初中数学湘教版七年级下册第2章 整式的乘法2.1 整式的乘法-章节测试习题(26)

合集下载

湘教版七年级数学下第2章整式的乘法检测题附答案解析

湘教版七年级数学下第2章整式的乘法检测题附答案解析

(4)两个式子: (--2x3 y4 )m 2m x3m y4m ,( 2x3 y4 )n 2n x3n y4n 都不一定成立.
A.1 个 B.2 个 C.3 个 D.4 个
8.现规定一种运算 a※ b ab a b ,其中 a,b 为实数,则 a※※ b (b a) b 等于( )
A. x2 y6 B.- x2 y6 C. x2 y9 D.- x2 y9
5.计算-3 a2 a3 的结果为( )
A.-3 a5 B.3 a6 C.-3 a6 D.3 a5
A. a2 b B. b2 b C. b2 D. b2 a
二、填空题(每小题 3 分,共 24 分)
9.已知 m+n=mn,则(m-1)(n-1)= .
② (x 2 012)(x 2 000) )= .
13.若 m 为奇数,则 (a b)m g(b a)n 与 (b a)mn 的关系为 .
14.一个长方形的长为 (5x 3) m ,宽比长少 (2x 5) m ,则这个长方形的面积为 m2
第 2 章 整式的乘法检测题参考答案
1.B 解析:∵ 2a 和 3b 不是同类项,∴ 2a 和 3b 不能合并,∴ A 项错误;
∵ 5a 和-2a 是同类项,∴ 5a-2a=(5-2)a=3a,∴ B 项正确;
(2)试画一个几何图形,使它的面积表示为 (a b)(a 3b) a2 4ab 3b2 ;
(3)请仿照上述方法另写一个含有 a,b 的代数恒等式,并画出与它对应的几何图形.
19.(6 分)解下列方程:
(1) 3(x2 2x 6)- 3x(x 5) 0 ;
(2) x(2x 4) 3x(x 1)- 5x(x 3) 8 0 .

2022-2023学年湘教版七年级数学下册《2-1整式的乘法》同步测试题(附答案)

2022-2023学年湘教版七年级数学下册《2-1整式的乘法》同步测试题(附答案)

2022-2023学年湘教版七年级数学下册《2.1整式的乘法》同步测试题(附答案)一.选择题(共7小题,满分35分)1.下列计算正确的是()A.a3+a3=a6B.2a3﹣a3=2C.a2•a3=a5D.(a3)2=a5 2.若x m=3,x n=2,则x2m+n的值是()A.11B.12C.18D.363.已知,a=255,b=344,c=433,则a、b、c的大小关系是()A.b>c>a B.a>b>c C.c>a>b D.c>b>a4.若(y﹣3)(y+2)=y2+my+n,则m,n的值分别为()A.m=1,n=﹣6B.m=﹣1,n=﹣6C.m=5,n=6D.m=﹣5,n=6 5.(﹣0.125)2021×82021+(﹣1)2022+(﹣1)2021的值是()A.﹣2B.﹣1C.0D.16.若n为正整数,且x2n=2,y3n=3,则(x2y3)2n的值为()A.6B.12C.36D.727.如图,正方形卡片A类,B类和长方形卡片C类若干张,如果要拼一个长为(a+2b),宽为(3a+b)的大长方形,则需要C类卡片()张.A.5B.6C.7D.8二.填空题(共7小题,满分35分)8.若m•22=24,则m=.9.如果2x+3y﹣3=0,那么4x•8y=.10.计算:=.11.若2x=4y+1,27y=3x+1,则x﹣y等于.12.如图,请根据图中标的数据,计算大长方形的面积.通过面积不同的计算方法,可以得到的等式关系是:.13.已知10a=20,100b=50,则a+2b+2的值是.14.已知有甲、乙两个图形,等边三角形ACD,AB是三角形的高,线段长如图所示,长方形边长如图所示,记△ACD的面积和长方形的面积分别为S1、S2,且n>4m﹣8,请比较S1与S2的大小:S1S2.(用“>”、“<”、“=”填空)三.解答题(共6小题,满分50分)15.计算(1)3ab2•(﹣a2b)•2abc(2)(3a+2b)(4a﹣5b)16.计算:(1);(2)(﹣x)4+x•(﹣x)3+2x•(﹣x)4﹣(﹣x)•x4.17.计算:(x+2y)(y﹣2)+(2y﹣4x)(y+1).18.已知42x•52x+1﹣42x+1•52x=203x﹣4,求x的值.19.先观察下列各式,再解答后面问题:(x+5)(x+6)=x2+11x+30;(x﹣5)(x﹣6)=x2﹣11x+30;(x﹣5)(x+6)=x2+x﹣30;(x+5)(x﹣6)=x2﹣x﹣30;(1)根据以上各式呈现的规律,用公式表示出来,则(x+m)(x+n)=;(2)试用你写的公式,直接写出下列两式的结果①(a+10)(a﹣11)=;②(y﹣5)(y﹣8)=.20.某种植基地有一块长方形和一块正方形实验田,长方形实验田每排种植(3a﹣b)株豌豆幼苗,种植了(3a+b)排,正方形实验田每排种植(a+b)株豌豆幼苗,种植了(a+b)排,其中a>b>0.(1)长方形实验田比正方形实验田多种植豌豆幼苗多少株?(2)当a=4,b=3时,该种植基地这两块实验田一共种植了多少株豌豆幼苗?参考答案一.选择题(共7小题,满分35分)1.解:(﹣a)2•a4=a6.故选:B.2.解:∵2m•2n=2m+n=32=25,∴m+n=5,故选:B.3.解:已知等式整理得:(x﹣1)(x+m)=x2+(m﹣1)x﹣m=x2+2x﹣3,∴m﹣1=2,即m=3,则m的值是3,故选:A.4.解:(x+1)(1﹣y)=x﹣xy+1﹣y=x﹣y﹣xy+1,∵x﹣y=7,xy=5,∴原式=7﹣5+1=3,故选:B.5.解:(﹣1)2021×()2023=(﹣)2021×()2021×()2=[(﹣)×()]2021×()2=(﹣1)2021×()2=﹣1×=﹣,故选:D.6.解:∵4x=6,2y=8,8z=48,∴4x•2y=8z,∴22x•2y=23z,∴22x+y=23z,∴2x+y=3z,故选:C.7.解:∵(3a+2b)(a+b)=3a2+5ab+2b2,∴需要C类卡片5张,故选:C.1.解:A、6a和2b不是同类项,不能合并,故A不正确,不符合题意;B、a4⋅a2=a6,故B不正确,不符合题意;C、(ab)2=a2b2,故C正确,符合题意;D、(b2)4=b8,故D不正确,不符合题意;故选:C.2.解:原式=9x6y2,故选:B.3.解:∵10a=20,100b=50,∴10a•100b=20×50,10a•(102)b=1000,10a•102b=103,10a+2b=103,∴a+2b=3,∴a+2b+2=5,故选:A.4.解:(﹣)2022×(﹣2)2022=[﹣×(﹣)]2022=12022=1,故选:C.5.解:∵32n=6,∴25n=3×2,∵2m=3,∴25n=2m×2,则25n=2m+1,∴5n=m+1,故选:A.6.解:(2m+1)(3m﹣2)=6m2﹣4m+3m﹣2=6m2﹣m﹣2.故选:A.7.解:长为(3a+2b),宽为(a+3b)的大长方形的面积为:(3a+2b)(a+3b)=3a2+6b2+11ab;A卡片的面积为:a×a=a2;B卡片的面积为:b×b=b2;C卡片的面积为:a×b=ab;因此可知,拼成一个长为(3a+2b),宽为(a+3b)的大长方形,需要3块A卡片,6块B卡片和11块C卡片.故选:A.1.解:A、a3+a3=2a3,故A不符合题意;B、2a3﹣a3=a3,故B不符合题意;C、a2•a3=a5,故C符合题意;D、(a3)2=a6,故D不符合题意;故选:C.2.解:∵x m=3,x n=2,∴x2m+n=x2m•x n=(x m)2•x n=32×2=18.故选:C.3.解:∵a=255=(25)11=3211,b=344=(34)11=8111,c=433=(43)11=6411,则8111>6411>3211,∴b>c>a.故选:A.4.解:∵(y﹣3)(y+2)=y2+2y﹣3y﹣6=y2﹣y﹣6,∵(y﹣3)(y+2)=y2+my+n,∴..,∴m=﹣1,n=﹣6.故选:B.5.解:(﹣0.125)2021×82021+(﹣1)2022+(﹣1)2021=(﹣0.125×8)2021+1﹣1=﹣1+1﹣1=﹣1.故选:B.6.解:∵x2n=2,y3n=3,∴(x2y3)2n=(x2n)2(y3n)2=22×32=4×9=36.故选:C.7.解:∵(a+2b)(3a+b)=3a2+7ab+2b2∵一张C类卡片的面积为ab∴需要C类卡片7张.故选:C.二.填空题(共7小题,满分35分)8.解:原式=(﹣3)3•(a2)3•b3=﹣27a6b3,故答案为:﹣27a6b3.9.解:∵x2n=5,∴(3x3n)2﹣4(x2)2n=9x6n﹣4x4n=9(x2n)3﹣4(x2n)2=9×53﹣4×52=1125﹣100=1025.故答案为:1025.10.解:原式=16x4y2×(﹣xy2)=﹣16x5y4.故答案为:﹣16x5y4.11.解:(x+m)(x2+2x﹣1)=x3+2x2﹣x+mx2+2mx﹣m=x3+(2+m)x2﹣(1﹣2m)x﹣m,∵x+m与x2+2x﹣1的乘积中不含x的二次项,∴2+m=0,解得:m=﹣2,∴实数m的值为﹣2.故答案为:﹣2.12.解:当ab=a+b+2021时,(a﹣1)(b﹣1)=ab﹣a﹣b+1=ab﹣(a+b)+1=a+b+2021﹣(a+b)+1=2022.故答案为:2022.13.解:(a+2b)(2a﹣4b)=2a2﹣4ab+4ab﹣8b2=2a2﹣8b2.故答案为:2a2﹣8b2.14.解:∵=27,∴(x+1)(x﹣1)﹣(x+2)(x﹣3)=27,∴x2﹣1﹣(x2﹣x﹣6)=27,∴x2﹣1﹣x2+x+6=27,∴x=22;故答案为:22.8.解:∵4×8m×16m=22×23m×24m=22+7m=29,∴2+7m=9,解得m=1.故答案为:1.9.解:∵244=(24)11=1611;333=(33)11=2711;422=(42)11=1611;27>16,∴最大的是2711,即333.故答案为:333.10.解:2x2•(﹣3x3)=(﹣2×3)x2•x3=﹣6x5.故答案为:﹣6x5.11.解:原式=81x8y12•x2y4=81x10y16.故答案为:81x10y16.12.解:(2x﹣4)(2x+1)=4x2+2x﹣8x﹣4=4x2﹣6x﹣4,故答案为:4x2﹣6x﹣4.13.解:P﹣Q=(x+2)2﹣(x+1)(x+3)=x2+4x+4﹣(x2+4x+3)=x2+4x+4﹣x2﹣4x﹣3=1,即P﹣Q=1,∴P>Q.故答案为:>.14.解:由算式的规律可知,(n+1)(n+2)(n+3)(n+4)+1=(n2+5n+5)2.故答案为:(n2+5n+5)2.8.解:∵m•22=24,∴m=22=4.故答案为:4.9.解:∵2x+3y﹣3=0,∴2x+3y=3,∴4x•8y=22x•23y=22x+3y=23=8,故答案为:8.10.解:==12x3y2.故答案为:12x3y2.11.解:∵2x=4y+1,27y=3x+1,∴2x=22y+2,33y=3x+1,∴x=2y+2,3y=x+1,解得:x=8,y=3,∴x﹣y=8﹣3=5.故答案为:5.12.解:∵大长方形的长为:a+b+b+a+a=(3a+2b),宽为(a+b),∴大长方形的面积为:(3a+2b)(a+b).∵大长方形的面积为:a2+ab+ab+b2+ab+b2+a2+ab+a2+ab=3a2+5ab+2b2.∴(3a+2b)(a+b)=3a2+5ab+2b2.故答案为:(3a+2b)(a+b)=3a2+5ab+2b2.13.解:∵10a=20,100b=50,∴10a•100b=20×50,10a•(102)b=1000,10a•102b=103,10a+2b=103,∴a+2b=3,∴a+2b+2=5,故答案为:5.14.解:S1﹣S2=(2m﹣2)n﹣(n+4)(m﹣2)=mn﹣n﹣(mn﹣2n+4m﹣8)=mn﹣n﹣mn+2n﹣4m+8=n﹣4m+8,∵n>4m﹣8,∴n﹣4m+8=n﹣(4m﹣8)>0,即S1﹣S2>0,∴S1>S2.故答案为:>.三.解答题(共6小题,满分50分)15.解:原式=9x3y3•x4y2+x4y2+(﹣x6y3)•xy2=x7y5+x4y2﹣x7y5=x4y2.16.解:原式=2x2+x﹣2x﹣1﹣(x2﹣3x﹣10)=2x2+x﹣2x﹣1﹣x2+3x+10=x2+2x+9.17.解:原式=6x3+9x2﹣12x﹣2x2﹣3x+4=6x3+7x2﹣15x+418.解:由题意得:b(3a+2b)+b(4a+2b)﹣b2=3ab+2b2+4ab+2b2﹣b2=7ab+3b2.19.解:(1)绿化的面积是:(2a﹣b)(2a+3b)﹣4(a﹣b)2=4a2+6ab﹣2ab﹣3b2﹣4(a2﹣2ab+b2)=4a2+4ab﹣3b2﹣4a2+8ab﹣4b2=(12ab﹣7b2)平方米,答:绿化的面积是(12ab﹣7b2)平方米;(2)当a=20,b=10时,(12×20×10﹣7×102)×80=136000(元),答:绿化这块空地所需成本136000元.20.解:(x+p)(x+q)=x2+(p+q)x+pq;(a﹣2b+2)(a﹣2b+3)=(a﹣2b)2+(2+3)(a﹣2b)+2×3=a2﹣4ab+4b2+5a﹣10b+6.故答案为:(p+q),pq.15.解:a•(﹣a5)•(﹣a6)•(﹣a)7•(﹣a)2=a•(﹣a5)•(﹣a6)•(﹣a7)•a2=﹣a21.16.解:(1)∵2x=3,2y=5,∴2x+y=2x•2y=3×5=15.故答案为:15.(2)∵a x=5,∴a x+y=a x•a y=5a y=25.∴a y=5.∴a x+a y=5+5=10.(3)∵x2a+b•x3a﹣b•x a=x12,∴x6a=x12.∴6a=12.∴a=2.∴﹣a100+2101=﹣2100+2101=﹣2100+2×2100=2100.17.解:(1)﹣3a(2a﹣4b+2)+6a=﹣6a2+12ab﹣6a+6a=﹣6a2+12ab;(2)(x﹣2y)(2x+y)=2x2﹣4xy+xy﹣2y2=2x2﹣3xy﹣2y2.18.解:①∵53=125,∴(5,125)=3,∵(﹣2)5=﹣32,∴(﹣2,﹣32)=5,故答案为:3;5;②由题意得:x﹣3=,则x﹣3=2﹣3,∴x=2,故答案为:2;(2)∵(4,5)=a,(4,6)=b,(4,30)=c,∴4a=5,4b=6,4c=30,∵5×6=30,∴4a•4b=4c,∴a+b=c.(3)设(m,8)=p,(m,3)=q,(m,t)=r,∴m p=8,m q=3,m r=t,∵(m,8)+(m,3)=(m,t),∴p+q=r,∴m p+q=m r,∴m p•m r=m t,即8×3=t,∴t=24.19.解:(1)∵(a+1)﹣(a﹣1)=a+1﹣a+1=2>0,∴(a+1)>(a﹣1),故答案为:>,>;(2)∵P=(n+1)(n+4),Q=(n+2)(n+3),∴P﹣Q=(n+1)(n+4)﹣(n+2)(n+3)=n2+5n+4﹣n2﹣5n﹣6=﹣2<0.∴P<Q;(3)设n=87654320,∴A=(n+1)(n+4)=n2+5n+4,B=(n+2)(n+3)=n2+5n+6,∵n2+5n+4<n2+5n+6,∴A<B.20.解:(1)长方形地块的面积为:(3a+2b)(2a+b)=6a2+3ab+4ab+2b2=(6a2+7ab+2b2)平方米.(2)小长方形地块的面积为:2b(2a﹣b)=(4ab﹣2b2)平方米.(3)绿化部分的面积为:6a2+7ab+2b2﹣(4ab﹣2b2)=6a2+3ab+4b2,当a=3,b=1时,原式=6×32+3×3×1+4×12=6×9+9+4=54+9+4=67(平方米).15.解:(1)3ab2•(﹣a2b)•2abc=﹣2a4b4c;(2)(3a+2b)(4a﹣5b)=12a2﹣15ab+8ab﹣10b2=12a2﹣7ab﹣10b2.16.解:(1)原式=34×32016×=32020×=1;(2)原式=x4﹣x4+2x5+x5=3x5.17.解:(x+2y)(y﹣2)+(2y﹣4x)(y+1)=(xy﹣2x+2y2﹣4y)+(2y2﹣4xy+2y﹣4x)=xy﹣2x+2y2﹣4y+2y2﹣4xy+2y﹣4x=4y2﹣3xy﹣6x﹣2y.18.解:∵42x•52x+1﹣42x+1•52x=5×42x•52x﹣4×42x•52x=202x,∵42x•52x+1﹣42x+1•52x=203x﹣4,∴2x=3x﹣4,∴x=4.19.解:(1)(x+m)(x+n)=x2+(m+n)x+mn,故答案为:x2+(m+n)x+mn;(2)①(a+10)(a﹣11)=a2﹣a﹣110,②(y﹣5)(y﹣8)=y2﹣13y+40.故答案为:a2﹣a﹣110;y2﹣13y+40.20.解:(1)由题意得:(3a﹣b)(3a+b)﹣(a+b)2=9a2﹣b2﹣a2﹣2ab﹣b2=8a2﹣2ab﹣2b2,答:长方形实验田比正方形实验田多种植豌豆幼苗(8a2﹣2ab﹣2b2)株;(2)由题意得:(3a﹣b)(3a+b)+(a+b)2=9a2﹣b2+a2+2ab+b2=10a2+2ab,当a=4,b=3时,原式=10×42+2×4×3=160+24=184,答:该种植基地这两块实验田一共种植了184株豌豆幼苗.。

湘教版初中七年级数学下册第二单元测试卷含答案解析(4套)

湘教版初中七年级数学下册第二单元测试卷含答案解析(4套)

第2章整式的乘法单元测试卷一、选择题(每题3分,共30分)1.下列各式中,与其他三个选项可能不相等的是( )A. (a2)3B. (a3)2C. a3·a3D. a3+a32.下列等式错误的是( )A.(2mn)2=4m2n2B.(-2mn)2=4m2n2C.(2m2n2)3=8m6n6D.(-2m2n2)3=-8m5n53.计算(m3n)2的结果是( )A.m6nB.m6n2C.m5n2D.m3n24.已知a m=8,a n=16,则a m+n等于( )A.24B.32C.64D.1285.一个长方体的长、宽、高分别是3x-4,2x-1和x,则它的体积是( )A.6x3-5x2+4xB.6x3-11x2+4xC.6x3-4x2D.6x3-4x2+x+46.已知a+b=3,ab=2,则a2+b2的值为( )A.3B.4C.5D.67.20152-2014×2016的计算结果是( )A.-1B.0C. 1D.4 0308.下面计算(-7+a+b)(-7-a-b)正确的是( )A.原式=[-(7-a-b)][-(7+a+b)]=72-(a+b)2B.原式=[-(7+a)+b][-(7+a)-b]=(7+a)2-b2C.原式=(-7+a+b)[-7-(a+b)]=-72-(a+b)2D.原式=(-7+a+b)[-7-(a+b)]=72+(a+b)29.当x=-1时,代数式x2(x3+2x2+6)-(x3+2x2+6)的值是( )A.32B.-32C.0D.-6410.如图所示的各图形中的三个数之间均具有相同的规律.根据此规律,图形中M与m,n的关系是( )A.M=mnB.M=n(m+1)C.M=mn+1D.M=m(n+1)二、填空题(每题3分,共24分)11.计算:3a·2a2=_________.12.已知ab2=-1,则2a2b·3ab5=_________.13.如果(x-5)(x+20)=x2+mx+n,那么m=_________,n=_________.14.若a2n=3,则2a6n-1=_________.15.若16a2-ka+9是完全平方式,则k=_________.16.若ab=3,a-2b=5,则a2b-2ab2的值是_________.17.要使(x2+ax+1)·(-6x3)的计算结果中不含x4项,则a=_________.18.观察下列各式的规律:(a-b)(a+b)=a2-b2,(a-b)(a2+ab+b2)=a3-b3,(a-b)(a3+a2b+ab2+b3)=a4-b4,…,可得到(a-b)(a2 016+a2 015b+…+ab2 015+b2 016)= _________.三、解答题(19、20题每题8分,其余每题10分,共46分)19.化简:(1)(a-b)2+a(2b-a);(2)(a+2)2+(1-a)(1+a).20.(1)先化简,再求值:(x+1)(x-1)+x(3-x),其中x=2.(2)化简求值:(a+2b+1)·(-a+2b-1)+(a-1)2,其中a=,b=3.21.(1)已知a m=3,a n=6,a k=4,求a m+n+k的值;(2)若a2+3a-1=0,求3a3+10a2+2 013的值.22.对于任意的有理数a,b,c,d,我们规定=ad-bc.如:=(-2)×5-(-4)×3=2.根据这一规定,解答下列问题:(1)化简;(2)若x,y同时满足=5,=8,求x,y的值.23.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”.如:4=22-02,12=42-22,20=62-42,因此4,12,20都是“神秘数”.(1)2 014和2 012这两个数是“神秘数”吗?为什么?(2)说明:由两个连续偶数构造的“神秘数”是4的倍数.参考答案1.【答案】D解:(a2)3=a6,(a3)2=a6,a3·a3=a6,a3+a3=2a3,故选D.2.【答案】D3.【答案】B解:根据积的乘方公式,即可得到答案.4.【答案】D解:a m+n=a m·a n=8×16=128,故选D.5.【答案】B6.【答案】C7.【答案】C解:20152-2014× 016=20152-(2015-1)(2015+1)=20152-20152+1=1,故选C.8.【答案】A 9.【答案】C 10.【答案】D二、11.【答案】6a312.【答案】-6解:2a2b·3ab5=6a3b6=6(ab2)3=6×(-1)=-6.13.【答案】15;-100解:因为(x-5)(x+20)=x2+20x-5x-100=x2+15x-100= x2+mx+n,所以m=15,n=-100.14.【答案】53 15.【答案】±24 16.【答案】1517.【答案】0解:因为(x2+ax+1)·(-6x3)=-6x5-6ax4-6x3,且(x2+ax+1)·(-6x3)的计算结果中不含x4项,所以-6a=0,所以a=0.18.【答案】a2 017-b2 017三、19.解:(1)原式=a2-2ab+b2+2ab-a2=b2.(2)原式=a2+4a+4+1-a2=4a+5.20.解:(1)原式=x2-1+3x-x2=3x-1,当x=2时,原式=3×2-1=5.(2)原式=-[(a+1)+2b]·[(a+1)-2b]+(a-1)2=-[(a+1)2-(2b)2]+(a-1)2=4b2-(a2+ 2a+1)+a2-2a+1=4b2-a2-2a-1+a2-2a+1=4b2-4a.当a=,b=3时,原式=4×32-4×=36-2=34.21.解:(1)a m+n+k=a m·a n·a k=3×6×4=72.本题是同底数幂的乘法法则的逆用,只要把a m+n+k转化为a m ·a n ·a k,代入求值即可.(2)因为a2+3a-1=0,所以a2+3a=1,所以3a3+10a2+2 013=3a(a2+3a)+a2+2 013=3a+a2+2013=1+2013=2014.22.解:(1)=(x+3y)(2x+y)-2x·3y=2x2+xy+3y2.(2)由=5,得3x+2y=5;由=8,得2x-y=8;联立可得方程组解得23.解:(1)2014不是“神秘数”,2012是“神秘数”.理由:假如2 014和2012都是“神秘数”,设2014是x和x-2两数的平方差(x为正整数),则x2-(x-2)2=2014,解得x=504.5,因为504.5不是整数,所以2014不是“神秘数”.设2012是y和y-2两数的平方差(y为正整数),则y2-(y-2)2=2012,解得y=504,y-2=502,即2 012=5042-5022,所以2 012是“神秘数”.(2)设两个连续偶数为2k+2和2k(k取非负整数),则(2k+2)2-(2k)2=(2k+2-2k)(2k+2+2k)=4(2k+1),所以由2k+2和2k构造的“神秘数”是4的倍数,即两个连续偶数构造的“神秘数”是4的倍数.第2章达标测试卷一、选择题(每题3分,共24分)1.下列运算正确的是( )A .3x -x =2B .x 3·x 4=x 7C .(x 3)4=x 7D .(2x )2=2x 22.计算(-3a )3的正确结果是( )A .-3a 3B .27a 3C .-27a 3D .-9a3.计算(-3x 2)·(-4x 3)的结果是( )A .12x 5B .-12x 5C .12x 6D .-7x 54.利用平方差公式计算(a -b +c )(a +b -c ),以下结果正确的是( )A .a 2-(b +c )2B .(a -b )2-c 2C .(a +c )2-b 2D .a 2-(b -c )25.下列各式中,计算错误的是( )A .(x +1)(x +2)=x 2+3x +2B .(x -2)(x +2)=x 2-4C .⎝ ⎛⎭⎪⎫x -12=x 2-x +14 D .(x +y -1)(x +y -2)=(x +y )2-3(x +y )-26.若(x +a )与(x +3)的乘积中不含x 的一次项,则a 的值为( )A .3B .-3C .1D .-17.已知ab 2=-1,则-ab (a 2b 5-ab 3-b )的值等于( )A .-1B .0C .1D .无法确定8.随着数学学习的深入,数系不断扩充,引入新数i ,规定i 2=-1,并且新数i参与的运算满足交换律、结合律和分配律,则(1+i )·(2-i )的运算结果是( )A .3-iB .2+iC .1-iD .3+i二、填空题(每题4分,共32分)9.计算:-2a ·14a 3=________.10.若a 2·a m =a 6,则m =________.11.已知x (x -2)=3,则代数式2x 2-4x -7的值为__________.12.如果一个长方形的长是(x +3y )米,宽是(x -3y )米,那么该长方形的面积是________平方米.13.已知代数式-3x m -1y 3与2x n y m +n 是同类项,则-3x m -1y 3与2x n y m +n 的积是________.14.设A =(x -3)(x -7),B =(x -2)(x -8),则A ,B 的大小关系为A ________B .15.已知m +n =mn ,则(m -1)(n -1)=________.16.已知(x -2 020)2+(x -2 022)2=34,则(x -2 021)2的值是________.三、解答题(第17题18分,第18~20题每题6分,第21题8分,共44分)17.计算:(1)x ·x 3+x 2·x 2;(2)(-a 3)2·(-a 2)3;(3)x 4·x 6-(x 5)2;(4)(a -b )2+a (2b -a );(5)(a +2)2+(1-a )(1+a );(6)(a +2b )(a -2b )-12b (a -8b ).18.用简便方法计算:(1)499×501; (2)2 0202 0202-2 021×2 019.19.先化简,再求值:(1)(x+1)2-(x-1)(x+4),其中x=-2;(2)(a+2b+1)(-a+2b-1)+(a-1)2,其中a=12,b=3.20.试说明:对于任意自然数n,代数式n(n+7)-n(n-5)+6的值都能被6整除.21.对于任意的有理数a ,b ,c ,d ,我们规定⎪⎪⎪⎪⎪⎪a b c d =ad -bc .如⎪⎪⎪⎪⎪⎪-2 -43 5=(-2)×5-(-4)×3=2.根据这一规定,解答下列问题: (1)化简⎪⎪⎪⎪⎪⎪x +3y 2x 3y 2x +y ; (2)若x ,y 同时满足⎪⎪⎪⎪⎪⎪3-2y x =5,⎪⎪⎪⎪⎪⎪x1y 2=8,求x ,y 的值.答案一、1.B 2.C 3.A 4.D 5.D6.B 点拨:(x +a )(x +3)=x 2+(a +3)x +3a ,由结果不含x 的一次项,得a +3=0,解得a =-3. 7.C8.D 点拨:原式=2-i +2i -i 2=2+i -i 2,因为i 2=-1,所以原式=2+i +1=3+i . 二、9.-12a 4 10.4 11.-1 12.(x 2-9y 2) 13.-6x 2y 6点拨:根据同类项概念得⎩⎨⎧m -1=n ,3=m +n ,解得⎩⎨⎧m =2,n =1,所以-3x m -1y 3·2x n y m +n =-3xy 3·2xy 3=-6x 2y 6.14.> 点拨:因为A =(x -3)(x -7)=x 2-10x +21,B =(x -2)(x -8)=x 2-10x +16,所以A -B =x 2-10x +21-(x 2-10x +16)=5>0, 所以A >B .15.1 点拨:(m -1)(n -1)=mn -m -n +1=mn -(m +n )+1 =1. 16.16三、17.解:(1)原式=x 4+x 4=2x 4. (2)原式=a 6·(-a 6)=-a 12. (3)原式=x 10-x 10=0.(4)原式=a 2-2ab +b 2+2ab -a 2=b 2. (5)原式=a 2+4a +4+1-a 2=4a +5. (6)原式=a 2-4b 2-12ab +4b 2=a 2-12ab .18.解:(1)原式=(500-1)(500+1)=5002-1=249 999.(2)原式= 2 0202 0202-(2 020+1)(2 020-1)= 2 0202 0202-2 0202+1=2 020.19.解:(1)原式=(x 2+2x +1)-(x 2+3x -4)=x 2+2x +1-x 2-3x +4=-x +5.当x =-2时,原式=-(-2)+5=7.(2)原式=-[(a +1)+2b ]·[(a +1)-2b ]+(a -1)2=-[(a +1)2-(2b )2]+(a -1)2=4b 2-(a 2+2a +1)+a 2-2a +1=4b 2-a 2-2a -1+a 2-2a +1=4b 2-4a . 当a =12,b =3时,原式=4×32-4×12=36-2=34.20.解:因为n (n +7)-n (n -5)+6=n 2+7n -n 2+5n +6=12n +6=6(2n +1),所以对于任意自然数n ,代数式n (n +7)-n (n -5)+6的值都能被6整除. 21.解:(1)⎪⎪⎪⎪⎪⎪x +3y 2x 3y 2x +y =(x +3y )(2x +y )-2x ·3y =2x 2+xy +3y 2.(2)由⎪⎪⎪⎪⎪⎪3 -2y x =5,得3x +2y =5,由⎪⎪⎪⎪⎪⎪x 1y 2=8,得2x -y =8, 联立可得方程组⎩⎨⎧3x +2y =5,2x -y =8,解得⎩⎨⎧x =3,y =-2.第二章《整式的乘法》单元测试一、填空题1.-xy 的次数是 ___,2ab +3a 2b +4a 2b 2+1是___次___项式.2.将0.00003651用科学记数法表示为___.3.计算:(-b )2·(-b )3·(-b )5=___,-2a (3a -4b )=___.4.(9x +4)(2x -1)=___,(3x +5y )· ___=9x 2-25y 2.5.(x +y )2-___=(x -y )2.6.已知被除式为x 3+3x 2-1,商式是x ,余式是-1,则除式是___.7.若x 2+x +m 2是一个完全平方式,则m =___.8.若2x -y =-3,则4x ÷2y =___.9.有一名同学把一个整式减去多项式xy +5yz +3xz 误认为加上这个多项式,结果答案为 5yz -3xz +2xy ,则原题正确答案为___.10.当a =___,b =___时,多项式a 2+b 2-4a +6b +18有最小值.二、选择题1.下列计算正确的是( )A.22=-a aB.326m m m =÷C.2010201020102x x x =+D.632t t t =⋅2.梁老师给下列四个判断,则其中错误的是( )A.数字 0 也是单项式B.单项式 a 的系数与次数都是 1C.2221y x 是二次单项式 D.32ab -的系数是 32- 3.代数式 2010 ,x 1,xy 2 ,π1,y 21-,2010b a + 中是单项式的个数有( )A.2个B.3个C.4个D.5个4.包老师把一个多项式减去22b a -等于22b a +,则这个多项式为( ) A.22b B.22a C.22b - D.22a -5.如果一个多项式的次数是6,则这个多项式的任何一项的次数都( ) A.不大于6 B.小于6 C.等于6D.不小于66.黎老师做了个长方形教具,其中一边长为b a +2,另一边为b a -,则该长方形周长为( ) A.a 6 B.b a +6C.a 3D.b a -107.下列多项式中是完全平方式的是( ) A.142++x x B.1222+-y x C.2222y xy y x ++ D.41292+-a a8.饶老师给出:2=+b a ,222=+b a , 你能计算出 ab 的值为( ) A.0 B.21-C.1-D.1 9.若22)3(9+=++x ax x ,则a 的值为( ) A.3 B.3± C.6 D.6±10.已知552=a ,443=b ,334=c , 则a 、b 、c 、的大小关系为:( )A.c b a >>B.b c a >>C.a c b >>D.c a b >> 三、细心做一做,马到成功 1.计算下列各式(1)()223211482x y xyz xy ⎛⎫⎛⎫-⋅-÷ ⎪ ⎪⎝⎭⎝⎭(2)()()()2232x y x y y x y +---(3)()()222121a a -+(4)2200720092008⨯-(运用乘法公式)2.先化简,再求值:22[(2)(2)2(2)]()xy xy x y xy +---÷,其中10x =,125y =-.3.菜单位为响应政府发出的全民健身的号召,打算在长宽分别为20米和11米的长方形大厅内修建一长方形健身房ABCD ,该健身房的四面墙壁中有两侧沿用大厅的旧墙壁(如图为平面示意图),已知装修旧墙壁的费用为口元,平方米,比新建(含装修)墙壁的费用每平方米少50元,设健身房的高为3米,一面旧墙壁AB的长为x米,BC为)5x米,则修建健身房墙壁的总投入为多少元?(用含口、(x的代数式表示)参考答案一、1.2、4、四;2.3.651×10-5;3.b 10、-6a 2+8ab ;4.18x 2-x -4、(3x -5y );5.4xy ;6.x 2+3x ;7.±12;8.18.点拨:4x ÷2y =22x ÷2y =22x -y =2-3=18;9.-5yz -9xz .点拨:设这个整式为A ,则A +xy +5yz +3xz =5yz -3xz +2xy , 所以A =xy -6xz ,所以正确的解法为xy -6xz -(xy +5yz +3xz )=-5yz -9xz ; 10.2、-3.点拨:a 2+b 2-4a +6b +18=a 2-4a +4+b 2+6b +9+5=(a -2)2+(b +3)2+5. 二、选择题:1.(1)原式=342411224x y z x y xz ÷=(2)原式222222323624x xy y xy y x y =+--+=+(3)原式=()()()22242212141168 1.a a a a a -+=-=-+⎡⎤⎣⎦(4)原式222(20081)(20081)20082008120081=-⋅+-=-+=- 2.原式2222(424)()x y x y xy =--+÷22()x y xy xy =-÷=-. 当10x =,125y =-时,原式1210255⎛⎫=-⨯-= ⎪⎝⎭. 3.[3(5)3][3(5)3](50)12303007503(25)(250)()x x a x x a ax a x x a +-⨯⨯++-⨯⨯+=-+-=-+元湘教新版七年级下册数学《第2章整式的乘法》单元测试卷一.选择题1.计算:a2•a的结果是()A.a B.a2C.a3D.2a22.计算(﹣x)•(﹣2x2)(﹣4x4)的结果为()A.﹣4x6B.﹣4x7C.4x8D.﹣4x83.今天数学课上,老师讲了单项式乘以多项式,放学回到家,小明拿出课堂笔记复习,发现一道题:﹣3xy(4y﹣2x﹣1)=﹣12xy2+6x2y+□,□的地方被钢笔水弄污了,你认为□内应填写()A.3xy B.﹣3xy C.﹣1D.14.下列运算正确的是()A.2x+3y=5xy B.(a﹣b)2=a2﹣b2C.5m2•m3=5m5D.m2•m3=m65.利用图形中面积的等量关系可以得到某些数学公式.例如,根据图甲,我们可以得到两数和的平方公式:(a+b)2=a2+2ab+b2.你根据图乙能得到的数学公式是()A.(a+b)(a﹣b)=a2﹣b2B.(a﹣b)2=a2﹣2ab+b2C.a(a+b)=a2+ab D.a(a﹣b)=a2﹣ab6.若多项式x2+kx+4是一个完全平方式,则k的值是()A.2B.4C.±2D.±47.3(22+1)(24+1)(28+1)…(232+1)+1的个位数是()A.4B.5C.6D.88.下列运算正确的是()A.2a+3b=5ab B.a2•a3=a5C.(2a)3=6a3D.a6+a3=a99.根据图1的面积可以说明多项式的乘法运算(2a+b)(a+b)=2a2+3ab+b2,那么根据图2的面积可以说明多项式的乘法运算是()A.(a+3b)(a+b)=a2+4ab+3b2B.(a+3b)(a+b)=a2+3b2C.(b+3a)(b+a)=b2+4ab+3a2D.(a+3b)(a﹣b)=a2+2ab﹣3b210.如图,阴影部分是边长为a的大正方形中剪去一个边长为b的小正方形后所得到的图形,将阴影部分通过割、拼,形成新的图形,给出下列3种割拼方法,其中能够验证平方差公式的是()A.①②B.②③C.①③D.①②③二.填空题11.计算:•ab=.12.若(x+m)与(x+3)的乘积中不含x的一次项,则m=.13.已知a+b=3,a2+b2=5,则ab的值是.14.22019×(﹣)2020=.15.若x m=2,x n=5,则x m+n=.16.计算:2a2•3ab=.17.计算:20202﹣2019×2021=.18.如图,边长为2m+3的正方形纸片剪出一个边长为m+3的正方形之后,剩余部分可剪拼成一个长方形,若拼成的长方形一边长为m,则这个长方形的周长为.19.有两个正方形A,B,现将B放在A的内部得图甲,将A,B并列放置后构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为1和12,则正方形A,B的边长之和为.20.若多项式x2﹣mx+16是一个完全平方式,则m的值应为.三.解答题21.如果a c=b,那么我们规定(a,b)=c.例如:因为23=8,所以(2,8)=3.(1)根据上述规定,填空:(3,27)=,(4,16)=,(2,16)=.(2)记(3,5)=a,(3,6)=b,(3,30)=c.求证:a+b=c.22.计算:(﹣2a2)2﹣3a4+2a•(﹣3a3)23.老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如下:×(﹣xy)=3x2y﹣xy2+xy(1)求所捂的多项式;(2)若x=,y=,求所捂多项式的值.24.如果a c=b,那么我们规定(a,b)=c,例如:因为23=8,所以(2,8)=3(1)根据上述规定,填空:(3,27)=,(4,1)=(2,0.25)=;(2)记(3,5)=a,(3,6)=b,(3,30)=c.求证:a+b=c.25.如图,某市有一块长为(3a+b)米,宽为(2a+b)米的长方形地块,规划部门计划将阴影部分进行绿化,中间将修建一座雕像,则绿化的面积是多少平方米?并求出当a=6,b =4时的绿化面积.26.回答下列问题(1)填空:x2+=(x+)2﹣=(x﹣)2+(2)若a+=5,则a2+=;(3)若a2﹣3a+1=0,求a2+的值.参考答案与试题解析一.选择题1.解:a2•a=a3.故选:C.2.解:(﹣x)•(﹣2x2)(﹣4x4)=﹣4x7,故选:B.3.解:因为左边=﹣3xy(4y﹣2x﹣1)=﹣12xy2+6x2y+3xy.右边=﹣12xy2+6x2y+□,所以□内上应填写3xy.故选:A.4.解:A、原式不能合并,故选项错误;B、原式=a2﹣2ab+b2,故选项错误;C、原式=5m5,故选项正确;D、原式=m5,故选项错误.故选:C.5.解:左上角正方形的面积=(a﹣b)2,还可以表示为a2﹣2ab+b2,所以(a﹣b)2=a2﹣2ab+b2.故选:B.6.解:因为x2+kx+4是一个完全平方式,所以kx=±2•x•2,解得:k=±4,故选:D.7.解:3(22+1)(24+1)(28+1)…(232+1)+1=(22﹣1)(22+1)(24+1)(28+1)…(232+1)+1=(24﹣1)(24+1)(28+1)…(232+1)+1…=264﹣1+1=264,因为21=2,22=4,23=8,24=16,25=32,…,所以个位上数字以2,4,8,6为循环节循环,因为64÷4=16,所以264个位上数字为6,即原式个位上数字为6.故选:C.8.解:A、2a+3b无法计算,故此选项不合题意;B、a2•a3=a5,正确,符合题意;C、(2a)3=8a3,故此选项不合题意;D、a6+a3,无法计算,故此选项不合题意;故选:B.9.解:根据图2的面积得:(a+3b)(a+b)=a2+4ab+3b2,故选:A.10.解:在图①中,左边的图形阴影部分的面积=a2﹣b2,右边图形中阴影部分的面积=(a+b)(a﹣b),故可得:a2﹣b2=(a+b)(a﹣b),可以验证平方差公式;在图②中,阴影部分的面积相等,左边阴影部分的面积=a2﹣b2,右边阴影部分面积=(2b+2a)•(a﹣b)=(a+b)(a﹣b),可得:a2﹣b2=(a+b)(a﹣b),可以验证平方差公式;在图③中,阴影部分的面积相等,左边阴影部分的面积=a2﹣b2,右边阴影部分面积=(a+b)•(a﹣b),可得:a2﹣b2=(a+b)(a﹣b),可以验证平方差公式.故选:D.二.填空题11.解:•ab=ab2•ab﹣2ab•ab=a2b3﹣a2b2.故答案为:a2b3﹣a2b2.12.解:因为(x+m)(x+3)=x2+3x+mx+3m=x2+(3+m)x+3m,又因为乘积中不含x的一次项,所以3+m=0,解得m=﹣3.故答案为:﹣3.13.解:因为a+b=3,所以(a+b)2=9,即a2+2ab+b2=9,因为a2+b2=5,所以ab=(9﹣5)÷2=2.故答案为:2.14.解:22019×(﹣)2020=[22019×(﹣)2019]×(﹣)=.故答案为:.15.解:因为x m=2,x n=5,所以x m+n=x m•x n=2×5=10.故答案为:10.16.解:2a2•3ab=6a3b,故答案为:6a3b.17.解:20202﹣2019×2021=20202﹣(2020﹣1)×(2020+1)=20202﹣20202+12=1故答案为:1.18.解:因为(2m+3)2=4m2+12m+9,拼成的长方形一边长为m,所以长方形的长为:[4m2+12m+9﹣(m+3)2]÷m=3m+6.所以这个长方形的周长为:2(3m+6+m)=8m+12.故答案为:(8m+12).19.解:设正方形A,B的边长分别为a,b.由题意由②得到ab=6,所以(a+b)2=(a﹣b)2+4ab=1+24=25,因为a+b>0,所以a+b=5,故答案为5.20.解:因为x2﹣mx+16=x2﹣mx+42,所以﹣mx=±2•x•4,解得m=±8.故答案为:±8三.解答题21.解:(1)因为33=27,所以(3,27)=3;因为42=16,所以(4,16)=2;因为24=16,所以(2,16)=4;故答案为:3;2;4;(2)证明:因为(3,5)=a,(3,6)=b,(3,30)=c,所以3a=5,3b=6,3c=30,所以3a×3b=30,所以3a+b=30,因为3c=30,所以3a+b=3c,所以a+b=c.22.解:原式=4a4﹣3a4﹣6a4=﹣5a4.23.解:(1)设多项式为A,则A=(3x2y﹣xy2+xy)÷(﹣xy)=﹣6x+2y﹣1.(2)因为x=,y=,所以原式=﹣6×+2×﹣1=﹣4+1﹣1=﹣4.24.解:(1)(3,27)=3,(4,1)=0,(2,0.25)=﹣2,故答案为:3,0,﹣2;(2)证明:因为(3,5)=a,(3,6)=b,(3,30)=c,所以3a=5,3b=6,3c=30,所以3a×3b=30,所以3a×3b=3c,所以a+b=c.25.解:S=(3a+b)(2a+b)﹣(a+b)2阴影=6a2+3ab+2ab+b2﹣a2﹣2ab﹣b2=5a2+3ab(平方米),当a=6,b=4时,5a2+3ab=5×36+3×6×4=180+72=252(平方米).26.解:(1)2、2.(2)23.(3)因为a2﹣3a+1=0两边同除a得:a﹣3+=0,移项得:a+=3,所以a2+=(a+)2﹣2=7.第二章 整式的乘法知识点总结1.同底数幂的乘法:a m ·a n =a m+n ,底数不变,指数相加.2.幂的乘方与积的乘方:(a m )n =a mn ,底数不变,指数相乘; (ab)n =a n b n ,积的乘方等于各因式乘方的积.3.单项式的乘法:系数相乘,相同字母相乘,只在一个因式中含有的字母,连同指数写在积里.4.单项式与多项式的乘法:m(a+b+c)=ma+mb+mc ,用单项式去乘多项式的每一项,再把所得的积相加.5.多项式的乘法:(a+b)·(c+d)=ac+ad+bc+bd ,先用多项式的每一项去乘另一个多项式的每一项,再把所得的积相加.6.乘法公式:(1)平方差公式:(a+b)(a-b)= a 2-b 2,两个数的和与这两个数的差的积等于这两个数的平方差;(2)完全平方公式:① (a+b)2=a 2+2ab+b 2, 两个数和的平方,等于它们的平方和,加上它们的积的2倍; ② (a-b)2=a 2-2ab+b 2 , 两个数差的平方,等于它们的平方和,减去它们的积的2倍; ※ ③ (a+b-c)2=a 2+b 2+c 2+2ab-2ac-2bc ,略.7.配方:(1)若二次三项式x 2+px+q 是完全平方式,则有关系式:q 2p 2=⎪⎭⎫ ⎝⎛; ※ (2)二次三项式ax 2+bx+c 经过配方,总可以变为a(x-h)2+k 的形式,利用a(x-h)2+k ①可以判断ax 2+bx+c 值的符号; ②当x=h 时,可求出ax 2+bx+c 的最大(或最小)值k.※(3)注意:2x 1x x 1x 222-⎪⎭⎫ ⎝⎛+=+. 8.同底数幂的除法:a m ÷a n =a m-n ,底数不变,指数相减.9.零指数与负指数公式:(1)a 0=1 (a ≠0); a -n =na 1,(a ≠0). 注意:00,0-2无意义; (2)有了负指数,可用科学记数法记录小于1的数,例如:0.0000201=2.01×10-5 .。

七年级数学下册《第二章-整式的乘法》练习题及答案(湘教版)

七年级数学下册《第二章-整式的乘法》练习题及答案(湘教版)

七年级数学下册《第二章整式的乘法》练习题及答案(湘教版)学校:___________班级:___________姓名:___________考号:___________一、选择题1.下列计算错误的是( )A.(-a)·(-a)2=a3B.(-a)2·(-a)2=a4C.(-a)3·(-a)2=-a5D.(-a)3·(-a)3=a62.式子a2m+3不能写成( )A.a2m·a3 B.a m·a m+3 C.a2m+3 D.a m+1·a m+23.计算3a·(-2a)2=( )A.-12a3B.-6a2C.12a3D.6a24.化简a(a+1)-a(1-a)的结果是( )A.2a ;B.2a2;C.0 ;D.2a2-2a.5.若(x+2)(x-1)=x2+mx+n,则m+n=()A.1B.﹣2C.﹣1D.26.若(x+m)(x2-3x+n)的展开式中不含x2和x项,则m,n的值分别为()A.m=3,n=1B.m=3,n=-9C.m=3,n=9D.m=-3,n=97.如图,甲、乙、丙、丁四位同学给出了四种表示该长方形面积的多项式:①(2a+b)(m+n); ②2a(m+n)+b(m+n);③m(2a+b)+n(2a+b); ④2am+2an+bm+bn你认为其中正确的有()A.①②B.③④C.①②③D.①②③④8.若x2﹣kxy+9y2是一个完全平方式,则k的值为( )A.3B.±6C.6D.+39.已知P=8x2-y2+6x-2,N=9x2+4y+13,则P和N的大小关系是( ).A.P>NB.P=NC.P<ND.不能确定10.计算(a-b)(a+b)(a2+b2)(a4-b4)的结果是( )A.a8+2a4b4+b8B.a8-2a4b4+b8C.a8+b8D.a8-b8二、填空题11.计算:(﹣x)3•x2= .12.计算(-xy)2(x+2x2y)= .13.已知单项式M、N满足等式3x(M-5x)=6x2y3+N,则M=______,N=______.14.若4a4﹣ka2b+25b2是一个完全平方式,则k= .15.若(x+2y)(2x﹣ky﹣1)的结果中不含xy项,则k的值为.16.若n满足(n﹣2010)(2024﹣n)=6,则(2n﹣4034)2=__________.三、解答题17.化简:4xy(3x2+2xy-1);18.化简:-5x(-x2+2x+1)-(2x+3)(5-x2)19.化简:(2a+1)2-(2a+1)(2a-1).20.化简:4(a+2)2-7(a+3)(a-3)+3(a-1)2.21.若2×8n×16n=222,求n的值.22.先化简,再求值.x(x2﹣6x﹣9) ﹣x(x2﹣8x﹣15) +2x(3﹣x),其中x=-16 .23.老师在黑板上布置了一道题,小亮和小新展开了下面的讨论:根据上述情景,你认为谁说得对?为什么?24.图①是一个长为2m,宽为2n的长方形纸片,将长方形纸片沿图中虚线剪成四个形状和大小完全相同的小长方形,然后拼成图②所示的一个大正方形.(1)用两种不同的方法表示图②中小正方形(阴影部分)的面积:方法一:S小正方形= ;方法二:S小正方形= ;(2)(m+n)2,(m﹣n)2,mn这三个代数式之间的等量关系为(3)应用(2)中发现的关系式解决问题:若x+y=9,xy=14,求x﹣y的值.24.将6张小长方形纸片(如图1所示)按图2所示的方式不重叠的放在长方形ABCD内,未被覆盖的部分恰好分割为两个长方形,面积分别为S1和S2.已知小长方形纸片的长为a,宽为b,且a>b.当AB长度不变而BC变长时,将6张小长方形纸片还按照同样的方式放在新的长方形ABCD内,S1与S2的差总保持不变,求a,b满足的关系式.(1)为解决上述问题,如图3,小明设EF=x,则可以表示出S1=_______,S2=_______;(2)求a,b满足的关系式,写出推导过程.参考答案1.【答案】A2.【答案】C3.【答案】C4.【答案】B5.【答案】C6.【答案】C7.【答案】D8.【答案】B9.【答案】C10.【答案】D11.【答案】﹣x5.12.【答案】x3y2+2x4y3.13.【答案】2xy3;-15x2.14.【答案】±20.15.【答案】4.16.【答案】25.17.【答案】原式=12x3y+8x2y2-4xy.18.【答案】原式=7x3-7x2-15x-15.19.【答案】原式=4a+2.20.【答案】原式=10a+8221.【答案】解:n=322.【答案】解:x(x2-6x-9)-x(x2-8x-15)+2x(3-x)=x3-6x2-9x- x3+8x2+15x+6x-2x2=12x.当x=-16时,原式=-2.23.【答案】解:原式=4x2﹣y2+2xy﹣8x2﹣y2+4xy+2y2﹣6xy=﹣4x2 因为这个式子的化简结果与y值无关所以只要知道了x的值就可以求解故小新说得对.24.【答案】解:(1)方法一:S小正方形=(m+n)2﹣4mn.方法二:S小正方形=(m﹣n)2.(2)(m+n)2,(m﹣n)2,mn这三个代数式之间的等量关系为(m+n)2﹣4mn=(m﹣n)2.(3)∵x+y=9,xy=14∴x﹣y=±=±5.故答案为:(m+n)2﹣4mn,(m﹣n)2;(m+n)2﹣4mn=(m﹣n)2.25.【答案】解:(1)a(x+a),4b(x+2b);(2)解:由(1)知:S1=a(x+a),S2=4b(x+2b)∴S1-S2=a(x+a)-4b(x+2b)=ax+a2-4bx-8b2=(a-4b)x+a2-8b2∵S1与S2的差总保持不变∴a-4b=0.∴a=4b.。

湘教版七下数学2.1整式的乘法训练题及答案

湘教版七下数学2.1整式的乘法训练题及答案

; ; .
19. 已知
,求代数式
20. 先化简,再求值:
的值.
,其中
,.
21. 宇宙空间的距离是以光年为单位的, 光年是指光在一年内通过的距离,如果光的速度为
,一年约为
,那么一光年约是多少千米
22. 已知
,求
的值.
第一部分 1. B 2. A 3. D 4. B 5. C 6. A 7. A 8. C 9. A 10. A
,则 的值为

13. 已知

,则
14. 已知

,则
15. 若
,则
16. 如图所示的正方形和长方形卡片若干张,拼成一个长为
类卡片
张, 类卡片

张.
.பைடு நூலகம்


,宽为
的矩形,需要 张, 类卡
三、解答题(共 6 小题;共 52 分)
17. 计算:
(1)

(2)

18. 用简便方法计算: (1) (2) (3)
6. 如图,阴影部分的面积是
A.
B.
C.
D.
7. 若 A.
,则 的值为 (
)
B.
C.
D.
8. 适合 A.
的 的值为 (
)
B.
C.
D.
9. A.
展开后的项数为 (
)
B.
C.
D.
10. 设 A.


,则 , , 的大小关系是 (
)
B.
C.
D.
二、填空题(共 6 小题;共 18 分)
11. 计算:

12. 若
第二部分 11. 12. 13. 14. 15. 16. ; ;

初中数学湘教版七年级下册第2章 整式的乘法2.1 整式的乘法-章节测试习题(10)

初中数学湘教版七年级下册第2章 整式的乘法2.1 整式的乘法-章节测试习题(10)

章节测试题1.【答题】=______, =______.【答案】【分析】根据积的乘方运算法则计算【解答】试题解析:原式故答案为:(1). (2). .2.【答题】若,则的值是______.【答案】15【分析】根据积的乘方运算法则计算【解答】∵,∴=(5×4)n=5n×4n=3×5=15,故答案为:15.【点睛】本题考查了积的乘方的应用,熟记积的乘方的运算法则是解题的关键.3.【答题】______.【答案】【分析】【解答】原式==,故答案为:.4.【答题】若,则=______.【答案】72【分析】【解答】∵x2n=2,y3n=3,∴(xy)6n=x6n y6n=(x2n)3(y3n)2=23×32=8×9=72,故答案为:72.【点睛】本题主要考查积的乘方以及幂的乘方在求值中的应用,熟练掌握相关的运算法则是解题的关键.5.【答题】已知,则x=______.【答案】-ab【分析】根据积的乘方运算法则计算【解答】∵(x3)5=-a15b15,∴x15=(-ab)15,∴x=-ab,故答案为:-ab.6.【答题】=______.【答案】-1【分析】【解答】(0.125)2013×(-8)2013=[0.125×(-8)]2013=(-1)2013=-1,故答案为:-1.7.【答题】(______).【答案】【分析】根据积的乘方运算法则计算【解答】∵(-3a 2 b 3)3 =-27a 6 b 9,∴-27a 6 b 9 =(-3a 2 b 3)3,故答案为:-3a 2 b 3.8.【答题】如果a=0.25 b=-4,那么a2015·b2016=______.【答案】4【分析】本题考查了积的乘方的逆用,熟练掌握积的乘方的运算是解题的关键. 【解答】∵a=0.25,b=-4,∴a2015·b2016=0.252015×(-4)2016=0.252015×42016=(0.25×4)2015×4=4,故答案为:4.9.【题文】计算:(﹣0.125)2014×82015.【答案】8【分析】先将原式变形为(﹣0.125×8)2014×8,然后根据幂的乘方与积的乘方的运算法则求解即可.【解答】原式=(﹣0.125×8)2014×8=(﹣1)2014×8=8.10.【题文】计算:(1) ;(2) ;(3) (m为正整数).【答案】(1)0;(2) ;(3)0.【分析】(1)先进行幂的乘方运算,再进行幂的乘法运算,最后进行加减运算;(2)先进行积的乘方运算,再进行幂的乘法运算;(3)先将式子变形为底数相同的形式,然后再计算幂的乘方,幂的乘法,最后进行减法运算.【解答】(1)原式=x8+x8-x·x4·x3+x3·x4×(-x)= x8+x8-x8-x8=0;(2)原式=(a6-2n b2m-2)(16a6-2n b2m+2)=a12-4n b4m;(3)原式=22m-1×24×(23)m-1+(-22m)×23m=22m+3×23m-3-25m=25m-25m=0.点睛:掌握幂的乘法、幂的乘方运算.11.【题文】计算:().().().().【答案】(1) ;(2) ;(3) ;(4)【分析】(1)先利用积的乘方进行运算,然后再利用幂的乘方进行运算即可;(2)先利用积的乘方进行运算,然后再利用幂的乘方进行运算即可;(3)先计算括号内的同底数幂的乘法,然后计算幂的乘方即可;(4)先计算幂的乘方和括号内的同底数幂的乘法,再计算幂的乘方,最后再计算同底数幂的乘法即可.【解答】解:(1)原式=(a3)4·(b2)4=a12b8;(2)原式=(-4)2x2·(y2)2·(z3)2=16x2y4z6;(3)原式=(x5)2·y2=x10y2;(4)原式=a12·(a3)2=a12·a6=a18.12.【题文】在一次测验中有这样一道题:“,,求的值.”马小虎是这样解的:解:.结果卷子发下来,马小虎这道题没得分,而答案确实是,你知道这是为什么吗?请你作出正确的解答.【答案】【分析】抓住积的乘方法则,对原式进行变形.【解答】因为误将,分别当作,了.正确的解法:.13.【题文】已知,求的值.【答案】1008.【分析】由积的乘方法则可以将化为;将化为的形式,再通过积的乘方逆运算进行运算即可. 【解答】,∵原式.14.【题文】已知为正整数,且,求的值.【答案】原式.【分析】根据积的乘方的性质化简,然后把代入计算即可. 【解答】原式.15.【题文】计算:().().().().【答案】()原式;()原式;()原式;()原式.【分析】(1)利用幂的乘方计算即可;(2)利用幂的乘方,积的乘方计算;(3)利用幂的乘方计算即可;(4)先利用幂的乘方,同底数幂的乘方计算括号里的,再利用同底数幂的乘方计算即可.【解答】()=;()=;()=;()=.16.【题文】计算(1)(-0.25)11×411 (2)(-0.125)200×8201【答案】(1)-1(2)8【分析】根据积的乘方的逆运算法则解题即可.【解答】115.某养鸡场需定制一批棱长为3×102毫米的正方体鸡蛋包装箱(包装箱的厚度忽略不计),求一个这样的包装箱的容积.(结果用科学记数法表示)17.【题文】某养鸡场需定制一批棱长为3×102毫米的正方体鸡蛋包装箱(包装箱的厚度忽略不计),求一个这样的包装箱的容积.(结果用科学记数法表示)【答案】2.7×107立方毫米【分析】根据正方体的体积公式进行运算即可.【解答】(3×102)3=33×(102)3=27×106=2.7×107(立方毫米).答:一个这样的包装箱的容积是2.7×107立方毫米.18.【题文】若x2 =25a8b6,求x的值【答案】5a4b3【分析】根据积的乘方法则可完成此题.【解答】25a8b6=(5a4b3)2,∵x2 =25a8b6,∴x的值为19.【题文】若x3 =125a9b6,求 x的值【答案】5a3b2【分析】根据积的乘方法则可完成此题. 【解答】125a9b6=(5a3b2)3,∵x3 =125a9b6,∴x的值为20.【题文】若x3 =8a3b6,求x的值【答案】2ab2【分析】根据积的乘方法则可完成此题. 【解答】8a3b6=(2ab2)3,∵x3 =8a3b6,∴x的值为2ab2。

湘教版七年级下册数学第2章 整式的乘法含答案(往年考题)

湘教版七年级下册数学第2章 整式的乘法含答案(往年考题)

湘教版七年级下册数学第2章整式的乘法含答案一、单选题(共15题,共计45分)1、若x2-2(k+1)x+4是完全平方式,则k的值为()A.±1B.±3C.-1或3D.1或-32、若,,则的值为()A.6B.5C.1D.1.53、下列运算正确的是()A. B. C. D.4、下列运算正确的是()A.5m+2m=7m 2B.﹣2m 2•m 3=2m 5C.(﹣a 2b)3=﹣a 6b 3D.(b+2a)(2a﹣b)=b 2﹣4a 25、下列计算中:①x(2x2﹣x+1)=2x3﹣x2+1;②(a+b)2=a2+b2;③(x﹣4)2=x2﹣4x+16;④(5a﹣1)(﹣5a﹣1)=25a2﹣1;⑤(﹣a﹣b)2=a2+2ab+b2,正确的个数有()A.1个B.2个C.3个D.4个6、代数式(﹣4a)2的值是()A.16aB.4a 2C.﹣4a 2D.16a 27、下列运算正确的是()A. B.C. D.8、计算(﹣ab2)3的结果是()A.a 3b 5B.﹣a 3b 5C.﹣a 3b 6D.a 3b 69、马大哈做题很快,但经常不仔细思考,所以往往错误率很高,有一次做了四个题,但只做对了一个,他做对的是()A.a 8÷a 4=a 2B.a 3•a 4=a 12C. =±2D.2x 3•x 2=2x 510、计算(a2)3的结果是()A.a 5B.a 6C.a 8D.3a 211、下列运算正确的是()A. B. C. D.12、下列运算中,结果正确的是( )A. ÷ =aB.a 2+a 2=a 4C.D.13、下列去括号正确的是()A.﹣(2x+5)=﹣2x+5B.C.D.14、下列运算正确的是()A.3a+2a=5a 2B.a 6÷a 2=a 3C.(﹣3a 3)2=9a 6D.(a+2)2=a 2+415、计算a(1+a)﹣a(1﹣a)的结果为()A.2aB.2a 2C.0D.﹣2a+2a二、填空题(共10题,共计30分)16、计算:________.17、x2+x+b乘以x2﹣ax﹣2的结果不含x3项,则a=________.18、计算________ 。

湘教版七年级数学下册第二章 整式的乘法练习【含答案】

湘教版七年级数学下册第二章 整式的乘法练习【含答案】

湘教版七年级数学下册第二章 整式的乘法练习一、单选题1.计算2a a ⋅的结果是( )A .aB .2aC .3aD .32a 2.--a 2-7 等于( -A .-a 14B .a 14C .a 9D .-a 9 3.下列运算结果正确的是( )A .257a b ab +=B .()235a a a -⋅=-C .632a a a ÷=D .()236a a = 4.计算()223ab a c -⋅-的结果是( ) A .33a bc B .523a bc - C .6229a b c D .53a bc - 5.如果(x +1)(2x +m )的乘积中不含x 的一次项,则m 的值为( )A .2B .-2C .0.5D .-0.56.根据图-的面积可以说明多项式的乘法运算(2a+b)(a+b)=2a 2+3ab+b 2,那么根据图-的面积可以说明多项式的乘法运算是 ( )A .(a+3b)(a+b)=a 2+4ab+3b 2B .(a+3b)(a+b)=a 2-4ab+3b 2C .(b+3a)(b+a)=b 2+4ab+3a 2D .(a+3b)(a -b)=a 2+2ab -3b 27.下列多项式的乘法中,能使用平方差公式计算的有( )①(m -n)(-m+n);②(-a -b)(a -b);③(x+y)(-x -y);④(x+3y -z)(x+z -3y)A .1个B .2个C .3个D .4个8.已知216y my -+是关于y 的完全平方式,则m 的值为( )A .9B .±9C .36D .±369.化简:(a+2-2--a-2-2=( )A .2B .4C .8aD .2a 2+2 10.()()()()242212121......21n ++++=( )A .421n -B .421n +C .441n -D .441n +二、填空题 11.若21m x =+,34m y =+,则用含x 的代数式表示y 为______.12.已知x 2+mx -6=(x -3)(x+n),则m n =______.13.计算:2020201920211⨯+=____. 14.以下四个结论正确的是_____________.(填序号)①若()111x x +-=,则x 只能是2②若()()211x x ax -++的运算结果中不含2x 项,则1a =-③若10a b +=,24ab =,则2a b -=或2a b -=-④若4x a =,8y b =,则232x y -可表示为a b三、解答题15.计算(1)()()()235222--- (2)()()432x x x ---(3)()()()34m n n m n m ---16.(1)观察下列各式的规律:222233322344()()()()()()...a b a b a b a b a ab b a b a b a a b ab b a b-+=--++=--+++=- 可得到2018201720172018()(...)a b a a b ab b -++++= .(2)猜想:1221()(...)n n n n a b a a ab b -----++++= .(3)利用(2)猜想的结论计算:98732222...222-+-+-+.17.乘法公式的探究及应用.(1)如图1,可以求出阴影部分的面积是 (写成两数平方差的形式);(2)如图2,若将阴影部分裁剪下来,重新拼成一个矩形,它的宽是 ,长是 ,面积是 (写成多项式乘法的形式);(3)比较图1、图2阴影部分的面积,可以得到公式 ;(4)运用你所得到的公式,计算下列各题:-10.2×9.8,-(2m+n ﹣p )(2m ﹣n+p ).18.图①是一个长为2m 、宽为2n 的长方形,沿图中虚线用剪刀分成四块小长方形,然后按图②的形状拼成一个正方形.(1)请和两种不同的方法求图②中阴影部分的面积.方法1:__方法2:___(2)观察图②请你写出下列三个代数式;22(),(),m n m n +-mn 之间的等量关系;(3)根据(2)题中的等量关系,解决如下问题:①已知:3,2,a b ab -==-求2()a b +的值. ②已知:21a a -=,求2a a+的值.答案1.C2.A3.D4.B5.B6.A7.B8.A9.C10.A11.y=(x -1)2+312.113.1202014.③④.15.(1)102;(2)9x ;(3)()8n m -- 16.(1)a 2019−b 2019(2)a n −b n(3)10223+ 17.(1)a 2﹣b 2(2)a ﹣b ,a+b ,(a+b )(a ﹣b )(3)99.96(4)-99.96-4m 2﹣n 2+2np ﹣p 218.(1)(m +n )2−4mn ;(m−n )2(2)(m +n )2−4mn =(m−n )2(3)①1②±3。

湘教版七年级数学下册第二章 整式的乘法练习题

湘教版七年级数学下册第二章 整式的乘法练习题

第二章 整式的乘法一、单选题1.计算 33x x ⋅ 的值为( )A .3xB .9xC .6xD .32x2.(﹣3)2的值是( )A .﹣9B .9C .﹣6D .63.下面计算正确的是( )A .a 2•a 3=a 5B .3a 2﹣a 2=2C .4a 6÷2a 3=2a 2D .(a 2 )3=a 5 4.(2a 3b (2·(-5ab 2c (等于( (A .-20a 6b 4cB .10a 7b 4cC .-20a 7b 4cD .20a 7b 4c 5.计算(a ﹣2)(a+3)的结果是( )A .a 2﹣6B .a 2+a ﹣6C .a 2+6D .a 2﹣a+6 6.使(x 2+px +8)(x 2﹣3x +q )乘积中不含x 2和x 3项的p ,q 的值分别是( ) A .p =3,q =1 B .p =﹣3,q =﹣9 C .p =0,q =0 D .p =﹣3,q =1 7.下列各式中,不能够用平方差公式计算的是( )A .(y +2x )(2x ﹣y )B .(﹣x ﹣3y )(x +3y )C .(2x 2﹣y 2 )(2x 2+y 2 )D .(4a +b ﹣c )(4a ﹣b ﹣c )8.已知14a b -=,6ab =,则22a b +的值是( )A .196B .36C .202D .2089.如图,边长为(m+3)的正方形纸片剪出一个边长为m 的正方形之后,剩余部分 可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长 为3,则另一边长是()A .m+3B .m+6C .2m+3D .2m+610.已知20192019a x =+,20192020b x =+,20192021c x =+,则222a b c ab ac bc ++---的值为( )A .0B .1C .2D .3二、填空题11.若2a •2b =8,则a+b =_______.12.直接写出计算结果:①()()22222x xy -=________;②211n n a a ++-÷=________;③32(2)(2)y x x y -⋅-=________;④(2)()a b a b -+=________.13.通过计算几何图形的面积可以得到一些恒等式,根据如图的长方形面积写出的恒等式为______.14.如图所示为正方形的房屋结构平面图,其中主卧与客卧都是正方形,其面积之和比其余面积(阴影部分)多29m ,则主卧和客卧的周长之差为__________m .三、解答题15.(1)已知x 3·x a ·x 2a +1=x 31,求a 的值;(2)已知x 3=m ,x 5=n ,试用含m ,n 的代数式表示x 11.16.计算:(1)()()223238a b a b -g ; (2)()321477a a a -÷17.以下关于x 的各个多项式中,a ,b ,c ,m ,n 均为常数.(1)根据计算结果填写下表:(2)若()2(2)x x ax b -++的积中不含x 的二次项和一次项,求(21)(21)(2)(2)2a b a b a b b a b ++---+-++的值.(3)多项式M 与多项式231x x -+的乘积为43223x ax bx cx +++-,则2a b c ++的值为________.18.观察下列各式(x ﹣1)(x +1)=x 2﹣1(x ﹣1)(x 2+x +1)=x 3﹣1(x ﹣1)(x 3+x 2+x +1)=x 4﹣1(1)根据以上规律,则(x ﹣1)(x 6+x 5+x 4+x 3+x 2+x +1)= ;(2)你能否由此归纳出一般规律(x ﹣1)(x n +x n ﹣1+……+x +1)= ;(3)根据以上规律求32018+32017+32016+…32+3+1的结果.19.阅读材料:小明发现一些含根号的式子可以写成另一个式子的平方,如=()2,善于思考的小明进行了以下探索:设=()2(其中a 、b 、m 、n 均为正整数)则有:=m 2+2n 2,所以a=m 2+2n 2,b=2mn .这样小明就找到了一种把的式子化为平方式的方法.请仿照小明的方法探索并解决下列问题:(1)当a 、b 、m 、n 均为正整数时,若(2,用含m 、n 的式子分别表示a 、b ,得a= ,b=(2)若(2(其中a 、b 、m 、n 均为正整数),求a 的值答案1.C2.B3.A4.C5.B6.A7.B8.D9.C10.D11.312.644x y n a - 5(2)y x -222a ab b +- 13.()2222a a b a ab +=+14.1215.(1)9;(2)m 2n16.()74172a b ;()222a a - 17.(1)51an bm -+、、 (2)59;(3)-418.(1(x 7(1((2(x n+1(1((3(2019212-( 19.(1)m 2+3n 2,2mn ;(2)13。

湘教版七年级数学下册第二章整式的乘法单元测试卷及答案

湘教版七年级数学下册第二章整式的乘法单元测试卷及答案

整式的乘法测试一.选择题(共10小题,每小题3分)1.计算x2•x3的结果是()A.x5B.x8C.x6D.x72.下列运算正确的是()A.x2+x2=x4B.(a﹣b)2=a2﹣b2C.(﹣a2)3=﹣a6D.3a2•2a3=6a63.已知a+b=3,ab=2,则a2+b2的值为()A.3B.4C.5D.64.下列多项式的乘法中,能用平方差公式计算的是()A.(x+2)(2+x)B.()(b﹣)C.(﹣m+n)(m﹣n)D.(x2﹣y)(x+y2)5.下列计算中,正确的是()A.(x+2)(x﹣3)=x2﹣6B.(﹣4x)(2x2+3x﹣1)=﹣8x3﹣12x2﹣4xC.(x﹣2y)2=x2﹣2xy+4y2D.(﹣4a﹣1)(4a﹣1)=1﹣16a26.如(x+m)与(x+3)的乘积中不含x的一次项,则m的值为()A.﹣3B.3C.0D.17.若(﹣a2)•(﹣a)2•(﹣a)m>0,则()A.m为奇数B.m为偶数C.m为奇数且a>0D.a>0,m为偶数8.将9.52变形正确的是()A.9.52=92+0.52B.9.52=(10+0.5)(10﹣0.5)C.9.52=102﹣2×10×0.5+0.52D.9.52=92+9×0.5+0.529.一个正方形的边长如果增加4cm,面积则增加64cm2,则这个正方形的边长为()A.6cm B.5cm C.8cm D.7cm10.若A=(2+1)(22+1)(24+1)(28+1)+1,则A的末位数字是()A.2B.4C.6D.8二.填空题(共8小题,每小题3分)11.计算:(﹣a2)3•a2=.12.已知a+b=3,ab=1,则(a﹣2)(b﹣2)的值为.13.计算:=.14.已知4m=a,4n=b,则42m+n+1=.15.已知m+n=mn,则(m﹣1)(n﹣1)=.16.已知x2﹣x﹣1=0,则代数式﹣x3+2x2+2022的值为.17.如果(2a+2b+1)(2a+2b﹣1)=63,那么a+b的值为.18.用如图所示的正方形和长方形卡片若干张,拼成一个长为(3a+b),宽为(a+b)的长方形(要求:所拼图形中,卡片之间不能重叠,不能有空隙),则需要A类卡片、B类卡片、C类卡片的张数分别为.三.解答题(20-23题每题8分,24题10分,其余每题12分,共66分)19.(12分)计算:(1)0.125100×(2100)3;(2);(3)(﹣2y2﹣3x)(3x﹣2y2);(4)(a﹣2b﹣3c)(a﹣2b+3c).20.(8分)先化简,再求值:(1)(a+b)(a﹣b)﹣b(a﹣b),其中a=﹣1,b=5;(2)(x﹣1)(3x+1)﹣(x+2)2﹣4,其中x2﹣3x=1.21.(8分)(1)已知:a+b=7,ab=12.求下列各式的值:①a2﹣ab+b2;②(a﹣b)2.(3)已知a=275,b=450,c=826,d=1615,用“<”来比较a、b、c、d的大小.22.(8分)已知M=x2+3x﹣a,N=﹣x,P=x3+3x2+5,且M•N+P的值与x的取值无关,求a的值.23.(8分)如图:某校一块长为2a米的正方形空地是七年级四个班的清洁区,其中分给七年级(1)班的清洁区是一块边长为(a﹣2b)米的正方形,(0<2b<a).(1)分别求出七(2)、七(3)班的清洁区的面积;(2)七(4)班的清洁区的面积比七(1)班的清洁区的面积多多少平方米?24.(10分)已知M(2)=(﹣2)×(﹣2),M(3)=(﹣2)×(﹣2)×(﹣2),…M (n)=(n为正整数).(1)计算:M(5)+M(6);(2)求2M(2022)+M(2023)的值;(3)试说明2M(n)与M(n+1)互为相反数.25.(12分)(1)观察下列各式的规律(a﹣b)(a+b)=a2﹣b2(a﹣b)(a2+ab+b2)=a3﹣b3(a﹣b)(a3+a2b+ab2+b3)=a4﹣b4…可得到(a﹣b)(a2016+a2015b+…+ab2015+b2016)=.(2)猜想(a﹣b)(a n﹣1+a n﹣2b+…+ab n﹣2+b n﹣1)=(其中n为正整数,且n≥2)(3)利用(2)猜想的结论计算29﹣28+27﹣…+23﹣22+2.参考答案与试题解析一.选择题(共10小题,每题3分,共30分)1.计算x2•x3的结果是()A.x5B.x8C.x6D.x7【分析】根据同底数幂的乘法法则,同底数幂相乘,底数不变,指数相加,即a m•a n=a m+n.【解答】解:x2•x3=x2+3=x5.故选A.2.下列运算正确的是()A.x2+x2=x4B.(a﹣b)2=a2﹣b2C.(﹣a2)3=﹣a6D.3a2•2a3=6a6【分析】根据同类项、完全平方公式、幂的乘方和单项式的乘法计算即可.【解答】解:A、x2+x2=2x2,错误;B、(a﹣b)2=a2﹣2ab+b2,错误;C、(﹣a2)3=﹣a6,正确;D、3a2•2a3=6a5,错误;故选:C.3.已知a+b=3,ab=2,则a2+b2的值为()A.3B.4C.5D.6【分析】根据完全平方公式得出a2+b2=(a+b)2﹣2ab,代入求出即可.【解答】解:∵a+b=3,ab=2,∴a2+b2=(a+b)2﹣2ab=32﹣2×2=5,故选:C.4.下列多项式的乘法中,能用平方差公式计算的是()A.(x+2)(2+x)B.()(b﹣)C.(﹣m+n)(m﹣n)D.(x2﹣y)(x+y2)【分析】利用平方差公式判断即可.【解答】解:A、原式=(x+2)2=x2+4x+4,不符合题意;B、原式=b2﹣a2,符合题意;C、原式=﹣(m﹣n)2=﹣m2+2mn﹣n2,不符合题意;D、原式=x3+x2y2﹣xy﹣y3,不符合题意.故选:B.5.下列计算中,正确的是()A.(x+2)(x﹣3)=x2﹣6B.(﹣4x)(2x2+3x﹣1)=﹣8x3﹣12x2﹣4xC.(x﹣2y)2=x2﹣2xy+4y2D.(﹣4a﹣1)(4a﹣1)=1﹣16a2【分析】A、利用多项式乘以多项式法则计算,合并得到结果,即可做出判断;B、利用单项式乘多项式法则计算,合并得到结果,即可做出判断;C、利用完全平方公式计算得到结果,即可做出判断;D、利用平方差公式计算得到结果,即可做出判断.【解答】解:A、(x+2)(x﹣3)=x2﹣x﹣6,本选项错误;B、(﹣4x)(2x2+3x﹣1)=﹣8x3﹣12x2+4x,本选项错误;C、(x﹣2y)2=x2﹣4xy+4y2,本选项错误;D、(﹣4a﹣1)(4a﹣1)=1﹣16a2,本选项正确.故选:D.6.如(x+m)与(x+3)的乘积中不含x的一次项,则m的值为()A.﹣3B.3C.0D.1【分析】先用多项式乘以多项式的运算法则展开求它们的积,并且把m看作常数合并关于x的同类项,令x的系数为0,得出关于m的方程,求出m的值.【解答】解:∵(x+m)(x+3)=x2+3x+mx+3m=x2+(3+m)x+3m,又∵(x+m)与(x+3)的乘积中不含x的一次项,∴3+m=0,解得m=﹣3.故选:A.7.若(﹣a2)•(﹣a)2•(﹣a)m>0,则()A.m为奇数B.m为偶数C.m为奇数且a>0D.a>0,m为偶数【分析】根据负数的偶数次幂是正数,负数的奇数次幂是负数,可得单项式的乘法,根据单项式与单项式相乘,把他们的系数分别相乘,相同字母的幂分别相加,其余字母连同他的指数不变,作为积的因式,【解答】解:a>0,m为奇数时,(﹣a2)•(﹣a)2•(﹣a)m=(﹣a2)•a2•(﹣a m)=a2+2+m >0,故选:C.8.将9.52变形正确的是()A.9.52=92+0.52B.9.52=(10+0.5)(10﹣0.5)C.9.52=102﹣2×10×0.5+0.52D.9.52=92+9×0.5+0.52【分析】根据完全平方公式进行计算,判断即可.【解答】解:9.52=(10﹣0.5)2=102﹣2×10×0.5+0.52,故选:C.9.一个正方形的边长如果增加4cm,面积则增加64cm2,则这个正方形的边长为()A.6cm B.5cm C.8cm D.7cm【分析】设这个正方形的边长为x厘米,根据等量关系:新正方形的面积=原正方形的面积+64,得出方程,解答即可.【解答】解:设这个正方形的边长为x厘米,根据题意得:(x+4)2=x2+64,x2+8x+16=x2+64,8x+16=64,8x+16﹣16=64﹣16,8x=48,x=6(厘米),故选:A.10.若A=(2+1)(22+1)(24+1)(28+1)+1,则A的末位数字是()A.2B.4C.6D.8【分析】根据平方差公式可以化简题目中的式子,再根据题目中数字的变化规律,可以解答本题.【解答】解:∵A=(2+1)(22+1)(24+1)(28+1)+1==216﹣1+1=216,又∵21=2,22=4,23=8,24=16,25=32,∴216的末尾数字是6,∴A的末位数字是6.故选:C.二.填空题(共8小题,每小题3分,共24分)11.计算:(﹣a2)3•a2=﹣a8.【分析】先算乘方,再算乘法.【解答】解:原式=﹣a6•a2=﹣a8.故答案为:﹣a8.12.已知a+b=3,ab=1,则(a﹣2)(b﹣2)的值为﹣1.【分析】将a+b=3、ab=1代入到原式=ab﹣2a﹣2b+4=ab﹣2(a+b)+4,计算可得.【解答】解:当a+b=3、ab=1时,原式=ab﹣2a﹣2b+4=ab﹣2(a+b)+4=1﹣2×3+4=﹣1,故答案为:﹣1.13.计算:=﹣3.【分析】根据乘方的意义,先把2022个3相乘写成2021个3相乘,再乘以1个3,然后根据积的乘方法则的逆用即可得到答案.【解答】解:原式=32021×3×(﹣)2021=[3×(﹣)]2021×3=(﹣1)2021×3=(﹣1)×3=﹣3.故答案为:﹣3.14.已知4m=a,4n=b,则42m+n+1=4a2b.【分析】所求式子的指数是相加的形式,所以逆用同底数幂的乘法法则进行计算即可.【解答】解:原式=42m•4n•4=(4m)2•4n•4=4a2b.故答案为:4a2b.15.已知m+n=mn,则(m﹣1)(n﹣1)=1.【分析】先根据多项式乘以多项式的运算法则去掉括号,然后整体代值计算.【解答】解:(m﹣1)(n﹣1)=mn﹣(m+n)+1,∵m+n=mn,∴(m﹣1)(n﹣1)=mn﹣(m+n)+1=1,故答案为1.16.已知x2﹣x﹣1=0,则代数式﹣x3+2x2+2022的值为2023.【分析】根据条件得到x2﹣x=1,整体代入代数式中即可求得代数式的值.【解答】解:∵x2﹣x﹣1=0,∴x2﹣x=1,∴原式=﹣x(x2﹣2x)+2022=﹣x(x2﹣x﹣x)+2022=﹣x(1﹣x)+2022=x2﹣x+2022=1+2022=2023.故答案为:2023.17.如果(2a+2b+1)(2a+2b﹣1)=63,那么a+b的值为±4.【分析】将2a+2b看做整体,用平方差公式解答,求出2a+2b的值,进一步求出(a+b)的值.【解答】解:∵(2a+2b+1)(2a+2b﹣1)=63,∴(2a+2b)2﹣12=63,∴(2a+2b)2=64,2a+2b=±8,两边同时除以2得,a+b=±4.18.用如图所示的正方形和长方形卡片若干张,拼成一个长为(3a+b),宽为(a+b)的长方形(要求:所拼图形中,卡片之间不能重叠,不能有空隙),则需要A类卡片、B类卡片、C类卡片的张数分别为3,4,1.【分析】先根据题意得出长方形的面积是(3a+b)(a+b),再进行化简即可.【解答】解:长方形的面积是(3a+b)(a+b)=3a2+3ab+ab+b2=3a2+4ab+b2,即需要A类卡片、B类卡片、C类卡片的张数分别为3,4,1,故答案为:3,4,1.三.解答题(20-23题每题8分,24题10分,其余每题12分,共66分)19.(12分)计算:(1)0.125100×(2100)3;(2);(3)(﹣2y2﹣3x)(3x﹣2y2);(4)(a﹣2b﹣3c)(a﹣2b+3c).【分析】(1)根据幂的乘方和积的乘方法则计算;(2)先算乘方,再算乘除;(3)用平方差公式计算;(4)把a﹣2b看做一个整体,用平方差公式计算.【解答】解:(1)原式=0.125100×(23)100=0.125100×8100=(0.125×8)100=1100=1;(2)原式=﹣2×(﹣1)2(a2)2b2c2•ab3c3=﹣2a4b2c2•ab3c3=﹣a5b5c5;(3)原式=(﹣2y2﹣3x)(﹣2y2+3x)=(﹣2y2)2﹣(3x)2=4y4﹣9x2;(4)原式=[(a﹣2b)﹣3c][(a﹣2b)+3c]=(a﹣2b)2﹣(3c)2=a2﹣4ab+4b2﹣9c2.20.(8分)先化简,再求值:(1)(a+b)(a﹣b)﹣b(a﹣b),其中a=﹣1,b=5;(2)(x﹣1)(3x+1)﹣(x+2)2﹣4,其中x2﹣3x=1.【分析】(1)先根据平方差公式和单项式乘以多项式进行计算,再合并同类项,最后求出答案即可;(2)先根据多项式乘以多项式,完全平方公式进行计算,再合并同类项,最后求出答案即可.【解答】解:(1)(a+b)(a﹣b)﹣b(a﹣b)=a2﹣b2﹣ab+b2=a2﹣ab,当a=﹣1,b=5时,原式=(﹣1)2﹣(﹣1)×5=1+5=6;(2)(x﹣1)(3x+1)﹣(x+2)2﹣4,=3x2+x﹣3x﹣1﹣x2﹣4x﹣4﹣4=2x2﹣6x﹣9=2(x2﹣3x)﹣9,当x2﹣3x=1时,原式=2×1﹣9=﹣7.21.(8分)(1)已知:a+b=7,ab=12.求下列各式的值:①a2﹣ab+b2;②(a﹣b)2.(2)已知a=275,b=450,c=826,d=1615,用“<”来比较a、b、c、d的大小.【分析】(1)①将a2﹣ab+b2化为(a+b)2﹣3ab,再代入求值即可;②将(a﹣b)2化为(a+b)2﹣4ab,再代入求值即可;(2)都化为底数为2的幂,再比较大小.【解答】解:(1)①a2﹣ab+b2=(a+b)2﹣3ab=72﹣3×12=49﹣36=13;②(a﹣b)2=(a+b)2﹣4ab=72﹣4×12=49﹣48=1;(2)∵a=275,b=(22)50=2100,c=(23)26=278,d=(24)15=260,100>78>75>60,∴2100>278>275>260,∴b>c>a>d.22.(8分)已知M=x2+3x﹣a,N=﹣x,P=x3+3x2+5,且M•N+P的值与x的取值无关,求a的值.【分析】首先根据多项式乘多项式的方法,求出M•N的值是多少;然后用它加上P,求出M•N+P的值是多少;最后根据M•N+P的值与x的取值无关,可得x的系数是0,据此求出a的值是多少即可.【解答】解:M•N+P=(x2+3x﹣a)•(﹣x)+(x3+3x2+5)=﹣x3﹣3x2+ax+x3+3x2+5=ax+5∵M•N+P的值与x的取值无关,∴a=0.23.(8分)如图:某校一块长为2a米的正方形空地是七年级四个班的清洁区,其中分给七年级(1)班的清洁区是一块边长为(a﹣2b)米的正方形,(0<2b<a).(1)分别求出七(2)、七(3)班的清洁区的面积;(2)七(4)班的清洁区的面积比七(1)班的清洁区的面积多多少平方米?【分析】(1)根据图形和题目中的数据,可以用含a、b的代数式表示出七(2)、七(3)班的清洁区的面积;(2)根据图形和题目中的数据,可以分别写出七(4)和七(2)的面积,然后作差即可.【解答】解:(1)∵七年级(1)班的清洁区是一块边长为(a﹣2b)米的正方形,四个班所在的图形是边长为2a的正方形,∴七(2)所在长方形的长为:2a﹣(a﹣2b)=a+2b,宽为:a﹣2b,七(3)所在长方形的长为:2a﹣(a﹣2b)=a+2b,宽为:a﹣2b,∴七(2)班的清洁区的面积是(a+2b)(a﹣2b)=(a2﹣4b2)(平方米),七(3)班的清洁区的面积是(a+2b)(a﹣2b)=(a2﹣4b2)(平方米),即七(2)、七(3)班的清洁区的面积分别为(a2﹣4b2)平方米,(a2﹣4b2)平方米;(2)∵七年级(1)班的清洁区是一块边长为(a﹣2b)米的正方形,四个班所在的图形是边长为2a的正方形,∴七(4)班所在的图形是边长为:2a﹣(a﹣2b)=a+2b的正方形,(a+2b)2﹣(a﹣2b)2=a2+4ab+4b2﹣a2+4ab﹣4b2=8ab(平方米),即七(4)班的清洁区的面积比七(1)班的清洁区的面积多8ab平方米.24.(10分)已知M(2)=(﹣2)×(﹣2),M(3)=(﹣2)×(﹣2)×(﹣2),…M (n)=(n为正整数).(1)计算:M(5)+M(6);(2)求2M(2022)+M(2023)的值;(3)试说明2M(n)与M(n+1)互为相反数.【分析】(1)利用新定义得到M(5)+M(6)=(﹣2)5+(﹣2)6,然后利用乘方的意义计算;(2)利用新定义得到2M(2022)+M(2023)=2×(﹣2)2022+(﹣2)2023,然后根据同底数幂的乘法进行计算;(3)利用新定义得到2M(n)+M(n+1)=﹣(﹣2)×(﹣2)n+(﹣2)n+1,然后根据同底数幂的乘法计算出它们的和为0,从而可判断2M(n)与M(n+1)互为相反数.【解答】解:(1)M(5)+M(6)=(﹣2)5+(﹣2)6=﹣32+64=32;(2)2M(2022)+M(2023)=2×(﹣2)2022+(﹣2)2023=2×22022﹣22023=22023﹣22023=0;(3)2M(n)与M(n+1)互为相反数.理由如下:因为2M(n)+M(n+1)=﹣(﹣2)×(﹣2)n+(﹣2)n+1=﹣(﹣2)n+1+(﹣2)n+1=0,所以2M(n)与M(n+1)互为相反数.25.(12分)(1)观察下列各式的规律(a﹣b)(a+b)=a2﹣b2(a﹣b)(a2+ab+b2)=a3﹣b3(a﹣b)(a3+a2b+ab2+b3)=a4﹣b4…可得到(a﹣b)(a2016+a2015b+…+ab2015+b2016)=a2017﹣b2017.(2)猜想(a﹣b)(a n﹣1+a n﹣2b+…+ab n﹣2+b n﹣1)=a n﹣b n(其中n为正整数,且n≥2)(3)利用(2)猜想的结论计算29﹣28+27﹣…+23﹣22+2.【分析】(1)根据题目中的例子可以直接写出结果,从而可以解答本题;(2)根据(1)中的例子可以写出相应的猜想;(3)利用(2)中的猜想进行变形即可解答本题.【解答】解:(1)(a﹣b)(a2016+a2015b+…+ab2015+b2016)=a2017﹣b2017,故答案为:a2017﹣b2017;(2)(a﹣b)(a n﹣1+a n﹣2b+…+ab n﹣2+b n﹣1)=a n﹣b n,故答案为:a n﹣b n;(3)29﹣28+27﹣…+23﹣22+2=2(28﹣27+26﹣…+22﹣2+1)===.。

新湘教版七年级下册第二单元整式的乘法测试题

新湘教版七年级下册第二单元整式的乘法测试题
新湘教版七年级下册第二单元整式的乘法测试题
姓名:
一、精心选一选 ( 每题 3 分,共 24 分)
计分:
1、下列运算正确的是( A 5a-6a=-1 C、6a3+2a4=8a7
) B、 ( a4 ) 3=a7 D、 4a2·3a3=12a5
2、下列可以用平方差公式计算的式子是(

A 、(x-y)(y-x)
三、努力解一解 : (共 52 分) 17、计算 (40 分)
( 1) 4a 3b 4a 3b
(2) (6ab2 4a 2b) ? 3ab
(3) 20132 2012 2014 (4) (m n)(m2 mn n2 )
(5) ( x y) 2 ( x y) 2
( 6) ( x 2)( x 2 4)( x 2)

4
A. ±3 B.-3 C.
±1
D.-
1
3

x y 8 , xy
6, x 2
y2
8、已知


A 14 B 48 C 52 D 76
1/4
二、细心填一填 ( 每题 3 分,共 24 分)
9. x 4·x5=
(x
4) 5=
10. -3a 3+5a3=
-3a
3· 5a3=
11 (3x-1)(4x+5)= __________. a 4 a 5 a =
50m,宽为 30m,并在
4/4
B
、 (-a+3)(a-3)
C 、(-x+y)(-x-y) D
、 (-a-3)(a+3)
3、若 xm=3 ,x n=2, 则 xm+n的值为(

A、 5

七年级数学下册第2章整式的乘法测试题(新版)湘教版

七年级数学下册第2章整式的乘法测试题(新版)湘教版

4 D.x2+2x-12 B.32 C.-七年级数学下册第2章整式的乘法测试题(新版)湘教版班别:姓名:___________一、选择题(每题3分,共36分)1.下列各式运算正确的是()A.a2+a3=a5B.a2⋅a3=a6C.(a10)2=a20D.(ab2)3=ab62.计算2x2⋅(-3x3)的结果是()A.6x5B.-6x5C.-2x6D.2x63.计算(-12a2b)3的结果正确的是()1111A.a4b2B.a6b3C.-a6b3D.-a5b348884.(-5a2+4b2)(______)=25a4-16b4括号内应填()A.5a2+4b2B.5a2+4b2C.-5a2+4b2D.-5a2-4b25.下列各式是完全平方式的是()A.1+4x2 B.x2-x+1C.a2+ab+b26.下列各式:①(a+b)(b+a);②(a-b)(b+a);③(-a+b)(a+b);④(a+b)(-a-b),其中能用乘法公式计算的有()A.1个B.2个C.3个D.4个7.若x2+2(m-3)x+16是完全平方式,则m的值等于()A.3B.-5C.7.D.7或-18.如(2x+m)与(4x+3)的乘积中不含x的一次项,则m的值为()A.-323 D.239.一个正方形的边长增加了2cm,面积相增加了32cm2,则这个正方形的边长为()A.5cmB.6cmC.7cmD.8cm10.下面是某同学在一次测验中的计算摘录:①3a+2b=5ab;②4m3n-5mn3=-m3n;③4x4⋅(-12x2)=-2x6;④(a-b)3(b-a)2=(a-b)5;⑤-a2⋅(-a)3=a5;⑥2m⋅3n=6m+n.其中正确的个数有()A.1个B.2个C.3个D.4个⎝ 3 ⎭ ⨯ 1.5)2016 = ___________. ⎛ 2 ⎫2015 ( 11. 若 3x = 15, 3y = 5,则 3x -2 y = ( ).A .3 5B .5 2C .3D . 512.若 a, b , c 三个数满足 a 2 + b 2 + c 2 = ab + bc + ac ,则()A. a = b = cB. a, b , c 不全相等C. a, b , c 互不相等D. 无法确定 a, b , c 之间关系二、填空题(每题 3 分,共 18 分)13. 卫星绕地球运动的速度是 7.9× 103 米 / 秒,那么卫星绕地球运行 3 × 106 秒走过的路程是__________米. 14.计算:(2x +5)(x -1)=________. 15.已知 a + b = -3,ab = 1 ,求a 2 +b 2 =.16. - ⎪17. 若 2 x + 5 y - 4 = 0 ,则 4 x ⋅ 32 y =.18.请你计算:(1- x)(1+ x) ,(1- x)(1+ x + x 2 ) ,…猜想 (1- x)(1+ x + x 2 + ... + x n ) 的结果是( n 为大于 2 的正整数).三、解答题(共 46 分)19.计算(每小题 3 分,共 8 分) (1) (8a 3b - 5a 2b 2 ) ⋅ 4ab(2) (-2 x - y + 1)220. 运用乘法公式计算(每小题 4 分,共 8 分)(1) ( x + 2 y - 3)( x - 2 y + 3)(2)99.82••c d,定义a b221.(7分)先化简,再求值:1(3a+2b)(3a-2b)(9a2+4b2),其中a=-,b=312.22.(7分)如图,某市有一块长为(3a+b)米,宽为(2a+b)米的长方形地块,规划部门计划将阴影部分进行绿化,中间将修建一座雕像,则绿化的面积是多少平方米?并求出当a=3,b=2时的绿化面积.23.(8分)四个数a,b,c,d排成2行、列,两边各加一条竖直线记成a bc d=ad-bc,34=1⨯4-2⨯3=-2.若317.1618.1-x n+1这个记号就叫做2阶行列式.例如:12x+1x+2x-2x+1=10,求x的值.24.(8分)(1)如图,请用两种不同的方式表示图中的大正方形的面积;(2)你根据上述结果可以得到一个什么公式?(3)利用这个公式计算:1022.参考答案1C2B3C4D5B6D7D8A9C10C11A12A13.2.37×101014.2x2+3x-515.716.-219.解:(1)(8a3b-5a2b2)÷4ab=2a2-5 4 ab(2)(-2x-y+1)2=4x2+y2+4x y-4x-2y+1 20.解:(1)(x+2y-3)(x-2y+3)=x2-(2y-3)2 =x2-4y2+12y-9(2)99.82=(100-0.2)2=1002-2⨯100⨯0.2+0.22 =9960.0420.解:(1)2a(x-y)-3b(y-x)=(x-y)(2a+3b) (2)a2-4ab+4b2-1=(a-2b)2-1=(a-2b+1)(a-2b-1)(3)(x-1)(x+3)-5=x2+2x-8=(x+4)(x-2)21.解:(3a+2b)(3a-2b)(9a2+4b2)=81a4-16b41当a=-,b=312时,(3a+2b)(3a-2b)(9a2+4b2)=81a4-16b411=81(-)4-16()432=022.解:绿化面积s=(3a+b)(2a+b)-(a+b)2=5a2+3ab当a=3,b=2时,绿化面积s=5⨯32+3⨯3⨯2=2723.解:依题意得:(x+1)2-(x-2)(x+2)=10,解得x=2.5.24.解:(1)方法一:(a+b)2.方法二:a2+2ab+b2.(2)(a+b)2=a2+2ab+b2.(3)1022=(100+2)2=1002+2×100×2+22=10404.。

湘教版七年级下册第2章整式的乘法单元测试卷

湘教版七年级下册第2章整式的乘法单元测试卷

湘教版七年级下册第2章整式的乘法单元测试卷学校:___________姓名:___________班级:___________考号:___________一、单选题 1.已知x+1x=6,则x 2+21x =( )A .38B .36C .34D .322.把多项式x 2+ax+b 分解因式,得(x+1)(x-3),则a 、b 的值分别是( ) A .a=2,b=3 B .a=-2,b=-3 C .a=-2,b=3D .a=2,b=-33.将9.52变形正确的是( )A .9.52=92+0.52B .9.52=(10+0.5)(10﹣0.5)C .9.52=102﹣2×10×0.5+0.52D .9.52=92+9×0.5+0.52 4.已知实数a 、b 满足a+b=2,ab=34,则a ﹣b=( ) A .1 B .﹣52 C .±1D .±525.下列运算正确的是( ) A .a (a+1)=a 2+1B .(a 2)3=a 5C .3a 2+a=4a 3D .a 5÷a 2=a 36.下列运算正确的是( )A .a 8÷a 4=a 2B .(a 2)2=a 4C .a 2•a 3=a 6D .a 2+a 2=2a 47.下列计算正确的是( )A .(a +b )2=a 2+b 2B .a 2+2a 2=3a 4C .x 2y 1y÷=x 2(y ≠0) D .(﹣2x 2)3=﹣8x 68.下列计算正确的是( ) A .3a 2﹣4a 2=a 2B .a 2•a 3=a 6C .a 10÷a 5=a 2D .(a 2)3=a 69.下列运算正确的是( ) A .2242x x x +=B .236x x x ∙=C .236()x x =D .()32626x x =10.计算:(a-b +3)(a +b-3)=( )A .a 2+b 2-9B .a 2-b 2-6b-9C .a 2-b 2+6b -9D .a 2+b 2-2ab +6a +6b +9二、填空题11.若22(3)16x m x +-+是关于x 的完全平方式,则m =__________. 12.若2x =5,2y =3,则22x+y =_____. 13.若2,x a =3y a =,则2x y a +=________.14.计算:(a+1)2﹣a 2=_____.15.(-2)2018×(-12)2019=____________。

湘教版七年级下册数学2.1--整式的乘法训练试题及答案

湘教版七年级下册数学2.1--整式的乘法训练试题及答案

湘教版七下数学2.1 整式的乘法训练题及答案一、选择题(共10小题;共30分)1. 计算6x3⋅x2的结果是 ( )A. 6xB. 6x5C. 6x6D. 6x92. 计算(−x)2⋅x3的结果是 ( )A. x5B. −x5C. x6D. −x63. 下列各式计算正确的是 ( )A. (a7)2=a9B. a7⋅a2=a14C. 2a2+3a3=5a5D. (ab)3=a3b34. 计算(−a5)7+(−a7)5的正确结果是 ( )A. −2a12B. −2a35C. −2a70D. 05. 已知:N=220×518,则N是位正整数.A. 10B. 18C. 19D. 206. 如图,阴影部分的面积是A. 112xy B. 132xy C. 6xy D. 3xy7. 若3×9m×27m×81m=319,则m的值为 ( )A. 2B. 3C. 4D. 58. 适合2x(x−1)−x(2x−5)=12的x的值为 ( )A. 2B. 1C. 4D. 09. (a+2b−c)(2a−b+c)展开后的项数为 ( )A. 6B. 7C. 8D. 910. 设a=355,b=444,c=533,则a,b,c的大小关系是 ( )A. c<a<bB. a<b<cC. b<c<aD. c<b<a二、填空题(共6小题;共18分)11. 计算:(a2b)3=.12. 若4m=7,则42m的值为.13. 已知a+b=3,ab=−5,则(a−1)(b−1)=.14. 已知A=x2+2xy,B=−xy+y2,则2A−3B=.15. 若(a m+1b n+2)(a2n−1b2m)=a5b3,则m+n=.16. 如图所示的正方形和长方形卡片若干张,拼成一个长为2a+b,宽为a+b的矩形,需要A类卡片张,B类卡片张,C类卡片张.三、解答题(共6小题;共52分) 17. 计算:(1) (a n +1)2; (2) −(a 3)4⋅a 12.18. 用简便方法计算:(1) (0.125)16×(−8)16; (2) (513)2014×(235)2013;(3) (0.125)15×(215)3.19. 已知 x 2−x −2=0,求代数式 x (2x −1)−(x +1)(x −1) 的值.20. 先化简,再求值:2b 2+(a +b )(a −b )−(a −b )2,其中 a =−3,b =12.21. 宇宙空间的距离是以光年为单位的,1 光年是指光在一年内通过的距离,如果光的速度为 3×105 km /s ,一年约为 3.2×107s ,那么一光年约是多少千米?22. 已知 ∣a −3∣+(19a +9b )2=0,求 (a 2⋅a ⋅a 3b 2)4+(a 3b )8 的值.答案第一部分1. B2. A3. D4. B5. C6. A7. A8. C9. A 10. A 第二部分 11. a 6b 3 12. 49 13. −714. 2x 2+7xy −3y 2 15. 2 16. 2;3;1 第三部分17. (1) (a n +1)2=a 2(n +1)=a 2n +2. (2) −(a 3)4⋅a 12=−a 12⋅a 12=−a 24. 18. (1) 原式=[0.125×(−8)]16=(−1)16=1.(2)原式=513×(513)2013×(235)2013=513×(513×135)2013=513.(3)原式=(0.125)15×(23)15=(0.125)15×815=(0.125×8)15=1.19. x (2x −1)−(x +1)(x −1)=2x 2−x −(x 2−1)=2x 2−x −x 2+1=x 2−x +1.∵x 2−x −2=0,即 x 2−x =2. ∴原式=(x 2−x )+1=2+1=3.20. 原式=2b 2+a 2−b 2−a 2+2ab −b 2=2ab . 当 a =−3,b =12时,原式=2×(−3)×12=−3.21. 3×105×3.2×107=9.6×1012(km ). 答:一光年约是 9.6×1012 km . 22. ∵ ∣a −3∣+(19a +9b )2=0, ∴ a −3=0,19a +9b =0, ∴ a =3,b =−127,(a 2⋅a ⋅a 3b 2)4+(a 3b )8=(a 6b 2)4+a 24b 8=a 24b 8+a 24b 8=2a 24b 8=2×324×(−127)8=2×(33)8×(−127)8=2×278×(−127)8=2×1=2.。

2021-2022学年湘教版七年级数学下册《2-1整式的乘法》同步练习题(附答案)

2021-2022学年湘教版七年级数学下册《2-1整式的乘法》同步练习题(附答案)

2021-2022学年湘教版七年级数学下册《2-1整式的乘法》同步练习题(附答案)1.若3n+3n+3n+3n=,则n=()A.﹣1B.﹣2C.0D.2.若32m•32m+1=321,则m的值是()A.5B.4C.3D.23.计算(8×104)×(5×103)的结果是()A.4×107B.13×107C.4×108D.1.3×1084.若am﹣bn=5,an+bm=8,则(a2+b2)(m2+n2)的值为()A.13B.39C.75D.895.有3张边长为a的正方形纸片,4张边长分别为a、b(b>a)的矩形纸片,5张边长为b 的正方形纸片,从其中取出若干张纸片,每种纸片至少取一张,把取出的这些纸片拼成一个正方形(按原纸张进行无空隙、无重叠拼接),则拼成的正方形的边长最长可以为()A.a+b B.2a+b C.3a+b D.a+2b6.已知a=8131,b=2741,c=961,则a,b,c的大小关系是()A.a>b>c B.a>c>b C.a<b<c D.b>c>a7.若15a=600,40b=600,则的值为.8.若2a=3,2b=5,2c=90,用a,b表示c可以表示为.9.用如图所示的正方形和长方形卡片若干张,拼成一个长为(3a+b),宽为(a+b)的长方形(要求:所拼图形中,卡片之间不能重叠,不能有空隙),则需要A类卡片、B类卡片、C类卡片的张数分别为.10.若10a=50,10b=2﹣1,则16a÷42b的值为.11.已知多项式2x2+kx﹣14是整式x﹣2与另一整式A相乘得到,则k的值是.12.已知(2x﹣a)(3x+2)=6x2﹣5x+b,则b=.13.若x2﹣2x﹣6=0,则(x﹣3)2+(2x+1)(2x﹣1)﹣2x2的值为.14.若(2x2﹣mx+6)(x2﹣3x+3n)的展开式中x2项的系数为9,x3项的系数为1,求m﹣n的值.15.已知x2n=4,求(x3n)2﹣x n的值.(其中x为正数,n为正整数)16.已知x2﹣x﹣3=0,求(x2+3x﹣7)(x3+2x2﹣2x﹣5)﹣16x的值.17.甲乙两人共同计算一道整式乘法:(3x+a)(2x﹣b),甲把第二个多项式中b前面的减号抄成了加号,得到的结果为6x2+16x+8;乙漏抄了第二个多项式中x的系数2,得到的结果为3x2﹣10x﹣8.(1)计算出a、b的值;(2)求出这道整式乘法的正确结果.18.已知多项式x+2与另一个多项式A的乘积为多项式B.(1)若A为关于x的一次多项式x+a,B中x的一次项系数为0,直接写出a的值;(2)若B为x3+px2+qx+2,求2p﹣q的值.(3)若A为关于x的二次多项式x2+bx+c,判断B是否可能为关于x的三次二项式,如果可能,请求出b,c的值;如果不可能,请说明理由.19.我们规定一种运算:=ad﹣bc,例如=3×6﹣4×5=﹣2,=4x+6.按照这种运算规定,当x等于多少时,=0.20.好学的晓璐同学,在学习多项式乘以多项式时发现:(x+4)(2x+5)(3x﹣6)的结果是一个多项式,并且最高次项为:x•2x•3x=3x3,常数项为:4×5×(﹣6)=﹣120,那么一次项是多少呢?根据尝试和总结她发现:一次项就是:x×5×(﹣6)+2x×4×(﹣6)+3x×4×5=﹣3x.请你认真领会晓璐同学解决问题的思路、方法,仔细分析上面等式的结构特征,结合自己对多项式乘法法则的理解,解决以下问题:(1)计算(x+2)(3x+1)(5x﹣3)所得多项式的最高次项为,一次项为;(2)若计算(x+1)(﹣3x+m)(2x﹣1)(m为常数)所得的多项式不含一次项,求m的值;(3)若(x+1)2021=a0x2021+a1x2020+a2x2019+…+a2020x+a2021,则a2020=.参考答案1.解:3n+3n+3n+3n=4×3n=,∴3n=,∴n=﹣2,故选:B.2.解:∵32m•32m+1=321,∴2m+2m+1=21,解得:m=5.故选:A.3.解:(8×104)×(5×103)=40×107=4×108.故选:C.4.解:∵am﹣bn=5,an+bm=8,∴(am﹣bn)2=25,即a2m2﹣2abmn+b2n2=25 ①,(an+bm)2=64,即a2n2+2abmn+b2m2=64②,∴①+②,得:a2m2+b2n2+a2n2+b2m2=89,∴a2(m2+n2)+b2(m2+n2)=89,∴(a2+b2)(m2+n2)=89,故选:D.5.解;3张边长为a的正方形纸片的面积是3a2,4张边长分别为a、b(b>a)的矩形纸片的面积是4ab,5张边长为b的正方形纸片的面积是5b2,∵a2+4ab+4b2=(a+2b)2,∴拼成的正方形的边长最长可以为(a+2b),故选:D.6.解:∵a=8131=(34)31=3124b=2741=(33)41=3123;c=961=(32)61=3122.则a>b>c.故选:A.7.解:15a=600=15×40,则15a﹣1=40,40b=600=15×40,则40b﹣1=15,∴(15a﹣1)b﹣1=15,即15(a﹣1)(b﹣1)=15,∴(a﹣1)(b﹣1)=1,∴ab﹣a﹣b=0,则+=1,故答案为:1.8.解:∵90=2×3×3×5,2a=3,2b=5,2c=90,∴2c=21×2a×2a×2b,=22a+b+1,∴c=2a+b+1,故答案为:2a+b+1.9.解:长方形的面积是(3a+b)(a+b)=3a2+3ab+ab+b2=3a2+4ab+b2,即需要A类卡片、B类卡片、C类卡片的张数分别为3,4,1,故答案为:3,4,1.10.解:∵10a=50,10b=2﹣1,∴10a÷10b=10a﹣b=50÷2﹣1=102,∴a﹣b=2,∴16a÷42b=42a÷42b=42a﹣2b=42(a﹣b)=44故答案为:256.11.解:已知多项式最高次数为2,故可知整式A为一次,设A为ax+b,则(x﹣2)(ax+b)=2x2+kx﹣14∴ax2+(b﹣2a)x﹣2b=2x2+kx﹣14∴解得:k=3故答案为:3.12.解:∵(2x﹣a)(3x+2)=6x2﹣5x+b,∴6x2+4x﹣3ax﹣2a=6x2﹣5x+b,即6x2+(4﹣3a)x﹣2a=6x2﹣5x+b,∴,解得故答案为:﹣613.解:∵x2﹣2x﹣6=0,∴x2﹣2x=6,∴(x﹣3)2+(2x+1)(2x﹣1)﹣2x2=x2﹣6x+9+4x2﹣1﹣2x2=3x2﹣6x+8=3(x2﹣2x)+8=3×6+8=26,故答案为:26.14.解:(2x2﹣mx+6)(x2﹣3x+3n)=2x4﹣(m+6)x3+(6n+3m+6)x2﹣3(6+mn)x+18n,∵展开式中x2项的系数为9,x3项的系数为1,∴6n+3m+6=9,m+6=﹣1.解得m=﹣7,n=4.∴m﹣n=﹣7﹣4=﹣11.15.解:∵x2n=4,x为正数,n为正整数,∴x n=2,∴(x3n)2﹣x n=(x n)6﹣x n=26﹣2=62.16.解:∵x2﹣x﹣3=0,∴x2=x+3,x2﹣x=3,∵x2+3x﹣7=x2﹣x+4x﹣7=4x﹣4,x3+2x2﹣2x﹣5=x3﹣x2+3x2﹣3x+x﹣5=x(x2﹣x)+3(x2﹣x)+x﹣5=3x+9+x﹣5=4x+4∴(x2+3x﹣7)(x3+2x2﹣2x﹣5)﹣16x=(4x﹣4)(4x+4)﹣16x=16x2﹣16x﹣16=16(x2﹣x)﹣16∵x2﹣x=3,∴原式=16×3﹣16=32.17.解:(1)甲的算式:(3x+a)(2x+b)=6x2+(3b+2a)x+ab=6x2+16x+8,对应的系数相等,3b+2a=16,ab=8,乙的算式:(3x+a)(x﹣b)=3x2+(﹣3b+a)x﹣ab=3x2﹣10x﹣8,对应的系数相等,﹣3b+a=﹣10,ab=8,∴3b+2a=16,-3b+a=-10解得:a=2,b=4(2)根据(1)可得正确的式子:(3x+2)(2x﹣4)=6x2﹣8x﹣8.18.解:(1)根据题意可知:B=(x+2)(x+a)=x2+(a+2)x+2a,∵B中x的一次项系数为0,∴a+2=0,解得a=﹣2.(2)设A为x2+tx+1,则(x+2)(x2+tx+1)=x3+px2+qx+2,∴,p=t+2,q=2t+1∴2p﹣q=2(t+2)﹣(2t+1)=3;(3)B可能为关于x的三次二项式,理由如下:∵A为关于x的二次多项式x2+bx+c,∴b,c不能同时为0,∵B=(x+2)(x2+bx+c)=x3+(b+2)x2+(2b+c)x+2c.当c=0时,B=x3+(b+2)x2+2bx,∵b不能为0,∴只能当b+2=0,即b=﹣2时,B为三次二项式,为x3﹣4x;当c≠0时,B=x3+(b+2)x2+(2b+c)x+2c.只有当,即时,B为三次二项式,为x3+8.综上所述:当或时,B为三次二项式.19.解:∵=ad﹣bc,=0,∴(x+1)(x﹣1)﹣(x﹣2)(x+3)=0,x2﹣1﹣(x2+x﹣6)=0,x2﹣1﹣x2﹣x+6=0,﹣x=﹣5,x=5.故当x等于5时,=0.20.解:(1)由题意得:(x+2)(3x+1)(5x﹣3)所得多项式的最高次项为x×3x×5x=15x3,一次项为:1×1×(﹣3)x+2×3×(﹣3)x+2×1×5x=﹣11x;(2)依题意有:1×m×(﹣1)+1×(﹣3)×(﹣1)+1×m×2=0,解得m=﹣3;(3)通过题干以及前两问知:a2020=2021×1=2021.故答案为:15x3,﹣11x;2021.。

湘教版七年级数学下册第2章整式的乘法复习及测试卷含答案

湘教版七年级数学下册第2章整式的乘法复习及测试卷含答案

《整式的乘法》复习知识要点【知识结构】【法则及公式】 当m ,n 为正整数时,1. 同底数幂的乘法:底数不变,指数相加..。

n m n m a a a +=⋅. 2. 幂的乘方:底数不变,指数相乘..。

()mnnm a a =. 3. 积的乘方:把积的每个因式分别乘方后相乘。

()n n n nc b a abc =.4. 单项式的乘法:把系数相乘、同底数幂相乘,再把结果相乘。

5. 单项式乘多项式:把单项式同多项式的每一项相乘,再把结果相加.幂的运算 整式的乘法 同底数幂的乘法幂的乘方积的乘方单项式的乘法多项式的乘法平方差公式完全平方公式乘法公式6. 多项式乘多项式:先用一个多项式的每一项乘另一个多项式的每一 项,再把结果相加.7. 平方差公式:两数的和乘两数的差,等于这两个数的平方差。

()()22b a b a b a -=-+。

8. 完全平方公式:两数和的平方等于这两个数的平方和加上..这两个数 的积的2倍;两数和的平方等于这两个数的平方和减去..这两个数 的积的2倍。

()2222b ab a b a ++=+,()2222b ab a b a +-=+.【走出误区】1. 对于幂的运算,能识别是哪一种运算,并正确利用法则进行计算, 防止计算时法则混淆;能根据法则,对底数或指数进行转化;能逆向运用法则解决问题。

2. 做多项式的乘法时注意不漏乘,不错符号,要合并同类项;3. 运用乘法公式时,要准确识别什么相当于公式中a 和b ,能灵活运 用乘法法则进行简便运算;第二章整式的乘法测试卷一、选择. (每小题3分,共30分)1.若n m y x y x y x n n m m 43,992213-=⋅++-则等于( ) A.4 B.6 C. 8 D.无法确定2.下列计算正确的是( )A.3332x x x =⋅B.()1331--=m m a aC.3232a a a =+D.()()()743n m m n n m -=--3.如果计算)3)(2(++x m x 的结果中不含关于x 的一次项,则m 等于 ( )A.23 B.23- C. 2 D.-2 4.已知正数x 满足62122=+x x ,则xx 1+的值是( ) A.8 B.200232⨯- C.64 D.20023- 5.n ab b a ,0,≠互为相反数,且为正整数,则下列两数互为相反数的是( )A.n n b a 与B.n n b a 22与C.1212--n n b a 与D.2222))(----n n b a 与(6.下列各式计算正确的是( ) A.(a 2)7=(a 7)2B.3y 3·5y 4=15y 12C .(-c )4·(-c )2=-c 6D .(ab 5)2=ab 10 7.若a+b =-3,则a 2+b 2+2ab 的值是 ( )A. 9B. -9C. 3D. -38.下列等式一定成立的是( )A.()222y x y x +=+B.()222y x y x -=-C.()22222242y y x x y x ++=+ D.412122+-=⎪⎭⎫ ⎝⎛-x x x9.下列计算错误的是 ( )A.(- a )·(-a )2=-a 3B.(- a )2·(-a )2=a 4C.(- a )3·(-a )2=a 5D.(- a )3·(-a )3=a 6 10、计算(a 3)2+a 2·a 4的结果为 ( )A. 2a 9B. a 12C. a 6+a 8D. 2a 6 二、填空.(每题3分,共30分) 11. 计算64(310)(410)-⨯⋅⨯= . 12.(-8)101×(81)102的结果为 .13.若关于x 的二次三项式1412++mx x 是一个完全平方式,则m 的值为 .14.(1-a )(a +1)(a 2+1)= . 15. m 4-16=(m 2+4)· .16.如果2(2)(3)x x x px q -+=++,那么pq = . 17.81x 2+( )=(9x -y )2. 18.若4a =2a +3,则(2–a )2003 = .19. 某同学在计算一个多项式乘-2a 时,因抄错运算符号,算成加上-2a ,得到的结果是a ²+2a -5,正确的结果是 . 20.观察下列各式:(x -1)(x +1)=x 2-1 (x -1)(x 2+x +1)=x 3-1 (x -1)(x 3+x 2+x +1)=x 4-1 根据规律可得(x -1)(x n +……+x +1)= (其中n 为正整数)三、解答题21.计算(每题4分,共16分)(1)(-21x 2y )4·(-3xy 2)3 (2)2232(2)()23ab a a b ---(3)(x -y ) 2 - (x+y )2 (4)(xy+z )(-xy+z )22.用乘法公式进行简便运算:(1)224040480240+⨯- (2)2016 2 -2017×2015-123.先化简,再求值(8分)22)()())((2b a b a b a b a -++--+ ,其中31,3=-=b a24.已知x 2-2x -3=0,求代数式x (x +3)-2(x +1)-3x -6的值.25.肖敏红说:“无论m ,n 为何有理数,多项式624422+--+n m n m 的值总是正数”对此说法你怎么看?并请说明理由。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

章节测试题
1.【答题】下列运算正确的是()
A. (x2)3=x5
B. (-3x2y)3=-9x6y3
C. (a+b)(a+b)=a2+b2
D.
【答案】D
【分析】根据整式的运算判断解答即可.
【解答】解:A、(x2)3=x6,故本选项错误;
B、(-3x2y)3=-27x6y3,故本选项错误;
C、(a+b)(a+b)=a2+2ab+b2,故本选项错误;
D、4x3y2•(-xy2)=-2x4y4,故本选项正确.
选C.
2.【答题】若,,则().
A.
B.
C.
D.
【答案】A
【分析】先根据整式的运算化简,再整体代入求解即可.
【解答】∵,,
∴原式=
选A.
3.【答题】下列各式计算正确的是().
A.
B.
C.
D.
【答案】D
【分析】根据整式的运算解答即可.
【解答】选项,不是同类项,不能够合并,选项错误;选项,根据积的乘方的运算法则可得原式=-,选项错误;选项,根据单项式乘以单项式的运
算法则可得,原式= ,选项错误;选项,根据整式的除法法则可得:,选项正确,故选.
4.【答题】下列计算正确的是().
A.
B.
C.
D.
【答案】D
【分析】根据整式的运算判断即可.
【解答】解:项,合并同类项:把同类项的系数相加减,所得的结果作为系数,字母和字母的指数保持不变,则.故项错误;
项,根据积的乘方:(是正整数)得
.故项错误;
项,根据完全平方公式展开,得.错误;
项,根据整式的除法计算.
故D选项正确.
5.【答题】下列各式中,运算结果为a2-3 a-18的是()
A. (a-2)(a+9)
B. (a-6)(a+3)
C. (a+6)(a-3)
D. (a+2)(a-9)
【答案】B
【分析】根据整式的乘法运算解答即可.
【解答】解:
选B.
6.【答题】下列计算正确的是()
A.
B.
C.
D.
【答案】B
【分析】根据整式的运算解答即可.
【解答】选项A,原式=;选项B,原式= ;
选项C, ;选项D,原式=3a2.选B.
7.【答题】已知,,则多项式的值为().
A.
B.
C.
D.
【答案】A
【分析】根据整式的运算解答即可.
【解答】解:∵x+y=3,
选A.
8.【答题】如果在计算时把括号内的减号不小心抄成加号,那么正确结果和错误结果的差是().
A.
B.
C.
D.
【答案】B
【分析】根据整式的除法运算解答即可.
【解答】先根据计算出错误的结果为:
,再计算= ,
最后再,选B.
9.【答题】如果,那么单项式等于().
A.
B.
C.
D.
【答案】D
【分析】根据整式的除法运算解答即可.
【解答】根据”除式=被除式÷商”可得: ,选D.
10.【答题】与单项式的积是的多项式是().
A.
B.
C.
D.
【答案】D
【分析】根据整式的除法运算解答即可.
【解答】根据”因数=积÷因数”可得:
,
选D.
11.【答题】计算:的结果是().
A.
B.
C.
D.
【答案】B
【分析】根据整式的除法运算解答即可.
【解答】因为,选B.
12.【答题】计算:().
A.
B.
C.
D.
【答案】B
【分析】根据整式的除法运算解答即可.
【解答】因为,选B.
13.【答题】若,则,的值是().
A. ,
B. ,
C. ,
D. ,
【答案】B
【分析】根据整式的除法运算解答即可.
【解答】因为,所以, , , ,选B.
14.【答题】计算,其结果正确的是().
A.
B.
C.
D.
【答案】A
【分析】根据整式的除法运算解答即可.
【解答】因为,选A.
15.【答题】计算的结果是()
A.
B.
C.
D.
【答案】A
【分析】根据整式的除法运算解答即可.
【解答】因为,选A.
16.【答题】下列计算,结果正确的是().
A.
B.
C.
D.
【答案】C
【分析】根据整式的除法运算解答即可.
【解答】A选项, ,所以A选项错误, B选项, ,所以B选项错误,
C选项, 所以C选项正确,
D选项,所以D选项错误, 选C.
17.【答题】计算:的结果是().
A.
B.
C.
D.
【答案】A
【分析】根据整式的除法运算解答即可.
【解答】因为,选A.
18.【答题】已知(a3b6)÷(a2b2)=3,则a2b8的值等于()
A. 6
B. 9
C. 12
D. 81
【答案】B
【分析】单项式相除,把系数和同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式,利用这个法则先算出ab4的值,再平方.
【解答】∵(a3b6)÷(a2b2)=3,
∴ab4=3,
∴a2b8=( ab4)2=32=9.
选B.
19.【答题】(2a4+2b5a2)÷a2等于()
A. a2c+b5c
B. 2a2+2b5
C. a4+b5
D. 2a4+ba2
【答案】B
【分析】根据整式的除法运算解答即可.
【解答】(2a4+2b5a2)÷a2=2a4÷a2+2b5a2÷a2=2a2+2b5,
选B.
20.【答题】( x2y2+y7+y5z)÷y2等于()
A. x2+ y5+y3z
B. x2y2+y5z
C. x2y +y5z
D. x2y2+y7+y5z
【答案】A
【分析】根据整式的除法运算解答即可.
【解答】( x2y2+y7+y5z)÷y2= x2y2÷y2+y7÷y2+y5z÷y2= x2+ y5+y3z, 选A.。

相关文档
最新文档