+= 33,;2a b +=≤若 6,3;a b +=≤若 根据以上三个命题所提供的规律猜想:9,a b +=≤若 ,以上规律可表示为a+b问题2:建造一个容积为8立方米,深2米的长方形无盖水池,池底和池壁的造价分别为每平方米120元和80元。

人教版 2018年 七年级数学下册 一元一次不等式 解答题专练(含答案)

人教版 2018年 七年级数学下册 一元一次不等式 解答题专练(含答案)

七年级数学下册一元一次不等式解答题专练1、已知3(5x+2)+5<4x-6(x+1),则化简|3x+3|-|2-3x|得2、对非负实数x“四舍五入”到个位的值记为[x]. 即当n为非负整数时,若,则[x]=n. 如:[3,4]=3,[3,5]=4,…根据以上材料,解决下列问题:(1)填空[1.8]= ,[5]= ;(2)若[2x+1]=4,则x的取值范围是;(3)求满足的所有非负实数x的值.3、探究题:定义:对于实数a,符号[a]表示不大于a的最大整数.例如:[5.7]=5,[﹣π]=﹣4.(1)如果[a]=﹣2,那么a可以是A.﹣15B.﹣2.5C.﹣3.5D.﹣4.5(2)如果[]=3,则整数x= .(3)如果[﹣1.6﹣[]]=﹣3,满足这个方程的整数x共有个.4、已知方程组的解满足x为非正数,y为负数.(1)求m的取值范围;(2)化简:|m﹣3|﹣|m+2|;(3)在m的取值范围内,当m为何整数时,不等式2mx+x<2m+1的解为x>1.5、已知关于x,y的方程组满足x﹣y≤0,求k的最大整数值.6、定义:对于实数a,符号[a]表示不大于a的最大整数.例如:[5.7]=5,[5]=5,[﹣π]=﹣4.(1)如果[a]=﹣2,那么a的取值范围是.(2)如果[]=3,求满足条件的所有正整数x.7、定义新运算:对于任意实数a,b,都有a b=a(a-b)+1,等式右边是通常的加法、减法及乘法运算,比如:25=2x(2-5)+1=2x(-3)+1=-6+1=-5.(1)求(-2)3的值;(2)若3x的值小于13,求x的取值范围,并在如图所示的数轴上表示出来.8、定义新运算:对于任意实数a,b,都有a⊕b=a(a﹣b)+1,等式右边是通常的加法,减法及乘法运算.比如:2⊕5=2×(2﹣5)+1=2×(﹣3)+1=﹣6+1=﹣5(1)求3⊕(﹣2)的值;(2)若3⊕x的值小于16,求x的取值范围,并在数轴上表示出来.9、已知关于x,y的方程组的解满足x>y>0.(1) 求a的取值范围. (2)化简|a|-|2-a|.10、对于a,b定义一种新运算“☆”:a☆b=2a-b,例如:5☆3=2×5-3=7.若(x☆5)<-2,求x的取值范围;11、若关于的方程组的解满足x>y,求p的取值范围.12、阅读下列材料:这个结论可以推广为|x1-x2|表示在数轴上数x1,x2对应点之间的距离;在解题中,我们会常常运用绝对值的几何意义:例1:解方程|x|=2.容易得出,在数轴上与原点距离为2的点对应的数为±2,即该方程的x=±2;例2:解不等式|x-1|>2.如图,在数轴上找出|x-1|=2的解,即到1的距离为2的点对应的数为-1,3,则|x-1|>2的解为x<-1或x>3;例3:解方程|x-1|+|x+2|=5.由绝对值的几何意义知,该方程表示求在数轴上与1和-2的距离之和为5的点对应的x的值.在数轴上,1和-2的距离为3,满足方程的x对应点在1的右边或-2的左边.若x对应点在1的右边,如图可以看出x=2;同理,若x对应点在-2的左边,可得x=-3.故原方程的解是x=2或x=-3.参考阅读材料,解答下列问题:(1)方程|x+3|=4的解为.(2)解不等式|x-3|+|x+4|≥9.(3)若|x-3|-|x+4|≤a对任意的x都成立,求a的取值范围.13、如图,(1)写出点A与点A1,点B与点B1,点C与点C1的坐标。

人教版数学七年级下册一元一次不等式 同步练习(含简略答案)

人教版数学七年级下册一元一次不等式 同步练习(含简略答案)

9.2 一元一次不等式 同步练习一、单选题A .B .C .D .23(2)mx ≤-的解集为的值有几个( ) ,并且满足等式2n ⎡⎤+⎢⎥⎣⎦,则满足等式的正整数的个数为(A .2 B .3 C .12 D .16二、填空题三、解答题(1)求A,B两种型号钢笔的销售单价;(2)某公司购买A,B两种型号钢笔共45支,若购买总费用不少于2600元,则B型号钢笔最少买几支?19.某水果生产基地销售苹果,提供两种购买方式供客户选择方式1:若客户缴纳1200元会费加盟为生产基地合作单位,则苹果成交价为3元/千克.方式2:若客户购买数量达到或超过1500千克,则成交价为3.5元/千克;若客户购买数量不足1500千克,则成交价为4元/千克.设客户购买苹果数量为x(千克),所需费用为y(元).(1)若客户按方式1购买,请写出y(元)与x(千克)之间的函数表达式;(备注:按方式购买苹果所需费用=生产基地合作单位会费+苹果成交总价)(2)如果购买数量超过1500千克,请说明客户选择哪种购买方式更省钱;(3)若客户甲采用方式1购买,客户乙采用方式2购买,甲、乙共购买苹果5000千克,总费用共计18000元,则客户甲购买了多少千克苹果?20.我市公交总公司为节约资源同时惠及民生,拟对一些乘客数量较少的路线换成中巴车.该公司计划购买10台中巴车,现有甲、乙两种型号,已知购买一台甲型车比购买一台乙型车少10万元,购买3台甲型车比购买2台乙型车多30万元.(1)问购买一台甲型车和一台乙型车分别需要多少万元?(2)经了解,每台甲型车每年节省费用2.3万元,每台乙型车每年节省费用2.1万元,若要使购买的这批中巴车每年至少能节省21.8万,则购买甲型车至少多少台?参考答案:。

完整版人教版七年级数学下册一元一次不等式应用题培优练习含答案

完整版人教版七年级数学下册一元一次不等式应用题培优练习含答案

2018年七年级数学下册一元一次不等式应用题培优练习1.为了参加2011年西安世界园艺博览会,某公司用几辆载重为8吨的汽车运送一批参展货物.若每辆汽车只装4吨,则剩下20吨货物;若每辆汽车装满8吨,则最后一辆汽车不空也不满.请问:共有多少辆汽车运货?2.某蔬菜经营户从蔬菜批发市场批发蔬菜进行零价,其中西红柿与西兰花的批发价格与零售价格如表.(1)第一天该经营户批发西红柿和西兰花两种蔬菜共300kg,用去了1520元.这两种蔬菜当天全部售完后,一共能赚多少钱?(请列方程组求解)(2)第二天该经营户用1520元仍然批发西红柿和西兰花,要想当天全部售完后所赚钱数不少于1050元,则该经营户最多能批发多少千克的西红柿?3.六一”儿童节将至,益智玩具店准备购进甲、乙两种玩具,若购进甲种玩具80个,乙种玩具40个,需要800元,若购进甲种玩具50个,乙种玩具30个,需要550元.(1)求益智玩具店购进甲、乙两种玩具每个需要多少元?(2)若益智玩具店准备1000元全部用来购进甲,乙两种玩具,计划销售每个甲种玩具可获利润4元,销售每个乙种玩具可获利润5元,且销售这两种玩具的总利润不低于600元,那么这个玩具店需要最多购进乙种玩具多少个?4.陈老师为学校购买运动会的奖品后,回学校向后勤处王老师交账说:“我买了两种书,共105本,单价分别为8元和12元,买书前我领了1500元,现在还余418元.”王老师算了一下,说:“你肯定搞错了.”(1)王老师为什么说他搞错了?试用方程的知识给予解释;(2)陈老师连忙拿出购物发票,发现的确弄错了,因为他还买了一个笔记本.但笔记本的单价已模糊不清,只能辨认出应为小于10元的整数,笔记本的单价可能为多少元?5.某水果店以4元/千克的价格购进一批水果,由于销售状况良好,该店又再次购进同一种水果,第二次进货价格比第一次每千克便宜了0.5元,所购水果重量恰好是第一次购进水果重量的2倍,这样该水果店两次购进水果共花去了2200元.(1)该水果店两次分别购买了多少元的水果?(2)在销售中,尽管两次进货的价格不同,但水果店仍以相同的价格售出,若第一次购进的水果有3%的损耗,第二次购进的水果有5%的损耗,该水果店希望售完这些水果获利不低于1244元,则该水果每千克售价至少为多少元?6.公司为了运输的方便,将生产的产品打包成件,运往同一目的地.其中A产品和B产品共320件,A产品比B产品多80件.(1)求打包成件的A产品和B产品各多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批产品全部运往同一目的地.已知甲种货车最多可装A产品40件和B产品10件,乙种货车最多可装A产品和B产品各20件.如果甲种货车每辆需付运输费4000元,乙种货车每辆需付运输费3600元.则公司安排甲、乙两种货车时有几种方案?并说明公司选择哪种方案可使运输费最少?7.某市居民用电的电价实行阶梯收费,收费标准如下表:一户居民每月用电量x(单位:度)电费价格(单位:元/度)a200 x≤0<b ≤400 200<x0.92400x>(1)已知李叔家四月份用电286度,缴纳电费178.76元;五月份用电316度,缴纳电费198.56元,请你根据以上数据,求出表格中a,b的值.(2)六月份是用电高峰期,李叔计划六月份电费支出不超过300元,那么李叔家六月份最多可用电多少度?8.某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表.已知购进60双甲种运动鞋与50双乙种运动鞋共用10000元运动鞋价格甲乙mm ﹣进价(元/双) 20160双) 240/售价(元(1)求m的值;(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价﹣进价)超过21000元,且不超过22000元,问该专卖店有几种进货方案?(3)在(2)的条件下,专卖店准备决定对甲种运动鞋每双优惠a(50<a<70)元出售,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货?9.某物流公司承接A.B两种货物运输业务,已知5月份A货物运费单价为50元/吨,B货物运费单价为30元/吨,共收取运费9500元;6月份由于油价上涨,运费单价上涨为:A货物70元/吨,B货物40元/吨;该物流公司6月承接的A种货物和B种数量与5月份相同,6月份共收取运费13000元.(1)该物流公司月运输两种货物各多少吨?(2)该物流公司预计7月份运输这两种货物330吨,且A货物的数量不大于B货物的2倍,在运费单价与6月份相同的情况下,该物流公司7月份最多将收到多少运输费?10.少儿部组织学生进行“英语风采大赛”,需购买甲、乙两种奖品.购买甲奖品3个和乙奖品4个,需花64元;购买甲奖品4个和乙奖品5个,需花82元.(1)求甲、乙两种奖品的单价各是多少元?(2)由于临时有变,只买甲、乙一种奖品即可,且甲奖品按原价9折销售,乙奖品购买6个以上超出的部分按原价的6折销售,设购买x个甲奖品需要y元,购买x个乙奖品需要y元,请用x 分别表示出y和y;2211(3)在(2)的条件下,问买哪一种产品更省钱?11.一家蔬菜公司收购到某种绿色蔬菜140吨,准备加工后进行销售,销售后获利的情况如下表所示:销售方式粗加工后销售精加工后销售2000每吨获利(元) 1000已知该公司的加工能力是:每天能精加工5吨或粗加工15吨,但两种加工不能同时进行.受季节等条件的限制,公司必须在一定时间内将这批蔬菜全部加工后销售完.(1)如果要求12天刚好加工完140吨蔬菜,则公司应安排几天精加工,几天粗加工?(2)如果先进行精加工,然后进行粗加工.①试求出销售利润W元与精加工的蔬菜吨数m之间的函数关系式;②若要求在不超过10天的时间内,将140吨蔬菜全部加工完后进行销售,则加工这批蔬菜最多获得多少利润?此时如何分配加工时间?12.商场某柜台销售每台进价分别为160元、120元的A.B两种型号的电风扇,下表是近两周的销售情况:销售数量销售收入销售时段种型号 B种型号 A 1200元第一周 3台 4台元 6台台 1900 第二周 5 销售收入﹣进货成本)(进价、售价均保持不变,利润= .B两种型号的电风扇的销售单价;)求(1A种型号的电风扇最多能台,求)若商场准备用不多于27500元的金额再采购这两种型号的电风扇共50A (采购多少台?元的目标?若能,请给出相应1850台电风扇能否实现利润超过50)的条件下,商场销售完这2)在(3(.的采购方案;若不能,请说明理由.13.为了更好改善河流的水质,治污公司决定购买10台污水处理设备.现有A,B两种型号的设备,其中每台的价格,月处理污水量如下表:经调查:购买一台A型设备比购买一台B型设备多2万元,购买2台A型设备比购买3台B型设备少6万元.A型 B型b /台)a 价格(万元180240处理污水量(吨/月)(1)求a,b的值;(2)治污公司经预算购买污水处理设备的资金不超过105万元,你认为该公司有哪几种购买方案;(3)在(2)的条件下,若每月要求处理污水量不低于2040吨,为了节约资金,请你为治污公司设计一种最省钱的购买方案.14.某商场用36000元购进甲、乙两种商品,销售完后共获利6000元.其中甲种商品每件进价120元,售价138元;乙种商品每件进价100元,售价120元.(1)该商场购进甲、乙两种商品各多少件?(2)商场第二次以原进价购进甲、乙两种商品,购进乙种商品的件数不变,而购进甲种商品的件数是第一次的2倍,甲种商品按原售价出售,而乙种商品打折销售.若两种商品销售完毕,要使第二次经营活动获利不少于8160元,乙种商品最低售价为每件多少元?15. “五?一”黄金周期间,某学校计划组织385名师生租车旅游,现知道出租公司有42座和60座两种客车,42座客车的租金每辆为320元,60座客车的租金每辆为460元.(1)若学校单独租用这两种车辆各需多少钱?(2)若学校同时租用这两种客车8辆(可以坐不满),而且要比单独租用一种车辆节省租金.请你帮助该学校选择一种最节省的租车方案.参考答案1.解:设有x辆汽车,则有(4x+20)吨货物.由题意,可知当每辆汽车装满8吨时,则有(x﹣1)辆是装满的,所以有方程,解得5<x<7.由实际意义知x为整数.所以x=6.. 6答:共有辆汽车运货2.3. 元,y元,乙种玩具每个x)设甲种玩具每个1(【解答】解:根据题意,得:,解得:,答:甲种玩具每个元.5元,乙种玩具每个10 ,(个)2a﹣=200个,则甲种玩具a)设购进乙种玩具2(.根据题意,得:4+5a≥600,解得:a≤66,∵a是正整数,∴a的最大值为66,答:这个玩具店需要最多购进乙种玩具66个.4.解:(1)设单价为8.0元的课外书为x本,得:8x+12=1500﹣418,解得:x=44.5(不符合题意).∵在此题中x不能是小数,∴王老师说他肯定搞错了;(2)设单价为8.0元的课外书为y本,设笔记本的单价为b元,依题意得:0<1500﹣[8y+12+418]<10,解之得:0<4y﹣178<10,即:44.5<y<47,∴y应为45本或46本.当y=45本时,b=1500﹣[8×45+12+418]=2,当y=46本时,b=1500﹣[8×46+12+418]=6,即:笔记本的单价可能2元或6元.5.6.解:(1)设打包成件的A产品有x件,B产品有y件,根据题意得x+y=320,x-y=80,解得x=200,y=120,答:打包成件的A产品有200件,B产品有120件;(2)设租用甲种货车x辆,根据题意得40x+20(8-x)≥200,10x+20(8-x)≥120,解得2≤x≤4,而x为整数,所以x=2、3、4,所以设计方案有3种,分别为:所以方案①运费最少,最少运费是29600元.7.,解得:)根据题意得:1(解:.(2)设李叔家六月份最多可用电x度,根据题意得:200×0.61+200×0.66+0.92(x﹣400)≤300,解得:x≤450.答:李叔家六月份最多可用电450度.8.解:(1)依题意得:60m+50(m﹣20)=10000,解得m=100;(2)设购进甲种运动鞋x双,则乙种运动鞋(200﹣x)双,,根据题意得,解不等式①得,x>,解不等式②得,x≤100,所以,不等式组的解集是<x≤100,∵x是正整数,100﹣84+1=17,∴共有17种方案;(3)设总利润为W,则W=(240﹣100﹣a)x+80(200﹣x)x+16000)a﹣60(= ),100≤x≤(.①当50<a<60时,60﹣a>0,W随x的增大而增大,所以,当x=100时,W有最大值,即此时应购进甲种运动鞋100双,购进乙种运动鞋100双;②当a=60时,60﹣a=0,W=16000,(2)中所有方案获利都一样;③当60<a<70时,60﹣a<0,W随x的增大而减小,所以,当x=84时,W有最大值,即此时应购进甲种运动鞋84双,购进乙种运动鞋116双.9.解:(1)设A种货物运输了x吨,设B种货物运输了y吨,,解之得:.依题意得:答:物流公司月运输A种货物100吨,B种货物150吨.(2)设A种货物为a吨,则B种货物为(330﹣a)吨,依题意得:a≤(330﹣a)×2,解得:a≤220,设获得的利润为W元,则W=70a+40(330﹣a)=30a+13200,根据一次函数的性质,可知W随着a的增大而增大当W取最大值时a=220,即W=19800元.所以该物流公司7月份最多将收到19800元运输费.10.解:(1)设甲种奖品的单价为x元/个,乙种奖品的单价为y元/个,:.:根据题意得,解得答:甲种奖品的单价为8元/个,乙种奖品的单价为10元/个.(2)根据题意得:y=8×0.9x=7.2x;1当0≤x≤6时,y=10x,当x>6时,y=10×6+10×0.6(x﹣6)=6x+24,22=.∴y2(3)当0≤x≤6时,∵7.2<10,∴此时买甲种产品省钱;当x>6时,令y<y,则7.2x<6x+24,解得:x<20;21令y=y,则7.2x=6x+24,解得:x=20;21令y>y,则7.2x>6x+24,解得:x>20.:当x<20时,选择甲种产品更省钱;21综上所述当x=20时,选择甲、乙两种产品总价相同;当x>20时,选择乙种产品更省钱.11.12.(1)设A型电风扇单价为x元,B型单价y元,则,解得:, 150型单价元;A型电风扇单价为200元,B答:(≤a:得解,7500≤)a﹣50160a+120则,台a购采扇风电型A设)2(.,则最多能采购37台;(3)依题意,得:(200﹣160)a+(150﹣120)(50﹣a)>1850,解得:a>35,则35<a≤,∵a是正整数,∴a=36或37,方案一:采购A型36台B型14台;方案二:采购A型37台B型13台.13.解:(1)购买A型的价格是a万元,购买B型的设备b万元,A=b+2,2a+6=3b,解得:a=12,b=10.故a的值为12,b的值为10;(2)设购买A型号设备m台,12m+10(10﹣m)≤105,解得:m≤2.5,故所有购买方案为:当A型号为0,B型号为10台;当A型号为1台,B型号为9台;当A型号为2台,B型号为8台;有3种购买方案;(3)由题意可得出:240m+180(10﹣m)≥2040,解得:m≥4,由(1)得A型买的越少越省钱,所以买A型设备4台,B型的6台最省钱.14. 件,根据题意得:y件,乙种商品x)设商场购进甲种商品1解:(.,解得:.答:该商场购进甲种商品200件,乙种商品120件.(2)设乙种商品每件售价z元,根据题意,得120(z﹣100)+2×200×(138﹣120)≥8160,解得:z≥108.答:乙种商品最低售价为每件108元.15.。

人教版-七年级数学下册-第九章一元一次不等式应用题-培优练习(包含答案)

人教版-七年级数学下册-第九章一元一次不等式应用题-培优练习(包含答案)

人教版-七年级数学下册-第九章一元一次不等式应用题-培优练习(含答案)1.为了参加西安世界园艺博览会,某公司用几辆载重为8吨的汽车运送一批参展货物.若每辆汽车只装4吨,则剩下20吨货物;若每辆汽车装满8吨,则最后一辆汽车不空也不满.请问:共有多少辆汽车运货?2.某蔬菜经营户从蔬菜批发市场批发蔬菜进行零价,其中西红柿与西兰花的批发价格与零售价格如表.(1)一共能赚多少钱?(请列方程组求解)(2)第二天该经营户用1520元仍然批发西红柿和西兰花,要想当天全部售完后所赚钱数不少于1050元,则该经营户最多能批发多少千克的西红柿?3.六一”儿童节将至,益智玩具店准备购进甲、乙两种玩具,若购进甲种玩具80个,乙种玩具40个,需要800元,若购进甲种玩具50个,乙种玩具30个,需要550元.(1)求益智玩具店购进甲、乙两种玩具每个需要多少元?(2)若益智玩具店准备1000元全部用来购进甲,乙两种玩具,计划销售每个甲种玩具可获利润4元,销售每个乙种玩具可获利润5元,且销售这两种玩具的总利润不低于600元,那么这个玩具店需要最多购进乙种玩具多少个?4.陈老师为学校购买运动会的奖品后,回学校向后勤处王老师交账说:“我买了两种书,共105本,单价分别为8元和12元,买书前我领了1500元,现在还余418元.”王老师算了一下,说:“你肯定搞错了.”(1)王老师为什么说他搞错了?试用方程的知识给予解释;(2)陈老师连忙拿出购物发票,发现的确弄错了,因为他还买了一个笔记本.但笔记本的单价已模糊不清,只能辨认出应为小于10元的整数,笔记本的单价可能为多少元?5.某水果店以4元/千克的价格购进一批水果,由于销售状况良好,该店又再次购进同一种水果,第二次进货价格比第一次每千克便宜了0.5元,所购水果重量恰好是第一次购进水果重量的2倍,这样该水果店两次购进水果共花去了2200元.(1)该水果店两次分别购买了多少元的水果?(2)在销售中,尽管两次进货的价格不同,但水果店仍以相同的价格售出,若第一次购进的水果有3%的损耗,第二次购进的水果有5%的损耗,该水果店希望售完这些水果获利不低于1244元,则该水果每千克售价至少为多少元?6.公司为了运输的方便,将生产的产品打包成件,运往同一目的地.其中A产品和B产品共320件,A产品比B产品多80件.(1)求打包成件的A产品和B产品各多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批产品全部运往同一目的地.已知甲种货车最多可装A产品40件和B产品10件,乙种货车最多可装A产品和B产品各20件.如果甲种货车每辆需付运输费4000元,乙种货车每辆需付运输费3600元.则公司安排甲、乙两种货车时有几种方案?并说明公司选择哪种方案可使运输费最少?7.某市居民用电的电价实行阶梯收费,收费标准如下表:(1)已知李叔家四月份用电286度,缴纳电费178.76元;五月份用电316度,缴纳电费198.56元,请你根据以上数据,求出表格中a,b的值.(2)六月份是用电高峰期,李叔计划六月份电费支出不超过300元,那么李叔家六月份最多可用电多少度?8.某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表.已知购进(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价﹣进价)超过21000元,且不超过22000元,问该专卖店有几种进货方案?(3)在(2)的条件下,专卖店准备决定对甲种运动鞋每双优惠a(50<a<70)元出售,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货?9.某物流公司承接A.B两种货物运输业务,已知5月份A货物运费单价为50元/吨,B货物运费单价为30元/吨,共收取运费9500元;6月份由于油价上涨,运费单价上涨为:A货物70元/吨,B货物40元/吨;该物流公司6月承接的A种货物和B种数量与5月份相同,6月份共收取运费13000元.(1)该物流公司月运输两种货物各多少吨?(2)该物流公司预计7月份运输这两种货物330吨,且A货物的数量不大于B货物的2倍,在运费单价与6月份相同的情况下,该物流公司7月份最多将收到多少运输费?10.少儿部组织学生进行“英语风采大赛”,需购买甲、乙两种奖品.购买甲奖品3个和乙奖品4个,需花64元;购买甲奖品4个和乙奖品5个,需花82元.(1)求甲、乙两种奖品的单价各是多少元?(2)由于临时有变,只买甲、乙一种奖品即可,且甲奖品按原价9折销售,乙奖品购买6个以上超出的部分按原价的6折销售,设购买x个甲奖品需要y1元,购买x个乙奖品需要y2元,请用x分别表示出y1和y2;(3)在(2)的条件下,问买哪一种产品更省钱?11.一家蔬菜公司收购到某种绿色蔬菜140吨,准备加工后进行销售,销售后获利的情况如下表所示:限制,公司必须在一定时间内将这批蔬菜全部加工后销售完.(1)如果要求12天刚好加工完140吨蔬菜,则公司应安排几天精加工,几天粗加工?(2)如果先进行精加工,然后进行粗加工.①试求出销售利润W元与精加工的蔬菜吨数m之间的函数关系式;②若要求在不超过10天的时间内,将140吨蔬菜全部加工完后进行销售,则加工这批蔬菜最多获得多少利润?此时如何分配加工时间?12.商场某柜台销售每台进价分别为160元、120元的A.B两种型号的电风扇,下表是近两周的销售情况:(1)求A.B两种型号的电风扇的销售单价;(2)若商场准备用不多于7500元的金额再采购这两种型号的电风扇共50台,求A种型号的电风扇最多能采购多少台?(3)在(2)的条件下,商场销售完这50台电风扇能否实现利润超过1850元的目标?若能,请给出相应的采购方案;若不能,请说明理由.13.为了更好改善河流的水质,治污公司决定购买10台污水处理设备.现有A,B两种型号的设备,其中每台的价格,月处理污水量如下表:经调查:购买一台A型设备比购买一台B型设备多2万元,购买2台A 型设备比购买3台B(1)求a,b的值;(2)治污公司经预算购买污水处理设备的资金不超过105万元,你认为该公司有哪几种购买方案;(3)在(2)的条件下,若每月要求处理污水量不低于2040吨,为了节约资金,请你为治污公司设计一种最省钱的购买方案.14.某商场用36000元购进甲、乙两种商品,销售完后共获利6000元.其中甲种商品每件进价120元,售价138元;乙种商品每件进价100元,售价120元.(1)该商场购进甲、乙两种商品各多少件?(2)商场第二次以原进价购进甲、乙两种商品,购进乙种商品的件数不变,而购进甲种商品的件数是第一次的2倍,甲种商品按原售价出售,而乙种商品打折销售.若两种商品销售完毕,要使第二次经营活动获利不少于8160元,乙种商品最低售价为每件多少元?15.“五•一”黄金周期间,某学校计划组织385名师生租车旅游,现知道出租公司有42座和60座两种客车,42座客车的租金每辆为320元,60座客车的租金每辆为460元.(1)若学校单独租用这两种车辆各需多少钱?(2)若学校同时租用这两种客车8辆(可以坐不满),而且要比单独租用一种车辆节省租金.请你帮助该学校选择一种最节省的租车方案.参考答案1.解:设有x辆汽车,则有(4x+20)吨货物.由题意,可知当每辆汽车装满8吨时,则有(x﹣1)辆是装满的,所以有方程,解得5<x<7.由实际意义知x为整数.所以x=6.答:共有6辆汽车运货.2.3.【解答】解:(1)设甲种玩具每个x元,乙种玩具每个y元,根据题意,得:,解得:,答:甲种玩具每个5元,乙种玩具每个10元.(2)设购进乙种玩具a个,则甲种玩具=200﹣2a(个),根据题意,得:4+5a≥600,解得:a≤66,∵a是正整数,∴a的最大值为66,答:这个玩具店需要最多购进乙种玩具66个.4.解:(1)设单价为8.0元的课外书为x本,得:8x+12=1500﹣418,解得:x=44.5(不符合题意).∵在此题中x不能是小数,∴王老师说他肯定搞错了;(2)设单价为8.0元的课外书为y本,设笔记本的单价为b元,依题意得:0<1500﹣[8y+12+418]<10,解之得:0<4y﹣178<10,即:44.5<y<47,∴y应为45本或46本.当y=45本时,b=1500﹣[8×45+12+418]=2,当y=46本时,b=1500﹣[8×46+12+418]=6,即:笔记本的单价可能2元或6元.5.6.解:(1)设打包成件的A产品有x件,B产品有y件,根据题意得x+y=320,x-y=80,解得x=200,y=120,答:打包成件的A产品有200件,B产品有120件;(2)设租用甲种货车x辆,根据题意得40x+20(8-x)≥200,10x+20(8-x)≥120,解得2≤x≤4,而x为整数,所以x=2、3、4,所以设计方案有3种,分别为:7.解:(1)根据题意得:,解得:.(2)设李叔家六月份最多可用电x度,根据题意得:200×0.61+200×0.66+0.92(x﹣400)≤300,解得:x≤450.答:李叔家六月份最多可用电450度.8.解:(1)依题意得:60m+50(m﹣20)=10000,解得m=100;(2)设购进甲种运动鞋x双,则乙种运动鞋(200﹣x)双,根据题意得,,解不等式①得,x>,解不等式②得,x≤100,所以,不等式组的解集是<x≤100,∵x是正整数,100﹣84+1=17,∴共有17种方案;(3)设总利润为W,则W=(240﹣100﹣a)x+80(200﹣x)=(60﹣a)x+16000(≤x≤100),①当50<a<60时,60﹣a>0,W随x的增大而增大,所以,当x=100时,W有最大值,即此时应购进甲种运动鞋100双,购进乙种运动鞋100双;②当a=60时,60﹣a=0,W=16000,(2)中所有方案获利都一样;③当60<a<70时,60﹣a<0,W随x的增大而减小,所以,当x=84时,W有最大值,即此时应购进甲种运动鞋84双,购进乙种运动鞋116双.9.解:(1)设A种货物运输了x吨,设B种货物运输了y吨,依题意得:,解之得:.答:物流公司月运输A种货物100吨,B种货物150吨.(2)设A种货物为a吨,则B种货物为(330﹣a)吨,依题意得:a≤(330﹣a)×2,解得:a≤220,设获得的利润为W元,则W=70a+40(330﹣a)=30a+13200,根据一次函数的性质,可知W随着a的增大而增大当W取最大值时a=220,即W=19800元.所以该物流公司7月份最多将收到19800元运输费.10.解:(1)设甲种奖品的单价为x元/个,乙种奖品的单价为y元/个,根据题意得:,解得:.答:甲种奖品的单价为8元/个,乙种奖品的单价为10元/个.(2)根据题意得:y1=8×0.9x=7.2x;当0≤x≤6时,y2=10x,当x>6时,y2=10×6+10×0.6(x﹣6)=6x+24,∴y2=.(3)当0≤x≤6时,∵7.2<10,∴此时买甲种产品省钱;当x>6时,令y1<y2,则7.2x<6x+24,解得:x<20;令y1=y2,则7.2x=6x+24,解得:x=20;令y1>y2,则7.2x>6x+24,解得:x>20.综上所述:当x<20时,选择甲种产品更省钱;当x=20时,选择甲、乙两种产品总价相同;当x>20时,选择乙种产品更省钱.11.12.(1)设A型电风扇单价为x元,B型单价y元,则,解得:,答:A型电风扇单价为200元,B型单价150元;(2)设A型电风扇采购a台,则160a+120(50﹣a)≤7500,解得:a≤,则最多能采购37台;(3)依题意,得:(200﹣160)a+(150﹣120)(50﹣a)>1850,解得:a>35,则35<a≤,∵a是正整数,∴a=36或37,方案一:采购A型36台B型14台;方案二:采购A型37台B型13台.13.解:(1)购买A型的价格是a万元,购买B型的设备b万元,A=b+2,2a+6=3b,解得:a=12,b=10.故a的值为12,b的值为10;(2)设购买A型号设备m台,12m+10(10﹣m)≤105,解得:m≤2.5,故所有购买方案为:当A型号为0,B型号为10台;当A型号为1台,B型号为9台;当A型号为2台,B型号为8台;有3种购买方案;(3)由题意可得出:240m+180(10﹣m)≥2040,解得:m≥4,由(1)得A型买的越少越省钱,所以买A型设备4台,B型的6台最省钱.14.解:(1)设商场购进甲种商品x件,乙种商品y件,根据题意得:,解得:.答:该商场购进甲种商品200件,乙种商品120件.(2)设乙种商品每件售价z元,根据题意,得120(z﹣100)+2×200×(138﹣120)≥8160,解得:z≥108.答:乙种商品最低售价为每件108元.15.。

七年级数学下册《一元一次不等式组》练习题及答案(人教版)

七年级数学下册《一元一次不等式组》练习题及答案(人教版)

七年级数学下册《一元一次不等式组》练习题及答案(人教版)一、单选题 1.定义:对于实数a ,符号[]a 表示不大于a 的最大整数.例如:[][][]5.75,55,4π==-=-如果132x +⎡⎤=⎢⎥⎣⎦则x 的取值范围是( )A .57x ≤<B .57x <<C .57x <≤D .57x ≤≤2.八年级某班部分学生去植树,若每人平均植树4棵,还剩9棵,若每人平均植树5棵,则最后一名学生有但棵数不足2棵.若设同学人数x 人,则下列列式正确的是( )A .49504952x x x x +->⎧⎨+-<⎩B .49504952x x x x +-≥⎧⎨+-<⎩C .495(1)0495(1)2x x x x +-->⎧⎨+--<⎩D .()()4951049512x x x x ⎧+--≥⎪⎨+--<⎪⎩3.若关于x 的不等式组()1022113x a x x ⎧-->⎪⎪⎨-⎪-≥⎪⎩无解,则所有满足条件的整数a 的值之积是( ) A .0 B .1 C .2 D .34.不等式组21223x x x ->+⎧⎨-≥⎩的解集在数轴上表示正确的是( ) A . B . C .D .5.不等式20-1x x -⎧⎨≤⎩>的解集在数轴上表示正确的是( ) A .B .C .D . 6.如果点P (2x+3,x-2)是平面直角坐标系的第四象限内的整数点,那么符合条件的点有( )个A .2B .3C .4D .57.不等式组32531x x +>⎧⎨-≥⎩的解在数轴上表示为( )A .B .C . D.8.如图,这是李强同学设计的一个计算机程序,规定从“输入一个值x ”到判断“结果是否15≥”为一次运行过程.如果程序运行两次就停止,那么x 的取值范围是( )A .3x ≥B .37x ≤<C .37x <≤D .7x ≤ 9.不等式组2{3x x >≤的解集在数轴上表示正确的是( ) A . B .43 C .3 D .2226-55(,) 10.定义一种新运算:2ab ab a =+则不等式组(2)21 52x x -<⎧⎪⎨≤⎪⎩的负整数解有( ) A .1个 B .2个 C .3个 D .4个二、填空题11.某种药品的说明书上,贴有如下的标签,一次服用这种药品的剂量范围是________~________mg .12.若a<b,则x a x b>⎧⎨≤⎩的解集是______. 13.不等式组112260x x ⎧≥-⎪⎨⎪+>⎩的解集为________.14.不等式组360x x m->⎧⎨>⎩的解集为2x >,则m 的取值范围为_______.15.不等式组112237xx⎧-<⎪⎨⎪-≤-⎩的解集是______.三、解答题16.解不等式组36021 xx+≥⎧⎨-≤-⎩①②请结合题意填空,完成本题的解答.(1)解不等式①,得;(2)解不等式②,得;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为.17.(1)计算:3216+1927-⨯--(2)解不等式组:1>043xx x+⎧⎨+>⎩并把不等式组的整数解写出来.18.已知方程组713x y ax y a+=-+⎧⎨-=+⎩的解x为非正数,y为负数.(1)求a的取值范围;(2)当a为何整数时,不等式2ax+x>2a+1的解集为x<1?19.(1)解方程:241111xx x-+=-+(2)解不等式组:273(1)15(4)2x xx x--⎧⎪⎨-+≥⎪⎩<①②20.已知关于x的不等式12x≤8-32x+2a的解集表示在数轴上,如图所示(1)求a的值;(2)是否存在整数k,使得方程组26x y kx y a+=⎧⎨-=+⎩的解满足x>1,y≤1,若存在,求出k的值;若不存在,请说明理由.。

人教版七年级数学下册实际问题与一元一次不等式(提高)典型例题(考点)讲解+练习(含答案).doc

人教版七年级数学下册实际问题与一元一次不等式(提高)典型例题(考点)讲解+练习(含答案).doc

【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。

】实际问题与一元一次不等式(提高)知识讲解责编:杜少波【学习目标】1.会从实际问题中抽象出不等的数量关系,会用一元一次不等式解决实际问题; 2. 熟悉常见一些应用题中的数量关系.【要点梳理】要点一、常见的一些等量关系 1.行程问题:路程=速度×时间2.工程问题:工作量=工作效率×工作时间,各部分劳动量之和=总量3.利润问题:商品利润=商品售价-商品进价,=100%⨯利润利润率进价4.和差倍分问题:增长量=原有量×增长率5.银行存贷款问题:本息和=本金+利息,利息=本金×利率6.数字问题:多位数的表示方法:例如:32101010abcd a b c d =⨯+⨯+⨯+.【:实际问题与一元一次不等式409415 小结:】 要点二、列不等式解决实际问题列一元一次不等式解应用题与列一元一次方程解应用题类似,通常也需要经过以下几个步骤:(1)审:认真审题,分清已知量、未知量及其关系,找出题中不等关系要抓住题中的关键字眼,如“大于”、“小于”、“不大于”、“至少”、“不超过”、“超过”等; (2)设:设出适当的未知数;(3)列:根据题中的不等关系,列出不等式; (4)解:解所列的不等式;(5)答:写出答案,并检验是否符合题意. 要点诠释:(1)列不等式的关键在于确定不等关系;(2)求得不等关系的解集后,应根据题意,把实际问题的解求出来; (3)构建不等关系解应用题的流程如图所示.(4)用不等式解决应用问题,有一点要特别注意:在设未知数时,表示不等关系的文字如“至少”不能出现,即应给出肯定的未知数的设法,然后在最后写答案时,应把表示不等关系的文字补上.如下面例1中 “设还需要B 型车x 辆 ”,而在答中 “至少需要11台B 型车 ”.这一点要应十分注意. 【典型例题】类型一、简单应用题1.蓝天运输公司要将300吨物资运往某地,现有A、B两种型号的汽车可供调用.已知A型汽车每辆最多可装该物资20吨,B型汽车每辆最多可装该物资15吨.在每辆车不超载的条件下,要把这300吨物资一次性装运完.问:在已确定调用7辆A型车的前提下至少还需调用B型车多少辆?【思路点拨】本题的数量关系是:7辆A型汽车装载货物的吨数+B型汽车装货物的吨数≥300吨,由此可得出不等式,求出自变量的取值范围,找出符合条件的值.【答案与解析】解:设需调用B型车x辆,由题意得:72015300x⨯+≥,解得:2103x≥,又因为x取整数,所以x最小取11.答:在已确定调用7辆A型车的前提下至少还需调用B型车11辆.【总结升华】解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的不等量关系.举一反三:【变式】(2015•香坊区二模)某商场共用2200元同时购进A、B两种型号的背包各40个,且购进A型号背包2个比购进B型号背包1个多用20元.(1)求A、B两种型号背包的进货单价各为多少元?(2)若该商场把A、B两种型号背包均按每个50元的价格进行零售,同时为了吸引消费者,商场拿出一部分背包按零售价的7折进行让利销售.商场在这批背包全部销售完后,若总获利不低于1350元,求商场用于让利销售的背包数量最多为多少个?【答案】解:(1)设A型背包每个为x元,B型背包每个为y元,由题意得,解得:.答:A、B两种型号背包的进货单价各为25元、30元;(2)设商场用于让利销售的背包数量为a个,由题意得,50×70a%+50(40×2﹣a)﹣2200≥1350,解得:a≤30.所以,商场用于让利销售的背包数数量最多为30个.答:商场用于让利销售的背包数数量最多为30个.类型二、阅读理解型2. 用甲、乙两种原料配制成某种饮料,已知这两种原料的维生素C含量及购买这两种原料的价格如下表:甲种原料乙种原料维生素C含量(单位•千克)600 100原料价格(元•千克)8 4现配制这种饮料10kg,要求至少含有4200单位的维生素C,若所需甲种原料的质量为xkg,则x应满足的不等式为()A.600x+100(10-x)≥4200 B.8x+4(100-x)≤4200C.600x+100(10-x)≤4200 D.8x+4(100-x)≥4200【思路点拨】首先由甲种原料所需的质量和饮料的总质量,表示出乙种原料的质量,再结合表格中的数据,根据“至少含有4200单位的维生素C”这一不等关系列不等式.【答案】A【解析】解:若所需甲种原料的质量为xkg,则需乙种原料(10-x)kg.根据题意,得600x+100(10-x)≥4200.【总结升华】能够读懂表格,会把文字语言转换为数学语言.【变式】(2015春•西城区期末)为了落实水资源管理制度,大力促进水资源节约,某地实行居民用水阶梯水价,收费标准如下表:(1)小明家5月份用水量为14立方米,在这个月,小明家需缴纳的水费为元;(2)小明家6月份缴纳水费110元,在这个月,小明家缴纳第二阶梯水价的用水量为立方米;(3)随着夏天的到来,用水量将会有所增加,为了节省开支,小明家计划7月份的水费不超过180元,在这个月,小明家最多能用水多少立方米?【答案】解:(1)由表格中数据可得:0≤x≤15时,水价为:5元/立方米,故小明家5月份用水量为14立方米,在这个月,小明家需缴纳的水费为:14×5=70(元);(2)∵15×5=75<110,75+6×7=117>110,∴小明家6月份使用水量超过15立方米但小于21立方米,设小明家6月份使用水量为x立方米,∴75+(x﹣15)×7=110,解得:x=20,故小明家缴纳第二阶梯水价的用水量为:20﹣15=5(立方米),故答案为:5;(3)设小明家能用水a立方米,根据题意可得:117+(a﹣21)×9≤180,解得:a≤28.答:小明家计划7月份的水费不超过180元,在这个月,小明家最多能用水28立方米.类型三、方案选择型3.(2015•龙岩)某公交公司有A,B型两种客车,它们的载客量和租金如下表:A B载客量(人/辆)45 30租金(元/辆)400 280红星中学根据实际情况,计划租用A,B型客车共5辆,同时送七年级师生到基地校参加社会实践活动,设租用A型客车x辆,根据要求回答下列问题:(1)用含x的式子填写下表:车辆数(辆)载客量租金(元)A x 45x 400xB 5﹣x __________ ___________(2)若要保证租车费用不超过1900元,求x的最大值;(3)在(2)的条件下,若七年级师生共有195人,写出所有可能的租车方案,并确定最省钱的租车方案.【思路点拨】(1)根据题意,载客量=汽车辆数×单车载客量,租金=汽车辆数×单车租金,列出代数表达式即可;(2)根据题意,表示出租车总费用,列出不等式即可解决;(3)由(2)得出x的取值范围,一一列举计算,排除不合题意方案即可.【答案与解析】解:(1)∵载客量=汽车辆数×单车载客量,租金=汽车辆数×单车租金,∴B型客车载客量=30(5﹣x);B型客车租金=280(5﹣x);故填:30(5﹣x);280(5﹣x).(2)根据题意,400x+280(5﹣x)≤1900,解得:x≤4,∴x的最大值为4;(3)由(2)可知,x≤4,故x可能取值为0、1、2、3、4,①A型0辆,B型5辆,租车费用为400×0+280×5=1400元,但载客量为45×0+30×5=150<195,故不合题意舍去;②A型1辆,B型4辆,租车费用为400×1+280×4=1520元,但载客量为45×1+30×4=165<195,故不合题意舍去;③A型2辆,B型3辆,租车费用为400×2+280×3=1640元,但载客量为45×2+30×3=180<195,故不合题意舍去;④A型3辆,B型2辆,租车费用为400×3+280×2=1760元,但载客量为45×3+30×2=195=195,符合题意;⑤A型4辆,B型1辆,租车费用为400×4+280×1=1880元,但载客量为45×4+30×1=210,符合题意;故符合题意的方案有④⑤两种,最省钱的方案是A型3辆,B型2辆.【总结升华】此题主要考查了一次不等式的综合应用,由题意得出租用x辆甲种客车与总租金关系是解决问题的关键.举一反三:【变式】黄冈某地“杜鹃节”期间,某公司70名职工组团前往参观欣赏,旅游景点规定:①门票每人60元,无优惠;②上山游玩可坐景点观光车,观光车有四座和十一座车,四座车每辆60元,十一座车每人10元.公司职工正好坐满每辆车且总费用不超过5000元,问公司租用的四座车和十一座车各多少辆?【答案】解:设四座车租x辆,则十一座车租70411x-辆.依题意 70×60+60x+(70-4x)×10≤5000,将不等式左边化简后得:20x+4900≤5000,不等式两边减去3500得 20x≤100,不等式两边除以20得 x≤5,又∵70411x-是整数,∴1x=,704611x-=.答:公司租用四座车l辆,十一座车6辆.4.响应“家电下乡”的惠农政策,某商场决定从厂家购进甲、乙、丙三种不同型号的电冰箱80台,其中甲种电冰箱的台数是乙种电冰箱台数的2倍,购买三种电冰箱的总金额不超过132 000元.已知甲、乙、丙三种电冰箱的出厂价格分别为:1200元/台、1600元/台、2000元/台.(1)至少购进乙种电冰箱多少台?(2)若要求甲种电冰箱的台数不超过丙种电冰箱的台数,则有哪些购买方案?【思路点拨】(1)关系式为:甲种电冰箱用款+乙种电冰箱用款+丙种电冰箱用款≤132000,根据此不等关系列不等式即可求解;(2)关系式为:甲种电冰箱的台数≤丙种电冰箱的台数,以及(1)中得到的关系式联合求解.【答案与解析】解:(1)设购买乙种电冰箱x台,则购买甲种电冰箱2x台,丙种电冰箱(80-3x)台,根据题意得1200×2x+1600x+(80-3x)×2000≤132000解这个不等式得x≥14∴至少购进乙种电冰箱14台;(2)根据题意得2x≤80-3x解这个不等式得x≤16由(1)知x≥14∴14≤x≤16又∵x为正整数∴x=14,15,16.所以,有三种购买方案方案一:甲种电冰箱为28台,乙种电冰箱为14台,丙种电冰箱为38台.方案二:甲种电冰箱为30台,乙种电冰箱为15台,丙种电冰箱为35台.方案三:甲种电冰箱为32台,乙种电冰箱为16台,丙种电冰箱为32台.【总结升华】探求不等关系时,要注意捕捉“大于”、“超过”、“不少于”、“不足”、“至多”等表示不等关系的关键词,通过这些词语,可以直接找到不等关系.初中奥数题试题一一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么 ( )A.a,b都是0 B.a,b之一是0C.a,b互为相反数 D.a,b互为倒数2.下面的说法中正确的是 ( )A.单项式与单项式的和是单项式B.单项式与单项式的和是多项式C.多项式与多项式的和是多项式D.整式与整式的和是整式3.下面说法中不正确的是 ( )A. 有最小的自然数 B.没有最小的正有理数C.没有最大的负整数 D.没有最大的非负数4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么 ( )A.a,b同号 B.a,b异号 C.a>0 D.b>05.大于-π并且不是自然数的整数有 ( )A.2个 B.3个 C.4个 D.无数个6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身。

人教版七年级数学下册第九章第二节一元一次不等式考试题(含答案) (89)

人教版七年级数学下册第九章第二节一元一次不等式考试题(含答案) (89)

人教版七年级数学下册第九章第二节一元一次不等式考试题(含答案)已知关于x 的不等式()2a b x a 5b 0-+->的解集为7x 10<,求关于x 的不等式ax b >的解集. 【答案】b 3x a 8<=. 【解析】分析:不等式去括号,移项合并,表示出解集,根据已知解集确定出a 与b 的值,即可求出所求不等式的解集.详解:不等式移项得:()2a b x 5b a ->-, 由不等式的解集为7x 10<,得到a b 0-<,且()5b a 72a b 10-=-, 整理得:a b <,且3a 8b =,即8a b 3=, a 0∴<,则不等式ax b >变形得:b 3x a 8<=. 点睛:此题考查了不等式的解集,熟练掌握不等式组取解集的方法是解本题的关键.82.解不等式x 54->5x 16+-1,并把解集在数轴上表示出来. 【答案】5x 7<-,表示在数轴上见解析. 【解析】分析:不等式去分母,去括号,移项合并,把x 系数化为1,求出解集,表示在数轴上即可.详解:去分母得:3x-15>10x+2-12,移项合并得:7x <-5,解得:x<-5,7表示在数轴上,如图所示:点睛:此题考查了解一元一次不等式,以及在数轴上表示不等式的解集,熟练掌握运算法则是解本题的关键.83.4月份,重庆市果桑(俗称桑泡儿)将进入采摘期,预计持续1个月左右,届时全市25个成规模的果桑采摘园将陆续开园迎客,某区有一果园占地250亩,育有56个品种的果桑,其中台湾超长果桑因果形奇特、口感佳而大面积种植,售价30/斤,其它各个品种售价均为20元/斤(1)清明节当天,该果园一共售出500斤果桑,其中售出其它品种的果桑总重量不超过售出台湾超长果桑重量的3倍,问至少售出台湾超长果桑多少斤?(2)为了提高台湾超长果桑的知名度,商家对台湾超长果桑进行广告宣传,4月14日售出其它品种的果桑总重量是售出台湾超长果桑重量的2倍。

人教版七年级数学下册第九章第二节一元一次不等式测试习题(含答案) (76)

人教版七年级数学下册第九章第二节一元一次不等式测试习题(含答案) (76)

人教版七年级数学下册第九章第二节一元一次不等式习题(含答案) -≥【答案】4x ≤【解析】【分析】按照移项、合并同类项、系数化为1的步骤求解,结果化为最简二次根式即可.【详解】 -≥-≥,∴x ≥,∴4x ≤. 【点睛】本题考查了一元一次不等式的解法,以及二次根式的化简,熟练掌握一元一次不等式的解法以及二次根式的运算法则是解答本题的关键.52(x <【答案】【解析】【分析】先利用乘法分配律去括号,移项解不等式即可,注意系数化1时同时除的数的正负性.【详解】(x +<+<<x <0<)【点睛】此题考查的是二次根式化简和一元一次不等式,需注意系数化1时同时除的数的正负性.53<13【答案】x > 【解析】【分析】根据不等式的性质解一元一次不等式即可.【详解】解:移向得:-2x-13-73x<23--73x<6不等号得两边同时除以一个负数时不等号得方向要改变x > 【点睛】 本题考查解一元一次不等式,熟练掌握不等式的性质是解题关键.54.求满足(1x >的最大整数解【答案】−4.【解析】【分析】首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的最大整数即可.【详解】∵(1x >+解得,x<−2∴满足(1的最大整数是−4.故答案为:−4.【点睛】此题考查解一元一次不等式,二次根式的应用,解题关键在于掌握运算法则.55.解不等式1.212x +<()【答案】x > 【解析】【分析】去分母,移项,合并同类项,系数化为1即可求解.【详解】1212x +<(),41x +<41x -<(41x -< ∵4-0,∴x x -> 【点睛】本题考查的是解一元一次不等式,熟知解一元一次不等式的基本步骤是解答此题的关键.56≤【答案】x ≥1【解析】【分析】原式移项,然后进行合并同类项,最后系数化为1即可求解.【详解】 0-≤∴x ≤∴x =1 故答案为:x ≥1【点睛】本题考查了解一元一次不等式,熟练掌握移项、合并同类项是解题的关键,注意在解答本题时除以一个复负数不等号的方向要改变.57.为活跃校园气氛,增强班集体凝聚力,培养学生团结协作的意识,我校计划在初一、初二举行学生趣味运动会.学校计划用不超过4620元购买足球和篮球共28个,分别作为运动会团体一、二等奖的奖品.已知足球单价180元,篮球单价160元.(1)学校至多可购买多少个足球?(2)为了鼓励更多班级参与运动,学校决定在计划经费内,按(1)问的结果购买足球作为一等奖奖品.购买奖品时正好赶上商场对商品价格进行调整,a%,最终恰好比计划经费的最大值节足球单价上涨了a%,篮球单价下降了23余了196元,求a的值.【答案】(1)7个;(2)a的值为20【解析】【分析】(1)设学校购买x个足球,则购买(28-x)个篮球,根据总价=单价×数量结合总费用不超过4620元,即可得出关于x的一元一次不等式,解之即可得出结论;(2)根据购买篮球节省的钱数-购买足球多花的钱数=节余钱数,即可得出关于a的一元一次方程,解之即可得出结论.【详解】解:(1)设学校可购买x个足球,则可购买(28)x 篮球,根据题意,得180160(28)4620x x +-≤,解得:7x ≤.答:学校至多可购买7个足球.(2)根据题意,得27180(1%)21160(1%)46201963a a ⨯++⨯--= 令%t a =,得27180(1)21160(1)46201963t t ⨯++⨯--= 解得:0.2t =∴a 的值为20.【点睛】本题考查了一元一次不等式的应用以及一元一次方程的应用,解题的关键是:(1)根据总价=单价×数量结合总费用不超过4620元,列出关于x 的一元一次不等式;(2)根据购买篮球节省的钱数-购买足球多花的钱数=节余钱数,列出关于a 的一元一次方程.58.(1)解方程:4(1)(3)2x x +--=-;(2)解不等式:431132x x +-->. 【答案】(1)x=-3;(2)57x <【解析】【分析】(1)先去括号,然后移项、合并,即可得到答案;(2)先去分母,然后去括号,移项、合并,即可得到答案.【详解】(1)解:4432x x +-+=-4243x x -=---39x =-3x =-;(2)解:2(4)3(31)6x x +-->,28936x x +-+>,29683x x ->--,75x ->-,57x <. 【点睛】本题考查了解一元一次不等式和解一元一次方程,解题的关键是掌握解不等式和解方程的步骤.59.解不等式:()()()()2x 3x 52x 33x 43x 4---+≤+【答案】x ≥0【解析】【分析】去括号然后移项、合并同类项,最后系数化为1,即可求解的结果.【详解】解:()22610612312x x x x x ----≤+ 整理得:120x -≤解得:x ≥0故答案为:x≥0.【点睛】本题考查了解一元一次不等式,熟练掌握不等式的解法以及步骤是解题的关键.60.(1(2)解不等式组()3241213x xxx⎧--≥-⎪⎨+>-⎪⎩,并把不等式组的解集在数轴上表示出来.【答案】(1)1115;(2)x≤1,图见解析.【解析】【分析】(1)根据平方根和立方根的运算化简得到25+3+13-3,再进行计算即可得到答案;(2)先分别求解两个不等式,即可得到不等式的解集,再将解集用数轴表示.【详解】解:(1)原式=25+3+13-3 =1115;(2)()3241213x xxx⎧--≥-⎪⎨+>-⎪⎩①②,解不等式①,得:x≤1,解不等式②,得:x<4,所以不等式组的解集为:x≤1,在数轴上表示解集如图:.【点睛】本题考查数轴表示解集、平方根和立方根、解一元一次不等式组,解题的关键是掌握用数轴表示解集、平方根和立方根的运算、解一元一次不等式组.。

七年级数学下册《一元一次不等式与不等式组》练习题及答案(人教版)

七年级数学下册《一元一次不等式与不等式组》练习题及答案(人教版)

七年级数学下册《一元一次不等式与不等式组》练习题及答案(人教版)一、选择题1. 在平面直角坐标系中,如果点P(−1,−2+m)在第三象限,那么m的取值范围为( )A. m<2B. m≤2C. m≤0D. m<02. 关于x的不等式组{3x−2>4(x−1)x<a的解集为x<2,那么a的取值范围为( )A. a=2B. a>2C. a<2D. a≥23. 如果点P(3−m,1)在第二象限,那么关于x的不等式(2−m)x+2>m的解集是( )A. x>−1B. x<−1C. x>1D. x<14. 若关于x的方程2x+2=m−x的解为负数,则m的取值范围是( )A. m>2B. m<2C. m>23D. m<235. 若不等式ax+x>1+a的解集是x<1,则a必须满足的条件是( )A. a<−1B. a<1C. a>−1D. a>16. 关于x的不等式组{x−m<03x−1>2(x−1)有解,那么m的取值范围为( )A. m≤−1B. m<−1C. m≥−1D. m>−17. 关于x的不等式2x−a≤−1的解集如图所示,则a的取值是( )A. −1B. −2C. −3D. 08. 方程组{x+2y=1+m2x+y=3中,若未知数x、y满足x+y>0,则m的取值范围是( )A. m>−4B. m≥−4C. m<−4D. m≤−4二、填空题9. 若关于x 的一元一次方程4x +m +1=x −1的解是负数,则m 的取值范围是______. 10. 若关于x 的不等式ax −b >0的解集为x <13,则关于x 的不等式(a +b)x >a −b 的解集为______.11. 若不等式组{x +2a ≥51−2x >x −2有解,则a 的取值范围是______. 12. 若不等式(a −1)x <a −1的解集是x >1,则a 的取值范围是______.13. 若关于x ,y 的二元一次方程组{x −3y =4m +3x +5y =5的解满足x +y ≤0,则m 的取值范围是______.三、解答题14.已知方程{x +y =−7−a x −y =1+3a 的解x 为非正数,y 为负数,求a 的取值范围.15.已知关于x 的方程4x +2m −1=2x +5的解是负数.(1)求m 的取值范围;(2)解关于x 的不等式x −1>mx+13.16.已知不等式组{x >−1+2m x <1+m 无解,求m 的取值范围.17.已知关于x,y的二元一次方程组{x+y=1−ax−y=3a+7的解是一对正数.(1)求a的取值范围;(2)化简:|a+4|−|a|+|2a+3|.18.已知关于x,y的二元一次方程组{x+2y=12 x−y=3m(1)用含有m的代数式表示方程组的解;(2)如果方程组的解x,y满足x+y>0,求m的取值范围.19. 已知2x+3=2a,y−2a=4并且a−34<x+y≤2a+112.(1)求a的取值范围;(2)化简:|2a−6|+2|a+2|的结果是______;(3)比较a2+2a−5与a2+a−1的大小.参考答案1.A 2.D 3.B 4.B 5.A6.D7.A8.A9.m>−210.x<1211.a>212.a<113.m≤−214.解:{x+y=−7−a x−y=1+3a得,{x=a−3y=−2a−4.∵{x≤0y<0∴{a−3≤0−2a−4<0.解得−2<a≤3.15.解:(1)方程4x+2m−1=2x+5的解是:x=3−m.由题意得:3−m<0解得m>3.(2)x−1>mx+13去分母得:3(x−1)>mx+1去括号得:3x−3>mx+1移项,得:3x−mx>1+3合并同类项,得:(3−m)x>4因为m>3所以3−m<0所以x<43−m.16.解:{x>−1+2m ①x<1+m ②∵不等式组无解∴−1+2m≥1+m 解得:m≥2∴m的取值范围是m≥2.17.解:(1){x+y=1−a①x−y=3a+7②①+②得2x=2a+8解得x=a+4代入①得y=−2a−3.故方程组的解为:{x=a+4y=−2a−3∵x>0,y>0∴{x=a+4>0y=−2a−3>0解得:−4<a<−1.5;(2)由(1)得:a+4>0,a<0,2a+3<0∴原式=a+4−(−a)+(−2a−3) =a+4+a−2a−3=1.18.解:(1){x+2y=12 ①x−y=3m ②①−②,得3y=12−3m解得y=4−m.将y=4−m代入②,得x−(4−m)=3m 解得x=2m+4.故方程组的解可表示为{x=2m+4y=4−m;(2)∵x+y>0∴2m+4+4−m>0解得m>−8.故m的取值范围是m>−8.19.10。

(完整版)(人教版)初一数学下册不等式测试题及答案(一)培优试卷

(完整版)(人教版)初一数学下册不等式测试题及答案(一)培优试卷

一、选择题1.若关于x 的一元一次不等式组3210x x a ->⎧⎨->⎩恰有3个整数解,那么a 的取值范围是( )A .21a -<<B .32a -<≤-C .32a -≤<-D .32a -<<-2.若整数a 使关于x 的不等式组125262x x x a++⎧≤⎪⎨⎪->⎩至少有4个整数解,且使关于x ,y 的方程组206ax y x y +=⎧⎨+=⎩的解为正整数,那么所有满足条件的整数a 的值的和是( ).A .-3B .-4C .-10D .-143.从-2,-1,0,1,2,3,5这七个数中,随机抽取一个数记为m ,若数m 使关于x 的不等式组22141x m x m >+⎧⎨--≥+⎩无解,且使关于x 的一元一次方程(m -2)x =3有整数解,那么这六个数所有满足条件的m 的个数有( ) A .1B .2C .3D .44.若实数x 和y 满足x >y ,则下列式子中错误的是( ) A .x +1>y +1B .2x -6>2y -6C .-3x >-3yD .-3x<-3y5.已知3a >-,关于x 的不等式组1212x ax x +<⎧⎨-≥+⎩无解,那么所有符合条件的整数a 的个数为( ) A .6个B .7个C .8个D .9个6.已知关于x 的一元一次不等式组10,20.x x a ->⎧⎨-<⎩有2个整数解,若a 为整数,则a 的值为( ) A .5B .6C .6或7D .7或87.如果关于x 的不等式组3021x a x b -≥⎧⎨+<⎩的整数解仅有1,2,那么适合这个不等式组的整数a ,b 组成的有序数对(),a b 共有( )A .4个B .6个C .8个D .9个8.下列说法错误..的是( ) A .由20x +>,可得2x >- B .由102x <,可得0x < C .由24x >-,可得2x <-D .由312x ->-,可得23x <9.若关于x 的不等式组2x ax >⎧⎨<⎩恰有3个整数解,则字母a 的取值范围是( )A .a ≤﹣1B .﹣2≤a <﹣1C .a <﹣1D .﹣2<a ≤﹣110.一个物体在天平上两次称重的情况如图所示,则这个物体的质量的取值范围在数轴上表示正确的是()A .B .C .D .二、填空题11.已知2153+132x xx--≥-,则代数式23x x--+最大值与最小值的差是________.12.按图中程序计算,规定:从“输入一个值x”到“结果是否17≥”为一次程序操作,如果程序操作进行了两次才停止,则x的取值范围为_______________________.13.关于x的不等式组23284a xx a->⎧⎨+>⎩的解集中每一个值均不在18x≤≤的范围内,则a的取值范围是____________.14.已知关于x的不等式组114()324x mx x+>⎧⎪⎨-≤+⎪⎩有2019个整数解,则m的取值范围是_______.15.运行程序如图所示,规定:从“输入一个值x"”到“结果是否19≥为次程序如果程序操作进行了三次才停止,那么x的取值范围是______________16.已知15325x y zx y z++=⎧⎨--+=-⎩,x、y、z为非负数,且54N x y z=++,则N的取值范围是__________.17.植树节期间,市团委组织部分中学的团员去东岸湿地公园植树.三亚市第二中学七(3)班团支部领到一批树苗,若每人植4棵树,还剩37棵;若每人植6棵树,则最后一人有树植,但不足3棵,这批树苗共有_____棵.18.已知关于x ,y 的方程组24223x y kx y k +=⎧⎨+=-+⎩,的解满足x ﹣y >0,则k 的最大整数值是______________.19.若关于x 的一元一次不等式组3136xx x m-⎧<-⎪⎨⎪<⎩的解集是3x <,那么m 的取值范围是______.20.用{}a 表示不小于数a 的最小整数.例如:{}4.25=,{}5.35-=-,{}00=,{}33-=-.在此规定下:数a 都能满足{}a a b =-,其中01b ≤<.则方程{}13222x x -=+的解是__________.三、解答题21.我们定义,关于同一个未知数的不等式A 和B ,若A 的解都是B 的解,则称A 与B 存在“雅含”关系,且A 不等式称为B 不等式的“子式”.如:0A x <,:1B x <,满足A 的解都是B 的解,所以A 与B 存在“雅含”关系,A 是B 的“子式”.(1)若关于x 的不等式:21A x +>,:3B x >,请问A 与B 是否存在“雅含”关系,若存在,请说明谁是谁的“子式”; (2)已知关于x 的不等式11:23x a C -+<,():233D x x --<,若C 与D 存在“雅含”关系,且C 是D 的“子式”,求a 的取值范围; (3)已知2m n k +=,3m n -=,12m ≥,1n <-,且k 为整数,关于x 的不等式:64P kx x +>+,():62142Q x x -≤+,请分析是否存在k ,使得P 与Q 存在“雅含”关系,且Q 是P 的“子式”,若存在,请求出k 的值,若不存在,请说明理由.22.如图,数轴上两点A 、B 对应的数分别是﹣1,1,点P 是线段AB 上一动点,给出如下定义:如果在数轴上存在动点Q ,满足|PQ |=2,那么我们把这样的点Q 表示的数称为连动数,特别地,当点Q 表示的数是整数时我们称为连动整数.(1)﹣3,0,2.5是连动数的是 ;(2)关于x 的方程2x ﹣m =x +1的解满足是连动数,求m 的取值范围 ;(3)当不等式组11212()3x x a +⎧>-⎪⎨⎪+-⎩的解集中恰好有4个解是连动整数时,求a 的取值范围.23.某水果店到水果批发市场采购苹果,师傅看中了甲、乙两家某种品质一样的苹果,零售价都为8元/千克,批发价各不相同,甲家规定:批发数量不超过100千克,全部按零价的九折优惠;批发数量超过100千克全部按零售价的八五折优惠,乙家的规定如下表:数量范围(千克) 不超过50的部分 50以上但不超过150的部分 150以上的部分 价格(元)零售价的95%零售价的85%零售价的75%(1)如果师傅要批发240千克苹果选择哪家批发更优惠?(2)设批发x 千克苹果(100x >),问师傅应怎样选择两家批发商所花费用更少? 24.某电器超市销售每台进价分别为200元、170元的A 、B 两种型号的电风扇,下表是近两周的销售情况:(进价、售价均保持不变,利润 = 销售收入-进货成本) (1)求A 、B 两种型号的电风扇的销售单价;(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,求A 种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由.25.定义:如果一个两位数a 的十位数字为m ,个位数字为n ,且m n ≠、0m ≠、0n ≠,那么这个两位数叫做“互异数”.将一个“互异数”的十位数字与个位数字对调后得到一个新的两位数,把这个新两位数与原两位数的和与11的商记为()W a .例如:14a =,对调个位数字与十位数字得到新两位数41,新两位数与原两位数的和为411455,和与11的商为55115,所以(14)5W .根据以上定义,解答下列问题:(1)填空:①下列两位数:20,21,22中,“互异数”为________; ②计算:(36)W ________;(10)W mn ________;(m 、n 分别为一个两位数的十位数字与个位数字)(2)如果一个“互异数”b 的十位数字是x ,个位数字是y ,且()7W b ;另一个“互异数”c的十位数字是2x +,个位数字是21y -,且()13W c ,请求出“互异数”b 和c ;(3)如果一个“互异数”d 的十位数字是x ,个位数字是3x +,另一个“互异数”e 的十位数字是2x -,个位数字是3,且满足()()25W d W e ,请直接写出满足条件的所有x 的值________;(4)如果一个“互异数”f 的十位数字是4x +,个位数字是x ,且满足()W f t 的互异数有且仅有3个,则t 的取值范围________. 26.阅读理解:例1.解方程|x |=2,因为在数轴上到原点的距离为2的点对应的数为±2,所以方程|x |=2的解为x =±2.例2.解不等式|x﹣1|>2,在数轴上找出|x﹣1|=2的解(如图),因为在数轴上到1对应的点的距离等于2的点对应的数为﹣1或3,所以方程|x﹣1|=2的解为x=﹣1或x=3,因此不等式|x﹣1|>2的解集为x<﹣1或x>3.参考阅读材料,解答下列问题:(1)方程|x﹣2|=3的解为;(2)解不等式:|x﹣2|≤1.(3)解不等式:|x﹣4|+|x+2|>8.(4)对于任意数x,若不等式|x+2|+|x﹣4|>a恒成立,求a的取值范围.27.某加工厂用52500元购进A、B两种原料共40吨,其中原料A每吨1500元,原料B 每吨1000元.由于原料容易变质,该加工厂需尽快将这批原料运往有保质条件的仓库储存.经市场调查获得以下信息:①将原料运往仓库有公路运输与铁路运输两种方式可供选择,其中公路全程120千米,铁路全程150千米;②两种运输方式的运输单价不同(单价:每吨每千米所收的运输费);③公路运输时,每吨每千米还需加收1元的燃油附加费;④运输还需支付原料装卸费:公路运输时,每吨装卸费100元;铁路运输时,每吨装卸费220元.(1)加工厂购进A、B两种原料各多少吨?(2)由于每种运输方式的运输能力有限,都无法单独承担这批原料的运输任务.加工厂为了尽快将这批原料运往仓库,决定将A原料选一种方式运输,B原料用另一种方式运输,哪种方案运输总花费较少?请说明理由.28.我们把关于x的一个一元一次方程和一个一元一次不等式组合成一种特殊组合,且当一元一次方程的解正好也是一元一次不等式的解时,我们把这种组合叫做“有缘组合”;当一元一次方程的解不是一元一次不等式的解时,我们把这种组合叫做“无缘组合”.(1)请判断下列组合是“有缘组合”还是“无缘组合”,并说明理由;①240 523xx-=⎧⎨-⎩<;②5323233124x xx x--⎧=-⎪⎪⎨+-⎪-⎪⎩<.(2)若关于x的组合515032xx aa+=⎧⎪⎨-⎪⎩>是“有缘组合”,求a的取值范围;(3)若关于x的组合5323212a xx ax ax a-⎧-=-⎪⎪⎨-⎪+≤+⎪⎩是“无缘组合”;求a的取值范围.29.定义一种新运算“a ※b ”:当a ≥b 时,a ※b =2a +b ;当a <b 时,a ※b =2a ﹣b . 例如:3※(﹣4)=2×3+(﹣4)=2,(﹣6)※12=2×(﹣6)﹣12=﹣24. (1)填空:(﹣2)※3= ;(2)若(3x ﹣4)※(2x +3)=2(3x ﹣4)+(2x +3),则x 的取值范围为 ; (3)已知(2x ﹣6)※(9﹣3x )<7,求x 的取值范围;(4)小明在计算(2x 2﹣2x +4)※(x 2+4x ﹣6)时随意取了一个x 的值进行计算,得出结果是0,小丽判断小明计算错了,小丽是如何判断的?请说明理由. 30.如图,在平面直角坐标系中,已知,0,0,A a B b 两点,且a 、b 满足()224210a b a b ++++-=点(),0C m 在射线AO 上(不与原点重合).将线段AB 平移到DC ,点D 与点A 对应,点C 与点B 对应,连接BC ,直线AD 交y 轴于点E .请回答下列问题:(1)求A 、B 两点的坐标;(2)设三角形ABC 面积为ABC S ∆,若4<ABC S ∆≤7,求m 的取值范围; (3)设,BCA AEB αβ∠=∠=,请给出,αβ,满足的数量关系式,并说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】先求出每个不等式的解集,根据找不等式组解集的规律找出不等式组的解集,根据已知得出答案即可. 【详解】解不等式3﹣2x >1,得:x <1, 解不等式x ﹣a >0,得:x >a , 则不等式组的解集为a <x <1,∵不等式组恰有3个整数解, ∴不等式组的整数解为﹣2、﹣1、0, 则﹣3≤a <﹣2, 故选C . 【点睛】本题考查了解一元一次不等式,解一元一次不等式组的应用,解此题的关键是能得出关于a 的不等式组.2.D解析:D 【分析】根据不等式组求出a 的范围,然后再根据关于x ,y 的方程组206ax y x y +=⎧⎨+=⎩的解为正整数得到26a -=-或12-,从而确定所有满足条件的整数a 的值的和. 【详解】解:125262x x x a++⎧⎪⎨⎪->⎩, 不等式组整理得:22x x a ⎧⎨>+⎩,由不等式组至少有4个整数解,得到21a +<-, 解得:3a <-,解方程组206ax y x y +=⎧⎨+=⎩,得12262x a a y a ⎧=-⎪⎪-⎨⎪=⎪-⎩,又关于x ,y 的方程组206ax y x y +=⎧⎨+=⎩的解为正整数,26a ∴-=-或12-,解得4a =-或10a =-,∴所有满足条件的整数a 的值的和是14-.故选:D . 【点睛】本题考查解一元一次不等式组,学生的计算能力以及推理能力,解题的关键是根据不等式组以及二元一次方程组求出a 的范围,本题属于中等题型.3.D解析:D 【分析】不等式组整理后,根据无解确定出m 的范围,进而得到m 的值,将m 的值代入检验,使一元一次方程的解为整数即可. 【详解】解:解:不等式组整理得:221x m x m >+⎧⎨--⎩,由不等式组无解,得到221m m +--, 解得:1m -,即1m =-,0,1,2,3,5;当m=-1时,一元一次方程(m -2)x =3解为x=-1,符合题意; 当m=0时,一元一次方程(m -2)x =3解为x=-1.5,不合题意; 当m=1时,一元一次方程(m -2)x =3解为x=-3,符合题意; 当m=2时,一元一次方程(m -2)x =3无解,不合题意; 当m=3时,一元一次方程(m -2)x =3解为x=3,符合题意; 当m=5时,一元一次方程(m -2)x =3解为x=1,符合题意. 故选:D 【点睛】本题考查根据不等式组的解集确定字母取值及一元一次方程解法,理解好求不等式组的解集的口诀“同大取大,同小取小,大小小大中间找,大大小小无解了”是解题关键.4.C解析:C 【分析】直接利用不等式的基本性质:①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;分别分析得出答案. 【详解】 解:A .∵x >y ,∴x +1>y +1,故此选项不合题意; B .∵x >y , ∴2x >2y ,∴2x −6>2y −6,故此选项不合题意; C .∵x >y ,∴−3x <−3y ,故此选项符合题意; D .∵x >y ,∴-3x<-3y ,故此选项不合题意;故选:C . 【点睛】本题主要考查了不等式的性质,掌握不等式的基本性质是解题关键.5.B解析:B 【分析】分别求得不等式组中每一个不等式的解集,再根据不等式组无解以及3a >-解答即可 【详解】解不等式1x a +<,得1x a <-, 解不等式212x x -≥+,解得3x ≥,关于x 的不等式组1212x ax x +<⎧⎨-≥+⎩无解,13a ∴-≤解得4a ≤又3a >-,且a 为整数,34a ∴-≤≤且为整数∴a 的值为2,1,0,1,2,3,4--共7个故选B 【点睛】本题考查了接一元一次不等式组,根据不等式的解集求参数的范围,求不等式组的整数解,掌握不等式组的解法是解题的关键.6.D解析:D 【分析】先解出每个不等式的解集,即可得到该不等式组的解集,然后根据该不等式组有2个整数解确定a 的取值范围,从而求出a 的整数值. 【详解】10,20.x x a ->⎧⎨-<⎩解不等式①,得:x > 1, 解不等式②,得:2ax <, ∴不等式组的解集为12a x <<, 又该不等式组有2个整数解,∴2个整数解为2和3,342a∴<≤, 解得:68a <≤,∴整数a 的值为7或8,故选:D . 【点睛】本题考查的是解一元一次不等式组,不等式组的整数解,属于基础题,难度一般,熟知“同大取大;同小取小;大小小大中间找,大大小小找不到”的原则是解题的关键.7.B解析:B 【分析】解不等式组,然后根据不等式组的整数解仅有1,2即可确定a ,b 的范围,即可确定a ,b 的整数解,即可求解.【详解】解:3021x a x b -⎧⎨+<⎩①②,解不等式①,得:3ax , 解不等式②,得:12bx -<, ∴不等式组的解集为132a b x -<, 不等式组的整数解仅有1、2,013a ∴<,1232b-<, 解得:03a <,53b -<-,∴整数a 有1;2;3,整数b 有4-;3-,整数a 、b 组成的有序数对(,)a b 有(1,4)-;(2,4)-;(3,4)-;(1,3)-;(2,3)-;(3,3)-,共6个, 故选:B . 【点睛】此题主要考查了不等式组的整数解,根据不等式组整数解的值确定a ,b 的取值范围是解决问题的关键.8.C解析:C 【分析】根据不等式的性质求解判断即可. 【详解】解:A .由20x +>,可得2x >-,故A 说法正确,不符合题意; B .由102x <,可得0x <,故B 说法正确,不符合题意; C .由24x >-,可得2x <-,故C 说法错误,符合题意; D .由312x ->-,可得,23x <,故D 说法正确,不符合题意; 故选:C . 【点睛】本题考查了不等式的性质,熟记不等式的性质是解题的关键.9.B【分析】先确定不等式组的整数解,再求出a 的范围即可.【详解】解:∵关于x 的不等式组2x a x >⎧⎨<⎩恰有3个整数解, ∴a<x<2∴整数解为1,0,﹣1,∴﹣2≤a <﹣1,故选:B .【点睛】本题考查了一元一次不等式组的整数解的应用,能根据已知不等式组的解集和整数解确定a 的取值范围是解此题的关键.10.C解析:C【分析】根据已知可看出物体质量的取值范围,再在数轴上表示.【详解】有已知可得,设物体的质量为xg ,则40<x <50在数轴表示为故选C【点睛】考核知识点:在数轴表示不等式组的解集.利用数轴表示不等式的解集是关键.二、填空题11.【分析】首先解一元一次不等式,解题时要注意系数化一时:系数是-11,不等号的方向要改变.在去绝对值符号时注意:当a 为正时,|a|=a ;当a 为0时,|a|=0;当a 为负时,|a|=-a .【详解】 解析:10411【分析】首先解一元一次不等式,解题时要注意系数化一时:系数是-11,不等号的方向要改变.在去绝对值符号时注意:当a 为正时,|a |=a ;当a 为0时,|a |=0;当a 为负时,|a |=-a .解:2153+132x x x --≥-, 去分母得:22166353x x x -+≥--()(), 去括号得:4266159x x x -+≥-+,移项得:4691526x x x --≥-+-,合并同类项得:1119x -≥-, 解不等式组得:1911x ≤; (1)当19311x -≤≤时,()23232312x x x x x x x --+=--+=---=--, 当1911x=时有最小值4911-, 当=3x -时有最大值5;(2)当3x -<时,()2323235x x x x x x --+=-++=-++=,∴当3x -<时23x x --+的值恒等于5(最大值);∴最大值与最小值的差是494910455111111==⎛⎫--+ ⎪⎝⎭. 故答案为:10411. 【点睛】 此题考查了一元一次不等式的求解与绝对值的性质.解题时要注意一元一次不等式的求解步骤,绝对值的性质.12.【分析】根据题意得到第一次运算结果小于17,第二次运算结果大于等于17,列出不等式组,解不等式组即可求解.【详解】解:由题意得解不等式①得 ,解不等式②得,∴不等式组的解集为.故答案 解析:763x ≤<【分析】根据题意得到第一次运算结果小于17,第二次运算结果大于等于17,列出不等式组,解不等式组即可求解.【详解】解:由题意得()3117331117x x -⎧⎪⎨--≥⎪⎩<①② 解不等式①得 6x <,解不等式②得73x ≥, ∴不等式组的解集为763x ≤<. 故答案为:763x ≤< 【点睛】 本题考查了一元一次不等式组的应用,理解运算程序并根据题意列出不等式组是解题关键.13.或【分析】先求出不等式组的解集,根据已知得出关于a 的不等式组,求出不等式组的解集即可.【详解】解:∵解不等式①得,解不等式②得,∴不等式组的解集是.∵关于x 的不等式组的解集中每一个值均解析:6a ≥或2a ≤【分析】先求出不等式组的解集,根据已知得出关于a 的不等式组,求出不等式组的解集即可.【详解】解:23284a x x a ->⎧⎨+>⎩①②∵解不等式①得23x a <-,解不等式②得24x a >-,∴不等式组的解集是2423a x a -<<-.∵关于x 的不等式组23284a x x a->⎧⎨+>⎩的解集中每一个值均不在18x ≤≤的范围内, ∴248a -≥或231a -≤,解得6a ≥或2a ≤.【点睛】本题考查了解一元一次不等式组,能根据不等式组的解集和已知得出关于a 的不等式组是解此题的关键.注意理解:解集中每一个值均不在18x ≤≤的范围内的意义.14.【分析】先求出不等式组的解集为,又知小于等于3且大于-2016的整数有2019个,结合不等式组的解集特征可得1-m 的取值范围,从而确定m 的范围.【详解】解:解不等式①得, ,解不等式②得解析:20162017m【分析】先求出不等式组的解集为13m x ,又知小于等于3且大于-2016的整数有2019个,结合不等式组的解集特征可得1-m 的取值范围,从而确定m 的范围.【详解】 解:114()324x m x x ①②+>⎧⎪⎨-≤+⎪⎩解不等式①得,1x m >- ,解不等式②得,3x ≤,∴不等式组的解集为13m x ,∵原不等式组有2019个整数解,分别为3,2,1,0,-1…-2014,-2015,共2019个,∴201612015m∴20162017m .故答案为:20162017m .【点睛】本题考查不等式组的整数解,理解解集的意义及处理临界点值是解答此题的关键. 15.【分析】由输入的数运行了三次才停止,即可得出关于x 的一元一次不等式组,解之即可得到x 的取值范围【详解】解:根据题意前两次输入值都小于19,第三次值大于19可得不等式组为: ,解得故答案为 解析:342x ≤<【分析】由输入的数运行了三次才停止,即可得出关于x 的一元一次不等式组,解之即可得到x 的取值范围【详解】解:根据题意前两次输入值都小于19,第三次值大于19可得不等式组为:()()211922111922211119x x x ⎧+<⎪⎪++<⎨⎪⎡⎤+++≥⎪⎣⎦⎩,解得342x ≤< 故答案为342x ≤< 【点睛】本题考查程序框图以及不等式的解法,理解程序框图为解题关键16.【解析】【分析】由,可得到y 和z 的关于x 的表达式,再根据y ,z 为非负实数,列出关于x 的不等式组,求出x 的取值范围,并将N 转化为关于x 的表达式,将x 的最大值和最小值代入解析式即可得到N 的最大值和解析:5565N ≤≤【解析】【分析】由15325x y z x y z ++=⎧⎨--+=-⎩,可得到y 和z 的关于x 的表达式,再根据y ,z 为非负实数,列出关于x 的不等式组,求出x 的取值范围,并将N 转化为关于x 的表达式,将x 的最大值和最小值代入解析式即可得到N 的最大值和最小值.【详解】解:∵15325x y z x y z ++=⎧⎨--+=-⎩, ∴解关于y ,z 的方程可得:2025y x z x =-⎧⎨=-⎩, ∵x 、y 、z 为非负数,∴2020500y x z x x =-≥⎧⎪=-≥⎨⎪≥⎩, 解得510x ≤≤,∴54N x y z =++=54(202)(5)x x x +-+- =275x -+,∵-2<0,∴N 随x 增大而减小,∴故当x=5时,N 有最大值65;当x=10时,N 有最小值55.∴55≤N≤65.故答案为55≤N≤65.【点睛】本题主要考查一次函数的性质的知识,解决本题的关键是根据题目方程组,求得用N 表示的x 、y 、z 表达式,进而根据x 、y 、z 皆为非负数,求得N 的取值范围.17.121【分析】设共有x人,则有4x+37棵树,根据“若每人植4棵树,还剩37棵;若每人植6棵树,则最后一人有树植,但不足3棵”列不等式组求解可得.【详解】设市团委组织部分中学的团员有x人,则解析:121【分析】设共有x人,则有4x+37棵树,根据“若每人植4棵树,还剩37棵;若每人植6棵树,则最后一人有树植,但不足3棵”列不等式组求解可得.【详解】设市团委组织部分中学的团员有x人,则树苗有(4x+37)棵,由题意得1≤(4x+37)-6(x-1)<3,去括号得:1≤-2x+43<3,移项得:-42≤-2x<-40,解得:20<x≤21,因为x取正整数,所以x=21,当x=21时,4x+37=4⨯21+37=121,则共有树苗121棵.故答案为:121.【点睛】本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.18.0【分析】方程组两方程相减表示出,代入已知不等式即可求出的范围,进而确定出最大整数值即可.【详解】解:,②①得:,∵x﹣y>0,∴,解得:,∴的最大整数值为0.故答案为:0.【解析:0【分析】-,代入已知不等式即可求出k的范围,进而确定出最大整数方程组两方程相减表示出x y值即可.【详解】解:24223x y k x y k +=⎧⎨+=-+⎩①②, ②-①得:63x y k -=-+,∵x ﹣y >0,∴630k -+>, 解得:12k <, ∴k 的最大整数值为0.故答案为:0.【点睛】此题考查了解一元一次不等式以及解二元一次方程组,熟练掌握各自的解法是解本题的关键.19.【分析】先根据解一元一次不等式的步骤逐个求解不等式,再根据不等式组解集“同小取小”求参数m 的范围.【详解】解:,解不等式,,解得:,因为不等式组的解集是,所以,故答案为:.【点解析:3m ≥【分析】先根据解一元一次不等式的步骤逐个求解不等式,再根据不等式组解集“同小取小”求参数m 的范围.【详解】 解:3136x x x m-⎧<-⎪⎨⎪<⎩, 解不等式3136x x -<-, ()263x x <--,解得:3x <,因为不等式组3136x x x m-⎧<-⎪⎨⎪<⎩的解集是3x <, 所以3m ≥,故答案为:3m ≥.【点睛】本题主要考查由不等式组解集求参数的取值范围,解决本题的关键是要熟练掌握不等式组解集确定.20.或【分析】根据题意得出,其中,即,将转化为,且为整数,解出不等式组,再求出的范围,取整数再解方程即可求得.【详解】解:∵,其中,∴,其中,∴,∴可以转化为:,且为整数,解得,,∴ 解析:74x =或94x = 【分析】根据题意得出{}a a b =+,其中01b ≤<,即{}1a a a ≤<+,将{}13222x x -=+转化为1322(32)12x x x -≤+<-+,且122x +为整数,解出不等式组,再求出122x +的范围,取整数再解方程即可求得.【详解】解:∵{}a a b =-,其中01b ≤<,∴{}a a b =+,其中01b ≤<,∴{}1a a a ≤<+,∴{}13222x x -=+可以转化为: 1322(32)12x x x -≤+<-+,且122x +为整数, 解得,3522x <≤,∴13.52 5.52x <+≤, ∴整数122x +为4或5, 解得,74x =或94x =, 故答案为:74x =或94x =. 【点睛】本题考查了一元一次不等式组的解法和不等式的性质,解题关键是读懂题意,正确转换题意得到一元一次不等式组.三、解答题21.(1)A 与B 存在“雅含”关系,B 是A 的“子式”;(2)12a ≤;(3)存在,0k =. 【分析】(1)根据“雅含”关系的定义即可判断;(2)先求出C D ,解集,根据“雅含”关系的定义得出2423a +≤,解不等式即可; (3)首先解关于m n ,的方程组即可求得m n ,的值,然后根据12m ≥,1n <-,且k 为整数即可得到一个关于k 的范围,从而求得k 的整数值.【详解】解:(1)不等式A :x +2>1的解集为1x >-,∵:3B x >∴A 与B 存在“雅含”关系,B 是A 的“子式”;(2)不等式:C 1123x a -+<,解得:253a x +<, 不等式D :()233x x --<,解得:2x <,∵C 与D 存在“雅含”关系,且C 是D 的“子式”, ∴2523a +≤,解得:12a ≤, (3)存在;由23m n k m n +=⎧⎨-=⎩解得:3363k m k n +⎧=⎪⎪⎨-⎪=⎪⎩, ∵12m ≥,1n <-,即:3132613k k +⎧≥⎪⎪⎨-⎪<-⎪⎩,解得:332k -≤<, ∵k 为整数,∴k 的值为10,1,2-,, 解不等式:64P kx x +>+得:()12k x ->-,解不等式():62142Q x x -≤+得:1x ≤,∵P 与Q 存在“雅含”关系,且Q 是P 的“子式”,∴不等式:64P kx x +>+的解集为:21x k -<-, ∴10k -<,且211k ->-, 解得:11k -<<,∴0k =.【点睛】本题考查了不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,大小小大中间找,大大小小无解.22.(1)﹣3,2.5;(2)﹣4<m <﹣2或0<m <2;(3)1≤a <2.【分析】(1)根据连动数的定义逐一判断即得答案;(2)先求得方程的解,再根据连动数的定义得出相应的不等式组,解不等式组即可求出结果;(3)先解不等式组中的每个不等式,再根据连动整数的概念得到关于a 的不等式组,解不等式组即可求得答案.【详解】解:(1)设点P 表示的数是x ,则11x -≤≤,若点Q 表示的数是﹣3,由2PQ =可得()32x --=,解得:x =﹣1或﹣5,所以﹣3是连动数;若点Q 表示的数是0,由2PQ =可得02x -=,解得:x =2或﹣2,所以0不是连动数; 若点Q 表示的数是2.5,由2PQ =可得 2.52x -=,解得:x =﹣0.5或4.5,所以2.5是连动数;所以﹣3,0,2.5是连动数的是﹣3,2.5,故答案为:﹣3,2.5;(2)解关于x 的方程2x ﹣m =x +1得:x =m +1,∵关于x 的方程2x ﹣m =x +1的解满足是连动数,∴112112m m ---<⎧⎨-->⎩或112112m m +-<⎧⎨++>⎩, 解得:﹣4<m <﹣2或0<m <2;故答案为:﹣4<m <﹣2或0<m <2;(3)()112123x x a +⎧>-⎪⎨⎪+-≤⎩①②,解不等式①,得x >﹣3,解不等式②,得x ≤1+a ,∵不等式组()112123x x a +⎧>-⎪⎨⎪+-≤⎩的解集中恰好有4个解是连动整数, ∴四个连动整数解为﹣2,﹣1,1,2,∴2≤1+a <3,解得:1≤a <2,∴a 的取值范围是1≤a <2.【点睛】本题是新定义试题,以数轴为载体,主要考查了一元一次不等式组,正确理解连动数与连动整数、列出相应的不等式组是解题的关键.23.(1)在乙家批发更优惠;(2)当x=200时他选择任何一家批发所花费用一样多;当100<x <200时,师傅应选择甲家批发商所花费用更少;当x >200时,师傅应选择乙家批发商所花费用更少.【分析】(1)分别求出在甲、乙两家批发240千克苹果所需费用,比较后即可得出结论;(2)分两种情况:①若100<x≤150时,②若x>150时,分别用含x 的代数式表示出在甲、乙两家批发x 千克苹果所需费用, 再比较大小,列出不等式,求出x 的范围,即可得到结论.【详解】(1)在甲家批发所需费用为:240×8×85%=1632(元),在乙家批发所需费用为:50×8×95%+(150−50)×8×85%+(240−150)×8×75%=1600(元), ∵1632>1600,∴在乙家批发更优惠;(2)①若100<x≤150时,在甲家批发所需费用为:8×85%x=6.8x ,在乙家批发所需费用为:50×8×95%+(x−50)×8×85%=6.8x+40,∵6.8x <6.8x+40,∴师傅应选择甲家批发商所花费用更少;②若x>150时,在甲家批发所需费用为:8×85%x=6.8x ,在乙家批发所需费用为:50×8×95%+(150−50)×8×85%+(x−150)×8×75%=6x+160,当6.8x=6x+160时,即x=200时,师傅选择两家批发商所花费用一样多,当6.8x >6x+160时,即x >200时,师傅应选择乙家批发商所花费用更少,当6.8x <6x+160时,即150<x <200时,师傅应选择甲家批发商所花费用更少.综上所得:当x=200时他选择任何一家批发所花费用一样多;当100<x <200时,师傅应选择甲家批发商所花费用更少;当x >200时,师傅应选择乙家批发商所花费用更少.【点睛】本题主要考查代数式,一元一次方程,一元一次不等式的综合实际应用,理清数量关系,列出代数式,不等式或方程,是解题的关键.24.(1)A、B两种型号电风扇的销售单价分别为250元、210元;(2)超市最多采购A 种型号电风扇10台时,采购金额不多于5400元;(3)超市不能实现利润1400元的目标;【分析】(1)根据第一周和第二周的销售量和销售收入,可列写2个等式方程,再求解二元一次方程组即可;(2)利用不多于5400元这个量,列写不等式,得到A型电风扇a台的一个取值范围,从而得出a的最大值;(3)将B型电风扇用(30-a)表示出来,列写A、B两型电风扇利润为1400的等式方程,可求得a的值,最后在判断求解的值是否满足(2)中a的取值范围即可【详解】解:(1)设A、B两种型号电风扇的销售单价分别为x元、y元,依题意得:3518004103100x yx y+=⎧⎨+=⎩,解得:250210xy=⎧⎨=⎩,答:A、B两种型号电风扇的销售单价分别为250元、210元.(2)设采购A种型号电风扇a台,则采购B种型号电风扇(30-a)台.依题意得:200a+170(30-a)≤5400,解得:a≤10.答:超市最多采购A种型号电风扇10台时,采购金额不多于5400元;(3)依题意有:(250-200)a+(210-170)(30-a)=1400,解得:a=20,∵a≤10,∴在(2)的条件下超市不能实现利润1400元的目标.【点睛】本题是二元一次方程和一元一次不等式应用题的综合考查,解题关键是依据题意,找出等量关系式(不等关系式),然后按照题目要求相应求解25.(1)①21;②9,m+n;(2)b=25,c=49;(3)3或4;(4)10<t≤12【分析】(1)①由“互异数”的定义可得;②根据定义计算可得;(2)由W(b)=7,W(c)=13,列出二元一次方程组,即可求x和y;(3)根据题意W(d)+W(e)<25可列出不等式,即可求x的值;(4)根据“互异数”f的十位数字是x+4,个位数字是x,分类讨论f,根据满足W(f)<t 的互异数有且仅有3个,求出t的取值范围.【详解】解:(1)①∵如果一个两位数a的十位数字为m,个位数字为n,且m≠n、m≠0、n≠0,那么这个两位数叫做“互异数”,∴“互异数”为21,故答案为:21;②W(36)=(36+63)÷11=9,W(10m+n)=(10m+n+10n+m)÷11=m+n;。

一元一次不等式(组)培优40题(含解析)

一元一次不等式(组)培优40题(含解析)

一元一次不等式(组)培优40题(含解析)一.选择题:(共10题)1.从−7,−5,−1,0,4,3这六个数中,随机抽一个数,记为m ,若数m 使关于x 的不等式组{x−m2>0x −4<3(x −2)的解集为x >1,且关于x 的分式方程1−x 2−x +m x−2=3有非负整数解,则符合条件的m 的值的个数是( ) A .1个B .2个C .3个D .4个2.若方程组{3x +2y =2k 2y −x =3的解满足x <1,且y >1,则整数k 的个数是( )A .4B .3C .2D .13.若关于x 的不等式组{x <2(x −a)x −1≤23x恰有3个整数解,则a 的取值范围是( ) A .0≤a <12B .0≤a <1C .−12<a ≤0 D .−1≤a <04.正五边形广场 ABCDE 的边长为 80 米,甲、乙两个同学做游戏,分别从 A 、 C 两点处同时出发,沿 A −B −C −D −E −A 的方向绕广场行走,甲的速度为 50米/分,乙的速度为 46米/分,则两人第一次刚走到同一条边上时 ( )A .甲在顶点 A 处B .甲在顶点 B 处C .甲在顶点C 处D .甲在顶点D 处 5.若不等式组{x −2<3x −6x <m无解,则m 的取值范围是( )A .m >2B .m <2C .m ≥2D .m ≤26.若不等式组{1<x ≤2x >k无解,则k 的取值范围是( )A .k ≤2B .k >2C .k ≥2D .1≤k <27.如图,直线y=kx+b 与y=mx+n 分别交x 轴于点A (﹣0.5,0)、B (2,0),则不等式(kx+b )(mx+n )<0的解集为( )A .x >2B .﹣0.5<x <2C .0<x <2D .x <﹣0.5或x >28.若关于x 的不等式3x-2m ≥0的负整数解为-1,-2,则m 的取值范围是( ) A .−6≤m <−92 B .−6<m ≤−92 C .−92≤m <−3 D .−92<m ≤−3 9.如图,经过点B (1,0)的直线y=kx+b 与直线y=4x+4相交于点A (m ,83),则0<kx+b<4x+4的解集为( )A .x <-13B .-13<x <1 C .x <1 D .-1<x <110.若数a 使关于x 的不等式组{13x −1≤12(x −1)2x −a ≤3(1−x),有且仅有三个整数解,且使关于y 的分式方程3yy−2+a+122−y=1有整数解,则满足条件的所有a 的值之和是( )A .﹣10B .﹣12C .﹣16D .﹣18 二.填空题:(共10题)11.若数a 使关于x 的不等式组{x−12<1+x 35x −2≥x +a有且只有四个整数解,且使关于y 的方程y+a y−1+2a 1−y=2的解为非负数,则符合条件的正整数a 的值为______.12.如果不等式mx+13>1+x+33的解集为x>5,则m 的值为_______.13.若关于x ,y 的方程组{3x +2y =k −12x −3y =2 的解使4x +7y >2成立,则k 的取值范围是________.14.冬至节快到了,李老师和杨老师都准备给班级同学买饺子吃.到了超市两人均买了两款饺子,A 款单价为33元/袋,B 款41元/袋.其中李老师购买A 款数量少于B 款数量,合计花了500多元.杨老师购买的A ,B 两款的数量刚好与李老师互换,也花了500多元,巧合的是所花费用的十位数字与个位数字刚好也和李老师所花费用的十位数字与个位数字互换.则李老师购买A ,B 两款饺子共计____袋.15.若不等式组{x −a ≻0x −a ≺1-的解集中的任何一个x 的值均不在2≤x ≤5的范围内,则a 的取值范围为________.16.如果不等式组{3x −a ≥02x −b <0 的整数解仅为 2,且 a 、b 均为整数,则代数式 2a 2+b 的最大值=________.17.使得关于x 的分式方程x+kx+1−kx−1=1的解为负整数,且使得关于x 的不等式组{3x +2≥2x −14x −4≤k有5个整数解的所有k 的和为_____.18.关于x 的不等式组{4a +3x >03a −4x ≥0恰好只有三个整数解,则a 的取值范围是_____________.19.若关于x 的一元一次不等式组{x −a >02x −3<1有2个负整数解,则a 的取值范围是_____.20.在一次智力测验中有20道选择题,评分标准为:对l 题给5分,错1题扣2分,不答题不给分也不扣分,张强有1道题末答,如果总分才不会低于70分,则他至少答对____道题.三.解答题:(共20题)21.某工厂计划生产A 、B 两种产品共50件,需购买甲、乙两种材料.生产一件A 产品需甲种材料30千克、乙种材料10千克;生产一件B 产品需甲、乙两种材料各20千克.经测算,购买甲、乙两种材料各1千克共需资金40元,购买甲种材料2千克和乙种材料3千克共需资金105元.(1)甲乙两种材料每千克分别是多少元?(2)现工厂用于购买甲、乙两种材料的资金不超过38000元,且生产B 产品不少于28件,问符合条件的生产方案有哪几种?(3)在(2)的条件下,若生产一件A 产品需加工费200元,生产一件B 产品需加工费300元,应选择哪种生产方案,使生产这50件产品的成本最低?(成本=材料费+加工费) 22.目前节能灯在城市已基本普及,今年山东省面向县级及农村地区推广,为响应号召,某商场计划购进甲,乙两种节能灯共1200只,这两种节能灯的进价、售价如下表:(1)如何进货,进货款恰好为46000元?(2)设商场购进甲种节能灯x 只,求出商场销售完节能灯时总利润w 与购进甲种节能灯x 之间的函数关系式;(3)如何进货,商场销售完节能灯时获利最多且不超过进货价的30%,此时利润为多少元? 23.某汽车租赁公司要购买轿车和面包车共10辆,其中轿车至少要购买3辆,轿车每辆7万元,面包车每辆4万元,公司可投入的购车款不超过55万元.(1)符合公司要求的购买方案有几种?请说明理由;(2)如果每辆轿车的日租金为200元,每辆面包车的日租金为110元,假设新购买的这10辆车每日都可租出,要使这10辆车的日租金不低于1500元,那么应选择以上哪种购买方案?24.在平面直角坐标系中,已知直线l1:y=2x+1(1)若将直线l1平移,使之经过点(1,-5),求平移后直线的解析式;(2)若直线l2:y=x+m与直线l1的交点在第二象限,求m的取值范围;(3)如图,直线y=x+b与直线y=nx+2n(n≠0)的交点的横坐标为-5,求关于x的不等式组0<nx+2n<x+b的解集.25.为了争创全国文明卫生城市,优化城市环境,某市公交公司决定购买一批共10台全新的混合动力公交车,现有A、B两种型号,其中每台的价格,年省油量如下表:经调查,购买一台A型车比购买一台B型车多20万元,购买2台A型车比购买3台B型车少60万元.(1)请求出a和b;(2)若购买这批混合动力公交车(两种车型都要有)每年能节省的汽油量不低于22.4万升,请问有哪几种购车方案?(3)求(2)中最省钱的购买方案所需的购车款.26.某商场销售每个进价为150元和120元的A、B两种型号的足球,如表是近两周的销售情况:(进价、售价均保持不变,利润=销售收入−进货成本)(1)求A、B两种型号的足球的销售单价;(2)若商场准备用不多于8400元的金额再购进这两种型号的足球共60个,求A种型号的足球最多能采购多少个?(3)在(2)的条件下,商场销售完这60个足球能否实现利润超过2550元,若能,请给出相应的采购方案;若不能请说明理由.27.(题文)小雨的外婆送来一篮鸡蛋.这篮鸡蛋最多只能装55只左右.小雨3只一数,结果剩下1只,但忘了数多少次,只好重数.他5只一数,结果剩下2只,可又忘了数多少次.他准备再数时,妈妈笑着说:“不用数了,共有52只.”小雨惊讶地问妈妈怎么知道的.妈妈笑而不答.同学们,你们知道这是为什么吗?28.夏季即将来临,某电器超市销售每台进价分别为200元、170元的A,B两种型号的电风扇,下表是近两周的销售情况:(进价、售价均保持不变,利润=销售收入-进货成本)(1)分别求出A ,B 两种型号电风扇的销售单价;(2)若超市准备用不超过5400元的金额再采购这两种型号的电风扇共30台,求A 种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由.29.某人共收集邮票若干张,其中14是2000年以前的国内外发行的邮票,18是2001年国内发行的,119是2002年国内发行的,此外尚有不足100张的国外邮票.求该人共有多少张邮票.30.为落实优秀传统文化进校园,某校计划购进“四书”、“五经”两套图书供学生借阅,已知这两套图书单价和为660元,一套“四书”比一套“五经”的2倍少60元. (1)分别求出这两套图书的单价;(2)该校购买这两套图书不超过30600元,且购进“四书”至少33套,“五经”的套数是“四书”套数的2倍,该校共有哪几种购买方案?31.某经销商销售一批电话手表,第一个月以550元/块的价格售出60块,第二个月起降价,以500元/块的价格将这批电话手表全部售出,销售总额超过了5.5万元.这批电话手表至少有多少块?32.国庆期间,为了满足百姓的消费需求,某商店计划用170000元购进一批家电,这批家电的进价和售价如表:类别 彩电 冰箱 洗衣机 进价(元/台) 2000 1600 1000 售价(元/台) 2300 1800 1100若在现有资金允许的范围内,购买表中三类家电共100台,其中彩电台数是冰箱台数的2倍,设该商店购买冰箱x 台. (1)商店至多可以购买冰箱多少台?(2)购买冰箱多少台时,能使商店销售完这批家电后获得的利润最大?最大利润为多少元? 33.一幢学生宿舍楼有一些空房间,现要安排一批学生入住.若每间住4人,则有20人无法入住;若每间住8人,则有1间房间还剩余一些空床位. (1)求空房间的间数和这批学生的人数;(2)这批学生入住后,男生房间的间数恰好是女生房间间数的2倍,每间房间都有8个床位,每间女生房间都空出数量相同的床位,问:男女学生各多少人?34.(2016黑龙江省牡丹江市)某绿色食品有限公司准备购进A和B两种蔬菜,B种蔬菜每吨的进价比A中蔬菜每吨的进价多0.5万元,经计算用4.5万元购进的A种蔬菜的吨数与用6万元购进的B种蔬菜的吨数相同,请解答下列问题:(1)求A,B两种蔬菜每吨的进价;(2)该公司计划用14万元同时购进A,B两种蔬菜,若A种蔬菜以每吨2万元的价格出售,B种蔬菜以每吨3万元的价格出售,且全部售出,请求出所获利润W(万元)与购买A种蔬菜的资金a(万元)之间的函数关系式;(3)在(2)的条件下,要求A种蔬菜的吨数不低于B种蔬菜的吨数,若公司欲将(2)中的最大利润全部用于购买甲、乙两种型号的电脑赠给某中学,甲种电脑每台2100元,乙种电脑每台2700元,请直接写出有几种购买电脑的方案.35.自从湖南与欧洲的“湘欧快线”开通后,我省与欧洲各国经贸往来日益频繁,某欧洲客商准备在湖南采购一批特色商品,经调查,用16 000元采购A型商品的件数是用7 500元采购B型商品的件数的2倍,一件A型商品的进价比一件B型商品的进价多10元.(1)求一件A,B型商品的进价分别为多少元?(2)若该欧洲客商购进A,B型商品共250件进行试销,其中A型商品的件数不大于B型的件数,且不小于80件,已知A型商品的售价为240元/件,B型商品的售价为220元/件,且全部售出.设购进A型商品m件,求该客商销售这批商品的利润v与m之间的函数解析式,并写出m的取值范围;(3)在(2)的条件下,欧洲客商决定在试销活动中每售出一件A型商品,就从一件A型商品的利润中捐献慈善资金a元,求该客商售完所有商品并捐献慈善资金后获得的最大收益.36.某蓝莓种植生产基地产销两旺,采摘的蓝莓部分加工销售,部分直接销售,且当天都能销售完,直接销售是40元/斤,加工销售是130元/斤(不计损耗).已知基地雇佣20名工人,每名工人只能参与采摘和加工中的一项工作,每人每天可以采摘70斤或加工35斤.设安排x名工人采摘蓝莓,剩下的工人加工蓝莓.(1)若基地一天的总销售收入为y元,求y与x的函数关系式;(2)试求如何分配工人,才能使一天的销售收入最大?并求出最大值.37.某商场用36万元购进A、B两种商品,销售完后共获利6万元,其进价和售价如表.(1)该商场购进A、B两种商品各多少件?(2)商场第二次以原进价购进A、B两种商品.购进B种商品的件数不变,而购进A种商品的件数是第一次的2倍,A种商品按原售价出售,而B种商品打折销售.若两种商品销售完毕,要使第二次经营活动获利不少于81600元,B种商品最低售价为每件多少元?38.某农产品生产基地收获红薯192吨,准备运给甲、乙两地的承包商进行包销.该基地用大、小两种货车共18辆恰好能一次性运完这批红薯,已知这两种货车的载重量分别为14吨/吨和8吨/辆,运往甲、乙两地的运费如下表:(1)求这两种货车各用多少辆;(2)如果安排10辆货车前往甲地,其余货车前往乙地,其中前往甲地的大货车为a辆,总运费为w元,求w关于a的函数关系式;(3)在(2)的条件下,若甲地的承包商包销的红薯不少于96吨,请你设计出使总运费最低的货车调配方案,并求出最低总运费.39.每年的3月15日是“国际消费者权益日”,许多家居商城都会利用这个契机进行打折促销活动.甲卖家的某款沙发每套成本为5000元,在标价8000元的基础上打9折销售.(1)现在甲卖家欲继续降价吸引买主,问最多降价多少元,才能使利润率不低于20%?(2)据媒体爆料,有一些卖家先提高商品价格后再降价促销,存在欺诈行为.乙卖家也销售相同的沙发,其成本、标价与甲卖家一致,以前每周可售出5套,现乙卖家先将标价提高m%,再大幅降价40m元,使得这款沙发在3月15日那一天卖出的数量就比原来一周卖出的m%,这样一天的利润达到了31250元,求m.数量增加了1240.某校九年级6个班举行毕业文艺汇演,每班3个节目,有歌唱与舞蹈两类节目,年级统计后发现歌唱类节目数比舞蹈类节目数的2倍少6个.设舞蹈类节目有x个.(1)用含x的代数式表示:歌唱类节目有______________个;(2)求九年级表演的歌唱类与舞蹈类节目数各有多少个?(3)该校七、八年级有小品节目参与汇演,在歌唱、舞蹈、小品三类节目中,每个节目的演出平均用时分别是5分钟、6分钟、8分钟,预计全场节目交接所用的时间总共16分钟.若从19:00开始,21:30之前演出结束,问参与的小品类节目最多能有多少个?答案与解析1.解{x−m2>0①x−4<3(x−2)②,解不等式①得:x>m,解不等式②得:x>1,∵该不等式组的解集为:x>1,∴m≤1,即m取−7,−5,−1,0;1−x 2−x +mx−2=3,方程两边同时乘以(x−2)得:x−1+m=3(x−2),去括号得:x−1+m=3x−6,移项得:x−3x=1−6−m,合并同类项得:−2x=−5−m,系数化为1得:x=m+52,∵该方程有非负整数解,∴即m+52≥0,m+52≠2,且m+52为整数,∴m取−5,3,综上:m取−5,即符合条件的m的值的个数是1个,故选A.2.解{3x +2y =2k ①2y −x =3②,①﹣②,得:4x=2k ﹣3,∴x =2k−34.∵x <1,∴2k−34<1,解得:k <72.将x =2k−34代入②,得:2y −2k−34=3,∴y =2k+98.∵y >1,∴2k+98>1,解得:k >−12,∴−12<k <72.∵k 为整数,∴k 可取0,1,2,3,∴k 的个数为4个. 故选A . 3.A解:解不等式x <2(x ﹣a ),得:x >2a ,解不等式x ﹣1≤23x ,得:x ≤3. ∵不等式组恰有3个整数解,∴0≤2a <1,解得:0≤a <12.故选A .4.解:两人如果在同一条边上,说明两人的距离小于等于80米,∵甲、乙两个同学做游戏,分别从 A 、 C 两点处同时出发,两人相差160米,甲要追回80米需要的时间是80÷(50-46)=20分钟,20分钟甲走了1000米,正好走到CD 的中点设为F;20分钟乙走920米走到DE 距D 点40米处设为G.甲从F 走到D 是40比50等于0.8分钟;乙用0.8分从G 点走出0.8乘46等于36.8米距E 点80-36.8-40=3.2米由此得知甲走到D 点时乙走在DE 线上距E3.2米处. ∴D 选项是正确的 5.解{x −2<3x −6①x <m ②.∵解不等式①得:x >2,不等式②的解集是x <m . 又∵不等式组{x −2<3x −6x <m无解,∴m ≤2.故选D .6.解:由题意可知不等式组{1<x ≤2x >k无解所以k ≥4.故选:C.7.解∵(kx+b )(mx+n )<0,∴{kx +b >0mx +n <0 ①或{kx +b <0mx +n >0②.∵直线y=kx+b 与直线y=mx+n 分别交x 轴于点A (﹣0.5,0)、B (2,0),∴①的解集为:x <﹣0.5,②的解集为:x >2,∴不等式(kx+b )(mx+n )<0的解集为x <﹣0.5或x >2.故选D .8.解:3x −2m ≥0,得x ≥23m ,根据题意得,-3<23m ≤-2,解得−92<m ≤−3,故选D. 点睛:本题主要考查了一元一次不等式的解法,先用含m 的式子表示出不等式的解集,再根据不等式的负整数解得到含m 的式子的范围,即关于m 的不等式组,解这个不等式组即可求解.9.解∵经过点B (1,0)的直线y=kx+b 与直线y=4x+4相交于点A (m ,83),∴4m+4=83,∴m=−13,∴直线y=kx+b 与直线y=4x+4的交点A 的坐标为(−13,83),直线y=kx+b 与x 轴的交点坐标为B (1,0),又∵当x <1时,kx+b >0,当x >−13时,kx+b <4x+4,∴0<kx+b <4x+4的解集为−13<x <1.故选B .10.解{13x −1≤12(x −1)①2x −a ≤3(1−x)②, 解①得x ≥-3,解②得x ≤3+a 5,不等式组的解集是-3≤x ≤3+a 5. ∵仅有三个整数解,∴-1≤3+a 5<0∴-8≤a <-3,3y y−2+a+122−y =1,3y-a-12=y-2.∴y=a+102,∵y ≠-2,∴a ≠-6,又y=a+102有整数解,∴a=-8或-4,所有满足条件的整数a 的值之和是-8-4=-12,故选B .11.解:{x−12<1+x 3①5x −2≥x +a ② ,解不等式①得:x <5,解不等式②得:x ≥a+24,∵该不等式组有且只有四个整数解,∴该不等式组的解集为:a+24≤x <5,且0<a+24≤1, 解得:−2<a ≤2,又∵y+a y−1+2a 1−y =2,方程两边同时乘以(y −1)得:y +a −2a =2(y −1),去括号得:y −a =2y −2,移项得:y =2−a ,∵该方程的解为非负数,∴2−a ≥0且2−a ≠1,解得:a ≤2且a ≠1,综上可知:符合条件的正整数a 的值为2,故答案为:2.12.解:由不等式mx+13>1+x+33可得(1-m )•x <-5,∵不等式的解集为x >5,∴1-m <0,∴(1-m )•5=-5,∴m=2.故答案为:2.13.解{3x +2y =k −1①2x −3y =2②由①×2﹣②得:4x+7y=2k-2-2,∴2k-2-2>2,∴2k >6,解得:k >3.故答案为:k >3.14.解:依题意设李老师买了A 款饺子x 袋,B 款饺子y 袋,购买的金额十位上的数字为a ,各位上的数字为b ,则可列出方程组:{33x +41y =500+10a +b ①33y +41y =500+10b +a ②①+②得x+y=1000+11a+11b 74③,∵500<33x +41y <600,500<41x +33y <600∴1000<74(x+y )<1200,即13.5<x+y <16.2x+y 可能为14、15、16当x+y=14时,代入③得11a+11b=36,不符题意,当x+y=15时,代入③得11a+11b=110,a+b=10符题意,当x+y=16时,代入③得11a+11b=184,不符题意,故x+y=15,填15.15.解:不等式组{x −a >0x −a <1的解集为:a <x <a+1, ∵任何一个x 的值均不在2≤x ≤5范围内,∴x <2或x >5,∴a+1≤2或a ≥5,解得,a ≤1或a ≥5,∴a 的取值范围是:a ≤1或a ≥5,故答案为:a ≤1或a ≥5.16.解:解不等式3x-a ≥0,得:x ≥a 3,解不等式2x-b <0,得:x <b 2,∵整数解仅为2,∴{1<a 3≤22<b 2≤3, 解得:3<a ≤6,4<b ≤6,∵a 、b 均为整数,∴当a=6、b=6时,2a 2+b 取得最大值,最大值为2×62+6=78,故答案为:78.17.解:解分式方程x+k x+1−k x−1=1,可得x=1-2k ,∵分式方程x+k x+1−k x−1=1的解为负整数,∴1-2k <0,∴k >12,又∵x ≠-1,∴1-2k ≠-1,∴k ≠1,解不等式组{3x +2≥2x −14x −4≤k ,可得{x ≥−3x ≤k +44, ∵不等式组{3x +2≥2x −14x −4≤k有5个整数解, ∴1≤k+44<2,解得0≤k <4,∴12<k <4且k ≠1,∴k 的值为1.5或2或2.5或3或3.5,∴符合题意的所有k 的和为12.5,故答案为:12.5.18.解:解不等式4a+3x>0得:x>-43a ,解不等式3a-4x ≥0得:x ≤34a , ∴不等式的解集为:-43a<x ≤34a ,∵方程组只有三个整数解,∴方程组的解包括0,∴方程组的整数解为:0、1、2或-1、0、1或-2、-1、0,当整数解为0、1、2时:{−1≤−43a ≤02≤34a <3 ,方程组无解,当整数解为-1、0、1时:{−2≤−43a ≤−11≤34a <2,解得:43≤a ≤32, 当整数解为-2、-1、0时:{−3≤−43a ≤−20≤34a <1方程组无解, ∴a 的取值范围为:43≤a ≤32, 故答案为:43≤a ≤3219.解:2x -3<1,得x <2,进而得负整数解为-1,-2,解得-3≤a <-2.20.解:设小明至少答对的题数是x 道,5x-2(20-1-x )≥70,x ≥1537故至少答对16题,总分才不会低于70分.故答案为:16.21.解(1)设甲钟材料每千克x 元,乙种材料每千克y 元,根据题意列方程组得: {x +y =402x +3y =105解之{x =15y =25甲钟材料每千克15元,乙种材料每千克25元.(2)设生产A 产品m 件,生产B 产品(50-m )件,则生产这50件产品的材料费为15×30m+25×10m+15×20(50-m )+25×20(50-m )=-100m+40000,由题意:-100m+40000≤38000,解得m ≥20,又∵50-m ≥28,解得m ≤22,∴20≤m ≤22,∵m 为正整数∴m 的值为20,21,22,共有三种方案,如下表:(3)设总生产成本为W元,加工费为:200m+300(50-m),则W=-100m+40000+200m+300(50-m)=-200m+55000,∵W 随m的增大而减小,而m=20,21,22,∴当m=22时,总成本最低,此时W=-200×22+55000=50600元,∴选择第三种方案. 22.解(1)设商场应购进甲型节能灯x只,则乙型节能灯为(1200﹣x)只.根据题意得:25x+45(1200﹣x)=46000解得:x=400.当x=400时,1200-x=800.答:购进甲型节能灯400只,乙型节能灯800只时,进货款恰好为46000元.(2)设商场应购进甲型节能灯x只,商场销售完这批节能灯可获利w元.根据题意得:w=(30﹣25)x+(60﹣45)(1200﹣x)=5x+18000﹣15x=﹣10x+18000所以w=﹣10x+18000;(3)设商场购进甲型节能灯x只,则购进乙型节能灯(1200﹣x)只,利润为w元,根据题意得:﹣10x+18000≤[25x+45(1200﹣x)]×30%解得:x≥450.∵w=﹣10x+18000,∴k=﹣10<0,∴w随x的增大而减小,∴x=450时,w最大=13500元.答:商场购进甲型节能灯450只,购进乙型节能灯750只时的最大利润为13500元.23.解(1)设购买轿车x辆,那么购买面包车(10-x)辆.由题意,得7x+4(10-x)≤55,解得x≤5.又因为x≥3,所以x的值为3,4,5,所以有三种购买方案:方案一:购买3辆轿车,7辆面包车;方案二:购买4辆轿车,6辆面包车;方案三:购买5辆轿车,5辆面包车.(2)方案一的日租金为3×200+7×110=1370(元)<1500元;方案二的日租金为4×200+6×110=1460(元)<1500元;方案三的日租金为5×200+5×110=1550(元)>1500元.所以为保证日租金不低于1500元,应选择方案三,即购买5辆轿车,5辆面包车.24.解(1)设平移后的直线解析式为y=2x+t ,把(1,-5)代入得2+t=-5,解得t=-7,所以平移后直线的解析式y=2x-7;(2)解方程组{y =x +m y=2x+1 得{y =2m −1x=m−1 ,所以y=x+m 与直线l 1的交点坐标为(m-1,2m-1)因为{2m −1>0m−1<0所以12<m <1; (3)当y=0时,nx+2n=0,解得x=-2,直线y=nx+2n 与x 轴的交点坐标为(-2,0), 所以不等式组0<nx+2n <x+b 的解集为-5<x <-2.25.解(1)由题意可得:{a =b +202a =3b −60,解得:{a =120b =100 . 答:a 的值是120,b 的值是100.(2)设购买A 型公交车x 辆,则购买B 型公交车(10﹣x )辆,根据题意得:2.4x+2(10﹣x )≥22.4,解得:x ≥6.∵两种车型都要有,∴x <10,∴6≤x <10.∵x 为整数,∴x=6、7、8、9,∴有四种购车方案.方案一:购买A 型公交车6辆,购买B 型公交车4辆;方案二:购买A 型公交车7辆,购买B 型公交车3辆;方案三:购买A 型公交车8辆,购买B 型公交车2辆;方案四:购买A 型公交车9辆,购买B 型公交车1辆.(3)设购车款为w 元,购买A 型车x 辆,根据题意得:w=120x+100(10﹣x )=20x+1000∴当x=6时,w 取得最小值,此时w=1120.答:(1)解:设A 、B 两种型号的足球销售单价分别是x 元和 y 元,列出方程组:{5x +3y =14503x+4y=1200解得{y =150x=200A 型号足球单价是200元,B 型号足球单价是150元.(2)解:设A 型号足球购进a 个,B 型号足球购进(60−a)个,根据题意得:150a +120(60−a)≤8400解得a ≤40,所以A 型号足球最多能采购40个.(3)解:若利润超过2550元,须 50a +30(60−a)>2550a >37.5,因为a 为整数,所以38<a ≤40能实现利润超过2550元,有3种采购方案.方案一:A 型号38个,B 型号22个;方案二:A 型号39个,B 型号21个;方案三:A 型号40个,B 型号20个.27.解:设小明第一次数了x 次,第二次数了y 次,由题意,得3x+1=5y+2,3x=5y+1,x=5y+13,3x+1≤55,5y+2≤55,∴x ≤18,y ≤10.6,∵x >0,y >0,且x 、y 为整数,且5y+1是3的倍数,∴5y+1=6,9,12,15,18…,y=1,4,7,10,13…,∴y 最大=10,∵篮子是装满的,并且最多只能装55只,∴(5y+2)中,y 的值只能取y=10,∴篮子的鸡蛋数量为:5×10+2=52(只).28.解(1)设A ,B 两种型号电风扇的销售单价分别为x 元、y 元.......1分根据题意,得{2x +3y =1130,5x +6y =2510.解这个方程组,得{x =250,y =210.答:A ,B 两种型号电风扇的销售单价分别为250元、210.(2)设采购A 种型号电风扇a 台,则采购B 种型号电风扇(30﹣a )台,根据题意,得 200a+170(30﹣a )≤5400,解这个不等式,得a ≤10.答:A 种型号的电风扇最多能采购10台(3)根据题意,得(250﹣200)a+(210﹣170)(30﹣a )=1400,解这个方程,得a=20,由(2)可知,a ≤10,∴在(2)的条件下超市不能实现利润1400元的目标.29.解:该人共有x 张邮票,根据题意列方程得:14x+18x+119x >x-100,解得:x <167391.∵其中14是2000年以前的国内外发行的邮票,18是2001年国内发行的,119是2002年国内发行的,∴x 一定是4,8,19的倍数,这三个数的最小公倍数是:152.故该人共有邮票约152张.30.解(1)设五经的单价为x 元,则四书的单价为(2x −60)元,依题意得x +2x −60=660,解得x =240,∴2x −60=420,∴五经的单价为240元,则四书的单价为420元;(2)设购买四书a 套,五经b 套,依题意得{420a +240b ≤30600a ≥33b =2a, 解得33≤a ≤34,∵a 为正整数,∴a =33或34,∴当a =33时,b =66;当a =34时,b =68;∴该校共有2种购买方案:①四书33套,五经66套;②四书34套,五经68套.31.解:设这批手表有x 块,550×60+(x ﹣60)×500>55000解得,x >104答:这批电话手表至少有105块.32.解:(1)根据题意,得:2000⋅2x+1600x+1000(100−3x)⩽170000,解得:x ≤261213, ∵x 为正整数,∴x 最多为26,答:商店至多可以购买冰箱26台.(2)设商店销售完这批家电后获得的利润为y 元,则y=(2300−2000)2x+(1800−1600)x+(1100−1000)(100−3x)=500x+10000,∵k=500>0,∴y 随x 的增大而增大,∵ x ≤261213且x 为正整数, ∴当x=26时,y 有最大值,最大值为:500×26+10000=23000,答:购买冰箱26台时,能使商店销售完这批家电后获得的利润最大,最大利润为23000元.33.解:(1)设空房间有x 间,根据题意,得:8(x-1)<4x+20<8x ,解得:5<x <7,∵x 为整数,∴x=6,这批学生人数为4×6+20=44(人)答:空房间的间数为6间,这批学生的人数为44人.(2)设女生房间为m 间,则男生房间为2m 间,由m+2m=6,得:m=2,2m=4,又设每间女生房间都空出a 个床位,其中a >0则44-(8×2-2a)≤8×4,解得:a ≤2,∴0<a ≤2,且a 为整数,则a 为1或2,∴当a=1时,女生人数为16-2=14(人),男生人数为44-14=30(人);当a=2时,女生人数为16-4=12(人),男生人数为44-12=32(人).34.解:(1)设每吨A 种蔬菜的进价为x 万元,则每吨B 种蔬菜的进价为(x+0.5)万元,依题意得:4.5x =6x+0.5,解得x=1.5,经检验:x=1.5是原方程的解,∴x+0.5=2. 答:每吨A 种蔬菜的进价为1.5万元,每吨B 种蔬菜的进价为2万元;(2)根据题意得,W=(2﹣1.5)×a 1.5+(3﹣2)×14−a 2=−16a +7,∴所获利润W (万元)与购买A 种蔬菜的资金a (万元)之间的函数关系式为:W=−16a +7; (3)当a 1.5≥14−a 2时,a ≥6,∵在一次函数W=−16a +7中,W 随着a 的增大而减小,∴当a=6时,W 有最大值,W 的最大值为﹣1+7=6(万元).设购买甲种电脑a 台,购买乙种电脑b 台,则2100a+2700b=60000,∵a 和b 均为整数,∴{a =8b =16 或{a =17b =9 或{a =26b =2,∴有三种购买方案. 35.解:(1)设一件B 型商品的进价为x 元,则一件A 型商品的进价为(x+10)元. 由题意:16000x+10=7500x ×2,解得x=150,经检验x=150是分式方程的解.答:一件B 型商品的进价为150元,一件A 型商品的进价为160元.(2)因为客商购进A 型商品m 件,所以客商购进B 型商品(250﹣m )件.由题意:v=80m+70(250﹣m )=10m+17500,∵80≤m ≤250﹣m ,∴80≤m ≤125,∴v=10m+17500(80≤m ≤125);(3)设利润为w 元.则w=(80﹣a )m+70(250﹣m )=(10﹣a )m+17500:①当10﹣a >0时,w 随m 的增大而增大,所以m=125时,最大利润为(18750﹣125a )元. ②当10﹣a=0时,最大利润为17500元.③当10﹣a <0时,w 随m 的增大而减小,所以m=80时,最大利润为(18300﹣80a )元,∴当a <10时,最大利润为(18750﹣125a )元;当a=10时,最大利润为17500元;当a >10时,最大利润为(18300﹣80a )元.36.解:(1)根据题意得:.(2)因为,解得,又因为为正整数,且. 所以,且为正整数. 因为,所以的值随着的值增大而减小, 所以当时,取最大值,最大值为. 答:安排7名工人进行采摘,13名工人进行加工,才能使一天的收入最大,最大收入为60550元.37.解:(1)设购进A 种商品x 件,B 种商品y 件,根据题意得,{1200x +1000y =360000(1380−1200)x +(1200−1000)y =60000解得{x=200y=120.答:该商场购进A.B两种商品分别为200件和120件.(2)由于A商品购进400件,获利为(1380-1200)×400=72000(元),从而B商品售完获利应不少于81600-72000=9600(元).设B商品每件售价为z元,则120(z-1000)≥9600,解之得z≥1080.所以B种商品最低售价为每件1080元.38.解:(1)设大货车用x辆,则小货车用(18﹣x)辆,根据题意得:14x+8(18﹣x)=192,解得:x=8,18﹣x=18﹣8=10.答:大货车用8辆,小货车用10辆.(2)设运往甲地的大货车是a,那么运往乙地的大货车就应该是(8﹣a),运往甲地的小货车是(10﹣a),运往乙地的小货车是10﹣(10﹣a),w=720a+800(8﹣a)+500(10﹣a)+650[10﹣(10﹣a)]=70a+11400(0≤a≤8且为整数);(3)14a+8(10﹣a)≥96,解得:a≥83.又∵0≤a≤8,∴3≤a≤8 且为整数.∵w=70a+11400,k=70>0,w随a的增大而增大,∴当a=3时,W最小,最小值为:W=70×3+11400=11610(元).答:使总运费最少的调配方案是:3辆大货车、7辆小货车前往甲地;5辆大货车、3辆小货车前往乙地.最少运费为11610元.39.解:(1)设降价x元,列不等式:8000×0.9-x≥5000(1+20%),解得:x≤1800.答:最多降价1800元,才能使得利润不低于20%.设m%=a,根据题意得:[8000(1+a)-4000a-5000]×5(1+12a)=31250,整理得,8a2+22a-13=0,解得a=12或a=-2(舍).所以m%=1,则m=50.2答:m的值为50.40.解:(1)(2x−6).(2)根据题意得:x+(2x−6)=6×3,解得:x=8.经检验,符合题意.当x=8时,2x−6=10.答:表演的歌唱类节目10个,舞蹈类节目8个.(3)设参与的小品类节目有a个,根据题意得:5×10+6×8+8a+16<150,解得:a<4.5.∵a为整数,∴a最多为4.答:参与的小品类节目最多能有4个.。

人教版七年级下册第九章 一元一次不等式(组)应用题及答案

人教版七年级下册第九章  一元一次不等式(组)应用题及答案

一元一次不等式(组)应用题1、某种商品的进价为15元,出售时标价是22.5元。

由于市场不景气销售情况不好,商店准备降价处理,但要保证利润率不低于10%,那么该店最多降价多少元出售该商品?2、班级组织有奖知识竞赛,小明用100元班费购买笔记本和钢笔共30件,已知笔记本每本2元,钢笔每支5元,那么小明最多能买钢笔多少支?3、(分配问题)若干学生住宿,若每间住4人则余20人,若每间住8人,则有一间不空也不满,问宿舍几间,学生多少人?4、(分配问题)将若干练习本分给若干名同学,如果每人分4本,那么还余20本;如果每人分8本,那么最后一名同学分到的不足8本,求学生人数和练习本数。

5、(分配问题)课外阅读课上,老师将43本书分给各小组,每组8本,还有剩余;每组9本却又不够。

问有几个小组?6、(分配问题)某车间原计划30天生产零件165个。

在前8天,共生产出52个零件,由于工期调整,要求提前5天超额完成任务,问以后平均每天至少要生产多少个零件?7、(分配问题)一群女生住若干间宿舍,每间住4人,剩9人无房住;每间住6人,有间宿舍住不满,可能有多少间宿舍,多少学生?8、(金融问题)某校组织部分师生到甲地考察,学校到甲地的全程票价为25元,对集体购票,客运公司有两种优惠方案供选择:方案1:所有师生按票价的88%购票;方案2:前20人购全票,从第21人开始,每人按票价的80%购票。

你若是组织者,请你根据师生人数讨论选择哪种方案更省钱?9、(节算讨论金融问题)小明想在两种灯中选购一种,其中一种是10瓦(即0.01千瓦)的节能灯,售价50元,另一种是100瓦(即0.1千瓦)的白炽灯,售价5元,两种灯的照明效果一样,使用寿命也相同(3000小时内)节能灯售价高,但较省电,白炽灯售价低,但用电多,电费0.5元/千瓦·时(1)照明时间500小时选哪一种灯省钱?(2)照明时间1500小时选哪一种灯省钱?(3)照明多少时间用两种灯费用相等?10、(节算讨论金融问题)某公司为了扩大经营,决定购进6台机器用于生产某种活塞。

(新人教版)七年级数学下册:《实际问题与一元一次不等式》习题精选(含答案)

(新人教版)七年级数学下册:《实际问题与一元一次不等式》习题精选(含答案)

不等式习题优选(一)一、选择题1. 以下说法中正确的选项是()A. x = 1是不等式-2x<1 的解集B. x = 1是不等式-2x<1 的解C. x =-是不等式-2x<1的解D. 不等式- 2x<1 的解是 x = 12. 以下说法中错误的选项是()A. 不等式- 2x<- 8 的一个解B. - 6 是不等式2x<- 8 的一个解C.不等式 x<4 的整数有无数多个D.不等式 x<4 的整数解只有有限多个3. 用不等式表示图中的结集,此中正确的选项是()A. x >- 2B. x <- 2C. x≥-2D. x≤-24. 不等式- 5x ≤15 的负整数解得积是()A.- 2B.2C.6D.-65.若两位数10a +b大于两位数10b +a,则有()A. a > bB. a < bC. a = bD. a 、b 的大小不可以确立6.若(m<n<0,则有以下结论中错误的选项是()A. n=m >0B.>1C.m- 5>n- 5D. - 3m>- 3n7. 由 x>y 获得 ax<ay 的条件应是()A.a>0B.a < 0C.a ≥ 0D.a ≤ 08. 有理数 a、 b 在数轴上的地点以以下图,在以下各题中表示错误的选项是()A. a -b>0B.ab>0C.c -a<c- bD.9. 已知 b<a<0,以下不等式正确的选项是()A. 7 -a >bB.>1C.D.10. 已知 x>y 且 xy<0 , a 为随意有理数,以下式子中正确的选项是()A. - x > - yB.C. – x + a <-y + aD. x >-y11. 若 a 是一个负整数,则a,- a ,三者的大小关系是()A. a ≥≥-aB. a ≤<- aC.≥a>- aD.≤a<- a12. 若 x - y<x,x +y<y.则以下不等式中,正确的选项是()A. x + y >0B. x–y >0C. xy <0D.>0二、填空题13.设 a <b ,用“ <”或“ > ”号填空( 1) a – 1 ________ b–1(2) a + 3 _________ b + 3(3)- 2a ________ - 2b(4)_________14.给出以下结论:( 1)不等式x + a > 0的解集是x >- a .( 2)不等式2x<-48与不等式x> - 12 的解集同样。

2018年人教版七年级下《一元一次不等式》期末专题复习有答案

2018年人教版七年级下《一元一次不等式》期末专题复习有答案

2018年七年级数学下册一元一次不等式期末专题培优复习一、选择题:1、如果a<b,下列各式中正确的是()A. B. C. D.2、下列不等式变形正确的是()A.由a>b,得a﹣2<b﹣2B.由a>b,得|a|>|b|C.由a>b,得﹣2a<﹣2bD.由a>b,得a2>b23、如图,表示下列某个不等式的解集,其中正确的是()A.x>2B.x<2C.x≥2D.x≤﹣24、如果关于x的不等式(a+1)x>a+1的解集为x<1,则a的取值范围是()A.a<0B.a<-1C.a>1D.a>-15、不等式的负整数解有()A.1个B.2个C.3个D.4个6、已知数的大小关系如图所示,则下列各式:①;②;③;④;⑤.其中正确的个数为()A.1个B.2个C.3个D.4个7、不等式组的解集为x<4,则a满足的条件是()A.a<4B.a=4C.a≤4D.a≥48、如果关于x的分式方程有负分数解,且关于x的不等式组的解集为x<﹣2,那么符合条件的所有整数a的积是()A.﹣3B.0C.3D.99、一次智力测验,有20道选择题.评分标准是:对1题给5分,错1题扣2分,不答题不给分也不扣分.小明有两道题未答.至少答对几道题,总分才不会低于60分.则小明至少答对的题数是()A.11道B.12道C.13道D.14道10、某种商品的进价为800元,标价为1200元,由于该商品积压,商店准备打折销售,但要保证利润率不低于20%,则最低可打()A.8折B.8.5折C.7折D.6折学11、已知关于x的不等式组恰有3个整数解,则a的取值范围是()A. B. C. D.12、若关于x的不等式组只有5个整数解,则a的取值范围()A. B. C. D.二、填空题:13、不等式2x﹣1<﹣3的解集是.14、不等式3x﹣4≥4+2(x﹣2)的最小整数解是.15、若关于二元一次方程组的解满足则整数a的最大值为16、已知关于的不等式组只有两个整数解,则的取值范围 .17、某商贩去菜摊买黄瓜,他上午买了30斤,价格为每斤x元;下午,他又买了20斤,价格为每斤y元,后来他以每斤元的价格卖完后,结果发现自己赔了钱,则x与y的大小关系是18、用锤子以相同的力将铁钉垂直钉入木块,随着铁钉的深入,铁钉所受的阻力也越来越大.当铁钉未进入木块部分长度足够时,每次钉入木块的铁钉长度是前一次的,已知这个铁钉被敲击3次后全部进入木块(木块足够厚),且第一次敲击后,铁钉进入木块的长度是a cm,若铁钉总长度为9cm,则a的取值范围是 .三、解答题:19、解一元一次不等式:20、解不等式组:21、已知,则化简。

人教版2018年七年级数学下册期末解答题培优练习(含答案)(K12教育文档)

人教版2018年七年级数学下册期末解答题培优练习(含答案)(K12教育文档)

人教版2018年七年级数学下册期末解答题培优练习(含答案)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(人教版2018年七年级数学下册期末解答题培优练习(含答案)(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为人教版2018年七年级数学下册期末解答题培优练习(含答案)(word版可编辑修改)的全部内容。

七年级数学下册1、阅读理解:∵<<,即2<<3.∴1<﹣1<2∴﹣1的整数部分为1.∴﹣1的小数部分为﹣2.解决问题:已知a是﹣3的整数部分,b是﹣3的小数部分,求(﹣a)3+(b+4)2的平方根.2、如图,已知DC∥FP,∠1=∠2,∠FED=28º,∠AGF=80º,FH平分∠EFG.(1)说明:DC∥AB;(2)求∠PFH的度数.3、已知二元一次方程组的解为且m+n=2,求k的值.4、已知关于x、y的二元一次方程组(1)求这个方程组的解;(用含有m的代数式表示)(2)若这个方程组的解,x的值是负数,y的值是正数,求m的整数值.5、已知关于x、y的方程组(实数m是常数).(1)若x+y=1,求实数m的值;(2)若-1≤x-y≤5,求m的取值范围;(3)在(2)的条件下,化简:.6、已知a是不等式组的整数解,x、y满足方程组,求代数式(x+y)(x 2-xy+y 2)的值.7、已知关于x、y的方程组.(1)求方程组的解(用含有m的代数式表示);(2)若方程组的解满足x<1且y>1,求m的取值范围.8、在平面直角坐标系中,一蚂蚁从原点O出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如下图所示.(1)填写下列各点的坐标:A4(,)、A8( , )、A12(, );(2)写出点A4n的坐标(n是正整数);9、某工程机械厂根据市场需求,计划生产A、B两型号的大型挖掘机共100台,该厂所筹生产资金不少于22400万元,但不超过22500万元,且所筹集的资金全部用于生产此两型号挖掘机,所生产的此两型号挖掘机可全部售出,此两型号挖掘机的生产成本和售价如下表:型号A B成本(万元/台)200240售价(万元/台)250300(1)该厂对这两型号挖掘机有哪几种生产方案?(2)该厂如何生产才能获得最大利润?10、某公司为了更好得节约能源,决定购买一批节省能源的10台新机器。

人教版七年级数学下册第九章第三节一元一次不等式组复习练习题(含答案) (47)

人教版七年级数学下册第九章第三节一元一次不等式组复习练习题(含答案) (47)

人教版七年级数学下册第九章第三节一元一次不等式组复习练习题(含答案)(1)解方程:3x2+x-4=0;(2)解不等式组:2+7+10+223x xxx≤⎧⎪⎨>-⎪⎩【答案】(1)14 3x=-,x2=1;(2)1<x≤3【解析】分析:(1)根据因式分解法求出x的值即可;(2)分别求出不等式组中两不等式的解集,找出解集的公共部分即可得到不等式组的解集.详解:(1)因式分解得:(3x+4)(x-1)=0,解得:143x=-,x2=1;(2)2710223x xxx+≤+⎧⎪⎨+-⎪⎩①>②,解不等式①,得x≤3;解不等式②,得x>1,∴原不等式组的解集为1<x≤3.点睛:此题考查了解一元一次不等式组,以及解一元二次方程,熟练掌握运算法则是解答本题的关键.62.解不等式组:231125143x xxx+≤+⎧⎪+⎨->-⎪⎩,并将解集表示在数轴上.【答案】:2<x≤8,画图见解析.【解析】【分析】先求出每个不等式的解集,再找出不等式组的解集即可.【详解】解:2311 25143x xxx+≤+⎧⎪⎨+->-⎪⎩①②解不等式①,得x≤8,解不等式②,得x>2,把解集在数轴上表示出来为:故不等式组的解集为:2<x≤8.【点睛】本题考查了解一元一次不等式组、在数轴上表示不等式组的解集,能正确运用不等式的性质解一元一次不等式和能根据不等式的解集找出不等式组的解集是解题的关键.63.解不等式组433(12)321522x xxx-<+⎧⎪⎨->-⎪⎩,并把它的解集在数轴上表示.【答案】3x>,解集在数轴上表示见解析【解析】分析:分别解不等式,找公共部分就是它们的解集. 详解:解不等式组() 43312321522x xxx⎧-<+⎪⎨->-⎪⎩①②,解:由①得:4336x x -<+解得:3x >-由②得:3210x x ->-解得:3x >不等式①、②的解集在数轴上表示为:所以,原不等式组的解集是3x >点睛:①若两个未知数的解集在数轴上表示同向左,就取在左边的未知数的解集为不等式组的解集,此乃“同小取小”,如图所示:②若两个未知数的解集在数轴上表示同向右,就取在右边的未知数的解集为不等式组的解集,此乃“同大取大”,如图所示:③若两个未知数的解集在数轴上相交,就取它们之间的值为不等式组的解集.若x 表示不等式的解集,此时一般表示为a<x<b ,或a ≤x ≤b .此乃“相交取中”,如图所示:④若两个未知数的解集在数轴上向背,那么不等式组的解集就是空集,不等式组无解.此乃“向背取空” 如图所示:64.计算:(1) 解下列方程组32218x y x y -=⎧⎨+=⎩ ;(2) 解不等式组:3112(21)51x x x x -<+⎧⎨-≤+⎩【答案】(1)82x y =⎧⎨=⎩(2)-3≤x <1 【解析】分析:(1)、利用代入消元法得出方程组的解;(2)、首先分别求出每个不等式的解,然后得出不等式组的解.详解:(1)、32?218?x y x y -=⎧⎨+=⎩①②,由①得:x=3y+2 ③, 将③代入②可得:2(3y+2)+y=18,解得:y=2, 将y=2代入③可得:x=8, ∴原方程组的解为:82x y =⎧⎨=⎩. (2)、()311? 22151?x x x x -<+⎧⎪⎨-≤+⎪⎩①②,解①得:x <1, 解②得:x ≥-3, ∴原不等式组的解为:-3≤x <1.点睛:本题主要考查的是二元一次方程组的解法和不等式组的解法,属于基础题型.解二元一次方程组的目的就是消元,如果未知数的系数相同,则用减法进行消元;如果未知数的系数互为相反数,则用加法进行消元.65.某校计划购买篮球、排球共20个.购买2个篮球,3个排球,共需花费190元;购买3个篮球的费用与购买5个排球的费用相同.(1)篮球和排球的单价各是多少元?(2)若购买篮球不少于8个,所需费用总额不超过800元.请你求出满足要求的所有购买方案,并直接写出其中最省钱的购买方案.【答案】(1)篮球每个50元,排球每个30元. (2)满足题意的方案有三种:①购买篮球8个,排球12个;②购买篮球9,排球11个;③购买篮球10个,排球10个;方案①最省钱【解析】试题分析:(1)设篮球每个x 元,排球每个y 元,根据费用可得等量关系为:购买2个篮球,3个排球,共需花费190元;购买3个篮球的费用与购买5个排球的费用相同,列方程求解即可;(2)不等关系为:购买足球和篮球的总费用不超过800元,列式求得解集后得到相应整数解,从而求解.试题解析:解:(1)设篮球每个x 元,排球每个y 元,依题意,得: 2319035x y x y +=⎧⎨=⎩解得5030x y =⎧⎨=⎩:. 答:篮球每个50元,排球每个30元.(2)设购买篮球m 个,则购买排球(20-m )个,依题意,得:50m +30(20-m )≤800.解得:m ≤10.又∵m ≥8,∴8≤m ≤10.∵篮球的个数必须为整数,∴m 只能取8、9、10.∴满足题意的方案有三种:①购买篮球8个,排球12个,费用为760元;②购买篮球9,排球11个,费用为780元;③购买篮球10个,排球10个,费用为800元.以上三个方案中,方案①最省钱.点睛:本题主要考查了二元一次方程组及一元一次不等式的应用;得到相应总费用的关系式是解答本题的关键.66.解不等式11237x x --≤,并把解集在数轴上表示出来.【答案】x ≥4,数轴详见解析.【解析】【分析】根据不等式的性质:先去分母,再移项,再合并同类项最后系数化1即可得不等式的解集.在数轴上根据不等式解集的表示方法表示即可.【详解】11237x x --≤, 去分母:7×(1﹣x )≤3×(1﹣2x ),去括号:7﹣7x ≤3﹣6x ,移项:﹣7x+6x ≤3﹣7,合并同类项:﹣x ≤﹣4,化系数为1:x ≥4,在数轴上表示为:【点睛】本题考查了解一元一次不等式及解集的表示方法,注意移项要改变符号是解题关键.67.(1)分解因式:x (x ﹣y )﹣y (y ﹣x )(2)解不等式组3(1)511242x x x x -+⎧⎪⎨+≥-⎪⎩<①②,并把它的解集在数轴上表示出来. 【答案】(1)(x ﹣y )(x+y );(2)﹣2<x ≤3【解析】分析:(1)根据提公因式法,可分解因式;(2)根据解不等式,可得每个不等式的解集,根据不等式组的解集是不等式的公共部分,可得答案.解:(1)原式=(x ﹣y )(x+y );(2)解不等式①1,得x >﹣2,解不等式②,得x ≤3,把不等式①②在数轴上表示如图,不等式组的解集是﹣2<x ≤3.【点评】本题考查了因式分解,确定公因式(x ﹣y )是解题关键.68.解不等式组:133(2)4x x x +≥⎧⎨-<+⎩. 【答案】2≤x<5【解析】试题分析:解不等式组,分别解两个不等式,取公共部分.试题解析:()13? 324? x x x +≥⎧⎪⎨-<+⎪⎩①② . 由①,x ≥2,由②3x -6<x +4,x <5,所以2≤x<569.(1)计算:(13)-2-|-2|(-1)2018;(2)解不等式组10831 4.x x -<⎧⎨+-≥-⎩,() 【答案】(1)8+(2)不等式组的解集为-3≤x <1【解析】试题分析:()1按照实数的运算顺序进行运算即可.()2分别解不等式,找出解集的公共部分即可.试题解析:(1)原式9218=-+=+(2)解不等式①,得1,x <解不等式②,得 3.x ≥-∴不等式组的解集为3 1.x -≤<70.(1)因式分解:3a 3+12a 2+12a ;2016+20162-20172(2)解不等式组:()263125x x x -<⎧⎨+≤+⎩,并将解集在数轴上表示出来.(3)解分式方程:2236x 1x 1x 1+=+--. 【答案】(1)3a(a+2)2;-2017;(2)-3<x ≤2,数轴表示见解析;(3)x=1为原方程的增根,原方程无解【解析】试题分析:对于3a 3+12a 2+12a ,先提取公因式3a ,得到3a(a 2+4a+4),再运用完全平方公式进行因式分解即可;算式中的前两项提取公因数2016,并化简可得原式=2016×2017-20172,进一步可将原式变形为2017×(2016-2017),计算即可解答.(2)分别求出各不等式的解集,再求出其公共解集并在数轴上表示出来即可.(3)由x 2-1=(x+1)(x-1),本题的最简公分母是(x+1)(x-1),方程两边都乘最简公分母,可把分式方程转换为整式方程求解.试题解析:(1)3a 3+12a 2+12a =3a(a 2+4a+4)=3a(a+2)2;2016+20162-20172=2016×(1+2016)-2017=2016×2017-20172 =2017×(2016-2017)=-2017;(2)()263125x x x -<⎧⎪⎨++⎪⎩①②, 由①得,x>−3,由②得,x ⩽2,故此不等式组的解集为: -3<x ≤2,在数轴上表示为:(3) 方程两边同时乘以(x2−1),得:2(x−1)+3(x+1)=6,解得:x=1,检验:当x=1时,x2−1=0,③x=1是增根,∴原分式方程无解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年七年级数学下册一元一次不等式应用题培优练习1.为了参加2011年西安世界园艺博览会,某公司用几辆载重为8吨的汽车运送一批参展货物.若每辆汽车只装4吨,则剩下20吨货物;若每辆汽车装满8吨,则最后一辆汽车不空也不满.请问:共有多少辆汽车运货?2.某蔬菜经营户从蔬菜批发市场批发蔬菜进行零价,其中西红柿与西兰花的批发价格与零售价格如表.(1)第一天该经营户批发西红柿和西兰花两种蔬菜共300kg,用去了1520元.这两种蔬菜当天全部售完后,一共能赚多少钱?(请列方程组求解)(2)第二天该经营户用1520元仍然批发西红柿和西兰花,要想当天全部售完后所赚钱数不少于1050元,则该经营户最多能批发多少千克的西红柿?3.六一”儿童节将至,益智玩具店准备购进甲、乙两种玩具,若购进甲种玩具80个,乙种玩具40个,需要800元,若购进甲种玩具50个,乙种玩具30个,需要550元.(1)求益智玩具店购进甲、乙两种玩具每个需要多少元?(2)若益智玩具店准备1000元全部用来购进甲,乙两种玩具,计划销售每个甲种玩具可获利润4元,销售每个乙种玩具可获利润5元,且销售这两种玩具的总利润不低于600元,那么这个玩具店需要最多购进乙种玩具多少个?4.陈老师为学校购买运动会的奖品后,回学校向后勤处王老师交账说:“我买了两种书,共105本,单价分别为8元和12元,买书前我领了1500元,现在还余418元.”王老师算了一下,说:“你肯定搞错了.”(1)王老师为什么说他搞错了?试用方程的知识给予解释;(2)陈老师连忙拿出购物发票,发现的确弄错了,因为他还买了一个笔记本.但笔记本的单价已模糊不清,只能辨认出应为小于10元的整数,笔记本的单价可能为多少元?5.某水果店以4元/千克的价格购进一批水果,由于销售状况良好,该店又再次购进同一种水果,第二次进货价格比第一次每千克便宜了0.5元,所购水果重量恰好是第一次购进水果重量的2倍,这样该水果店两次购进水果共花去了2200元.(1)该水果店两次分别购买了多少元的水果?(2)在销售中,尽管两次进货的价格不同,但水果店仍以相同的价格售出,若第一次购进的水果有3%的损耗,第二次购进的水果有5%的损耗,该水果店希望售完这些水果获利不低于1244元,则该水果每千克售价至少为多少元?6.公司为了运输的方便,将生产的产品打包成件,运往同一目的地.其中A产品和B产品共320件,A产品比B产品多80件.(1)求打包成件的A产品和B产品各多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批产品全部运往同一目的地.已知甲种货车最多可装A产品40件和B产品10件,乙种货车最多可装A产品和B产品各20件.如果甲种货车每辆需付运输费4000元,乙种货车每辆需付运输费3600元.则公司安排甲、乙两种货车时有几种方案?并说明公司选择哪种方案可使运输费最少?7.某市居民用电的电价实行阶梯收费,收费标准如下表:(1198.56元,请你根据以上数据,求出表格中a,b的值.(2)六月份是用电高峰期,李叔计划六月份电费支出不超过300元,那么李叔家六月份最多可用电多少度?8.某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表.已知购进(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价﹣进价)超过21000元,且不超过22000元,问该专卖店有几种进货方案?(3)在(2)的条件下,专卖店准备决定对甲种运动鞋每双优惠a(50<a<70)元出售,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货?9.某物流公司承接A.B两种货物运输业务,已知5月份A货物运费单价为50元/吨,B货物运费单价为30元/吨,共收取运费9500元;6月份由于油价上涨,运费单价上涨为:A货物70元/吨,B货物40元/吨;该物流公司6月承接的A种货物和B种数量与5月份相同,6月份共收取运费13000元.(1)该物流公司月运输两种货物各多少吨?(2)该物流公司预计7月份运输这两种货物330吨,且A货物的数量不大于B货物的2倍,在运费单价与6月份相同的情况下,该物流公司7月份最多将收到多少运输费?10.少儿部组织学生进行“英语风采大赛”,需购买甲、乙两种奖品.购买甲奖品3个和乙奖品4个,需花64元;购买甲奖品4个和乙奖品5个,需花82元.(1)求甲、乙两种奖品的单价各是多少元?(2)由于临时有变,只买甲、乙一种奖品即可,且甲奖品按原价9折销售,乙奖品购买6个以上超出的部分按原价的6折销售,设购买x个甲奖品需要y1元,购买x个乙奖品需要y2元,请用x分别表示出y1和y2;(3)在(2)的条件下,问买哪一种产品更省钱?11.一家蔬菜公司收购到某种绿色蔬菜140吨,准备加工后进行销售,销售后获利的情况如下表所示:限制,公司必须在一定时间内将这批蔬菜全部加工后销售完.(1)如果要求12天刚好加工完140吨蔬菜,则公司应安排几天精加工,几天粗加工?(2)如果先进行精加工,然后进行粗加工.①试求出销售利润W元与精加工的蔬菜吨数m之间的函数关系式;②若要求在不超过10天的时间内,将140吨蔬菜全部加工完后进行销售,则加工这批蔬菜最多获得多少利润?此时如何分配加工时间?12.商场某柜台销售每台进价分别为160元、120元的A.B两种型号的电风扇,下表是近两周的销售情况:(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A.B两种型号的电风扇的销售单价;(2)若商场准备用不多于7500元的金额再采购这两种型号的电风扇共50台,求A种型号的电风扇最多能采购多少台?(3)在(2)的条件下,商场销售完这50台电风扇能否实现利润超过1850元的目标?若能,请给出相应的采购方案;若不能,请说明理由.13.为了更好改善河流的水质,治污公司决定购买10台污水处理设备.现有A,B两种型号的设备,其中每台的价格,月处理污水量如下表:经调查:购买一台A型设备比购买一台B型设备多2万元,购买2台A 型设备比购买3台B(1)求a,b的值;(2)治污公司经预算购买污水处理设备的资金不超过105万元,你认为该公司有哪几种购买方案;(3)在(2)的条件下,若每月要求处理污水量不低于2040吨,为了节约资金,请你为治污公司设计一种最省钱的购买方案.14.某商场用36000元购进甲、乙两种商品,销售完后共获利6000元.其中甲种商品每件进价120元,售价138元;乙种商品每件进价100元,售价120元.(1)该商场购进甲、乙两种商品各多少件?(2)商场第二次以原进价购进甲、乙两种商品,购进乙种商品的件数不变,而购进甲种商品的件数是第一次的2倍,甲种商品按原售价出售,而乙种商品打折销售.若两种商品销售完毕,要使第二次经营活动获利不少于8160元,乙种商品最低售价为每件多少元?15.“五•一”黄金周期间,某学校计划组织385名师生租车旅游,现知道出租公司有42座和60座两种客车,42座客车的租金每辆为320元,60座客车的租金每辆为460元.(1)若学校单独租用这两种车辆各需多少钱?(2)若学校同时租用这两种客车8辆(可以坐不满),而且要比单独租用一种车辆节省租金.请你帮助该学校选择一种最节省的租车方案.参考答案1.解:设有x辆汽车,则有(4x+20)吨货物.由题意,可知当每辆汽车装满8吨时,则有(x﹣1)辆是装满的,所以有方程,解得5<x<7.由实际意义知x为整数.所以x=6.答:共有6辆汽车运货.2.3.【解答】解:(1)设甲种玩具每个x元,乙种玩具每个y元,根据题意,得:,解得:,答:甲种玩具每个5元,乙种玩具每个10元.(2)设购进乙种玩具a个,则甲种玩具=200﹣2a(个),根据题意,得:4+5a≥600,解得:a≤66,∵a是正整数,∴a的最大值为66,答:这个玩具店需要最多购进乙种玩具66个.4.解:(1)设单价为8.0元的课外书为x本,得:8x+12=1500﹣418,解得:x=44.5(不符合题意).∵在此题中x不能是小数,∴王老师说他肯定搞错了;(2)设单价为8.0元的课外书为y本,设笔记本的单价为b元,依题意得:0<1500﹣[8y+12+418]<10,解之得:0<4y﹣178<10,即:44.5<y<47,∴y应为45本或46本.当y=45本时,b=1500﹣[8×45+12+418]=2,当y=46本时,b=1500﹣[8×46+12+418]=6,即:笔记本的单价可能2元或6元.5.6.解:(1)设打包成件的A产品有x件,B产品有y件,根据题意得x+y=320,x-y=80,解得x=200,y=120,答:打包成件的A产品有200件,B产品有120件;(2)设租用甲种货车x辆,根据题意得40x+20(8-x)≥200,10x+20(8-x)≥120,解得2≤x≤4,而x为整数,所以x=2、3、4,所以设计方案有3种,分别为:7.解:(1)根据题意得:,解得:.(2)设李叔家六月份最多可用电x度,根据题意得:200×0.61+200×0.66+0.92(x﹣400)≤300,解得:x≤450.答:李叔家六月份最多可用电450度.8.解:(1)依题意得:60m+50(m﹣20)=10000,解得m=100;(2)设购进甲种运动鞋x双,则乙种运动鞋(200﹣x)双,根据题意得,,解不等式①得,x>,解不等式②得,x≤100,所以,不等式组的解集是<x≤100,∵x是正整数,100﹣84+1=17,∴共有17种方案;(3)设总利润为W,则W=(240﹣100﹣a)x+80(200﹣x)=(60﹣a)x+16000(≤x≤100),①当50<a<60时,60﹣a>0,W随x的增大而增大,所以,当x=100时,W有最大值,即此时应购进甲种运动鞋100双,购进乙种运动鞋100双;②当a=60时,60﹣a=0,W=16000,(2)中所有方案获利都一样;③当60<a<70时,60﹣a<0,W随x的增大而减小,所以,当x=84时,W有最大值,即此时应购进甲种运动鞋84双,购进乙种运动鞋116双.9.解:(1)设A种货物运输了x吨,设B种货物运输了y吨,依题意得:,解之得:.答:物流公司月运输A种货物100吨,B种货物150吨.(2)设A种货物为a吨,则B种货物为(330﹣a)吨,依题意得:a≤(330﹣a)×2,解得:a≤220,设获得的利润为W元,则W=70a+40(330﹣a)=30a+13200,根据一次函数的性质,可知W随着a的增大而增大当W取最大值时a=220,即W=19800元.所以该物流公司7月份最多将收到19800元运输费.10.解:(1)设甲种奖品的单价为x元/个,乙种奖品的单价为y元/个,根据题意得:,解得:.答:甲种奖品的单价为8元/个,乙种奖品的单价为10元/个.(2)根据题意得:y1=8×0.9x=7.2x;当0≤x≤6时,y2=10x,当x>6时,y2=10×6+10×0.6(x﹣6)=6x+24,∴y2=.(3)当0≤x≤6时,∵7.2<10,∴此时买甲种产品省钱;当x>6时,令y1<y2,则7.2x<6x+24,解得:x<20;令y1=y2,则7.2x=6x+24,解得:x=20;令y1>y2,则7.2x>6x+24,解得:x>20.综上所述:当x<20时,选择甲种产品更省钱;当x=20时,选择甲、乙两种产品总价相同;当x>20时,选择乙种产品更省钱.11.12.(1)设A型电风扇单价为x元,B型单价y元,则,解得:,答:A型电风扇单价为200元,B型单价150元;(2)设A型电风扇采购a台,则160a+120(50﹣a)≤7500,解得:a≤,则最多能采购37台;(3)依题意,得:(200﹣160)a+(150﹣120)(50﹣a)>1850,解得:a>35,则35<a≤,∵a是正整数,∴a=36或37,方案一:采购A型36台B型14台;方案二:采购A型37台B型13台.13.解:(1)购买A型的价格是a万元,购买B型的设备b万元,A=b+2,2a+6=3b,解得:a=12,b=10.故a的值为12,b的值为10;(2)设购买A型号设备m台,12m+10(10﹣m)≤105,解得:m≤2.5,故所有购买方案为:当A型号为0,B型号为10台;当A型号为1台,B型号为9台;当A型号为2台,B型号为8台;有3种购买方案;(3)由题意可得出:240m+180(10﹣m)≥2040,解得:m≥4,由(1)得A型买的越少越省钱,所以买A型设备4台,B型的6台最省钱.14.解:(1)设商场购进甲种商品x件,乙种商品y件,根据题意得:,解得:.答:该商场购进甲种商品200件,乙种商品120件.(2)设乙种商品每件售价z元,根据题意,得120(z﹣100)+2×200×(138﹣120)≥8160,解得:z≥108.答:乙种商品最低售价为每件108元.15.。

相关文档
最新文档