6.3实数(第2课时)同步练习含答案
初中数学同步训练必刷题(人教版七年级下册 6
初中数学同步训练必刷题(人教版七年级下册 6.3 实数)一、单选题(每题3分,共30分)1.(2022七上·余杭月考)下列实数中,无理数是()A.0B.3.14C.√5D.227【答案】C【知识点】无理数的认识【解析】【解答】解:A、0是有理数,故A不符合题意;B、3.14是有理数,故B不符合题意;C、√5是无理数,故C符合题意;D、227是有理数,故D不符合题意;故答案为:C【分析】整数和分数统称为有理数,可对A,B,D作出判断;开方开不尽的数是无理数,可对C作出判断.2.(2022八上·杏花岭期中)下列四个实数中,最大的数是()A.-3B.-1C.√10D.3【答案】C【知识点】实数大小的比较【解析】【解答】解:因为√10>3>−3>−1,所以√10最大.故答案为:C.【分析】根据实数比较大小的方法求解即可。
3.(2022七上·乐清期中)关于√8的叙述正确的是()A.在数轴上不存在表示√8的点B.√8=√2+√6C.√8=±√2D.与√8最接近的整数是3【答案】D【知识点】平方根;实数在数轴上的表示;估算无理数的大小【解析】【解答】解:A、∵实数与数轴上的点是一一对应关系,∴任意一个实数都可以用数轴上的点表示,故选项A错误;B、∵√2≈1.414,√6≈2.236,√2+√6≈1.414+2.236=3.65,√8=2√2≈2×1.414=2.828,∴∴√8≠√2+√6,故选项B错误;C、∵√8>0,−√2<0,∴√8≠−√2,故选项C错误;D、∵√8=2√2≈2×1.414=2.828∴与√8最接近的整数是3,故选项D正确.故答案为:D.【分析】根据数轴上的点与实数是一一对应关系,可判断A;分别估算出√2、√6、√8的大小即可判断B、D;根据正数大于负数,可判断C.4.(2022七上·新城月考)与数轴上的点建立一一对应关系的是()A.全体有理数B.全体整数C.全体自然数D.全体实数【答案】D【知识点】实数在数轴上的表示【解析】【解答】解:∵数轴上的点和实数是一一对应的,∴与数轴上的点建立一一对应关系的是全体实数.故答案为:D.【分析】根据数轴上的点和实数是一一对应的进行判断即可.3的值为()5.(2022七下·西山期末)计算:|√5−3|+√−8A.1−√5B.5−√5C.√5−1D.√5−5【答案】A【知识点】实数的运算3=3−√5+(−2)=1−√5.【解析】【解答】解:|√5−3|+√−8故答案为:A.【分析】利用绝对值,立方根计算求解即可。
6.3.2 实数的大小比较与运算(第二课时)(导学案)-七年级数学下册同步备课系列(人教版)
6.3.2实数的大小比较与运算导学案一、学习目标:1.了解在有理数范围内的运算及运算法则,运算性质等在实数范围内仍然成立,能熟练地进行实数运算;2.实数的比较大小.重点:实数的意义及运算.难点:能利用化简对实数进行简单的四则运算.二、学习过程:自主学习(1)当数从有理数扩充到实数以后,实数之间不仅可以进行加、减、乘、除(除数不为0)、乘方运算,而且正数及0可以进行开平方运算,任意一个实数可以进行开立方运算.(2)在进行实数运算时,有理数的运算法则及运算性质同样适用.1.交换律:加法__________________,乘法___________________2.结合律:加法______________________,乘法_______________________3.分配律:___________________________考点解析考点1:实数的运算例1.【类比思想】计算下列各式的值:(1)23-33;(2)(7-5)-(7+25).【迁移应用】1.下列运算中,正确的是()A.2+3=5B.32+22=52C.381=3D.(−2)2=-22.下列算式中,能说明命题“两个无理数的和还是无理数”是假命题的是()A.2+2=22B.(1-2)+2=1C.π+2π=3πD.4+4=43.计算:(1)26+36;(2)(5+2)-5;(3)3+2(5-3);3.考点2:实数的近似计算求实数的近似值在实数运算中,当遇到无理数并且需要求出结果的近似值时,可以按照所要求的精确度用相应的近似有限小数去代替无理数,再进行计算.例2.计算(结果保留小数点后两位):【迁移应用】1.计算(结果保留小数点后两位):(1)2+5≈_______;2.计算(结果保留小数点后两位):2;(2)10+考点3:实数的近似计算例3.计算下列各式的值:(1)3(3+2)+3(2-3);(2)327-(2+2)+2(2-−3.【迁移应用】1.计算:(1)6(2-6)=________;(2)3−8+−2522.若13的整数部分为a,小数部分为b,则a2+b-13的值为_____.3.已知实数a,b,c,d,e,f,且a,b 互为倒数,c,d 互为相反数,e 的绝对值为2,f的算术平方根是8,则12ab-c+d 5+e 2+3f 的值为_______.4.计算:2+9+(−2)2-3−27;- 2.25-3−27-3(3+(3)|3-2|+|3-2|-|2-1|.考点4:实数的大小比较例4.比较下列各组数的大小:(1)-10和-3.1;(2)3-2和1-2.【迁移应用】1.实数a,b 在数轴上的对应点的位置如图所示,则下列结论中正确的是()A.a<-2B.b<1C.a<bD.-a>b2.比较下列各组数的大小,直接在空格处填写符号“>”“<”或“=”.(1)365____4;39____2.5;(4)5-3____3.比较下列各组数的大小:(1)π3和1.1;(2)3-1考点5:实数的大小比较例5.物体自由下落的高度h(单位:m)与下落时间t(单位:s)之间的关系:在地球上大约为h=4.9t2,在月球上大约为h=0.8t2.试求物体在地球上自由下落39.2m的时间比在月球上少多少.(8≈2.828,结果精确到0.01s)【迁移应用】如图①,这是由8个同样大小的正方体组成的魔方,体积为8.(1)求出这个魔方的棱长;(2)图中阴影部分是一个正方形ABCD,求出阴影部分的面积及边长;(3)如图②,把正方形ABCD放到数轴上,使得点A与-1对应的点重合,那么点D在数轴上表示的数为_________.。
数学优佳学案七年级下册参考答案2022年
七年级下册数学第六章 6.3实数第2课时导学案答案6.3实数教材认知1.实数的运算:(1)实数可进行的运算:加、减、乘、除、乘方和开方运算.(2)运算中的规定:①除法运算中除数不为__0__;②__非负数__可以进行开平方运算;③任何一个__实数__都可以进行开立方运算.2.实数的运算律:(1)加法的运算律:①交换律:a+b=__b+a__;②结合律:(a+b)+c=a+__(b+c)__.(2)乘法的运算律:①交换律:ab=__ba__;②乘法结合律:(ab)c=__a(bc)__;③分配律:a(b+c)=__ab+ac__.3.实数的运算顺序:先算__乘方__和__开方__,再算__乘除__,最后算__加减__.有括号的先算__括号里面__的.4.实数的运算结果:在实数运算中,当需要结果的近似值时,可按照所要求的__精确度__用相应的近似的__有限小数__代替,再进行计算.基础必会1.(赤峰中考)在-4,-2,0,4这四个数中,最小的数是(D) A.4 B.0 C.- 2 D.-42.(宁夏中卫模拟)设x=15-1,则x的取值范围是(A)A.2<x<3 B.3<x<4 C.4<x<5 D.无法确定3.比较2,5,37的大小,正确的是(D)A.2<5<37B.2<37<5C.5<37<2 D.37<2<54.(内蒙古包头一模)化简|1-2|+1的结果是(C) A.2-2B.2+2C.2D.25.(新疆哈密模拟)若P是9的立方根,Q是38的算术平方根,则P,Q之间的大小关系是(A)A.P>Q B.P=Q C.P<Q D.无法确定6.(甘肃平凉模拟)下列说法:①两个无理数的和一定是有理数;②两个无理数的差一定是有理数;③一个有理数与一个无理数的和一定是无理数;④两个无理数的积一定是无理数.正确的有(A)A .1个B .2个C .3个D .4个7.计算:⎪⎪⎪⎪2-5 +5 ⎝⎛⎭⎫5-1 =__3__ .8.(甘肃定西月考)已知实数a = 12 ,b = 13 ,c = 614 ,则实数a ,b ,c 的大小关系是__a <b <c __.9.(西宁模拟)对于两个有理数a ,b ,定义一种新运算如下:a *b =a +b (a +b ≥0),如:3*2=3+2 =5 ,那么13*(4*5)=__4__.10.(内蒙古通辽质检)如图,将直径为1个单位长度的圆沿着数轴向右滚动一周,圆上一点由表示-2的点A 到达点A ′,则点A ′对应的数是__π-2__.11.(1)(甘肃武威月考)计算:|-3|+38 +(-2)2 - 14 . (2)(甘肃定西月考)化简:|6 - 2 |+| 2 -1|-| 6 -3|. 【解析】(1)原式=3+2+4 -12 =3+2+2-12 =132 . (2)| 6 - 2 |+| 2 -1|-| 6 -3|= 6 - 2 + 2 -1-3+6=26-4.能力提升1.(西宁质检)如图,数轴上有A,B,C,D四点,则这四个点所表示的数与5-11最接近的是(D)A.点A B.点B C.点C D.点D2.(新疆阿克苏模拟)已知2+6的小数部分为a,5-6的小数部分为b,计算a+b的值.【解析】∵4<6<9,∴2<6<3,即4<2+6<5,2<5-6<3,则a=2+6-4,b=5-6-2,则a+b=2+6-4+5-6-2=1.。
人教版七年级数学下册第六章《实数》同步练习(含答案)
第六章 实数 6.1 平方根第1课时 算术平方根基础题知识点1 算术平方根一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 叫做a的算术平方根.a 读作“根号a ”,a 叫做被开方数.规定:0的算术平方根是0.1.(2017·桂林)4的算术平方根是( B ) A .4B .2C .-2D .±22.(2018·南京)94的值等于( A )A.32B .-32C .±32D.81163.0.49的相反数是( B )A .0.7B .-0.7C .±0.7D .04.下列说法正确的是( A )A .因为52=25,所以5是25的算术平方根B .因为(-5)2=25,所以-5是25的算术平方根C .因为(±5)2=25,所以5和-5都是25的算术平方根D .以上说法都不对5.求下列各数的算术平方根:(1)121;(2)1;(3)964;(4)0.01.解:(1)因为112=121,所以121的算术平方根是11,即121=11.(2)因为12=1,所以1的算术平方根是1,即1=1.(3)因为(38)2=964,所以964的算术平方根是38,即964=38.(4)因为(0.1)2=0.01,所以0.01的算术平方根是0.1,即0.01=0.1. 6.求下列各式的值:(1)81;(2)144289;(3) 1 000 000.解:(1)因为92=81,所以81=9.(2)因为(1217)2=144289,所以144289=1217.(3)因为1 0002=1 000 000,所以 1 000 000=1 000.知识点2 估计算术平方根一般采用“夹逼法”确定其值所在的范围.具体地说,先找出与被开方数相邻的两个能开得尽方的整数,分别求其算术平方根,即可确定所要求的数的算术平方根在哪两个整数之间.7.(2017·柳州期末)估算65的值介于( D )A.5到6之间B.6到7之间C.7到8之间D.8到9之间8.一个正方形的面积为50 cm2,则该正方形的边长约为( C )A.5 cm B.6 cm C.7 cm D.8 cm9用“>”或“<”填空).知识点3 用计算器求一个正数的算术平方根10.我们可以利用计算器求一个正数a的算术平方根,其操作方法是顺序进行按键输入:a=.小明按键输入16=显示的结果为4,则他按键输入1600=后显示的结果为40.11.用计算器求下列各式的值(结果精确到0.001):(1)800;(2)0.58;(3) 2 401.解:(1)28.284.(2)0.762.(3)49.000.易错点对算术平方根的意义理解不清12.(-6)2的算术平方根是( A )A.6 B.±6 C.-6 D. 6 13.(2018·安顺)4的算术平方根为( B )A.± 2 B. 2 C.±2 D.2中档题14.下列各数,没有算术平方根的是( B )A.2 B.-4 C.(-1)2D.0.1 15.若一个数的算术平方根等于它本身,则这个数是( D )A.1 B.-1 C.0 D.0或1 16.(2017·广州期中)已知一个自然数的算术平方根是a,则该自然数的下一个自然数的算术平方根是( D )A.a+1 B.a+1 C.a2+1 D.a2+1 17.(2017·潍坊)用计算器依次按键如下,显示的结果在数轴上对应点的位置介于________之间( A )A.B与C B.C与D C.E与F D.A与B 18.(2017·广州四校联考期中)已知a,b为两个连续整数,且a<15<b,则a+b的值为7.19.(教材P41探究变式)如图,将两个边长为3的正方形分别沿对角线剪开,将所得的4个三角形拼成一个大的正方形,则这个大正方形的边长是20.(教材P43探究变式)观察:已知 5.217≈2.284,521.7≈22.84,填空:(1)0.052 17≈0.228__4,52 170≈228.4;(2)若x≈0.022 84,则x≈0.000__521__7.21.比较下列各组数的大小:(1)12与14;(2)-5与-7;(3)5与24;(4)24-12与32.解:(1)12<14.(2)-5>-7.(3)5>24.(4)24-12>32.综合题22.(教材P43例3变式)国际比赛的足球场长在100 m到110 m之间,宽在64 m到75 m之间,为了迎接某次奥运会,某地建设了一个长方形的足球场,其长是宽的1.5倍,面积是7 560 m2,请你判断这个足球场能用作国际比赛吗?并说明理由.解:这个足球场能用作国际比赛.理由:设足球场的宽为x m,则足球场的长为1.5x m,由题意,得1.5x2=7 560.∴x2=5 040.由算术平方根的意义可知x= 5 040.又∵702=4 900,712=5 041,∴70< 5 040<71.∴70<x<71.∴105<1.5x<106.5.∴100<1.5x<110.∴符合要求.∴这个足球场能用作国际比赛.23.(教材P48习题T11变式)(1)通过计算下列各式的值探究问题:①42=4;162=16;02=0;(19)2=19.探究:对于任意非负有理数a,a2=a.②(-3)2=3;(-5)2=5;(-1)2=1;(-2)2=2.探究:对于任意负有理数a,a2=-a.综上,对于任意有理数a,a2=|a|.(2)应用(1)所得的结论解决问题:有理数a,b在数轴上对应的点的位置如图所示,化简:a2-b2-(a-b)2+|a+b|.解:a2-b2-(a-b)2+|a+b|=|a|-|b|-|a-b|+|a+b|=-a-b+a-b-a-b=-a-3b.第2课时 平方根基础题知识点1 平方根(1)一般地,如果一个数的平方等于a ,那么这个数叫做a 的平方根或二次方根.这就是说,如果x 2=a ,那么x 叫做a 的平方根,记作±(2)求一个数a 的平方根的运算,叫做开平方,平方与开平方互为逆运算.正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.1.(2018·贺州)4的平方根是( C ) A .2B .-2C .±2D .162.±8是64的( A ) A .平方根B .相反数C .绝对值D .算术平方根3.13是一个数的平方根,则这个数是( D ) A .1B .3C .±19D.19 4.下列说法中,不正确的是( D ) A .6是36的平方根B .-6是36的平方根C .36的平方根是±6D .36的平方根是65.下列说法正确的是( D ) A .任何非负数都有两个平方根B .一个正数的平方根仍然是正数C .只有正数才有平方根D .负数没有平方根6.计算:±425=±25,-425=-25,425=25.7.填表:8.求下列各数的平方根:(1)16;(2)2536;(3)0.008 1.解:(1)因为(±4)2=16,所以16的平方根是±4.(2)因为(±56)2=2536,所以2536的平方根是±56.(3)因为(±0.09)2=0.008 1,所以0.008 1的平方根是±0.09.知识点2 平方根与算术平方根的关系正数a的正的平方根就是这个数的算术平方根,记作 a. 9.(2017·广州期中)下列说法正确的是( A )A.-5是25的平方根B.25的平方根是-5C.-5是(-5)2的算术平方根D.±5是(-5)2的算术平方根10.下列各式中,正确的是( D )A.4=±2 B.±9=3 C.(-3)2=- 3D.(-3)2=311.求下列各数的平方根与算术平方根:(1)25;解:25的平方根是±5,算术平方根是5.(2)0;解:0的平方根是0,算术平方根是0.(3)110 000.解:110 000的平方根是±1100,算术平方根是1100.12.求下列各式的值:(1)225;(2)-3649;(3)±144121.解:(1)∵152=225,∴225=15.(2)∵(67)2=3649,∴-3649=-67.(3)∵(1211)2=144121,∴±144121=±1211.易错点忽视一个正数的平方根有两个13.若x+3是4的平方根,则x=-1或-5.中档题14.(2017·广州期中)对于2-3来说( C )A.有平方根B.只有算术平方根C.没有平方根D.不能确定15.(易错题)(2017·广州四校联考期中)16的平方根等于( D )A.2 B.-4 C.±4 D.±2 16.(易错题)若x2=16,则5-x的算术平方根是( D )A.±1 B.±4 C.1或9 D.1或3 17.(2017·玉林期末)已知325.6≈18.044,那么± 3.256≈±1.804__4.18.“平方根”节是数学爱好者的节日,这一天的月份和日期的数字正好是当年年份最后两位数字的算术平方根,例如2009年的3月3日,2016年的4月4日,请你再写出21世纪你喜欢的一个“平方根”节(题中所举例子除外)2025年5月5日.19.下列各数是否有平方根?若有,求出它的平方根;若没有,请说明理由.(1)(-3)2;(2)-42;(3)-(a2+1).解:(1)±3.(2)没有平方根,因为-42是负数.(3)没有平方根,因为-(a2+1)是负数.20.(教材P48习题T8变式)求下列各式中x的值:(1)4x2-1=0;解:4x2=1.x2=1 4 .x=±1 2 .(2)(2017·广州四校联考期中)(2x-1)2=25.解:2x-1=5或2x-1=-5.解得x=3或x=-2.21.已知2a-1的平方根是±3,3a+b-1的平方根是±4,求a+2b的平方根.解:依题意,得2a-1=9且3a+b-1=16,∴a=5,b=2.∴a+2b=5+4=9.∴a+2b的平方根为±3,即±a+2b=±3.综合题22.(易错题)(1)一个非负数的平方根是2a-1和a-5,这个非负数是多少?(2)已知a-1和5-2a都是m的平方根,求a与m的值.解:(1)根据题意,得(2a-1)+(a-5)=0.解得a=2.∴这个非负数是(2a-1)2=(2×2-1)2=9.(2)根据题意,分以下两种情况:①当a-1与5-2a是同一个平方根时,a-1=5-2a.解得a=2.此时,m=12=1;②当a-1与5-2a是两个平方根时,a-1+5-2a=0.解得a=4.此时,m=(4-1)2=9.综上所述,当a=2时,m=1;当a=4时,m=9.6.2 立方根基础题知识点1 立方根(1)一般地,如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根,即如果x3=a,那么x叫做a的立方根,记作a是被开方数,3是根指数.3-a=-3a.(2)求一个数的立方根的运算,叫做开立方,开立方与立方互为逆运算.正数的立方根是正数;负数的立方根是负数;0的立方根是0.1.(2018·恩施)64的立方根为( C )A.8 B.-8 C.4 D.-42.(2018·济宁)3-1的值是( B )A.1 B.-1 C.3 D.-3 3.若一个数的立方根是-3,则这个数为( B )A.-33 B.-27 C.±33 D.±274.下列说法中,不正确的是( D )A.0.027的立方根是0.3 B.-8的立方根是-2 C.0的立方根是0 D.125的立方根是±5 5.下列计算正确的是( C )A.30.012 5=0.5 B.3-2764=34C.3338=112D.-3-8125=-256.-13是-127的立方根,-16164的立方根是-54.7.求下列各数的立方根:(1)0.216;解:∵0.63=0.216,∴0.216的立方根是0.6,即30.216=0.6.(2)0;解:∵03=0,∴0的立方根是0,即30=0.(3)-210 27;解:∵-21027=-6427,且(-43)3=-6427,∴-21027的立方根是-43,即3-21027=-43.(4)-5.解:-5的立方根是3-5.8.求下列各式的值:(1)30.001;解:30.001=0.1.(2)3-343125;解:3-343125=-75.(3)-31-1927.解:-31-1927=-23.知识点2 用计算器求立方根9.用计算器计算328.36的值约为( B )A.3.049 B.3.050 C.3.051D.3.05210.一个正方体的水晶砖,体积为100 cm3,它的棱长大约在( A ) A.4 cm~5 cm之间B.5 cm~6 cm之间C.6 cm~7 cm 之间D.7 cm~8 cm之间11.计算:325≈2.92(结果精确到0.01).易错点立方根与平方根相混淆12.立方根等于本身的数为0,1或-1.中档题13.(易错题)32的立方根是( A )A.33 B.39 C.2 D.314.下列说法正确的是( D )A.一个数的立方根有两个,它们互为相反数B.一个数的立方根比这个数的平方根小C.如果一个数有立方根,那么它一定有平方根 D.3a与3-a互为相反数15.若a2=(-5)2,b3=(-5)3,则a+b的值为( D )A.0 B.±10 C.0或10 D.0或-1016.已知2x+1的平方根是±5,则5x+4的立方根是4.17.(1)填表:(2)由上表你发现了什么规律?请用语言叙述这个规律:被开方数扩大到原来的1__000倍,则立方根扩大到原来的10倍;(3)根据你发现的规律填空:①已知33≈1.442,则33 000≈14.42,30.003≈0.144__2;②已知30.000 456≈0.076 97,则3456≈7.697.18.求下列各式的值:(1)-3-0.125;解:原式=0.5.(2)-3729+3512;解:原式=-9+8=-1.(3)30.027-31-124125+3-0.001.解:原式=0.3-31125+(-0.1)=0.3-15-0.1=0.19.比较下列各数的大小:(1)39与3;解:39> 3.(2)-342与-3.4.解:-342<-3.4.20.求下列各式中x的值:(1)8x3+125=0;解:8x3=-125.x3=-125 8.x=-5 2 .(2)(2017·广州期中)(2x-1)3=-8. 解:2x-1=-2.解得x=-1 2 .21.将一个体积为0.216 m3的大立方体铝块改铸成8个一样大的小立方体铝块,求每个小立方体铝块的表面积.解:设每个小立方体铝块的棱长为x m,则8x3=0.216.∴x3=0.027.∴x=0.3.∴6×0.32=0.54(m2).答:每个小立方体铝块的表面积为0.54 m2.综合题22.请先观察下列等式:32+27=2327,33+326=33326,34+463=43463,…(1)请再举两个类似的例子;(2)经过观察,写出满足上述各式规则的一般公式.解:(1)35+5124=535124,36+6215=636215.(2)3n+nn3-1=n3nn3-1(n>1,且n为整数).6.3 实数基础题知识点1 实数的概念及其分类1.(2018·玉林)下列实数中,是无理数的是( B )A.1 B. 2 C.-3 D.1 32.下列说法中,正确的是( C )A.无理数包括正无理数、零和负无理数B.无限小数都是无理数C.正实数包括正有理数和正无理数D.实数可以分为正实数和负实数两类知识点2 实数与数轴上的点的关系实数和数轴上的点是一一对应的,反过来,数轴上的每一个点必定表示一个实数.3.若在数轴上画出表示下列各数的点,则与原点距离最近的点是( B ) A .-1B .-12C.32D .2知识点3 实数的相反数、绝对值、倒数实数a 的相反数是-a ;一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0.即 |a|=⎩⎪⎨⎪⎧a ,当a>0时;0,当a =0时;-a ,当a<0时.4.-2的相反数是( C ) A .-2 B.22 C.2D .-225.π是1π的( B )A .绝对值B .倒数C .相反数D .平方根6.(2017·广州期中)3-8的绝对值是2.7.写出下列各数的相反数与绝对值.知识点4 实数的运算实数之间不仅可以进行加、减、乘、除(除数不为0)、乘方运算,而且正数及0可以进行开平方运算,任意一个实数可以进行开立方运算.8.(2018·包头)计算-4-|-3|的结果是( B )A.-1 B.-5 C.1 D.59.计算364+(-16)的结果是( B )A.4 B.0 C.8 D.12 10.计算:(1)33+53;解:原式=(3+5) 3=8 3.(2)|1-2|+|3-2|.解:原式=2-1+3- 2=3-1.11.计算(结果保留小数点后两位):(1)π-2+3;解:原式≈3.142-1.414+1.732 ≈3.46.(2)|2-5|+0.9.解:原式≈2.236-1.414+0.9≈1.72.易错点对无理数的判断有误12.下列说法正确的是( D )A.33是分数 B.227是无理数 C. π-3.14是有理数D.3-83是有理数中档题13.下列各组数中,互为相反数的一组是( C )A.-|-2|与3-8 B.-4与-(-4)2C.-32与|3-2|D.-2与1 214.有一个数值转换器,原理如下:当输入的x为4时,输出的y是( C )A.4 B.2 C. 2 D.- 215.(2017·宁夏)实数a在数轴上的位置如图所示,则|a-3|16.点A在数轴上和原点相距3个单位长度,点B在数轴上和原点相距5个单位长度,则A,B两点之间的距离是17.把下列各数分别填入相应的集合中.-15,39,π,3.14,-327,0,-5.123 45…,0.25,-32.(1)有理数集合:{-15,3.14,-327,0,0.25,…};(2)无理数集合:{39,π,-5.123 45…,-32,…};(3)正实数集合:{39,π,3.14,0.25,…};(4)负实数集合:{-15,-327,-5.123 45…,-32,…}.18.求下列各式中的实数x.(1)|x|=4 5;解:x=±4 5 .(2)|x-2|= 5.解:x=2± 5.19.计算:(1)23+32-53-32;解:原式=(2-5)3+(3-3) 2=-3 3.(2)|3-π|+|4-π|.解:原式=π-3+4-π=1.20.已知实数a,b,c,d,e,f,且a,b互为倒数,c,d互为相反数,e的绝对值为2,f的算术平方根是8,求12ab+c+d5+e2+3f的值.解:由题意可知ab=1,c+d=0,e=±2,f=64,∴e2=(±2)2=2,3f=364=4.∴12ab+c+d5+e2+3f=12+0+2+4=612.综合题21.阅读下列材料:如果一个数的n(n是大于1的整数)次方等于a,这个数就叫做a的n次方根,即x n=a,则x叫做a的n次方根.如:24=16,(-2)4=16,则2,-2是16的4次方根,或者说16的4次方根是2和-2;再如(-2)5=-32,则-2叫做-32的5次方根,或者说-32的5次方根是-2.回答问题:(1)64的6次方根是±2,-243的5次方根是-3,0的10次方根是0;(2)归纳一个数的n次方根的情况.解:当n为偶数时,一个正数的n次方根有两个,它们互为相反数;当n 为奇数时,一个数的n次方根只有一个.负数没有偶次方根.0的n次方根是0.章末复习(二) 实数分点突破知识点1 平方根、算术平方根、立方根1.(2017·泰州)2的算术平方根是( B )A.± 2 B. 2 C.- 2 D.2 2.(2018·铜仁)9的平方根是( C )A.3 B.-3 C.3和-3 D.81 3.(2018·荆门)8的相反数的立方根是( C )A.2 B.12C.-2 D.-124.下列各式正确的是( A )A.±31=±1 B.4=±2 C.(-6)2=-6 D.3-27=3知识点2 实数的分类5.把下列各数分别填在相应的集合中:5,-6,38,0,π5,3.141 592 6,227,-16,-234.101 001 0001…(相邻两个1之间依次多1个0).知识点3 相反数、绝对值、倒数 6.9的倒数等于( D )A .3B .-3C .-13D.137.实数1-2知识点4 无理数的估算及实数的大小比较 8.(2018·贺州)在-1,1,2,2这四个数中,最小的数是( A ) A .-1B .1C.2D .29.(2018·南通)如图,数轴上的点A ,B ,O ,C ,D 分别表示数-2,-1,0,1,2,则表示数2-5的点P 应落在( B )A .线段AB 上 B .线段BO 上C .线段OC 上D .线段CD 上知识点5 实数的运算 10.求下列各式的值: (1)(2017·广州期末)38-9;解:原式=2-3=-1.(2)(2017·南宁期末)-32+|2-3|-(-2)2;解:原式=-9+3-2-2=-8- 2.(3)121+7×(2-17)-31 000.解:原式=11+27-1-10=27.易错题集训11.下列说法正确的是( D )A.-4没有立方根B.1的立方根是±1C.136的立方根是16D.-5的立方根是3-512.下列说法中,正确的有( B )①只有正数才有平方根;②a一定有立方根;③-a没意义;④3-a=-3a;⑤只有正数才有立方根.A.1个B.2个C.3个D.4个常考题型演练13.关于12的叙述,错误的是( A )A.12是有理数B.面积为12的正方形边长是12 C.12在3与4之间D.在数轴上可以找到表示12的点14.(2017·钦州期末)下列说法:①一个数的平方根一定有两个;②一个正数的平方根一定是它的算术平方根;③负数没有立方根.其中正确的有( A )A.0个B.1个C.2个D.3个15.(易错题)如果一个实数的算术平方根等于它的立方根,那么满足条件的实数有( C )A.0个B.1个C.2个D.3个16.已知30.5≈0.793 7,35≈1.710 0,那么下列各式正确的是( B )A.3500≈17.100 B.3500≈7.937C.3500≈171.00 D.3500≈79.3717.写出3-9到23之间的所有整数:-2,-1,0,1,2,3,4.18.(2018·东莞)一个正数的平方根分别是x+1和x-5,则x=2.19.如图所示,把半径为2个单位长度的圆形纸片放在数轴上,圆形纸片上的A点对应原点,将圆形纸片沿着数轴无滑动地逆时针滚动一周,点A 到达点A′的位置,则点A′表示的数是-4π.20.求下列各式中x的值:(1)x2-5=4 9;解:x2=49 9,x=±7 3 .(2)(x-1)3=125.解:x-1=5,x=6.21.已知某正数的两个平方根分别是a+3和2a-15,b的立方根是-2,求3a+b的算术平方根.解:∵该正数的两个平方根分别是a+3和2a-15,b的立方根是-2,∴a+3+2a-15=0,b=(-2)3=-8.∴a=4,b=-8.∴3a+b=4=2,即3a+b的算术平方根是2.22.魔方又叫魔术方块,也称鲁比克方块,是匈牙利布达佩斯建筑学院厄尔诺·鲁比克教授在1974年发明的.魔方与中国人发明的“华容道”、法国人发明的“独立钻石”一同被称为智力游戏界的三大不可思议.如图是一个4阶魔方,又称“魔方的复仇”,由四层完全相同的64个小立方体组成,体积为64 cm3.(1)求组成这个魔方的小立方体的棱长;(2)图中阴影部分是一个正方形,则该正方形的面积为10cm 2cm.解:组成这个魔方的小立方体的棱长为364÷64=1(cm).。
人教版七年级下册数学实数第2课时实数与数轴的关系及实数的运算 同步练习
6.3 实数第2课时实数与数轴的关系及实数的运算基础训练知识点1 实数与数轴上的点的关系1.和数轴上的点一一对应的数是( )A.整数B.有理数C.无理数D.实数2.若实数a,b在数轴上的位置如图所示,则下列判断错误的是( )A.a<0B.ab<0C.a<bD.a,b互为倒数3.实数a,b在数轴上对应的点的位置如图所示,计算|a-b|的结果为( )A.a+bB.a-bC.b-aD.-a-b4.在如图所示的数轴上,点B与点C关于点A对称,A,B两点对应的实数分别是错误!未找到引用源。
和-1,则点C所对应的实数是( )A.1+错误!未找到引用源。
B.2+错误!未找到引用源。
C.2错误!未找到引用源。
-1D.2错误!未找到引用源。
+15.如图,圆的直径为1个单位长度,该圆上的点A与数轴上表示-1的点重合,将该圆沿数轴滚动1周,点A 到达点A'的位置,则点A'表示的数是( )A.π-1B.-π-1C.-π+1D.π-1或-π-1知识点2 实数的大小比较6.下列四个数中,最大的一个数是( )A.2B.错误!未找到引用源。
C.0D.-27.(2016·泰安)如图,四个实数m,n,p,q在数轴上对应的点分别为M,N,P,Q,若n+q=0,则m,n,p,q四个实数中,绝对值最大的一个是( )A.pB.qC.mD.n8.若a,b为实数,下列说法中正确的是( )A.若a>b,则a2>b2B.若a>|b|,则a2>b2C.若|a|>b,则a2>b2D.若a>0,a>b,则a2>b2知识点3 实数的运算9.有一个数值转换器,原理如图所示.当输入的x为-512时,输出的y是( )A.-2B.-错误!未找到引用源。
C.-3错误!未找到引用源。
D.-3错误!未找到引用源。
10.已知实数a,b在数轴上对应的点如图所示,则下列式子正确的是( )A.a·b>0B.a+b<0C.|a|<|b|D.a-b>011.实数a,b在数轴上对应的点的位置如图,则必有( )A.错误!未找到引用源。
人教版初中数学七年级下册《6.3实数》同步练习(含答案)(最新整理)
(2) 3 2 ;
(3) 3 1 . 125
课后作业
8
9.下列说法正确的是( ) A.两个无理数的和一定是无理数 B.无理数的相反数是无理数 C.两个无理数的积一定是无理数 D.无理数与有理数的乘积是无理数
10.已知三个数:-π,-3, 7 ,它们按从小到大的顺序排列为( ) A. 3 7 B. 3 7 C. 7 3 D. 7 3 11.设实数 a、b 在数轴上对应的位置如图所示,且|a|>|b|,则化简 a2 | a b | 的结果是( )
A.2a+b B.-2a+b C.b D.2a-b
12.计算:(1) 3 5 2 5 ________ ; (2) 3 4 | 3 4 | ________ . 13. 7 2 的相反数是________,绝对值是________.
5 14.已知 a 是小于 3 5 的整数,且|2-a|=a-2,那么 a 的所有可能值是________.
6.把下列各数填在相应的表示集合的大括号内.
2
22
-6,π,- ,-|-3|, ,-0.4,1.6,
6 ,0,1.101 001 000 1…
3
7
整数:{
,…},
负分数:{
,…},
无理数:{
,…}.
5
7.下列结论正确的是( ) A.数轴上任一点都表示唯一的有理数 B.数轴上任一点都表示唯一的无理数 C.两个无理数之和一定是无理数 D.数轴上任意两点之间还有无数个点
6
3
(1)有理数集合:{ …};
(2)无理数集合:{ …};
(3)正实数集合:{ …}:
(4)负实数集合:{ …}.
课后作业
7.下列说法正确的是( )
人教版七年级下册《6.3第2课时实数的运算》同步练习(含答案)
第2课时实数的运算关键问答①本题用到的运算律是什么?1.-5的绝对值是( )A .-15B .-5C. 5 D .5 2.①计算:3 2-2+2=________.3.计算:327+16-14.命题点 1 实数的大小比较 [热度:90%]4.比较大小:|3-2|________|3|+|-2|.5.数轴上表示-3.14的点在表示-π的点的________边.6.实数a 在数轴上对应的点的位置如图6-3-6所示,试确定a ,-a ,1a,a 2的大小关系.图6-3-6命题点 2 实数的性质 [热度:93%]7.4的倒数是( )A .-2 B.12C .2 D .±128.下列实数中绝对值最小的是( )A .-4B .-2C .1D .39.②实数2-1的相反数是( )A.2-1B.2+1 C .1-2D .-2-1方法点拨②a 的相反数是-a .若两个数的和为0,则这两个数互为相反数.10.计算|3-2|的结果是( ) A .2-3B.3-2 C .-2-3D .2+ 311.③观察下列各式:①a 2;②|a |+1;③-a ;④23a .取一个适当的实数作为a 的值代入求值后,不可能互为相反数的式子序号为( )A .②④B .①②C .①③D .③④解题突破③两个数的符号不同才有可能互为相反数(0除外).12.④如果一个实数的绝对值为11-5,那么这个实数为______________.易错警示 ④本题容易丢掉11-5这种情况.13.若无理数a 使得|a -4|=4-a ,则a 的一个值可以是________.14.若(x +3)2+|y -2|=0,则|x +y |=________.15.若a 是15的整数部分,b 是15的小数部分,则a -b -ab =____________.16.已知7+5=x +y ,其中x 是整数,且0<y <1,求x -y +5的相反数.17.⑤在数轴上点A 表示的数是 5.(1)若把点A 向左平移2个单位长度得到点B ,求点B 表示的数;(2)若点C 和(1)中的点B 所表示的数互为相反数,求点C 表示的数;(3)在(1)(2)的条件下,求线段OA ,OB ,OC 的长度之和.解题突破⑤求线段OA ,OB ,OC 的长度之和,即求A ,B ,C 三个点所表示的数的绝对值之和. 命题点 3 实数的运算 [热度:98%]18.若等式2□2=2 2成立,则□内的运算符号为( )A .+B .-C .×D .÷19.计算|3-4|-3-22的结果是( )A .23-8B .0C .-23D .-820.定义新运算“☆”:a ☆b =ab +1,则2☆(3☆5)=__________. 21.⑥有四个实数分别是|-9|,22,-38,2 2.请你计算其中有理数的积与无理数的积的差,结果是__________.解题突破⑥(1)先确定四个数中的有理数和无理数;(2)再分别计算它们的积;(3)最后求两个积 的差.22.⑦已知数轴上有A ,B 两点,且这两点之间的距离为4 2.若点A 在数轴上表示的数为3 2,则点B 在数轴上表示的数为____________.解题突破⑦点B 在点A 的左边还是右边?23.计算: (1)19+32627-1+|3-2|-(-2)2+2 3;(2)(-1)3+||3-2+2÷23- 4.24.⑧我们知道,任意一个正整数n 都可以进行这样的分解:n =p ×q (p ,q 是正整数,且p ≤q ),在n 的所有这种分解中,如果p ,q 两因数之差的绝对值最小,我们就称p ×q 是n 的最佳分解.并规定:F (n )=p q.例如12可以分解成1×12,2×6或3×4,因为12-1>6-2>4-3,所以3×4是12的最佳分解,所以F (12)=34. (1)如果一个正整数a 是另外一个正整数b 的平方,那么我们称正整数a 是完全平方数,求证:对任意一个完全平方数m ,总有F (m )=1;(2)如果一个两位正整数t ,t =10x +y (1≤x ≤y ≤9,x ,y 为自然数),交换其个位上的数字与十位上的数字得到的新数减去原来的两位正整数所得的差为18,那么我们称t 为“吉祥数”,求所有“吉祥数”中,F (t )的最大值.解题突破⑧(1)读懂新定义的条件:一个正整数分解成两个正整数的积,且取两因数之差的绝对值最小的情况.(2)在列举的所有情况中,找出满足条件的情况.典题讲评与答案详析1.C 2.22+23.解:原式=3+4-12=132. 4.< [解析]∵|3-2|=3-2,|3|+|-2|=3+2,∴3-2<3+ 2.故填“<”.5.右 [解析] 因为3.14<π,所以-3.14>-π,所以数轴上表示-3.14的点在表示-π的点的右边.6.解:∵-1<a <0,不妨令a =-12,∴-a =12,1a =-2,a 2=14. ∵-2<-12<14<12,∴1a<a <a 2<-a . 7.B [解析] 因为4=2,所以4的倒数是12. 8.C [解析] -4的绝对值是4,-2的绝对值是2,1的绝对值是1,3的绝对值是3.因为4>3>2>1,所以这些实数中绝对值最小的是1.9.C [解析] 实数2-1的相反数是-(2-1)=1- 2.10.A [解析] 因为3<2,所以3-2<0,所以|3-2|=-(3-2)=2- 3.11.B [解析]∵a 2≥0,|a |+1≥1,∴①和②不可能互为相反数.12.11-5或5-11[解析] 因为|11-5|=11-5,|5-11|=11-5,所以这个实数为11-5或5-11.13.2(答案不唯一) [解析] 答案不唯一,只要a 是小于4的无理数即可.14.3-2 [解析] 由题意,得x =-3,y =2,所以|x +y |=|-3+2|=-(-3+2)=3- 2.15.15-415 [解析] 因为3<15<4,所以a =3,b =15-3,所以a -b -ab = 3-(15-3)-3×(15-3)=3-15+3-315+9=15-415.16.解:∵4<5<9,∴2<5<3.又∵7+5=x +y ,其中x 是整数,且0<y <1,∴x =9,y =5-2,∴x -y +5=9-(5-2)+5=11,∴x -y +5的相反数是-11.17.解:(1)点B 表示的数是5-2.(2)点C 表示的数是2- 5.(3)由题意,得点A 表示5,点B 表示5-2,点C 表示2-5,∴OA =5,OB =5-2,OC =|2-5|=5-2,∴OA +OB +OC =5+5-2+5-2=3 5-4.18.A [解析] 因为2+2=2 2,2-2=0,2×2=2,2÷2=1,所以选A.19.C [解析] 原式=4-3-3-4=-2 3.故选C. 20.3 [解析] 2☆(3☆5)=2☆(3×5+1)=2☆4=2×4+1=3.21.-20 [解析] 有理数为|-9|,-38,它们的积为|-9|×(-38)=-18.无理数为22, 2 2,它们的积为22×2 2=2.有理数与无理数积的差为-18-2=-20. 22.-2或7 2[解析] 本题要分两种情况进行分析:①当点B 在点A 的左边时, 则3 2-4 2=-2,故点B 表示的数是-2;②当点B 在点A 的右边时, 则4 2+3 2=7 2,故点B 表示的数是7 2.综上,点B 在数轴上表示的数为-2或7 2.23.解:(1)原式=13-13+2-3-4+2 3=3-2. (2)原式=-1+2-3+2×32-2=-1. 24.解:(1)证明:对任意一个完全平方数m ,设m =n 2(n 为正整数).∵|n -n |=0,∴n ×n 是m 的最佳分解,∴对任意一个完全平方数m ,总有F (m )=n n=1. (2)设交换t 的个位上的数字与十位上的数字得到的新数为t ′,则t ′=10y +x . ∵t 为“吉祥数”,∴t ′-t =(10y +x )-(10x +y )=9(y -x )=18,∴y =x +2.∵1≤x ≤y ≤9,x ,y 为自然数,∴“吉祥数”有13,24,35,46,57,68,79.∵F (13)=113,F (24)=46=23,F (35)=57, F (46)=223,F (57)=319,F (68)=417, F (79)=179, 又∵57>23>417>319>223>113>179, ∴所有“吉祥数”中,F (t )的最大值是57. 【关键问答】①乘法分配律的逆用.。
6.3 第2课时 实数的运算
关键能力突破
核心素养应用
16.计算: (1) 25+3 -64+ (-2)2; (2)[2020 秋·岳麓区校级月考]-12 020+ (-2)2-3 27+|2- 3|. 解:(1)原式=5-4+2=3; (2)原式=-1+2-3+2- 3=- 3.
全效学习 课时提优
返回
基本知识必备
关键能力突破
核心素养应用
17.计算下列各式的值: (1)| 6-2|+| 2-1|+|1- 2|-|3- 6|;
(2)- 0.25÷124× (-1)12+214+3.75× 6-(3 343+3 -1)× 6. 解:(1)原式= 6-2+ 2-1+ 2-1-(3- 6)=2 6+2 2-7; (2)原式=- 14÷116×1+214+334× 6-[7+(-1)]× 6=-12×16×1+6× 6- 6× 6=-8+6 6-6 6=-8.
(3)计算:
[ 1×2]+[ 2×3]+[ 3×4]+…+[ 2 020×2 021]
1 010
.
全效学习 课时提优
返回
基本知识必备
关键能力突破
核心素养应用
解:(1)∵ 1=1, 4=2, 9=3,
∴当[ 1]≤[ x]<[ 4]时,[ x]=1;
当[ 4]≤[ x]<[ 9]时,[ x]=2,
∴[ 1]+[ 2]+[ 3]+…+[ 6]=1+1+1+2+2+2=9;
020=12×2
020×(1+2 1 010
020) =2
021.
返回
全效学习 课时提优
(2)原式=5×15-6×16-(-0.3)=0.3.
全效学习 课时提优
返回
基本知识必备
关键能力突破
数学六年级下册第六章-实数(2)-课件与答案
数学
七年级 下册
配RJ版
第六章
6.3
2.实数的运算:实数之间可以进行加、减、乘、除(除数不为
0)、乘方运算,而且正数和0可以进行开平方运算,任意一个
实数都可以进行开立方运算.
3.实数的运算律:实数进行运算时,有理数的运算法则及运算
律在实数范围内同样适用.
数学
基础过关
1.下列说法正确的是
A.0没有平方根
为相反数”成立.
6.3
数学
七年级 下册
配RJ版
(2)∵ − 和 − 互为相反数,
∴ −+
− =0,
解得y=-3.
∵x+5的平方根是它本身,
∴x+5=0,
∴x=-5,
∴x+y=-3-5=-8,
∴x+y的立方根是-2.
∴8-y+2y-5=0,
第六章
6.3
A. -1
B.1-
C.2-
D. -2
数学
七年级 下册
配RJ版
第六章
6.3
9.如图,大长方形内有两个相邻的正方形,面积分别为9和6.
(1)小正方形边长的值在哪两个连续的整数之间?与哪个整
数较接近?
(2)求图中阴影部分的面积.
(3)若小正方形边长的值的整数部分为x,
小数部分为y,求(y- )x的值.
(2)若 =m,c= ,求b-4d+m的值.
6.3
数学
七年级 下册
(1)解:∵a,b互为相反数, ∴a+b=0.
∵c,d互为倒数,
∵|m|=2 且m<0,
∴m=-2.
2023~2024学年 6.3 课时2 实数的性质与运算(16页)
在实数范围内,负实数没有平方根.
在实数范围内,每个实数有且只有一个立方根,而且与它本身
的符号相同.
例2:计算下列各式的值:
+ − ;
解:
+ −
= + −
= .
(2) + .
(2) +
1. a是一个实数,实数a的相反数为−.
2. ① 一个正实数的绝对值是它本身;
② 一个负实数的绝对值是它的相反数;
③ 0的绝对值是0.
a, 当a 0时;
a 0, 当a 0时;
a, 当a 0时.
新知二 实数的运算
设a,b,c是任意实数,则
(1)a+b =
(加法交换律);
表示.
③倒数
如果两个数的积是1,则这两个数互为倒数 .
思考:无理数也有相反数吗?怎么表示?有绝对值吗?怎么表示?有倒数吗?
怎么表示?
合作探究
新知一 实数的性质
在实数范围内,相反数、倒数、绝对值的意义和有理
数范围内的相反数、倒数、绝对值的意义完全一样.
想一想:
(1) a是一个实数,它的相反数为
1
(2)如果,那么它的倒数为 a .
第六章 实数
6.3 课时2 实数的性质与运算
学习目标
1.理解在实数范围内的相反数、倒数、绝对值的意义;(重点)
2.掌握实数的运算法则,熟练地利用计算器去解决有关实数的运
算问题.(重点)
课堂导入
有理数中的几个重要概念:
①相反数
只有符号不同的两个数,其中一个是另一个的相反数.
人教版七年级数学 下册 第六章 6.3 实数 课时练(含答案)
第六章实数6.3 实数一、选择题1、下面四句话中正确的是()(A)无限小数都是无理数(B)无理数都是无限循环小数(C)带根号的数都是无理数(D)任何无理数在数轴上都有表示它的点2、下列说法正确是()A.不存在最小的实数B.有理数是有限小数C.无限小数都是无理数D.带根号的数都是无理数3、下列实数中,是有理数的为( )A. 2B.34 C.πD.04、在实数:3.141 59,364,1.010 010 001,4.21··,π,227中,无理数有( )A.1个B.2个C.3个D.4个5、实数a,b在数轴上的位置如图所示,则|a|-|b|可化简为( )A.a-bB.b-aC.a+bD.-a-b 二、填空题6、若实数x与实数y互为相反数则x y+等于 .7、下列各数:,,,-,0.01020304…中是无理数的有_____________.8、请你任意写出三个无理数:9、3-2的相反数是,绝对值是 .10、写出3-9到23之间的所有整数:.三、解答题11、求下列各数的相反数和绝对值:(1)327-;(2)21;(3)83-;(4)52.2-.120.32&&π72212、求下列各式中未知数x 的值.(1); (2).13、已知2a -1的平方根是±3,3a+b -1的平方根是±4,求a+2b 的平方根.14、已知实数a ,b ,c ,d ,e ,f ,且a ,b 互为倒数,c ,d 互为相反数,e 的绝对值为2,f 的算术平方根是8,求12ab +c +d 5+e 2+3f 的值.15、一个正数x 的平方根是3a -4和1-6a ,求a 及x 的值.16、实数a ,b 在数轴上的位置如图所示,请化简:.17、王老师给同学们布置了这样一道习题:一个数的算术平方根为2m -6,它的平方根为±(m -2),求这个数.小张的解法如下:依题意可知,2m -6是(m -2),-(m -2)两数中的一个.(1) 当2m -6=m -2时,解得m=4.(2) 所以这个数为2m -6=2×4-6=2.(3)当2m -6=-(m -2)时,解得m=83.(4)所以这个数为2m -6=2×83-6=-23.(5) 综上可得,这个数为2或-23.(6)王老师看后说,小张的解法是错误的.你知道小张错在哪里吗?为什么?请予以改正.18、已知a 是10的整数部分,b 是它的小数部分,求(-a)3+(b +3)2的值.19、已知实数a ,b 在数轴上的位置如图所示,化简:|a -b|-a 2+(-b)2+23b 3.20、阅读下列材料:如果一个数的n(n 是大于1的整数)次方等于a ,这个数就叫做a 的n 次方根,即x n=a ,则x 叫做a 的n 次方根.如:24=16,(-2)4=16,则2,-2是16的4次方根,或者说16的4次方根是2和-2;再如(-2)5=-32,则-2叫做-32的5次方根,或者说-32的5次方根是-2.回答问题:(1)64的6次方根是±2,-243的5次方根是-3,0的10次方根是0; (2)归纳一个数的n 次方根的情况.216250x -=()318x -=参考答案:一、1、D 2、B 3、D 4、A 5、C二、6、070.01020304…89、2-3,2-310、-2,-1,0,1,2,3,4三、11、(1)3, 3;(2);(33, 3;(42.22.2.12、解:(1)方程可化为x²=2516,由平方根的定义知,x=54±.(2)由立方根的定义知,x-1=2,解得x=3.13、解:∵2a-1的平方根是±3,3a+b-1的平方根是±4,,∴2a-1=9,3a+b-1=16,∴a=5,b=2,则a+2b=5+2×2=9,其平方根为±3.14、解:由题意可知:ab=1,c+d=0,e=±2,f=64,e2=(±2)2=2,∴3f=364=4.∴12ab+c+d5+e2+3f=12+0+2+4=612.15、解:由题意得3a-4+1-6a=0,解得a=-1. ∴3a-4=-7.∴x=(-7)2=49.答:a的值是-1,x的值是49.16、解:由数轴知,a<0<b,|a|<|b|,∴a-b<0,b+a>0,∴原式=b-a+a-(b+a)=-a.17、.解:可以看出小张错在把“某个数的算术平方根”当成“这个数本身”.当m=4时,这个数的算术平方根为2m-6=2>0,则这个数为22=4,故(3)错误;当m=83时,这个数的算术平方根为2m-6=2×83-6=-23<0(舍去),故(5)错误;综上可得,这个数为4,故(6)错误.所以小张错在(3)(5)(6).18、解:根据题意,得a=3,b=10-3,∴(-a)3+(b+3)2=(-3)3+(10-3+3)2=-27+10=-17.19、解:由图知,a>0,b<0,a-b>0.∴原式=a-b-a-b+2b=0.20、解:当n为偶数时,一个负数没有n次方根,一个正数的n次方根有两个,它们互为相反数;当n为奇数时,一个数的n次方根只有一个.0的n次方根是0.。
《6.3实数》同步练习及答案(共两套)
《6.3实数》同步练习一(第1课时)一、选择题1.下列各数中:3.14,0,,,,,,,3.1414414441…(每两个1之间依次增加一个4),无理数的个数有( ).A.3个B.4个 C.5个 D.6个考查目的:考查无理数的概念.答案:B.解析:根据无理数是无限不循环小数可知,,,,3.1414414441…(每两个1之间依次增加一个4)这四个数是无理数.目前见到的无理数有三类:含有的数、开方开不尽的数、构造性无理数(看似循环其实不循环),如上面的3.1414414441…(每两个1之间依次增加一个4).2.下列关于无理数的说法中,正确的是( ).A.无限小数都是无理数B.任何一个无理数都可以用数轴上的点来表示C.是最小的正无理数D.所有的无理数都可以写成(、互质)的形式考查目的:考查无理数的概念和性质.答案:B.解析:无理数是无限不循环小数;不存在最小的正无理数,也不存在最大的负无理数;有理数可以写成(、互质)的形式,而无理数不可以;所有的实数都可以用数轴上的点来表示.3.如图,数轴上点P表示的数可能是( ).A.- B. C.- D.考查目的:考查无理数的大小估计,以及无理数在数轴上的表示.答案:A.解析:点表示的数介于-3与-2之间,而选项中只有-在这个范围内.二、填空题4.写出一个位于和0之间的无理数:.考查目的:考查无理数的概念和对无理数的大小估计.答案:答案不唯一,如(每两个1之间依次增加一个0)等.解析:根据无理数的概念来构造无理数,本题也可以用含有根号的数表示,如:等.5.如图,在数轴上,A,B两点之间表示整数的点有______个.考查目的:考查无理数用数轴上点表示以及无理数大小的估计.答案:4.解析:∵-2<<-1,2<<3,∴在数轴上,A,B两点之间表示整数的点有-1,0,1,2一共4个.6. 1,2,3…,100这100个自然数的算术平方根和立方根中,无理数的个数有____个.考查目的:本题结合算术平方根与立方根的定义考查了无理数的概念以及实数的分类.答案:186解析:在,,,…,中,有理数为,,,,,,,,,,共10个;在,,,…,中,有理数为,,,,共4个,故200个实数中有14个有理数,无理数为186个.三、解答题7.把下列各数填入相应的括号里:,,,0,,,,,(每两个1之间依次增加一个0).无理数集合:{ }分数集合:{ }整数集合:{ }负实数集合:{ }.考查目的:考查实数的分类.答案:无理数集合:{,,,,…}分数集合:{,,,… }整数集合:{0,,…}负实数集合:{,,,…}.解析:在进行实数的分类的时候,需要先对数进行化简,需要注意,有限小数或无限循环小数属于分数,常见的无理数有含有的数、开方开不尽的数以及构造的无理数,即可得到答案.8.按要求分别写出一个大于9且小于10的无理数:(1)用一个平方根表示:_________________ ;(2)用一个立方根表示:_________________ ;(3)用含的式子表示:_________________ ;(4)用构造的方法表示:__________________.考查目的:考查无理数的概念和性质.答案:(1);(2);(3);(4)(每两个1之间依次增加一个0).(答案不唯一)解析:(1)(为其中的任意实数);(2)(为其中的任意实数);(3),;(4)在大于9且小于10的范围内,构造一个无限不循环小数即可.(第2课时)一、选择题1.下列各数中,最小的是( ).A.O B.1 C.-1 D.考查目的:考查实数的大小比较.答案:D.解析:根据“正数大于零,零大于负数;两个负数,绝对值大的反而小”可知,最小的数只能在-1和中找.因为,所以,故最小的数是.2.在算式()□()的□中填上运算符号,使结果最大,这个运算符号是( ).A.加号 B.减号C.乘号D.除号考查目的:考查无理数的四则运算以及实数大小比较.答案:D.解析:加法运算的结果仍然为负数,减法运算的结果为零,乘法运算的结果为,除法运算的结果为1,而运算的结果中1最大,故选择D.3.对于以下四个判断:①是无理数.②是一个分数.③-|-|和-(-)是互为相反数.④若||<||,则<.其中正确的判断的个数是( ).A.3 B.2 C.1 D.考查目的:考查实数的概念和性质.答案:C.解析:①,2是一个有理数;②是无理数;③-|-|=-,-(-)=,-与是互为相反数;④反例:,.二、填空题4.的相反数是,绝对值是.考查目的:考查实数的相反数、绝对值的意义.答案:解析:-()=, ||=-()=.5.请写出两个你喜欢的无理数,使它们的和为有理数,这两个无理数为,如果是积为有理数,那么这两个无理数又为(任意写出一组).考查目的:考查互为相反数和互为倒数的概念和应用.答案:和和.(答案不唯一)解析:若两个无理数的和为有理数,这样的两个无理数的形式可以为和,其中,,,都是有理数,>0,为无理数,也可以为;若两个无理数的积为有理数,这样的两个无理数的形式可以为,,其中,为有理数,>0,也可以为.6.计算:-=_____________ .考查目的:考查算术平方根的运算和绝对值的化简计算.答案:-1.14.解析:由于<0,<0,所以-===-1.14.三、解答题7.创新设计题:如图所示的集合中有5个实数,请计算其中的有理数的和与无理数的积的差.考查目的:考查实数的分类以及实数的运算.答案:1-2.解析:有理数为:,,无理数为: ,,,由题意可得:()-(××)=1-2.8.观察下列推理过程:∵<<,即2<<3,∴的整数部分为2,小数部分为.请你观察上述的规律后试解下面的问题:如果的小数部分为,的小数部分为,求的值.考查目的:考查无理数的小数部分的表示,以及实数的运算.答案:.解析:的小数部分为=-1,的小数部分为=-1,故有=.《6.3实数》同步练习二第1课时实数课前预习:要点感知1 无限________小数叫做无理数,________和_______统称为实数. 预习练习1-1 下列说法:①有理数都是有限小数;②有限小数都是有理数;③无理数都是无限小数;④无限小数都是无理数,正确的是( )A.①②B.①③C.②③D.③④1-2实数-2,0.3,17,2,-π中,无理数的个数是( )A.2B.3C.4D.5要点感知2 实数可以按照定义和正负性两个标准分类如下:⎧⎧⎫⎪⎪⎪⎨⎬⎪⎪⎪⎪⎭⎨⎩⎪⎧⎫⎪⎪⎨⎬⎪⎪⎭⎩⎩正有理数零负有理数实数正无理数负无理数⎧⎧⎧⎪⎪⎨⎪⎨⎩⎪⎪⎩⎪⎪⎨⎪⎧⎧⎪⎪⎨⎪⎨⎩⎪⎪⎪⎩⎩正整数正有理数正分数正无理数实数负整数负有理数负分数负无理数预习练习2-1 给出四个数-1,0,0.5,其中为无理数的是( )要点感知3 __________和数轴上的点是一一对应的,反过来,数轴上的每一个点必定表示一个__________.预习练习3-1 和数轴上的点一一对应的是( ) A.整数 B.有理数 C.无理数 D.实数 3-2 如图,在数轴上点A 表示的数可能是( )A.1.5B.-1.5C.-2.6D.2.6当堂练习:知识点1 实数的有关概念 1.下列各数中是无理数的是( )B.-2C.0D.132.下列各数中,3.141 59,,0.131 131 113…,-,-17,无理数的个数有( )A.1个B.2个C.3个D.4个 3.写出一个比-2大的负无理数__________. 知识点2 实数的分类 4.下列说法正确的是( ) A.实数包括有理数、无理数和零 B.有理数包括正有理数和负有理数C.无限不循环小数和无限循环小数都是无理数D.无论是有理数还是无理数都是实数5.实数可分为正实数,零和__________.正实数又可分为__________和__________,负实数又可分为__________和__________.6.把下列各数填在相应的表示集合的大括号内.-6,π,-23,-|-3|,227,-0.4,1.6,0,1.101 001 000 1… 整数:{ ,…}, 负分数:{ ,…}, 无理数:{ ,…}.知识点3 实数与数轴上的点一一对应 7.下列结论正确的是( ) A.数轴上任一点都表示唯一的有理数 B.数轴上任一点都表示唯一的无理数 C.两个无理数之和一定是无理数 D.数轴上任意两点之间还有无数个点8.若将三个数表示在数轴上,其中能被如图所示的墨迹覆盖的数是__________.9.如图,直径为1个单位长度的圆从原点沿数轴向右滚动一周(不滑动),圆上的一点由原点到达点O ′,点O ′所对应的数值是__________.课后作业:10.下列实数是无理数的是( )A.-2B.1311.下列各数:2 ,00.23,227,0.303 003…(相邻两个3之间多一个0),中,无理数的个数为( ) A.2个 B.3个 C.4个 D.5个12.有下列说法:①带根号的数是无理数;②不带根号的数一定是有理数;③负数没有立方根;④是17的平方根.其中正确的有( ) A.0个 B.1个 C.2个 D.3个 13.若a 为实数,则下列式子中一定是负数的是( )A.-a 2B.-(a+1)22+1)14.如图,( )A.点PB.点QC.点MD.点N 15.下列说法中,正确的是( )都是无理数B.无理数包括正无理数、负无理数和零C.实数分为正实数和负实数两类D.绝对值最小的实数是016.有一个数值转换器,原理如下:当输入的x 为64时,输出的y 是( )17.在下列各数中,选择合适的数填入相应的集合中.-152,3.14,,0,-5.123 45. 有理数集合:{ ,…} 无理数集合:{ ,…} 正实数集合:{ ,…} 负实数集合:{ ,…} 18.有六个数:0.142 7,(-0.5)3,3.141 6,227,-2π,0.102 002 000 2…,若无理数的个数为x,整数的个数为y,非负数的个数为z,求x+y+z 的值.挑战自我19.是无理数,的点呢?的点,如图.小颖作图说明了什么?参考答案 课前预习要点感知1 不循环 有理数 无理数 预习练习1-1 C1-2 A要点感知2 有理数 有限小数或无限循环小数 无理数 无限不循环小数 正实数 零 负实数预习练习2-1 D要点感知3 实数 实数预习练习3-1 D3-2 C当堂训练1.A2.B3.答案不唯一,如:4.D5.负实数 正有理数 正无理数 负有理数 负无理数6.-6,-|-3|,0 -23,-0.4 1.101 001 000 1…7.D 9.π课后作业10.D 11.B 12.B 13.D 14.C 15.D 16.B17.-152π,-5.123 45 (2)π,3.14,15…18.由题意得无理数有2个,所以x=2;整数有0个,所以y=0,非负数有4个,所以z=4,所以x+y+z=2+0+4=6.19.①每一个无理数都可以用数轴上的一个点表示出来,也就是数轴上的点有些表示有理数,有些表示无理数;②到原点距离等于某一个数的实数有两个.第2课时 实数的运算课前预习:要点感知1 实数a 的相反数是__________;一个正实数的绝对值是它__________;一个负实数的绝对值是它的__________;0的绝对值是__________.即:|a|=0.aaa⎧⎪⎪⎨⎪⎪⎩>=<,当时;,当时;,当时预习练习1-1的相反数是( )1-2的绝对值是( )要点感知2 正实数__________0,负实数__________0.两个负实数,绝对值大的实数__________.预习练习2-1 在实数0,,-2中,最小的是( )要点感知3 实数之间不仅可以进行加、减、乘、除(除数不为0)、乘方运算,而且__________可以进行开平方运算,__________可以进行开立方运算.预习练习3-1的结果是( )A.4B.0C.8D.12当堂练习:知识点1 实数的性质1. -34的倒数是( )A.43B.34C.-34D.-432.无理数( )3.下列各组数中互为相反数的一组是( )A.-|-2|与与知识点2 实数的大小比较4.在-3,0,4这四个数中,最大的数是( )5.如图,在数轴上点A,B对应的实数分别为a,b,则有( )A.a+b>0B.a-b>0C.ab>0D.ab>06.,则实数a在数轴上的对应点一定在( )A.原点左侧B.原点右侧C.原点或原点左侧D.原点或原点右侧7.比较大小:;(填“>”或“<”).知识点3 实数的运算8.计算:=( )9.计算:=__________.的相反数是__________,绝对值是__________. 11.计算:(1)-2|; (2(3.12.计算:(1)π(精确到0.01);保留两位小数).课后作业:13.的相反数是( )14.若|a|=a ,则实数a 在数轴上的对应点一定在( )A.原点左侧B.原点右侧C.原点或原点左侧D.原点或原点右侧15.比较2的大小,正确的是( )<216.如图,数轴上的点A ,B 分别对应实数a ,b,下列结论正确的是( )A.a>bB.|a|>|b|C.-a<bD.a+b<017.下列等式一定成立的是( )±=918.如果0<x<1,那么1x2中,最大的数是( )A.xB.1x D.x 219.点A 在数轴上和原点相距3个单位,点B 则A,B 两点之间的距离是__________.20.若(x 1,y 1)※(x 2,y 2)=x 1x 2+y 1y 2,则※)=________. 21.计算:;-1|.22.某居民生活小区需要建一个大型的球形储水罐,需储水13.5立方米,那么这个球罐的半径r为多少米?(球的体积V=43πr3,π取3.14,结果精确到0.1米)23.如图所示,某计算装置有一数据入口A和一运算结果的出口B,下表给出的是小红输入的数字及所得的运算结果:若小红输入的数为49,输出的结果应为多少?若小红输入的数字为a,你能用a 表示输出结果吗?24.12,我们把1-1.利用上面的知识,你能确定下列无理数的整数部分和小数部分吗?(2)挑战自我25.阅读下列材料:如果一个数的n(n是大于1的整数)次方等于a,这个数就叫做a的n次方根,即x n=a,则x叫做a的n次方根.如:24=16,(-2)4=16,则2,-2是16的4次方根,或者说16的4次方根是2和-2;再如(-2)5=-32,则-2叫做-32的5次方根,或者说-32的5次方根是-2.回答问题:(1)64的6次方根是__________,-243的5次方根是__________,0的10次方根是__________;(2)归纳一个数的n次方根的情况.参考答案课前预习要点感知1 -a 本身相反数 0 a 0 -a 预习练习1-1 C1-2 A要点感知2 大于小于反而小预习练习2-1 A要点感知3 正数以及0 任意一个实数预习练习3-1 B当堂训练1.D2.B3.C4.C5.A6.C7.(1)< (2)> (3)>8.C 9.111.(1)原式)=4.(2)原式=2+0-12=32.(3)原式.12.(1)π≈3.142-1.414+1.732≈3.46;(2)原式≈2.236-1.414+0.9≈1.72.课后作业13.C 14.D 15.C 16.C 17.B 18.B 19.20.-221.(1)原式;(2)原式-1=1.22.把V=13.5,π=3.14代入V=43πr3,得13.5=43×3.14r3,r≈1.5(米).所以球罐的半径r约为1.5米.23.-1=6;若小红输入的数字为a≥0).24.(1)因为343;(2)因为9109-9.25.(1)±2 -3 0(2)当n为偶数时,一个正数的n次方根有两个,它们互为相反数;当n为奇数时,一个数的n次方根只有一个.负数没有偶次方根.0的n次方根是0.。
2019-2020学年人教版七年级下学期《6.3 实数》同步测试卷及答案解析
2019-2020学年人教版七年级下学期《6.3 实数》同步测试卷1.把下列各实数填在相应的大括号内,﹣|﹣3|,,0,,﹣3.,,1﹣,1.1010010001…(两个1之间依次多1个0)整数{ …};分数{ …};无理数{ …}.2.把下列各数分别填在相应的集合中:﹣,,﹣,0,﹣,、,0.,3.143.把下列各数填入相应的括号内:﹣,﹣,π,3.14,﹣,无理数集合:{…};正实数集合:{…}.4.在:,,0,3.14,﹣,﹣,7.151551…(每相邻两个“1”之间依次多一个“5”)中,整数集合{…},分数集合{…},无理数集合{…}.5.定义:可以表示为两个互质整数的商的形式的数称为有理数,整数可以看作分母为1的有理数;反之为无理数.如不能表示为两个互质的整数的商,所以,是无理数.可以这样证明:设与b是互质的两个整数,且b≠0.则a2=2b2因为b是整数且不为0,所以,a是不为0的偶数,设a=2n,(n是整数),所以b2=2n2,所以b也是偶数,与a,b是互质的正整数矛盾.所以,是无理数.仔细阅读上文,然后,请证明:是无理数.6.数学课上,好学的小明向老师提出了一个问题:无限循环小数是无理数吗?以0.为例,老师给小明做了以下解答(注:0.即0.33333…):设0.为x,即:0.3=x等式两边同时乘10,得:3.=10x即:3+0.=10x因为0.=x所以3+x=10x解得:x=即0.=因为分数是有理数,所以0.是有理数,同学们,你们学会了吗?请根据上述阅读,解决下列问题:(1)无限循环小数0.写成分数的形式是(2)请用解方程的办法将0.写成分数.7.把下列各数填入相应的集合里:﹣3,|﹣5|,+(﹣),﹣3.14,0,﹣1.2121121112…,﹣(﹣2.5),,﹣|﹣|,3π整数集合:{…}负分数集合:{…}无理数集合:{…}非负数集合:{…}.8.把下列各数填在表示它所在的数集的圈内:3π,﹣12,+6,3.8,﹣6,,8.7,2002,﹣,0,﹣4.2,3.1415,﹣1000,1.21121112…9.把下列各数填入相应的大括号里﹣0.78,5,+,﹣0.87,﹣10,﹣,0,,0.,﹣2.121121112…负整数:{…}分数:{…}非负数:{…}无理数:{…}.10.求下列各数的相反数(1)2.5(2)﹣(3)﹣(4)1﹣.11.求下列各数的绝对值(1)(2)(3)﹣1.7(4)1.4﹣.12.(1)已知|x|=|﹣y|,且|x+y|=﹣x﹣y,求x﹣y的值(2)已知数a与b互为相反数,c与d互为倒数,x+2=0,求式子(a+b)2009﹣的值.(3)已知=x,=2,z是9的算术平方根,求2x+y﹣z的平方根.13.已知与互为相反数,求2a+b的立方根.14.一个正数x的两个不同的平方根分别是2a﹣1和﹣a+2.(1)求a和x的值;(2)化简:2|a+|﹣|3a+x|.15.已知a2=(﹣3)2,与互为相反数,求代数式2a2﹣b的值.16.已知x2=5,|y|=,求x+y的值.17.按要求写出下列各数:①倒数是它本身的数是,②相反数是它本身的数是,③绝对值是它本身的数是,④平方是它本身的数是,⑤平方根是它本身的数是,⑥算术平方根是它本身的数是,⑦立方是它本身的数是,⑧立方根是它本身的数是.18.已知A=是3x﹣7的立方根,而B=是A的相反数,求x2﹣y的立方根.19.如表所示,请分别写出字母A、B、C、D所表示的数值,并求其中最大与最小的两个数的和.字母所表示的数字母所表示的数A的相反数C整式的系数B的平方根D1﹣的绝对值20.求下列各数的相反数和绝对值:(1)﹣(2)(3)﹣2 (4).21.数轴上有A,B,C,D四个实数,如图所示,它们表示的数在以下四个数中,﹣1.5,π,,﹣,请指出A,B,C,D各表示什么数?22.实数a、b在数轴上对应点A、B的位置如图,化简:|a+b|﹣﹣.23.如图,a,b,c是数轴上三个点A、B、C所对应的实数.试化简:﹣|a﹣b|+﹣|b﹣c|24.已知:表示a、b两个实数的点在数轴上的位置如图所示,请你化简.25.如图,数轴上表示1、的对应点分别为A、B,点C在OA上,且AC=AB,试求点C所表示的实数.26.如图,一只蚂蚁从点A沿数轴向右直爬2个单位到达点B,再直爬向C点停止,已知点A表示﹣,点C表示2,设点B所表示的数为m.(1)求m的值;(2)求BC的长.27.在数轴上表示与它的相反数.28.如图,直径为1的圆从原点沿数轴向左滚动一周,圆上与原点重合的点O到达O′,设点O′表示的数为a(1)求a的值;(2)求﹣(a﹣)﹣π的算术平方根.29.已知数轴上有A,B,C三点,它们表示的有理数分别为6,﹣4,x.(1)若x=﹣10,求AC+BC的值;(2)若AC=3BC,求x的值.30.如图1,这是由8个同样大小的立方体组成的魔方,体积为64.(1)求出这个魔方的棱长.(2)图中阴影部分是一个正方形ABCD,求出阴影部分的面积及其边长.(3)把正方形ABCD放到数轴上,如图2,使得A与﹣1重合,那么D在数轴上表示的数为.31.比较下列各组数的大小:(1)与7;(2)﹣π与﹣;(3)2与3.32.估算比较大小:(填“>”或“<”)(1)﹣﹣3.2;(2)5;(3);(4).33.比较下列各数的大小.(1)与1.732;(2)与;(3)与﹣3.34.已知a=,b=,c=,比较a、b、c大小.35.在数轴上表示数,﹣3,0,﹣,π,并比较它们的大小,用“<”连接;36.(1)求出下列各数:①﹣,②(﹣2)2,③|﹣2.5|,④﹣(+1.5)(2)将(1)中求出的每个数精准地表示在数轴上.(3)将(1)中求出的每个数按从小到大的顺序排列,并用“<”.37.用“>”或“<”比较下列一组数的大小﹣,﹣(﹣3),π,(﹣2)3,﹣0.01,2,2020,﹣|﹣15|,0,﹣5%38.(1)求出下列各数:①2的算术平方根;②﹣27的立方根;③的平方根.(2)将(1)中求出的每个数准确地表示在数轴上,将这些数按从小到大的顺序排列,并用“<”连接.39.设的整数部分和小数部分分别是x、y,试求x﹣y的值.40.在两个连续整数a和b之间(a<b),即a<<b,求3a+4b的立方根.41.一个正方形的面积是15,试估计它的边长大小.42.估算下列各数的大小:(1)(误差小于100);(2)(误差小于10);(3)(误差小于1);(4)(误差小于0.1).43.分别写出所有适合下列条件的数.(1)小于的正整数;(2)和之间的整数;(3)大于3小于4的一个无理数.44.写出所有适合下列条件的数.(1)大于﹣且小于的所有整数;(2)小于的所有正整数;(3)大于﹣的所有负整数.45.求符合下列各条件中的x的值:(1);(2);(3)(x﹣4)2=4;(4);(5)满足|x|<π的整数x;(6)满足<x<的整数.46.计算:(1)﹣(﹣)2+(﹣1)2018;(2)+﹣.47.计算:(1)+;(2)++.48.计算:(1)﹣;(2)﹣+|3﹣π|;(3)×+×÷.49.计算:①|1﹣|+|﹣|+|﹣2|+|2﹣|;②(﹣2)3×+×(﹣)2﹣;③||﹣()3+﹣||﹣1;④+(﹣1)2009+﹣|﹣5|++.50.用计算器计算(精确到0.01)(1)(2)2019-2020学年人教版七年级下学期《6.3 实数》同步测试卷参考答案与试题解析一.解答题(共50小题)1.把下列各实数填在相应的大括号内,﹣|﹣3|,,0,,﹣3.,,1﹣,1.1010010001…(两个1之间依次多1个0)整数{ …};分数{ …};无理数{ …}.【分析】根据实数的定义即可作出判断.【解答】解:整数{﹣|﹣3|,0…};分数{,﹣3.…};无理数{,,1﹣,1.1010010001…(两个1之间依次多1个0)…}.故答案是:﹣|﹣3|,0;;,,1﹣,1.1010010001…(两个1之间依次多1个0).【点评】此题主要考查了实数的分类,理解无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.2.把下列各数分别填在相应的集合中:﹣,,﹣,0,﹣,、,0.,3.14【分析】根据有理数与无理数的定义看判定求解.【解答】解:有理数集合:(﹣,﹣,0,,0.,3.14,…),无理数集合:(,﹣,,…).【点评】本题主要考查了有理数与无理数的定义.有理数是整数与分数的统称;无理数是无限不循环小数.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.开方开不尽的数也是无理数.3.把下列各数填入相应的括号内:﹣,﹣,π,3.14,﹣,无理数集合:{π,﹣,…};正实数集合:{π,3.14,…}.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:无理数集合:{π,﹣,…};正实数集合:{π,3.14,…},故答案为:π,﹣,;π,3.14,.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.4.在:,,0,3.14,﹣,﹣,7.151551…(每相邻两个“1”之间依次多一个“5”)中,整数集合{…},分数集合{…},无理数集合{…}.【分析】根据无理数、整数、分数的定义即可作答.【解答】解:整数集合{0,﹣};分数集合{,3.14};无理数集合{,﹣,7.151551…}.【点评】此题主要考查了无理数、分数、无理数的定义注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.5.定义:可以表示为两个互质整数的商的形式的数称为有理数,整数可以看作分母为1的有理数;反之为无理数.如不能表示为两个互质的整数的商,所以,是无理数.可以这样证明:设与b是互质的两个整数,且b≠0.则a2=2b2因为b是整数且不为0,所以,a是不为0的偶数,设a=2n,(n是整数),所以b2=2n2,所以b也是偶数,与a,b是互质的正整数矛盾.所以,是无理数.仔细阅读上文,然后,请证明:是无理数.【分析】先设=,再由已知条件得出,a2=5b2,又知道b是整数且不为0,所以a不为0且为5的倍数,再设a=5n,(n是整数),则b2=5n2,从而得到b也为5的倍数,与a,b是互质的正整数矛盾,从而证明了答案.【解答】解:设与b是互质的两个整数,且b≠0.则,a2=5b2,因为b是整数且不为0,所以a不为0且为5的倍数,设a=5n,(n是整数),所以b2=5n2,所以b也为5的倍数,与a,b是互质的正整数矛盾.所以是无理数.【点评】本题考查了无理数的概念,解题的关键是根据所给事例模仿去做,做到举一反三.6.数学课上,好学的小明向老师提出了一个问题:无限循环小数是无理数吗?以0.为例,老师给小明做了以下解答(注:0.即0.33333…):设0.为x,即:0.3=x等式两边同时乘10,得:3.=10x即:3+0.=10x因为0.=x所以3+x=10x解得:x=即0.=因为分数是有理数,所以0.是有理数,同学们,你们学会了吗?请根据上述阅读,解决下列问题:(1)无限循环小数0.写成分数的形式是(2)请用解方程的办法将0.写成分数.【分析】(1)根据给出的例子,设0.为x,即:0.=x,再根据解方程的方法,即可得到0.=;(2)根据给出的例子,设0.为x,即:0.=x,再根据解方程的方法,即可得到0.=.【解答】解:(1)设0.为x,即:0.=x,等式两边同时乘10,得:2.=10x,即:2+0.=10x,因为0.=x,所以2+x=10x,解得:x=,即0.=,故答案为:;(2)设0.为x,即:0.=x,等式两边同时乘100,得:21.=100x,即:21+0.=100x,因为0.=x,所以21+x=100x,解得:x=,即0.=.【点评】此题主要考查了一元一次方程的应用,解答本题的关键是找出其中的规律,即通过方程形式,把无限小数化成整数形式.7.把下列各数填入相应的集合里:﹣3,|﹣5|,+(﹣),﹣3.14,0,﹣1.2121121112…,﹣(﹣2.5),,﹣|﹣|,3π整数集合:{﹣3,|﹣5|,0,…}负分数集合:{+(﹣),﹣3.14,﹣|﹣|,…}无理数集合:{﹣1.2121121112…,3π…}非负数集合:{|﹣5|,0,﹣(﹣2.5),,3π,…}.【分析】根据整数、负分数、无理数、非负数的概念选出即可.【解答】解:整数集合:{﹣3,|﹣5|,0,…},负分数集合:{+(﹣),﹣3.14,﹣|﹣|,…},无理数集合:{﹣1.2121121112…,3π,…},非负数集合:{|﹣5|,0,﹣(﹣2.5),,3π,…},故答案为:﹣3,|﹣5|,0,+(﹣),﹣3.14,﹣|﹣|,﹣1.2121121112…,3π,|﹣5|,0,﹣(﹣2.5),,3π.【点评】本题考查了实数的有关内容,能熟记整数、负分数、无理数、非负数等概念是解此题的关键.8.把下列各数填在表示它所在的数集的圈内:3π,﹣12,+6,3.8,﹣6,,8.7,2002,﹣,0,﹣4.2,3.1415,﹣1000,1.21121112…【分析】根据有理数、无理数、非正数、非负整数的意义选出即可.【解答】解:.【点评】本题考查了有理数、无理数、非正数、非负整数的意义,能熟记有理数、无理数、非正数、非负整数的意义是解此题的关键.9.把下列各数填入相应的大括号里﹣0.78,5,+,﹣0.87,﹣10,﹣,0,,0.,﹣2.121121112…负整数:{﹣10…}分数:{﹣0.78,+,﹣0.87,﹣,0.…}非负数:{5,+,0,,0.…}无理数:{,﹣2.121121112…}…}.【分析】根据实数的分类和性质进行判断即可.【解答】解:负整数:{﹣10}分数:{﹣0.78,+,﹣0.87,﹣,0.}非负数:{5,+,0,,0.}无理数:{,﹣2.121121112…}.故答案为:﹣10;﹣0.78,+,﹣0.87,﹣,0.;5,+,0,,0.;,﹣2.121121112….【点评】本题考查的是实数的分类和性质,解答此题应熟知以下概念:实数包括有理数和无理数;实数可分为正数、负数和0.10.求下列各数的相反数(1)2.5(2)﹣(3)﹣(4)1﹣.【分析】根据只有符号不同的两个数叫做互为相反数解答.【解答】解:(1)2.5的相反数是﹣2.5;(2)﹣的相反数是;(3)﹣的相反数是﹣;(4)1﹣的相反数是﹣1.【点评】本题考查了实数的性质,熟记只有符号不同的两个数叫做互为相反数是解题的关键.11.求下列各数的绝对值(1)(2)(3)﹣1.7(4)1.4﹣.【分析】根据绝对值的性质解答即可.【解答】解:1)的绝对值是2;(2)的绝对值;(3)﹣1.7的绝对值﹣1.7;(4)1.4﹣的绝对值﹣1.4.【点评】本题考查了实数的性质,熟记绝对值的性质是解题的关键.12.(1)已知|x|=|﹣y|,且|x+y|=﹣x﹣y,求x﹣y的值(2)已知数a与b互为相反数,c与d互为倒数,x+2=0,求式子(a+b)2009﹣的值.(3)已知=x,=2,z是9的算术平方根,求2x+y﹣z的平方根.【分析】(1)由已知分别得到x=y或x=﹣y,x+y<0,进而确定x=y满足题意;(2)由已知可知a+b=0,cd=1,z=﹣2,代入所求式子即可;(3)由已知可知x=5,y=4,z=3,代入所求式子即可.【解答】解:(1)∵|x|=|﹣y|,∴x=y或x=﹣y,∵|x+y|=﹣x﹣y,∴x+y<0,∴x=y,∴x﹣y=0;(2)∵a与b互为相反数,∴a+b=0,∵c与d互为倒数,∴cd=1,∵x+2=0,∴x=﹣2,∴(a+b)2009﹣=0﹣=;(3)∵=x,∴x=5,∵=2,∴y=4,∵z是9的算术平方根,∴z=3,∴2x+y﹣z=10+4﹣3=11.【点评】本题考查实数的性质;熟练掌握相反数、倒数、平方根、绝对值的性质是解题的关键.13.已知与互为相反数,求2a+b的立方根.【分析】根据与互为相反数,可得:8a+15=﹣(4b+17),据此求出2a+b的值是多少,进而求出2a+b的立方根是多少即可.【解答】解:∵与互为相反数,∴8a+15=﹣(4b+17),∴8a+4b=﹣17﹣15=﹣32,∴2a+b=﹣8,∴2a+b的立方根是:=﹣2.【点评】此题主要考查了实数的性质,以及立方根的性质和应用,要熟练掌握,解答此题的关键是要明确:一个数的立方根只有一个,正数的立方根是正数,负数的立方根是负数,0的立方根是0.14.一个正数x的两个不同的平方根分别是2a﹣1和﹣a+2.(1)求a和x的值;(2)化简:2|a+|﹣|3a+x|.【分析】(1)根据一个正数的两个平方根互为相反数可得关于a的方程,解出即可得到a 的值,代入求得x的值.(2)根据(1)中求得的a的值去绝对值即可.【解答】解:(1)由题意,得(2a﹣1)+(﹣a+2)=0,解得a=﹣1.∴x=(2a﹣1)2=(﹣3)2=9;(2)原式=2|﹣1+|﹣|3×(﹣1)+9|=2﹣2﹣6=.【点评】本题考查平方根的知识,解决问题的关键是掌握一个正数的两个平方根互为相反数.15.已知a2=(﹣3)2,与互为相反数,求代数式2a2﹣b的值.【分析】由已知条件得到a=±3;然后由与互为相反数得到3a﹣2b+a+b =0,易得b的值,代入求值即可.【解答】解:∵a2=(﹣3)2=9,∴a=±3.当a=3时,由与互为相反数得到3a﹣2b+a+b=0,即b=4a=4×3=12.此时2a2﹣b=2×9﹣12=6.当a=﹣3时,由与互为相反数得到3a﹣2b+a+b=0,即b=4a=﹣3×4=﹣12.此时2a2﹣b=2×9+12=30.综上所述,代数式2a2﹣b的值是6或30.【点评】考查了实数的性质,解题的关键是利用相反数的性质求得b的值.16.已知x2=5,|y|=,求x+y的值.【分析】根据绝对值和平方根的定义,先确定x.y的值,再代入代数式,即可解答.【解答】解:∵x2=5,|y|=,∴x=±,y=±.(1)当x=,y=时,x+y=+=2;(2)当x=,y=﹣时,x+y=+(﹣)=0;(3)当x=﹣,y=时,x+y=﹣+=0;(4)当x=﹣,y=﹣,时,x+y=(﹣)+(﹣)=﹣2.综上所述,x+y的值是2或0或﹣2.【点评】此题主要是考查了绝对值和平方根的定义,注意结果有四种情况,勿漏.17.按要求写出下列各数:①倒数是它本身的数是±1,②相反数是它本身的数是0,③绝对值是它本身的数是非负数,④平方是它本身的数是0,1,⑤平方根是它本身的数是0,⑥算术平方根是它本身的数是0,1,⑦立方是它本身的数是1,0,﹣1,⑧立方根是它本身的数是﹣1,0,1.【分析】根据平方根、立方根,可得答案.【解答】解:①倒数是它本身的数是±1,②相反数是它本身的数是0,③绝对值是它本身的数是非负数,④平方是它本身的数是0,1,⑤平方根是它本身的数是0,⑥算术平方根是它本身的数是0,1,⑦立方是它本身的数是1,0,﹣1,⑧立方根是它本身的数是﹣1,0,1,故答案为:±1,0,非负数,0,1;0;0,1;1,0,﹣1;﹣1,0,1.【点评】本题考查了实数的性质,利用平方根、立方根是解题关键.18.已知A=是3x﹣7的立方根,而B=是A的相反数,求x2﹣y的立方根.【分析】根据立方根,可得方程组,根据解方程组,可得x,y的值,根据开立方,可得答案.【解答】解:由题意得,解得.∴==3.【点评】本题考查了实数的性质,利用立方根互为相反数得出方程组是解题关键.19.如表所示,请分别写出字母A、B、C、D所表示的数值,并求其中最大与最小的两个数的和.字母所表示的数字母所表示的数A的相反数C整式的系数B的平方根D1﹣的绝对值【分析】根据实数的性质,可得答案.【解答】解:的相反数是﹣,=,整式的系数﹣,|1﹣|=﹣1,最大与最小的两个数的和﹣1+(﹣)=﹣1.【点评】本题考查了实数的性质,利用实数的性质得出的相反数是﹣,=,整式的系数﹣,|1﹣|=﹣1是解题关键.20.求下列各数的相反数和绝对值:(1)﹣(2)(3)﹣2 (4).【分析】根据相反数和绝对值的定义得出即可.【解答】解:(1)﹣的相反数是,绝对值是;(2)的相反数是﹣,绝对值是;(3)﹣2的相反数是2﹣,绝对值是2﹣;(4)的相反数是﹣,绝对值是.【点评】本题考查了相反数和绝对值,能熟记相反数和绝对值的定义是解此题的关键.21.数轴上有A,B,C,D四个实数,如图所示,它们表示的数在以下四个数中,﹣1.5,π,,﹣,请指出A,B,C,D各表示什么数?【分析】先分别得到﹣1.5,π,,﹣在哪两个相邻的整数之间,依此即可求解.【解答】解:由数轴可知,A是π,B是﹣,C是﹣1.5,D是.【点评】考查了实数与数轴,关键是得到﹣1.5,π,,﹣值的范围.22.实数a、b在数轴上对应点A、B的位置如图,化简:|a+b|﹣﹣.【分析】根据数轴判断出a、b的正负情况以及绝对值的大小,然后利用算术平方根和绝对值的性质解答即可.【解答】解:由图可知,b<0<a,且|a|<|b|,所以,a+b<0,所以,|a+b|﹣﹣=﹣a﹣b﹣a﹣(a﹣b)=﹣a﹣b﹣a﹣a+b=﹣3a.【点评】本题考查了实数与数轴,准确识图判断出a、b的正负情况是解题的关键.23.如图,a,b,c是数轴上三个点A、B、C所对应的实数.试化简:﹣|a﹣b|+﹣|b﹣c|【分析】利用数轴可得出a﹣b>0,c>0,b﹣c<0,a+b<0,进而取绝对值开平方得出即可.【解答】解:由数轴可得:a﹣b>0,c>0,b﹣c<0,a+b<0,﹣|a﹣b|+﹣|b﹣c|=c﹣a+b+a+b+b﹣c=3b.【点评】此题主要考查了数轴与实数,得出各项符号利用绝对值的性质化简是解题关键.24.已知:表示a、b两个实数的点在数轴上的位置如图所示,请你化简.【分析】根据数轴去绝对值,然后合并同类项即可.【解答】解:由图示知,b<a<0.则a﹣b>0,a+b<0.所以原式=a﹣b﹣(a+b)=﹣2b.【点评】本题考查了实数与数轴.解答此题的关键是熟知:数轴上的任意两个数,右边的数总比左边的数大.25.如图,数轴上表示1、的对应点分别为A、B,点C在OA上,且AC=AB,试求点C所表示的实数.【分析】设C点表示的数是x,再根据中点坐标公式即可得出结论.【解答】解:设C点表示的数是x,∵数轴上表示1、的对应点分别为A、B,∴=1,解得x=2﹣.【点评】本题考查的是实数与数轴,熟知实数与数轴上各点是一一对应关系是解答此题的关键.26.如图,一只蚂蚁从点A沿数轴向右直爬2个单位到达点B,再直爬向C点停止,已知点A表示﹣,点C表示2,设点B所表示的数为m.(1)求m的值;(2)求BC的长.【分析】(1)根据数轴两点间的距离公式得到m﹣2=﹣,然后解方程即可得到m的值;(2)根据两点间的距离,即可解答.【解答】解:(1)m﹣2=﹣,m=2﹣.(2)BC=|2﹣(2﹣)|=|2﹣2+|=.【点评】本题考查了实数与数轴:实数与数轴上的点是一一对应关系;任意一个实数都可以用数轴上的点表示;反之,数轴上的任意一个点都表示一个实数.27.在数轴上表示与它的相反数.【分析】由勾股定理可知=,然后构造以1个单位长度和2个单位长度为直角边的直角三角形,然后以O为圆心以斜边长为半径作弧即可求得答案.【解答】解:如图所示:【点评】本题主要考查的是勾股定理的应用,依据勾股定理构造出以1个单位长度和2个单位长度为直角边的直角三角形是解题的关键.28.如图,直径为1的圆从原点沿数轴向左滚动一周,圆上与原点重合的点O到达O′,设点O′表示的数为a(1)求a的值;(2)求﹣(a﹣)﹣π的算术平方根.【分析】(1)由直径为1的圆从原点沿数轴向左滚动一周,圆上与原点重合的点O到达O′,可知OO’的长度等于直径为1的圆的周长,从而求出a的值;(2)先把a的值代入题目所给的代数式,化简出其值,从而易得其算术平方根.【解答】解:(1)由题意可知,OO’的长度等于直径为1的圆的周长,∴OO′=π,∵点O′在原点左侧,∴a=﹣π.故a的值为﹣π.(2)把a=﹣π代入﹣(a﹣)﹣π得:﹣(a﹣)﹣π=﹣(﹣π﹣)﹣π==4,∵4的算术平方根为2,∴﹣(a﹣)﹣π的算术平方根为2.【点评】本题属于动圆在数轴上滚动求值的问题,只要明确滚动一周正好是圆的周长,就不难求解;本题还考查了化简求值及算术平方根的计算,总体难度不大.29.已知数轴上有A,B,C三点,它们表示的有理数分别为6,﹣4,x.(1)若x=﹣10,求AC+BC的值;(2)若AC=3BC,求x的值.【分析】(1)直接利用数轴上两点之间的距离求法得出答案;(2)利用当C在B点左侧时以及当C在B点右侧时,分别得出答案.【解答】解:(1)如图1所示:AC+BC=(6+10)+(﹣4+10)=22;(1)如图2所示:当C在B点左侧时,则6﹣x=3(﹣4﹣x),解得:x=﹣9;当C在B点右侧时,则6﹣x=3(x+4),解得:x=﹣1.5,综上所述:x的值为﹣1.5或﹣9.【点评】此题主要考查了实数与数轴,正确表示出两点之间的距离是解题关键.30.如图1,这是由8个同样大小的立方体组成的魔方,体积为64.(1)求出这个魔方的棱长.(2)图中阴影部分是一个正方形ABCD,求出阴影部分的面积及其边长.(3)把正方形ABCD放到数轴上,如图2,使得A与﹣1重合,那么D在数轴上表示的数为﹣1﹣2.【分析】(1)根据正方体的体积格式可求这个魔方的棱长.(2)根据魔方的棱长为4,所以小立方体的棱长为2,阴影部分由4个直角三角形组成,算出一个直角三角形的面积乘以4即可得到阴影部分的面积,开平方即可求出边长.(3)根据两点间的距离公式可得D在数轴上表示的数.【解答】解:(1).答:这个魔方的棱长为4.(2)∵魔方的棱长为4,∴小立方体的棱长为2,∴阴影部分面积为:×2×2×4=8,边长为:=2.答:阴影部分的面积是8,边长是2.(3)D在数轴上表示的数为﹣1﹣2.故答案为:﹣1﹣2.【点评】本题考查的是立方根在实际生活中的运用,解答此题的关键是根据立方根求出魔方的棱长.31.比较下列各组数的大小:(1)与7;(2)﹣π与﹣;(3)2与3.【分析】(1)比较50与7.5的平方的大小即可;(2)两个负数比较大小绝对值大的反而小;(3)利用平方法比较即可.【解答】解:(1)∵50<56.25,∴.(2)∵π<,∴﹣π>﹣.(3)∵=60,,∴.【点评】本题主要考查的是比较实数的大小,掌握比较两个实数大小的方法是解题的关键.32.估算比较大小:(填“>”或“<”)(1)﹣>﹣3.2;(2)>5;(3)<;(4)<.【分析】(1)求出3,.2的平方,再根据实数的大小比较法则比较即可;(2)下求出5的立方,再比较即可;(3)先估算和的范围,即可求出﹣1<+1,即可得出答案;(4)先估算的范围,即可得出答案.【解答】解:(1)∵3.2==,∴﹣>﹣3.2,故答案为:>;(2)∵5==,∴>,故答案为:>;(3)∵2<<3,∴1<﹣1<2,∵1<<2,∴2<+1<3,∴﹣1<+1,∴<,故答案为:<;(4)∵1<<2,∴0<﹣1<1,∴0<<,故答案为:<.【点评】本题考查了实数的大小比较和估算无理数的大小的应用,主要考查学生能否选择适当的方法比较两个数的大小.33.比较下列各数的大小.(1)与1.732;(2)与;(3)与﹣3.【分析】(1)求出1.732=,再比较即可;(2)求出<,两边都除以2即可;(2)根据数的正负,即可比较两个数的大小.【解答】解:(1)∵1.732=,∴>1.732;(2)∵×6=3=>×6=2=,∴>;(3)∵>0,﹣3<0,∴>﹣3.【点评】本题考查了实数的大小比较的应用,主要考查学生能否选择适当的方法比较两个实数的大小.34.已知a=,b=,c=,比较a、b、c大小.【分析】分别计算出a=,b=,c=的近似结果,再比较大小即可求解【解答】解:∵a=≈1.732﹣1.414=0.318,b=≈2﹣1.732=0.268,c=≈2.236﹣2=0.236,0.318>0.268>0.236,∴a>b>c.【点评】考查了实数大小比较,本题关键是熟悉≈1.414,≈1.732,≈2.236.35.在数轴上表示数,﹣3,0,﹣,π,并比较它们的大小,用“<”连接;【分析】首先把各个数在数轴上表示出来,再根据右边的数总是大于左边的数,即可将它们按从小到大的顺序用“<”连接.【解答】解:根据题意画图如下:﹣3<﹣<0<<π.【点评】本题主要考查了数轴上表示数的方法,以及利用数轴表示数的大小关系,是一个基础题.36.(1)求出下列各数:①﹣,②(﹣2)2,③|﹣2.5|,④﹣(+1.5)(2)将(1)中求出的每个数精准地表示在数轴上.(3)将(1)中求出的每个数按从小到大的顺序排列,并用“<”.【分析】先化简各式,把各点在数轴上表示出来,再从左到右用“<”连接起来即可.【解答】解:(1)①﹣=﹣3,②(﹣2)2=4,③|﹣2.5|=2.5,④﹣(+1.5)=﹣1.5;(2)如图所示,(3)由图可知,﹣3<﹣1.5<2.5<4.【点评】本题考查的是实数的大小比较,熟知数轴上右边的数总比左边的大的特点是解答此题的关键.37.用“>”或“<”比较下列一组数的大小﹣,﹣(﹣3),π,(﹣2)3,﹣0.01,2,2020,﹣|﹣15|,0,﹣5%【分析】先化简符号,再根据有理数的大小比较法则比较即可.【解答】解:∵﹣(﹣3)=3,(﹣2)3=﹣8,﹣|﹣15|=﹣15,∴2020>π>﹣(﹣3)>2>0>﹣0.01>﹣5%>>(﹣2)3>﹣|﹣15|.【点评】本题考查了相反数,绝对值和有理数的大小比较,能熟记有理数的大小比较法则的内容是解此题的关键.38.(1)求出下列各数:①2的算术平方根;②﹣27的立方根;③的平方根.(2)将(1)中求出的每个数准确地表示在数轴上,将这些数按从小到大的顺序排列,并用“<”连接.【分析】(1)利用算术平方根、平方根、立方根定义计算即可求出;(2)将各数表示在数轴上,按照从小到大顺序排列即可.【解答】解(1)①2的算术平方根是;②﹣27的立方根是﹣3;③=4,4的平方根是±2.(2)将(1)中求出的每个数表示在数轴上如下:用“<”连接为:﹣3<﹣2<<2.【点评】此题考查了实数大小比较,以及实数与数轴,熟练掌握运算法则是解本题的关键.39.设的整数部分和小数部分分别是x、y,试求x﹣y的值.【分析】根据2<<3,可得x、y的值,根据实数的运算,可得答案.【解答】解:由2<<3,得x=2,y=﹣2,x﹣y=2﹣(﹣2)=2﹣+2=4﹣.【点评】本题考查了估算无理数的大小,利用2<<3得出x、y的值是解题关键.40.在两个连续整数a和b之间(a<b),即a<<b,求3a+4b的立方根.【分析】由于9<10<16,可得3<<4,从而易求a、b的值,再把ab代入所求式子计算即可.【解答】解:∵9<10<16,∴<<,即3<<4,∴a=3,b=4,∴3a+4b=25,∴3a+4b的立方根是.【点评】此题考查无理数的估算,立方根的意义,注意利用夹逼法取整.41.一个正方形的面积是15,试估计它的边长大小.【分析】根据开方运算,可得边长,根据,可得答案.【解答】解:一个正方形的面积是15,边长是,,34.【点评】本题考查了估算无理数的大小,是解题关键.42.估算下列各数的大小:(1)(误差小于100);(2)(误差小于10);(3)(误差小于1);(4)(误差小于0.1).【分析】借助“夹逼法”先将其范围确定在两个整数之间,再通过取中点的方法逐渐逼近要求的数值,当其范围符合要求的误差时,取范围的中点数值,即可得到答案.【解答】解:(1)∵5002=250000,6002=360000,∴≈500(误差小于100);(2)∵202=400,302=900,∴≈20(误差小于10);(3)∵23=8,33=27,∴≈3(误差小于1);(4)∵1.42=1.96,1.52=2.25,∴≈1.4(误差小于0.1).【点评】此题主要考查了无理数的估算,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.43.分别写出所有适合下列条件的数.(1)小于的正整数;(2)和之间的整数;(3)大于3小于4的一个无理数.【分析】(1)根据42<19<52得出,即可得出答案;(2)关键和,即可得出和之间的整数;(3)根据,,即可得出大于3小于4的无理数.【解答】解:(1)∵42<19<52,∴,故小于的正整数有1,2,3,4.(2)∵,而,∴和之间的整数有﹣2,﹣1,0,1,2.(3)∵,,∴大于3小于4的无理数,….【点评】本题考查了估算无理数的大小的应用,主要考查学生的估算能力.44.写出所有适合下列条件的数.(1)大于﹣且小于的所有整数;(2)小于的所有正整数;。
七年级数学下册第六章实数6.3实数练习卷含解析新版新人教版
6.3 实数一.选择题(共20小题)1.比较两个实数与的大小,下列正确的是()A.>B.<C.=D.不确定2.若a=﹣,b=﹣|﹣|,c=﹣,则a、b、c的大小关系为()A.a>b>c B.c>a>b C.b>a>c D.c>b>a3.若n<+1<n+1,则整数n为()A.2 B.3 C.4 D.54.估算7﹣的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间5.设边长为a的正方形的面积为5.下列关于a的三种说法:①a是无理数;②a可以用数轴上的一个点来表示;⑧0<a<2.其中,所有正确的序号是()A.①②B.①③C.②③D.①②③6.已知m,n是连续的两个整数,且,则mn的值为()A.6 B.12 C.20 D..307.下列说法正确的是()A.的平方根是3B.(﹣1)2010是最小的自然数C.两个无理数的和一定是无理数D.实数与数轴上的点一一对应8.有下列说法:(1)有理数和数轴上的点一一对应;(2)不带根号的数一定是有理数;(3)负数没有立方根;(4)是17的平方根.(5)两个无理数的和一定是无理数.其中正确的说法有()A.0个B.1个C.2个D.3个9.下列说法中,不正确的个数有()①实数与数轴上的点一一对应;②|a|一定是正数;③近似数8.96×104精确到百分位;④(﹣2)8没有平方根;⑤绝对值等于本身的数是正数;⑥带根号的一定是无理数;⑦在1和3之间的无理数有且只有,,,这4个,⑧2﹣的相反数是﹣2.A.4个B.5个C.6个D.7个10.下列各式计算正确的是()A.B.C.D.2+11.阅读理解:我们知道,引进了无理数后,有理数集就扩展到实数集:同样,如果引进“虚数”实数集就扩展到“复数集”现在我们定义:“虚数单位”,其运算规则是:i l=i,i2=﹣1,i3=﹣i,i4=1,i5=i,i6=﹣1,i7=﹣i,则i2019=()A.1 B.﹣1 C.i D.﹣i12.已知实数a=2+,则与实数a互为倒数的是()A.B.C.D.13.在下列实数,3.14159,,0,,,0.131131113…,中,无理数有()个.A.3 B.4 C.5 D.614.下列数据:﹣,021212121,,,|﹣2|,,﹣π,2003003003…(相邻两个3之间有2个0),60.12345..(小数部分由相继的正整数组成),属于无理数的个数为()A.6个B.5个C.3个D.4个15.在实数,3.1415926,0.123123123…,,,,0.1010010001…(相邻两个1中间一次多1个0)中,无理数有()A.2个B.3个C.4个D.5个16.一个数的立方根正好与本身相等,这个数是()A.0 B.0或1 C.0或±1 D.非负数17.下列说法正确的个数()(1)无理数就是开方不尽的数(2)无理数包括正无理数、零、负无理数(3)一个数的平方根等于它本身的是0和1(4)和互为相反数A.1个B.2个C.3个D.4个18.下列说法不正确的是()A.实数包括正实数、零、负实数B.正整数和负整数统称为整数C.无理数一定是无限小数D.2是4的平方根19.如图所示,直径为单位1的圆从原点沿着数轴无滑动的逆时针滚动一周到达A点,则A 点表示的数是()A.﹣2π﹣1 B.﹣1+πC.﹣1+2πD.﹣π20.如图,以数轴的单位长度线段为边作一个正方形,以表示数2的点为圆心,正方形对角线长为半径画弧,交数轴于点A,则点A表示的数是()A.﹣B.2﹣C.D.二.填空题(共9小题)21.写出一个满足<a<的整数a的值为.22.已知的小数部分是a,的整数部分是b,则a+b=.23.的小数部分是.24.=.25.化简﹣﹣得.26.计算﹣﹣||﹣=27.若和互为相反数,求的为.28.如图,正方形的边长是1个单位长度,则图中B点所表示的数是;若点C是数轴上一点,且点C到A点的距离与点C到原点的距离相等,则点C所表示的数是.29.已知数轴上A、B两点的距离是,点A在数轴上对应的数是2,那么点B在数轴上对应的数是.三.解答题(共1小题)30.计算:﹣.人教新版七年级下学期《6.3 实数》2020年同步练习卷参考答案与试题解析一.选择题(共20小题)1.比较两个实数与的大小,下列正确的是()A.>B.<C.=D.不确定【分析】先估算出的范围,再进行变形即可.【解答】解:∵2<<3,∴1<﹣1<2,∴<<1,即,故选:A.【点评】本题考查了实数的大小比较和估算无理数的大小,能估算出的范围是解此题的关键.2.若a=﹣,b=﹣|﹣|,c=﹣,则a、b、c的大小关系为()A.a>b>c B.c>a>b C.b>a>c D.c>b>a【分析】根据正数大于0,0大于负数,可得答案.【解答】解:∵,,∴,故选:D.【点评】本题考查了实数比较大小,正数大于0,0大于负数是解题关键.3.若n<+1<n+1,则整数n为()A.2 B.3 C.4 D.5【分析】先估算出的大小,再估算出+1的大小,从而得出整数n的值.【解答】解:∵2<<3,∴3<+1<4,∴整数n为3;故选:B.【点评】此题考查了估算无理数的大小,解题的关键是估算出的大小.4.估算7﹣的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间【分析】先估算出的范围,再估算出7﹣的范围即可.【解答】解:∵4<<5,∴7﹣的值在2和3之间;故选:A.【点评】此题主要考查了估计无理数,得出的取值范围是解题关键.5.设边长为a的正方形的面积为5.下列关于a的三种说法:①a是无理数;②a可以用数轴上的一个点来表示;⑧0<a<2.其中,所有正确的序号是()A.①②B.①③C.②③D.①②③【分析】利用正方形的面积公式得到a=,则可对①②进行判断,利用4<5<9可对③进行判断.【解答】解:∵边长为a的正方形的面积为5,∴a=,所以a为无理数,a可以用数轴上的一个点来表示;2<a<3.故选:A.【点评】本题考查了估算无理数的大小:用有理数逼近无理数,求无理数的近似值.6.已知m,n是连续的两个整数,且,则mn的值为()A.6 B.12 C.20 D..30【分析】先估算出的取值范围,得出m、n的值,进而可得出结论.【解答】解:∵9<10<16,∴3<<4,∴m=4,n=5,∴mn=4×5=20;故选:C.【点评】本题考查的是估算无理数的大小,先根据题意算出的取值范围是解答此题的关键.7.下列说法正确的是()A.的平方根是3B.(﹣1)2010是最小的自然数C.两个无理数的和一定是无理数D.实数与数轴上的点一一对应【分析】利用算术平方根定义,乘方的意义,以及实数、无理数的性质判断即可.【解答】解:A、=9,9的平方根为±3,不符合题意;B、(﹣1)2010=1,不是最小的自然数,不符合题意;C、两个无理数的和不一定是无理数,例如﹣+=0,不符合题意;D、实数与数轴上的点一一对应,符合题意,故选:D.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.8.有下列说法:(1)有理数和数轴上的点一一对应;(2)不带根号的数一定是有理数;(3)负数没有立方根;(4)是17的平方根.(5)两个无理数的和一定是无理数.其中正确的说法有()A.0个B.1个C.2个D.3个【分析】利用实数的性质及平方根定义判断即可.【解答】解:(1)实数和数轴上的点一一对应,不符合题意;(2)不带根号的数不一定是有理数,不符合题意;(3)负数有立方根,不符合题意;(4)﹣是17的平方根,符合题意;(5)两个无理数的和不一定是无理数,不符合题意,则正确的说法有1个,故选:B.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.9.下列说法中,不正确的个数有()①实数与数轴上的点一一对应;②|a|一定是正数;③近似数8.96×104精确到百分位;④(﹣2)8没有平方根;⑤绝对值等于本身的数是正数;⑥带根号的一定是无理数;⑦在1和3之间的无理数有且只有,,,这4个,⑧2﹣的相反数是﹣2.A.4个B.5个C.6个D.7个【分析】直接利用实数的性质结合无理数的定义以及相反数的定义分别分析得出答案.【解答】解:①实数与数轴上的点一一对应,正确,故此选项不合题意;②|a|一定是正数或0,错误,故此选项符合题意;③近似数8.96×104精确到百位,错误,故此选项符合题意;④(﹣2)8有平方根,错误,故此选项符合题意;⑤绝对值等于本身的数是正数或0,错误,故此选项符合题意;⑥带根号的一定是无理数,错误,例如,故此选项符合题意;⑦在1和3之间的无理数有,,,,1.4…等无数个,错误,故此选项符合题意,⑧2﹣的相反数是﹣2,正确,故此选项不合题意.故选:C.【点评】此题主要考查了实数的性质、无理数的定义以及相反数的定义,正确把握相关定义是解题关键.10.下列各式计算正确的是()A.B.C.D.2+【分析】根据同类二次根式的概念与合并法则及二次根式的性质和化简逐一计算可得.【解答】解:A.=2≠﹣2,此选项错误;B.与不能合并,即,此选项错误;C.=2,此选项正确;D.2与2不是同类二次根式,不能合并,此选项错误;故选:C.【点评】本题主要考查二次根式的化简和加减运算,解题的关键是掌握二次根式的运算性质和运算法则.11.阅读理解:我们知道,引进了无理数后,有理数集就扩展到实数集:同样,如果引进“虚数”实数集就扩展到“复数集”现在我们定义:“虚数单位”,其运算规则是:i l=i,i2=﹣1,i3=﹣i,i4=1,i5=i,i6=﹣1,i7=﹣i,则i2019=()A.1 B.﹣1 C.i D.﹣i【分析】根据已知得出变化规律进而求出答案.【解答】解:∵i l=i,i2=﹣1,i3=﹣i,i4=1,i5=i,i6=﹣1,i7=﹣i,∴每4个数据一循环,∵2019÷4=504…3,∴i2019=i3=﹣i.故选:D.【点评】此题主要考查了新定义,正确理解题意是解题关键.12.已知实数a=2+,则与实数a互为倒数的是()A.B.C.D.【分析】根据倒数的定义作答.【解答】解:实数a的倒数是==2﹣.故选:B.【点评】考查了实数的性质,乘积为1的两个实数互为倒数,即若a与b互为倒数,则ab =1;反之,若ab=1,则a与b互为倒数,这里应特别注意的是0没有倒数.13.在下列实数,3.14159,,0,,,0.131131113…,中,无理数有()个.A.3 B.4 C.5 D.6【分析】根据无理数的三种形式求解.【解答】解:=2,=8,无理数有:,,0.131131113…,,共4个.故选:B.【点评】本题考查了无理数.解题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.14.下列数据:﹣,021212121,,,|﹣2|,,﹣π,2003003003…(相邻两个3之间有2个0),60.12345..(小数部分由相继的正整数组成),属于无理数的个数为()A.6个B.5个C.3个D.4个【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:是分数,属于有理数;021212121,,是有限小数,属于有理数;|﹣2|=2,,是整数,属于有理数;2003003003…(相邻两个3之间有2个0)是循环小数,属于有理数.无理数有:,﹣π,60.12345..(小数部分由相继的正整数组成)共3个.故选:C.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.15.在实数,3.1415926,0.123123123…,,,,0.1010010001…(相邻两个1中间一次多1个0)中,无理数有()A.2个B.3个C.4个D.5个【分析】根据立方根、算术平方根进行计算,根据无理数的概念判断.【解答】解:,0.1010010001…(相邻两个1中间一次多1个0)是无理数,故选:A.【点评】本题考查的是无理数的概念、立方根、算术平方根,掌握无限不循环小数叫做无理数是解题的关键.16.一个数的立方根正好与本身相等,这个数是()A.0 B.0或1 C.0或±1 D.非负数【分析】根据立方根的定义即可求出答案.【解答】解:一个数的立方根正好与本身相等,这个数是0,±1,故选:C.【点评】本题考查立方根,解题的关键是熟练运用立方根的定义,本题属于基础题型.17.下列说法正确的个数()(1)无理数就是开方不尽的数(2)无理数包括正无理数、零、负无理数(3)一个数的平方根等于它本身的是0和1(4)和互为相反数A.1个B.2个C.3个D.4个【分析】根据无理数的定义,相反数的定义,平方根的定义,分析(1)(2)(3)(4),选出说法正确的即可.【解答】解:(1)无理数是无限不循环小数,π也属于无理数,即(1)不合题意, (2)零不属于无理数,即(2)不合题意,(3)1的平方根为±1,即(3)不合题意,(4)与相加得零,即(4)符合题意,说法正确的个数是1个,故选:A.【点评】本题考查了实数和相反数,正确掌握无理数的定义,相反数的定义,平方根的定义是解题的关键.18.下列说法不正确的是()A.实数包括正实数、零、负实数B.正整数和负整数统称为整数C.无理数一定是无限小数D.2是4的平方根【分析】根据实数的概念解答即可.【解答】解:A、实数包括正实数、零、负实数,正确;B、正整数、0和负整数统称为整数,错误;C、无理数一定是无限小数,正确;D、2是4的平方根,正确;故选:B.【点评】此题考查实数的问题,关键是根据实数的概念解答.19.如图所示,直径为单位1的圆从原点沿着数轴无滑动的逆时针滚动一周到达A点,则A 点表示的数是()A.﹣2π﹣1 B.﹣1+πC.﹣1+2πD.﹣π【分析】先求出圆的周长π,即得到OA的长,然后根据数轴上的点与实数一一对应的关系即可得到点A表示的数.【解答】解:∵直径为单位1的圆的周长=2π•=π,∴OA=π,∴点A表示的数为﹣π.故选:D.【点评】本题考查了实数与数轴:数轴上的点与实数一一对应.也考查了实数的估算.20.如图,以数轴的单位长度线段为边作一个正方形,以表示数2的点为圆心,正方形对角线长为半径画弧,交数轴于点A,则点A表示的数是()A.﹣B.2﹣C.D.【分析】由于数轴上两点间的距离应让较大的数减去较小的数,所以根据数轴上两点间距离的公式便可解答.【解答】解:由勾股定理得:正方形的对角线为,设点A表示的数为x,则2﹣x=,解得x=2﹣.故选B.【点评】此题主要考查了实数与数轴之间的对应关系,解题时求数轴上两点间的距离应让较大的数减去较小的数即可.二.填空题(共9小题)21.写出一个满足<a<的整数a的值为答案不唯一,如:2 .【分析】根据算术平方根的概念得到1<<2,4<<5,根据题意解答.【解答】解:∵1<<2,4<<5,a为整数,∴2≤a<5,∴满足<a<的整数a的值可以为2,故答案为:2(答案不唯一).【点评】本题考查的是估算无理数的大小,掌握算术平方根的概念是解题的关键.22.已知的小数部分是a,的整数部分是b,则a+b=.【分析】先分别求出和的范围,得到a、b的值,再代入a+b计算即可.【解答】解:∵2<<3,2<<3,∴a=﹣2,b=2,a+b=﹣2+2=,故答案为.【点评】本题考查了估算无理数的大小,利用夹值法估算出和的范围是解此题的关键.23.的小数部分是﹣4 .【分析】先估算出的范围,即可得出答案.【解答】解:∵4<<5,∴的小数部分是﹣4,故答案为:﹣4.【点评】本题考查了估算无理数的大小,能估算出的范围是解此题的关键.24.=﹣4 .【分析】直接利用二次根式以及绝对值的性质分别化简得出答案.【解答】解:原式=﹣3﹣﹣﹣1+=﹣4.故答案为:﹣4.【点评】此题主要考查了实数运算,正确化简各数是解题关键.25.化简﹣﹣得8 .【分析】直接利用立方根的性质以及二次根式的性质分别化简得出答案.【解答】解:原式=10﹣﹣0.5=8.故答案为:8.【点评】此题主要考查了实数运算,正确化简各数是解题关键.26.计算﹣﹣||﹣=﹣+【分析】直接利用二次根式的性质以及立方根的性质、绝对值的性质分别化简得出答案.【解答】解:原式=3﹣3﹣(2﹣)﹣=3﹣3﹣2+﹣=﹣+故答案为:﹣ +.【点评】此题主要考查了实数运算,正确化简各数是解题关键.27.若和互为相反数,求的为.【分析】由立方根的性质可知,两个立方根互为相反数则被开方数互为相反数.【解答】解:∵和互为相反数,∴2a与b互为相反数,∴2a=﹣b,∴=﹣,故答案为﹣.【点评】本题考查立方根的性质和实数的性质;能够将立方根互为相反数转化为被开方数互为相反数是解题的关键.28.如图,正方形的边长是1个单位长度,则图中B点所表示的数是;若点C是数轴上一点,且点C到A点的距离与点C到原点的距离相等,则点C所表示的数是.【分析】根据勾股定理求出正方形的对角线的长,再根据旋转的性质求出A点的数,进而得出B点所表示的数;根据中点的定义可得点C所表示的数.【解答】解:对角线的长:,根据旋转前后线段的长分别相等,则A点表示的数=对角线的长=,B点所表示的数是,∵点C到A点的距离与点C到原点的距离相等,∴,即点C所表示的数是.故答案为:;.【点评】本题考查了实数与数轴,勾股定理和旋转的性质.旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改,要求学生了解常见的数学思想、方法.29.已知数轴上A、B两点的距离是,点A在数轴上对应的数是2,那么点B在数轴上对应的数是.【分析】根据数轴求出点A表示的数,再分别分两种情况讨论求解点B所对应的数即可.【解答】解:∵数轴上A、B两点的距离是,点A在数轴上对应的数是2,∴点B在数轴上对应的数是.故答案为:【点评】本题考查了数轴,主要利用了数轴上数的表示,难点在于分情况讨论.三.解答题(共1小题)30.计算:﹣.【分析】本题涉及立方根、二次根式化简2个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:﹣=2﹣=1.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握立方根、二次根式等考点的运算.。
人教版数学七年下册第六章6.3 实数 精选课时练习(含答案)-5
1 2
(1
1 ); 3
第
2
个等式:
a2
1 35
1 2
(1 3
1 ); 5
第
3
个等式:
a3
1 57
1 2
( 1 5
1 ); 7
第
4
个等式: a 4
1 79
1 2
( 1 7
1 ); 9
…
请解答下列问题:
(1)按以上规律列出第 5 个等式:a5= = ;
(2)用含有 n 的代数式表示第 n 个等式:an= =
35.写出一个比 2 大比 3 小的无理数(用含根号的式子表示)_____. 36.对于实数 a,b,定义运算“※”如下:a※b=a2﹣ab,例如,5※3=52﹣5×3=10.若(x+1) ※(x﹣2)=6,则 x 的值为_____. 37.如图所示是计算机某计算程序,若开始输入 x=3,则最后输出的结果是_____.
则 3※5 的值为______.
31.已知 x,y 为两个连续的整数,且 x< 20 <y,则 5x+y 的平方根为_____.
22
32.实数 ,
7
3 , 7 ,
36 中,无理数有_____________________;
33.比较大小: 5 1 _________ 1 (填“>”或“<”)
2
2
34.若 6 13 的整数部分为 x ,小数部分为 y ,则 (2x 13) y 的值是___.
2 中,最小的实数是(
).
A. 2
B.-1
C.0
1
D.
3
5.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是
人教版初中数学七年级下册第六章《6.3实数》同步练习(含答案)
《6.3实数》同步练习题一、选择题(每小题只有一个正确答案)1.√3的相反数是( )A. √3B. -√3C. 3D. -32.在﹣1.414, ,π,2 3.212212221…,3.14这些数中,无理数的个数为( )A. 5B. 2C. 3D. 4 3.若a)1,则a))a)1a 从大到小排列正确的是( )A. a))a)1aB. a)1a ))aC. 1a ))a)aD. 1a ))a)a)4.在实数范围内,下列判断正确的是 ) )A. 若|a |=|b |,则a =bB. 若|a |=(√b)2,则a =bC. 若a〉b,则a 2〉b 2D. 若√a 3=√b 3,则a =b5.下列4个无理数中,其大小在5和6之间的是( )A. √105B. 2√10−√5C. √10×√5D. √10+√56.若“)”是一种数学运算符号,并且1)=1)2)=2×1=2)3)=3×2×1=6)4)=4×3×2×1)…,则50!48! 的值为( )A. 5048B. 49)C. 2450D. 2) 7.已知a)b 分别是6)√13的整数部分和小数部分)那么2a)b 的值是( )A. 3)√13B. 4)√13C. √13D. 2)√13二、填空题8.满足不等式x 的整数x 共有_______个.9.比较下列实数的大小(填上>、<或=)._____12;③______. 10.10.实数a)b 在数轴上的位置如图所示,则化简|a+b|+√(b −a)2=___________.11.若a,b 互为相反数,c,d 互为倒数,则√a +b +√cd 3=____. 12.|1+√3|+|1−√3|=_________.三、解答题13.把下列各数填入相应的括号内-π,13,3.1, 49,0.8080080008...(相邻两个8之间0的个数逐次增加1),14 -52,,整数集合{ } 负分数集合{ …} 正数集合{ …} 负数集合{ …} 有理数集合{ …} 无理数集合{ …}14.计算:(﹣1)2018﹣(13)﹣1+2×)0.15.已知a ,b ,c 在数轴上对应点的位置如图所示,化简|a |-|a+b |+√(c −a )2+|b -c |.16.计算(1)4√3−2(1−√3)+√(−2)2.(2)|2−√6|+|1−√2|−(3+√6).参考答案1.B2.D3.B4.D5.D6.C7.C8.69. ) ) )10.-2a11.112.2√313.解析:整数集合{,1- … } 负分数集合{ 52- …} 正数集合{ 13,3.1, 49 ,0.8080080008…, 14, ,,, 1-…} 负数集合{ π- , 52- …} 有理数集合{ 13, 3.1, 49, 14, , 52-1- …} 无理数集合{ π- ,0.8080080008…,, …}14.解析:原式=1﹣3+2+.15.2c-a解:|a |-|a+b |+√(c −a )2+|b -c |=-a-[-(a+b)]+(c-a)+(c-b)=-a+a+b+c-a+c-b=2c-a.16.(1)6√3;(2)√2−6解析:(1)4√3−2(1−√3)+√(−2)2=4√3−2+2√3+2=6√3.(2)|2−√6|+|1−√2|−(3+√6)=√6−2+√2−1−3−√6=√2−6.。
人教版七年级下册数学6.3 实数 课后练习题含答案
答卷时应注意事项
1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;
3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;
4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;
5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;
6、卷面要清洁,字迹要清工整,非常重要;
7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2课时实数的运算
要点感知 1 实数a的相反数是__________;一个正实数的绝对值是它__________;一个负实数的绝对值是它的__________;0的绝对值是__________.即:|a|=
预习练习1-1 (2013·绵阳)的相反数是( )
A. B. C.- D.-
1-2 (2013·铁岭)-的绝对值是( )
A. B.- C. D.-
要点感知2 正实数__________0,负实数__________0.两个负实数,绝对值大的实数__________.
预习练习2-1 在实数0,-,,-2中,最小的是( )
A.-2
B.-
C.0
D.
要点感知 3 实数之间不仅可以进行加、减、乘、除(除数不为0)、乘方运算,而且__________可以进行开平方运算,__________可以进行开立方运算.
预习练习3-1 计算+(-)的结果是( )
A.4
B.0
C.8
D.12
知识点1 实数的性质
1.(2013·北京)-的倒数是( )
A. B. C.- D.-
2.无理数-的绝对值是( )
A.-
B.
C.
D.-
3.下列各组数中互为相反数的一组是( )
A.-|-2|与
B.-4与-
C.-与||
D.-与
知识点2 实数的大小比较
4.(2013·柳州)在-3,0,4,这四个数中,最大的数是( )
A.-3
B.0
C.4
D.
5.如图,在数轴上点A,B对应的实数分别为a,b,则有( )
A.a+b>0
B.a-b>0
C.ab>0
D.>0
6.若=-a,则实数a在数轴上的对应点一定在( )
A.原点左侧
B.原点右侧
C.原点或原点左侧
D.原点或原点右侧
7.比较大小:(1)__________;(2)-5__________-;(3)3__________2(填“>”或“<”). 知识点3 实数的运算
8.(2012·玉林)计算:3-=( )
A.3
B.
C.2
D.4
9.(2013·河南)计算:|-3|-=__________.
10.-的相反数是__________,绝对值是__________.
11.计算:
(1)(2+)+|-2|; (2)+-; (3)-|-|+2+3.
12.计算:
(1)π-+(精确到0.01);(2)|-|+0.9(保留两位小数).
13.-的相反数是( )
A.3
B.-3
C.
D.-
14.若|a|=a,则实数a在数轴上的对应点一定在( )
A.原点左侧
B.原点右侧
C.原点或原点左侧
D.原点或原点右侧
15.比较2,,的大小,正确的是( )
A.2<<
B.2<<
C.<2<
D.<<2
16.(2013·连云港)如图,数轴上的点A,B分别对应实数a,b,下列结论正确的是( )
A.a>b
B.|a|>|b|
C.-a<b
D.a+b<0
17.下列等式一定成立的是( )
A.-=
B.|1-|=-1
C.=±3
D.-=9
18.如果0<x<1,那么,,x2中,最大的数是( )
A.x
B.
C.
D.x2
19.点A在数轴上和原点相距3个单位,点B在数轴上和原点相距个单位,则A,B两点之间的距离是__________.
20.若(x1,y1)※(x2,y2)=x1x2+y1y2,则(,-)※(-,)=__________.
21.计算:
(1)2+3-5-3;(2)|-2|+|-1|.
22.某居民生活小区需要建一个大型的球形储水罐,需储水13.5立方米,那么这个球罐的半径r为多少米?(球的体积V=πr3,π取3.14,结果精确到0.1米)
23.如图所示,
A 0 1 4 9 16 25 36
B -1 0 1 2 3 4 5
若小红输入的数为49表示输出结果吗?
24.我们知道:是一个无理数,它是一个无限不循环小数,且1<<2,我们把1叫做的整数部分,-1
叫做的小数部分.
利用上面的知识,你能确定下列无理数的整数部分和小数部分吗?
(1);(2).
挑战自我
25.阅读下列材料:如果一个数的n(n是大于1的整数)次方等于a,这个数就叫做a的n次方根,即x n=a,则x叫做a的n次方根.如:24=16,(-2)4=16,则2,-2是16的4次方根,或者说16的4次方根是2和-2;再如(-2)5=-32,则-2叫做-32的5次方根,或者说-32的5次方根是-2.
回答问题:
(1)64的6次方根是__________,-243的5次方根是__________,0的10次方根是__________;
(2)归纳一个数的n次方根的情况.
参考答案
课前预习
要点感知1 -a 本身相反数0 a 0 -a
预习练习1-1 C
1-2 A
要点感知2 大于小于反而小
预习练习2-1 A
要点感知3 正数以及0 任意一个实数
预习练习3-1 B
当堂训练
1.D
2.B
3.C
4.C
5.A
6.C
7.(1)<(2)>(3)>
8.C 9.1 10.--
11.(1)原式=2++(2-)=4.
(2)原式=2+0-=.
(3)原式=-+5=5.
12.(1)π-+≈3.142-1.414+1.732≈3.46;
(2)原式≈2.236-1.414+0.9≈1.72.
课后作业
13.C 14.D 15.C 16.C 17.B 18.B 19.3+或3-20.-2
21.(1)原式=(2-5)+(3-3)=-3;
(2)原式=2-+-1=1.
22.把V=13.5,π=3.14代入V=πr3,得
13.5=×3.14r3,
r≈1.5(米).
所以球罐的半径r约为1.5米.
23.由观察易得输出的结果应为-1=6;
若小红输入的数字为a,则输出结果为-1(a≥0).
24.(1)因为3<<4,所以的整数部分是3,小数部分是-3;
(2)因为9<<10,所以的整数部分是9,小数部分是-9.
25.(1)±2 -3 0
(2)当n为偶数时,一个正数的n次方根有两个,它们互为相反数;当n为奇数时,一个数的n次方根只有一个.负数没有偶次方根.0的n次方根是0.。