高中不等式的解法全集

合集下载

人教版高中数学必修课件一元二次不等式及其解法

人教版高中数学必修课件一元二次不等式及其解法

人 教 版 高 中 数学必 修5课件 -3.2一 元二次 不等式 及其解 法(共 17张PP T)
总结出: 解一元二次不等式
ax2+bx+c>0、ax2+bx+c<0 的步骤是:
(1)化成标准形式 ax2+bx+c>0 (a>0)
ax2+bx+c<0 (a>0)
(2) 写出ax2+bx+c=0判定△的符号,
当x取 0 < x <5 时,y<0?
(3).由图象写出:
不等式x2 -5x>0 的 解集为 ﹛x|x<0或x>5﹜ 。
不等式x2 -5x<0 的 解集为 ﹛x| 0 <x <5﹜ 。
人 教 版 高 中 数学必 修5课件 -3.2一 元二次 不等式 及其解 法(共 17张PP T)
一元二次不等式及其解法
=(2x-1)2≥0
(2)解不等式 - x2 + 2x – 3 >0
解:整理,得 x2 - 2x + 3 < 0
因为△= 4 - 12 = - 8 < 0
方程 2 x2 - 3x – 2 = 0无实数根
所以原不等式的解集为ф
人 教 版 高 中 数学必 修5课件 -3.2一 元二次 不等式 及其解 法(共 17张PP T)
(3)求出方程 的实根;画出函数图像
(4)(结合函数图象)写出不等式的解集.
简记为:一化—二判—三求—四写
人 教 版 高 中 数学必 修5课件 -3.2一 元二次 不等式 及其解 法(共 17张PP T)
人 教 版 高 中 数学必 修5课件 -3.2一 元二次 不等式 及其解 法(共 17张PP T)

2025届高中数学一轮复习课件《一元二次不等式的解法》ppt

2025届高中数学一轮复习课件《一元二次不等式的解法》ppt

高考一轮总复习•数学
第27页
对点练 3 解关于 x 的不等式 x2-ax+1≤0.
解:由题意知,Δ=a2-4.
①当 a2-4>0,即 a>2 或 a<-2 时,方程 x2-ax+1=0 的两根为 x=a± a22-4,∴
原不等式的解集为x a-
2a2-4≤x≤a+
a2-4 2
.
②若 Δ=a2-4=0,则 a=±2.
高考一轮总复习•数学
第16页
解:(1)原不等式可化为 3x2+2x-8≤0,即(3x-4)(x+2)≤0,解得-2≤x≤43,
所以原不等式的解集为x-2≤x≤43
.
(2)原不等式等价于xx22--xx--22>≤04, ⇔xx22--xx--26>≤00, ⇔xx--23xx++12>≤00, ⇔
逆向思维,-1,2 是方程 ax2+bx+c=0 的两根.
b(x-1)+c>2ax 的解集是( )
A.{x|0<x<3}
B.{x|x<0 或 x>3}
C.{x|1<x<3}
D.{x|-1<x<3}
高考一轮总复习•数学
第30页
解析:由 a(x2+1)+b(x-1)+c>2ax,得 ax2+(b-2a)x+(a+c-b)>0. ①
高考一轮总复习•数学
第1页
第二章 不等式
第3讲 二次函数与一元二次不等式 第2课时 一元二次不等式的解法
高考一轮总复习•数学
第2页
复习要点 1.通过函数图象了解一元二次不等式与相应的二次函数、一元二次方程的 联系.2.会解一元二次不等式和分式不等式.3.了解较简单的不等式恒成立问题的解法.
高考一轮总复习•数学
当 a>1 时,不等式的解集为x1a<x<1

常见不等式的解法--高考数学【解析版】

常见不等式的解法--高考数学【解析版】

专题04 常见不等式的解法所谓常见不等式是指,一元二次不等式、含绝对值不等式、指数对数不等式、函数不等式等,高考中独立考查的同时,更多地是在对其他知识的考查中,作为工具进行考查.正是解不等式的这一基础地位,要求务必做到求解快捷、准确.【重点知识回眸】(一)常见不等式的代数解法1、一元二次不等式:()200ax bx c a ++>≠可考虑将左边视为一个二次函数()2f x ax bx c =++,作出图象,再找出x 轴上方的部分即可——关键点:图象与x 轴的交点2、高次不等式(1)可考虑采用“数轴穿根法”,分为以下步骤:(令关于x 的表达式为()f x ,不等式为()0f x >)①求出()0f x =的根12,,x x ② 在数轴上依次标出根③ 从数轴的右上方开始,从右向左画.如同穿针引线穿过每一个根④ 观察图象,()0f x >⇒ 寻找x 轴上方的部分()0f x <⇒ 寻找x 轴下方的部分(2)高次不等式中的偶次项,由于其非负性在解不等式过程中可以忽略,但是要验证偶次项为零时是否符合不等式3、分式不等式(1)将分母含有x 的表达式称为分式,即为()()f xg x 的形式 (2)分式若成立,则必须满足分母不为零,即()0g x ≠(3)对形如()()0f x g x >的不等式,可根据符号特征得到只需()(),f x g x 同号即可,所以将分式不等式转化为()()()00f xg x g x ⋅>⎧⎪⎨≠⎪⎩ (化商为积),进而转化为整式不等式求解4、含有绝对值的不等式(1)绝对值的属性:非负性(2)式子中含有绝对值,通常的处理方法有两种:一是通过对绝对值内部符号进行分类讨论(常用);二是通过平方(3)若不等式满足以下特点,可直接利用公式进行变形求解:① ()()f x g x >的解集与()()f x g x >或()()f x g x <-的解集相同② ()()f x g x <的解集与()()()g x f x g x -<<的解集相同(4)对于其它含绝对值的问题,则要具体问题具体分析,通常可用的手段就是先利用分类讨论去掉绝对值,将其转化为整式不等式,再做处理5、指数、对数不等式的解法:(1)利用函数的单调性:1a >时,x y > log log (,0)x ya a a a x y x y ⇔>⇔>>01a <<时,x y > log log (,0)x y a a a a x y x y ⇔<⇔<>(2)对于对数的两点补充:① 对数能够成立,要求真数大于0,所以在解对数不等式时首先要考虑真数大于0这个条件,如当1a >时,()()()()()()0log log 0a a f x f x g x g x f x g x >⎧⎪>⇒>⎨⎪>⎩② 如何将常数转化为某个底的对数.可活用“1”:因为1log a a =,可作为转换的桥梁6、利用换元法解不等式利用换元法解不等式的步骤通常为:①选择合适的对象进行换元:观察不等式中是否有相同的结构,则可将相同的结构视为一个整体 ②求出新元的初始范围,并将原不等式转化为新变量的不等式③解出新元的范围④在根据新元的范围解x 的范围(二)构造函数解不等式1、函数单调性的作用:()f x 在[],a b 单调递增,则[]()()121212,,,x x a b x x f x f x ∀∈<⇔<(在单调区间内,单调性是自变量大小关系与函数值大小关系的桥梁)2、假设()f x 在[],a b 上连续且单调递增,()()00,,0x a b f x ∃∈=,则()0,x a x ∈时,()0f x <;()0,x x b ∈时,()0f x > (单调性与零点配合可确定零点左右点的函数值的符号)3、导数运算法则:(1)()()()()()()()'''f x g x fx g x f x g x =+ (2)()()()()()()()'''2f x f x g x f x g x g x g x ⎛⎫-= ⎪⎝⎭4、构造函数解不等式的技巧:(1)此类问题往往条件比较零散,不易寻找入手点.所以处理这类问题要将条件与结论结合着分析.在草稿纸上列出条件能够提供什么,也列出要得出结论需要什么.两者对接通常可以确定入手点(2)在构造函数时要根据条件的特点进行猜想,例如出现轮流求导便猜有可能是具备乘除关系的函数.在构造时多进行试验与项的调整(3)此类问题处理的核心要素是单调性与零点,对称性与图象只是辅助手段.所以如果能够确定构造函数的单调性,猜出函数的零点.那么问题便易于解决了.(三)利用函数性质与图象解不等式:1、轴对称与单调性:此类问题的实质就是自变量与轴距离大小与其函数值大小的等价关系.通常可作草图帮助观察.例如:()f x 的对称轴为1x =,且在()1,+∞但增.则可以作出草图(不比关心单调增的情况是否符合()f x ,不会影响结论),得到:距离1x =越近,点的函数值越小.从而得到函数值与自变量的等价关系2、图象与不等式:如果所解不等式不便于用传统方法解决,通常的处理手段有两种,一类是如前文所说可构造一个函数,利用单调性与零点解不等式;另一类就是将不等式变形为两个函数的大小关系如()()f x g x <,其中()(),f x g x 的图象均可作出.再由()()f x g x <可知()f x 的图象在()g x 图象的下方.按图象找到符合条件的范围即可.【典型考题解析】热点一 简单不等式的解法【典例1】(2022·全国·高考真题)已知集合{}{}1,1,2,4,11A B x x =-=-≤,则A B =( )A .{1,2}-B .{1,2}C .{1,4}D .{1,4}-【答案】B【解析】【分析】求出集合B 后可求A B .【详解】{}|02B x x =≤≤,故{}1,2A B =,故选:B.【典例2】(2020·全国·高考真题(文))已知集合2{|340},{4,1,3,5}A x x x B =--<=-,则A B =( )A .{4,1}-B .{1,5}C .{3,5}D .{1,3}【答案】D【解析】【分析】首先解一元二次不等式求得集合A ,之后利用交集中元素的特征求得A B ,得到结果.【详解】由2340x x --<解得14x -<<,所以{}|14A x x =-<<,又因为{}4,1,3,5B =-,所以{}1,3A B =,故选:D.【典例3】(2017·上海·高考真题)不等式11x x ->的解集为________【答案】(,0)-∞【解析】【详解】由题意,不等式11x x ->,得111100x x x->⇒<⇒<,所以不等式的解集为(,0)-∞. 【典例4】(2020·江苏·高考真题)设x ∈R ,解不等式2|1|||4x x ++<. 【答案】2(2,)3- 【解析】【分析】根据绝对值定义化为三个方程组,解得结果【详解】1224x x x <-⎧⎨---<⎩或10224x x x -≤≤⎧⎨+-<⎩或0224x x x >⎧⎨++<⎩21x ∴-<<-或10x -≤≤或203x << 所以解集为:2(2,)3- 【典例5】解下列高次不等式:(1)()()()1230x x x --->(2)()()()21230x x x +--< 【答案】(1)()()1,23,+∞;(2)()()1,22,3-. 【解析】(1)解:()()()()123f x x x x =---则()0f x =的根1231,2,3x x x ===作图可得:12x << 或3x >∴不等式的解集为()()1,23,+∞(2)思路:可知()220x -≥,所以只要2x ≠,则()22x -恒正,所以考虑先将恒正恒负的因式去掉,只需解()()13020x x x +-<⎧⎨-≠⎩ ,可得13x -<<且2x ≠∴不等式的解集为()()1,22,3-【名师点睛】在解高次不等式时,穿根前可考虑先将恒正恒负的项去掉,在进行穿根即可.穿根法的原理:它的实质是利用图象帮助判断每个因式符号,进而决定整个式子的符号,图象中的数轴分为上下两个部分,上面为()0f x > 的部分,下方为()0f x <的部分.以例2(1)为例,当3x >时,每一个因式均大于0,从而整个()f x 的符号为正,即在数轴的上方(这也是为什么不管不等号方向如何,穿根时一定要从数轴右上方开始的原因,因为此时()f x 的符号一定为正),当经过3x = 时,()3x -由正变负,而其余的式子符号未变,所以()f x 的符号发生一次改变,在图象上的体现就是穿根下来,而后经过下一个根时,()f x 的符号再次发生改变,曲线也就跑到x 轴上方来了.所以图象的“穿根引线”的实质是()f x 在经历每一个根时,式子符号的交替变化.【规律方法】1.含绝对值的不等式要注意观察式子特点,选择更简便的方法2.零点分段法的好处在于,一段范围可将所有的绝对值一次性去掉,缺点在于需要进行分类讨论,对学生书写的规范和分类讨论习惯提出了要求,以及如何整理结果,这些细节部分均要做好,才能保证答案的正确性.3.引入函数,通过画出分段函数的图象,观察可得不等式的解.热点二 含参数不等式问题【典例6】(2022·浙江·高考真题)已知,a b ∈R ,若对任意,|||4||25|0x a x b x x ∈-+---≥R ,则( )A .1,3a b ≤≥B .1,3a b ≤≤C .1,3a b ≥≥D .1,3a b ≥≤ 【答案】D【解析】【分析】将问题转换为|||25||4|a x b x x -≥---,再结合画图求解.【详解】由题意有:对任意的x ∈R ,有|||25||4|a x b x x -≥---恒成立.设()||f x a x b =-,()51,2525439,421,4x x g x x x x x x x ⎧-≤⎪⎪⎪=---=-<<⎨⎪-≥⎪⎪⎩,即()f x 的图像恒在()g x 的上方(可重合),如下图所示:由图可知,3a ≥,13b ≤≤,或13a ≤<,3143b a ≤≤-≤,故选:D .【典例7】(2020·浙江·高考真题)已知a ,b ∈R 且ab ≠0,对于任意x ≥0 均有(x –a )(x–b )(x–2a–b )≥0,则( )A .a <0B .a >0C .b <0D .b >0【答案】C【解析】【分析】对a 分0a >与0a <两种情况讨论,结合三次函数的性质分析即可得到答案.【详解】因为0ab ≠,所以0a ≠且0b ≠,设()()()(2)f x x a x b x a b =----,则()f x 的零点为123,,2x a x b x a b ===+当0a >时,则23x x <,1>0x ,要使()0f x ≥,必有2a b a +=,且0b <,即=-b a ,且0b <,所以0b <;当0a <时,则23x x >,10x <,要使()0f x ≥,必有0b <.综上一定有0b <.故选:C【典例8】(2023·全国·高三专题练习)解关于x 的不等式()222R ax x ax a ≥-∈-.【答案】详见解析.【解析】【分析】分类讨论a ,求不等式的解集即可.【详解】原不等式变形为()2220ax a x +--≥.①当0a =时,1x ≤-;②当0a ≠时,不等式即为()()210ax x -+≥,当0a >时,x 2a≥或1x ≤-; 由于()221a a a+--=,于是 当20a -<<时,21x a≤≤-; 当2a =-时,1x =-;当2a <-时,21x a-≤≤. 综上,当0a =时,不等式的解集为(,1]-∞-;当0a >时,不等式的解集为2(,1][,)a-∞-⋃+∞; 当20a -<<时,不等式的解集为2,1a ⎡⎤-⎢⎥⎣⎦;当2a =-时,不等式的解集为{}1-;当2a <-时,不等式的解集为21,a ⎡⎤-⎢⎥⎣⎦. 【总结提升】关于含参数不等式,其基本处理方法就是“分类讨论”,讨论过程中应注意“不重不漏”.关于含参数的一元二次不等式问题:(1)当判别式Δ能写成一个式子的平方的形式时,可先求方程的两根,再讨论两根的大小,从而写出解集.(2)三个方面讨论:二次项系数的讨论,根有无的讨论,根大小的讨论.(3)含参数分类讨论问题最后要写综述.热点三 函数不等式问题【典例9】(2018·全国·高考真题(文))设函数()2010x x f x x -⎧≤=⎨>⎩,,,则满足()()12f x f x +<的x 的取值范围是( )A .(]1-∞-,B .()0+∞,C .()10-,D .()0-∞,【答案】D【解析】【分析】 分析:首先根据题中所给的函数解析式,将函数图像画出来,从图中可以发现若有()()12f x f x +<成立,一定会有2021x x x <⎧⎨<+⎩,从而求得结果. 详解:将函数()f x 的图像画出来,观察图像可知会有2021x x x <⎧⎨<+⎩,解得0x <,所以满足()()12f x f x +<的x 的取值范围是()0-∞,,故选D .【典例10】(2020·北京·高考真题)已知函数()21x f x x =--,则不等式()0f x >的解集是( ). A .(1,1)-B .(,1)(1,)-∞-+∞C .(0,1)D .(,0)(1,)-∞⋃+∞ 【答案】D【解析】【分析】作出函数2x y =和1y x =+的图象,观察图象可得结果.【详解】因为()21x f x x =--,所以()0f x >等价于21x x >+,在同一直角坐标系中作出2x y =和1y x =+的图象如图:两函数图象的交点坐标为(0,1),(1,2),不等式21x x >+的解为0x <或1x >.所以不等式()0f x >的解集为:()(),01,-∞⋃+∞. 故选:D.【典例11】(天津·高考真题(理))设函数f (x )=()212log ,0log ,0x xx x >⎧⎪⎨-<⎪⎩若()()f a f a >-,则实数a 的取值范围是( ) A .()()1,00,1-B .()(),11,-∞-+∞C .()()1,01,-⋃+∞D .()(),10,1-∞-⋃【答案】C【解析】【分析】由于a 的范围不确定,故应分0a >和0a <两种情况求解.【详解】当0a >时,0a -<,由()()f a f a >-得212log log a a>,所以22log 0a >,可得:1a >,当0a <时,0a ->,由()()f a f a >-得()()122log log a a ->-,所以()22log 0a -<,即01a <-<,即10a -<<,综上可知:10a -<<或1a >.故选:C【典例12】(2020·海南·高考真题)若定义在R 的奇函数f (x )在(,0)-∞单调递减,且f (2)=0,则满足(10)xf x -≥的x 的取值范围是( )A .[)1,1][3,-+∞B .3,1][,[01]--C .[1,0][1,)-⋃+∞D .[1,0][1,3]-⋃【答案】D【解析】【分析】首先根据函数奇偶性与单调性,得到函数()f x 在相应区间上的符号,再根据两个数的乘积大于等于零,分类转化为对应自变量不等式,最后求并集得结果.【详解】因为定义在R 上的奇函数()f x 在(,0)-∞上单调递减,且(2)0f =,所以()f x 在(0,)+∞上也是单调递减,且(2)0f -=,(0)0f =,所以当(,2)(0,2)x ∈-∞-⋃时,()0f x >,当(2,0)(2,)x ∈-+∞时,()0f x <,所以由(10)xf x -≥可得: 0210x x <⎧⎨-≤-≤⎩或0012x x >⎧⎨≤-≤⎩或0x = 解得10x -≤≤或13x ≤≤,所以满足(10)xf x -≥的x 的取值范围是[1,0][1,3]-⋃,故选:D.【典例13】(2023·全国·高三专题练习)设函数()f x '是奇函数()f x (x ∈R )的导函数,f (﹣1)=0,当x >0时,()()0xf x f x '->,则使得f (x )>0成立的x 的取值范围是( )A .(﹣∞,﹣1)∪(﹣1,0)B .(0,1)∪(1,+∞)C .(﹣∞,﹣1)∪(0,1)D .(﹣1,0)∪(1,+∞)【答案】D【解析】【分析】构造函数()()f x g x x =,求导结合题意可得()()f x g x x =的单调性与奇偶性,结合()10g -=求解即可 【详解】由题意设()()f x g x x=,则()()()2xf x f x g x x '-'= ∵当x >0时,有()()0xf x f x '->,∴当x >0时,()0g x '>,∴函数()()f x g x x=在(0,+∞)上为增函数, ∵函数f (x )是奇函数,∴g (﹣x )=g (x ),∴函数g (x )为定义域上的偶函数,g (x )在(﹣∞,0)上递减,由f (﹣1)=0得,g (﹣1)=0,∵不等式f (x )>0⇔x •g (x )>0,∴()()01x g x g >⎧⎨>⎩或()()01x g x g <⎧⎨<-⎩, 即有x >1或﹣1<x <0,∴使得f (x )>0成立的x 的取值范围是:(﹣1,0)∪(1,+∞),故选:D .【总结提升】关于函数不等式问题,处理方法往往从以下几方面考虑:(1)利用函数的奇偶性、单调性.(2)借助于函数的图象(数形结合法).(3)涉及抽象函数、导数问题,利用构造辅助函数法,构造函数时往往从两方面着手:①根据导函数的“形状”变换不等式“形状”;②若是选择题,可根据选项的共性归纳构造恰当的函数.【精选精练】一、单选题1.(2020·全国·高考真题(文))已知集合2{|340},{4,1,3,5}A x x x B =--<=-,则A B =( )A .{4,1}-B .{1,5}C .{3,5}D .{1,3}【答案】D【解析】【分析】首先解一元二次不等式求得集合A ,之后利用交集中元素的特征求得A B ,得到结果.【详解】由2340x x --<解得14x -<<,所以{}|14A x x =-<<,又因为{}4,1,3,5B =-,所以{}1,3A B =,故选:D.2.(2021·湖南·高考真题)不等式|21|3x -<的解集是( )A .{}2x x <B .{}1x x >-C .{}12x x -<<D .{1x x <-或}2x >【答案】C【解析】【分析】根据绝对值的几何意义去绝对值即可求解.【详解】由|21|3x -<可得:3213x -<-<,解得:12x -<<, 所以原不等式的解集为:{}12x x -<<,故选:C.3.(2021·广东·潮阳一中明光学校高三阶段练习)设集合{}11A x x =-≤≤,{}2log 1B x x =<,则A B =( )A .{}11x x -<≤B .{}11x x -<<C .{}01x x <≤D .{}01x x <<【答案】C【解析】【分析】根据对数函数定义域以及对数函数不等式求解集合B ,再进行交集运算即可.【详解】 由题意得,{}{}2log 102B x x x x =<=<<,所以{}|01A B x x ⋂=<≤,故选:C.4.(2022·江苏·南京市第一中学高三开学考试)已知集合{}230A x x x =-<,{}|33x B x =≥,则A B =( ) A .10,2⎛⎫⎪⎝⎭ B .1,32⎡⎫⎪⎢⎣⎭ C .(2 D .()1,3【答案】B【解析】【分析】求出集合A 、B ,再由交集的定义求解即可【详解】 集合{}{}23003A x x x x x =-<=<<,{}1332x B x x x ⎧⎫==≥⎨⎬⎩⎭, 则132A B x x ⎧⎫⋂=≤<⎨⎬⎩⎭.故选:B.5.(天津·高考真题(理))设x ∈R ,则“21x -<”是“220x x +->”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【答案】A【解析】【分析】求绝对值不等式、一元二次不等式的解集,根据解集的包含关系即可判断充分、必要关系.【详解】 由21x -<,可得13x <<,即x ∈(1,3);由22(1)(2)0x x x x +-=-+>,可得2x <-或1x >,即x ∈(,2)(1,)-∞-+∞;∴(1,3)是(,2)(1,)-∞-+∞的真子集,故“21x -<”是“220x x +->”的充分而不必要条件.故选:A6.(2023·全国·高三专题练习)已知函数f (x )=x 2+ax +b (a ,b ∈R )的值域为[0,+∞),若关于x 的不等式f (x )<c 的解集为(m ,m +6),则实数c 的值为( )A .4B .3C .9D .94【答案】C【解析】【分析】根据函数的值域求出a 与b 的关系,然后根据不等式的解集可得()f x c =的两个根为,6m m +,最后利用根与系数的关系建立等式,解之即可.【详解】∵函数f (x )=x 2+ax +b (a ,b ∈R )的值域为[0,+∞),∴f (x )=x 2+ax +b =0只有一个根,即Δ=a 2﹣4b =0则b 24a =, 不等式f (x )<c 的解集为(m ,m +6),即为x 2+ax 24a +<c 解集为(m ,m +6), 则x 2+ax 24a +-c =0的两个根为m ,m +6 ∴|m +6﹣m |22444a a c c ⎛⎫=-- ⎪⎝⎭6 解得c =9故选:C .7.(2022·吉林·长春市第二实验中学高三阶段练习)已知函数()y f x =是奇函数,当0x >时,()22x f x =-,则不等式()0f x >的解集是( )A .()()1,00,1-B .()()1,01,-⋃+∞C .()(),10,1-∞-⋃D .()(),11,-∞-⋃+∞ 【答案】B【解析】【分析】根据函数为奇函数求出当0x <时,函数()f x 的函数解析式,再分0x <和0x >两种情况讨论,结合指数函数的单调性解不等式即可.【详解】解:因为函数()y f x =是奇函数,所以()()f x f x -=-,且()00f =当0x <时,则0x ->,则()()22x f x f x --=-=-,所以当0x <时,()22x f x -=-+,则()0220x x f x >⎧⎨=->⎩,解得1x >,()0220x x f x -<⎧⎨=-+>⎩,解得10x -<<,所以不等式()0f x >的解集是()()1,01,-⋃+∞.故选:B.8.(2023·全国·高三专题练习)已知函数33,0()e 1,0x x x f x x --+<⎧=⎨+≥⎩,则不等式()(31)<-f a f a 的解集为()A .10,2⎛⎫⎪⎝⎭ B .1,02⎛⎫- ⎪⎝⎭C .1,2⎛⎫-∞ ⎪⎝⎭ D .1,2⎛⎫-∞- ⎪⎝⎭【答案】C【解析】【分析】由函数解析式判断函数的单调性,根据单调性将函数不等式转化为自变量的不等式,解得即可;【详解】解:因为33,0()e 1,0x x x f x x --+<⎧=⎨+≥⎩,当0x <时()33f x x =-+函数单调递减,且()3033f x >-⨯+=,当0x ≥时()e 1x f x -=+函数单调递减,且()00e 123f =+=<,所以函数()f x 在(,)-∞+∞上是单调递减,所以不等式()(31)<-f a f a 等价于31a a >-,解得12a <. 即不等式的解集为1,2⎛⎫-∞ ⎪⎝⎭; 故选:C9.(2020·海南·高考真题)若定义在R 的奇函数f (x )在(,0)-∞单调递减,且f (2)=0,则满足(10)xf x -≥的x 的取值范围是( )A .[)1,1][3,-+∞B .3,1][,[01]--C .[1,0][1,)-⋃+∞D .[1,0][1,3]-⋃【答案】D【解析】【分析】首先根据函数奇偶性与单调性,得到函数()f x 在相应区间上的符号,再根据两个数的乘积大于等于零,分类转化为对应自变量不等式,最后求并集得结果.【详解】因为定义在R 上的奇函数()f x 在(,0)-∞上单调递减,且(2)0f =,所以()f x 在(0,)+∞上也是单调递减,且(2)0f -=,(0)0f =,所以当(,2)(0,2)x ∈-∞-⋃时,()0f x >,当(2,0)(2,)x ∈-+∞时,()0f x <,所以由(10)xf x -≥可得: 0210x x <⎧⎨-≤-≤⎩或0012x x >⎧⎨≤-≤⎩或0x = 解得10x -≤≤或13x ≤≤,所以满足(10)xf x -≥的x 的取值范围是[1,0][1,3]-⋃,故选:D.10.(2023·全国·高三专题练习)定义在(0)+∞,上的函数()f x 满足()()110,2ln 2xf x f '+=>,则不等式)(e 0x f x +> 的解集为( ) A .(02ln2),B .(0,ln2)C .(ln21),D .(ln2)+∞, 【答案】D【解析】【分析】构造新函数()()ln ,(0)g x f x x x =+>,利用导数说明其单调性,将)(e 0x f x +>变形为)>(e (2)x g g ,利用函数的单调性即可求解.【详解】令()()ln ,(0)g x f x x x =+> , 则()11()()xf x g x f x x x'+''=+=,由于()10xf x '+>, 故()0g x '>,故()g x 在(0)+∞,单调递增, 而1(2)(2)ln2ln ln 202g f =+=+= , 由)(e 0x f x +>,得)>(e (2)x g g ,∴e 2x > ,即ln2x > ,∴不等式)(e 0x f x +>的解集为(ln2)+∞,, 故选:D .二、填空题11.(2023·全国·高三专题练习)不等式组230,340.x x x ->⎧⎨-->⎩的解集为_________. 【答案】()4,+∞【解析】【分析】解一元二次不等式取交集即可.【详解】原不等式组化简为3034(4)(1)041x x x x x x x ->>⎧⎧⇒⇒>⎨⎨-+>><-⎩⎩或 故答案为:()4,+∞.12.(2019·浙江·高考真题)已知a R ∈,函数3()f x ax x =-,若存在t R ∈,使得2|(2)()|3f t f t +-≤,则实数a 的最大值是____. 【答案】max 43a =【解析】【分析】本题主要考查含参绝对值不等式、函数方程思想及数形结合思想,属于能力型考题.从研究()2(2)()23642f t f t a t t +-=++-入手,令2364[1,)m t t =++∈+∞,从而使问题加以转化,通过绘制函数图象,观察得解.【详解】使得()222(2)()2(2)(2)2234{}2]6f t f t a t t t t a t t +-=•[++++-=++-,使得令2364[1,)m t t =++∈+∞,则原不等式转化为存在11,|1|3m am ≥-≤, 由折线函数,如图只需11133a -≤-≤,即2433a ≤≤,即a 的最大值是43【点睛】对于函数不等式问题,需充分利用转化与化归思想、数形结合思想.13.(2023·全国·高三专题练习)若函数f (x )=ln x +e x -sin x ,则不等式f (x -1)≤f (1)的解集为________.【答案】(1,2]【解析】【分析】先利用导数判断函数的单调性,再利用其单调性解不等式.【详解】解:f (x )的定义域为(0,+∞),∴()1f x x'=+e x -cos x . ∵x >0,∴e x >1,∴()f x '>0,∴f (x )在(0,+∞)上单调递增,又f (x -1)≤f (1),∴0<x -1≤1,即1<x ≤2,则原不等式的解集为(1,2].故答案为:(1,2]三、双空题14.(2019·北京·高考真题(理))李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x 元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.①当x =10时,顾客一次购买草莓和西瓜各1盒,需要支付__________元;②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x 的最大值为__________.【答案】 130. 15.【解析】【分析】由题意可得顾客需要支付的费用,然后分类讨论,将原问题转化为不等式恒成立的问题可得x 的最大值.【详解】(1)10x =,顾客一次购买草莓和西瓜各一盒,需要支付()608010130+-=元.(2)设顾客一次购买水果的促销前总价为y 元,120y <元时,李明得到的金额为80%y ⨯,符合要求.120y ≥元时,有()80%70%y x y -⨯≥⨯恒成立,即()87,8y y x y x -≥≤,即min158y x ⎛⎫≤= ⎪⎝⎭元. 所以x 的最大值为15.【点睛】本题主要考查不等式的概念与性质、数学的应用意识、数学式子变形与运算求解能力,以实际生活为背景,创设问题情境,考查学生身边的数学,考查学生的数学建模素养.15.(2023·全国·高三专题练习)已知函数f (x )111()12x x x x -≤⎧⎪=⎨⎪⎩,,>,则()()2f f =__,不等式()()32f x f -<的解集为__.【答案】12## 0.5 {x |x 72<或x >5} 【解析】【分析】第一空先求出()2f 的值,再求()()2f f 的值;第二空将3x -分为大于1或小于等于1两种情况讨论,分别解出不等式,写出解集即可.【详解】解:f (2)211122-⎛⎫== ⎪⎝⎭,1122f ⎛⎫= ⎪⎝⎭, ∴()()122f f =, 当x ﹣3>1时,即x >4时,311122x --⎛⎫ ⎪⎝⎭<,解得x >5, 当x ﹣3≤1时,即x ≤4时,x ﹣312<,解得x 72<, 综上所述不等式f (x ﹣3)<f (2)的解集为752x x x ⎧⎫⎨⎬⎩⎭或 故答案为:12,752x x x ⎧⎫⎨⎬⎩⎭或. 四、解答题16.(2020·山东·高考真题)已知函数()225,02,0x x f x x x x -≥⎧=⎨+<⎩. (1)求()1f f ⎡⎤⎣⎦的值;(2)求()13f a -<,求实数a 的取值范围.【答案】(1)3;(2)35a -<<.【解析】【分析】(1)根据分段函数的解析式,代入计算即可;(2)先判断1a -的取值范围,再代入分段函数解析式,得到()13f a -<的具体不等式写法,解不等式即可.【详解】解:(1)因为10>,所以()12153f =⨯-=-,因为30-<,所以()()()()2133233f f f =-=-+⨯⎤⎦-⎣=⎡.(2)因为10a -≥, 则()1215f a a -=--, 因为()13f a -<,所以2153a --<, 即14a -<,解得35a -<<.17.(2021·全国·高考真题(理))已知函数()3f x x a x =-++.(1)当1a =时,求不等式()6f x ≥的解集;(2)若()f x a >-,求a 的取值范围.【答案】(1)(][),42,-∞-+∞.(2)3,2⎛⎫-+∞ ⎪⎝⎭. 【解析】【分析】(1)利用绝对值的几何意义求得不等式的解集.(2)利用绝对值不等式化简()f x a >-,由此求得a 的取值范围.【详解】(1)[方法一]:绝对值的几何意义法当1a =时,()13f x x x =-++,13x x -++表示数轴上的点到1和3-的距离之和,则()6f x ≥表示数轴上的点到1和3-的距离之和不小于6, 当4x =-或2x =时所对应的数轴上的点到13-,所对应的点距离之和等于6, ∴数轴上到13-,所对应的点距离之和等于大于等于6得到所对应的坐标的范围是4x ≤-或2x ≥, 所以()6f x ≥的解集为(][),42,-∞-+∞.[方法二]【最优解】:零点分段求解法当1a =时,()|1||3|f x x x =-++.当3x ≤-时,(1)(3)6-+--≥x x ,解得4x ≤-;当31x -<<时,(1)(3)6-++≥x x ,无解;当1≥x 时,(1)(3)6-++≥x x ,解得2x ≥.综上,|1||3|6-++≥x x 的解集为(,4][2,)-∞-+∞.(2)[方法一]:绝对值不等式的性质法求最小值依题意()f x a >-,即3a x a x -+>-+恒成立,333x a x x a a x -++-+=≥++,当且仅当()()30a x x -+≥时取等号,()3min f x a ∴=+, 故3a a +>-,所以3a a +>-或3a a +<, 解得32a >-. 所以a 的取值范围是3,2⎛⎫-+∞ ⎪⎝⎭. [方法二]【最优解】:绝对值的几何意义法求最小值由||x a -是数轴上数x 表示的点到数a 表示的点的距离,得()|||3||3|f x x a x a =-++≥+,故|3|a a +>-,下同解法一.[方法三]:分类讨论+分段函数法当3a ≤-时,23,,()3,3,23,3,x a x a f x a a x x a x -+-<⎧⎪=--≤≤-⎨⎪-+>-⎩则min [()]3=--f x a ,此时3-->-a a ,无解.当3a >-时,23,3,()3,3,23,,x a x f x a x a x a x a -+-<-⎧⎪=+-≤≤⎨⎪-+>⎩则min [()]3=+f x a ,此时,由3a a +>-得,32a >-. 综上,a 的取值范围为32a >-. [方法四]:函数图象法解不等式由方法一求得()min 3f x a =+后,构造两个函数|3|=+y a 和y a =-,即3,3,3,3a a y a a --<-⎧=⎨+≥-⎩和y a =-, 如图,两个函数的图像有且仅有一个交点33,22⎛⎫- ⎪⎝⎭M , 由图易知|3|a a +>-,则32a >-.【整体点评】(1)解绝对值不等式的方法有几何意义法,零点分段法.方法一采用几何意义方法,适用于绝对值部分的系数为1的情况,方法二使用零点分段求解法,适用于更广泛的情况,为最优解;(2)方法一,利用绝对值不等式的性质求得()3min f x a =+,利用不等式恒成立的意义得到关于a 的不等式,然后利用绝对值的意义转化求解;方法二与方法一不同的是利用绝对值的几何意义求得()f x 的最小值,最有简洁快速,为最优解法方法三利用零点分区间转化为分段函数利用函数单调性求()f x 最小值,要注意函数()f x 中的各绝对值的零点的大小关系,采用分类讨论方法,使用与更广泛的情况;方法四与方法一的不同在于得到函数()f x 的最小值后,构造关于a 的函数,利用数形结合思想求解关于a 的不等式.18.(2023·全国·高三专题练习)已知函数2()2f x x ax =++,R a ∈.(1)若不等式()0f x 的解集为[1,2],求不等式2()1f x x -的解集;(2)若对于任意的[1x ∈-,1],不等式()2(1)4f x a x -+恒成立,求实数a 的取值范围;(3)已知2()(2)1g x ax a x =+++,若方程()()f x g x =在1(,3]2有解,求实数a 的取值范围. 【答案】(1)(-∞,1][12,)∞+ (2)13a ≤ (3)[0,1).【解析】【分析】(1)根据不等式的解集转化为一元二次方程,利用根与系数之间的关系求出a ,然后解一元二次不等式即可;(2)问题转化为222x a x --在[1x ∈-,1]恒成立,令22()2x h x x -=-,[1x ∈-,1],根据函数的单调性求出a 的范围即可;(3)利用参数分离法进行转化求解即可.(1)解:若不等式()0f x 的解集为[1,2],即1,2是方程220x ax ++=的两个根,则123a +=-=,即3a =-,则2()32f x x x =-+,由2()1f x x -得,22321x x x -+-即22310x x -+得(21)(1)0x x --,得1x 或12x ,即不等式的解集为(-∞,1][12,)∞+. (2)解:不等式()2(1)4f x a x -+恒成立,即222x a x --在[1x ∈-,1]恒成立,令22()2x h x x -=-,[1x ∈-,1],则2242()(2)x x h x x -+'=-,令()0h x '=,解得:22x =,故()h x 在[1-,22)递增,在(221]递减,故()min h x h =(1)或1()h -,而h (1)1=,1(1)3h -=,故13a . (3)解:由()()f x g x =得22(2)12ax a x x ax +++=++,2(1)210a x x ∴-+-=,即2(1)12a x x -=-,若方程()()f x g x =在1(2,3]有解,等价为2212121x a x x x --==-有解,设22121()(1)1h x x x x =-=--,1(2x ∈,3],∴11[3x ∈,2),即1()0h x -<,即110a --<,则01a <,即实数a 的取值范围是[0,1).。

高中数学中所有不等式解法汇总每题均含详细解析

高中数学中所有不等式解法汇总每题均含详细解析

高中数学中所有不等式解法汇总每题均含详细解析本文介绍了解简单不等式的几种方法,包括解二元一次不等式组、一元二次不等式、含绝对值的简单不等式、分式不等式和简单高次不等式。

其中,第一部分介绍了分数不等式的性质,包括两种情况下的大小关系。

第二部分介绍了“三个二次”的关系,即二次函数图象、一元二次方程的根和不等式的解集之间的关系。

第三部分介绍了解一元二次方程的三种方法,包括求根公式、因式分解法和配方法。

最后一部分介绍了解一元二次不等式的方法,包括统一处理二次项系数为正数,以及(x -a)(x-b)>0或(x-a)(x-b)<0型不等式的解法。

由y=x^2-3x-10的开口向上,可得x^2-3x-10>0的解集为(-∞,-2)∪(5,+∞)。

设集合M={x|x^2-3x-4<0},N={x|0≤x≤5},则M∩N等于[0,4)。

解析:因为M={x|x^2-3x-4<0}={x|-1<x<4},所以M∩N=[0,4)。

已知不等式ax^2-bx-1≥0的解集是(3/2,3],则不等式x^2-bx-a0,且Δ=b^2-4ac0,b<0,且0<b<3.综合可得x^2-bx-a<0的解集是(0,3)。

若关于x的不等式m(x-1)>x^2-x的解集为{x|1x^2-x的解集为{x|1<x<2},所以1和2一定是m(x-1)=x^2-x的解,因此m=2.若一元二次不等式2kx^2+kx-8<0对一切实数x都成立,则k的取值范围为(-3,0]。

解析:因为2kx^2+kx-8<0对一切实数x都成立,所以2k<0,解得k∈(-∞,0),又因为Δ=k^2-4×2k×(-8)<0,解得k∈(-3,0]。

设a为常数,∀x∈R,ax^2+ax+1>0,则a的取值范围是(0,4)。

解析:对于任意实数x,ax^2+ax+1>0,即Δ=a^2-4a<0,解得0<a<4.若不等式x^2-2x+5≥a^2-3a对任意实数x恒成立,则实数a的取值范围为(-∞,-1]∪[4,+∞)。

不等式的解法高中数学公式

不等式的解法高中数学公式

不等式的解法高中数学公式高中数学中,不等式是基础知识,在函数问题中占比较大,出题面广,难度大,解题比较繁琐。

须把它整理出来,认真研究,学细、学深、学透,为备战高考奠定坚实基础。

不等式是与等式相区别的,意思就是左边与右边不等,等式简单,就“=”一个符号,而不等式有“≠”、“>”、“<”、“≥”“≤”5种,“不等”就是有差距,我们学习不等式的其中一个目的就是掌握这种差距的思维。

比较两个数(函数)的大小,一是作差,二是作商(作除数的不能为零),这个容易理解吧,有了这种思维,不等式问题就好解决了。

以下是高中阶段的不等式公式:一、两个数的不等式公式1. 若a-b>0,则a>b(作差)2. 若a>b,则a±c>b±c3. 若a+b>c,则a>c-b(移项)4. 若a>b,则c>d(不等号同向相加成立,两个大的加起来,肯定比两个小的加起来大)5. 若a>b>0,c>d>0则ac>bd(两个大正数相乘肯定比两个小正数的相乘大)6.若a>b>0,则an>bn(n∈N,n>1)。

二、基本不等式(也叫均值不等式)思想:反应的是算术平均值(a+b)/2和几何平均值的大小关系,这里a,b都是正数。

1.(a+b)/2≥ ab(算术平均值不小于几何平均值,a=b时取等号)2.a2+b2 ≥ 2ab(由1两边平方变化而来,a=b时取等号)3.ab≤(a2+b2)/2≤(a+b)2 /2(由2扩展而来,a=b时取等号)三、绝对值不等式公式(a,b看成向量,“| |”看成向量的模也适用)思想:三角形两边之差小于第三边,两边之和大于第三边。

1.| |a|-|b| |≤|a-b|≤|a|+|b|2.| |a|-|b| |≤|a+b|≤|a|+|b|四、二次函数不等式f(x)=ax2+bx +c(a≠0)思想:函数图像是开口向上(a>0)或开口向下(a<0)的曲线,令函数值为0,解出f(x)的零点,符号看函数值处在纵坐标的正半轴还是负半轴。

不等式的解法

不等式的解法

不等式的解法不等式,即数学中用来表示大小关系的符号,它与等式不同的地方在于,不等式可以有无数个解,而不像等式只有一个解。

解不等式的方法有很多种,接下来将介绍几种常见的解不等式的方法。

一、一元一次不等式一元一次不等式是最基本的不等式,它的形式通常为ax+b>0或ax+b<0,其中a和b为已知数,x为未知数。

解一元一次不等式的方法有两种:图解法和代数法。

1. 图解法图解法是通过在数轴上画出所给不等式的解集来解不等式。

首先,我们将不等式中的x系数作为直线的斜率,常数项作为直线的截距,画出不等式对应的直线。

然后,根据不等式符号的方向,涂色标记出不等式的解集。

例如,对于不等式3x+2>0,我们可以画出直线y=3x+2,并根据大于号的方向,将直线上大于0的部分涂色。

2. 代数法代数法是通过代数运算解不等式。

首先,根据不等式符号的方向,确定不等式的类型是大于、小于还是等于。

然后,根据不等式中的系数和常数项,进行加法、减法、乘法和除法运算,将未知数x的系数和常数项移到不等式的一侧,使得不等式变为0的形式。

最后,通过考察几个关键点的取值情况,确定不等式的解集。

二、一元二次不等式一元二次不等式是一元二次方程的不等式形式,它的形式通常为ax^2+bx+c>0或ax^2+bx+c<0,其中a、b、c为已知数,x为未知数。

解一元二次不等式的方法有两种:图解法和代数法。

1. 图解法图解法是通过在坐标平面上画出所给不等式的解集来解不等式。

首先,我们将不等式转化为对应的一元二次方程,找到方程的判别式,判断方程的根的情况。

根据根的位置,将坐标平面分为几个区域,并确定每个区域对应的不等式的正负。

然后,将不等式对应的曲线画在坐标平面上,并根据不等式符号的方向,将曲线上符合条件的部分涂色。

2. 代数法代数法是通过代数运算解一元二次不等式。

首先,根据不等式符号的方向,确定不等式的类型是大于、小于还是等于。

然后,根据不等式中的系数和常数项,进行移项、配方、因式分解等运算,将不等式变为一元二次方程的零点形式。

高一基本不等式各种解题方法全部

高一基本不等式各种解题方法全部

高一基本不等式各种解题方法全部
本文将介绍高一基本不等式的各种解题方法,包括基本不等式的证明、绝对值不等式、平均值不等式、柯西不等式、特殊不等式等内容。

1. 基本不等式的证明
基本不等式是高中数学中非常重要的一个不等式,它是指对于任意正实数a1、a2、……、an,有如下不等式成立:
(a1+a2+……+an) / n >= √(a1×a2×……×an)
其证明可以通过数学归纳法进行,具体过程可参考相关的数学教材。

2. 绝对值不等式
绝对值不等式是指对于任意实数a和b,有如下不等式成立: |a+b| <= |a|+|b|
该不等式的证明可以通过考虑a和b的正负性,以及绝对值的三角不等式来得到。

3. 平均值不等式
平均值不等式是指对于任意正实数a1、a2、……、an,有如下不等式成立:
(a1+a2+……+an) / n >= (a1×a2×……×an)的1/n 该不等式可以通过对数函数和基本不等式的运用得到。

4. 柯西不等式
柯西不等式是指对于任意实数a1、a2、b1、b2,有如下不等式
成立:
(a1×b1+a2×b2)^2 <= (a1^2+a2^2)(b1^2+b2^2)
该不等式可以通过向量的内积和向量的长度之间的关系来得到。

5. 特殊不等式
在解题中,还会遇到一些特殊的不等式,如均值不等式、威布尔不等式、多项式不等式等。

对于这些不等式,需要根据具体情况选择相应的解题方法。

总之,在高一数学中,不等式是一个非常重要的知识点,掌握不等式的各种解题方法对于提高数学成绩具有重要作用。

高一数学必修一不等式的解法总结

高一数学必修一不等式的解法总结

高一数学必修一不等式的解法总结一、不等式的基本概念不等式是数学中一种常见的数值关系表示方法,它用符号<、>、≤、≥等来表示数量的大小关系。

不等式中的未知数可以是实数或者是代数式,不等式的解集是使得不等式成立的所有实数的集合。

二、一元一次不等式的解法1. 移项法:将所有项都移至一个侧边,得到形如ax + b < 0或ax + b > 0的不等式,然后根据a的正负来确定解集的范围。

2. 乘除法:在不改变不等式的方向的前提下,可以对不等式的两侧同时乘以正数或除以正数,但是对于负数,要注意改变不等式的方向。

三、一元二次不等式的解法1. 移项法:将所有项都移至一个侧边,得到形如ax² + bx + c < 0或ax² + bx + c > 0的不等式,然后通过判别式Δ=b²-4ac来确定解集的范围。

a) 当Δ > 0时,不等式有两个实根,解集为两个实根之间的区间。

b) 当Δ = 0时,不等式有一个实根,解集为该实根。

c) 当Δ < 0时,不等式无实根,解集为空集。

四、分式不等式的解法1. 分式的定义域:首先要确定分式的定义域,即分母不能为零,根据分母的正负来确定定义域的范围。

2. 分式的符号:根据分式的分子分母的符号来确定不等式的符号,注意分式的分母不能为零。

3. 分式的解集:根据不等式的符号和定义域的范围,确定不等式的解集。

五、绝对值不等式的解法1. 绝对值的定义:|x|表示x的绝对值,即|x| = x(当x≥0时)或|x| = -x(当x<0时)。

2. 绝对值不等式的性质:当|a| < b时,-b < a < b;当|a| > b时,a > b或a < -b。

3. 绝对值不等式的解集:根据不等式的性质,可以得到不等式的解集。

六、不等式的图像解法1. 不等式的图像:将不等式转化为函数的图像,通过观察图像来确定不等式的解集。

高中基本不等式公式大全

高中基本不等式公式大全

高中基本不等式公式大全1. 基本不等式。

- 对于任意实数a,b,有a^2+b^2≥slant2ab,当且仅当a = b时等号成立。

- 证明:(a - b)^2=a^2-2ab + b^2≥slant0,移项可得a^2+b^2≥slant2ab。

2. 均值不等式(算术 - 几何平均不等式)- 若a>0,b>0,则(a + b)/(2)≥slant√(ab),当且仅当a = b时等号成立。

- 证明:因为(√(a)-√(b))^2≥slant0(a,b>0),展开得a - 2√(ab)+b≥slant0,移项可得(a + b)/(2)≥slant√(ab)。

- 推广:对于n个正实数a_1,a_2,·s,a_n,有frac{a_1+a_2+·s+a_n}{n}≥slantsqrt[n]{a_1a_2·s a_n},当且仅当a_1=a_2=·s=a_n时等号成立。

3. 基本不等式的变形。

- ab≤slant((a + b)/(2))^2(a,b∈ R),当且仅当a = b时等号成立。

- 若a>0,b>0,a + b≥slant2√(ab),则a + b为定值m时,ab≤slantfrac{m^2}{4};ab为定值n时,a + b≥slant2√(n)。

- 对于a>0,b>0,(2)/(frac{1){a}+(1)/(b)}≤slant√(ab)≤slant(a +b)/(2)≤slant√(frac{a^2)+b^{2}{2}},当且仅当a = b时等号成立。

- 证明(2)/(frac{1){a}+(1)/(b)}≤slant√(ab):因为(1)/(a)+(1)/(b)≥slant(2)/(√(ab))(a,b>0),所以(2)/(fra c{1){a}+(1)/(b)}≤slant√(ab)。

- 证明(a + b)/(2)≤slant√(frac{a^2)+b^{2}{2}}:(√(frac{a^2)+b^{2}{2}})^2-((a + b)/(2))^2=frac{a^2+b^2}{2}-frac{a^2+2ab + b^2}{4}=frac{2a^2+2b^2-a^2-2ab -b^2}{4}=frac{(a - b)^2}{4}≥slant0,所以(a + b)/(2)≤slant√(frac{a^2)+b^{2}{2}}。

不等式的解法高中数学

不等式的解法高中数学

不等式的解法高中数学高中数学:不等式与不等式组的解法1.一元一次不等式的解法任何一个一元一次不等式经过变形后都可以化为ax>b或axb而言,当a>0时,其解集为(ab,+∞),当a<0时,其解集为(-∞,ba),当a=0时,b<0时,期解集为R,当a=0,b≥0时,其解集为空集。

例1:解关于x的不等式ax-2>b+2x解:原不等式化为(a-2)x>b+2①当a>2时,其解集为(b+2a-2,+∞)②当a<2时,其解集为(-∞,b+2a-2)③当a=2,b≥-2时,其解集为φ④当a=2且b<-2时,其解集为R.2.一元二次不等式的解法任何一个一元二次不等式都可化为ax2+bx+c>0或ax2+bx+c<0(a>0)的形式,然后用判别式法来判断解集的各种情形(空集,全体实数,部分实数),如果是空集或实数集,那么不等式已经解出,如果是部分实数,则根据“大于号取两根之外,小于号取两根中间”分别写出解集就可以了。

例2:解不等式ax2+4x+4>0(a>0)解:△=16-16a①当a>1时,△<0,其解集为R②当a=1时,△=0,则x≠-2,故其解集(-∞,-2)∪(-2,+∞)③当a<1时,△>0,其解集(-∞,-2-21-aa)∪(-2+21-aa,+∞)3.不等式组的解法将不等式中每个不等式求得解集,然后求交集即可.例3:解不等式组m2+4m-5>0(1)m2+4m-12<0(2)解:由①得m<-5或m>1由②得-6,故原不等式组的解集为(-6,-5)∪(1,2)4.分式不等式的解法任何一个分式不等都可化为f(x)g(x)>0(≥0)或f(x)g(x)<0(≤0)的形式,然后讨论分子分母的符号,得两个不等式组,求得这两个不等式组的解集的并集便是原不等式的解集.例4:解不等式x2-x-6-x2-1>2解:原不等式化为:3x2-x-4-x2-1>0它等价于(I)3x2-x-4>0-x2-1>0和(II)3x2-x-4<0-x2-1<0解(I)得解集空集,解(II)得解集(-1,43).故原不等式的解集为(-1,43).5.含有绝对值不等式的解法去绝对值号的主要依据是:根据绝对值的定义或性质,先将含有绝对值的不等式中的绝对值号去掉,化为不含绝对值的不等式,然后求出其解集即可。

高中数学不等式的解法

高中数学不等式的解法

高中数学不等式的解法复习目标1.掌握一元一次不等式(组),一元二次不等式,分式不等式,含绝对值的不等式,简单的无理不等式的解法.2.会在数轴上表示不等式或不等式组的解集. 3.培养运算能力.知识回顾一、一元一次不等式的解法一元一次不等式)0(≠>a b ax 的解集情况是(1)当0>a 时,解集为}|{a b x x > (2)当0<a 时,解集为}|{abx x <二、一元二次不等式的解法一般的一元二次不等式可利用一元二次方程02=++c bx ax 与二次函数c bx ax y ++=2的有关性质求解,具体见下表:0>a ,ac b 42-=∆0>∆0=∆0<∆二次函数c bx ax y ++=2的图象一元二次方程02=++c bx ax的根有两实根21x x x x ==或有两个相等的实根abx x x 221-===无实根一 式 元 的 二 解 次 集 不 等不等式02>++c bx ax的解集 }|{21x x x x x ><或}|{1x x x ≠ R不等式02<++c bx ax的解集}|{21x x x x <<Φ Φ注:1.解一元二次不等式的步骤:(1) 把二次项的系数a 变为正的.(如果0<a ,那么在不等式两边都乘以1-,把系数变为正)(2) 解对应的一元二次方程.(先看能否因式分解,若不能,再看△,然后求根)(3) 求解一元二次不等式.(根据一元二次方程的根及不等式的方向) 2.当0>a 且0>∆时,定一元二次不等式的解集的口诀:“小于号取中间,大于号取两边” .三、含有绝对值的不等式的解法 1.绝对值的概念2.含绝对值不等式的解:(1))0(||><a a x ⇔a x a <<- (2))0(||>≥a a x ⇔a x a x ≥-≤或 (3)a x f a a a x f ≤≤-⇔>≤)()0(|)(| (4)a x f a x f a a x f >-<⇔>>)()()0(|)(|或注:当0≤a 时,a x <||无解,a x >||的解集为全体实数. 四、一元高次不等式的解法一元高次不等式0)(>x f (或0)(<x f ),一般用数轴标根法求解,其步骤是: (1)将)(x f 的最高次项的系数化为正数; (2)将)(x f 分解为若干个一次因式的积;(3)将每一个一次因式的根标在数轴上,从右上方依次通过每一点画曲线; (4)根据曲线显现出)(x f 值的符号变化规律,写出不等式的解集. 如:若n a a a a <<<< 321,则不等式0)())((21>---n a x a x a x 或0)())((21<---n a x a x a x 的解法如下图(即“数轴标根法”):五、分式不等式的解法对于解a x g x f a x g x f ≥<)(')()()('''或型不等式,应先移项、通分,将不等式整理成⎪⎩⎪⎨⎧=a ()()00)0(<=>a a a a 0a -)0(0)()()0(0)()(≤≥<>x g x f x g x f 或的形式,再转化为整式不等式求解。

高中数学解解不等式的常用技巧和方法

高中数学解解不等式的常用技巧和方法

高中数学解解不等式的常用技巧和方法在高中数学学习中,不等式是一个重要的知识点,也是考试中常常出现的题型。

解不等式需要我们掌握一些常用的技巧和方法,本文将介绍一些常见的解不等式的技巧,并通过具体的例题加以说明。

一、一元一次不等式一元一次不等式是最简单的不等式形式,其解法与一元一次方程类似。

我们以以下例题为例:例题1:解不等式2x + 1 > 5。

解法:首先将不等式转化为等价的形式:2x + 1 - 5 > 0,化简得2x - 4 > 0。

然后解这个一元一次方程,得到x > 2。

所以不等式2x + 1 > 5的解集为x > 2。

这个例题中的关键是将不等式转化为等价的形式,然后通过解方程的方法得到解集。

这是解一元一次不等式的常用技巧。

二、一元二次不等式一元二次不等式是高中数学中较为复杂的不等式形式,我们需要通过一些特殊的方法来解决。

以下是一个例题:例题2:解不等式x^2 - 4x + 3 > 0。

解法:首先我们需要求出不等式的零点,即将不等式转化为等式x^2 - 4x + 3 = 0。

通过因式分解或配方法,我们得到(x - 1)(x - 3) > 0。

然后我们需要绘制函数图像来确定不等式的解集。

绘制函数y = x^2 - 4x + 3的图像,我们可以发现函数的零点为x = 1和x = 3,这两个点将实数轴分成了三个区间:(-∞, 1),(1, 3),(3, +∞)。

然后我们取每个区间内的一个测试点,例如选取x = 0,2,4。

将这些测试点代入原不等式,我们可以得到以下结果:当x = 0时,左边为3,右边为0,不满足不等式;当x = 2时,左边为-1,右边为0,不满足不等式;当x = 4时,左边为3,右边为0,满足不等式。

根据测试点的结果,我们可以得到不等式的解集为x < 1或x > 3。

这个例题中的关键是通过绘制函数图像和选取测试点的方法确定不等式的解集。

高中数学中的不等式求解方法

高中数学中的不等式求解方法

高中数学中的不等式求解方法在高中数学学科中,不等式是一个重要的概念。

不等式的求解是解决不等式问题的关键步骤。

本文将介绍高中数学中常见的不等式求解方法,帮助同学们更好地理解和应用这些方法。

1. 一元一次不等式的求解方法一元一次不等式是高中数学中最简单的不等式形式,形如ax + b > 0的形式。

对于这类不等式,我们可以使用如下方法求解:(1)根据不等式中的不等号确定等于零的条件,即ax + b = 0。

解这个方程可以得到不等式的临界点。

(2)根据临界点将数轴分成若干个区间。

(3)选取区间内的一组值代入原不等式,判断符号。

(4)根据符号判断确定不等式的解集。

2. 一元二次不等式的求解方法一元二次不等式是比一元一次不等式更复杂的一种形式。

解决一元二次不等式的关键是找到二次函数的图像与x轴夹角所对应的区间。

(1)将不等式化为标准形式,即ax² + bx + c > 0。

(2)使用一元二次方程求根公式,求出二次函数的根。

(3)根据二次函数开口方向,绘制二次函数的图像。

(4)根据图像与x轴夹角所对应的区间,确定不等式的解集。

3. 绝对值不等式的求解方法绝对值不等式是一个常见的不等式形式。

它的解决方法主要有以下两种情况:(1)当绝对值不等式中的绝对值表达式大于等于零时,拆分绝对值不等式,将问题转化为一元一次不等式求解。

(2)当绝对值不等式中的绝对值表达式小于零时,证明无解。

4. 有理不等式的求解方法有理不等式是指包含有理函数的不等式。

解决有理不等式的关键是确定有理函数的零点和极值点,然后根据区间判断符号。

(1)将有理不等式转化为相应的分式。

(2)求出分式的分母为零的根和分式的分子为零的根作为不等式的临界点。

(3)根据临界点将数轴分成若干个区间。

(4)选取区间内的一组值带入原不等式,判断符号。

(5)根据符号判断确定不等式的解集。

5. 复合不等式的求解方法复合不等式是指将多个不等式联立起来,通过求解这个系统不等式来得到满足条件的解集。

高中数学中的不等式组求解方法

高中数学中的不等式组求解方法

高中数学中的不等式组求解方法不等式组是高中数学中的一个重要概念,它由多个不等式组成,需要找到满足所有不等式的解集。

在解不等式组时,我们需要运用一些方法和技巧,下面将介绍几种常见的不等式组求解方法。

一、图像法图像法是一种直观且易于理解的不等式组求解方法。

通过将不等式转化为图像,我们可以直观地看出解集的范围。

例如,对于一个简单的一元一次不等式组,我们可以将其转化为一条直线的图像。

通过观察直线与坐标轴的交点,我们可以得出解集的范围。

二、代数法代数法是一种常用的不等式组求解方法。

通过代数运算,我们可以将不等式组转化为等价的形式,从而找到解集。

例如,对于一个二元一次不等式组,我们可以通过消元法或代入法将其转化为一个只含有一个变量的不等式,然后求解这个不等式即可得到解集。

三、区间法区间法是一种常用的不等式组求解方法,特别适用于含有绝对值的不等式组。

通过将不等式组中的变量范围划分成若干个区间,然后分别求解每个区间内的不等式,最后将解集合并起来,即可得到整个不等式组的解集。

这种方法可以有效地简化求解过程,提高求解效率。

四、求导法求导法是一种适用于含有函数的不等式组求解方法。

通过求解函数的导数,我们可以找到函数的增减性,从而确定不等式的解集。

例如,对于一个含有二次函数的不等式组,我们可以通过求解函数的导数和零点,来确定函数的增减性和极值点,从而得到不等式的解集。

五、数列法数列法是一种适用于含有数列的不等式组求解方法。

通过构造递推数列,我们可以找到数列的通项公式,并通过分析数列的性质来确定不等式的解集。

例如,对于一个含有递推数列的不等式组,我们可以通过构造数列的递推关系式和递推初值,来确定数列的通项公式和解集。

六、综合运用在实际的不等式组求解过程中,我们常常需要综合运用多种方法和技巧。

通过灵活运用各种方法,我们可以更准确地确定不等式的解集。

例如,对于一个复杂的不等式组,我们可以先通过图像法或代数法简化不等式,然后再运用区间法或求导法求解。

八种方法解决高中数学不等式问题

八种方法解决高中数学不等式问题

八种方法解决高中数学不等式问题下面用八种方法解决高中数学常见的不等式问题: 例题:224x y ,求34x y 的最大值.【解法一】柯西不等式先备知识:柯西不等式(二维下的)解:3,4,,a b c x d y ,由柯西不等式得:222223434x y x y 所以:3410x y ,当且仅当34x y ,即68,55x y 时,取得最大值10.【总结】柯西不等式常用,建议理解记忆。

【解法二】线性规划解:令34x y t ,则344t y x (将t 看作是直线的截距,转化为求直线截距的范围) ,x y 满足直线方程344t y x ,也满足方程224x y ,因此:显然,由图像得: 2.5104t t .【总结】数形结合典型做法,但是线性规划新高考不考。

建议从数形结合角度理解。

【解法三】判别式法解:令34x y t ,则344t y x ,代入方程:224x y ,得: 223444t x x , 整理,得:222534016816t x tx ………………(*) 一元二次方程(*)有解,则:2232544081616t t210010t t . 【总结】常用方法之一,解决“条件极值”问题的常用手段。

【解法四】三角换元224x y 22144x y ,不妨令:cos ,sin 22x y x x . 则:34346cos 8sin 10cos sin 10sin 1055x y x x x x x,(3tan 4 ). 【总结】三角换元、参数法建议学有余力的同学适当了解。

【解法五】对偶式先备知识: 34x y 的对偶式为43x y2223492416x y x xy y (1)2224316249x y x xy y (2)(1)+(2),得:222234432525100x y x y x y223410043100x y x y .【总结】进阶方法,学有余力可了解。

【解法六】向量法(类似柯西不等式)34x y 可以看作向量 3,4,,a b x y 的数量积:34a b x y .所以:cos ,10a b a b a b.【总结】注意观察代数式的结构特征。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、一元二次不等式的解法
一化:化二次项前的系数为正数.
二判:判断对应方程的根.
三求:求对应方程的根.
四画:画出对应函数的图象.
五解集:根据图象写出不等式的解集.
规律:当二次项系数为正时,小于取中间,大于取两边.
2、高次不等式的解法:穿根法.
分解因式,把根标在数轴上,从右上方依次往下穿(奇穿偶切),结合原式不等号的方向,写出不等式的解集.
3、分式不等式的解法:先移项通分标准化,则
规律:把分式不等式等价转化为整式不等式求解.
4、无理不等式的解法:转化为有理不等式求解
规律:把无理不等式等价转化为有理不等式,诀窍在于从“小”的一边分析求解.
5、指数不等式的解法:
规律:根据指数函数的性质转化.
6、对数不等式的解法
规律:根据对数函数的性质转化.
7、含绝对值不等式的解法:
⑶同解变形法,其同解定理有:
规律:关键是去掉绝对值的符号.
8、含有两个(或两个以上)绝对值的不等式的解法:
规律:找零点、划区间、分段讨论去绝对值、每段中取交集,最后取各段的并集.
9、含参数的不等式的解法
10、恒成立问题
.。

相关文档
最新文档