管壳式换热器完整PPT课件
合集下载
孙兰义教授新作《换热器工艺设计》第3章 管壳式换热器ppt
② ①
特性
适用范围
ϕ25×2.5
325~1Байду номын сангаас00
2,4
3,6
ϕ19×2 ϕ25×2.5
△
浮头 式
GB/T 28712.1 —2012
325~1900
2,4, 3, 4.5, 6, ϕ19×2 6 9
◇
ϕ25×2.5
3.1 管壳式换热器的特点
管壳式换热器的主要组合部件
TEMA标准中规定的管壳式换热器的主要组合
图3-3 GB/T 151-1999 管壳式 换热器中的主要部件和部件代号图
⑤ F型壳体用于需要多壳体的工况,它可起到两台或多 台串联换热器的作用,并允许换热器温度交叉的出现。
3.1 管壳式换热器的特点
前端管箱和后端管箱
前端管箱有封头管箱和平盖管箱两种基本型式。封头管箱(B)最常用,一 般是在管侧流体较清洁的情况下使用。平盖管箱可以是可拆式(A)也可以与 管板做成一个整体(C)。对于水冷却器,当管侧需要定期清洗且管侧设计压 力小于1 MPa时,前封头可选A型,对于高压换热器前封头宜选择D型。各管箱 详细介绍见书p6~p7。 可参考的一般选型指导:
(a)竖缺形折流板
(b)横缺形折流板
图3-11 折流板缺口方向
3.2 管壳式换热器结构参数选择
折流板换热器间隙 折流板管孔与管壁之间的间隙 根据TEMA标准,对于未受支承的管子的最大长度为36 in(914.4 mm)
或更小,或者对于外径大于1.25 in(31.8 mm)的管子,该孔隙为1/32 in (0.80 mm);对于未受支承的长度超过36 in,外径为1.25 in或更小的 管子,该孔隙为1/62 in(0.40 mm)。
特性
适用范围
ϕ25×2.5
325~1Байду номын сангаас00
2,4
3,6
ϕ19×2 ϕ25×2.5
△
浮头 式
GB/T 28712.1 —2012
325~1900
2,4, 3, 4.5, 6, ϕ19×2 6 9
◇
ϕ25×2.5
3.1 管壳式换热器的特点
管壳式换热器的主要组合部件
TEMA标准中规定的管壳式换热器的主要组合
图3-3 GB/T 151-1999 管壳式 换热器中的主要部件和部件代号图
⑤ F型壳体用于需要多壳体的工况,它可起到两台或多 台串联换热器的作用,并允许换热器温度交叉的出现。
3.1 管壳式换热器的特点
前端管箱和后端管箱
前端管箱有封头管箱和平盖管箱两种基本型式。封头管箱(B)最常用,一 般是在管侧流体较清洁的情况下使用。平盖管箱可以是可拆式(A)也可以与 管板做成一个整体(C)。对于水冷却器,当管侧需要定期清洗且管侧设计压 力小于1 MPa时,前封头可选A型,对于高压换热器前封头宜选择D型。各管箱 详细介绍见书p6~p7。 可参考的一般选型指导:
(a)竖缺形折流板
(b)横缺形折流板
图3-11 折流板缺口方向
3.2 管壳式换热器结构参数选择
折流板换热器间隙 折流板管孔与管壁之间的间隙 根据TEMA标准,对于未受支承的管子的最大长度为36 in(914.4 mm)
或更小,或者对于外径大于1.25 in(31.8 mm)的管子,该孔隙为1/32 in (0.80 mm);对于未受支承的长度超过36 in,外径为1.25 in或更小的 管子,该孔隙为1/62 in(0.40 mm)。
16.第十六章 管壳式换热器
滚 柱 胀 杆
32
⑴胀接
要求管板硬度大于管子硬度,否则将管端退火后再胀接。
管板孔内开一个或两个环形槽,当胀管时管子产生塑性变 形,管壁被嵌入小槽内,可以提高连接强度和紧密性。 若管子用20钢, 则管板可选用什 么材料? 10、20、35、 Q235、Q255、 16Mn
33
胀接时管板上的孔可以是光孔,也可开槽。
FL t Et At FL s E S As
12
温差应力的产生
温差轴向力 F
t (t t ห้องสมุดไป่ตู้t 0 ) s (t s t 0 )
1 1 Et At E S AS
F 管壁内温差应力: t At F 壳壁内温差应力: s As
13
22
管箱与管程分程
管程分程常用的有1、2、4、6、8、10、12等。
23
三、管束
1.换热管的尺寸规格及材料
换热管管径越小,换热器单位体积的传热面积就越大,设 备就越紧凑,但制造麻烦。洁净的流体可取小管径;常用 的规格有Φ19×2、Φ25×2.5、Φ38×2.5、 Φ57×3.5等 规格。 管子材料,应根据设计压力、温度、介质腐蚀等选择,有 10 、 20、1Cr18Ni9Ti、Cu、Al等。对于低压、强腐蚀性 介质的换热器可选用石墨、聚四氟乙烯。 管子长度,推荐管长有1.0,1.5,2.0,2.5,3.0,4.5, 6.0,7.5,9.0,12.0m,其中以3m和6m最为普遍。
34
⑵焊接
优点: ①管板孔表面粗糙度要不高,管端不需退火和磨光。
②强度高,抗拉脱力强,气密性好。应用广泛。 缺点:①管子破漏需拆卸更换困难,一般堵死。 ②管子、管板间存在间隙,易出现缝隙腐蚀。
管壳式换热器 ppt课件
超声检测:电能-超声能-电能,一般1~10MHZ常 用1~5MHZ,设备为数字式和模拟式。
磁粉检测:通过磁场使焊接接头磁化,在工件表 面均匀撒上磁粉,有缺陷的位置会出现磁粉聚集 现象。
渗透检测:一般探测出的缺陷深度0.02mm宽度约 0.001mm,利用带有荧光染料或红色染料的渗透 剂的渗透作用,经过渗透、清洗、显示处理后用 目视法观察。
对于铬钼钢的材料,在焊接后需进行焊后热处理。
热处理目的:1、对焊缝消除应力,防止焊缝延迟 裂纹的出现。2、对焊缝消氢处理,防止氢腐蚀、 氢脆的出现。
加热方式主要有通过电加热带加热,用保温防火 棉覆盖保温。加热温度大约在200-300℃。消除 应力热处理时间在16-24h以内,消氢热处理保温 时间不少于0.5h。或用火焰加热处理。
双壁(双壁—单影、双壁—双影) 照相成像质量 :对比度、清晰度和颗粒度 像质计应用 :评定底片的灵敏度 底片评定 :判定缺陷合格与否
设备无损检测主要方法:
无损检测:包括射线透照检测、超声检测、表面检 测:(包括磁粉检测、渗透检测、涡流检测)前 两种主要用于探测被检物的内部缺陷,表面检测 用于探测被检物的表面和近表面缺陷。
折流板:提高壳程流体的流速,增加湍动程度并 使壳程流体垂直冲刷管束,以改善传热,增大传 热系数,并且起支持管束的作用。分为弓形和圆 环-圆盘形两种。
管板加工过程:
折流板加工过程:
车床加工管板
管板划线及打点
钻床管板钻孔
换热管预制
换热管分类:
U型换热器换热管弯管:
弯管机弯管(冷弯)
补强圈
接管法兰
补强圈信号孔通压缩空气检漏
信号孔:1、用来检验补强圈焊缝的密封性能。2、 排放补强圈和筒体间气体。
磁粉检测:通过磁场使焊接接头磁化,在工件表 面均匀撒上磁粉,有缺陷的位置会出现磁粉聚集 现象。
渗透检测:一般探测出的缺陷深度0.02mm宽度约 0.001mm,利用带有荧光染料或红色染料的渗透 剂的渗透作用,经过渗透、清洗、显示处理后用 目视法观察。
对于铬钼钢的材料,在焊接后需进行焊后热处理。
热处理目的:1、对焊缝消除应力,防止焊缝延迟 裂纹的出现。2、对焊缝消氢处理,防止氢腐蚀、 氢脆的出现。
加热方式主要有通过电加热带加热,用保温防火 棉覆盖保温。加热温度大约在200-300℃。消除 应力热处理时间在16-24h以内,消氢热处理保温 时间不少于0.5h。或用火焰加热处理。
双壁(双壁—单影、双壁—双影) 照相成像质量 :对比度、清晰度和颗粒度 像质计应用 :评定底片的灵敏度 底片评定 :判定缺陷合格与否
设备无损检测主要方法:
无损检测:包括射线透照检测、超声检测、表面检 测:(包括磁粉检测、渗透检测、涡流检测)前 两种主要用于探测被检物的内部缺陷,表面检测 用于探测被检物的表面和近表面缺陷。
折流板:提高壳程流体的流速,增加湍动程度并 使壳程流体垂直冲刷管束,以改善传热,增大传 热系数,并且起支持管束的作用。分为弓形和圆 环-圆盘形两种。
管板加工过程:
折流板加工过程:
车床加工管板
管板划线及打点
钻床管板钻孔
换热管预制
换热管分类:
U型换热器换热管弯管:
弯管机弯管(冷弯)
补强圈
接管法兰
补强圈信号孔通压缩空气检漏
信号孔:1、用来检验补强圈焊缝的密封性能。2、 排放补强圈和筒体间气体。
《管壳式换热器设计》PPT课件
精选PPT
5
1.3 管壳式换热器介绍
管壳式换热器具有可靠性高,适应性广泛等优点,在各工 业领域中得到最为广泛在应用。
1.3.1 基本类型 根据管壳式换热器的结构特点,可分为固定管板式、浮
头式、U形管式、填料函式和釜式沸器五类,如图示。 1.3.1.1 固定管板式换热器 固定管板式换热器管束连接在管板上,管板与壳体焊接。 1.3.1.1.1 优点: 1)传热面积比浮头式换热器大20%-30%; 2)旁路漏流较水; 3)锻件使用较少; 4)没有内漏。
4
1.2.1.3 间壁式换热器
1.2.1.3.1 间壁式换热器分类 管式换热器、板式换热器及其它形式的换热器。
管式换热器都是通过管子壁面进行传热的换热器。按传热 管的结构形式不同大致可分为蛇管式换热器、套管式换热 器、缠绕管式换热器和管壳式换热器。
其中管壳式换热器是目前应用最为广泛的换热设备。 它占换热器总量的90%。它是典型的间壁式换热器.
足要求的场合.
精选PPT
11
二、 管壳式换热器的设计参数及材料
2.1 设计参数
是指用于确定换热器施工图设计、制造、检验及验收 的参数。 它主要包括设计压力P、设计温度T、厚度δ、 焊接接头系数φ、试验压力PT、公称直径DN、公称长度 LN、换热面积A、容器类别等。
2.1.1 设计压力:
指设定的换热器管、壳程顶部的最高压力,与相应
计温度。
在任何情况下,金属元件的表面温度不得超过金属材料的允许使用温 度。
2.1.3 厚度
2.1.3.1 计算厚度---- 按规范的公式计算得到的厚度。
2.1.3.2 设计厚度-----设计时必须考虑腐蚀裕量C2,计算厚度与腐蚀裕量 之和为设计厚度。
管式换热器ppt
(2)根据不同的目的,换热器可以是热交换器、加热器、 冷却器、蒸发器、冷凝器等。
(3)衡量一台换热器好坏的标准。
a.先进性 传热效率高,流体阻力小,材料省
b.合理性 可制造加工,成本可接受
c.可靠性 满足操作条件 ,强度足够,保证使用寿命
化工生产对换热设备提出的要求是: 传热效率高,流体阻力小; 强度、刚度、稳定性足够; 结构合理,节省材料,成本较低; 制造、装拆、检修方便等。
第一节 管壳式换热器的总体结构
一、概述
(4)任何一种换热器不可能十全十美。 板式换热器传热效率高、金属消耗量低,但流体阻力大、强度 和刚度差,制造、维修困难。 列管式换热器虽在传热效率、紧凑性、金属消耗量等方面均不 如板式换热器,但其结构坚固、可靠程度高、适应性强、材料 范围广,因而目前仍是石油、化工生产中,尤其是高温、高压 和大型换热器的主要结构型式。
二、管壳式换热器的种类及其结构
管壳式换热器是把换热管束与管板连接后,再用筒体与管箱包 起来,形成两个独立的空间:管内通道及与其相贯通的管箱,称为 管程空间;换热管外的通道及与其贯通的部分,称为壳程空间。
1 列管式换热器的主要结构: 横 向
壳体、管板、管束、顶盖(封头)、挡板 纵 向
2 列管式换热器的工作原理:
3)、缺点:填料处易泄漏。 4)、适用场合: 4MPa 以下,且不适用于易挥发、易
燃、易爆、有毒及贵重介质,使用温度受填料的物性 限制。
列管式换热器 种类
优点
缺点
固定管板式
管外清洗困难; 结构较简单,造价较低,相对 管壳间有温差应力存在; 其 它 列 管 式 换 热 器 其 管 板 最 薄 。当两种介质温差较大时必须
1-管箱(A,B,C,D型);2-接管法兰;3-设备法兰;4-管板;5-壳程接管;6-拉杆;7-膨胀 节;8-壳体;9-换热管;10-排气管;11-吊耳;12-封头;13-顶丝;14-双头螺柱;15-螺 母;16-垫片;17-防冲板;18-折流板或支承板;19-定距管;20-拉杆螺母;21-支 座;22-排液管;23-管箱壳体;24-管程接管;25-分程隔板;26-管箱盖
(3)衡量一台换热器好坏的标准。
a.先进性 传热效率高,流体阻力小,材料省
b.合理性 可制造加工,成本可接受
c.可靠性 满足操作条件 ,强度足够,保证使用寿命
化工生产对换热设备提出的要求是: 传热效率高,流体阻力小; 强度、刚度、稳定性足够; 结构合理,节省材料,成本较低; 制造、装拆、检修方便等。
第一节 管壳式换热器的总体结构
一、概述
(4)任何一种换热器不可能十全十美。 板式换热器传热效率高、金属消耗量低,但流体阻力大、强度 和刚度差,制造、维修困难。 列管式换热器虽在传热效率、紧凑性、金属消耗量等方面均不 如板式换热器,但其结构坚固、可靠程度高、适应性强、材料 范围广,因而目前仍是石油、化工生产中,尤其是高温、高压 和大型换热器的主要结构型式。
二、管壳式换热器的种类及其结构
管壳式换热器是把换热管束与管板连接后,再用筒体与管箱包 起来,形成两个独立的空间:管内通道及与其相贯通的管箱,称为 管程空间;换热管外的通道及与其贯通的部分,称为壳程空间。
1 列管式换热器的主要结构: 横 向
壳体、管板、管束、顶盖(封头)、挡板 纵 向
2 列管式换热器的工作原理:
3)、缺点:填料处易泄漏。 4)、适用场合: 4MPa 以下,且不适用于易挥发、易
燃、易爆、有毒及贵重介质,使用温度受填料的物性 限制。
列管式换热器 种类
优点
缺点
固定管板式
管外清洗困难; 结构较简单,造价较低,相对 管壳间有温差应力存在; 其 它 列 管 式 换 热 器 其 管 板 最 薄 。当两种介质温差较大时必须
1-管箱(A,B,C,D型);2-接管法兰;3-设备法兰;4-管板;5-壳程接管;6-拉杆;7-膨胀 节;8-壳体;9-换热管;10-排气管;11-吊耳;12-封头;13-顶丝;14-双头螺柱;15-螺 母;16-垫片;17-防冲板;18-折流板或支承板;19-定距管;20-拉杆螺母;21-支 座;22-排液管;23-管箱壳体;24-管程接管;25-分程隔板;26-管箱盖
《管壳式换热设备结构及检修》PPT课件模板
管壳式换热设备结构及检修
(Excellent handout training template)
Excellent handout
管壳式换热器结构与检修
高密度聚乙烯装置
2021年7月23日编制
Excellent handout
第一节 换热设备的类型及应用
一、换热设备的应用
◆ 定义 使传热过程得以实现的设备称之为换热设备。 换热器是用来完成各种不同传热过程的设备。
假法兰试压) 管程试压(小浮头试压) 壳程试压(整体试压) 盲板拆除 保温恢复 拆脚手架,清理现场
2021年7月23日编制
演示
Excellent handout
2021年7月23日编制
Excellent handout
2021年7月23日编制
Excellent handout
2021年7月23日编制
换热器质量好坏的衡量标准: • 1)先进性—传热效率高,流体阻力小,材料省; • 2)合理性—可制造加工,成本可接受; • 3)可靠性—强度满足工艺条件。
2021年7月23日编制
Excellent handout
二、换热设备的分类 ◆根据不同的目的,换热器可以分为: 1、冷却器
1)用空气作介质——空冷器 2)用氨、盐水、氟里昂等冷却到0℃~-20℃— —保冷器
浮动管板
2021年7月23日编制
2、管束试验的壳程试验方案:(如下图)
Excellent handout
打压工具 壳体 打压工具
固定管板
浮动管板
第一步:要求确认下列任务: 1、管束换热管泄漏。 2、管束的固定板和浮动板与换热管焊接口(或胀接)泄漏。
2021年7月23日编制
Excellent handout
(Excellent handout training template)
Excellent handout
管壳式换热器结构与检修
高密度聚乙烯装置
2021年7月23日编制
Excellent handout
第一节 换热设备的类型及应用
一、换热设备的应用
◆ 定义 使传热过程得以实现的设备称之为换热设备。 换热器是用来完成各种不同传热过程的设备。
假法兰试压) 管程试压(小浮头试压) 壳程试压(整体试压) 盲板拆除 保温恢复 拆脚手架,清理现场
2021年7月23日编制
演示
Excellent handout
2021年7月23日编制
Excellent handout
2021年7月23日编制
Excellent handout
2021年7月23日编制
换热器质量好坏的衡量标准: • 1)先进性—传热效率高,流体阻力小,材料省; • 2)合理性—可制造加工,成本可接受; • 3)可靠性—强度满足工艺条件。
2021年7月23日编制
Excellent handout
二、换热设备的分类 ◆根据不同的目的,换热器可以分为: 1、冷却器
1)用空气作介质——空冷器 2)用氨、盐水、氟里昂等冷却到0℃~-20℃— —保冷器
浮动管板
2021年7月23日编制
2、管束试验的壳程试验方案:(如下图)
Excellent handout
打压工具 壳体 打压工具
固定管板
浮动管板
第一步:要求确认下列任务: 1、管束换热管泄漏。 2、管束的固定板和浮动板与换热管焊接口(或胀接)泄漏。
2021年7月23日编制
Excellent handout
管壳式热交换器ppt文档
②管程数: 一般有1,2,4,6,8,10,12等七种。
③隔板布置方式
平行布置法 T形布置法
④分程的要求:
避免流体温差较大的两部分管束紧邻 程与程之间温差不宜过大, 不超过28℃ 应尽可能使各管程的换热管数大致相同
分程隔板槽形状简单, 密封面长度较短
2.1.4 分程隔板
管程数 1
2
流动顺序
1 2
管箱隔板
两 者 间 残 余 应 力 达 密 封 、 紧 固
2.1.2 管子在管板上的固定和排列
(1)管子在管板上的固定:胀管法与焊接法
胀管法适用范围:换热管为碳素钢,管板为碳素钢 或低合金钢,设计压力≤4MPa,设计温度≤300℃, 且无特殊要求的场合。 要求:管板硬度大于管子硬度,否则将管端退火后 再胀接。胀接时管板上的孔可以是光孔,也可开槽 (开槽可以增加连接强度和紧密性)。
正方形
流
流
体
体
流
流
动
动
方 向
方 向
转角正方形
特点:管外清洗方便/但排管比三角形少
2.1.2 管子在管板上的固定和排列
(3)换热管中心距
定义:管板上两根管子中心线的距离。
决定因素:
管板强度 清洗管子外表所需要的间距 管子在管板上的固定方法
布管原则:
无论哪种排列都必须在管束周围的弓形空间尽可能 多布管→传热面积↑,且可防壳程流体短路
2.1.2 管子在管板上的固定和排列
1)、选择管壳式热交换器传热面材料的决定因素: 材料的工作压力、温度和流体腐蚀性、流体对材料的脆化作用及 流体的毒性所决定。
2)、材料的种类:碳钢、合金钢、铜、塑料、石墨等
3)我国管壳式换热器常用换热管为碳钢、低合金钢管有: Φ19×2、 Φ25×2.5、 Φ38×3、 Φ57×3.5 ; 不锈钢管有Φ25×2、 Φ38×2.5。
管壳式热交换器(PPT课件)
管外纵流条件下,管外传热系数为光管的1.6倍.
传递热量相同,泵功率相同,取代光管,节约材 料30%-50%
螺旋槽
主要用于强化管内气体或液体的传热,强化管内液
体的沸腾或管内外蒸气的冷凝,管内传热系数为光管 传热系数的1.5-2.0倍;管外传热系数为光管传热系数 的1.5倍.
缩放管
波纹管
波纹管优点
(4)填料函式换热器
填料函式换热器 1.纵向隔板;2.浮动管板;3.活套法兰;4.部分剪切环;5.填 料压盖;6.填料;7.填料函
填料函式密封
缺点:填料处易泄漏。 优点:结构简单,加工制造方便,造价低,管内和管
间清洗方便 适用场合:4MPa 以下,且不适用于易挥发、易燃、易 爆、有毒及贵重介质,使用温度受填料的物性限制。
带膨胀节的固定管板式换热器 图7-3 带补偿器的固定管板式换热器
(2) U形管式换热器
U形管式换热器 1.中间挡板;2.U形换热管;3.排气口;4.防冲板;5.分程隔板
U形管式换热器
U型管式换热器 图7-6 U形管式换热器 优点:结构简单,价格便宜,承受能力强,不会产生热应力。 缺点:布板少,管板利用率低,管子坏时不易更换。 适用场合:特别适用于管内走清洁而不易结垢的高温、高压、 腐蚀性大的物料。
第二章 管壳式热交换器
间壁式热交换器
管式热交换器
管壳式、套管式、螺旋管式等
板式热交换器
延伸表面热交换器
蓄热式热交换器
管壳式换热器
2.1 管壳式换热器的分类
基本类型 固定管板式换热器
U形管式换热器 浮头式换热器 填料函式换热器
(1)固定管板式换热器
管壳式换热器结构介绍 ppt课件
双弓形折流板:优点是压降低,更好的规避振动的问题;缺点是大的窗 口流动面积;设计要点:5%-30%的圆缺率,默认两排管重叠;适合场合 时振动和压力受限的换热器(相对于单弓形折流板来说)。
螺旋折流板:分为单螺旋折流板和双螺旋折流板优点是换热好,压降低, 流动均匀;缺点是制造困难;设计要点是螺旋角度5-45°,适合的场合 时压降受限,容易结垢的场合。
K型壳体:主要用于管程热介质,壳侧蒸发的工况,在废热回收条件下使 用。
X型壳体:冷热流体属于错流流动,其优点是压降非常小,当采用其他壳 体发生振动,且通过调整换热器参数无法消除该振动时可以使用此壳体 形式,其不足之处是流体分布不均匀,X型壳体并不经常使用。
在化工工艺手册中,I型壳体类型可EDR软件中的不是同一种壳体Байду номын сангаас 其形式见I1,它的使用方式仅有一种搭配,就是BIU,U型管换热器。
PPT课件
2
1、管壳式换热器结构介绍
管壳式换热器:是以封闭在壳体中管束的壁面作为传热面的间 壁式换热器,这种换热器结构较简单、操作可靠,可用各种结构材 料(主要是金属材料)制造,能在高温、高压下使用,是目前应用 最广的类型。(设计制造遵循标准:国外 TEMA ASME 国内 GB151、GB150)
F型壳体:适用于场地受限,需要双壳程的情况,比较适合于单相换热, 纯逆流换热,传热温差大;缺点是F型壳体有分程隔板,此处会发生漏流, 而且壳程进口与出口处的压差和温差都是最大的,会发生漏温且分程隔 板也容易发生变形。所以F型壳体适用于压差和温差都不大的情况下。
PPT课件
7
G型壳体:属于平行流换热器,该换热器的热流体出口温度可以比冷流体 出口温度低,适用于需要做壳侧强化的卧式热虹吸再沸器、冷凝器等。
螺旋折流板:分为单螺旋折流板和双螺旋折流板优点是换热好,压降低, 流动均匀;缺点是制造困难;设计要点是螺旋角度5-45°,适合的场合 时压降受限,容易结垢的场合。
K型壳体:主要用于管程热介质,壳侧蒸发的工况,在废热回收条件下使 用。
X型壳体:冷热流体属于错流流动,其优点是压降非常小,当采用其他壳 体发生振动,且通过调整换热器参数无法消除该振动时可以使用此壳体 形式,其不足之处是流体分布不均匀,X型壳体并不经常使用。
在化工工艺手册中,I型壳体类型可EDR软件中的不是同一种壳体Байду номын сангаас 其形式见I1,它的使用方式仅有一种搭配,就是BIU,U型管换热器。
PPT课件
2
1、管壳式换热器结构介绍
管壳式换热器:是以封闭在壳体中管束的壁面作为传热面的间 壁式换热器,这种换热器结构较简单、操作可靠,可用各种结构材 料(主要是金属材料)制造,能在高温、高压下使用,是目前应用 最广的类型。(设计制造遵循标准:国外 TEMA ASME 国内 GB151、GB150)
F型壳体:适用于场地受限,需要双壳程的情况,比较适合于单相换热, 纯逆流换热,传热温差大;缺点是F型壳体有分程隔板,此处会发生漏流, 而且壳程进口与出口处的压差和温差都是最大的,会发生漏温且分程隔 板也容易发生变形。所以F型壳体适用于压差和温差都不大的情况下。
PPT课件
7
G型壳体:属于平行流换热器,该换热器的热流体出口温度可以比冷流体 出口温度低,适用于需要做壳侧强化的卧式热虹吸再沸器、冷凝器等。
2022管壳式换热器精选ppt
管壳式换热器
类型
③ U型管式换热器 每根换热管 皆弯成U形,两端分别固定在 同一管板上下两区,借助于管 箱内的隔板分成进出口两室。 此种换热器完全消除了热应力, 结构比浮头式简单,但管程不 易清洗。
管壳式换热器
类型
④涡流热膜换热器涡流热膜换热 器采用最新的涡流热膜传热技术, 通过改变流体运动状态来增加传 热效果,当介质经过涡流管表面 时,强力冲刷管子表面,从而提 高换热效率。最高可达 10000W/m2℃。同时这种结构实 现了耐腐蚀、耐高温、耐高压、 防结垢功能。其它类型的换热器 的流体通道为固定方向流形式, 在换热管表面形成绕流,对流换 热系数降低。
管壳式换热器
安装要点 同时这种结构实现了耐腐蚀、耐高温、耐高压、防结垢功能。
其它类型的换热器的流体通道为固定方向流形式,在换热管表面形成绕流,对流换热系数降低。 为提高管外流体的传热分系数,通常在壳体内安装若干挡板。 换热管在管板上可按等边三角形或正方形排列。 挡板可提高壳程流体速度,迫使流体按规定路程多次横向通过管束,增强流体湍流程度。
强力冲刷管子表面,从而提高换热效率。
并不得小于0.2m。 ③ U型管式换热器 每根换热管皆弯成U形,两端分别固定在同一管板上下两区,借助于管箱内的隔板分成进出口两室。
4)、加热器上部附件(一般指安全阀)的最高点至建筑结构最低点的垂直净距应满足安
针对冷却塔防腐问题,传统 方法以补焊为主,但补焊易使管 板内部产生内应力,难以消除, 可能造成冷却塔管板焊缝再次渗 漏。现西方国家多采用高分子复 合材料的方法进行保护。其具有 优异的粘着性能及抗温、抗化学 腐蚀性能,在封闭的环境里可以 安全使用而不会收缩,特别是良 好的隔离双金属腐蚀和耐冲刷性 能,从根本上杜绝了修复部位的 腐蚀渗漏,为冷却塔提供一个长 久的保护涂层。
换热器的机械设计ppt课件
11
保证紧密性的方法: •管板孔开槽; •胀接周边保证清洁; •管子硬度低于管板孔周边 硬度。
保证管端硬度较低并且低 于管板硬度的方法: •管端退火处理。 •选材考虑。
12
2.焊接
优点: • 高温高压下能保证连接
的紧密性; • 管板孔加工精度要求不
高,低于胀接; • 焊接工艺简单; • 压力不高时可用薄管板。 缺点: • 存在焊接热应力——应
1)
壳壁应力
2
t s
;
2)
管壁应力
2
t
t
;
3)壳壁应力 0 且 B ;
4)管子拉脱力q q。
3.膨胀节的选用及安装
依据标准:GB16749-1997《压力容器波形膨胀节》
安装注意:1)与壳体对接焊,保证焊透;
2)要进行无损探伤;
3)最低点设置排液孔。
49
点 ——无温差应力;
2.管束可以抽出,清洗;
3.结构复杂,浮头内漏不便检查;
4.管束与壳体间隙较大——影响传热。.
3
特点: 1.一端可自由伸缩— 不产生热应力; 2.管束可以抽出,管内外均易清洗; 3.填料将壳程介质与外界隔开,易外 漏,介质受限制;
4
U型管式换热器的二维图
1.只有一个管板,结构简单;
力腐蚀; • 管与孔间有间隙——形
成介质死区,间隙腐蚀。
13
管与管板焊接形式:
14
3.胀焊并用 克服了单纯的焊接及胀接的缺点,
主要优点是: • 连接紧密,提高抗疲劳能力; • 消除间隙腐蚀和应力腐蚀; • 提高使用寿命。 施工方式:先胀後焊;先焊後胀。
胀接——贴胀;强度胀。 焊接——密封焊,强度焊。 根据不同情况具体制定施工工艺。
保证紧密性的方法: •管板孔开槽; •胀接周边保证清洁; •管子硬度低于管板孔周边 硬度。
保证管端硬度较低并且低 于管板硬度的方法: •管端退火处理。 •选材考虑。
12
2.焊接
优点: • 高温高压下能保证连接
的紧密性; • 管板孔加工精度要求不
高,低于胀接; • 焊接工艺简单; • 压力不高时可用薄管板。 缺点: • 存在焊接热应力——应
1)
壳壁应力
2
t s
;
2)
管壁应力
2
t
t
;
3)壳壁应力 0 且 B ;
4)管子拉脱力q q。
3.膨胀节的选用及安装
依据标准:GB16749-1997《压力容器波形膨胀节》
安装注意:1)与壳体对接焊,保证焊透;
2)要进行无损探伤;
3)最低点设置排液孔。
49
点 ——无温差应力;
2.管束可以抽出,清洗;
3.结构复杂,浮头内漏不便检查;
4.管束与壳体间隙较大——影响传热。.
3
特点: 1.一端可自由伸缩— 不产生热应力; 2.管束可以抽出,管内外均易清洗; 3.填料将壳程介质与外界隔开,易外 漏,介质受限制;
4
U型管式换热器的二维图
1.只有一个管板,结构简单;
力腐蚀; • 管与孔间有间隙——形
成介质死区,间隙腐蚀。
13
管与管板焊接形式:
14
3.胀焊并用 克服了单纯的焊接及胀接的缺点,
主要优点是: • 连接紧密,提高抗疲劳能力; • 消除间隙腐蚀和应力腐蚀; • 提高使用寿命。 施工方式:先胀後焊;先焊後胀。
胀接——贴胀;强度胀。 焊接——密封焊,强度焊。 根据不同情况具体制定施工工艺。
管壳式换热器传热机理课件pptx
管壳式换热器传热机理课件pptx
contents
目录
• 引言 • 管壳式换热器基本结构 • 传热基本原理 • 管壳式换热器传热过程分析 • 强化传热措施及优化设计
contents
目录
• 管壳式换热器性能评价与选型 • 实验与仿真技术在管壳式换热器研究中
的应用 • 总结与展望
01
引言
目的和背景
管壁热阻、流体热阻、污垢 热阻
传热系数计算
传热系数定义
单位时间内、单位面积上热量传递的速率
传热系数计算公式
K = (1/R1 + 1/R2 + … + 1/Rn)^-1
各部分热阻计算
管壁热阻、流体热阻、污垢热阻
温度场分布与影响因素
温度场分布
沿流动方向温度逐渐降低,径向温度梯度较小
影响因素
流体物性、流速、管壁厚度、热负荷、污垢状况 等
通过测量管壳式换热器进出口流体的温度和 流量,计算热负荷和传热系数,评估其传热 性能。
压力降实验
测量进出口流体的压力差,分析流体在管壳式换热 器内的流动阻力,为优化设计提供依据。
流场可视化实验
利用粒子图像测速仪(PIV)等技术,观察 管壳式换热器内部流场分布,揭示流动与传 热之间的相互作用。
仿真模型建立及求解过程阐述
案例分析:某管壳式换热器优化设计实践
案例背景介绍
某化工企业需要对现有管壳式换热器进行优化设计,以提高传热效率、降低能耗。
优化设计方案
通过对换热器进行流场模拟分析,发现原有设计中存在流动死区、流速分布不均等问题。针对这些问题,提出了增加 折流板数量、优化折流板结构、改变进出口管径等优化设计方案。
优化效果评估
接管类型
contents
目录
• 引言 • 管壳式换热器基本结构 • 传热基本原理 • 管壳式换热器传热过程分析 • 强化传热措施及优化设计
contents
目录
• 管壳式换热器性能评价与选型 • 实验与仿真技术在管壳式换热器研究中
的应用 • 总结与展望
01
引言
目的和背景
管壁热阻、流体热阻、污垢 热阻
传热系数计算
传热系数定义
单位时间内、单位面积上热量传递的速率
传热系数计算公式
K = (1/R1 + 1/R2 + … + 1/Rn)^-1
各部分热阻计算
管壁热阻、流体热阻、污垢热阻
温度场分布与影响因素
温度场分布
沿流动方向温度逐渐降低,径向温度梯度较小
影响因素
流体物性、流速、管壁厚度、热负荷、污垢状况 等
通过测量管壳式换热器进出口流体的温度和 流量,计算热负荷和传热系数,评估其传热 性能。
压力降实验
测量进出口流体的压力差,分析流体在管壳式换热 器内的流动阻力,为优化设计提供依据。
流场可视化实验
利用粒子图像测速仪(PIV)等技术,观察 管壳式换热器内部流场分布,揭示流动与传 热之间的相互作用。
仿真模型建立及求解过程阐述
案例分析:某管壳式换热器优化设计实践
案例背景介绍
某化工企业需要对现有管壳式换热器进行优化设计,以提高传热效率、降低能耗。
优化设计方案
通过对换热器进行流场模拟分析,发现原有设计中存在流动死区、流速分布不均等问题。针对这些问题,提出了增加 折流板数量、优化折流板结构、改变进出口管径等优化设计方案。
优化效果评估
接管类型
管壳式换热器完整PPT课件
组焊鞍座
Page 31
六、管板管束制造
Page 32
管板:是管壳式换热器的主要部件之一。用来排 布换热管,将管程壳程流体分隔开来,并同时受 管程壳程压力和温度作用。
折流板:提高壳程流体的流速,增加湍动程度并 使壳程流体垂直冲刷管束,以改善传热,增大传 热系数,并且起支持管束的作用。分为弓形和圆 环-圆盘形两种。
Page 16
卷板
Page 17
卷板方式
Page 18
点焊
采用手工电弧焊
Page 19
纵焊缝焊接
采用埋弧自动焊
Page 20
校圆
Page 21
焊后热处理
对于铬钼钢的材料,在焊接后需进行焊后热处理 。
热处理目的:1、对焊缝消除应力,防止焊缝延迟 裂纹的出现。2、对焊缝消氢处理,防止氢腐蚀、 氢脆的出现。
环缝焊接。 环缝无损检测:采用射线检测方法(RT、PT)
筒体与封头组焊
筒体与筒体法兰组焊
Page 27
划开孔线:根据图纸确定好开孔位置及尺寸大小 。
切割接管孔:利用气焊切割方法对筒体开孔,并 用砂轮打磨开孔。
气焊切割 Page 28
开孔
接管法兰及补强圈与壳体组焊 补强圈:开孔后,削弱了器壁的强度,并破坏了
高合金钢:具有较好的耐腐蚀耐高温及耐低温性 能。主要有:铬钢、铬镍钢、铬镍钼钢 、0Cr13 、0Cr18Ni9。
Page 5
材料基本要求及检验
压力容器对材料应用的基本要求: 强度、塑性、硬度、冲击韧性、断裂韧性、焊接 性。
这些性能可以通过常规的力学性能试验的到检验 。
Page 6
金相检验
加热方式主要有通过电加热带加热,用保温防火 棉覆盖保温。加热温度大约在200-300℃。消除 应力热处理时间在16-24h以内,消氢热处理保温 时间不少于0.5h。或用火焰加热处理。
Page 31
六、管板管束制造
Page 32
管板:是管壳式换热器的主要部件之一。用来排 布换热管,将管程壳程流体分隔开来,并同时受 管程壳程压力和温度作用。
折流板:提高壳程流体的流速,增加湍动程度并 使壳程流体垂直冲刷管束,以改善传热,增大传 热系数,并且起支持管束的作用。分为弓形和圆 环-圆盘形两种。
Page 16
卷板
Page 17
卷板方式
Page 18
点焊
采用手工电弧焊
Page 19
纵焊缝焊接
采用埋弧自动焊
Page 20
校圆
Page 21
焊后热处理
对于铬钼钢的材料,在焊接后需进行焊后热处理 。
热处理目的:1、对焊缝消除应力,防止焊缝延迟 裂纹的出现。2、对焊缝消氢处理,防止氢腐蚀、 氢脆的出现。
环缝焊接。 环缝无损检测:采用射线检测方法(RT、PT)
筒体与封头组焊
筒体与筒体法兰组焊
Page 27
划开孔线:根据图纸确定好开孔位置及尺寸大小 。
切割接管孔:利用气焊切割方法对筒体开孔,并 用砂轮打磨开孔。
气焊切割 Page 28
开孔
接管法兰及补强圈与壳体组焊 补强圈:开孔后,削弱了器壁的强度,并破坏了
高合金钢:具有较好的耐腐蚀耐高温及耐低温性 能。主要有:铬钢、铬镍钢、铬镍钼钢 、0Cr13 、0Cr18Ni9。
Page 5
材料基本要求及检验
压力容器对材料应用的基本要求: 强度、塑性、硬度、冲击韧性、断裂韧性、焊接 性。
这些性能可以通过常规的力学性能试验的到检验 。
Page 6
金相检验
加热方式主要有通过电加热带加热,用保温防火 棉覆盖保温。加热温度大约在200-300℃。消除 应力热处理时间在16-24h以内,消氢热处理保温 时间不少于0.5h。或用火焰加热处理。
《管壳式换热器设计》课件
支撑结构设计要点
考虑支撑结构的承载能力、稳定性 、防腐和防震等方面,以确保支撑 结构在各种工况下的安全性和可靠 性。
有限元分析
利用有限元分析方法对支撑结构进 行强度和稳定性分析,优化结构设 计,降低成本并提高设备性能。
密封设计
01
02
03
密封类型选择
根据工艺操作条件和介质 特性,选择合适的密封类 型,如垫片密封、机械密 封、磁力密封等。
计算公式法
根据传热基本方程和物性参数,通过计算公式计算传热系数。
热平衡计算
热平衡方程
换热器入口和出口的流体温度满足一定的关系,可以根据热 平衡方程计算换热器的效率。
效率计算
根据热平衡方程和实验数据,可以计算出换热器的效率,从 而评估换热器的性能。
05
管壳式换热器的强度设计
压力设计
压力等级
根据工艺要求和操作条件,确 定管壳式换热器的压力等级, 确保设备在正常操作和异常工 况下的安全性和可靠性。
密封设计要点
考虑密封性能、耐腐蚀性 、寿命和维护性等方面, 以确保密封装置在长期运 行中的可靠性和安全性。
密封失效预防措施
为防止密封失效,采取相 应的预防措施,如定期检 查、更换密封元件、加强 设备维护等。
06
管壳式换热器的制造与检验
制造工艺
制造流程
01
管壳式换热器的制造流程包括材料准备、切割、焊接、组装等
THANK YOU
感谢聆听
多个环节。
关键工艺参数
02
在制造过程中,需要严格控制关键工艺参数,如焊接温度、压
力、时间等,以确保产品质量。
质量标准
03
制造完成后,应按照相关质量标准进行检验,确保产品符合设
第三章管壳式换热器课件
U 型管式换热器
§3-2 管壳式换热器的标准和型号标称
一、标准
我国系列标准规定采用25×2.5mm, 19×2mm两种规格的管
子(不锈钢用φ2.5×2mm)。 管长的选择以清洗方便和合理使用管材为准,我国生产的钢
管长度多为6米,国家标准规定采用的管长有1.5、2、3、6米四 种规格,以3米和6米最为普遍。
在许多工业部门中大量使用,尤其是在石油、化工、热能、 动力等工业部门所使用的换热器中,管壳式换热器居主导地位。
鉴于管壳式换热器应用极广,为便于设计、制造、安装和使 用,有关部门已制定了管壳式换热器系列标准。可查 GB151 管壳式换热器的标准。
目前工业上应用最广泛的换热设备。
4
3 2
1
6
5
1-管子;2-封头图;73.-壳6 体;管 4-壳 接管式;换5-热 管板器;6-折流板 1-管子 2-封头 3-壳体 4-接管 5-管板 6-折流板
(2) BIU 600--1.6--90--6/25-2 II
封头管箱,公称直径600mm,管、壳程压力均为1.6MPa, 公称换热面积90平方米,普通级冷拔换热管,外径25mm,管 长6m,2管程,单壳程的U形管式换热器。
• DN-PN-F-L/dw-N(I,II)(l.b.d):
• 按GB151规定,其中l.b.d分别为菱形管、波纹管、螺纹管。
结构:传热面由管束组成,管子两端固定在管板上,管 束与管板再封装在外壳内。两种流体分走管程和壳程。
优点 缺点
清洗方便,适应性强用途广
结构简单,造价低廉
处理量大。 传热效率、结构紧凑性、 单位换热面积的金属耗量 等不如新型换热器。
2、单程与多程
单程: 流体在管内每通过管束一次 —— 一管程 流体在管外每通过壳体一次 —— 一壳程
管壳式换热器ppt课件
类型与结构
类型
根据结构特点和使用要求,管壳式换热器可分为固定管板式 、浮头式、U形管式、填料函式等类型。
结构
主要由壳体、管束、管板、封头等组成,其中管束是换热器 的核心部件,通过两端固定在管板上,与壳体形成封闭空间 。
02
管壳式换热器的工作原理
传热原理
热传导
管壳式换热器中的传热过程主要 以热传导为主,热量从高温介质 传递到低温介质,通过管壁和壳
适用范围与限制
适用范围
管壳式换热器适用于高温高压的工况, 以及需要承受较大压力和温度变化的场 合。此外,由于其结构简单、可靠性强 ,管壳式换热器也常用于工业生产中的 加热、冷却和冷凝等操作。
VS
限制
管壳式换热器的传热效率较低,因此不适 用于需要高效传热的场合。此外,由于其 体积较大,管壳式换热器也不适用于空间 受限的场合。
在石油化工领域,管壳式换热器的优点包括高可靠性、耐高温高压、良好的热效 率以及适应性强等,使其成为该领域不可或缺的设备之一。
能源工业领域
能源工业是另一个管壳式换热器得到广泛应用的重要领域。在火力发电、核能发电、水力发电等过程中,管壳式换热器都扮 演着重要的角色。
在能源工业中,管壳式换热器被用于加热和冷却各种流体,如水、蒸汽、油等,以实现能量的转换和回收。其高效可靠的运 行对于提高能源利用效率和降低能源成本具有重要的作用。
维护方便
管壳式换热器的结构简单,拆装方便,便于进行维修和清 洗。
缺点
01
02
03
传热效率较低
相比于其他类型的换热器 ,管壳式换热器的传热效 率相对较低。这是由于其 结构特点所决定的。
体积较大
管壳式换热器的体积较大 ,需要占用较多的空间。
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
射线检测工艺:步骤 :曝光---洗片---评定底片 透照方式 : 单壁(纵缝、环外、环内)
双壁(双壁—单影、双壁—双影) 照相成像质量 :对比度、清晰度和颗粒度 像质计应用 :评定底片的灵敏度 底片评定 :判定缺陷合格Page与23 否
设备无损检测主要方法:
无损检测:包括射线透照检测、超声检测、表面检 测:(包括磁粉检测、渗透检测、涡流检测)前 两种主要用于探测被检物的内部缺陷,表面检测 用于探测被检物的表面和近表面缺陷。
坡口形式:I型、X型、U型、V型
V型坡口
X型坡口
Page 12
坡口完成后要求坡口表面不得有裂纹、分层、夹 杂等缺陷。
施焊前应用砂轮打磨清除坡口及母材两侧表面 20mm范围内(离坡口边缘的距离计)的氧化物 、油污、熔渣及其他有害杂质
Page 13
卷板
Page 14
卷板流程
Page 15
预弯压边
结构的连续性,会产生很高的局部应力。所以采 用补强圈补强。 角焊缝无损检测:采用渗透检测 PT(着色检测)
补强圈
Page 29
接管法兰
补强圈信号孔通压缩空气检漏
信号孔:1、用来检验补强圈焊缝的密封性能。2 、排放补强圈和筒体间气体。
Page 30
磨平壳体内表面焊缝:1、使内表面光滑去除不平 面,防止管束进入壳体时卡住。2、防止焊渣划伤 管束。3、防止应力集中。
Page 4
常用材料及性能
碳钢:强度较低,塑性和可焊性较好,价格低廉 ,常用于常压或中低压容器制造。压力容器专用 碳素钢代表材料Q235R、 10、20钢、20G。
低合金钢:低合金钢是在碳素钢基础上加入少量 合金元素的合金钢。具有优良的韧性、焊接性能 、成形性能和耐腐蚀性能。代表材料:15CrMoR 、16MnDR 。
涡流检测:原理是电磁感应,工件接近一个带有 交变磁场的 测量线圈时,这个磁场在工件中产生 涡流状的感应电流,工件中缺陷的存在会影响涡 流磁场的变化
Page 25
五、壳体制造
Page 26
体与封头、筒体法兰组对焊接
固定管板式和浮头式换热器筒体与筒体法兰组对环缝焊接。 U型管式换热器筒体与封头组对环缝焊接
组焊鞍座
Page 31
六、管板管束制造
Page 32
管板:是管壳式换热器的主要部件之一。用来排 布换热管,将管程壳程流体分隔开来,并同时受 管程壳程压力和温度作用。
折流板:提高壳程流体的流速,增加湍动程度并 使壳程流体垂直冲刷管束,以改善传热,增大传 热系数,并且起支持管束的作用。分为弓形和圆 环-圆盘形两种。
Page 16
卷板
Page 17
卷板方式
Page 18
点焊
采用手工电弧焊
Page 19
纵焊缝焊接
采用埋弧自动焊
Page 20
校圆
Page 21
焊后热处理
对于铬钼钢的材料,在焊接后需进行焊后热处理 。
热处理目的:1、对焊缝消除应力,防止焊缝延迟 裂纹的出现。2、对焊缝消氢处理,防止氢腐蚀、 氢脆的出现。
超声检测:电能-超声能-电能,一般1~10MHZ常 用1~5MHZ,设备为数字式和模拟式。
Page 24
磁粉检测:通过磁场使焊接接头磁化,在工件表 面均匀撒上磁粉,有缺陷的位置会出现磁粉聚集 现象。
渗透检测:一般探测出的缺陷深度0.02mm宽度约 0.001mm,利用带有荧光染料或红色染料的渗透 剂的渗透作用,经过渗透、清洗、显示处理后用 目视法观察。
管板加工过程:
折流板加工过程:
Page 33
车床加工管板
Page 34
管板划线及打点
Page 35
钻床管板钻孔
Page 36
加热方式主要有通过电加热带加热,用保温防火 棉覆盖保温。加热温度大约在200-300℃。消除 应力热处理时间在16-24h以内,消氢热处理保温 时间不少于0.5h。或用火焰加热处理。
Page 22
焊缝无损检测
对纵焊缝采用射线检测(RT)的方式进行检 验。
射线透照检测:X射线、 r射线等,X射线通过 加220V电压工作,设备有便携式和固定式,r 源:铯75、铱192、钴60(可检测200mm厚度 )
金相:是指金属或合金的内部结构,即金属或合 金的化学成分以及各种成分在合金内部的物理状 态和化学状态。
金相实验的目的:金属材料的物理性能和机械性 能与其内部之组织有相关连,因此,可以借着金 相试验的宏观组织及微观组织的观察判断其的各 项性能。
Page 7
金相检验过程
1.制样:可能用到的设备:金相试样 切割机,预磨机,抛光机,镶嵌机 2.制好的样品进行腐蚀,采用硫酸腐 蚀。 3.放到金相显微镜上观察。用到的设 备:金相显微镜
Page 8
金相检验操作
Page 9
四、筒体制造过程
Page 10
定料:确定换热器所需材料及尺寸 划线:确定尺寸后对材料划线、排版。 切割:根据划线尺寸对原材料进行切割。
Page 11
刨边(开坡口)
焊接坡口:为了保证全熔透和焊接质量,减少焊 接变形,施焊前,一般需要将焊件连接处预先加 工成各种形状。
管壳式换热器 制造过程
Page 1
一、换热器
换热器:使传热过程得以实现的设备称之为换热 设备。
Page 2
二、工艺流程
筒体制造 壳体制造
材料准备
管板管束制造
整体装配
管箱制造
运输包装 外表面处理
Page 3
耐压试验
三、材料准备
根据设计图纸要求准备材料,并进行实物确认和 标记。
为降低生产成本,提高生产效率,封头由其他厂 家配合生产,厂外购买。
高合金钢:具有较好的耐腐蚀耐高温及耐低温性 能。主要有:铬钢、铬镍钢、铬镍钼钢 、0Cr13 、0Cr18Ni9。
Page 5
材料基本要求及检验
压力容器对材料应用的基本要求: 强度、塑性、硬度、冲击韧性、断裂韧性、焊接 性。
这些性能可以通过常规的力学性能试验的到检验 。
Page 6
金相检验
环缝焊接。 环缝无损检测:采用射线检测方法(RT、PT)
筒体与封头组焊
筒体与筒体法兰组焊
Page 27
划开孔线:根据图纸确定好开孔位置及尺寸大小 。
切割接管孔:利用气焊切割方法对筒体开孔,并 用砂轮打磨开孔。
气焊切割 Page 28
开孔
接管法兰及补强圈与壳体组焊 补强圈:开孔后,削弱了器壁的强度,并破坏了
双壁(双壁—单影、双壁—双影) 照相成像质量 :对比度、清晰度和颗粒度 像质计应用 :评定底片的灵敏度 底片评定 :判定缺陷合格Page与23 否
设备无损检测主要方法:
无损检测:包括射线透照检测、超声检测、表面检 测:(包括磁粉检测、渗透检测、涡流检测)前 两种主要用于探测被检物的内部缺陷,表面检测 用于探测被检物的表面和近表面缺陷。
坡口形式:I型、X型、U型、V型
V型坡口
X型坡口
Page 12
坡口完成后要求坡口表面不得有裂纹、分层、夹 杂等缺陷。
施焊前应用砂轮打磨清除坡口及母材两侧表面 20mm范围内(离坡口边缘的距离计)的氧化物 、油污、熔渣及其他有害杂质
Page 13
卷板
Page 14
卷板流程
Page 15
预弯压边
结构的连续性,会产生很高的局部应力。所以采 用补强圈补强。 角焊缝无损检测:采用渗透检测 PT(着色检测)
补强圈
Page 29
接管法兰
补强圈信号孔通压缩空气检漏
信号孔:1、用来检验补强圈焊缝的密封性能。2 、排放补强圈和筒体间气体。
Page 30
磨平壳体内表面焊缝:1、使内表面光滑去除不平 面,防止管束进入壳体时卡住。2、防止焊渣划伤 管束。3、防止应力集中。
Page 4
常用材料及性能
碳钢:强度较低,塑性和可焊性较好,价格低廉 ,常用于常压或中低压容器制造。压力容器专用 碳素钢代表材料Q235R、 10、20钢、20G。
低合金钢:低合金钢是在碳素钢基础上加入少量 合金元素的合金钢。具有优良的韧性、焊接性能 、成形性能和耐腐蚀性能。代表材料:15CrMoR 、16MnDR 。
涡流检测:原理是电磁感应,工件接近一个带有 交变磁场的 测量线圈时,这个磁场在工件中产生 涡流状的感应电流,工件中缺陷的存在会影响涡 流磁场的变化
Page 25
五、壳体制造
Page 26
体与封头、筒体法兰组对焊接
固定管板式和浮头式换热器筒体与筒体法兰组对环缝焊接。 U型管式换热器筒体与封头组对环缝焊接
组焊鞍座
Page 31
六、管板管束制造
Page 32
管板:是管壳式换热器的主要部件之一。用来排 布换热管,将管程壳程流体分隔开来,并同时受 管程壳程压力和温度作用。
折流板:提高壳程流体的流速,增加湍动程度并 使壳程流体垂直冲刷管束,以改善传热,增大传 热系数,并且起支持管束的作用。分为弓形和圆 环-圆盘形两种。
Page 16
卷板
Page 17
卷板方式
Page 18
点焊
采用手工电弧焊
Page 19
纵焊缝焊接
采用埋弧自动焊
Page 20
校圆
Page 21
焊后热处理
对于铬钼钢的材料,在焊接后需进行焊后热处理 。
热处理目的:1、对焊缝消除应力,防止焊缝延迟 裂纹的出现。2、对焊缝消氢处理,防止氢腐蚀、 氢脆的出现。
超声检测:电能-超声能-电能,一般1~10MHZ常 用1~5MHZ,设备为数字式和模拟式。
Page 24
磁粉检测:通过磁场使焊接接头磁化,在工件表 面均匀撒上磁粉,有缺陷的位置会出现磁粉聚集 现象。
渗透检测:一般探测出的缺陷深度0.02mm宽度约 0.001mm,利用带有荧光染料或红色染料的渗透 剂的渗透作用,经过渗透、清洗、显示处理后用 目视法观察。
管板加工过程:
折流板加工过程:
Page 33
车床加工管板
Page 34
管板划线及打点
Page 35
钻床管板钻孔
Page 36
加热方式主要有通过电加热带加热,用保温防火 棉覆盖保温。加热温度大约在200-300℃。消除 应力热处理时间在16-24h以内,消氢热处理保温 时间不少于0.5h。或用火焰加热处理。
Page 22
焊缝无损检测
对纵焊缝采用射线检测(RT)的方式进行检 验。
射线透照检测:X射线、 r射线等,X射线通过 加220V电压工作,设备有便携式和固定式,r 源:铯75、铱192、钴60(可检测200mm厚度 )
金相:是指金属或合金的内部结构,即金属或合 金的化学成分以及各种成分在合金内部的物理状 态和化学状态。
金相实验的目的:金属材料的物理性能和机械性 能与其内部之组织有相关连,因此,可以借着金 相试验的宏观组织及微观组织的观察判断其的各 项性能。
Page 7
金相检验过程
1.制样:可能用到的设备:金相试样 切割机,预磨机,抛光机,镶嵌机 2.制好的样品进行腐蚀,采用硫酸腐 蚀。 3.放到金相显微镜上观察。用到的设 备:金相显微镜
Page 8
金相检验操作
Page 9
四、筒体制造过程
Page 10
定料:确定换热器所需材料及尺寸 划线:确定尺寸后对材料划线、排版。 切割:根据划线尺寸对原材料进行切割。
Page 11
刨边(开坡口)
焊接坡口:为了保证全熔透和焊接质量,减少焊 接变形,施焊前,一般需要将焊件连接处预先加 工成各种形状。
管壳式换热器 制造过程
Page 1
一、换热器
换热器:使传热过程得以实现的设备称之为换热 设备。
Page 2
二、工艺流程
筒体制造 壳体制造
材料准备
管板管束制造
整体装配
管箱制造
运输包装 外表面处理
Page 3
耐压试验
三、材料准备
根据设计图纸要求准备材料,并进行实物确认和 标记。
为降低生产成本,提高生产效率,封头由其他厂 家配合生产,厂外购买。
高合金钢:具有较好的耐腐蚀耐高温及耐低温性 能。主要有:铬钢、铬镍钢、铬镍钼钢 、0Cr13 、0Cr18Ni9。
Page 5
材料基本要求及检验
压力容器对材料应用的基本要求: 强度、塑性、硬度、冲击韧性、断裂韧性、焊接 性。
这些性能可以通过常规的力学性能试验的到检验 。
Page 6
金相检验
环缝焊接。 环缝无损检测:采用射线检测方法(RT、PT)
筒体与封头组焊
筒体与筒体法兰组焊
Page 27
划开孔线:根据图纸确定好开孔位置及尺寸大小 。
切割接管孔:利用气焊切割方法对筒体开孔,并 用砂轮打磨开孔。
气焊切割 Page 28
开孔
接管法兰及补强圈与壳体组焊 补强圈:开孔后,削弱了器壁的强度,并破坏了