平面势流

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

如图
环流强度 Г ,是不随圆周半径而变的 常数,具有方向性。Г>0时,为逆时 针旋转;Г <0时,为顺时针旋转。
Γ ur 0 , u 2r
Γ ln r 2 2 环流是圆周运动,但却不是有旋运动。
(4) 直角内的流动 设无旋运动的速度势为 若设 = a (x2 - y2 ) 则有 ψ = 2axy
此流动的流线是双曲线族。当ψ>0 时,x、y的符号相同,流线在I、III 象限内;ψ<0时,x、y的符号相反, 流线在II、IV象限内。当ψ = 0时, x=0或y=0,说明流线是坐标轴,称为 零流线。原点处速度为零,称为驻点。 若把零流线x、y轴的正值部分用固体壁面来代替,就得到 直角内的流动;若把x轴用固体壁面代替,则表示垂直流 向固体壁面的流动。
s n
若取δ = δψ,则δs=δn,此时流网网格为曲 边正方形
2、 流网的绘制
1)固体边界本身就是流线之一,等势线与边界正交。 2)自由液面必是流线。 3)根据流动的大致方向,按照事先选定的网格比例绘 制出流线簇和等势线簇。 3、 流网的应用 广泛用于理想不可压缩流体平面无旋流动中的速度 场、压强场求解
d ur dr u rd
1 ur , u r r
三、流函数 存在条件:不可压缩流体平面流动ψ (x,y) 。
平面流动 流线方程
dx dy ux u y
u x u y 0 x y
u x dy u y dx 0
u y u x x y
上式是使表达式uxdx+uydy+uzdz能成为某一函数(x,y,z) 的全微分的必要和充分条件
ux dx u y dy uz dz d dx dy dz x y z
特征1
ux , u y , uz x y z
(2) 源环流与汇环流 将强度为q的源流和强度为Г 的环流都放置在坐标原点上, 使流体既作圆周运动,又作径 向运动,称为源环流。
水在离心式水泵压水室(蜗 壳)叶轮内的流动、空气在 风机内的流动,均可看作源 环流。
源环流 水在水力涡轮机中的流动为 汇环流。
(3)等强度源流和汇流的叠加——偶极流
强度皆为q的源流和汇流,其源点 和汇点分别置于(-a,0)和(a,0) 两点上。
在上述流动中,如果源点和汇点相互 接近,即2a → 0时(2aq=常数),所 得到的就是偶极流。
实际上,偶极流本身并无太大意义,但它与某些 基本势流叠加,就可以得到有重大实际意义的流 动的解。如偶极流与等速均匀流叠加可得到无环 量圆柱绕流,偶极流与等速均匀流和势涡流的叠 加可得到有环量的圆柱绕流等。
第七节
一、基本方程组
恒定平面势流 (平面无旋流动)
不可压缩恒定平面势流:
1、平面无旋,即 2、恒定流,即
u y u x ; 0 t t
z 0

3、不可压缩流体,即=Const 。
运动方程
X Y
1 p x 1 p y
u u
u x x x
u u
u x y y
五、几种简单的平面势流 (1) 等速均匀流
流场中各点的速度矢量皆相互平行,且 大小相等的流动
ux y u y x ux x u y y
ψ = uy
若等速均匀流流速平行于x轴
= ux
若等速均匀流流速平行于y轴
ψ = -ux
= uy
(2) 源流和汇流
流体从水平的无限平面内的一点O (即源点)流出,均匀地沿径向直 线流向四周的流动称为源流 q为由源点沿z轴方向上,单位厚度 所流出的流量,称为源流强度
凡满足拉普拉斯方 程的函数是调和函 数,所以速度势是 调和函数
平面无旋流动或平面势流 ∵平面流动的旋转角速度只有分量ωz
∴ωz为零
u y
u x x y
d uxdx uy dy
2 2 2 0 2 x y
ux , u y x y
速度势的极坐标表达式
us s
函数(x,y,z)称为速度势(函数),即无旋流的速 度矢量是有势的。因此无旋运动(无涡流)又称 为有势流动。 上述关系式代入不可压缩流体连续性微分方程
u x u y u z 0 x y z
特征2
2 2 0 2 x y z
2 2 2
u y x x
u y y y
连续性方程
u x x

u y y
0
二、无旋流动的速度势(函数)
1 u z u y x y z 0 2 1 u x u z y 0 2 z x 1 u y u x z x y 0 2 或 或 或 u z u y y z u x u z z x u y u x x y
q ur , u 0 2r
q q y arctan 2 2 x q q 2 2 lnr ln x y 2 2
(3) 环流(或势涡流)
各流体质点皆绕某一固定点O做匀速圆周运动,且速 度与圆周半径成反比的流动称为环流
六、势流叠加 势流叠加原理: 流速势可以进行叠加。当几个势 流叠加后,其流动仍为势流。
= 1+ 2
1 2 u x1 u x 2 x x x 1 2 uy u y1 u y 2 y y y ux
同理可证,叠加后的流函数等于原流动流函数的代数和
ux , uy y x
d u x dy u y dx
d dx dy x y
流函数的极坐标表达式
d ur rd u dr
1 ur , u r r
特征1
ωz为零
平面无旋流的流函数也满足拉普拉斯方程
u y u x x y
2 2 2 0 2 x y
平面势流中,速度势函数和流函数均为调和函数 特征2 流函数的等值线是流线
d u x dy u y dx 0
( x, y ) const
特征3 任意两条流线间的流函数差值(ψ1 –ψ2 ),等 于通过两条流线间的单宽流量q。
d u y dx u x dy 0
ux m1m2 ( )( ) 1 ux uy uy
dy u y m1 dx u x
特征2 等势线簇的势函数值沿流线方向增加,而流 线簇的流函数值则沿流线方向逆时针旋转90 ˚后所指 的方向增加。——儒科夫斯基法则。 特征3 流网中每一网格的相邻边长维持一定的比例
1 2
意义:在工程实际中,常利用势流叠加原理解决一 些较为复杂的势流问题
(1) 等速均匀流与源流的叠加
Y
A
O
r X
将与x轴正方向一致wk.baidu.com等 速均匀流和位于坐标原点 的源流叠加
q 2u 0
(c)
等速均匀流与源流的叠加结果就相当于等速均 匀来流绕半无限体的流动 。这种方法的推广, 是采用很多不同强度的源流,沿x轴排列,使 它和匀速直线流叠加,形成和实际物体轮廓线 完全一致或较为吻合的边界流线。这样无需进 行费用巨大的实验,就能准确估计物体上游端 (如桥墩、闸墩的前半部)的速度和压强分布。
四、流网及其特征
流网(Flow Net):不可压缩流体平面无旋流动中, 流线簇与等势线簇构成的正交网格。 1、流网的特征
特征1 等势线与等流函数线处处正交
证明:
等势线簇:(x,y)=C
d u x dx u y dy 0
等流线簇:(x,y)=C
ux dy m2 dx uy
q ur , u 0 2r
q q q u r dr u rd dr lnr ln x 2 y 2 2r 2 2
q q q y u r rd u dr rd arctan 2r 2 2 x
流体从四周沿径向均匀流入一点(汇点)的流动称为汇流 流入汇点的单位厚度流量称为 汇流强度-q。
相关文档
最新文档