范德蒙行列式在微积分中的应用

合集下载

Vandermonde行列式及其应用

Vandermonde行列式及其应用

i 然后, 将此 n+1 阶行列式第一行乘-a ( i=1, 2, …, n ) 加到第 i+1 行得
D=
例 2 计算 n 阶行列式 仿上做法有 Vn-1 (x2, …x) (x3-x) x4-x) (xn-x) (x3, … n = 2( 2 … 2 Vn-2 x) n 再递推下去, 直到 V1=1 故 V( x2, …x) (x2-x) x3-x) (xn-x) (x3-x) n x1, n = 1( 1 … 1· 2 (xn-x) (xn-xn-1 ) · 1= (xi-x) (x4-x) 2 … 2 … j 由以上的计算易得 定理 1n 阶 Vandermonde 行列式 V( x2, …x) n x1, n = (1 ) 解 此行列式貌似 Vandermonde 行列式, 只 x2, …, xn 为元素的第二行, 而又多了 是缺少以 x1, x2n, …, xnn 为元素的第 n 行, 可利用升阶法将 以 x1n, Dn 变为 n+1 阶 Vandermonde 行列式 Dn=




Van(佳木斯大学理学院, 黑龙江 佳木斯 154007 )
摘 要 :介绍了 Vandermonde 行列式及其在计算行列式等方面的应用。 关键词 :行列式; Vandermonde 行列式; 多项式; 微积分
行列式最早出现在 16 世纪关于线性方程组 的求解问题中,时至今日行列式理论的应用却远 不如此, 它在消元论、 矩阵论等诸多问题中都有广 泛的应用, 它是高等代数中的一个重点和难点, 是 矩阵、 向量空间和线性变换的基础。 线性方程组、 在行列式理论中, Vandermonde 行列式以其独特 的性质令人瞩目, 它构造独特、 形式优美、 应用广 泛, 因而成为一个著名的行列式。 这里主要介绍了 Vandermonde 行列式的定义、计算方法及其在各 个领域内的应用。 1 Vandermonde 行列式的定义

范德蒙行列式及应用论文

范德蒙行列式及应用论文

范德蒙行列式及应用论文范德蒙行列式,又称范德蒙行列,是数学中的一个重要概念,它在线性代数、向量空间、微积分等领域有着广泛的应用。

范德蒙行列式由荷兰数学家范德蒙(Vandermonde)首先提出,它的定义和性质在很多数学分支中都发挥了重要的作用,特别是在矩阵理论、数论、代数学等领域,范德蒙行列式都有着深远的影响。

范德蒙行列式的定义是:对于给定的n个不同的数a1,a2,...,an,范德蒙行列式定义为:a1 a2 ... ana1^2 a2^2 ... an^2a1^3 a2^3 ... an^3... ... ... ...a1^n a2^n ... an^n即为由这些数按照一定顺序排列而成的矩阵行列式,其中ai^k表示ai的k次幂。

范德蒙行列式的值可以通过列主元化简为非零值,从而成为一个n阶矩阵行列式。

范德蒙行列式的应用非常广泛,下面我们来谈谈范德蒙行列式在数学中的一些重要应用。

首先,在线性代数中,范德蒙行列式是矩阵的一个重要特征,它可以用来描述矩阵的性质和结构。

通过范德蒙行列式,我们可以判断矩阵的秩、可逆性、行列式值等信息,进而用于解线性方程组、矩阵变换、特征值特征向量的求解等问题。

其次,在微积分中,范德蒙行列式也有着重要的应用。

在多元函数的求导、积分、微分方程的求解过程中,常常需要用到雅可比行列式,而雅可比行列式与范德蒙行列式有着密切的关系。

通过范德蒙行列式,我们可以求解多元函数的偏导数、雅可比行列式的值,从而解决相关的微分方程和积分问题。

另外,在数论中,范德蒙行列式也有着重要的应用。

由于范德蒙行列式的特殊性质,它经常出现在数论中的不同问题中,例如组合数学、数列求和、多项式插值等方面。

通过范德蒙行列式,我们可以推导出一些数学定理和结论,解决一些数论问题。

除了以上提到的领域外,范德蒙行列式还在代数学、几何学、概率论、信号处理、图论等领域有着重要的应用。

它不仅是数学理论研究的基础,还是许多工程技术问题的解决工具。

范德蒙行列式及其应用

范德蒙行列式及其应用

目录摘要及关键词 (1)一、范德蒙行列式 (1)(一)范德蒙行列式定义 (1)(二)范德蒙行列式的推广 (4)二、范德蒙行列式的相关应用 (8)(一) 范德蒙行列式在行列式计算中的应用 (8)(二) 范德蒙行列式在微积分中的应用 (14)(三) 范德蒙行列式在多项式理论中的应用 (19)(四) 范德蒙行列式推广的应用 (21)三、结束语 (22)四、参考文献 (23)范德蒙行列式及其应用摘要:在北大版高等代数的教科书中,行列式是一个重点也是一个难点,它是学习线性方程组、矩阵、向量空间和线性变换的基础,起着重要作用。

而行列式的计算具有一定的规律性和技巧性,同时可以应用在很多领域。

本文将通过对n阶范德蒙行列式的计算、推广及其证明,讨论它在行列式计算,微积分和多项式理论中的相关应用,然后主要研究一些与范德蒙行列式有关的例子,从中掌握行列式计算的某些方法和技巧,这将有助于我们更好的应用范德蒙行列式解决问题。

关键词:范德蒙行列式、行列式The Determinant of Vandermonde and Its ApplicationYuping- Xiao(Department of Mathematics Bohai University Jinzhou 121000 China) Abstract: Higher algebra textbook edition in Beijing University,the determinant is not only animportant point but also a difficult point,it is a foundation of learning linear equations,matrices,vector space and linear transformation,it plays an important role.And the calculation of determinant has a certain regularity and skills,it can be applied in many areas at the same time. This paper will be through the calculation,expansion and prove of a n band Vandermonde determinant,and discuss the calculation of determinant,the relevant application in the calculus and multinomial theory, then study some examples about the determinant of Vandermonde,and acquire some methods and skills of determinant calculation,This will help us better use the determinant of Vandermonde to solve the problems.Key words: the Vandermonder determinant; determinant一、范德蒙行列式(一)范德蒙行列式定义定义1[1]关于变元x,2x n x的n阶行列式1122221211112111n n nn n n nx x x D x x x x x x ---= (1) 叫做1x ,2x n x 的n 阶范德蒙行列式。

浅析Vandermonde行列式的相关性质及其应

浅析Vandermonde行列式的相关性质及其应

分类号:单位代码: 106 密级:一般学号:本科毕业论文(设计)题目:浅析Vandermonde行列式的相关性质及其应用专业:数学与应用数学姓名:王昆指导教师:张庆祥职称:教授答辩日期:二〇一〇年五月九日浅析Vandermonde行列式的相关性质及其应用摘要:在高等数学的学习中,行列式无疑是一个重点和难点,它是后续课程线性方程组、矩阵、向量空间和线性变换的基础。

而行列式的计算具有一定的规律性和技巧性。

Vandermonde行列式是一类很重要的行列式。

本文系统的阐述了Vandermonde行列式的相关性质及其应用,通过各种方法说明了行列式中的一些计算问题以及如何利用Vandermonde行列式计算一般的行列式,用多个例子论述并总结了Vandermonde行列式在科研和实践生活中的应用。

关键字:行列式;Vandermonde行列式;加边计算法;多项式The Analysis for the Relevent Properties and Applicationsof Vandermonde DeterminantAbstract:Within the study of Higher Mathematics, determinant obviously being important and difficult, was the basic of lated courses including Linear Equations, Vector spaces, Matrix, Linear transformation. There was a series regulations and skills in calculation of determinant. And Vandermonde determinant was an important determinant. Firstly, this thesis described the related properties and the applications of Vandermonde determinant systermatically. Secondly, it illustrated several issues of Vandermonde determinant and how to take use of Vandermonde determinant to calculate the general determinant through some approaches. Finally, this thesis instructed and concluded the applications of Vandermonde determinant in scientific study and practice.Key words:d eterminant; Vandermonde determinant; calculating method by adding side; polynomial1 引言在中学数学和解析几何里,我们学习过两个未知量和三个未知量的线性方程组及其解法。

范德蒙行列式在微积分中的应用

范德蒙行列式在微积分中的应用
x →+ ∞
li m f ( x ) = A , x → li m f + ∞
(n )
(x ) = B .
第 3 期 程伟健, 等: 范德蒙行列式在微积分中的应用 求证: lim f x →+ ∞
[1] (k )
129
( x ) = 0, k = 1, 2, …, n.
(n ) (x ) ≤ 例 3 设 f (x ) 在区间 I 上 n 阶可导 ( n ≥2) , 若对Πx ∈ I , f ( x ) ≤ M 0, f M n (M 0 , M n 为 (k ) 正常数) , 证明: 存在 n - 1 个正常数 M 1 , M 2 , …, M n- 1 , 使对Πx ∈ I , f (x ) ≤M k ( k = 1, 2, …, n - 1). 证 设 a 1 , a 2 , …, a n- 1 ∈ I , 且 a i ≠0, a i ≠a j ( i≠ j ) , 由泰勒公式, 对Πi= 1, 2, …, n - 1.
( x ) = 0, 只要将 f
m
2
( x ) 写成 f ( x ) 与 f
k- 1
( x ) 的线性组合即可 . 利用
m f k!
k
(x ) + f (x + m ) = f (x ) + m f ′
m (x ) + …+ f ″ ( k - 1) ! f 2!
( k - 1)
(x ) +
(k )
n- 1
f ( x + a i ) = f (x ) +

k= 1
f
(k )
( x ) k f (n ) ( Ν ) n ai + a i. k! n!

数学与应用数学本科毕业范文范德蒙行列式及其应用

数学与应用数学本科毕业范文范德蒙行列式及其应用

本科毕业论文论文题目:范德蒙行列式及其应用学生姓名:学号:专业:数学与应用数学指导教师:学院:年月日毕业论文(设计)内容介绍目录中文摘要 (1)英文摘要 (1)一、引言 (2)二、范德蒙行列式定义及性质 (2)三、范德蒙行列式的应用 (3)(一)范德蒙行列式在多项式理论中的应用 (3)(二)范德蒙行列式对整除问题的应用 (5)(三)范德蒙行列式在矩阵的特征值与特征向量中的应用 (6)(四)范德蒙行列式在向量空间理论中的应用 (7)(五)范德蒙行列式在线性变换理论中的应用 (8)(六)范德蒙行列式在微积分中的应用 (10)(七)范德蒙行列式在求解行列式中的应用 (13)参考文献 (16)范德蒙行列式及其应用摘要:行列式最早出现在16世纪关于线性方程组的求解问题中,时至今日行列式理论的应用却远不如此.它主要应用于高等代数理论,作为一种特殊的行列式——范德蒙行列式不仅具有特殊的形式,而且有非常广泛的应用.本文主要探讨范德蒙行列式在向量空间理论,线性变化理论,多项式理论中以及行列式计算中的应用.关键词:范德蒙行列式;线性变换;多项式Application of Vandermonde’s DeterminantAbstrac t:The determinant appeared at the earliest which was used to solve the problem concerning the liner equations in 16 centuries,but the days up to now the theoretical in determinant was far used in lots of domains.Vandermonde’s determinant is regarded an a kind of special determinant,which not only have the special form but also have the extensive application.The article inquired into the Vandermonde’s determinant in vector space, linear transformation,polynomial theories and determinant’s calculation of application. Keywords:Vandermonde’sDeterminant;vectorspace;lineartransformation,polynomial theories; determinant’s calculation of application.一 引言在高等代数中,行列式计算及其相关的证明是一个重点,也是难点.它最早出现在线性方程组的求解问题中,时至今日,行列式理论的应用越来越广泛,它是后期学习和应用线性方程组,向量空间,矩阵和线性变换的基础.正确而快速的解决行列式问题是其他一切工作的前提,也是科研工作中最为关键的一步.行列式的计算有一定的规律性和技巧性,掌握行列式的规律性有助于我们高效准确的解决科研工作中遇到的行列式问题.而范德蒙行列式是一种重要的行列式,在行列式计算中可以把一些特殊的或者是类似于范德蒙行列式的行列式转化为范德蒙行列式进行计算.由于范德蒙行列式有着独特的构造和优美的形式而被广大科研工作者广泛的应用,因而成为一个著名的行列式.二 范德蒙行列式定义及性质1. 范德蒙行列式的定义形如12222121111211 (1)n nn n n nx x x x x x x x x ---的行列式,称为1x ,2x ,…n x 的n 阶范德蒙行列式,记作 n V (1x ,2x ,…n x ).下面以递推法为例介绍范德蒙行列式的计算n V (1x ,2x ,…n x )=21311222221331111111122133111111000n n n n n n n n n n n x x x x x xx xx x x x x x x x x x x x x x x x ---------------=2131122133112222213311()()()()()()n n n n n n n n x x x x x x x x x x x x x x x x x x x x x x x x ------------=21()x x -31()x x -…1()n x x -n-1V (2x ,…n x ).仿上做法有n-1V (2x ,…n x )=3242223()()n n n x x V x x --(x -x )(x -x ).再递推下直到11V =,故n V (1x ,2x ,…n x )=21()x x -31()x x -…1()n x x -.32422()n x x -(x -x )(x -x )(1n n x x --).1=1i j j i nx x ≤<≤-∏. 有以上的计算易得,定理1 n 阶范德蒙行列式n V (1x ,2x ,…n x )=12222121111211...1n nn n n nx x x x x x x x x ---=∏(i j x x -). 有这个结果立即得出定理2 n 阶范德蒙行列式为零的充分必要条件是1x ,2x ,…n x 这n 个数中至少有两个相等.三 范德蒙行列式的应用范德蒙行列式由于其独特的构造和优美的形式,而有着广泛的应用.下面将集中说明范德蒙行列式在行列式计算和证明及在微积分计算中的应用,并对范德蒙行列式在线性空间理论,线性变换理论,多项式理论中的应用作出探讨.(一) 范德蒙行列式在多项式理论中的应用在多项式理论中,涉及到求根问题的有许多.在分析有些问题时,范德蒙行列式能够起到关键作用的,若能够熟练有效地运用范德蒙行列式,则对我们最终解决问题会有直接的帮助.例1 证明一个n 次多项式在至多有n 个互异根. 证 不妨设n>0, 如果 f(x)=2012n n a a x a x a x ++++有n+1个互异的零点1x ,2x ,…n x ,1n x +,则有()i f x =22012=0i n+i i n i a a x a x a x ++++≤≤,11即 201121120222222012110,0,.......................0.n n nn n n n n n n a a x a x a x a a x a x a x a a x a x a x +++⎧++++=⎪++++=⎪⎨⎪⎪++++=⎩这个关于01,,...n a a a 的齐次线性方程组的系数行列式是范德蒙行列式211122222111111nn n n n n x x x x x x x x x +++=∏(i j x x -)≠0.因此010n a a a ====,这个矛盾表明 ,f (x )至多有n 个互异根. 例2 设12,,n a a a 是数域F 中互不相同的数,12,,n b b b 是数域F 中任一组给定的不全为零的数,则存在唯一的数域F 上次数小于n 的多项式()f x ,使(),1,2,i i f a b i n ==.证明 :设()1011n n f x c c x c x --=+++,有条件得,(),1,2,i i f a b i n ==.知101111110121221011,,.n n n n n n n n n c c a c a b c c a c a b c c a c a b ------⎧+++=⎪+++=⎪⎨⎪⎪+++=⎩因为12,,n a a a 互不相同,所以,方程组的系数行列式()21111212221211101n n ji i j nn nnna a a a a a D aa a a a --≤<≤-==-≠∏.则方程组有唯一解,即唯一解小于n 的多项式,使得()1011n n f x c c x c x --=+++,使得(),1,2,i i f a b i n ==.例 3 证明:对平面上n 个点()()()12,1,,,i i n a b i n a a a ≤≤互不相等,必存在唯一的一个次数不超过n-1的多项式()f x 通过该n 个点()(),1i i a b i n ≤≤,即()i i f a b =()1i n ≤≤.证明: 设()12121n n n n f x c x c x c x c ---=++++,要使()i i f a b =()1i n ≤≤,即满足关于12,,,n c c c 的线性方程组:12111211112212221212121,,.n n n n n n n n n n n n n n n n a c a c a c c b a c a c a c c b a c a c a c c b ---------⎧++++=⎪++++=⎪⎨⎪⎪++++=⎩,而该方程组的系数行列式为范德蒙行列式:121111222212111121111n n n n n n n n n n n n nn a a a a a a D a a a a a a -----------=.当12,,,n a a a 互不相等时该行列式不为零,由Cramer 定理知方程组有唯一解,即对平面上n 个点()()()12,1,,,i i n a b i n a a a ≤≤互不相等,必存在唯一的一个次数不超过n-1的多项式()f x 通过该n 个点.(二) 范德蒙行列式对整除问题的应用多项式的根与整除性是密切相关的,所以有时候可以用范德蒙行列式的性质讨论某些多项式或者整数的整除题. 例4 设121(),(),(),n f x f x f x -是n-1个复系数多项式,满足 11n x x ++++2121()()()n n n n n f x xf x x f x --+++,证明121(1)(1)(1)0n f f f -====.证 设2121()()()n n n n n f x xf x x f x --+++=1()(1)n p x x x -+++,取22cossini n nππω=+,分别以21,,,n x ωωω-=代入,可得 212122(2)1211(1)(2)121(1)(1)(1)0,(1)(1)(1)0,(1)(1)(1)0.n n n n n n n n f f f f f f f f f ωωωωωω--------⎧+++=⎪+++=⎪⎨⎪⎪+++=⎩ 这个关于1(1)f ,2(1)f ,1(1)n f -的齐次线性方程组的系数行列式,因此21(,,,)0n V ωωω-=.例5 设12,,n a a a 是正整数,证明()12,,n V a a a 能被()()2121221n n n n ----整除.证明 由()()()111222111111n nn n a a a a aa I aa a --=-1!2!!n =111222112111211121n n n a a a n a a a n a a a n ---. 知()12,,n V a a a 能被1!2!!n =()()2121221n n n n ----整除.(三) 范德蒙行列式在矩阵的特征值与特征向量中的应用例 6 A 是3阶方阵,A 有3个不同的特征值123,,,l l l ,对应的特征向量依次为123,,,a a a 令123b a a a =++.证明:2,,b Ab A b 线性无关.证 21231123()k b k Ab k A b k a a a ++=++22221122333112233()()k l a l a l a k l a l a l a ++++++=222121311222322333333()()()k k l k l a k k l k l a k k l k l a ++++++++=0.123,,a a a 线性无关,故有2111222223331101l l k l l k l l k ⎛⎫⎛⎫⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭. 由于i j l l ≠,则0A ≠,所以方程组只有零解, 即2,,b Ab A b 线性无关.例 7 设A 是n 阶矩阵,证明A 的属于不同特征值的特征向量线性无关. 证明:设12,,r λλλ是A 的两两不同的r 个特征值,非零向量12,,r ααα是其相应的特征向量,即r i r A αλα=,1i r ≤≤,假设11220r r x x x ααα+++=那么,()11220,11j r r A x x x j r ααα+++=≤≤-,即()1110r r rjjj i i i i i i i i i i A x x A x ααλα===⎛⎫=== ⎪⎝⎭∑∑∑.由于其系数行列式()12,,0r V λλλ≠,故11220r r x x x ααα====,又0i α≠于是,0i x =,这证明了12,,r ααα线性无关.(四) 范德蒙行列式在向量空间理论中的应用在向量空间理论中,我们常常会遇到需要用范德蒙行列式转化问题,通过转化,我们很容易就能得到需要的结论. 例8 设12,,,n t t t 是互不相同的实数,证明向量组21(1,,,)n i i i i a t t t -=,i=1,2,…n,n 是n 维向量空间的一组基.证 令21111121222221111n n n n nnn a t t t a t t t A a t t t ---⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪== ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭. 因为12,,,n t t t 是互不相同的实数,所以0T A A =≠,则12,,,n a a a 线性无关.例 9 设V 是数域F 上的n 维向量空间,任给正整数n m ≤,则在V 中存在m 个向量,其中任取n 个向量都线性无关.证明:因为n V F ≅,所以只需在n F 中考虑即可. 取()2111,2,2,,2n α-=,()()()2222121,2,2,2n α-=,()()()211,2,2,2mmm n m α-=,令()()()()()()111222212121122212221222nnnk k k n k k k n n k k k n D ---=,121n k k k m ≤≤≤≤≤,()()()()()()111222212121122212221222n nnk k k n k k k n n k k k n D ---=是范德蒙行列式,且0n D ≠,所以12,,,n k k k ααα线性无关.例 10 设V 是数域F 上的n 维向量空间,则V 的有限个真子空间不能覆盖V.证明:当n=1时,显然成立.设n>1时,令12,,,n ααα是V 的一个基,设}{112n n n S k k k F V ααα-=+++∣∈⊂,其中,n F 为F 中元素之集合.令112:,n n n F S k e ke k e ϕ-→→+++,12,,,n e e e 为单位向量.则易证ϕ是双射,从而S 中有无穷多个不同的元素.设,1,2,i V i t =为V 的真子空间,则S 中的元素在i V 中的个数小于n,否则,若,1,2,j i V j n β∈=111121112,.n n n nn n n k k k k βαααβααα--⎧=+++⎪⎨⎪=+++⎩则由,,1,2,,,i j k k i j n i j ≠=≠,知系数行列式为非零的范德蒙行列式,故有,1,2,,j k V j n α∈=,进而,1,2,i V V i t ==矛盾.从而S 中只有有限多个元素在1ti i V =中,而S 中有无穷多个元素,所以存在x S ∈,但1,ti i x V =∉即V 的有限个真子空间不能覆盖其自身.(五) 范德蒙行列式在线性变换理论中的应用在高等代数的学习中,线性变换一直是一个重点,也是难点,题目的变化也比较多,在有些题目中,我们可以巧妙地利用范德蒙行列式来解决这类题目. 例11 如果12,,,s λλλ是线性变换的全部两两不同的特征值,(1,2,,)i i V s λα∈,则当120s ααα+++=时,必有12s ====0ααα.证明 注意到(1)I i i i s αλαΛ=≤≤,对等式120s ααα+++=两边逐次作用,得112222211221111220,0,0.s s s ss s s s s λαλαλαλαλαλαλαλαλα---+++=⎧⎪+++=⎪⎨⎪⎪+++=⎩ 用矩阵表示为()()111122121110,0,,01s s s s s s λλλλαααλλ---⎛⎫⎪⎪= ⎪ ⎪ ⎪⎝⎭(1)矩阵1111221111s s s s s B λλλλλλ---⎛⎫⎪⎪= ⎪ ⎪ ⎪⎝⎭的行列式是范德蒙行列式,由于12,,,s λλλ两两不同,从而B 是可逆矩阵.在(1)式两边右乘1B -, 得12s ====0ααα.例12 数域F 上的n 维向量V 的线性变换σ有n 个互异的特征值12,,n λλλ,则1) 与σ可交换的V 的线性变换都是21,,,n e σσσ-的线性组合,这里e 为恒等变换.2)21,,,,n V αασασασα-∀∈线性无关的充要条件为1,ni i αα==∑这里()i i i σααλ=,1,2,i n =证明:1)设δ是与σ可交换的线性变换,且(),1,2,,i i i i n σαλα==则 }{i i V k k F λα=⎪∈是δ的不变子空间.令21121n n xe x x x δσσσ--=++++且(),1,2,,i i i k i n σαα==,则由以下方程组21111211121212221221121,,.n n n n n nn n n n k x x x x k x x x x k x x x x λλλλλλλλλ------⎧=++++⎪=++++⎪⎨⎪⎪=++++⎩ (1)因为方程组(1)的系数行列式是范德蒙行列式,且()1ij j i nD λλ≤<≤=-∏,所以方程组(1)有唯一解,故δ是21,,,n e σσσ-的线性组合.2)充分性因为1ni i αα==∑,所以()()()()111112212111,,,,,,1n n n n nn λλλλασασααααλλ----⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,并且()111122111101n i j j i nn nn λλλλλλλλ--≤<≤-=-≠∏,所以1111221111n n nn λλλλλλ---⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦是可逆矩阵,又因为12,,,n ααα是V 的一组基,()()1,,,n ασασα-线性无关.3)必要性 设12,,,n e e e 是分别属于1,,,n λλλ的特征向量,则12,,,n e e e 构成V 的一个基,因而有1122n n k e k e k e α=+++.若0,1,2,i k i n ≠=,则i i k e 是σ的属于i λ的特征向量,故结论成立.若存在}{1,2,,j n ∈,使0j k ≠,不妨设12,,,r k k k 去不为零,而120r r n k k k ++====,因而有1122r r k e k e k e α=+++则()()()()()111111112222212121,,,,,,,,,n n n r r n r r r r r k k k k k k e e e e e e A k k k λλλλασασαλλ----⎡⎤⎢⎥⎢⎥==•⎢⎥⎢⎥⎢⎥⎣⎦. 利用范德蒙行列式可知A 有一个r 阶子式不为零,所以秩(A )=r ,从而()()()1,,,n r ασασα-=,又因为r n <线性无关,所以()()()1,,,n ασασα-线性无关,矛盾.从而1,ni i αα==∑1,2,i n =.(六) 范德蒙行列式在微积分中的应用如果视多项式为实函数,则范德蒙行列式还可以应用到微积分领域.例13 ()f x 在[],a b 上连续,在(),a b 内存在2阶导数,证明a x b <<上有()()()()()1"2f x f a f b f a x a b a f c x b -----=-,这里(),c a b ∈.特别的,存在,(,)c a b ∈,使()()2,()2()"()24b a a bf b f f a f c -+-+=. 证 在[],a b 上构造函数()()()()()22221111y y f y a a f a F x x x f x b b f b =,为范德蒙行列式,则()f x 在[],a b 上连续,在(),a b 内存在2阶导数.因()()()0F a F x F b ===,故有中值定理,存在12a x x x b <<<<,使()()12''0F x F x ==,故再运用一次中值定理,存在()12,c x x ∈,使()''0F c =,即()()()()()''2''22002111f c a a f a F c x x f x b b f b ==0 . 展开行列式即得()()()()()1"2f x f a f b f a x a b a f c x b -----=-. 特别的,取2a bx +=,则有相应的()',c a b ∈,使上式成立,即()()()()212"22a b f f a f b f a a b b a af c a b b +⎛⎫- ⎪-⎝⎭-+--=+-,化简即得()()2,()2()"()24b a a bf b f f a f c -+-+=.反复利用微分中值定理,可以类似的证明下面更一般的结论:设()f x 在[],a b 内存在n-1阶导数,12n a x x x b <<<<=.证明存在(),c a b ∈,使()()()()()111!n ni i i j j if x f c n x x -=≠=--∑∏. 例 14 设()f x 在区间I上n 阶可导()2n ≥,若对()()()()00,,,,n n n x I f x M f x M M M ∀∈≤≤为正常数,证明:存在n-1个正常数121,,,n M M M -使对x I ∀∈,有()()()1,2,1.k k f x M k n ≤=-证明:设121,,n a a a I -∈,且()0,i i j a a a i j ≠≠≠,由泰勒公式,对于1,2,,1i n =-,有()()()()()11!!n xn k ni i i k f f f x a f x a a k n ξ-=+=++∑,有此得 ()()()()()11!!n xn kn i i i k f f a f x a f x a k n ξ-==+--∑, 因此 ()()()()()1012!!!nx n k n i i i n k f f A a f x a f x a M M k n n ξ-=≤+++≤+∑,其中11max ni i n A a ≤<-=,令()()()11,,1,2,,1!x n ki i k f a A x x I i n k -==∈=-∑,则()()02,1,2,,1!i n AA x M M x I i n n ≤+∈=-,由于方程组的系数行列式D 为()()()2311111231222223111112!3!1!2!3!1!2!3!1!n n n n n n n a a a a n a a a a n D a a a a n ---------=-=()211112122212121111111!21!1n n n n n n n a a a a a a a a a n a a a -------=-!,其中后面的行列式为121,,,n a a a -范德蒙行列式,由()i j a a i j ≠≠及0i a ≠知0D ≠,故由克莱姆法则知,存在于X无关的常数()()()()()()121,,k k k n λλλ-,使得:()()()()()11n k k i i i f x A x λ-==∑,(),1,2,,1x I i n ∀∈∀=-,由此推得,1,2,,1x I k n ∀∈∀=-,有()()()()()()()110112!n n k k k i n k i i i i A fx A x M M M n λλ--==⎡⎤≤≤+=⎢⎥⎣⎦∑∑.例15 设函数()f x 在0x =附近有连续的n 阶导数,且()()()()'00,00,,00n f f f ≠≠≠.若121,,,n c c c +为一组两两互异的实数,证明,存在唯一的一组实数121,,,n λλλ+,使得当0h →时,()()110n i i i f c h f λ-=-∑是比n h 高阶的无穷小.证明:由题设条件可得,()()1,2,1i f c h i n =+在0x =处带有皮亚诺型余项的马克劳林展开式:()()()()1100!k k nk nk h c f c h f h k ==+ο∑,()()()()2200!k k nk n k h c f c h f h k ==+ο∑,当0h →时,若()()110n i i i f c h f λ-=-∑为比n h 高阶的无穷小.则121112211222112211112211++=1,++=0,++=0,++=0.n n n n n nn nn n c c c c c c c c c λλλλλλλλλλλλ++++++++⎧⎪+⎪⎪+⎪⎨⎪⎪⎪+⎪⎩ 这是以121,,,n λλλ+为未知数的线性方程组,其系数行列式为:()121222121111211110n n ijj i n nn n n c c c D c c c c c c c c ++≤<≤++==-≠∏.故上述方程组有唯一解,即存在唯一一组实数121,,,n λλλ+,使得当0h →时,()()110n iii f c h f λ-=-∑是比nh高阶的无穷小.(七) 范德蒙行列式在求解行列式中的应用行列式的计算是高等代数的重点内用之一,在一些行列式的求解问题中,常可见到范德蒙行列式的踪影,此时提示我们可利用行列式的性质或拆项,升降等方法,将给定行列式转化为范德蒙行列式的形式,从而利用其结果,求出原行列式的值,恰当灵活的运用范德蒙行列式会大大简化某些复杂行列式的计算.例16 122222221211112111=nn n n n n n n na x a x a x D a x a x a x a x a x a x ---+++++++++.解 将原n 阶行列式升阶为一个n+1阶行列式122222221211112111110000nnn n n n n n na x a x a x D a x a x a x a x a x a x ---+++=++++++. 然后将此n+1阶行列式第一行乘以()1,2,i a i n -=加到第i+1行可得12222212121111n nnnn n na x x x D a x x x a x x x -=--=1222212122111000n nnn n nx x x x x x x x x -12222212121111n nnnn n na x x x a x x x a x x x =()()()121112nn ijiijj i ni j i nx x x x x x a x x ≤≤≤=≤≤≤•----∏∏∏.例 17 设0x y z >>>,试证明:()2221,,0xx yz f x y z y y xz xy yz xzz z xy=<++. 证明:()()()()222222312222xx yz x x yz x y z x x D yy xz c x y z c c y y xz x y z y y zz xyzz xy x y z z z +++-=+++-+++-+++- ()()()()222x x xy yz xzy y xy yz xz xy yz xz y x z x z y zz xy yz xz++=++=++---++故()2221,,x x yzf x y z y y xz xy yz xzzz xy=++=()()()y x z x z y ---. 由已知0x y z >>>,有()0y x -<,()0z y -<,()0z x -<,所以有(),,0f x y z <例18 计算行列式()()()()()()()()()0001010111101n nnn n nnn n nn nn n n n a b a b a b a b a b a b D a b a b a b +++++++=+++解:设01000111101n nn n n n n n n n n nn n n n nC C a C a C C a C aD C C a C a =,01111012111n nn n n n n nb b b b b b D ---=,对2D 进行各行依交换,就可以得到范德蒙行列式,于是()()0010112112112011111111nnn n nn n n nnnnn n nnn a a b b b a a D D D C CC b b b a a ++=•=•-=12n n nnC C C()0ijj i na a ≤<≤-∏()()121n n +-()0ijj i nb b ≤<≤-∏.参考文献[1] 同济大学数学系.线性代数(第五版).北京:高等教育出版社.2007(9)[2] 北大数学系编.王萼芳等修订.高等代数.第三版.北京:高等教育社.2003(2).[3] 郭大钧等.吉米多维奇数学分析习题集解(第三版).济南:山东科学技术出版社.2005(3).[4] 张禾瑞,郝炳新.高等代数[M].北京:高等教育出版社.1999[5] 白述伟.高等代数选讲[M].哈尔滨黑龙江教育出版社.1996.[6] 同济大学.高等代数与解析几何[M].北京:高等教育出版社.2005:223.[7] 刘丽,林谦,韩本三,等.高等代数学习指导与习题解析[M].成都:西南财经大学出版社.2009:39.170.253.[8] 邹应.数学分析习题及其解答[M].武汉:武汉大学出版社.2001:168.169.176.[9] 吴良森,毛羽辉.数学分析习题精解:多变量部分 [M].北京:科学出版社,2005.[10] 毛纲源.线性代数解题方法和技巧[M].武汉:湖南大学出版社.山东师范大学本科毕业论文(设计)题目审批表山东师范大学本科毕业论文(设计)开题报告论文题目:学院名称:专业:学生姓名:学号:指导教师:年月日山东师范大学本科毕业论文(设计)教师指导记录表指导教师意见评阅人意见答辩委员会意见学院学位分委员会意见山东师范大学本科毕业论文(设计)答辩记录表学院:(章)系别:专业:山东师范大学本科毕业论文(设计)摘要学院:专业:班级:山东师范大学本科毕业论文(设计)摘要学院:专业:班级:。

范德蒙行列式经典例题

范德蒙行列式经典例题

范德蒙行列式经典例题范德蒙行列式是19世纪的数学家哈勒•范德蒙提出的一种数学思想,它可以用来解决许多数学问题。

范德蒙行列式的经典应用是用来解决二元一次方程,而这样就给出了许多可以用来练习的例题。

下面将介绍列出几个范德蒙行列式经典例题:一、解决一元二次方程题目:2x2+7x+1=0解:通过范德蒙行列式,可得:|2 7||1 0|令左边矩阵的行列式D = 2*0-7*1 = -7则根据范德蒙行列式,可求出:x1= D/2= -7/2x2= (-7+-√49)/4即根为x1=-3.5,x2=-1.5二、解决多元一次方程题目:2x+y+6z=17 , 5x-y-3z=2 , 4x+3y-2z=1解:通过范德蒙行列式,可得:|2 1 6||5 -1 -3||4 3 -2|令左边矩阵的行列式D = (2*(-1)*(-2)-1*5*(-3)+6*3*4) = 28 则根据范德蒙行列式,可求出:x1= (17*(-2)*(-3)-2*(-1)*6+1*5*4)/D= 6x2= (17*(-1)*4-2*3*6+1*(-3)*5)/D= 4x3= (17*2*3-2*(-1)*(-3)+1*(-1)*(-2))/D= 3三、应用范德蒙行列式进行微积分题目:求∫sin2(x)dx解:利用范德蒙行列式,可得:| sin 2x -1 || cos 2x 0 |令左边矩阵的行列式D = sin2x * 0 - (-1) * cos2x = cos2x则根据范德蒙行列式,则可求得∫sin2(x)dx= sin2x + c,其中c为常数。

四、直角梯形面积计算题目:梯形ABCD的对角线AB和CD的长分别为2 cm 和4 cm,且∠BAC=45°,求梯形ABCD的面积S。

解:通过范德蒙行列式,可得:|2 tan45°||4 0 |令左边矩阵的行列式D = (2 * 0 - tan45° * 4) = -2因此面积S = D / 2 = -1由此可看出,梯形ABCD的面积为1平方厘米。

范德蒙行列式的几点重要的应用-应用数学毕业论文

范德蒙行列式的几点重要的应用-应用数学毕业论文

阜阳师范学院信息工程学院Fuyang Shifan Xueyuan Xinxi Gongcheng Xueyuan诚信承诺书我谨在此承诺:本人所写的毕业论文《范德蒙行列式的几点重要的应用》均系本人独立完成,凡涉及其他作者的观点和材料均作了注释。

如有不实,本人愿承担相应后果,接受学校的处理。

承诺人(签名)年月日范德蒙行列式的几点重要的应用姓名:苏春 学号:200904010221 指导老师:王海坤摘要行列式是高等代数知识学习的基础,它在后续的学习中非常重要。

由于它有良好的特点和独特的形式而深受数学工作者的关注。

本文将立足于范德蒙行列式的性质, 探究其各种位置变化规律。

从而把一些似于它的行列式特点且根据一定的规律性和技巧性可以转化且利用它的性质特点进行优化处理,及如何构造它,把复杂的行列式进行优化,本文主要通过举例来探究它在多项式、线性变换、向量空间以及微积分等理论中的具体应用。

关键词:范德蒙行列式;行列式;微积分:向量空间;线性变换;多项式;1. 预备知识1.1 范德蒙行列式的定义我们把形式如下的行列式113121122322213211111----=n nn n n nnn a a a a a a a a a a a a D称为阶数为n 的范德蒙行列式(Vandermonde Determinant)。

下面我们来把范德蒙德行列式n D113121122322213211111----=n nn n n nnn a a a a a a a a a a a a D∏≤<≤-=ni j j i a a 1)(对于任意的)2(≥n n 恒成立. 作具体的证明:1.2 范德蒙行列式的证明1.2.1 范德蒙行列的归纳法的证明证明:用数学归纳法当2=n 时,有.)(112112212∏≤<≤-=-==i j j ia aa a a a D 故有当2=n 时成立。

假设对阶数为1-n 时成立原命题已证,现对阶数为n 时也证明同样成立。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

刀+ I
艺A(h一f0是比 阶 无 小 ,p) ( f, ) 。高 的 穷 .
证 由题设条件, fp ) ,, ,十1在 x 处常有皮亚诺余项的马克劳林展开式 可得 (; ( h i 2 n ) =0 =1
fk 0 +o h) c( ) (0 ) f ph = 间 (,) 。
() 2
其中x . x m m ,," . <¥< + , 2", 这是关于尹() x ,. (‘x 的 二1 "k x , )., ) 线性方程组, 尹( .f 一 () ‘ 其系数行列式

(. 1
,. 上
别 矛
勺 ‘

日 日 日 曰

1 1 - 1 一 了 1 、 t

由此 得
f x (( ) k )
k!
a; I x - ai = l t )一 J x )一 一 k
’ f月( ) ( }
n!
a l 7
因此
岁f ) 毛 {(+a +{()+ (X k f 川 fx I k , ) ( x
kI ! / k = 1
第2 0卷第 3 期 20 年 6月 04
大 学 数

V l2 , 3 o. N . 0 2
Jn 2 4 . 0 u 0
COL EGE L MATHEMATI CS
范德蒙行列式在微积分中的应用
程伟健 , 贺冬冬
( 合肥工业大学 理学院 信息与计算科学专业 0 级, 2 合肥 200) 361
泰勒公式
f 十 )f )M + f二 … 下共 f l )买 (。, ( m一(+f二 军 l) 十 m一 ( (十 f ) 二 二 ( ) l+ ( k二 - k二 ) (

‘王 、 — 12J K RJ
我们称形如
l xl
I X
1 几


一一


 ̄一
I <j 蕊i ‘n
且 (一 i xx , )
x- x - … ;' 2'
x一 :1
的行列式为范德蒙( adr od) V nem ne 行列式. 它构造独特、 形式优美 , 更由于它有广泛的应用, 因而成为一 个著名的行列式. 本文将通过若干实例来说明这个行列式在微积分中的应用。 例 ll 确定常数 abcd 使得 f =aox csx csx csx当x 时为最高阶的 E ' ,,,, () cs +bo2 +c 3 +do4 x o -0 无穷小, 并给出其等价表达式. 解 对 f x 的各项利用泰勒公式 , () 有
Jl = al x) 1 十 丁:一 二 十 ol 川 十 剑 1 - 万 - 十 一 汽 一 一 一 十 o 月 下 x0 一 ,: 气 厂一 不下 l x- \ L! 4! b! / \ ‘里 4! O: I 十 , 1 - 万 -十 一,: 一 -下二 -十 ol 川 十 al 一认 - 十 一丁丁 一 一二下一十 ok ) l 一 二下 丁 一户 - x- 1 一 下 一 x- I
l 0(() i f' t mx '
一 (.i l手 l手t‘ i ) i {( m “ m 0 f, ) 卜
l 00() (=0k . i f ' mt t=0 i ,)
在此式中分别令 t 十m, =x i =0和令 t ,i , =¥ , " =k则得 l "(+m) i 0((. 二0 m=12…,) i f mx x =l fk ¥) ( mx ' ,, k.
() 1
} x } L 。 -M 氏() M 十 ! E n
由于方程组() 3 的系数行列式 D为 武 川 一2! -3! a1 嘴 心 -2! -3! a2
D=
, , .A . __ ,
( x任I V =1 2 , 一1 . ` d , i ,, n )
1 al .. , a2 .a 一1 1


, 孟



J 勺 ‘




, . 卫

, 户 口 ‘



月 Q ‘

. 通
1 2 … ( 一1 ! !! n )
a” 一1
a_ a一 三; 之1

1 , 1 a一

a二 n '}
3 !
右边的行列式为a, , , _的范德蒙行列式, ; a(, ) at0 D} , 1 . a , a . 2 由aA ; zj及 , 知 :0故由克莱姆法则知, = i- k : - - 4
Jl ta J Jl r J ,一 . 一a - 下 丁一 x- ; = - x) t 一L 一 ; 丁 r一 a・ ,
, ,书 f ) . ( e ( ,、 ( 二 , f )。 k ) ( n )
k几 = K: l ,;
存在与二无关的常数 犷) 2 1 , V)
形 ) 使得 k,
C ) (( = kx )
由此推得 b EI V =12 x , k ,,
l,
形 ) ; , V k () A x xEI ` 二1 2 … , 一 1 , d k ,, n .
}k ) f) cx} I AxI ( 成艺 x ;) k}( <习 {)2+M=从 . ) I A{M 杀o ( , k
衅一 。
I(() fn ¥ 1 )
A M十 ! ’ G 。n -M
x a ; 其中 A=1ma } ,/ n 蕊 一1

, 、 . _
A、 ,
} k) , ( ,i , , -k) 一 ( xeI =1 2 ) 二 , ) 二 Q` z '( . f k 1 = K:

,一 1 , n )
注 类似的方法可证如下命题[ [ 3 ]
设函数 f在( , 上有直到 n阶导数 , ( +-) a 且有
才 ̄ + C 〕 ‘
l f ) i ( 二A, l f" x =B m x i (( ) . m '
J , + 0二
万方数据
第3 期
程伟健 , : 蒙行列式在微积分中的应用 等 范德
1 9 2
。 m i J f ) , ) ( =12 ・ 刀。 求 证 : k 二 二0 k , , ,,
例 3 〕 设 f二 在区间I n阶可导(-2 , L ‘ () 上 (> )若对v EI I() I ) ) ( , 为 n - X , x I f <MlI(( I Mo fRx <M. M 正常数)证明: , 存在 n 个正常数 Mt ,. 一1 , ., M2 . M-t使对V EI I () (=12 . ,一1. , X , ) 1 fk x <Mk ( k ,,. .n ) 证 设“ - , 2 a 。, , a} , a(, )由泰勒公式, i ,," -1 一EI且 ; 0 aA ; zj , : 6 ; i' = } - 对V=12", . "n
万方数据
1 8 2




第2 卷 0
a 十c +b +d=0 ,
a 2十3c 2 = +2 2+4d , b 0
a 2b '十4d + '+ c ' =0 3 ,
等价于 b 十d +c =一a ,
2b 2+ d 2+ c 2 =一a 3 4 ,
2b 3c ' 一a '+ + d= ' 4 .
此以bcd为未知数的线性方程组 , ,, 其系数行列式为范德蒙行列式
1 才


-一
3 4 2 2

祥 . 0

3 4 ' '
方程组有唯一一组依赖于 a 的解:=一2 , b ac =
穷小有下述形式的表达式
a十 下 ̄ JI xJ= 一 万二 a一 L'
, ( ) =0的邻域 内的最高阶无 一下a 从而 f 二 在 x
2 3 < "
心. 1
2 3 6 6
为范德蒙行列式. 由于D5 , :0故以abcd为未知数的方程组只有零解:=b =d , 6 ,,, a =c =0从而f =0 () . x 这显然不合题意, 故以下考虑 f 当x 时最高阶无穷小为 6 ( ) -0 x 阶的情形. 令
[ 收稿日 期]20-9 0 03 - 02 〔 甚金项目〕安徽省重点教学研究项目(011) ( 001 2
洲 P
粉 一, 佗 J
・习 ・习 间
P -

.沪
h 一 甲 h
』一 k
了 、1Βιβλιοθήκη 1、 , 了f ph = ( z)

n , n - I -
”一 1
例 4 1 设函数 f ) x 附近有连续的 n阶导数, f 0 }of )- , ,(() 0若 [ 4 ( 在 =0 x 且 () , ( 70 fn 0 = . 0 1 ) A 存在惟一的一组实数 久,:… , , 1几, A 1使得 当 h 0时, . , + - p+为一组两两互异 的实数, 明: 证 p 2 ,"l
( 一1 1 k )

一-
峨. 1
-2!

2一 k1 ( 一 1 ! 一一 k )

- 1 1


八 口
以 1| | 1

2一 k1
3一 k1
1. 1
,走
-2!
k一 k1
k 2 … k
k一 k1

( 一1 ! k )
后一行列式为范德蒙行列式, 其值为 12.(一1 !故 D=1于是可从方程组() 尹( )尹() !! . .k ), . 2把 x , x ,… f ( ) ( 二 写成 f x k” ( +m) ( m=12…,) f ¥) ,, 走 与 (( ( k m m二12 . k 的线性组合. ) ,, . ) , 我们只要证明 l 0( +m) i a ¥) i f mx x =l fk m =0 ( 1 2 … , ) mx (( ) m二 , , k 即可. 事实上, x 镇x , 设 簇t +k 于是
相关文档
最新文档