高一数学集合经典测试题

合集下载

高一数学集合练习题及答案经典

高一数学集合练习题及答案经典

高一数学集合练习题及答案经典一、单选题1.已知集合{}{}22,1,0,2,3,4,|340A B x x x =--=--<,则A B =( )A .{}1,0,2,3,4-B .{}0,2,3,4C .{}0,2,3D .{}2,32.已知集合{}111,202xA x xB x ⎧⎫⎪⎪⎛⎫=+<=-≥⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,则()AB =R( )A .()2,1--B .(]2,1--C .()1,0-D .[)1,0-3.已知集合{A x y ==,{}0,1,2,3B =,则A B =( ) A .{}3B .{}2,3C .{}1,2,3D .{}0,1,2,34.已如集合{}2A x x =>,{}35B x x =-<<,则A B =( ) A .{}25x x <<B .{}32x x -<<C .{}35x x -<<D .{}3x x <-5.已知集合{}0,1,2,3,4,5A =,{}1,3,6,9B =,{}3,7,8C =,则 ()A B C ⋂⋃=( ) A .{}3B .{}3,7,8C .{}1,3,7,8D .{}1,3,6,7,86.已知R 为实数集,集合{}{}2340,ln(1)A x x x B x y x =--≤==-,则R A B ⋃=( )A .{}14x x <≤B .{}11x x -≤≤C .{}1x x ≥-D .{}4x x ≤7.已知集合{}{}234014P x x x Q x N x =--<=∈≤≤,,则=P Q ( )A .{1,2,3,4}B .{1,2,3}C .{1,2}D .{2,3,4}8.已知集合{}220A x x x =--≤,{}2log B x x k =>.若A B =∅ ,则实数k 的取值范围为( ) A .02k <≤ B .04k << C .2k ≥D .4k ≥9.已知集合{}14A x x =-≤≤,{}260B x N x x =∈--≤ ,则A B =( )A .[]1,3-B .[]2,4-C .{}1,2,3D .{}0,1,2,3 10.集合M ={x |x =i n +1,n ∈N}(i 为虚数单位)的真子集的个数是( )A .1B .15C .3D .1611.已知集合(){}2log 2A x y x ==-,{}2xB y y ==,则A B =( )A .()0,2B .()1,2C .[)1,2D .(),2-∞12.设集合A 实数 ,{}B =纯虚数,{}C =复数,若全集SC ,则下列结论正确的是( ) A .A B C = B .A B = C .()S A B ⋂=∅D .SSABC13.已知集合{}82A xx =-<<∣,{}1B x x =≤-,则()R A B ⋂=( ) A .{}1x x <- B .{}12x x -<< C .{}8x x >-D .{}28x x <≤14.等可能地从集合{}1,2,3的所有子集中任选一个,选到非空真子集的概率为( ) A .78B .34C .1516 D .1415.已知集合{}2|20,A x x x x R =--≤∈,{}|14,B x x x Z =-<<∈,则A B =( )A .(1,2]-B .(1,2)-C .{}0,2D .{}0,1,2二、填空题16.已知集合{}21A x x =-<<,{}0B x x =<,则A B ⋃= ____________.17.设集合{}{}23,650A x x B x x x =≤=-+≤,则A B =________.18.已知a 、R b ∈,若不等式20ax x b -+<的解集为112A x x ⎧⎫=<<⎨⎬⎩⎭,不等式210ax bx +-≤的解集为B ,则()R A B ⋂=______.19.用适当的符号填空:(1){}0______()2,3-; (2){},,a c b ______{},,a b c ; (3)R______(],3-∞-; (4){}1,2,4______{}8x x 是的约数. 20.若{}31,2a ∈,则实数=a ____________.21.若集合{}2210A x x x =-+=,{}210B x x =-=,则A ______B .(用符号“⊂”“=”或“⊃”连接)22.集合{12}A =,的非空子集是________________. 23.已知集合{}{}214,0,1,2,4A x x B =≤<=,则A B ⋂=___________. 24.已知集合{}()216,xA xB a ∞=≤=-,,若A B ⊆则实数a 的取值范围是____.25.以下各组对象不能组成集合的是______(用题号填空). ①中国古代四大发明 ②地球上的小河流 ③方程210x -=的实数解 ④周长为10cm 的三角形 ⑤接近于0的数三、解答题26.已知集合{|124}x A x =≤≤,{|()(1)0}B x x a x =--≤. (1)求A ;(2)若A B B =,求实数a 的取值范围.27.设全集U R =,已知集合{}1,2A =,{|03}B x x =≤≤,集合C 为不等式组10240x x +≥⎧⎨-≤⎩的解集.(1)写出集合A 的所有子集; (2)求UB 和BC ⋃.28.设集合(){}1A x x x a a =+-≤,{}260B x x x =+-<,{}260C x x x =--≤.(1)求B C ⋃.(2)若()R A B ⋂=∅,求实数a 的取值范围.29.已知集合{}2430M x x x =-+<,{}12N x x =-<<.(1)求()RM N ⋃;(2)若集合()(){}20P x x m x =+-≤,且“x ∈N ”是“x P ∈”的充分不必要条件,求m 的取值范围.30.已知P ={x |x 2-x -20≤0},非空集合S ={x |1-m ≤x ≤1+m }.若x ∈P 是x ∈S 的必要条件,求m 的取值范围.【参考答案】一、单选题 1.C 【解析】 【分析】先求出集合B ,再求两集合的交集即可 【详解】由2340x x --<,得(1)(4)0x x +-<,解得14x -<<, 所以{}14B x x =-<<, 因为{}2,1,0,2,3,4A =--, 所以A B ={}0,2,3, 故选:C 2.C 【解析】 【分析】由绝对值不等式的解法求出集合A ,再利用指数函数的单调性求解集合B ,最后根据集合的补集、交集的定义即可求解. 【详解】解:由题意,{}{}|111|20A x x x x =-<+<=-<<,{}{}|22|1xB x x x -=≥=≤-,∴{}1R B x x =>-,∴(){}()|101,0R A B x x ⋂=-<<=-. 故选:C . 3.C 【解析】 【分析】根据定义域的求法解出集合A ,然后根据交集的运算法则求解. 【详解】 解:由题意得:{{}|1A x y x x ===≥ {}1,2,3A B ∴⋂= 故选:C 4.A 【解析】 【分析】应用集合的交运算求A B . 【详解】{|2}{|35}{|25}A B x x x x x x ⋂=>⋂-<<=<<.故选:A 5.C 【解析】 【分析】先求A B ,再求()A B C ⋂⋃. 【详解】{}1,3A B =,(){}1,3,7,8A B C ⋂⋃=.故选:C 6.D 【解析】 【分析】首先解一元二次不等式求出集合A ,再根据对数型函数的定义域求出集合B ,最后根据补集、并集的定义计算可得; 【详解】解:由2340x x --≤,即410x x ,解得14x -≤≤,即{}{}234014A x x x x x =--≤=-≤≤,又(){}{}ln 11B x y x x x ==-=,所以{}|1RB x x =≤,所以{}4R A B x x ⋃=≤;故选:D 7.B 【解析】 【分析】解不等式得到14{|}P x x =-<<,根据题意得到{1,2,3,4}Q =,再由集合交集的概念得到结果. 【详解】由集合{}234|0P x x x =--<,解不等式得到:14{|}P x x =-<<,又因为{1,2,3,4}Q =,根据集合交集的概念得到:{}1,2,3P Q ⋂=. 故选:B. 8.D 【解析】 【分析】由于A B =∅ ,B 集合所表示的区间在A 集合之外. 【详解】由220x x --≤ ,解得12x -≤≤ ,即[]1,2A =- ,A B =∅ ,2log 2k ∴≥ ,4k ≥ ;故选:D. 9.D【解析】 【分析】由题知{}0,1,2,3B =,再根据集合交集运算求解即可. 【详解】解:解不等式260x x --≤得23x -≤≤,所以{}{}2600,1,2,3B x N x x =∈--≤=,因为{}14A x x =-≤≤ 所以A B ={}0,1,2,3 故选:D 10.B 【解析】 【分析】先根据虚数单位i 的性质确定集合M 的元素个数,再由n 元集合的真子集个数为21n -可得. 【详解】当n ∈N 时,x =i n +1的值只有i ,-i ,1,-1,故M 中有4个元素,所以M 共有24-1=15个真子集. 故选:B 11.A 【解析】 【分析】由对数函数定义域和指数函数值域可求得集合,A B ,由交集定义可得结果. 【详解】由20x ->得:2x <,(),2A ∴=-∞;由20x >得:()0,B =+∞;()0,2A B ∴⋂=.故选:A. 12.D 【解析】 【分析】根据集合A ,B ,C 的关系求解即可. 【详解】集合A ,B ,C 的关系如下图,由图可知只有SSABC 正确.故选:D.13.B 【解析】 【分析】根据补集的运算,求得{}R |1B x x =>-,结合交集的概念及运算,即可求解. 【详解】由题意,集合{}1B x x =≤-,可得{}R |1B x x =>-又由{}82A xx =-<<∣,所以(){}R 12A B x x ⋂=-<<. 故选:B. 14.B 【解析】 【分析】写出集合{}1,2,3的所有子集,再利用古典概率公式计算作答. 【详解】集合{}1,2,3的所有子集有:{}{}{}{}{}{}{},1,2,3,1,2,1,3,2,3,1,2,3∅,共8个,它们等可能,选到非空真子集的事件A 有:{}{}{}{}{}{}1,2,3,1,2,1,3,2,3,共6个, 所以选到非空真子集的概率为63()84P A ==. 故选:B 15.D 【解析】 【分析】 解不等式后求解 【详解】220x x --≤,解得[1,2]A =-,{0,1,2}A B ⋂=故选:D二、填空题16.{}1x x <【解析】 【分析】利用并集概念及运算法则进行计算. 【详解】在数轴上画出两集合,如图:{}{}{}2101A B x x x x x x ⋃=-<<⋃<=<.故答案为:{}1x x <17.[1,3]【解析】 【分析】根据交集的定义求解即可. 【详解】解不等式2650x x -+≤ ,得()()150x x --≤ ,解得15x ≤≤ , 即[]1,5B = ,[]1,3A B ∴= ; 故答案为:[]1,3 .18.3122x x ⎧-≤≤⎨⎩或}1x =【解析】 【分析】分析可知x 的方程20ax x b -+=的两根分别为12、1,利用韦达定理求出a 、b 的值,然后解不等式210ax bx +-≤可得集合B ,利用补集和交集的定义可求得()A B R . 【详解】由题意可知,关于x 的方程20ax x b -+=的两根分别为12、1,所以11121120a b a a ⎧+=⎪⎪⎪⨯=⎨⎪>⎪⎪⎩,解得2313a b ⎧=⎪⎪⎨⎪=⎪⎩, 不等式210ax bx +-≤即为2211033x x +-≤,即2230x x +-≤,解得312x -≤≤,则312B x x ⎧⎫=-≤≤⎨⎬⎩⎭,因为112A x x ⎧⎫=<<⎨⎬⎩⎭,则R12A x x ⎧=≤⎨⎩或}1x ≥,因此,()R 3122A B x x ⎧⋂=-≤≤⎨⎩或}1x =.故答案为:3122x x ⎧-≤≤⎨⎩或}1x =.19. ⊆ = ⊇ ⊆ 【解析】 【分析】根据集合子集的定义及集合相等的概念求解. 【详解】由集合的子集、集合的相等可知(1)⊆,(2)=,(3)⊇,(4)⊆ 故答案为:⊆,=,⊇,⊆ 20.5##32【解析】 【分析】根据题中条件,由元素与集合之间的关系,得到23a =求解,即可得出结果. 【详解】 因为{}31,2a ∈, 所以23a =,解得32a =. 故答案为:32.21.⊂【解析】 【分析】先化简集合A 、B ,再去判断集合A 、B 间的关系即可解决. 【详解】{}{}22101A x x x =-+==,{}{}2101,1B x x =-==-,则A B ⊂故答案为:⊂22.{}{}12{12},,, 【解析】 【分析】结合子集的概念,写出集合A 的所有非空子集即可. 【详解】集合{1,2}A =的所有非空子集是{}{}12{12},,,. 故答案为:{}{}12{12},,,. 23.{}1【解析】 【分析】根据集合的交集的定义进行求解即可【详解】当0x =时,不等式214x ≤<不成立, 当1x =时,不等式214x ≤<成立, 当2x =时,不等式214x ≤<不成立, 当4x =时,不等式214x ≤<不成立, 所以{}1A B ⋂=, 故答案为:{}124.4a >【解析】 【分析】根据指数函数的单调性求出集合A ,再根据A B ⊆列出不等式,即可的解. 【详解】解:{}(]216,4xA x ∞=≤=-,因为A B ⊆, 所以4a >. 故答案为:4a >. 25.②⑤ 【解析】 【分析】利用集合元素的基本特征判断. 【详解】①中国古代四大发明是造纸术,指南针,火药和印刷术,是确定的,能构成集合; ②地球上的小河流,不确定,不能构成集合;③方程210x -=的实数解是1或-1,是确定的,能构成集合; ④周长为10cm 的三角形,是确定的,能构成集合; ⑤接近于0的数,不确定,不能构成集合. 故答案为:②⑤三、解答题26.(1)[]0,2A = (2)[]0,2 【解析】 【分析】(1)结合指数不等式求得集合A .(2)对a 进行分类讨论,由此求得B ,根据A B B =来求实数a 的取值范围 (1)2122,02x x ≤≤≤≤,所以[]0,2A =.(2)A B B B A ⋂=⇒⊆当1a =时,{}1B A =⊆;当1a <时,{}|1B x a x A =≤≤⊆,则01a ≤<;当1a >时,{}|1B x x a A =≤≤⊆,则12a <≤;综上:a 的取值范围是[]0,2.27.(1)∅,{1},{2},{1,2};(2)U B {|0x x =<或3}x >,{|13}B C x x ⋃=-≤≤.【解析】【分析】(1)直接写出集合A 的所有子集即可;(2)直接写出U B ,求得C ,再求B C ⋃即可. (1)因为{}1,2A =,故A 的所有子集为∅,{}{}{}1,2,1,2.(2)因为{}|12C x x =-≤≤,U B ={|0,x x <或3}x >,{|13}B C x x ⋃=-≤≤. 28.(1){}33B C x x ⋃=-<≤(2)23a -<<【解析】【分析】(1)先解出集合,B C ,再计算B C ⋃即可;(2)由()R A B ⋂=∅得A B ⊆,再按照两根的大小分类讨论解不等式即可.(1){}32B x x =-<<,{}23C x x =-≤≤,则{}33B C x x ⋃=-<≤;(2)()(){}10A x x a x =+-≤,由()R A B ⋂=∅得A B ⊆, ①当<1a -时,即1a >-时,{}1A x a x =-≤≤,只需3a ->-,即13a -<<; ②当1a -=时,即1a =-时,{}1A x x ==,满足条件;③当1a ->时,即1a <-时,{}1A x x a =≤≤-,只需2a -<,即21a -<<-; 综上可得:a 的取值范围是23a -<<.29.(1){1x x ≤-或}3x ≥(2)[)1,+∞【解析】【分析】(1)求出集合M ,再根据补集和并集的定义求解;(2)由题意得N P ,再根据包含关系列不等式求解. (1) 由已知{}{}243013M x x x x x =-+<=<<, 所以{}13M N x x ⋃=-<<,则(){1R M N x x ⋃=≤-或}3x ≥.(2)由题意得N P , 则1m -≤-,解得1m ≥.故m 的取值范围是[)1,+∞.30.0≤m ≤4.【解析】【分析】先由一元二次不等式的解法化简集合P ,再由必要条件得到两集合间包含关系,结合非空集合S 和包含关系建立关于m 的不等关系,最后取交集解出范围.【详解】由x 2-x -20≤0,得-4≤x ≤5,∴P ={x |-4≤x ≤5}.∵x ∈P 是x ∈S 的必要条件,则S ⊆P .∴1415m m -≥-⎧⎨+≤⎩解得m ≤4. 又∵S 为非空集合,∴1-m ≤1+m ,解得m ≥0.综上,若x ∈P 是x ∈S 的必要条件,则0≤m ≤4.。

高一集合测试试题及答案

高一集合测试试题及答案

高一集合测试试题及答案一、选择题(每题4分,共40分)1. 集合A={1,2,3},集合B={2,3,4},则A∩B的元素个数是()。

A. 1B. 2C. 3D. 42. 集合A={1,2,3,4},集合B={4,5,6,7},则A∪B的元素个数是()。

A. 6B. 7C. 8D. 93. 集合A={x|x^2-1=0},则A的元素是()。

A. {-1, 0}B. {-1, 1}C. {0, 1}D. {-1, 0, 1}4. 集合A={1,2,3},集合B={x|x∈A},则B是()。

A. 空集B. 单元素集合C. 有限集合D. 无限集合5. 集合A={x|x是奇数},集合B={x|x是偶数},则A∩B是()。

A. {0}B. {1}C. 空集D. {2, 4, 6, ...}6. 集合A={x|x^2-4=0},则A的元素是()。

A. {-2, 2}B. {-2, 0, 2}C. {-2, 2, 4}D. {-2, 2, -4}7. 集合A={x|x^2-9=0},则A的元素是()。

A. {-3, 3}B. {-3, 0, 3}C. {-3, 3, 9}D. {-3, 0, 9}8. 集合A={1,2,3},集合B={x|x∈A且x是偶数},则B是()。

A. {1, 3}B. {2}C. {1, 2, 3}D. 空集9. 集合A={x|x是自然数},集合B={x|x是正整数},则A∪B是()。

A. AB. BC. 空集D. {0, 1, 2, 3, ...}10. 集合A={x|x^2-4x+4=0},则A的元素是()。

A. {-2, 2}B. {-2, 0, 2}C. {-2, 2, 4}D. {2}二、填空题(每题4分,共20分)1. 集合A={1,2,3},集合B={2,3,4},则A∩B=______。

2. 集合A={x|x^2-1=0},则A=______。

3. 集合A={x|x^2-4=0},则A=______。

高一数学集合练习题及答案经典

高一数学集合练习题及答案经典

高一数学集合练习题及答案经典一、单选题1.设I 为全集,1S 、2S 、3S 是I 的三个非空子集且123S S S I ⋃⋃=.则下面论断正确的是( )A .()123I S S S ⋂⋃=∅B .()123I I S S S ⊆⋂C .123I I I S S S ⋂⋂=∅D .()123I I S S S ⊆⋃2.已知集合*{|15,N }A x x x =-<<∈,{|03}B x x =≤≤,则A B =( ) A .[0,3]B .[1,5)-C .{1,2,3,4}D .{}1,2,33.若集合302x A xx ⎧⎫-=<⎨⎬+⎩⎭,{}0B x x =>,则A B ⋃=( ) A .{}02x x << B .{}3x x > C .{}2x x >-D .{}3x x >-4.已知集合{}220A x x x =->,{}0,1B =,则()R A B ⋂=( )A .[]0,1B .{}0,1C .[]0,2D .{}0,1,25.已知集合{}2,3,6,8U =,{}2,3A =,{}2,6,8B =,则()U A B =( ) A .{6,8}B .{2,3,6,8}C .{2}D .{2,6,8}6.已知集合{}{}|2,|(1)0A x x B x x x =>=->,则A B ⋃=( ) A .(-∞,0) B .()(),01,-∞⋃+∞ C .()(),02,-∞⋃+∞D .(2,+∞)7.设集合1|05x A x x -⎧⎫=>⎨⎬-⎩⎭,{}|13B x x =-≤≤,则()A B =R ( ) A .{}|35x x ≤< B .{}|15x x ≤< C .{}|15x x -≤<D .{}|13x x ≤≤8.已知A B ⊆R ,则( ) A .A B =R B .()A B ⋃=R R C .()()A B ⋂=∅R RD .()AB =RR9.设集合{}{lg(3)},2,x M x N y x N yy x M =∈=-==∈∣∣,则( ) A .M N ⊆B .N M ⊆C .{0,1,2}M N ⋂=D .{0,1,2,4}MN =10.若集合2{|60}A x x x =--+>,5{|1}3B x x =≤--,则A B 等于( ) A .()3,3-B .[2,3)-C .(2,2)-D .[2,2)-11.设全集{}1,2,3,4,5,6U =,集合{}1,2,4A =,{}3,4,5B =,则下图中的阴影部分表示的集合为( )A .{}4B .{}5C .{}1,2D .{}3,512.已知集合{3,2,1,0,1}A =---,301x B x Zx +⎧⎫=∈<⎨⎬-⎩⎭,则A B =( ) A .[3,1)- B .[3,1]- C .{3,2,1,0,1}--- D .{2,1,0}--13.已知集合{}21A x x =-<<,{}lg B x y x ==,则()R A B =( ) A .(),1-∞B .[)1,+∞C .(]2,0-D .()0,114.设全集U =R ,集合{}21A x x =-≤,{}240xB x =-≥,则集合()UAB =( )A .()1,2B .(]1,2C .[)1,2D .[]1,215.下面五个式子中:①{}a a ⊆;②{}a ∅⊆;③{a }∈{a ,b };④{}{}a a ⊆;⑤a ∈{b ,c ,a };正确的有( )A .②④⑤B .②③④⑤C .②④D .①⑤二、填空题16.记关于x 的不等式220x x a a -+-≤的解集为A ,集合{}12B x x =-≤<,若A B ,则实数a 的取值范围为___________.17.已知集合2{2,}x 与{4,}x 相等,则实数x =__________.18.已知{}12A x x =-<≤,{}20B x x =-≤<,A B =________________.19.已知集合{}N 4sin ,02A x x θθπ=∈<≤≤,若集合A 中至少有3个元素,则实数θ取值范围为________20.立德中学有35人参加“学党史知识竞赛”若答对第一题的有20人,答对第二题的有16人,两题都答对的有6人,则第一、二题都没答对的有___人.21.已知集合{}{}214,0,1,2,4A x x B =≤<=,则A B ⋂=___________.22.写出集合{1,1}-的所有子集______.23.若集合1,24k M x x k Z ⎧⎫==+∈⎨⎬⎩⎭,1,42k N x x k Z ⎧⎫==+∈⎨⎬⎩⎭,则集合M 、N 之间的关系是______.24.用符号“∈”或“∉”填空: (1)34______N ;(2)4-______Z ;(3)13______Q ;(4)2π-______R .25.若集合{}2A x x =<,101B xx ⎧⎫=>⎨⎬+⎩⎭,则A B =______. 三、解答题26.已知集合{}21,3,A a =,()(){}|120B x x x a =---=,是否存在实数a ,使得A B A ⋃=若存在,求出a 的值;若不存在,说明理由.27.已知全集为实数集R ,集合{A x y ==,(){}lg 2B x y x ==-. (1)求A B 及()R B A ;(2)设集合{}1C x x a =<<,若C A ⊆,求实数a 的取值范围.28.设全集U R =,已知集合{}1,2A =,{|03}B x x =≤≤,集合C 为不等式组10240x x +≥⎧⎨-≤⎩的解集.(1)写出集合A 的所有子集; (2)求UB 和BC ⋃.29.已知集合11{|}A x a x a =-≤≤+,5|03x B x x -⎧⎫=≤⎨⎬+⎩⎭. (1)若3a =-,求A B ;(2)在①A B =∅,②()R B A R ⋃=,③A B B ⋃=,这三个条件中任选一个作为已知条件,求实数a 的取值范围.30.已知{}1,2,3,4,5,6,7,8U =,(){}1,8U A B ⋂=,(){}2,6U A B ⋂=,()(){}4,7UU A B ⋂=,求集合A ,B .【参考答案】一、单选题 1.C 【解析】 【分析】画出关于123S S S I ⋃⋃=且含7个不同区域的韦恩图,根据韦恩图结合集合的交并补运算确定各选项中对应集合所包含的区域,并判断包含关系. 【详解】将123S S S I ⋃⋃=分为7个部分(各部分可能为空或非空),如下图示:所以1A B D E S =⋃⋃⋃、2A B C F S =⋃⋃⋃、3S A C D G =⋃⋃⋃, 则1I S C F G =⋃⋃,2I S D E G =⋃⋃,3I S B E F =⋃⋃,所以23S S A B C D F G ⋃=⋃⋃⋃⋃⋃,故()123I S S S F G ⋂⋃=⋃,A 错误;23I I S S E ⋂=,故231I I S S S ⋂⊆,B 错误; 123I I I S S S ⋂⋂=∅,C 正确;23II S S B D E F G ⋃=⋃⋃⋃⋃,显然1S 与23I I S S ⋃没有包含关系,D 错误.故选:C 2.D【解析】 【分析】根据集合的交集的概念可求出结果. 【详解】 {1,2,3,4}A =, {1,2,3}A B ⋂=.故选:D 3.C 【解析】 【分析】解分式不等式确定集合A ,再由并集的定义计算. 【详解】解:依题意,{}30232x A xx x x ⎧⎫-=<=-<<⎨⎬+⎩⎭,则{}2A B x x ⋃=>-, 故选:C . 4.B 【解析】 【分析】 化简集合A ,求出RA 后,再根据交集的概念运算可得解.【详解】{}220A x x x =->{|0x x =<或2}x >,R{|02}A x x =≤≤,所以()R {0,1}A B =. 故选:B 5.A 【解析】 【分析】由已知,先有集合U 和集合A 求解出UA ,再根据集合B 求解出()UA B ⋂即可.【详解】因为{}2,3,6,8U =,{}2,3A =,所以{}6,8UA =,又因为{}2,6,8B =,所以(){}6,8U A B =. 故选:A. 6.B 【解析】 【分析】首先解一元二次不等式求出集合B ,再根据并集的定义计算可得; 【详解】解:由(1)0x x ->,解得1x >或0x <,所以{}|(1)0{|1B x x x x x =->=>或0}x <,又{}|2A x x =>,所以()(),01,A B ⋃=-∞⋃+∞;故选:B 7.D 【解析】 【分析】求解分式不等式的解集,再由补集的定义求解出A R,再由交集的定义去求解得答案.【详解】1015x x x ->⇒<-或5x >,所以{}15A x x =≤≤R , 所以得(){}13A B x x ⋂=≤≤R . 故选:D 8.B 【解析】 【分析】画出韦恩图,对四个选项一一进行判断. 【详解】画出韦恩图,显然A B ≠R ,A 错误;()A B ⋃=R R ,故B 正确, ()()A B B ⋂=RR R,C 错误;()AB ≠RR ,D 错误.故选:B 9.D 【解析】 【分析】先用列举法写出集合M 和集合N ,再判定他们之间的关系即可得出答案. 【详解】根据题意,{}{|3,}0,1,2M x x x N =<∈={}0,1,2M =时,{}1,2,4N =所以选项D 正确. 故选:D. 10.D【分析】解不等式化简集合A ,B ,再利用交集的定义直接求解作答. 【详解】不等式260x x --+>化为:260x x +-<,解得:32x -<<,则(3,2)A =-, 不等式513x ≤--,即203x x +≤-,整理得:(2)(3)030x x x +-≤⎧⎨-≠⎩,解得23x -≤<,则[2,3)B =-, 所以[2,2)A B ⋂=-. 故选:D 11.D 【解析】 【分析】图中阴影部分表示()U A B ⋂,再根据交集和补集的定义即可得出答案. 【详解】解:图中阴影部分表示()U A B ⋂,因为{}1,2,3,4,5,6U =,集合{}1,2,4A =,{}3,4,5B =, 所以{}3,5,6UA =,所以(){}3,5U A B =. 故选:D. 12.D 【解析】 【分析】根据解分式不等式的方法,结合集合交集的定义进行求解即可. 【详解】因为30311x x x +<⇒-<<-,所以{}2,1,0B =--,而{3,2,1,0,1}A =---, 所以A B ={2,1,0}--,故选:D 13.B 【解析】 【分析】求出定义域得到集合B ,从而求出补集和交集. 【详解】{}()212,1A x x =-<<=-,{}()00,B x x ∞=>=+,所以(][),21,RA =-∞-⋃+∞,所以()[)1,RA B ∞⋂=+.故选:B. 14.C【分析】解不等式化简集合A ,B ,再利用补集、交集的定义计算作答. 【详解】解不等式21-≤x 得:13x ≤≤,则[1,3]A =, 解不等式240x -≥得:2x ≥,则[2,)B =+∞,(,2)UB =-∞,所以()[1,2)UA B =.故选:C 15.A 【解析】 【分析】根据元素与集合,集合与集合之间的关系逐个分析即可得出答案. 【详解】①中,a 是集合{a }中的一个元素,{}a a ∈,所以①错误;空集是任一集合的子集,所以②正确;{}a 是{},a b 的子集,所以③错误;任何集合是其本身的子集,所以④正确; a 是{},,b c a 的元素,所以⑤正确. 故选:A.二、填空题16.()1,2-【解析】 【分析】首先将不等式变形,再对a 与1a -分三种情况讨论,分别求出集合A ,根据集合的包含关系得到不等式组,即可求出参数a 的取值范围; 【详解】解:原不等式220x x a a -+-≤可变形为()()10x a x a -+-≤, 当1a a ,即12a =时,12A ⎧⎫=⎨⎬⎩⎭,满足题意; 当1a a <-,即12a <时,{}1A x a x a =≤≤-,所以112a a ≥-⎧⎨-<⎩,解得1a >-,所以112a -<<;当1a a ,即12a >时,{}1A x a x a =-≤≤,所以21112a a a ⎧⎪<⎪-≥-⎨⎪⎪>⎩,解得122a <<.综上可得1a 2-<<,即()1,2a ∈-; 故答案为:()1,2- 17.2 【解析】 【分析】由已知,两集合相等,可借助集合中元素的的互异性列出方程组,解方程即可完成求解. 【详解】因为集合2{2,}x 与{4,}x 相等,则242x x ⎧=⎨=⎩,解得2x =.故答案为:2.18.{}10x x -<<【解析】 【分析】由交集运算求解即可. 【详解】A B ={}{}{}122010x x x x x x -<≤⋂-≤<=-<<故答案为:{}10x x -<< 19.5,66ππ⎛⎫⎪⎝⎭【解析】 【分析】分析可知元素0、1、2必属于集合A ,可得出1sin 2θ>,由[]0,2θπ∈可求得θ的取值范围. 【详解】要使集合A 中至少有3个元素,则元素0、1、2必属于集合A ,所以只需4sin 2θ>,即1sin 2θ>, 又[]0,2θπ∈,解得5,66ππθ⎛⎫∈ ⎪⎝⎭.故答案为:5,66ππ⎛⎫⎪⎝⎭.20.5 【解析】 【分析】集合元素计算,只对第一题,只对第二题,二题都答对和二题都不对,总数为35人. 【详解】设第一、二题都没答对的有x 人, 则()()206166635x -+-++= ,所以5x = 故答案为:521.{}1【解析】 【分析】根据集合的交集的定义进行求解即可 【详解】当0x =时,不等式214x ≤<不成立, 当1x =时,不等式214x ≤<成立, 当2x =时,不等式214x ≤<不成立, 当4x =时,不等式214x ≤<不成立, 所以{}1A B ⋂=, 故答案为:{}122.∅,{}1-,{1},{1,1}- 【解析】 【分析】利用子集的定义写出所有子集即可. 【详解】由子集的定义,得集合{1,1}-的所有子集有:∅,{}1-,{1},{1,1}-.故答案为:∅,{}1-,{1},{1,1}-. .M N 【解析】 【分析】从两个集合的元素特征入手整理化简,再判定两集合的包含关系进行求解. 【详解】因为121,Z ,Z 244k k M x x k x x k ⎧⎫⎧⎫+==+∈==∈⎨⎬⎨⎬⎩⎭⎩⎭, 1+2,Z =,Z 424k k N x x k x x k ⎧⎫⎧⎫==+∈=∈⎨⎬⎨⎬⎩⎭⎩⎭,若x M ∈,则21(21)244k k x +-+==, 因为Z k ∈,所以21Z k -∈,所以x ∈N ,所以M N ⊆, 又因为0N ∈,0M ∉,所以M N .故答案为:M N .24. ∉, ∈, ∈ ∈【解析】【分析】(1)利用元素与集合的关系判断.(2)利用元素与集合的关系判断.(3)利用元素与集合的关系判断.(4)利用元素与集合的关系判断.【详解】 解:34∉N ; 4-∈Z ;13∈Q ; 2π-∈R .故答案为:∉,∈,∈,∈25.{}12x x -<<## ()1,2-【解析】【分析】求解绝对值不等式解得集合A ,求解分式不等式求得集合B ,再求交集即可.【详解】 因为{}2A x x =<{|22}x x =-<<,101B x x ⎧⎫=>⎨⎬+⎩⎭{}1x x =-, 故可得A B ={|12}x x -<<. 故答案为:{}12x x -<<.三、解答题26.存在,2【解析】【分析】先得到B A ⊆,分别讨论1a =-和1a ≠-两种情况即可.【详解】由A B A ⋃=,得B A ⊆,当21a +=,即1a =-时,{1}B =,此时21a =不合题意,故1a ≠- 当1a ≠-时,{}1,2B a =+,因为B A ⊆,所以2a A +∈ 所以23a +=或22a a +=,解得1a =或2a =, 当1a =时,21a =不合题意;当2a =时,{}1,3,4A =,{}1,4B =,符合题意,综上所述,存在实数2a =,使得A B A ⋃=成立. 27.(1){|1}A B x x =≥,R (){|12}B A x x =≤≤ (2)(,3]a ∈-∞【解析】【分析】(1)先求出集合A 、B ,再求A B ,R ()B A ; (2)对C 是否为∅分类讨论,分别求出a 的范围.(1) 由1030x x -≥⎧⎨-≥⎩可得{}|13A x x =≤≤ 又{|20}{|2}B x x x x =->=>,则R {|2}B x x =≤ 所以{|1}A B x x =≥,R (){|12}B A x x =≤≤ (2)当1a ≤时,C =∅,此时C A ⊆;当1a >时,C A ⊆,则13a ;综上可得(,3]a ∈-∞28.(1)∅,{1},{2},{1,2};(2)U B {|0x x =<或3}x >,{|13}B C x x ⋃=-≤≤.【解析】【分析】(1)直接写出集合A 的所有子集即可;(2)直接写出U B ,求得C ,再求B C ⋃即可. (1)因为{}1,2A =,故A 的所有子集为∅,{}{}{}1,2,1,2.(2)因为{}|12C x x =-≤≤,U B ={|0,x x <或3}x >,{|13}B C x x ⋃=-≤≤. 29.(1){|45}A B x x ⋃=-≤≤(2)答案见解析【解析】【分析】(1)分别求出集合A 和集合B ,求并集即可; (2)选①,根据集合A 和集合B 的位置在数轴上确定端点的关系,列出不等式组即可求解,选②,先求出R A ,再根据条件在数轴确定端点位置关系列出不等式组即可求解, 选③,得到A B ⊆,根据数轴端点位置关系列出不等式组即可求解.(1)因为3a =-,所以{|42}A x x =-≤≤-,又因为{|35}B x x =-<≤,所以{|45}A B x x ⋃=-≤≤.(2)若选①A B =∅:则满足15a ->或13a +≤-, 所以a 的取值范围为{|4a a ≤-或6}a >. 若选②()R B A R ⋃=:所以{|1R A x x a =<-或1}x a >+,则满足1315a a ->-⎧⎨+≤⎩,所以a 的取值范围为{|24}a a -<≤. 若选③A B B ⋃=: 由题意得A B ⊆,则满足1315a a ->-⎧⎨+≤⎩所以a 的取值范围为{|24}a a -<≤30.A ={1 , 3 , 5 , 8},B ={ 2 , 3 , 5 , 6}.【解析】【分析】利用韦恩图,将各个集合进行表示,据图可以写出A ,B .【详解】由题可得如图韦恩图,可知A ={1 , 3 , 5 , 8},B ={ 2 , 3 , 5 , 6}.。

高一集合测试题及答案

高一集合测试题及答案

高一集合测试题及答案一、选择题(每题3分,共30分)1. 集合A={1,2,3},集合B={3,4,5},求A∪B。

A. {1,2,3,4,5}B. {1,2,3,4}C. {3,4,5}D. {1,2,3}2. 若集合M={x|x<0},N={x|x>0},则M∩N等于:A. {x|x<0}B. {x|x>0}C. 空集D. {0}3. 集合P={y|y=x^2, x∈R},求P的元素范围。

A. y≥0B. y>0C. y≤0D. y<04. 设集合Q={x|x^2-4=0},求Q的元素个数。

A. 1B. 2C. 3D. 45. 集合R={x|-1≤x≤1},S={x|x>0},求R∩S。

A. {x|0<x≤1}B. {x|-1≤x≤0}C. {x|-1<x≤1}D. {x|-1≤x<0}6. 集合T={y|y=2x, x∈Z},求T的元素性质。

A. 所有元素都是偶数B. 所有元素都是奇数C. 元素既有偶数也有奇数D. 元素不能确定7. 若集合U={x|x^2-4x+3=0},求U的元素。

A. {1,3}B. {-1,3}C. {1,-3}D. {-1,1}8. 设集合V={x|x^2+2x+1=0},求V的元素。

A. {-1}B. {1}C. {-1,1}D. 空集9. 集合W={x|-3≤x≤3},X={x|x>0},求W∩X。

A. {x|0<x≤3}B. {x|-3≤x≤0}C. {x|-3<x≤3}D. {x|-3≤x<0}10. 集合Y={y|y=x^2, x∈N},求Y的元素范围。

A. y≥0B. y>0C. y≤0D. y<0二、填空题(每题2分,共20分)11. 集合A={1,2,3},B={2,3,4},A∩B=______。

12. 若集合C={x|x是偶数},D={x|x是奇数},则C∪D=______。

高一数学集合测试题

高一数学集合测试题

高一数学集合测试题一、选择题(每题5分,共30分)1. 下列集合中,表示空集的是()A. {0}B. {x|x²+1 = 0,x∈R}C. {x|x² - 1 = 0,x∈R}D. {x|x < -1且x > 1}咱先看A选项哈,{0}这里面有个元素0呢,可不是空集哦。

再瞅B选项,对于方程x²+1 = 0,在实数范围内,x²肯定是大于等于0的,那x²+1就永远不可能等于0,所以这个集合里啥元素都没有,就是空集啦。

C选项呢,x² - 1 = 0,那x可以是1或者 - 1,这个集合有元素呢。

D选项,x既小于 - 1又大于1,这在实数里是不存在这样的数的,但这不是空集的标准表示,这叫无解区间。

所以这题答案就是B。

2. 已知集合A = {1,2,3},B = {2,3,4},则A∩B =()A. {1,2,3,4}B. {2,3}C. {1}D. {4}A∩B呢,就是求既在集合A里又在集合B里的元素。

集合A有1、2、3,集合B有2、3、4,那共同的元素就是2和3呗,所以答案是B。

3. 若集合A = {x|x > 1},B = {x|x < 3},则A∪B =()A. {x|1 < x < 3}B. {x|x > 1}C. {x|x < 3}D. RA∪B就是把集合A和集合B里的所有元素都放一块。

集合A里是大于1的数,集合B里是小于3的数,那合起来就是所有的实数啦,就像把从1往右的数和往左到3的数都算上,那就是整个数轴了,所以答案是D。

4. 设集合M = {x|x = 3k,k∈Z},N = {x|x = 6k,k∈Z},则()A. N⊆MB. M⊆NC. M = ND. M∩N = ∅咱看哈,集合M里的元素x = 3k,k是整数,那就是3的倍数。

集合N里的元素x = 6k,k是整数,这就是6的倍数。

高一数学集合练习题及答案(5篇)

高一数学集合练习题及答案(5篇)

高一数学集合练习题及答案(5篇)高一数学练习题及答案篇1一、填空题.(每题有且只有一个正确答案,5分×10=50分)1、已知全集U = {1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 }, A= {3 ,4 ,5 }, B= {1 ,3 ,6 },那么集合 { 2 ,7 ,8}是 ( )2 . 假如集合A={x|ax2+2x+1=0}中只有一个元素,则a的值是 ( )A.0B.0 或1C.1D.不能确定3. 设集合A={x|1A.{a|a ≥2}B.{a|a≤1}C.{a|a≥1}.D.{a|a≤2}.5. 满意{1,2,3} M {1,2,3,4,5,6}的集合M的个数是 ( )A.8B.7C.6D.56. 集合A={a2,a+1,1},B={2a1,| a2 |, 3a2+4},A∩B={1},则a的值是( )A.1B.0 或1C.2D.07. 已知全集I=N,集合A={x|x=2n,n∈N},B={x|x=4n,n∈N},则 ( )A.I=A∪BB.I=( )∪BC.I=A∪( )D.I=( )∪( )8. 设集合M= ,则 ( )A.M =NB. M NC.M ND. N9 . 集合A={x|x=2n+1,n∈Z},B={y|y=4k±1,k∈Z},则A 与B的关系为 ( )A.A BB.A BC.A=BD.A≠B10.设U={1,2,3,4,5},若A∩B={2},( UA)∩B={4},( UA)∩( UB)={1,5},则以下结论正确的选项是( )A.3 A且3 BB.3 B且3∈AC.3 A且3∈BD.3∈A且3∈B二.填空题(5分×5=25分)11 .某班有同学55人,其中音乐爱好者34人,体育爱好者43人,还有4人既不爱好体育也不爱好音乐,则班级中即爱好体育又爱好音乐的有人.12. 设集合U={(x,y)|y=3x1},A={(x,y)| =3},则 A= .13. 集合M={y∣y= x2 +1,x∈ R},N={y∣ y=5 x2,x∈ R},则M∪N=_ __.14. 集合M={a| ∈N,且a∈Z},用列举法表示集合M=_15、已知集合A={1,1},B={x|mx=1},且A∪B=A,则m的值为三.解答题.10+10+10=3016. 设集合A={x, x2,y21},B={0,|x|,,y}且A=B,求x, y的值17.设集合A={x|x2+4x=0},B={x|x2+2(a+1)x+a21=0} ,A∩B=B,求实数a的值.18. 集合A={x|x2ax+a219=0},B={x|x25x+6=0},C={x|x2+2x8=0}.?(1)若A∩B=A∪B,求a的值;(2)若A∩B,A∩C= ,求a的值.19.(本小题总分10分)已知集合A={x|x23x+2=0},B={x|x2ax+3a5=0}.若A∩B=B,求实数a的取值范围.20、已知A={x|x2+3x+2 ≥0}, B={x|mx24x+m10 ,m∈R}, 若A∩B=φ, 且A∪B=A, 求m的取值范围.21、已知集合,B={x|2参考答案C B AD C D C D C B26 {(1,2)} R {4,3,2,1} 1或1或016、x=1 y=117、解:A={0,4} 又(1)若B= ,则,(2)若B={0},把x=0代入方程得a= 当a=1时,B=(3)若B={4}时,把x=4代入得a=1或a=7.当a=1时,B={0,4}≠{4},∴a≠1.当a=7时,B={4,12}≠{4},∴a≠7.(4)若B={0,4},则a=1 ,当a=1时,B={0,4},∴a=1综上所述:a18、.解:由已知,得B={2,3},C={2,4}.(1)∵A∩B=A∪B,∴A=B于是2,3是一元二次方程x2ax+a219=0的两个根,由韦达定理知:解之得a=5.(2)由A∩B ∩ ,又A∩C= ,得3∈A,2 A,4 A,由3∈A,得323a+a219=0,解得a=5或a=2?当a=5时,A={x|x25x+6=0}={2,3},与2 A冲突;当a=2时,A={x|x2+2x15=0}={3,5},符合题意.∴a=2.19、解:A={x|x23x+2=0}={1,2},由x2ax+3a5=0,知Δ=a24(3a5)=a212a+20=(a2)(a10).(1)当2(2)当a≤2或a≥10时,Δ≥0,则B≠ .若x=1,则1a+3a5=0,得a=2,此时B={x|x22x+1=0}={1} A;若x=2,则42a+3a5=0,得a=1,此时B={2,1} A.综上所述,当2≤a10时,均有A∩B=B.20、解:由已知A={x|x2+3x+2 }得得.(1)∵A非空,∴B= ;(2)∵A={x|x }∴ 另一方面,,于是上面(2)不成立,否则,与题设冲突.由上面分析知,B= .由已知B= 结合B= ,得对一切x 恒成立,于是,有的取值范围是21、∵A={x|(x1)(x+2)≤0}={x|2≤x≤1},B={x|1∵ ,(A∪B)∪C=R,∴全集U=R。

高一数学集合练习题及答案-经典

高一数学集合练习题及答案-经典

高一数学集合练习题及答案-经典一、单选题1.已知集合ππ,42k M x x k ⎧⎫==+∈⎨⎬⎩⎭Z ,ππ,24k N x x k ⎧⎫==+∈⎨⎬⎩⎭Z ,则( ) A .N M ⊆B .M N ⊆C .M ND .M N ⋂=∅ 2.设集合{}230A x x x =->,则A =R ( )A .()0,3B .()(),03,-∞+∞C .[]0,3D .(][),03,-∞+∞ 3.设全集{2,1,0,1,2}U =--,集合{}{}1,0,1sin ,cos0M N π=-=,,则{1}-=( ) A .M N ⋂B .()U M NC .()U N M ⋂D .()()U U M N4.已知集合{}{}2,,,,M y y x x x N y y x x y ==-∈==∈∈R R R ,则M N =( )A .∅B .{(0,0),(2,2)}C .}{0,2D .1[,)4-+∞ 5.已知集合{}220A x x x =+-<,{}1e ,R x B y y x -==∈,则A B =( ) A .()2,0- B .()2,1- C .()0,1 D .()1,+∞6.已知集合{}21A x x =<,{}lg 0B x x =<,则A B =( ) A .{}11x x -<<B .{}10x x -<<C .{}1x x <D .{}01x x <<7.已知集合(){}2log 21M x y x ==-,103x N x x ⎧⎫+=≤⎨⎬-⎩⎭,则M N =( )A .1,2⎛⎫+∞ ⎪⎝⎭B .[)1,-+∞C .1,32⎛⎫ ⎪⎝⎭D .1,32⎛⎤ ⎥⎝⎦ 8.已知集合{|1}A x x =≥-,1{|28}4x B x =≤<,则A B =( ) A .[-2,3)B .[-1,3)C .[-2,3]D .[-1,3] 9.已知集合{}{01}A x x a B x x =<=<≤∣,∣,若A B =∅,则实数a 的取值范围是( )A .01a <≤B .0a >C .0a ≤D .0a ≤或1a ≥ 10.如图,已知集合{A =1-,0,1,2},{|128}x B x N +=∈<≤,则图中的阴影部分表示的集合为( )A .{1,2}B .{1-,0,3}C .{1-,3}D .{0,1,2}11.已知集合{3,1,2}A =-,{}2|60B x N x x =∈--≤,则A B ⋃=( ) A .{}1,2B .{}3,0,1,2-C .{}3,1,2,3-D .{}3,0,1,2,3-12.已知集合{}ln 0A x x =>,{}221x B x -=<,则A B =( ) A .{}2x x <B .{}1x x <C .{}02x x <<D .{}12x x <<13.已知全集{}0,1,2,3,4,5U =,集合{}1,3,5A =,{}0,1B =,则()U A B =( ) A .{}0B .{}2,4C .{}0,1,3,5D .{}0,1,2,414.已知集合{}21A x x =-<<,{}lg B x y x ==,则()R A B =( )A .(),1-∞B .[)1,+∞C .(]2,0-D .()0,115.已知集合{}2450A x x x =--≤,{}5B y y =>,则A B ⋃=( ) A .∅ B .[)1,-+∞ C .[)1,5- D .()5,+∞二、填空题16.设集合A 为空间中两条异面直线所成角的取值范围,集合B 为空间中直线与平面所成角的取值范围,集合C 为二面角的平面角的取值范围,则集合A 、B 、C 的真包含关系是___________.17.如图,用集合符号表述下列点、直线与平面之间的关系.(1)点C 与平面β:___________;(2)点A 与平面α:___________;(3)直线AB 与平面α:___________;(4)直线CD 与平面α:___________.18.某班共40人,其中24人喜欢篮球运动,16人喜欢乒乓球运动,6人这两项运动都不喜欢,则只喜欢其中一项运动的人数为________19.已知集合A 与B 的关系如下图,则图中所示的阴影部分用集合表示为________.(要求用集合A 与B 的符号关系表示)20.满足{}{},,a M a b c ⊆⊆的所有集合M 共有__________ 个.21.已知(],0A =-∞,[),B a =+∞,且A B R =,则实数a 的取值范围为______.22.若集合{}3cos23,x A x x x R π==∈,{}21,B y y y R ==∈,则A B ⋂=_______.23.若{}231,13a a ∈--,则=a ______.24.若{}0,1,2U =,{}220,M x x x x =-=∈R ,则M =______. 25.设集合{}|2A x x =>,{}|B x x a =≤,若A B =R ,则实数a 的取值范围是______.三、解答题26.已知集合A ={x |24x >},B ={x ||x -a |<2},其中a >0且a ≠1.(1)当a =2时,求A ∪B 及A ∩B ;(2)若集合C ={x |log ax <0}且C ⊆B ,求a 的取值范围.27.设集合{}2230A x x x =--<,集合{}22B x a x a =-<<+. (1)若2a =,求()R A B ⋃; (2)设命题:p x A ∈,命题:q x B ∈,若p 是q 成立的必要不充分条件,求实数a 的取值范围.28.设全集U =R ,集合{}14A x x =-<≤,{}2log 1B x x =>(1)求()U A B ;(2)若集合{}123C x a x a =-<<+,满足B C B ⋃=,求实数a 的取值范围.29.已知集合{}22A x a x a =-≤≤+,{|1B x x =≤或4}x ≥,U =R .(1)当3a =时,求A B ,()U A B ⋃;(2)若A B =∅,求实数a 的取值范围.30.已知集合2{20}A x x x =+-<,{213}B x m x m =+≤≤+(m )R ∈.(1)当1m =-时,求A B ,A B ;(2)若x A ∈是x B ∈的充分不必要条件,求实数m 的取值范围.【参考答案】一、单选题1.A【解析】【分析】利用集合的基本关系求解【详解】 解:因为()2πππ,,424k k M x x k x x k ⎧⎫+⎧⎫⎪⎪==+∈==∈⎨⎬⎨⎬⎩⎭⎪⎪⎩⎭Z Z ,()21π,4k N x x k ⎧⎫+⎪⎪==∈⎨⎬⎪⎪⎩⎭Z , 当k ∈Z 时,21k +是奇数,2k +是整数,所以N M ⊆.故选:A .2.C【解析】【分析】利用集合的补集运算求解.【详解】 因为{}230A x x x =->, 所以{}[]2300,3R A x x x =-≤=. 故选:C3.B【解析】【分析】化简集合N ,然后由集合的运算可得.【详解】{}sin ,cos0}0,1 {N π==,{}2,1,2,U N ∴=--{}()1U MN ∴=- 故选:B.4.D【解析】【分析】根据二次函数、一次函数的性质求出其值域,然后由交集定义可得.【详解】 因为22111()244y x x x =-=--≥-,所以1{|}4M y y =≥- 易知N =R ,所以1{|}4My N y ≥=-,即1[,)4-+∞ 故选:D5.C【解析】【分析】化简集合,A B 即得解.【详解】 解: {}{}22021A x x x x x =+-<=-<<,{}{}1e ,R 0x B y y x y y -==∈=>,所以()0,1A B =.故选:C6.D【解析】【分析】根据对数函数的单调性,结合解一元二次不等式的方法、集合交集的定义进行求解即可.【详解】 因为{}21(1,1)A x x =<=-,{}lg 0(0,1)B x x =<=, 所以A B ={}01x x <<,故选:D7.C【解析】【分析】根据对数型函数定义域解法求出集合M ,根据分式不等式解法求出集合N ,再根据集合交集概念即可求得结果.【详解】由题意知(){}21log 21,2M x y x ∞⎛⎫==-=+ ⎪⎝⎭,[)101,33x N x x ⎧⎫+=≤=-⎨⎬-⎩⎭, 所以1,32M N ⎛⎫⋂= ⎪⎝⎭. 故选:C .8.B【解析】【分析】先化简集合B ,再利用交集运算求解.【详解】解:因为集合{|1}A x x =≥-,41|28{|23}x B x x x ⎧⎫=≤<=-≤<⎨⎬⎩⎭, 所以{}|13A B x x ⋂=-≤<,故选:B9.C【解析】【分析】利用交集的定义即得.【详解】∵集合{}{01}A xx a B x x =<=<≤∣,∣, A B =∅, ∴0a ≤.故选:C.10.B【解析】【分析】由题知{}1,2,3B =,进而得{}1,2A B =,再求阴影部分表示的集合即可.【详解】解:解不等式128x <≤得03x <≤,所以{}1,2,3B =,因为{A =1-,0,1,2},所以{}1,2A B =所以,图中的阴影部分表示的集合为{}1,0,3-.故选:B11.D【解析】【分析】先求出集合B 的元素,进行并集运算即可.【详解】因为{}()(){}2|60|320B x N x x x N x x =∈--≤=∈-+≤ {}{}|230,1,2,3x N x =∈-≤≤=,所以{}3,0,1,2,3A B ⋃=-.故选:D.12.D【解析】【分析】解指数和对数不等式可求得集合,A B ,由交集定义可得结果.【详解】 {}{}ln 01A x x x x =>=>,{}{}{}221202x B x x x x x -=<=-<=<,{}12A B x x ∴⋂=<<. 故选:D.13.A【解析】【分析】根据集合的补集与交集的运算求解即可.【详解】解:因为全集{}0,1,2,3,4,5U =,集合{}1,3,5A =,{}0,1B =,所以{}0,2,4U A =,所以(){}{}{}0,2,40,10U A B ==.故选:A14.B【解析】【分析】求出定义域得到集合B ,从而求出补集和交集.【详解】 {}()212,1A x x =-<<=-,{}()00,B x x ∞=>=+,所以(][),21,R A =-∞-⋃+∞,所以()[)1,R A B ∞⋂=+. 故选:B. 15.B【解析】【分析】先解一元二次不等式,在根据并集定义计算.【详解】∵{}{}[]2450151,5A x x x x x =--≤=-≤≤=-,{}()55,B y y ∞=>=+, ∴[)1,A B =-+∞.故选:B.二、填空题16.A B C ##C B A【解析】【分析】根据空间中两条异面直线所成角的范围求出A ,根据空间中直线与平面所成角的取值范围求出B ,根据二面角的平面角的取值范围求出C ,根据A 、B 、C 角的范围即可判断它们的包含关系.【详解】集合A 为空间中两条异面直线所成角的取值范围,π(0,]2A ∴=, 集合B 为空间中直线与平面所成角的取值范围,π[0,]2B ∴=, 集合C 为直角坐标平面上直线的倾斜角的取值范围,[0,π]C ∴=,∴集合A 、B 、C 的真包含关系为:A B C .故答案为:A B C .17. C β∉ A α AB B α⋂= CD α⊂【解析】【分析】根据元素与集合,集合与集合之间的关系,由图可写出答案【详解】(1)C 为元素,平面β为集合,所以,由图可得C β∉.(2)A 为元素,平面α为集合,所以,由图可得A α.(3)直线AB 为集合,平面α为集合,所以,由图可得AB B α⋂=.(4)直线CD 为集合,平面α为集合,所以,CD α⊂.故答案为:①C β∉;②A α;③AB B α⋂=;④CD α⊂;18.28【解析】【分析】首先确定喜欢两项运动的人数,进而得到喜欢一项运动的人数.【详解】 6人这两项运动都不喜欢,∴喜欢一项或两项运动的人数为40634-=人;∴喜欢两项运动的人数为:2416346+-=人,∴喜欢篮球的人数为24618-=人;喜欢乒乓球的人数为16610-=人;∴只喜欢其中一项运动的人数为181028+=人.故答案为:28.19.()A B A B ⋃【解析】【分析】由集合的交并补运算求解即可.【详解】设全集为A B ,则阴影部分表示集合A 与B 交集的补集,即()A B A B ⋃ 故答案为:()A B A B ⋃20.4【解析】【分析】由题意列举出集合M ,可得集合的个数.【详解】由题意可得,{}M a =或{},M a b =或{},M a c =或{},,M a b c =,即集合M 共有4个 故答案为:421.0a ≤【解析】【分析】根据并集的运算结果列出不等式,即可得解.【详解】解:因为A B R =,所以0a ≤.故答案为:0a ≤.22.{}1【解析】【分析】易知{}1,1B =-,分别验证1,1-和集合A 的关系即可得结果.【详解】 因为{}{}21,1,1B y y y R ==∈=-,13cos 23π=,()13cos 23π--≠,即1A ∈,1A -∉, 所以{}1A B ⋂=,故答案为:{}1.23.4-【解析】【分析】结合元素与集合的关系,利用集合的互异性分类讨论即可求解.【详解】若13a -=,则4a =,此时,2113a a -=-,不合题意,舍去; 若2133a -=,则4a =-或4a =,因为4a =不合题意,舍去. 故4a =-.故答案为:4-.24.{}1【解析】【分析】解一元二次方程求出集合M ,进而根据补集的概念即可求出结果.【详解】 因为{}{}220,0,2M x x x x =-=∈=R ,且{}0,1,2U =, 则{}1M =,故答案为:{}1.25.[)2,+∞【解析】【分析】根据并集求解参数的范围即可.【详解】根据题意,{|2}R A x x =≤R A B ⋃=R A B ∴⊆2a ∴≥.故答案为[)2,+∞.三、解答题26.(1)A ∪B ={x |x >0},A ∩B ={x |2<x <4};(2){a |1<a ≤2},【解析】【分析】(1)化简集合A ,B ,利用并集及交集的概念运算即得; (2)分a >1,0<a <1讨论,利用条件列出不等式即得.(1)∵A ={x |2x >4}={x |x >2},B ={x ||x -a |<2}={x |a -2<x <a +2}, ∴当a =2时,B ={x |0<x <4},所以A ∪B ={x | x >0},A ∩B ={x |2<x <4};(2)当a >1时,C ={x |log ax <0}={x |0<x <1},因为C ⊆B ,所以2021a a -≤⎧⎨+≥⎩,解得-1≤ a ≤2, 因为a >1,此时1<a ≤2,当0<a <1时,C ={x |log ax <0}={x |x >1},此时不满足C ⊆B ,综上,a 的取值范围为{a |1<a ≤2}.27.(1){1x x ≤-或}4x ≥(2)01a <≤【解析】【分析】(1)当2a =时,求出集合A 、B ,利用并集和补集的定义可求得集合()R A B ⋃; (2)根据已知条件可得出B A 且B ≠∅,可得出关于实数a 的不等式组,由此可解得实数a 的取值范围.(1) 解:{}{}223013A x x x x x =--<=-<<, 当2a =时,{}04B x x =<<,故{}14A B x x ⋃=-<<,因此,(){R 1A B x x ⋃=≤-或}4x ≥.(2)解:因为p 是q 成立的必要不充分条件,则B A 且B ≠∅, 所以,212223a a a a -≥-⎧⎪-<+⎨⎪+≤⎩,解得01a <≤, 当1a =时,{}13B x x =<< A ,合乎题意.因此,01a <≤.28.(1)(4,)(,2]+∞-∞;(2)[3,)(,4]+∞-∞-.【解析】【分析】(1)利用对数函数的单调性化简集合B ,根据集合交集和补集的定义进行求解即可; (2)根据集合并集的运算性质进行求解即可.(1)因为{}{}2log 12B x x x x =>=>,所以(2,4]A B ⋂=,因此()(4,)(,2]U A B =+∞-∞;(2)因为B C B ⋃=,所以C B ⊆,当123a a -≥+时,即4a ≤-时,C =∅,符合C B ⊆;当123a a -<+时,即4a >-时,要想C B ⊆,只需:123a a -≥⇒≥,因为4a >-,所以3a ≥,综上所述:实数a 的取值范围为:[3,)(,4]+∞-∞-.29.(1){11A B x x ⋂=-≤≤或}45x ≤≤,(){}15U A B x x ⋃=-≤≤(2)(),1-∞【解析】【分析】(1)将3a =代入集合A 中确定出A ,求出A 与B 的交集,求出B 的补集,求出A 与B 补集的并集即可;(2)由A 与B 以及两集合的交集为空集,对a 进行分类讨论,把分类结果求并集,即可求出结果.(1) 将3a =代入集合A 中的不等式得:{}15A x x =-≤≤,∵{|1B x x =≤或4}x ≥,∴{11A B x x ⋂=-≤≤或}45x ≤≤,{}14U B x x =<<,则(){}15U A B x x ⋃=-≤≤;(2)∵{}22A x a x a =-≤≤+,{|1B x x =≤或4}x ≥,当0a <时,A =∅;此时满足A B =∅,当0a =时,{}2A =,此时也满足A B =∅, 当0a >时,A ≠∅,若A B =∅,则2124a a ->⎧⎨+<⎩,解得:01a <<; 综上所述,实数a 的取值范围为(),1-∞30.(1){}11A B x x ⋂=-≤<,{}22A B x x ⋃=-<≤(2)32,2⎡⎤--⎢⎥⎣⎦ 【解析】【分析】(1)求出集合B ,进而求出交集和并集;(2)根据x A ∈是x B ∈的充分不必要条件得到A 是B 的真子集,进而得到不等式组,求出实数m 的取值范围.(1){}21A x x =-<<.当1m =-时,{}12B x x =-≤≤所以{}11A B x x ⋂=-≤<,{}22A B x x ⋃=-<≤;(2)x A ∈是x B ∈的充分不必要条件∴A是B的真子集,故21231 mm+≤-⎧⎨+≥⎩即3 22m-≤≤-所以实数m的取值范围是3 2,2⎡⎤--⎢⎥⎣⎦.。

高一数学集合练习题附答案

高一数学集合练习题附答案

高一数学集合练习题附答案一、单选题1.设全集U =R ,集合302x A xx ⎧⎫-=≤⎨⎬+⎩⎭,集合{}ln 1B x x =≥,则()UA B =( )A .()e,3B .[]e,3C .[)2,e -D .()2,e -2.设M ,N ,U 均为非空集合,且满足M ⫋N ⫋U ,则()()U U M N ⋂=( ) A .MB .NC .u MD .u N3.已知集合{A xy =∣,{}0,1,2,3B =,则A B =( ) A .{3} B .{2,3} C .{1,2,3} D .{0,1,2,3}4.设全集(){},|R,R U x y x y =∈∈,集合(){},|cos sin 10A x y x y θθ=+-=,则UA 所表示的平面区域的面积为( )A .1πB C .1D .π5.若集合{A y y ==,{}3log 2B x x =≤,则A B =( ) A .(]0,9B .[)4,9C .[]4,6D .[]0,96.已知集合{}i ,N nM m m n ==∈,其中i 为虚数单位,则下列元素属于集合M 的是( ) A .()()1i 1i -+ B .1i1i-+ C .i 1i- D .()21i -7.设集合{}|14A x x =<<,集合2{|230}B x x x =≤一一,则A B =( ) A .[一1,4)B .(一1,4)C .(1,3]D .(1,3)8.已知集合{}24A x N x =∈≤,{}1,B a =,B A ⊆,则实数a 的取值集合为( )A .{}0,1,2B .{}1,2C .{}0,2D .{}29.若集合302x A xx ⎧⎫-=<⎨⎬+⎩⎭,{}0B x x =>,则A B ⋃=( ) A .{}02x x << B .{}3x x > C .{}2x x >- D .{}3x x >-10.已知集合02A x x,{}0,1B =,则A B ⋃=( )A .{}01x x <<B .{}01x x ≤≤C .{}02x x <≤D .{}02x x ≤≤11.已知集合{123}M =,,,{134}N =,,,则M N ⋂等于( ) A .{13},B .{1234},,, C .{24},D .{134},,12.满足条件{M ⋃永安,漳平}{=德化,漳平,永安}的集合M 的个数是( ) A .6B .5C .4D .313.设全集{}U 0|x x =≥,集合2{|}0M x x x =-<,{}|1N x x =≥,则()UM N =( ) A .()0,1B .[)0,1C .()1,+∞D .[)0,∞+14.已知函数()2log f x x =,()2g x a x =-,若存在[]12,1,2x x ∈,使得()()12f x g x =,则实数a 的取值范围是( ) A .()(),25,-∞⋃+∞ B .(][),25,-∞⋃+∞ C .()2,5D .[]2,515.已知集合{}2230A x x x =--<,{}15B x x =≤≤,则A B =( )A .(]1,3-B .[)1,3C .(]1,5-D .(]3,5二、填空题16.设集合{}13A x x =<<,{}B x x a =<,若A B ⊆,则a 的取值范围是_________.17.若集合{}{}220,10M x x x N x ax =+-==+=,且N M ⊆,则实数a 的取值集合为____.18.已知{}3A x a x a =≤≤+,{}15b x x =-<<,A B =∅,则实数a 的取值范围是______19.已知集合{}N 4sin ,02A x x θθπ=∈<≤≤,若集合A 中至少有3个元素,则实数θ取值范围为________20.某班有学生45人,参加了数学小组的学生有31人,参加了英语小组的学生有26人.已知该班每个学生都至少参加了这两个小组中的一个小组,则该班学生中既参加了数学小组,又参加了英语小组的学生有___________人.21.某学校开设校本课程,高一(2110)班确定了数学类、英语类、历史类三个类别校本课程供班上的40名学生选择参加,且40名学生全部参与选择.其中只选数学类的有8人,只选英语类的有8人,只选历史类的有8人,既选数学类又选英语类的有7人,既选数学类又选历史类的有11人,既选英语类又选历史类的有8人,则三类课程都选择参加的有___________人.22.若全集{}0,1,2,3,4U =,{}0,1,2,3A =,{}2,3,4B =,则A B ⋃=______. 23.已知集合A ={x |2<x <4},B ={x |(x -1)(x -3)<0},则A ∩B 等于________. 24.若集合A ={x ∈R|ax 2+ax +1=0}中只有一个元素,则a =________.25.已知集合{}2202120200A x x x =-+<,{}B x x a =<,若A B ⊆,则实数a 的取值范围是______.三、解答题26.立德中学高一年级共有200名学生,报名参加学校团委与学生会组织的社团组织,据统计,参加艺术社团组织的学生有103人,参加体育社团组织的学生有120人(并非每个学生必须参加某个社团).求在高一年级的报名学生中,同时参加这2个社团的最多有多少人?最少有有多少人?27.函数()f x 满足(21)41f x x +=-. (1)求()f x 的解析式;(2)集合{}2|()30A x x f x =++=,写出集合A 的所有子集.28.已知集合{12}S n =,,,(3n ≥且*n N ∈),12{}m A a a a =,,,,且A S ⊆.若对任意i j a A a A ∈∈,(1i j m ≤≤≤),当i j a a n +≤时,存在k a A ∈(1km ≤≤),使得i j k a a a +=,则称A 是S 的m 元完美子集.(1)判断下列集合是否是{12345}S =,,,,的3元完美子集,并说明理由; ①1{124}A =,,; ②2{245}A =,,.(2)若123{}A a a a =,,是{127}S =,,,的3元完美子集,求123a a a ++的最小值; (3)若12{}m A a a a =,,,是{12}S n =,,,(3n ≥且*n N ∈)的m 元完美子集,求证:12(+1)2m m n a a a +++≥,并指出等号成立的条件.29.设全集为R ,{3A x x =≤或}9x ≥,{}29B x x =-<≤. (1)求A B ,A B ; (2)求()R B A .30.已知集合{}2,560|U R A x x x ==-+≤,112B xx ⎧⎫=≤⎨⎬-⎩⎭. (1)求,A B ;(2)判断Ux A ∈是x B ∈的什么条件.【参考答案】一、单选题 1.D 【解析】 【分析】求出集合A 、B ,利用交集和补集的定义可求得集合()U A B ∩. 【详解】因为{}30232x A xx x x ⎧⎫-=≤=-<≤⎨⎬+⎩⎭,{}{}ln 1e B x x x x =≥=≥, 所以,{}e UB x x =<,因此,()()2,e UA B =-.故选:D. 2.D 【解析】 【分析】利用()()()U U uM N M N ⋂=⋃,判断相互之间的关系.【详解】()()()UU uM N M N ⋂=⋃,M N N ⋃=,()u uM N N ⋃=.故选D. 3.C 【解析】 【分析】先由y =A ,再根据集合交集的原则即可求解. 【详解】对于集合A ,10x -≥,即1≥x ,则{}1A x x =≥, 所以{}1,2,3A B =, 故选:C 4.D 【解析】 【分析】求出原点到直线(系)的距离,即可判断集合A ,从而得到UA ,即可求出所表示的平面区域的面积; 【详解】解:对于直线(系)cos sin 10x y θθ+-=,则坐标原点()0,0到直线的距离1d ==,则集合(){},|cos sin 10A x y x y θθ=+-=表示平面上所有到原点距离等于1的直线上的点组成的集合,全集(){},|R,R U x y x y =∈∈表示坐标平面上的所有点的集合, 所以(){}22,|1UA x y x y =+<,则UA 所表示的平面区域的面积为π;故选:D 5.A 【解析】 【分析】先解出集合A 、B,再求A B . 【详解】因为{{}0A y y y y ===≥,{}{}3log 209B x x x x =≤=<≤,所以{}09A B x x ⋂=<≤.故选:A . 6.B 【解析】 【分析】计算出集合M ,在利用复数的四则运算化简各选项中的复数,即可得出合适的选项. 【详解】当N k ∈时,4i 1k =,41i i k +=,422i i 1k +==-,433i i i k +==-,则{}i,1,i,1M =--, ()()1i 1i 112M -+=+=∉,()()()21i1i 2i i 1i 1i 1i 2M ---===-∈++-,()()()i 1i i 11i 1i 1i 1i 22M +==-+∉--+,()2i 1i 2M =-∉-, 故选:B. 7.A 【解析】 【分析】解二次不等式求得集合B 然后根据并集的定义即得. 【详解】由2230x x --≤,解得13x -≤≤,[]1,3B ∴=-,又()1,4A =,[1,4)A B ∴⋃=-.故选:A. 8.C 【解析】 【分析】化简集合A ,根据B A ⊆求实数a 的可能取值,由此可得结果. 【详解】因为集合{}24A x N x =∈≤化简可得{0,1,2}A =又{}1,B a =,B A ⊆, 所以0a =或2a =,故实数a 的取值集合为{0,2}, 故选:C. 9.C 【解析】 【分析】解分式不等式确定集合A ,再由并集的定义计算. 【详解】解:依题意,{}30232x A xx x x ⎧⎫-=<=-<<⎨⎬+⎩⎭,则{}2A B x x ⋃=>-, 故选:C . 10.D 【解析】 【分析】根据集合的并集的定义即可求解. 【详解】 {}{}{}200,102A B x x x x ==<≤≤≤.故选: D. 11.A 【解析】 【分析】根据交集的定义计算可得; 【详解】解:因为{}1,2,3M =,{}1,3,4N =,所以{}1,3M N ⋂=; 故选:A 12.C 【解析】 【分析】根据集合的并集可得答案. 【详解】因为集合{M ⋃永安,漳平}{=德化,漳平,永安}, 所以集合M 可以为{德化},{德化,漳平},{德化,永安}, {德化,永安,漳平},共4个,故选:C. 13.B 【解析】 【分析】首先解一元二次不等式求出集合M ,再根据补集、并集的定义计算可得; 【详解】解:由20x x -<,即()10x x -<,解得01x <<,所以{}{}210||0M x x x x x -=<=<<,因为{}|1N x x =≥,{}U 0|x x =≥,所以{}U|01N x x =≤<,所以(){}U|01MN x x =≤<;故选:B 14.D 【解析】 【分析】根据条件求出两个函数在[1,2]上的值域,结合若存在[]12,1,2x x ∈,使得12()()f x g x =,等价为两个集合有公共元素,然后根据集合关系进行求解即可. 【详解】当12x ≤≤时,22log 1()log 2f x ≤≤,即0()1f x ≤≤,则()f x 的值域为[0,1], 当12x ≤≤时,4()2a g x a -≤≤-,则()g x 的值域为[4,2]a a --, 因为存在[]12,1,2x x ∈,使得12()()f x g x =, 则[4,2][0,1]a a --≠∅ 若[4,2][0,1]a a --=∅, 则14a <-或02a >-, 得5a >或2a <,则当[4,2][0,1]a a --≠∅时,25a ≤≤, 即实数a 的取值范围是[2,5],A ,B ,C 错,D 对. 故选:D . 15.B 【解析】 【分析】求出集合{}2230A x x x =--<,再根据集合的交集运算求得答案.【详解】由题意,{}2230{|13}A x x x x x =--<=-<<,故{}{|13}15{|13}A B x x x x x x ⋂=-<<⋂≤≤=≤<, 故选:B二、填空题16.[)3,+∞【解析】 【分析】根据A B ⊆列出不等式即可求解. 【详解】因为{}13A x x =<<,{}B x x a =<,A B ⊆,故只需3a ≥即可满足题意. 故答案为:[)3,+∞.17.10,1,2⎧⎫-⎨⎬⎩⎭【解析】 【详解】先求出集合M ,然后分N =∅和N ≠∅两种情况求解 【点睛】由220x x +-=,得(1)(2)0x x -+=,解得1x =或2x =-, 所以{}1,2M =-,当N =∅时,满足N M ⊆,此时0a = 当N ≠∅时,即0a ≠,则1N a ⎧⎫=-⎨⎬⎩⎭,因为N M ⊆,所以1M a-∈,所以11a -=或12a-=-, 解得1a =-或12a =, 综上,12a =,或1a =-,或0a =, 所以实数a 的取值集合为10,1,2⎧⎫-⎨⎬⎩⎭,故答案为:10,1,2⎧⎫-⎨⎬⎩⎭18.4a ≤-或5a ≥ 【解析】 【分析】由3a a <+可得A ≠∅,根据题意可得到端点的大小关系,得到不等式,从而可得答案. 【详解】由题意 3a a <+,则A ≠∅要使得A B =∅,则31a +≤-或5a ≥ 解得4a ≤-或5a ≥ 故答案为:4a ≤-或5a ≥ 19.5,66ππ⎛⎫⎪⎝⎭【解析】 【分析】分析可知元素0、1、2必属于集合A ,可得出1sin 2θ>,由[]0,2θπ∈可求得θ的取值范围. 【详解】要使集合A 中至少有3个元素,则元素0、1、2必属于集合A ,所以只需4sin 2θ>,即1sin 2θ>, 又[]0,2θπ∈,解得5,66ππθ⎛⎫∈ ⎪⎝⎭. 故答案为:5,66ππ⎛⎫⎪⎝⎭.20.12 【解析】 【分析】设该班学生中既参加了数学小组,又参加了英语小组的学生有x 人,列方程求解即可. 【详解】设该班学生中既参加了数学小组,又参加了英语小组的学生有x 人,则31264512x =+-=. 故答案为:12. 21.5 【解析】 【分析】设三类课程都选择参加的学生有x 人,由题意得()()()83711840x x x x ⨯+-+-+-+=,解方程可求得结果 【详解】设三类课程都选择参加的学生有x 人,由题意得()()()83711840x x x x ⨯+-+-+-+=,解得5x =. 故答案为:522.{}0,1,4【解析】 【分析】根据集合的运算法则计算. 【详解】由已知{4}A =,{0,1}B =,所以{0,1,4}A B =. 故答案为:{0,1,4}. 23.{x |2<x <3} 【解析】 【分析】解二次不等式可得集合B ,再求交集即可. 【详解】∵A ={x |2<x <4},B ={x |(x -1)(x -3)<0}={x |1<x <3}, ∴A ∩B ={x |2<x <3}. 故答案为:{x |2<x <3} 24.4 【解析】 【分析】集合A 只有一个元素,分别讨论当0a =和0a ≠时对应的等价条件即可 【详解】解:2{|10}A x R ax ax =∈++=中只有一个元素, ∴若0a =,方程等价为10=,等式不成立,不满足条件.若0a ≠,则方程满足0∆=,即240a a -=,解得4a =或0a =(舍去). 故答案为:425.[)2020,∞+【解析】 【分析】解一元二次不等式求得集合A ,根据A B ⊆求a 的取值范围. 【详解】由2202120200x x -+<,解得:12020x <<, ∴()1,2020A =,又A B ⊆,且{}|B x x a =<, ∴2020a ≥,故a 的取值范围为[)2020,∞+. 故答案为:[)2020,∞+三、解答题26.103;23. 【解析】 【分析】由题可知当艺术社团组织的学生都参加体育社团组织时,同时参加这2个社团的人数最多,当每个学生都参加某个社团时,同时参加这2个社团的学生最少. 【详解】由题意:当艺术社团组织的103名学生都参加体育社团组织时,同时参加这2个社团的学生最多,且有103人;当每个学生都参加某个社团时,同时参加这2个社团的学生最少,且有10312020023+-=人,所以同时参加这2个社团的最多有103名学生,最少有23名学生. 27.(1)()23f x x =-(2){}0,{}2-,{}0,2-和∅【解析】【分析】(1)利用换元法:21t x =+,求出()f t ,即可求出()f x 的解析式;(2)根据()230x f x ++=求出集合A 的元素,根据元素即可写出集合A 的所有子集.(1)令21x t +=,所以12t x -=, 所以()141232t f t t -=⋅-=-,即()23f x x =-; (2)因为()23f x x =-, {}{}22|()30|20A x x f x x x x =++==+=,因为220x x +=,解得0x =或2x =-,所以{}0,2A =-,所以集合A 的所有子集为:{}0,{}2-,{}0,2-和∅.28.(1)1A 不是S 的3元完美子集;2A 是S 的3元完美子集;理由见解析(2)12(3)证明见解析;等号成立的条件是11N 1n a m +=∈+*且(1)(2)1i n i a i m m +=+≤≤ 【解析】【分析】(1)根据m 元完美子集的定义判断可得结论;(2)不妨设123a a a <<.由11a =,12a =,13a ≥分别由定义可求得123a a a ++的最小值; (3)不妨设12m a a a <<<,有121i i i i m i a a a a a a a n +-<+<+<<+≤.121i i i m i a a a a a a +-+++,,,是A 中1m i +-个不同的元素,且均属于集合12{}i i m a a a ++,,,,此时该集合恰有m i -个不同的元素,显然矛盾.因此对任意1i m ≤≤,都有11i m i a a n +-++≥,由此可得证.(1)解:(1)①因为1235+=≤,又13A ∉,所以1A 不是S 的3元完美子集. ②因为2245+=≤,且24A ∈,而55454425245+>+>+>+>+>, 所以2A 是S 的3元完美子集.(2)解:不妨设123a a a <<.若11a =,则112a a A +=∈,123A +=∈,134A +=∈,与3元完美子集矛盾; 若12a =,则114a a A +=∈,246A +=∈,而267+>,符合题意,此时12312a a a ++=. 若13a ≥,则116a a +≥,于是24a ≥,36a ≥,所以123+13a a a +≥. 综上,123a a a ++的最小值是12.(3)证明:不妨设12m a a a <<<.对任意1i m ≤≤,都有11i m i a a n +-++≥,否则,存在某个(1)i i m ≤≤,使得1i m i a a n +-+≤. 由12m a a a <<<,得121i i i i m i a a a a a a a n +-<+<+<<+≤. 所以121i i i m i a a a a a a +-+++,,,是A 中1m i +-个不同的元素,且均属于集合12{}i i m a a a ++,,,, 该集合恰有m i -个不同的元素,显然矛盾.所以对任意1i m ≤≤,都有11i m i a a n +-++≥. 于是1211211212()()()()()(1)m m m m m m a a a a a a a a a a a a m n ---++++=+++++++++≥. 即12(1)2m m n a a a ++++≥. 等号成立的条件是11N 1n a m +=∈+*且(1)(2)1i n i a i m m +=+≤≤. 29.(1){23A B x x ⋂=-<≤或}9x =,A B R =(2)(){2R B A x x ⋂=≤-或}9x >【解析】【分析】(1)根据集合的交集和并集的定义即可求解; (2)先根据补集的定义求出B R ,然后再由交集的定义即可求解. (1) 解:因为{3A x x =≤或}9x ≥,{}29B x x =-<≤, 所以{23A B x x ⋂=-<≤或}9x =,A B R =;(2)解:因为全集为R ,{3A x x =≤或}9x ≥,{}29B x x =-<≤, 所以{2R B x x =≤-或}9x >,所以(){2R B A x x ⋂=≤-或}9x >.30.(1){}|23A x x =≤≤;{2B x x =<或}3x ≥.(2)充分不必要条件【解析】【分析】(1)分别解一元二次不等式和分式不等式即可得答案; (2)由题知{2U A x x =<或}3x >,进而根据充分不必要条件判断即可.(1)解:解不等式2560x x -+≤得23x ≤≤,故{}|23A x x =≤≤; 解不等式()()320113110022220x x x x x x x ⎧--≤-≤⇔-≤⇔≤⇔⎨----≠⎩, 解得2x <或3x ≥,故{2B x x =<或}3x ≥.(2)解:因为{}|23A x x =≤≤, 所以{2U A x x =<或}3x >, 因为{2B x x =<或}3x ≥, 所以U x A ∈是x B ∈的充分不必要条件.。

高一数学集合练习题及答案经典

高一数学集合练习题及答案经典

高一数学集合练习题及答案经典一、单选题1.设集合{|04}A x x =<<,{2,3,4,5,6}B =,则A B =( ) A .{2}B .{2,3}C .{3,4}D .{2,3,4}2.已知集合{}1,4,M x x =,{}21,N x =,若N M ⊆,则实数x 组成的集合为( )A .{}0B .{}2,2-C .2,0,2D .2,0,1,23.设集合104x A xx ⎧⎫+=≤⎨⎬-⎩⎭,{}1e ,R x B y y x ==-∈,R 为实数集,则()RA B ⋃=( )A .{1x x <-或}1x ≥B .{1x x ≤-或}1x >C .{}4x x ≥D .{}4x x >4.设全集{2,1,0,1,2}U =--,集合{}{}1,0,1sin ,cos0M N π=-=,,则{1}-=( ) A .M N ⋂ B .()UMNC .()U N M ⋂D .()()U U M N5.设全集U =R ,集合{}0,1,2A =,{}2B x x =≥,则()UA B =( )A .{}0,1,2B .{}0,1C .{}2D .{}2x x <6.已如集合{}2A x x =>,{}35B x x =-<<,则A B =( ) A .{}25x x << B .{}32x x -<<C .{}35x x -<<D .{}3x x <- 7.已知集合2{|4120}A x x x =+-<,{|13}B x x =<≤,则A B =( )A .()1,2-B .()1,2C .(]1,3-D .(]1,38.已知集合{|1}A x x =≥-,1{|28}4x B x =≤<,则A B =( ) A .[-2,3) B .[-1,3)C .[-2,3]D .[-1,3]9.设集合{}0,1S =,{}0,3T =,则S T ⋃=( )A .{}0B .{}1,3C .{}0,1,3D .{}0,1,0,310.设集合{}A x y x ==,(){}2,B x y y x ==,则AB =( )A .{}0B .(){}1,1C .{}0,1D .∅11.设集合{}{}13,33A xx B x x =≤≤=-≤≤∣∣,则A B =( ) A .[]1,3B .[]3,3-C .(]1,3D .[]3,1-12.已知集合{}1A x x =≤,B ={}02x x <<,则A B =( ) A .(]0,1B .[)1,2C .()0,1D .()0,213.已知集合{}0A x x =≥,{}11,B x x x Z =-≤≤∈,则A B =( ) A .{}0,1 B .{}1,2 C .[]0,2 D .[]1,214.已知集合{|03}A x x =<<,集合2{|0log 1}B x x =<<,则A ∩B =( )A .{|13}x x <<B .{|12}x x <<C .{|23}x x <<D .{|02}x x <<15.下面五个式子中:①{}a a ⊆;②{}a ∅⊆;③{a }∈{a ,b };④{}{}a a ⊆;⑤a ∈{b ,c ,a };正确的有( )A .②④⑤B .②③④⑤C .②④D .①⑤二、填空题16.已知集合{}|04A x x =<≤,集合{}|B x x a =<,若A B ⊆,则实数a 的取值范围是_____.17.若{}31,3,a a ∈-,则实数a 的取值集合为______.18.已知函数2()43f x x x =-+,()52g x mx m =+-,若对任意的[]11,4x ∈,总存在[]21,4x ∈,使12()()f x g x =成立,则实数m 的取值范围是 ________. 19.已知集合(){}2,2A x y y xx ==-,()(){},21B x y y x ==+,则A B =___________.20.已知T 是方程()22040xpx q p q ++=->的解集,1379147{{1}}0A B ==,,,,,,,且T A T B T ⋂=∅⋂=,,则p q +=_____.21.已知(],0A =-∞,[),B a =+∞,且A B R =,则实数a 的取值范围为______. 22.已知集合{0,1,2,3,4,5}A =,集合{1,3,5,7,9}B =,则Venn 图中阴影部分表示的集合中元素的个数为________.23.已知集合{}()216,xA xB a ∞=≤=-,,若A B ⊆则实数a 的取值范围是____.24.设集合{}2,3,4U =,对其子集引进“势”的概念;①空集的“势”最小;②非空子集的元素越多,其“势”越大;③若两个子集的元素个数相同,则子集中最大的元素越大,子集的“势”就越大.最大的元素相同,则第二大的元素越大,子集的“势”就越大,以此类推.若将全部的子集按“势”从小到大顺序排列,则排在第6位的子集是_________.25.若集合{}2A x x =<,101B xx ⎧⎫=>⎨⎬+⎩⎭,则A B =______. 三、解答题26.对于任意的*n N ∈,记集合{1,2,3,,}n E n =,,n n n P x x a E b E b ⎧⎫==∈∈⎨⎬⎩⎭,若集合A 满足下列条件:①n A P ⊆;②12,x x A ∀∈,且12x x ≠,不存在*N k ∈,使212x x k +=,则称A 具有性质Ω.如当2n =时,2{1,2}E =,2P ⎧=⎨⎩,112,x x P ∀∈,且12x x ≠,不存在*N k ∈,使212x x k +=,所以2P 具有性质Ω.(1)写出集合3P ,4P 中的元素个数,并判断3P 是否具有性质Ω. (2)证明:不存在A 、B 具有性质Ω,且A B =∅,使15E A B =⋃. (3)若存在A 、B 具有性质Ω,且A B =∅,使n P A B =⋃,求n 的最大值.27.设全集U R =,已知集合{}1,2A =,{|03}B x x =≤≤,集合C 为不等式组10240x x +≥⎧⎨-≤⎩的解集.(1)写出集合A 的所有子集; (2)求UB 和BC ⋃.28.已知集合{}3A x x =≤,{}31B x a x a =-<<+. (1)当4a =时,求()A B R ; (2)若A B A =,求实数a 的取值范围.29.已知集合{}24120A x x x =--<,集合{}239B x m x m =-<<-.现有三个条件:条件①A B B =;条件②R ()B A ⊆;条件③A B B ⋃=.请从上述三个条件中任选一个,补充在下面横线上,并求解下列问题: (1)若4m =,求R ()B A ⋂; (2)若______,求m 的取值范围.注:如果选择多个条件分别解答,按第一个选择的解答计分.30.已知集合A ={x |2≤|x |≤m },B ={3|x x -26x +8x >0},C ={2|x x -2x -15=0}. (1)若A C =A ,求实数m 的最小值; (2)若A B =∅,求实数m 的取值范围.【参考答案】一、单选题 1.B 【解析】 【分析】根据交集的概念可得答案. 【详解】A B ={2,3}.故选:B 2.C 【解析】 【分析】若N M ⊆,所以2x x =或24x =,解出x 的值,将x 的值代入集合,检验集合的元素满足互异性. 【详解】因为N M ⊆,所以2x x =,解得0x =,1x =或24x =,解得2x =±, 当0x =时,{}1,4,0M =,{}1,0N =,N M ⊆,满足题意. 当1x =时,{}1,4,1M =,不满足集合的互异性. 当2x =时,{}1,4,2M =,1,4N ,若N M ⊆,满足题意. 当2x =-时,{}1,4,2M =-,1,4N ,若N M ⊆,满足题意.故选:C. 3.C 【解析】 【分析】先求出集合A ,B ,再求两集合的并集,然后再求其补集 【详解】由104x x +≤-,得(1)(4)040x x x +-≤⎧⎨-≠⎩,解得14x -≤<, 所以{}14A x x =-≤<,因为当R x ∈时,e 0x >,所以1e 1x -<, 所以{}1B y y =<, 所以{}4A B x x ⋃=<, 所以(){}R4A B x x ⋃=≥,故选:C 4.B 【解析】 【分析】化简集合N ,然后由集合的运算可得. 【详解】{}sin ,cos0}0,1 {N π==, {}2,1,2,U N ∴=-- {}()1U MN ∴=-故选:B.5.B 【解析】 【分析】根据补集、交集的定义计算可得; 【详解】解:因为{}2B x x =≥,所以{}U 2B x x =<,又{}0,1,2A =; 所以(){}0,1UA B =;故选:B6.A 【解析】 【分析】应用集合的交运算求A B . 【详解】{|2}{|35}{|25}A B x x x x x x ⋂=>⋂-<<=<<. 故选:A 7.B 【解析】 【分析】求出集合A 的解集,即可求出A B 的结果.因为{}()()2|4120{|620}{|62}A x x x x x x x x =+-<=+-<=-<<,{|13}B x x =<≤,所以{|12}A B x x =<<,故选:B. 8.B 【解析】 【分析】先化简集合B ,再利用交集运算求解. 【详解】解:因为集合{|1}A x x =≥-,41|28{|23}xB x x x ⎧⎫=≤<=-≤<⎨⎬⎩⎭,所以{}|13A B x x ⋂=-≤<, 故选:B 9.C 【解析】 【分析】 由并集的概念运算 【详解】 S T ⋃={}0,1,3故选:C 10.D 【解析】 【分析】通过集合中点集与数集的概念,再运用集合的交集运算即可得解. 【详解】由题设可得A 为数集,B 为点集,故A B ⋂=∅. 故选:D 11.A 【解析】 【分析】利用集合交集定义计算即可 【详解】[1,3],[3,3],[1,3]A B A B ==-⋂=故选 :A 12.A 【解析】 【分析】根据集合的交集概念即可计算.∵{}1A x x =≤,B ={}02x x <<,∴A B =(]0,1. 故选:A ﹒ 13.A 【解析】 【分析】先化简集合B ,然后由交集运算可得答案. 【详解】由集合{}{}|111,0,1B x x x Z =-≤≤∈=-,, {}0A x x =≥ 所以{}0,1A B = 故选:A 14.B 【解析】 【分析】化简集合B ,再求集合A,B 的交集即可. 【详解】∵集合{|03}A x x =<<,集合2{|0lo {|}g 121}B x x x x =<<<<=, ∴A B ={|12}x x <<. 故选:B. 15.A 【解析】 【分析】根据元素与集合,集合与集合之间的关系逐个分析即可得出答案. 【详解】①中,a 是集合{a }中的一个元素,{}a a ∈,所以①错误; 空集是任一集合的子集,所以②正确;{}a 是{},a b 的子集,所以③错误;任何集合是其本身的子集,所以④正确; a 是{},,b c a 的元素,所以⑤正确. 故选:A.二、填空题 16.4a >【解析】 【分析】结合数轴图与集合包含关系,观察即可得到参数的范围. 【详解】在数轴上表示出集合A ,B ,由于A B ⊆,如图所示,则4a >.17.{}0,1,3【解析】 【分析】根据元素的确定性和互异性可求实数a 的取值. 【详解】因为{}31,3,a a ∈-,故1a =-或3a =或3a a =,当1a =-时,31a =-,与元素的互异性矛盾,舍; 当3a =时,327a =,符合;当3a a =时,0a =或1a =±,根据元素的互异性,0,1a =符合, 故a 的取值集合为{}0,1,3. 故答案为:{}0,1,318.(,3][6,)-∞-⋃+∞【解析】 【分析】根据对任意的[]11,4x ∈,总存在[]21,4x ∈,使得12()()f x g x =,可得两个函数值域的包含关系,进而根据关于m 的不等式组,解不等式组即可. 【详解】因为()22()4321f x x x x =-+=--, 所以函数()f x 的对称轴为2x =,对任意的[]11,4x ∈,记()[]1,3f x ∈-.记[]1,3A =-. 由题意知,当0m =时不成立,当0m >时,()52g x mx m =+-在[]1,4上是增函数, 所以[]()5,25g x m m ∈-+,记[]5,25B m m =-+ 由题意知,BA所以m m -≥-+≥⎧⎨⎩15253,解得6m ≥.当0m <时,()52g x mx m =+-在[]1,4上是减函数, 所以[]()25,5g x m m ∈+-,记[]25,5C m m =+-, 由题意知,C A ⊇所以251{53m m +≤--≥,解得3m ≤-.综上所述,实数m 的取值范围是(,3][6,)-∞-⋃+∞. 故答案为: (,3][6,)-∞-⋃+∞ 【点睛】解决本题的关键是将问题转化为对任意的[]11,4x ∈,总存在[]21,4x ∈,使得12()()f x g x =, 可得两个函数值域的包含关系,进而分别求两个函数的值域.19.()1,1,2,62⎧⎫⎛⎫-⎨⎬ ⎪⎝⎭⎩⎭【解析】 【分析】解方程组直接求解即可 【详解】由()2221y x x y x ⎧=-⎪⎨=+⎪⎩得121x y ⎧=-⎪⎨⎪=⎩或26x y =⎧⎨=⎩,∴()1,1,2,62A B ⎧⎫⎛⎫⋂=-⎨⎬ ⎪⎝⎭⎩⎭.故答案为:()1,1,2,62⎧⎫⎛⎫-⎨⎬ ⎪⎝⎭⎩⎭20.26【解析】 【分析】由题知{}4,10T =,再结合韦达定理求解即可. 【详解】解:因为240p q ->,所以方程()22040x px q p q ++=->的解集有两个不相等的实数根,因为1379147{{1}}0A B ==,,,,,,,且T A T B T ⋂=∅⋂=,, 所以{}4,10T =所以由韦达定理得14p =-,40q = 所以26p q += 故答案为:2621.0a ≤【解析】 【分析】根据并集的运算结果列出不等式,即可得解. 【详解】解:因为A B R =, 所以0a ≤. 故答案为:0a ≤.22.3 【解析】 【分析】由集合定义,及交集补集定义即可求得. 【详解】由Venn 图及集合的运算可知,阴影部分表示的集合为()AAB .又{0,1,2,3,4,5}A =,{1,3,5,7,9}B =,{1,3,5}A B ∴⋂=,(){}0,2,4AA B ∴⋂=即Venn 图中阴影部分表示的集合中元素的个数为3 故答案为:3.23.4a >【解析】 【分析】根据指数函数的单调性求出集合A ,再根据A B ⊆列出不等式,即可的解. 【详解】解:{}(]216,4xA x ∞=≤=-,因为A B ⊆, 所以4a >. 故答案为:4a >.24.{}2,4【解析】 【分析】根据题意依次按“势”从小到大顺序排列,得到答案. 【详解】根据题意,将全部的子集按“势”从小到大顺序排列为:∅,{}2,{}3,{}4,{}2,3,{}2,4,{}3,4,{}2,3,4.故排在第6的子集为{}2,4. 故答案为:{}2,4 25.{}12x x -<<## ()1,2- 【解析】 【分析】求解绝对值不等式解得集合A ,求解分式不等式求得集合B ,再求交集即可. 【详解】因为{}2A x x =<{|22}x x =-<<,101B xx ⎧⎫=>⎨⎬+⎩⎭{}1x x =-, 故可得A B ={|12}x x -<<. 故答案为:{}12x x -<<.三、解答题26.(1)3P ,4P 中的元素个数分别为9,14,3P 不具有性质Ω.(2)证明见解析(3)14【解析】【分析】(1)由已知条件能求出集合3P ,4P 中的元素个数,并判断出3P 不具有性质Ω. (2)假设存在A ,B 具有性质Ω,且A B =∅,使15E A B =.其中15{1E =,2,3,⋯,15},从而1A B ∈,由此推导出与A 具有性质Ω矛盾.从而假设不成立,即不存在A ,B 具有性质Ω,且A B =∅,使15E A B =.(3)当15n 时,不存在A ,B 具有性质Ω,且A B =∅,使n P A B =.14n =,根据1b =、4b =、9b =分类讨论,能求出n 的最大值为14.(1)解: 对于任意的*n N ∈,记集合{1n E =,2,3,⋯,}n ,,n n n P x x a E b E ⎧⎫=∈∈⎨⎬⎩⎭.当3n =时{}31,2,3E =,3P ⎧=⎨⎩; 当4n =时{}41,2,3,4E =,413,22P ⎧⎫=⎨⎬⎩⎭,∴集合3P ,4P 中的元素个数分别为9,14,集合A 满足下列条件:①n A P ⊆;②1x ∀,2x A ∈,且12x x ≠,不存在*k N ∈,使212x x k +=,则称A 具有性质Ω,因为31P ∈,33P ∈,2132+=,*2∈N ,不符合题意,3P ∴不具有性质Ω.(2)证明:假设存在A ,B 具有性质Ω,且A B =∅,使15E A B =.其中15{1E =,2,3,⋯,15}.因为151E ∈,所以1A B ∈,不妨设1A ∈.因为2132+=,所以3A ∉,3B ∈.同理6A ∈,10B ∈,15A ∈.因为21154+=,这与A 具有性质Ω矛盾.所以假设不成立,即不存在A ,B 具有性质Ω,且A B =∅,使15E A B =.(3)解:因为当15n 时,15n E P ⊆,由(2)知,不存在A ,B 具有性质Ω,且A B =∅,使n P A B =.若14n =,当1b =时,1414x x a E E ⎧⎫∈=⎨⎬⎩⎭, 取1{1A =,2,4,6,9,11,13},1{3B =,5,7,8,10,12,14},则1A ,1B 具有性质Ω,且11A B =∅,使1411E A B =.当4b =时,集合14x x a E ⎧⎫=∈⎨⎬⎩⎭中除整数外,其余的数组成集合为13513{,,,,}2222⋯, 令215911{,,,}2222A =,23713{,,}222B =, 则2A ,2B 具有性质Ω,且22A B =∅,使2213513{,,,,}2222A B ⋯=. 当9b =时,集14x x a E ⎧⎫=∈⎨⎬⎩⎭中除整数外,其余的数组成集合12457810111314{,,,,,,,,,}3333333333, 令31451013{,,,,}33333A =,32781114{,,,,}33333B =. 则3A ,3B 具有性质Ω,且33A B =∅,使3312457810111314{,,,,,,,,,}3333333333A B =. 集合1414,,1,4,9C x x a E b E b ⎧⎫==∈∈≠⎨⎬⎩⎭中的数均为无理数, 它与14P 中的任何其他数之和都不是整数,因此,令123A A A A C =,123B B B B =,则A B =∅,且14P A B =.综上,所求n 的最大值为14.27.(1)∅,{1},{2},{1,2};(2)U B {|0x x =<或3}x >,{|13}B C x x ⋃=-≤≤.【解析】【分析】(1)直接写出集合A 的所有子集即可;(2)直接写出U B ,求得C ,再求B C ⋃即可. (1)因为{}1,2A =,故A 的所有子集为∅,{}{}{}1,2,1,2.(2)因为{}|12C x x =-≤≤,U B ={|0,x x <或3}x >,{|13}B C x x ⋃=-≤≤. 28.(1){}35x x <<(2)(6,)+∞【解析】【分析】(1)求出集合A ,进而求出A 的补集,根据集合的交集运算求得答案;(2)根据A B A =,可得A B ⊆,由此列出相应的不等式组,解得答案.(1){}{}333A x x x x =≤=-≤≤,则R {|3A x x =<-或3}x > ,当4a =时,{}15B x x =-<<,(){}R =35A B x x ∴⋂<< ;(2)若A B A =,则A B ⊆,3313a a -<-⎧∴⎨+>⎩, ∴实数a 的取值范围为6a >,即(6,)a ∈+∞ .29.(1){|67}x x ≤<;(2)选择条件,答案见解析.【解析】【分析】(1)解一元二次不等式化简集合A ,再求出其补集,再利用交集的定义计算作答.(2)选择条件①,③,利用交集、并集的结果转化为集合的包含关系,再讨论求解作答;选择条件②,利用集合的包含关系,讨论求解作答.(1)集合()(){}{}26026A x x x x x =+-<=-<<,R {|2A x x =≤-或6}x ≥,当4m =时,{}17B x x =<<,则()R {|67}A B x x ⋂=≤<.(2)选择条件①:A B B =,则B A ⊆,若B =∅,则239m m -≥-,解得23m -≤≤,若B ≠∅,则22393296m m m m ⎧-<-⎪-≥-⎨⎪-≤⎩,解得3m <≤综上得:2m -≤≤所以m的取值范围是2m -≤≤选择条件②:R ()B A ⊆,由(1)知,R {|2A x x =≤-或6}x ≥,若B =∅,则239m m -≥-,解得 23m -≤≤,若B ≠∅,则223992m m m ⎧-<-⎨-≤-⎩或23936m m m ⎧-<-⎨-≥⎩,解得2m ≤<-或9m ≥,综上得:3m ≤或9m ≥,所以m的取值范围是3m ≤或9m ≥.选择条件③:A B B ⋃=,则A B ⊆,于是得:22393296m m m m ⎧-<-⎪-≤-⎨⎪-≥⎩,解得m ≤ 所以m的取值范围是m ≤30.(1)5(2)(],4∞-【解析】【分析】(1)由并集结果得到{3,5}A -⊆,从而得到不等式组,求出m 的取值范围,得到m 的最小值;(2)由交集结果分A =∅与A ≠∅进行分类讨论,求出m 的取值范围.(1)由题有{3,5}C =-,若A C A ⋃=,则{3,5}A -⊆,则 可知2325m m ⎧≤-≤⎪⎨≤≤⎪⎩,解得:5m ≥,所以m 的最小值为5. (2)()()()(){|240}0,24,B x x x x =-->=⋃+∞,由A B =∅,则①当A =∅时,2m <;②当A ≠∅时,2m ≥,有{|22}A x m x x m =-≤≤-≤≤或,从而有24m ≤≤综上:数m 的取值范围是(],4∞-.。

高一数学集合测试题(含答案)

高一数学集合测试题(含答案)

高一数学集合测试题(含答案)一、单选题:1.设全集I={0, 1, 2, 3, 4}, 集合 A={0, 1, 2, 3},集合B={2,3,4}, 则 C(I-A)UC(I-B)= {0}2.方程组 {2x-3y=1,x-y=3 } 的解的集合是 {8,5}3.有下列四个命题:①ø是空集;②若a∈Z, 则-a∉N;③集合A= {x∈R|x∧2−2x+1=0}}是有两个元素;④集合B={x∈Q|x∈N}是有限集。

其中正确命题的个数是24.如果集合.A={x|ax∧2+2x+1=0}中只有一个元素,则a的值是15.已知M={y|x∧2−4≤y≤x≤2},P={x|−2≤x≤2},则M∩P={-2,-1,0,1,2}6.已知全集I=N, 集合A={x|x=2n, n∈N}, B={x|x=4n,n∈N},则I=AUB7.设集合M={x|x=kl/k2,k∈Z},N={x|x=k1/k2+1/2,k∈Z}, 则McN8.设集合A={x|1<x<2}, B={x|x<a}满足 A ⊂B, 则实数 a 的取值范围是(2,+∞)9.满足{1,2, 3}⊂M ⊂{1, 2, 3, 4, 5, 6}的集合M 的个数是810.如右图所示, Ⅰ为全集,M 、P 、 S 为Ⅰ的子集。

则阴影部分所表示的集合为(M∩P)US二、 填空题:12.已知 M={a,b}, N={b,c,d}, 若集合P 满足 P ⊆N, M∩P=∅, 则P={c,d}13.设全集 U={a,b,c,d,e},A={a,c,d}, B={b,d,e}, 则 C(A∩CB)={b,e}14.已知 Sx|x ∧2+2013\cdot (a +2)x +a ∧2−4|=|x −a −2||x +a +2|S,则$a=-2$。

15.已知集合SA =\{x|−1<x <3}S,SA\capB =\varmotℎingS, SA\cupB =mathbb {R }S,,求集合$B=\{x|x\leq-1\text{或 }x\geq 3\}$。

高一数学集合练习题及答案-经典

高一数学集合练习题及答案-经典

高一数学集合练习题及答案-经典一、单选题1.已知集合{}1,4,M x x =,{}21,N x =,若N M ⊆,则实数x 组成的集合为( ) A .{}0 B .{}2,2- C .2,0,2 D .2,0,1,22.已知集合{|A x y ==,{}0B x x =>,则A B ⋃=( ) A .{|3}x x ≤ B .{|1}x x ≥- C .{}|3x x > D .{}|0x x >3.已知集合{}213A x x =+>,{}220B x x x =--<,则A B =( ) A .{}1x x >-B .{}11x x -<<C .{}211x x x -<或D .{}12x x <<4.已知全集为R ,集合115x A x ⎧⎫⎪⎪⎛⎫=<⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,11B x x ⎧⎫=≥⎨⎬⎩⎭,则A B ⋂=R( ) A .{}0x x ≤ B .{}01x x <≤ C .{}1x x > D .∅5.集合{}06A x Z x =∈<<,集合{}ln 1B x x =>,求A B ( )A .{}6x e x <<B .{}1,2,3e e e +++C .{}3,4,5D .{}2,3,4,56.已知集合{}21A x x =<,{}lg 0B x x =<,则A B =( ) A .{}11x x -<<B .{}10x x -<<C .{}1x x <D .{}01x x <<7.已知集合{}1,2M =,{}2,3N =,那么M N ⋂等于( )A .∅B .{}1,2,3C .{}2D .{}3 8.设集合{}{}(,)|20(,)|35A x y x y B x y x y =-==+=,,则A B =( ) A .{1,2}B .{1,2}x yC .(1,2)D .{(1,2)}9.设集合{A x y =,(){}ln 2B y y x ==-,(){}2,C x y y x ==,则下列集合不为空集的是( )A .A CB .BC ⋂ C .B A ⋂RD .A B C ⋂⋂10.设集合P ,Q 均为全集U 的非空子集,且U ()P Q P =∩,则U ()P Q =∩( ) A .P B .Q C .∅D .U 11.已知全集{}1,2,3,4,5U =,{}2,3,4A =,{}3,5B =,则()U A B =( ) A .{}1 B .{}3 C .{}2,4 D .{}1,2,4,512.设集合{}{}13,33A xx B x x =≤≤=-≤≤∣∣,则A B =( ) A .[]1,3 B .[]3,3- C .(]1,3 D .[]3,1- 13.已知集合{}21A x x =-<≤,{}2,1,0,1B =--,则A B =( )A .{}2,1,0,1--B .{}1,0,1-C .{}1,0-D .{}2,1,0--14.设集合{}220A x x x =-≤,{}1,2,3B =,{}2,3,4C =,则()A B C =( )A .{}2B .{}2,3C .{}1,2,3,4D .{}0,1,2,3,415.已知集合1144A x x ⎧⎫=-<⎨⎬⎩⎭,12B x a x ⎧⎫=<<⎨⎬⎩⎭,若B A ⊆,则实数a 的取值范围是( )A .10,2⎛⎫ ⎪⎝⎭B .10,2⎛⎤ ⎥⎝⎦C .[)0,∞+D .[)1,+∞二、填空题16.已知全集{1,2,3,4,5,6,7}U =,集合{}1,3,5,7A =,则U A ____________.17.已知全集U =R ,集合{}()3,,0A x x B ∞=≤-=-,则A B =________.18.集合(){},A x y y a x ==,(){},B x y y x a ==+,C AB =,且集合C 为单元素集合,则实数a 的取值范围是________.19.已知集合{}2430A x x x =-+=,{}30B x mx =-=,且B A ⊆,则实数m 的取值集合为___________.20.若{}31,2a ∈,则实数=a ____________.21.若集合{}{}230,0,1,2,3A xx x B =-==∣,则满足A M B ⊆⊆的集合M 的个数是___________.22.已知集合{}1,0,1A =-,{}220B x x x =-=,则A B ⋃=______. 23.若集合234|0A x x x ,{}|10B x ax =-=,且“x B ∈”是“x A ∈”的充分非必要条件,则实数a 组成的集合是______.24.若a 、b 、R x ∈且a 、0b ≠,集合b a B x x a b ⎧⎫⎪⎪==+⎨⎬⎪⎪⎩⎭,则用列举法可表示为______. 25.若集合1,24k M x x k Z ⎧⎫==+∈⎨⎬⎩⎭,1,42k N x x k Z ⎧⎫==+∈⎨⎬⎩⎭,则集合M 、N 之间的关系是______.三、解答题26.已知集合{}{}24121A x x B x m x m =-≤≤=-+≤≤-,.(1)若2m =,求R ,()A B A B ⋃⋂;(2)若A B A ⋃=,求m 的取值范围.27.对非空数集X ,Y ,定义X 与Y 的和集{},X Y x y x X y Y +=+∈∈.对任意有限集A ,记A 为集合A 中元素的个数.(1)若集合{}0,5,10X =,{}2,1,0,1,2Y =--,写出集合X X +与X Y +;(2)若集合{}12,,,n X x x x =满足12n x x x <<<,3n ≥,且2X X X +<,求证:数列1x ,2x ,,n x 是等差数列;(3)设集合{}12,,,n X x x x =满足12n x x x <<<,3n ≥,且()1,2,,i x i n ∈=Z ,集合{}B k Z m k m =∈-≤≤(2m ≥,N m ∈),求证:存在集合A 满足11n x x A B -≤+且X A B ⊆+.28.已知集合{|lg(3)A x y x ==-,2{|9200}B x x x =-+≤,{|121}C x a x a =+≤<-.若()C A B ⊆,求实数a 的取值范围.29.设集合{}22,3,42A a a =++,集合{}20,7,42,2B a a a =+--,这里a 是某个正数,且7A ∈,求集合B .30.已知集合2{|40}A x x =-≥,集合{|1}B x m x m =<<-.(1)求A .(2)求A B A ⋃=,求m 的取值范围.【参考答案】一、单选题1.C【解析】【分析】若N M ⊆,所以2x x =或24x =,解出x 的值,将x 的值代入集合,检验集合的元素满足互异性.【详解】因为N M ⊆,所以2x x =,解得0x =,1x =或24x =,解得2x =±,当0x =时,{}1,4,0M =,{}1,0N =,N M ⊆,满足题意.当1x =时,{}1,4,1M =,不满足集合的互异性.当2x =时,{}1,4,2M =,1,4N,若N M ⊆,满足题意. 当2x =-时,{}1,4,2M =-,1,4N,若N M ⊆,满足题意.故选:C.2.B【解析】【分析】由分式不等式求得集合A ,再根据并集的原则求解即可.【详解】 对于集合A ,满足1033x x x +⎧≥⎪-⎨⎪≠⎩,即()()3103x x x ⎧-+≤⎨≠⎩, 解得13x -≤<,即{}13A x x =-≤<, 又{}0B x x =>,所以{}1A B x x ⋃=≥-,故选:B3.D【解析】【分析】分别求出集合AB 、根据集合的交集运算可得答案. 【详解】{}{}2131=+>=>A x x x x ,{}{}22012=--<=-<<B x x x x x , ∴{}12A B x x ⋂=<<.故选:D .4.C【解析】【分析】根据题意解得集合{}|0A x x =>,{}|01B x x =<≤,由集合补集运算得到(](),01,B =-∞⋃+∞R ,再由集合交集运算得到最后结果.【详解】 集合115x A x ⎧⎫⎪⎪⎛⎫=<⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,解得{}|0A x x =>, 11B x x ⎧⎫=≥⎨⎬⎩⎭,()101110010x x x x x x x ⎧-≥-≥⇔≥⇔⇒<≤⎨≠⎩{}|01B x x ∴=<≤,(](),01,B =-∞⋃+∞R由集合交集运算得到:A B ⋂=R {}1x x >. 故选:C.5.C【解析】【分析】先化简出结合,A B ,然后再求交集.【详解】由{}1,2,3,4,5A =,ln 1x > 则x e >,所以集合(),B e =+∞所以{}3,4,5A B =故选:C6.D【解析】【分析】根据对数函数的单调性,结合解一元二次不等式的方法、集合交集的定义进行求解即可.【详解】因为{}21(1,1)A x x =<=-,{}lg 0(0,1)B x x =<=, 所以A B ={}01x x <<,故选:D7.C【解析】【分析】由交集的定义直接求解即可【详解】因为{}1,2M =,{}2,3N =所以{}2MN =,故选:C8.D【解析】【分析】联立方程求解即可.【详解】集合A 表示在直线2x -y =0上所有的点,集合B 表示3x +y =5上所有的点,所以联立方程2035x y x y -=⎧⎨+=⎩ ,解得x =1,y =2, ()1,2A B ⋂= ,即A 与B 的交集是点(1,2);故选:D.9.C【解析】【分析】先化简集合A ,B ,C ,再利用集合的类型和运算求解.【详解】解:因为集合{{}2A x y x x ===≥,(){}ln 2B y y x R ==-=,且(){}2,C x y y x ==为点集, 所以A C ⋂=∅,B C =∅,{}|2=<A x x R ,{}|2⋂=<B A x x R ,A B C =∅,故选:C10.B【解析】【分析】依题意可得U P Q ⊆,即可得到U Q P ⊆,从而即可判断; 【详解】解:因为U ()P Q P =∩,所以U P Q ⊆,所以U Q P ⊆,所以U ()P Q Q =∩; 故选:B11.D【解析】【分析】利用交集和补集的定义可求得结果.【详解】由已知可得{}3A B ⋂=,所以,(){}1,2,4,5U A B ⋂=.故选:D.12.A【解析】【分析】利用集合交集定义计算即可【详解】[1,3],[3,3],[1,3]A B A B ==-⋂=故选 :A13.B【解析】【分析】由交集定义可直接得到结果.【详解】由交集定义可知:{}1,0,1-.故选:B.14.C【解析】【分析】先求出集合A ,再按照交集并集的运算计算()A B C 即可.【详解】{}{}22002A x x x x x =-≤=≤≤,{}(){}1,2,1,2,3,4A B A B C ==. 故选:C.15.C【解析】【分析】解不等式求得集合A ,对a 进行分类讨论,根据B 是A 的子集列不等式,从而求得a 的取值范围.【详解】1111111,,0,0,4444422x x x A ⎛⎫-<-<-<<<= ⎪⎝⎭, 当12a ≥时,B =∅,满足B A ⊆. 当12a <时,由于B A ⊆,所以102a ≤<. 综上所述,a 的取值范围是[)0,∞+.故选:C二、填空题16.{}2,4,6【解析】【分析】由补集的定义即可求解.【详解】解:因为全集{1,2,3,4,5,6,7}U =,集合{}1,3,5,7A =,所以{}2,4,6U A =.故答案为:{}2,4,6 17.()3,0-【解析】【分析】 先求出{}3A x x =>-,进而求出交集.【详解】{}3A x x =>-,()3,0A B =-故答案为:()3,0-18.[1,1]-【解析】【分析】由题意可得集合A ,B 表示的曲线有一个交点,可得a x x a =+有一个根,当0a =时,符合题意,当0a ≠时,1x x a =+,分别作出y x =与1x y a =+的图象,根图象求解即可 【详解】因为C A B =,且集合C 为单元素集合,所以集合A ,B 表示的曲线有一个交点, 所以a x x a =+有一个根当0a =时,符合题意,当0a ≠时,1x x a =+,分别作出y x =与1x y a =+的图象, 由图象可知11a ≥或11a≤-时,两函数图象只有一个交点, 解得01a <≤或10a -≤<,综上,实数a 的取值范围是[1,1]-,故答案为:[1,1]-19.{}0,1,3【解析】【分析】讨论0m =和0m ≠两种情况,根据包含关系得出实数m 的取值集合.【详解】{}{}24301,3A x x x =-+==∣当0m =时,B =∅,满足B A ⊆; 当0m ≠时,3B m ⎧⎫=⎨⎬⎩⎭,因为B A ⊆,所以31m =或33m =,解得3m =或1m = 即实数m 的取值集合为{}0,1,3.故答案为:{}0,1,320.5##32【解析】【分析】根据题中条件,由元素与集合之间的关系,得到23a =求解,即可得出结果.【详解】因为{}31,2a ∈,所以23a =,解得32a =. 故答案为:32. 21.4【解析】【分析】求出集合A ,由A M B ⊆⊆即可求出集合M 的个数.【详解】因为集合{}{}2300,3A xx x =-==∣,{}0,1,2,3B =, 因为A M B ⊆⊆,故M 有元素0,3,且可能有元素1或2,所以{}0,3M =或{}0,1,3M =或{}0,2,3M =或{}0,1,2,3M =故满足A M B ⊆⊆的集合M 的个数为4,故答案为:4.22.{1,0,1,2}-【解析】【分析】根据给定条件求出集合B ,再利用并集的定义直接计算作答.【详解】解方程220x x -=得:0x =或2x =,则{}0,2B =,而{}1,0,1A =-,所以{1,0,1,2}A B =-.故答案为:{1,0,1,2}-23.10,1,4⎧⎫-⎨⎬⎩⎭【解析】【分析】解出集合A ,根据题意,集合B 为集合A 的真子集,进而求得答案.【详解】由题意,{}1,4A =-,因为“x B ∈”是“x A ∈”的充分非必要条件,所以集合B 为集合A 的真子集,若a =0,则B =∅,满足题意;若0a ≠,则1B a ⎧⎫=⎨⎬⎩⎭,所以111a a =-⇒=-或1144a a =⇒=. 故答案为:10,1,4⎧⎫-⎨⎬⎩⎭. 24.2,0,2【解析】【分析】分别讨论,a b 正负即可求出.【详解】当0,0a b <<时,112b a x a b =+=--=-, 当0,0a b <>时,110b a x a b =+=-+=, 当0,0a b ><时,110b a x a b =+=-=, 当0,0a b >>时,112b a x a b =+=+=,所以用列举法可表示为2,0,2. 故答案为:2,0,2..M N【解析】【分析】从两个集合的元素特征入手整理化简,再判定两集合的包含关系进行求解.【详解】 因为121,Z ,Z 244k k M x x k x x k ⎧⎫⎧⎫+==+∈==∈⎨⎬⎨⎬⎩⎭⎩⎭, 1+2,Z =,Z 424k k N x x k x x k ⎧⎫⎧⎫==+∈=∈⎨⎬⎨⎬⎩⎭⎩⎭, 若x M ∈,则21(21)244k k x +-+==, 因为Z k ∈,所以21Z k -∈,所以x ∈N ,所以M N ⊆,又因为0N ∈,0M ∉,所以M N .故答案为:M N .三、解答题26.(1){}|24A B x x =-≤≤,{R ()|21A B x x ⋂=-≤<-或}34x <≤ (2)52⎛⎤-∞ ⎥⎝⎦, 【解析】【分析】(1)根据交集、并集和补集的定义即可得解;(2)A B A ⋃=,即B A ⊆,分B =∅和B ≠∅两种情况讨论,从而可得出答案.(1)解:若2m =,则{}13B x x =-≤≤, 所以{}24A B x x ⋃=-≤≤,{R 1B x x =<-或}3x >,所以{R ()|21A B x x ⋂=-≤<-或}34x <≤;(2)解:因为A B A ⋃=,所以B A ⊆,当B =∅时,则211m m -<-+,解得23m <,此时B A ⊆,符合题意,当B ≠∅时,则12112214m m m m -+≤-⎧⎪-+≥-⎨⎪-≤⎩,解得2532m ≤≤, 综上所述52m ≤, 所以若A B A ⋃=,m 的取值范围为52⎛⎤-∞ ⎥⎝⎦,. 27.(1){}0,5,10,15,20X X +=,{}2,1,0,1,2,3,4,5,6,7,8,9,10,11,12X Y +=--;(2)详见解析;(3)详见解析.【解析】【分析】(1)利用和集的定义即得;(2)由题可得21X X n +=-,进而可得X X +中的所有元素为111213123,,,,,,,,n n n n n x x x x x x x x x x x x x x +++++++,结合条件可得112210n n n n x x x x x x ----=-==->,即证; (3)设{}i a ()()1121,N*i a x m i m i =++-+∈,令集合{}121,,,q A a a a +=,{}Z B k m k m =∈-≤≤,进而可得11n x x A B -≤+,{}{}1123Z ,,,,n n A B t x t x x x x x +⊇∈≤≤⊇,即得.(1) ∵集合{}0,5,10X =,{}2,1,0,1,2Y =--,∴{}0,5,10,15,20X X +=,{}2,1,0,1,2,3,4,5,6,7,8,9,10,11,12X Y +=--;(2)∵111213123n n n n n x x x x x x x x x x x x x x +<+<+<<+<+<+<<+, ∴集合X X +中至少包含21n -个元素, 所以21X X n +≥-,又X n =, 由题可知2X X n +<,又X X +为整数, ∴21X X n +≤-, ∴21X X n +=-,∴X X +中的所有元素为111213123,,,,,,,,n n n n n x x x x x x x x x x x x x x +++++++, 又1121222123,,,,,,,,n n n n n x x x x x x x x x x x x x x -+++++++是X X +中的21n -个元素,且1121222123n n n n n x x x x x x x x x x x x x x -+<+<+<<+<+<+<<+, ∴()1212,3,,j j x x x x j n -+=+=,即()1212,3,,j j x x x x j n --=-=, ∴112210n n n n x x x x x x ----=-==->,∴数列1x ,2x ,,n x 是等差数列;(3) ∵集合{}Z B k m k m =∈-≤≤, ∴21B m =+,设()121n x x m q r -=++,其中,N,02q r r m ∈≤≤, 设{}i a 是首项为1x m +,公差为21m +的等差数列,即()()1121,N*i a x m i m i =++-+∈, 令集合{}121,,,q A a a a +=, 则111111121n n n x x r x x r x x A q m B B -----=+=+=+≤++, ∴(){}1111,1,2,,212A B x x x x m q m +=+++++, 即(){}11Z 212A B t x t x m q m +=∈≤≤+++,∵()()1121212n x x m q r x m q m =+++≤+++, ∴{}{}1123Z ,,,,n n A B t x t x x x x x +⊇∈≤≤⊇, 所以X A B ⊆+,故存在集合A 满足11n x x A B-≤+且X A B ⊆+. 【点睛】数学中的新定义题目解题策略:(1)仔细阅读,理解新定义的内涵;(2)根据新定义,对对应知识进行再迁移. 28.(,3]-∞【解析】【分析】 求函数定义域得93,2A ⎛⎤= ⎥⎝⎦,解不等式得[4,5]B =,进而得(3,5]A B =,再结合题意,分C =∅和C ≠∅两种情况求解即可.【详解】解:由30920x x ->⎧⎨-≥⎩,解得932x <≤,所以93,2A ⎛⎤= ⎥⎝⎦, 因为()()2920450x x x x -+=--≤,解得45x ≤≤,所以[4,5]B = 所以(3,5]A B =因为()C A B ⊆,所以,当C =∅时,121a a +≥-,解得2a ≤C ≠∅时,可得12113215a a a a +<-⎧⎪+>⎨⎪-≤⎩,解得:23a <≤ 综上可得:实数a 的取值范围是(,3]-∞29.B ={0,7,3,1}.【解析】【分析】解方程2427a a ++=即得解.【详解】解:由题得2427a a ++=, 解得1a =或5a =-.因为0a >,所以1a =.当1a =时, B ={0,7,3,1}.故集合B ={0,7,3,1}.30.(1){|22}A x x =-≤≤(2)[1,)-+∞【解析】【分析】(1)由不等式240x -≥,求得22x -≤≤,即可求解; (2)由A B A ⋃=,得到B A ⊆,列出不等式组,即可求解.(1)解:由240x -≥,即24x ≤,可得22x -≤≤,可得集合{|22}A x x =-≤≤.(2)解:因为{|22}A x x =-≤≤,且集合{|1}B x m x m =<<-, 又因为A B A ⋃=,即B A ⊆,当B =∅时,即1m m ≥-,可得12m ≥,此时满足B A ⊆; 当B ≠∅时,则满足2121m m m m ≥-⎧⎪-≤⎨⎪<-⎩,解得112m -≤<, 综上可得,1m ≥-,即实数m 的取值范围[1,)-+∞.。

完整版)高一数学集合试题及答案

完整版)高一数学集合试题及答案

完整版)高一数学集合试题及答案1.已知集合M={-1,1,-2,2},N={y|y=x,x∈M},则M∩N是{1,-1}。

2.设全集U=R,集合A={x|x^2≠1},则C U A={-1,1}。

3.已知集合U={x|x>0},C U A={x|0<x<2},那么集合A={x|x≤0或x≥2}。

4.设全集I={0,-1,-2,-3,-4},集合M={0,-1,-2},N={0,-3,-4},则(I-M)∩N={-3,-4}。

5.已知集合M={x∈N|4-x∈N},则集合M中元素个数是3.6.已知集合A={-1,1},则如下关系式正确的是AA∈,AB∈,AC{}∈,AD∅。

7.集合A={-2<x<2},B={-1≤x<3},那么A∪B={-2<x<3}。

8.已知集合A={x|x^2-1=0},则下列式子表示正确的有①1∈A,②{-1}∈A,③∅⊆A,④{1,-1}⊆A。

9.已知U={1,2,a^2+2a-3},A={|a-2|,2},C U A={0},则a的值为-3或1.10.若集合A={6,7,8},则满足A∪B=A的集合B的个数是7.11.已知集合M={x≤-1},N={x>a},若MN≠∅,则有a<-1.12.已知全集U={0,1,2,4,6,8,10},A={2,4,6},B={1},则(C U A)∪B={0,1,8,10}。

13.设U={三角形},A={锐角三角形},则C U A={直角三角形,钝角三角形}。

14.已知A={0,2,4},C U A={-1,1},C U B={-1,2},则B={1,2}。

15.已知全集U={2,4,a^2-a+1},A={a+1,2},C U A={7},则a=3.16.集合{}是空集。

1.集合B= {-1,0,2}2.已知全集U=R,集合A={x|1≤2x+1<9},则C UA={x|x<1或x≥5}3.实数a的取值范围为a≥419.因为AB=A,所以5∈B,即5²+5m+n=0,代入A={3,5}得到两个方程:9+15m+n=0,25+25m+n=0,解得m=-2,n=-39或m=-2,n=-23.因此,m=-2,n=-39或m=-2,n=-23.20.A={1,2},因此,B的两个根都必须是1或2,即(m-1)²-2(m-1)+m-2=0,解得m=2或m=4.因此,实数m的取值范围为m=2或m=4.21.A∩B={x|a-1<x<1},因此,若AB=∅,则A与B的交集为空集,即a-1≥1或2a+1≤-1,解得a≤0或a≤-1.因此,实数a的取值范围为a≤-1.22.A={a。

高一集合练习题(推荐8篇)

高一集合练习题(推荐8篇)

高一集合练习题(推荐8篇)高一集合练习题(1)(一)1、集合的含义:“集合”这个词首先让我们想到的是上体育课或者开会时老师经常喊的“全体集合”。

数学上的“集合”和这个意思是一样的,只不过一个是动词一个是名词而已。

所以集合的含义是:某些指定的对象集在一起就成为一个集合,简称集,其中每一个对象叫元素。

比如高一二班集合,那么所有高一二班的同学就构成了一个集合,每一个同学就称为这个集合的元素。

2、集合的表示通常用大写字母表示集合,用小写字母表示元素,如集合A={a,b,c}。

a、b、c就是集合A中的元素,记作a∈A,相反,d不属于集合A,记作d?A。

有一些特殊的集合需要记忆:非负整数集(即自然数集)N正整数集N_或N+整数集Z有理数集Q实数集R集合的表示方法:列举法与描述法。

①列举法:{a,b,c……}②描述法:将集合中的元素的公共属性描述出来。

如{x?R|x-3>2},{x|x-3>2},{(x,y)|y=x2+1}③语言描述法:例:{不是直角三角形的三角形}例:不等式x-3>2的解集是{x?R|x-3>2}或{x|x-3>2}强调:描述法表示集合应注意集合的代表元素A={(x,y)|y=x2+3x+2}与B={y|y=x2+3x+2}不同。

集合A中是数组元素(x,y),集合B中只有元素y。

3、集合的三个特性(1)无序性指集合中的元素排列没有顺序,如集合A={1,2},集合B={2,1},则集合A=B。

例题:集合A={1,2},B={a,b},若A=B,求a、b的值。

解:,A=B注意:该题有两组解。

(2)互异性指集合中的元素不能重复,A={2,2}只能表示为{2}(3)确定性集合的确定性是指组成集合的元素的性质必须明确,不允许有模棱两可、含混不清的情况。

(二)子集,A包含于B,有两种可能(1)A是B的一部分,(2)A与B是同一集合,A=B,A、B两集合中元素都相同。

反之:集合A不包含于集合B。

高一数学集合练习题及答案-百度文库

高一数学集合练习题及答案-百度文库

高一数学集合练习题及答案-百度文库一、单选题1.设集合{}2|60A x x x x =--<∈Z ,,(){}2|ln 1B y y x x A ==+∈,,则集合B 中元素个数为( ) A .2 B .3 C .4 D .无数个 2.已知集合*{|15,N }A x x x =-<<∈,{|03}B x x =≤≤,则A B =( )A .[0,3]B .[1,5)-C .{1,2,3,4}D .{}1,2,33.已知{}+|17A x N x =∈-≤≤,{}|31,B x x n n N ==+∈,则A B =( ) A .{}1,4B .{}4,7C .{}1,4,7D .{}1,1,4,7-4.已知全集{}{}1,2,3,,2,3U A U B =⊆=,若A B ⋂≠∅,且A B ⊆/则集合A 有( ) A .1个B .2个C .3个D .4个5.已知集合{|1}A x x =≥-,1{|28}4x B x =≤<,则A B =( ) A .[-2,3)B .[-1,3)C .[-2,3]D .[-1,3]6.若全集U =R ,集合{}0,1,2,3,4,5,6A =,{|3}B x x =<,则图中阴影部分表示的集合为( )A .{3,4,5,6}B .{0,1,2}C .{0,1,2,3}D .{4,5,6}7.已知集合{}21A x x =<,{}02B x x =<<,则A B =( )A .1,2B .0,1C .()0,2D .1,28.设集合{}2|230A x x x =+-<,集合{}|B y y x ==,则A B =( )A .()1,1-B .()0,1C .[)0,1D .()1,+∞9.设集合P ,Q 均为全集U 的非空子集,且U ()P Q P =∩,则U ()P Q =∩( ) A .P B .Q C .∅ D .U 10.已知集合2{|30}A x x x =-≥,集合{1234}B =,,,,则A B =( ) A .{01234},,,, B .{123},, C .[0,4] D .[1,3] 11.已知集合2{60}A xx x =--<|,{|231}B x x =+>,则A B ⋃=( ) A .(1,3)- B .(2,)-+∞ C .(2,1)-- D .(,2)-∞- 12.已知集合{|3251}A x x =-<-<,2{|20}B x x x =-->,则A B =( )A .{|23}x x <<B .{|13}x x -<<C .{|2}x x >D .{|1}x x >-13.设全集U =R ,集合(){}ln 1|M x y x ==-,2{|4}N x y x ==-,则下面Venn 图中阴影部分表示的集合是( )A .()1,2B .(]1,2C .(2,)+∞D .[2,)+∞14.已知集合{}0,1,2A =,(){},,,,B x y x A y A x y A x y A =∈∈+∈-∈,则集合B 中元素的个数是( ) A .1B .4C .3D .215.已知集合{}2340A x x x =--<,{}0,1,2,3,4,5B =,则A B =( )A .{}0,1,2B .{}0,1,2,3,4C .{}1,2,3,4D .{}0,1,2,3二、填空题16.集合{}14A x x =-<≤,{}1,1,3B =-,则A B 等于_________.17.已知{}3A x a x a =≤≤+,{}15b x x =-<<,A B =∅,则实数a 的取值范围是______18.集合A =[1,6],B ={x |y x a -,若A ⊆B ,则实数a 的范围是________________. 19.集合{}33A x Z x =∈-<<的子集个数为______.20.{}2|60A x x x =+-=,{}|10B x mx =+=,且A B A ⋃=,则m 的值是__________.21.满足条件:{}a {},,,M a b c d ⊆的集合M 的个数为______.22.已知函数()214f x x -A 为函数()f x 的定义域,集合B 为函数()f x 的值域,若定义{,A B x x A -=∈且}x B ∉,()()⊕=--A B A B B A ,则A B ⊕=___________.23.已知集合2{|2}30A x x x =--<,{|0}B x x a =-<,且B A ⊆,则a 的取值范围为________.24.若21,2x a A x x R x ⎧⎫+==∈⎨⎬-⎩⎭为单元素集,则实数a 的取值的集合为______. 25.若集合{}2A x x =<,101B xx ⎧⎫=>⎨⎬+⎩⎭,则A B =______. 三、解答题26.在①A B A ⋃=;②RB A ⊆;③()R A B =∅这三个条件中任选一个,补充在下面的问题中.若问题中实数a 存在,求a 的取值范围;若问题中的实数a 不存在,请说明理由.已知集合{}14A x x =≤≤,{}11B x a x a =-≤≤+,是否存在实数a ,使得________?27.已知函数()f x =的定义域为集合A ,{|}B x x a =<. (1)求集合A ;(2)若“x ∈A ”是“x ∈B ”的充分条件,求a 的取值范围.28.已知不等式()x a x a <210-++的解集为M . (1)若2∈M ,求实数a 的取值范围; (2)当M 为空集时,求不等式1x a-<2的解集.29.已知集合401x A xx ⎧⎫-=≤⎨⎬-⎩⎭,{}12B x a x a =+≤≤. (1)当2a =时,求A B ; (2)若B A ⋂=∅R,求实数a 的取值范围.30.已知集合{}220A x x x =--=,{}1B x ax ==,若A B A ⋃=,求实数a 的取值集合.【参考答案】一、单选题 1.B 【解析】 【分析】先解出集合A ,再按照对数的运算求出集合B ,即可求解. 【详解】由260x x --<,解得23x -<<,故{}1,0,1,2A =-,()2222ln (1)1ln(11)ln 2,ln 010,ln(21)ln5⎡⎤-+=+=+=+=⎣⎦,故{}ln 2,0,ln5B =,集合B 中元素个数为3. 故选:B. 2.D 【解析】 【分析】根据集合的交集的概念可求出结果. 【详解】 {1,2,3,4}A =, {1,2,3}A B ⋂=.故选:D 3.C 【解析】 【分析】根据集合元素的形式可得关于n 的不等式,从而可求A B . 【详解】令1317n -≤+≤,则223n -≤≤,而n N ∈,故0,1,2n =,故{}1,4,7A B =, 故选:C. 4.C 【解析】 【分析】根据题意,列举出符合题意的集合. 【详解】因为全集{}{}1,2,3,,2,3U A U B =⊆=,若A B ⋂≠∅,且A B ⊆/, 所以{}1,2,3A =或{}1,2A =或{}1,3A =. 故选:C 5.B【分析】先化简集合B ,再利用交集运算求解. 【详解】解:因为集合{|1}A x x =≥-,41|28{|23}xB x x x ⎧⎫=≤<=-≤<⎨⎬⎩⎭,所以{}|13A B x x ⋂=-≤<, 故选:B 6.A 【解析】 【分析】根据图中阴影部分表示()U A B 求解即可.【详解】由题知:图中阴影部分表示()U A B ,{}|3UB x x =≥,则(){}3,4,5,6U B A =.故选:A 7.B 【解析】 【分析】解一元二次不等号求集合A ,再由集合的交运算求A B . 【详解】由题设,{|11}A x x =-<<,又{|02}B x x =<< 所以{|01}A B x x =<<. 故选:B 8.C 【解析】 【分析】化简集合A 、B ,然后利用交集的定义运算即得. 【详解】因为集合{}2|230{|31}A x x x x x =+-<=-<<,集合{[,)|0B y y =+∞=, 所以[0,1)A B =. 故选:C . 9.B 【解析】 【分析】 依题意可得UP Q ⊆,即可得到UQ P ⊆,从而即可判断;解:因为U ()P Q P =∩,所以UP Q ⊆,所以UQ P ⊆,所以U ()P Q Q =∩;故选:B 10.B 【解析】 【分析】先求得{|03}A x x =≤≤,再根据交集的运算可求解. 【详解】由已知{|03}A x x =≤≤,所以{}1,2,3A B =. 故选:B . 11.B 【解析】 【分析】先计算出集合,A B ,再计算A B 即可. 【详解】因为{23}A xx =-<<∣,{1}B x x =>-∣,所以(2,)A B ⋃=-+∞. 故选:B. 12.A 【解析】 【分析】解不等式求出集合,A B ,从而求出交集. 【详解】3251x -<-<,解得:13x <<,故{13}A xx =<<∣,220x x -->,解得:2x >或1x <-,故{2B x x =>或}1x <-,所以{23}A B xx ⋂=<<∣. 故选:A 13.A 【解析】 【分析】由对数函数性质,二次根式定义确定集合,M N ,然后确定Venn 图中阴影部分表示的集合并计算. 【详解】由题意{|10}{|1}M x x x x =->=>,2{|4}{|2N x x x x =≥=≤-或2}x ≥,{|22}UN x x =-<<,Venn 图中阴影部分为(){|12}U M N x x =<<.故选:A . 14.B 【解析】 【分析】根据所给定义求出集合B ,即可判断; 【详解】解:因为{}0,1,2A =,(){},,,,B x y x A y A x y A x y A =∈∈+∈-∈,所以()()()(){}0,0,1,0,2,0,1,1B =,即集合B 中的元素有()0,0,()1,0,()2,0,()1,1共4个,故选:B . 15.D 【解析】 【分析】求解一元二次不等式解得集合A ,再求集合的交运算即可. 【详解】因为2340x x --<,即()()410x x -+<,故14x -<<,则{|14}A x x =-<<, 故{}0,1,2,3A B ⋂=. 故选:D.二、填空题16.{}1,3【解析】 【分析】由交集定义直接得到结果. 【详解】由交集定义知:{}1,3A B =. 故答案为:{}1,3 17.4a ≤-或5a ≥ 【解析】 【分析】由3a a <+可得A ≠∅,根据题意可得到端点的大小关系,得到不等式,从而可得答案. 【详解】由题意 3a a <+,则A ≠∅要使得A B =∅,则31a +≤-或5a ≥ 解得4a ≤-或5a ≥ 故答案为:4a ≤-或5a ≥18.(,1]-∞【解析】 【分析】先求出集合B ,再由A ⊆B ,可求出实数a 的范围 【详解】由0x a -≥,得x a ≥,所以[,)B a =+∞, 因为A =[1,6],且A ⊆B , 所以1a ≤,所以实数a 的范围是(,1]-∞, 故答案为:(,1]-∞ 19.32 【解析】 【分析】由n 个元素组成的集合,集合的子集个数为2n 个. 【详解】解:由题意得{}2,1,0,1,2A =--,则A 的子集个数为5232=. 故答案为:32.20.11023-、、 【解析】 【分析】先求出集合A ,再由A B A ⋃=,可得B A ⊆,然后分B =∅和B ≠∅两种情况求解即可 【详解】解:由260x x +-=,得2x =或3x =-,所以{}{}2|603,2A x x x =+-==-,因为A B A ⋃=,所以B A ⊆,当B =∅时,B A ⊆成立,此时方程10+=mx 无解,得0m =; 当B ≠∅时,得0m ≠,则集合{}1|10B x mx m ⎧⎫=+==-⎨⎬⎩⎭,因为B A ⊆,所以13m -=-或12m -=,解得13m =或12m =-, 综上,0m =,13m =或12m =-.故答案为:11023-、、 21.7 【解析】 【分析】根据{}a {},,,M a b c d ⊆可知,M 中的元素应该是多于一个不多于{},,,a b c d 中的元素个数,由此可求得答案. 【详解】由{}a {},,,M a b c d ⊆可知,M 中的元素个数多于{}a 中的元素个数,不多于{},,,a b c d 中的元素个数 因此M 中的元素来自于b ,c,d 中,即在b ,c,d 中取1元素时,M 有3个;取2个元素时,有3个;取3个元素时,有1个, 故足条件:{}a {},,,M a b c d ⊆的集合M 的个数有7个, 故答案为:7. 22.11,0,122⎡⎫⎛⎤-⎪ ⎢⎥⎣⎭⎝⎦【解析】 【分析】根据()f x =. 【详解】要使函数()f x =2140-≥x ,解得1122x -≤≤,所以11,22A ⎡⎤=-⎢⎥⎣⎦,函数()f x =[]0,1B =,{,A B x x A -=∈且}x B ∉102x x ⎧⎫=-≤<⎨⎬⎩⎭,{,B A x x B -=∈且}x A ∉112x x ⎧⎫=<≤⎨⎬⎩⎭.()()⊕=--A B A B B A 102x x ⎧⎫=-≤<⎨⎬⎩⎭112x x ⎧⎫⋃<≤=⎨⎬⎩⎭11,0,122⎡⎫⎛⎤-⎪ ⎢⎥⎣⎭⎝⎦. 故答案为:11,0,122⎡⎫⎛⎤-⎪ ⎢⎥⎣⎭⎝⎦.23.1a ≤【解析】 【分析】解一元二次不等式得集合A ,化简集合B ,再借助集合的包含关系即可求解作答. 【详解】解2320x x --<,即2320x x -+>,解得1x <或2x >,则{|1A x x =<或2}x >,{|}B x x a =<,而B A ⊆,于是得1a ≤,所以a 的取值范围是:1a ≤. 故答案为:1a ≤24.9,4⎧-⎨⎩【解析】 【分析】 由方程212x ax +=-只有一解可得,注意方程增根情形. 【详解】 由题意方程212x ax +=-只有一解或两个相等的实根, 220x x a ---=(*),14(2)0a ∆=++=,94a =-,此时,方程的解为1212x x ==,满足题意,1{}2A =;若方程(*)有一个根是x1x =a ={1A =; 若方程(*)有一个根是x =1x =a ={1A =+. 综上,a的取值集合为9{,4-.故答案为:9{,4-.25.{}12x x -<<## ()1,2- 【解析】 【分析】求解绝对值不等式解得集合A ,求解分式不等式求得集合B ,再求交集即可. 【详解】因为{}2A x x =<{|22}x x =-<<,101B xx ⎧⎫=>⎨⎬+⎩⎭{}1x x =-, 故可得A B ={|12}x x -<<. 故答案为:{}12x x -<<.三、解答题26.选①:(],0-∞;选②:(),0∞-;选③:(],0-∞. 【解析】 【分析】假设存在实数a ,选择条件后可得集合,A B 关系,分别在B =∅和B ≠∅的情况下构造不等式组求解即可. 【详解】假设存在实数a ,满足条件. 若选①:A B A =,B A ∴⊆.当B =∅时,11a a ->+,解得:0a <,满足题意;当B ≠∅时,结合B A ⊆可得:111114a aa a -≤+⎧⎪-≥⎨⎪+≤⎩,解得:0a =;综上所述:a 的取值范围为(],0-∞; 若选②:RB A ⊆,B A ∴=∅.当B =∅时,11a a ->+,解得:0a <,满足题意;当B ≠∅时,结合B A ⋂=∅得:1111a a a -≤+⎧⎨+<⎩或1114a aa -≤+⎧⎨->⎩,不等式组无解;综上所述:a 的取值范围为(),0∞-; 若选③:()RA B =∅,B A ∴⊆;当B =∅时,11a a ->+,解得:0a <,满足题意;当B ≠∅时,结合B A ⊆可得:111114a a a a -≤+⎧⎪-≥⎨⎪+≤⎩,解得:0a =; 综上所述:a 的取值范围为(],0-∞.27.(1)A ={x |-2<x ≤3};(2)3a >.【解析】【分析】(1)由算术平方根的被开方数大于等于0,分式的分母不等于0可求得集合A ; (2)由已知得A ⊆B ,由此可得a 的取值范围.(1)解:函数()f x =3020x x -≥⎧⎨+>⎩, 解得23x -<≤,即A ={x |-2<x ≤3}.(2)解:因为A ={x |-2<x ≤3},B ={x |x <a },且“x ∈A ”是“x ∈B ”的充分条件,所以A ⊆B , 所以3a >.28.(1)a >2(2)(-∞,1)∪3,2⎛⎫+∞ ⎪⎝⎭【解析】【分析】(1)由已知2∈M 可得,2满足已知不等式,代入即可求解;(2)由M 为空集,可求得a ,然后代入解分式不等式即可求解.(1)由已知2∈M 可得,4-2(a +1)+a <0,解得a >2,所以实数a 的取值范围为()2,+∞;(2)当M 为空集,则()a a -∆=≤2410+,即()a -≤210;所以10a -=,即1a = ∴1x a -<2,即11x -<2, ∴231x x -->0,解得x >32或x <1. ∴此不等式的解集为(-∞,1)∪3,2⎛⎫+∞ ⎪⎝⎭. 29.(1){}|14x x <≤; (2){}2a a ≤.【解析】【分析】(1)求出集合A 和B ,根据并集的计算方法计算即可;(2)求出A R ,分B 为空集和不为空集讨论即可. (1) {}14A x x =<≤,当2a =时,{}|34B x x =≤≤,∴{}|14A B x x ⋃=<≤;(2)A =R {|1x x ≤或x >4},当B =∅时,B A ⋂=∅R ,12a a >+,解得a <1;当B ≠∅时,若B A ⋂=∅R ,则241121a a a a ≤⎧⎪⎨⎪≥⎩,+>,+,解得12a ≤≤. 综上,实数a 的取值范围为{}2a a ≤.30.10,1,2⎧⎫-⎨⎬⎩⎭【解析】【分析】由A B A ⋃=,得B A ⊆,然后分B =∅和B ≠∅的两种情况求解【详解】{}{}2201,2A x x x =--==-, 由A B A ⋃=,得B A ⊆,当B =∅时,满足B A ⊆,此时0a =, 当B ≠∅时,由B A ⊆,可得1B -∈或2B ∈, 所以1a -=或21a =,得1a =-或12a =, 综上实数a 的取值集合为10,1,2⎧⎫-⎨⎬⎩⎭。

完整版)高一数学集合练习题及答案-经典

完整版)高一数学集合练习题及答案-经典

完整版)高一数学集合练习题及答案-经典升腾教育高一数学满分150分姓名一、选择题(每题4分,共40分)1、下列四组对象,能构成集合的是()A某班所有高个子的学生B著名的艺术家C一切很大的书D倒数等于它自身的实数答案:D解析:只有倒数等于它自身的实数可以构成集合。

2、集合{a,b,c }的真子集共有个()A。

7.B。

8.C。

9.D。

10答案:D解析:真子集不包含原集合,所以共有2^3-1=7个真子集。

3、若{1,2}A{1,2,3,4,5}则满足条件的集合A的个数是()A。

6.B。

7.C。

8.D。

9答案:A解析:集合A中的元素可以是1,2,也可以是1,2,3,或者1,2,3,4,或者1,2,3,4,5,共有6种情况。

4、若U={1,2,3,4},M={1,2},N={2,3},则CUM∪N)=()A。

{1,2,3}。

B。

{2}。

C。

{1,3,4}。

D。

{4}答案:A解析:M∪N={1,2,3},所以CUM∪N)={1,2,3}∪{4}={1,2,3,4}。

5、方程组x y1的解集是(。

)A。

{x=0,y=1}。

B。

{0,1}。

C。

{(0,1)}。

D。

{(x,y)|x=0或y=1}答案:C解析:将方程组化简得到y=x+1,所以解集为{(x,y)|y=x+1}={(x,x+1)}。

6、以下六个关系式:3Q,N。

a,b b,ax|x220,x Z是空集中,错误的个数是()A。

4.B。

3.C。

2.D。

1答案:B解析:第一个关系式中,应该是∈而不是;第二个关系式中,应该是∉而不是。

第三个关系式中,应该是={a,b}而不是;第四个关系式中,应该是x∈Z而不是x Z,所以错误的个数为3个。

8、设集合A=x1x2,B=xx a,若A B,则a的取值范围是()Aaa2Baa1Caa1Daa 2答案:D解析:由题意可得x1<a<x2,即1<a<2,所以a的取值范围是a<2.9、满足条件M11,2,3的集合M的个数是()A。

(完整版)高一数学集合测试题及答案

(完整版)高一数学集合测试题及答案

高一数学集合测试题一、选择题(每小题 5分,共60分) 1 .下列八个关系式① {0}= ② =0③{ }④ 0⑦{0} ⑧{ }其中正确的个数()(A) 4 (B) 5(C) 6(D) 72 .集合{1 , 2, 3}的真子集共有()(A) 5 个(B) 6 个(C) 7 个(D)8 个3 .集合 A={x x 2k, k Z } B={ xx 2k 1, k Z } C={ a A,b B,则有()(A) (a+b)A (B) (a+b)B (C)(a+b)C (D) (a+b)4 .设A 、B 是全集U 的两个子集,且 A B,则下列式子成立的是( (C) A C U B= (D) C U A B=_ _ 2_ 一 一一 _2 0} B={ xx 4x3 0}则 A B =((A) R(C) { xx 1或x 2}(D) { xx 2或x 3}(E) U={0, 1, 2, 3, 4} , A={0, 1, 2, 3}, B={2, 3, 4},则(C U A)(A) {0} (B) {0,1}(A) C U A C U B (B) C U A C J B=U 6.设 f(n) = 2n + 1(nC N), P = {1 , 2, 3, 4, 5} , Q = {3 , 4, 5, 6, 7},记 P ={nC N|f(n)CP}, Q={n€ N|f(n)C Q},则(P n 5 Q)U(Q n 5 P )=() (A) {0 , 3} (B){1 , 2} (C) (3, 4, 5} (D){1 , 2, 6, 7} 7.已知 A={1, 2, a 2-3a-1},B={1,3},A B {3,1}则a 等于() (A) -4 或 1 (B) -1 或 4 (Q -1 (D) 4{ } ⑤{0}⑥xx 4k 1,k Z }又A 、B 、C 任一个 )5.已知集合A={ x x2(CUB)=()(C) {0,1, 4} (D) {0, 1, 2, 3, 4} 10.设 A={x Zx 2px 15 0},B={x一 2 一 一 ,一 …Zx 5x q 0},若 A B={2,3,5},A 、B 分别为()(A) {3, 5}、{2, 3}(C) {2, 5}、{3, 5}(B) {2, 3}、{3, 5} (D) {3, 5}、{2, 5}11 .设一元二次方程ax 2+bx+c=0(a<0)的根的判别式 一 2b 4ac 0 ,则不等式ax 2+bx+c 0的解集为()14.已知集合乂=6|口-1)(盅-#)>0},集合目二小||工+ 1| + |工-2 531,且(q02£・兄则实数a的取值范围是(A.S"[-1,2]「一 LA-F L 二 1则X O 的取值范围是((A) R (B)(C) { xxb2a }(D) { —}2a12 .已知 P={ m 4 0}, Q={m|mx 2 mx 1 0 ,对于一切x R 成立},则下列关系式中成立的是( (A) (B)(C) P=Q(D)Q 二13 .若 M={xn Z }, N={xnx 1…, …一——n Z},则M N 等于( (A) (B) { (Q {0}(D) ZB.C. D. 15.设 U={1 , 2, 3, 4, 5}, A, B 为 U 的子集, 若 A B={2} , (C U A) B={4} , (C U A) ( C U B)={1, (A) (C) 5},则下列结论正确的是(3 A,3 3 A,3(B) (D))A,3 A,316. 设集合A,r2,1 ,函数1,x A 四 2 ,右 X O x ,x BA,且 f f x 0 A ,A.10,- 4B.D- o,817. 在R 上定义运算 e : ae b ab 2a b ,则满足xe x 2 0的实数x 的取值范围为A. (0,2)B. (-1,2)C. 2 U 1,D. (-2,1).18.集合P={x|x 2=1} , Q={x|mx=1},若值P,则m等于( )A . 1B . -1C . 1 或-1 D , 0,1 或-119.设全集 U={(x,y) x, y R},集合 M={(x,y) -_2 1}, N={(x,y) I y x 4},x 2那么(QM) (CND等于( )(A) { (2,-2) } (B) { (-2, 2) }(C) (D) (C U N)20.不等式x2 5x 6 <x2-4的解集是( )(A) {x x 2,或x 2} (B) {x x 2}(C) { x x 3} (D) { x 2 x 3,且x 2}二、填空题1.在直角坐标系中,坐标轴上的点的集合可表示为2,若 A={1,4,x},B={1,x 2}且 A B=B,则 x=3.若人=仅x2 3x 10 0} B={x I |x 3 },全集 U=R 则 A (C U B)=4.如果集合T = {大卜=/ +上l+ I = 0}中只有一个元素,则 a的值是5.集合{a,b,c}的所有子集是真子集是;非空真子集是6.方程x2-5x+6=0的解集可表示为2x 3y 13方程组2x 3y的解集可表示为3x 2y 07.设集合A={x 3 x 2},B={x 2k 1 x 2k 1},且A B,则实数k的取值范围是__________________ o8.设全集 U={x x 为小于 20 的正奇数},若 A (C U B) ={3, 7, 15}, (CA) B={13, 17,19},又(GA) (QB)=,贝U A B=9.已知集合 A= {xC R | x2+2ax+2a2-4a+4 = 0},若5A,则实数a的取值是10.设全集为U,用集合A、日C的交、并、补集符号表图中的阴影部分。

高一数学集合练习题及答案经典

高一数学集合练习题及答案经典

高一数学集合练习题及答案经典一、单选题1.设集合{}2260A x Z x x =∈+-≤,{}02B x x =<<,则()R A B ⋂=( )A .[]2,0-B .30,2⎛⎤ ⎥⎝⎦C .{}2,1,0--D .{}2,1--2.已如集合{}2A x x =>,{}35B x x =-<<,则A B =( ) A .{}25x x <<B .{}32x x -<<C .{}35x x -<<D .{}3x x <-3.集合{}220A x x x =--≤,{}10B x x =-<,则A B =( )A .{}1x x ≥B .{}11x x -≤<C .{}1x x <-D .{}21x x -≤<4.已知集合2{|13},{|4}A x x B x x =-≤<=≥,则A B =( ) A .[1,2]-B .[1,2]C .[2,3)D .[2,)+∞5.设集合{}Z 22M x x =∈-<,则集合M 的子集个数为( ) A .16B .15C .8D .76.已知集合(){}22240,(1)2101x A xB x x a x a a x ⎧⎫-==-+++<⎨⎬+⎩⎭,若A B =∅,则实数a 的取值范围是( ) A .()2,+∞ B .{}()12,∞⋃+ C .{}[)12,+∞D .[)2,+∞7.已知集合{}1,0,1,2A =-,{}0,1,3B =,则A B =( ) A .{}1,0,1-B .{}0,1,2C .{}0,1D .{}1,28.已知集合{20}M x x =-<,{N x y ==,则M N =( )A .{1}x x >-B .{12}x x -≤<C .{}12x x -<<D .R9.设全集U =R ,集合{}{}13,0,1,2,3,4,5A x x B =≤≤=,则()U A B =( ) A .{0,4,5}B .{0,1,3,4,5}C .{4,5}D .{0}10.已知集合{}220A x x x =-≤,{}0,1B =,则A B =( )A .[]0,1B .{}0,1C .[]0,2D .{}0,1,211.已知全集U =R ,集合{}2560A x x x =-+<,{}2440B y y y =-+>,则()U A B =( )A .(][),23,-∞⋃+∞B .()[),23,-∞⋃+∞C .()2,+∞D .()(),23,-∞⋃+∞12.已知函数()2ln 3y x x =-的定义域为A ,集合{}14B x x =≤≤,则()A B =R ( )A .{0,1,2,3,4}B .{1,2,3}C .[0,4]D .[1,3]13.已知集合{}24A x x =≤,{}2,B y y x x ==∈R ,则A B =( )A .[0,2]B .[0,4]C .[2,2]-D .∅14.设全集{}1,2,3,4,5,6U =,集合{}1,2,4A =,{}3,4,5B =,则下图中的阴影部分表示的集合为( )A .{}4B .{}5C .{}1,2D .{}3,515.设全集{}0,1,2,3,4U =,集合{}1,2,4A =,{}2,3B =,则()U A B ⋂=( ) A .{}2B .{}2,3C .{}0,3D .{}3二、填空题16.从集合{}123,,,,n U a a a a =⋅⋅⋅的子集中选出4个不同的子集,需同时满足以下两个条件:①∅、U 都要选出;②对选出的任意两个子集A 和B ,必有A B ⊆或A B ⊇.则选法有___________种.17.若集合(){}21420A x a x x =-+-=有且仅有两个子集,则实数a 的值是____. 18.已知集合{}2Z,4A x x x =∈<,{}1,2B =-,则A B ⋃=_________.19.设全集R U =,集合{}3,1A =-,{}22,1B m m =--,且A B =,则实数m =______.20.已知集合A 与B 的关系如下图,则图中所示的阴影部分用集合表示为________.(要求用集合A 与B 的符号关系表示)21.已知集合{1,2,3}A =,则满足A B A ⋃=的非空集合B 有_________个. 22.已知平面上两个点集()(){}22,|12,R,R M x y x y x y x y =+++∈∈,(){},|11,R,R N x y x a y x y =-+-≤∈∈,若MN ≠∅,则实数a的取值范围为___________..23.已知集合{}1,0,1A =-,{}220B x x x =-=,则A B ⋃=______.24.已知A ={x |2a <x ≤a +8},B ={x |x <-1或x >5},若A ∪B =R , 则a 的取值范围是________.25.若集合{}2A x x =<,101B xx ⎧⎫=>⎨⎬+⎩⎭,则A B =______.三、解答题26.设集合{|}R A x x x ∈+=240=,R R {|()}B x x a x a a ∈=∈222110=+++-, . (1)若0a =,试求A B ;(2)若B A ⊆,求实数a 的取值范围.27.已知集合{}1|43280x x A x +=-⋅+,{}|2.B x x a =+<(1)当1a =时,求A B ;(2)若“x B ∈”是“x A ∈”的必要条件,求实数a 的取值范围.28.已知集合{}213A x t x t =-≤≤-,{}215B x x =-<+<. (1)若A B =∅,求实数t 的取值范围;(2)若“x B ∈”是“x A ∈”的必要不充分条件,求实数t 的取值范围.29.已知集合{}250A x x x a =-+≤,B =[3,6].(1)若a = 0,求A B ;(2)x ∈B 是 x ∈ A 的充分条件,求实数a 的取值范围.30.已知集合2{|40}A x x =-≥,集合{|1}B x m x m =<<-. (1)求A .(2)求A B A ⋃=,求m 的取值范围.【参考答案】一、单选题 1.C 【解析】 【分析】求解集合A ,然后进行交集补集运算即可. 【详解】集合()(){}{}|23202,1,0,1A x Z x x =∈-+≤=--,{}02B x x =<<{R|0B x x =≤或}2x ≥,则()R A B ⋂={}2,1,0--故选:C 2.A 【解析】 【分析】应用集合的交运算求A B . 【详解】{|2}{|35}{|25}A B x x x x x x ⋂=>⋂-<<=<<.故选:A 3.B 【解析】 【分析】解不等式可求得集合,A B ,由交集定义可得结果. 【详解】{}{}22012A x x x x x =--≤=-≤≤,{}{}101B x x x x =-<=<, {}11A B x x ∴⋂=-≤<.故选:B. 4.C 【解析】 【分析】先化简集合B ,再与集合A 取交集即可解决. 【详解】{2{|4}|2B x x x x =≥=≥或}2x ≤-则A B {|13}x x =-≤<⋂{|2x x ≥或}2x ≤-{|23}x x =≤< 故选:C5.C 【解析】 【分析】利用公式法解绝对值不等式,再根据集合子集个数公式进行求解即可. 【详解】因为2222204x x x -<⇒-<-<⇒<<,所以{}1,2,3M =, 因此集合M 的子集个数为328=, 故选:C 6.C 【解析】 【分析】先解出集合A ,考虑集合B 是否为空集,集合B 为空集时合题意,集合B 不为空集时利用24a 或211a +-解出a 的取值范围.【详解】由题意(]40141x A x x ⎧⎫-==-⎨⎬+⎩⎭,,(){}()(){}2222(1)210210B x x a x a a x x a x a ⎡⎤=-+++<=--+<⎣⎦,当B =∅时,221a a =+,即1a =,符合题意;当B ≠∅,即1a ≠时,()22,1B a a =+,则有24a 或211a +-,即 2.a 综上,实数a 的取值范围为{}[)12,+∞.故选:C. 7.C 【解析】 【分析】根据交集的定义计算可得; 【详解】解:因为{}1,0,1,2A =-,{}0,1,3B =,所以{}0,1A B =; 故选:C 8.B 【解析】 【分析】化简集合,M N ,即得解. 【详解】解:由题得(,2),[1,)M N =-∞=-+∞, 所以[1,2)M N =-.故选:B 9.A【解析】 【分析】由集合的补集和交集的运算可得. 【详解】 由题可得{1UA x x =<或3}x >,所以(){0,4,5}=UA B .故选:A .10.B 【解析】 【分析】先求出集合A ,再根据交集运算求出A B 即可. 【详解】由题意知:{}02A x x =≤≤,又{}0,1B =,故A B ={}0,1. 故选:B. 11.B 【解析】 【分析】求出集合A 、B ,利用补集和交集的定义可求得集合()U A B ⋂. 【详解】因为{}{}256023A x x x x x =-+<=<<,{}(){}{}22440202B y y y y y y y =-+>=->=≠,则{2UA x x =≤或}3x ≥,因此,()()[),23,U AB =-∞+∞.故选:B. 12.D 【解析】 【分析】根据对数函数的性质,可知230x x ->,由此即可求出集合A ,进而求出A R,再根据交集运算即可求出结果. 【详解】由题意可知,230x x ->,所以0x <或3x >, 所以{}{}03A x x x x =<>,故{}03A x x =≤≤R,所以()[]1,3R A B =. 故选:D. 13.A 【解析】 【分析】解不等式得集合A ,求二次函数值域得集合B ,然后由集合的交集运算可得. 【详解】由24x ≤解得22x -≤≤,即{}22A x x =-≤≤, 易知20y x =≥,即{|0}B y y =≥ 则{|02}A B x x =≤≤. 故选:A 14.D 【解析】 【分析】图中阴影部分表示()U A B ⋂,再根据交集和补集的定义即可得出答案. 【详解】解:图中阴影部分表示()U A B ⋂,因为{}1,2,3,4,5,6U =,集合{}1,2,4A =,{}3,4,5B =, 所以{}3,5,6UA =,所以(){}3,5U A B =. 故选:D. 15.D 【解析】 【分析】利用补集和交集的定义可求得结果. 【详解】 由已知可得{}0,3UA =,因此,(){}U 3AB ⋂=,故选:D.二、填空题16.3323n n -⋅+【解析】 【分析】分析出当一个子集只含有m 个元素时,另外一个子集可以包含()1m +,()2m +,(),1n -个元素,所以共有()()121C C C C C 22n mm n m m n n m n m n m n ------⨯+++=⨯-种选法;再进行求和即可. 【详解】因为∅、U 都要选出;故再选出两个不同的子集,即为M ,N , 因为选出的任意两个子集A 和B ,必有A B ⊆或A B ⊇,故各个子集所包含的元素个数必须依次增加,且元素个数多的子集包含元素个数少的子集,当一个子集只含有1个元素时,另外一个子集可以包含2,3,4()1n -个元素,所以共有()()111221111C C C C C 22n n n n n n n -----⨯+++=⨯-种选法; 当一个子集只含有2个元素时,另外一个子集可以包含3,4,()1n -个元素,所以共有()()221232222C C C C C 22n n n n n n n -----⨯+++=⨯-种选法;当一个子集只含有3个元素时,另外一个子集包含4,5,()1n -个元素,所以共有()()331243333C C C C C 22n n n n n n n -----⨯+++=⨯-种选法;……当一个子集只含有m 个元素时,另外一个子集可以包含()1m +,()2m +,(),1n -个元素,所以共有()()121C C C C C 22n mm n m m n n m n m n m n ------⨯+++=⨯-种选法;……当一个子集有()2n -个元素时,另外一个子集包含()1n -个元素,所以共有()22C 22n n -⨯-种选法;当一个子集有()1n -个元素时,另外一个子集包含有n 个元素,即为U ,不合题意,舍去;故共有()()()()122122C 22C 22C 22C 22n n n mm n n n n n ----⨯-+⨯-++⨯-++⨯-()1122122C 2C 22C C C n n n n n n n n ---=⋅++⋅-+++()()122212223323nn n n n n n =+------=-⋅+. 故答案为:3323n n -⋅+ 【点睛】对于集合与排列组合相结合的题目,要能通过分析,求出通项公式,再结合排列或组合的常用公式进行化简求解. 17.±1 【解析】 【分析】分析出集合A 有1个元素,对a 讨论方程解的情况即可. 【详解】因为集合(){}21420A x a x x =-+-=有且仅有两个子集,所以集合A 有1个元素.当a =1时,{}1|4202A x x ⎧⎫=-==⎨⎬⎩⎭,符合题意;当a ≠1时,要使集合A 只有一个元素,只需()()244120a ∆=--⨯-=,解得:1a =-;综上所述: 实数a 的值是1或-1. 故答案为:±1.18.1,0,1,2【解析】 【分析】求出集合A ,利用并集的定义可求得结果. 【详解】{}{}{}2Z,4Z,221,0,1A x x x x x x =∈<=∈-<<=-,因此,{}1,0,1,2A B ⋃=-.故答案为:1,0,1,2.19.3或-1##-1或3【解析】 【分析】根据集合相等得到223m m -=,解出m 即可得到答案. 【详解】由题意,2233m m m -=⇒=或m =-1. 故答案为:3或-1.20.()A BAB ⋃【解析】 【分析】由集合的交并补运算求解即可. 【详解】设全集为A B ,则阴影部分表示集合A 与B 交集的补集,即()A BAB ⋃故答案为:()A BAB ⋃21.7 【解析】 【分析】由A B A ⋃=可得B A ⊆,所以求出集合B 的所有非空子集即可 【详解】因为A B A ⋃=,所以B A ⊆, 因为{1,2,3}A =,所以非空集合{}1B =,{}2,{}3,{}1,2,{}1,3,{}2,3,{}1,2,3, 所以非空集合B 有7个, 故答案为:722.1⎡⎣【解析】 【分析】根据抛物线的定义可知集合M 是以原点()0,0为焦点,以直线10x y ++=为准线的抛物线上及其凹口内侧的点集,集合N 是以(),1a 为中心的正方形内部的点,数形结合先求出M N ⋂=∅时实数a 的取值范围,再求其补集即可求解.【详解】由()2212x y x y ++≥+可得()()221002x y x y ++≥-+-,点(),x y 到直线10x y ++=的距离大于等于点(),x y 到点()0,0的距离,所以点(),x y 的轨迹是以原点()0,0为焦点,以直线10x y ++=为准线的抛物线上及其凹口内侧的部分,即集合M 是以原点()0,0为焦点,以直线10x y ++=为准线的抛物线上及其凹口内侧的点集,由1x y +≤可得:001x y x y ≥⎧⎪≥⎨⎪+≤⎩或001x y x y <⎧⎪>⎨⎪-+≤⎩或001x y x y >⎧⎪<⎨⎪-≤⎩或001x y x y <⎧⎪<⎨⎪--≤⎩,作出其表示的平面区域如图所示:将该图象向上平移一个单位可得11x y +-≤的图象如图:将其向左或右平移a 个单位可得11x a y -+-≤的表示的平面区域, 作出()2212x y x y ++=+将1y =代入()2212x y x y ++=+2420x x --=,解得:26x = 所以26116a <=M N ⋂=∅, 将2y =代入()2212x y x y ++=+2610x x --=,解得:310x =,当310a >时,M N ⋂=∅, 综上所述:当16310a ≤16,310a ⎡⎤∈⎣⎦时,M N ≠∅, 故答案为:16,310⎡⎤⎣⎦. 23.{1,0,1,2}-【解析】【分析】根据给定条件求出集合B ,再利用并集的定义直接计算作答.【详解】解方程220x x -=得:0x =或2x =,则{}0,2B =,而{}1,0,1A =-,所以{1,0,1,2}A B =-.故答案为:{1,0,1,2}-24.13,2⎡⎫--⎪⎢⎣⎭ 【解析】【分析】由集合{|28}A x a x a =<+,{|1B x x =<-,或5}x >,A B R =,列出不等式组,能求出a 的取值范围.【详解】集合{|28}A x a x a =<+,{|1B x x =<-,或5}x >,A B R =,∴2185a a <-⎧⎨+⎩,解得132a -<-. a ∴的取值范围为[3-,1)2-. 故答案为:[3-,1)2-.25.{}12x x -<<## ()1,2-【解析】【分析】求解绝对值不等式解得集合A ,求解分式不等式求得集合B ,再求交集即可.【详解】 因为{}2A x x =<{|22}x x =-<<,101B x x ⎧⎫=>⎨⎬+⎩⎭{}1x x =-, 故可得A B ={|12}x x -<<.故答案为:{}12x x -<<.三、解答题26.(1){0411---,, (2)}{a a a ≤-=11或.【解析】【分析】(1)利用一元二次方程的公式及集合的并集的定义即可求解.(2)利用子集的定义及一二次方程的根的情况即可求解.(1)由240x x +=,解得0x =或4x =-, }{,A =-40 .当0a =时,得x x -+2210=,解得1x =--x =1-{11B =--;∴{0411A B =---,,. (2)由(1)知,}{,A =-40,B A ⊆,于是可分为以下几种情况.当A B =时,}{,B =-40,此时方程()x a x a =222110+++-有两根为0,4-,则 ()()()a a a a ⎧∆=+⎪=⎨⎪-+=-⎩-->2224141010214-,解得1a =. 当B A ≠时,又可分为两种情况.当B ≠∅时,即{}0B =或{}B -4=, 当{}0B =时,此时方程()x a x a =222110+++-有且只有一个根为0,则22241410(0)()1a a a --⎧∆=+⎨-==⎩,解得1a =-, 当{}B -4=时,此时方程()x a x a =222110+++-有且只有一个根为4-,则 ()2222414104()()()8110a a a a ⎧∆=+⎪⎨-=--=-⎪⎩++-,此时方程组无解, 当B =∅时,此时方程()x a x a =222110+++-无实数根,则2241410()()a a --∆+<=,解得1a <-.综上所述,实数a 的取值为}{a a a ≤-=11或.27.(1)(]3,2-(2)()3,0.-【解析】【分析】 (1)化简集合A ,B ,再由并集的定义求解即可;(2)列出实数a 的不等式组,解之即可得出实数a 的取值范围.(1)由143280x x +-⋅+,得()()22240x x --,则224x ,则12x ,所以[]1,2A =, 由12x +<,可得31x -<<,则()3,1B =-,所以[]()(]=1,23,13,2A B ⋃⋃-=-(2)()2,2B a a =---,因为“x B ∈”是“x A ∈”的必要条件,所以A B ⊆ ,所以2122a a --<⎧⎨->⎩, 所以()3,0.a ∈-28.(1)4,3t ⎛⎫∈+∞ ⎪⎝⎭(2)(1,)t ∈-+∞【解析】【分析】(1)首先求出集合B ,再对A =∅与A ≠∅两种情况讨论,分别得到不等式,解得即可; (2)依题意可得集合A B ,分A =∅与A ≠∅两种情况讨论,分别到不等式,解得即可;(1)解:由215x -<+<得解34x -<<,所以{}{}21534B x x x x =-<+<=-<<,又{}213A x t x t =-≤≤-若A B =∅,分类讨论:当A =∅,即213t t ->-解得43t >,满足题意; 当A ≠∅,即213t t -≤-,解得43t ≤时, 若满足A B =∅,则必有21443t t -≥⎧⎪⎨≤⎪⎩或3343t t -≤-⎧⎪⎨≤⎪⎩; 解得t ∈∅.综上,若A B =∅,则实数t 的取值范围为4,3t ⎛⎫∈+∞ ⎪⎝⎭. (2)解:由“x B ∈”是“x A ∈”的必要不充分条件,则集合A B ,若A =∅,即213t t ->-,解得43t >, 若A ≠∅,即213t t -≤-,即43t ≤,则必有4321334t t t ⎧≤⎪⎪->-⎨⎪-<⎪⎩,解得413t -<≤, 综上可得,1t >-,综上所述,当“x B ∈”是“x A ∈”的必要不充分条件时,(1,)t ∈-+∞即为所求.29.(1)[3,5](2)(,6]-∞-【解析】【分析】(1)先化简集合A ,再去求A B ;(2)结合函数25y x x a =-+的图象,可以简单快捷地得到关于实数a 的不等式组,即可求得实数a 的取值范围.(1)当0a =时,{}250[0,5]A x x x =-≤=,又[3,6]B =, 故[0,5][3,6][3,5]A B ==.(2)由x B ∈是x A ∈的充分条件,得B A ⊆,即任意x B ∈,有250x x a -+≤成立函数25y x x a =-+的图象是开口向上的抛物线,故2235306560a a ⎧-⨯+≤⎨-⨯+≤⎩,解得6a ≤-,所以a 的取值范围为(,6]-∞-. 30.(1){|22}A x x =-≤≤(2)[1,)-+∞【解析】【分析】(1)由不等式240x -≥,求得22x -≤≤,即可求解; (2)由A B A ⋃=,得到B A ⊆,列出不等式组,即可求解.(1)解:由240x -≥,即24x ≤,可得22x -≤≤,可得集合{|22}A x x =-≤≤.(2)解:因为{|22}A x x =-≤≤,且集合{|1}B x m x m =<<-, 又因为A B A ⋃=,即B A ⊆,当B =∅时,即1m m ≥-,可得12m ≥,此时满足B A ⊆; 当B ≠∅时,则满足2121m m m m ≥-⎧⎪-≤⎨⎪<-⎩,解得112m -≤<, 综上可得,1m ≥-,即实数m 的取值范围[1,)-+∞.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学集合经典试题
本试卷分第Ⅰ卷和第II卷两部分,共4页,满分150分,考试时间120分钟。考试结束后,将本试卷和答题卡一并交回.
注意事项(密封线内内容填写完毕后五分钟内,务必仔细阅读以下事项,不准答题!否则视为作弊!考生只允许携带2B铅笔、0.5毫米黑色签字、橡皮、刻度尺)
1.答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、准考证号、县区和科类填写在答题卡和试卷规定的位置上.,并将准考证号条形码粘贴在答题卡上指定位置。
4.填空题请直接填写答案,解答题应写出文字说明,证明过程或演算步骤.。
第Ⅰ卷(共60分)
一、选择题:本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1 下列各项中,不可以组成集合的是()
A 所有的正数B 等于 的数
C 接近于 的数D 不等于 的偶数
2 下列四个集合中,是空集的是()
∴ ………………………………………………………………………12
19解: , ,而 ,则 至少有一个元素在 中,……4
又 ,∴ , ,即 ,得 ……………8
而 矛盾,
∴ ………………………………………………………………………………12
22解: ,
当 时, ,
而 则 这是矛盾的;……………4
当 时, ,而 ,
2.第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上。
3.第Ⅱ卷必须用0.5毫米黑色签字笔在答题卡各题的答题区域内作答;不能写在试题卷上;如需改动,先画掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸,修正带,不按以上要求作答的答案无效。
则 ;……………………………………8
当 时, ,而 ,
则 ;……………………………………………12
综上所述∴ ………………………………………………………………14
21解:由 得 ,即 , ,………………6
∴ ,∴ ……………………………………12
20解:含有 的子集有 个;含有 的子集有 个;含有 的子集有 个;……………6
13每小空1分
(1) , 满足 ,
(2)估算 , ,
或 ,
(3)左边 ,右边
14
15 全班分 类人:设既爱好体育又爱好音乐的人数为 人;仅爱好体育
的人数为 人;仅爱好音乐的人数为 人;既不爱好体育,且
二.问答题要求:只写出结果,且结果正确,得6分;只写出结果且结果不对,0分;有解答过程,但是结果不对,7分;写出关键解答过程且结果正确得12或14分。所有大题分步酌情给分。)
设 ,其中 ,
如果 ,求实数 的取值范围
22.(本大题满分14分)
已知集合 , , ,
且 ,求 的取值范围
高一数学试题参考答案
选择题每小题5分共60分错选、空题均不得分
1-5CDAAD6-10CADAD11D 12C
1 C元素的确定性;
2 D选项A所代表的集合是 并非空集,选项B所代表的集合是
并非空集,选项C所代表的集合是 并非空集,
A B C 或 D 或 或
9 若集合 ,则有()
A B C D
10方程组 的解集是()
A B C D
11下列式子中,正确的是()
A B
C 空集是任何集合的真子集D
12下列表述中错误的是()
A 若 B 若
C D
第II卷(共90分)
注意事项:请规范答题,不要出现与答案无关内容,否则视为作弊!
第I卷答案表
17.解:由 得 的两个根 ,
即 的两个根 ,…………………………………4
∴ , ,………………………………8
∴ ………………………………………………………………….12
18解:由 ,而 , ………4
当 ,即 时, ,符合 ;
当 ,即 时, ,符合 ;
当 ,即 时, 中有两个元素,而 ;
∴ 得 …………………………………………………………………10
C 钝角三角形D 等腰三角形
6 若全集 ,则集合 的真子集共有()
A 个B 个C 个D 个
7下列命题正确的有()
(1)很小的实数可以构成集合;
(2)集合 与集合 是同一个集合;
(3) 这些数组成的集合有 个元素;
(4)集合 是指第二和第四象限内的点集
A 个B 个C 个D 个
8 若集合 , ,且 ,则 的值为()
三、解答题:本大题共6分,共74分。
17.(本大题12分)

18.本大题满分12分
设集合 求集合 的所有非空子集元素和的和
19.(本大题满分12分)
集合 , ,
满足 , 求实数 的值
20.本大题满分12分
全集 , ,如果 则这样的
实数 是否存在?若存在,求出 ;若不存在,请说明理由
21.(本大题满分12分)
题号
1
2
3
4
5
6
7
8
9
10
11
12
答案
二、填空题:本大题共4小题,每小题4分,共16分。
13 用适当的集合符号填空(每小空1分)
(1)
(2) ,
(3)
14 设

15.某班有学生 人,其中体育爱好者 人,音乐爱好者 人,还有 人既不爱好体育也不爱好音乐,则该班既爱好体育又爱好音乐的人数为人
16.若 且 ,则
A B
C D
3 下列表示图形中的阴影部分的是()
A
B
C
D
4 下面有四个命题:
(1)集合 中最小的数是 ;
(2)若 不属于 ,则 属于 ;
(3)若 则 的最小值为 ;
(4) 的解可表示为 ;
其中正确命题的个数为()
A 个B 个C 个D 个
5 若集合 中的元素是△ 的三边长,
则△ 一定不是()
A 锐角三角形B 直角三角形
选项D中的方程 无实数根;
3 A阴影部分完全覆盖了C部分,这样就要求交集运算的两边都含有C部分;
4 A(1)最小的数应该是 ,(2)反例: ,但
(3)当 ,(4)元素的互异性
5 D元素的互异性 ;
6 C ,真子集有
7A(1)错的原因是元素不确定,(2)前者是数集,而后者是点集,种类不同,
(3) ,有重复的元素,应该是 个元素,(4)本集合还包括坐标轴
8 D当 时, 满足 ,即 ;当 时,
而 ,∴ ;∴ ;
9 A , ;
10D ,该方程组有一组解 ,解集为 ;
11 D选项A应改为 ,选项B应改为 ,选项C可加上“非空”,或去掉“真”,选项D中的 里面的确有个元素“ ”,而并非空集;
12 C当 时,
第II卷
填空题(与答案不符的回答皆判为错包括缺少单位判零分)
相关文档
最新文档