高考物理专项练习68 带电粒子在直线边界磁场中的运动

合集下载

高考物理带电粒子在磁场中的运动及其解题技巧及练习题(含答案)含解析

高考物理带电粒子在磁场中的运动及其解题技巧及练习题(含答案)含解析

高考物理带电粒子在磁场中的运动及其解题技巧及练习题(含答案)含解析一、带电粒子在磁场中的运动专项训练1.如图所示,两条竖直长虚线所夹的区域被线段MN 分为上、下两部分,上部分的电场方向竖直向上,下部分的电场方向竖直向下,两电场均为匀强电场且电场强度大小相同。

挡板PQ 垂直MN 放置,挡板的中点置于N 点。

在挡板的右侧区域存在垂直纸面向外的匀强磁场。

在左侧虚线上紧靠M 的上方取点A,一比荷qm=5×105C/kg 的带正电粒子,从A 点以v 0=2×103m/s 的速度沿平行MN 方向射入电场,该粒子恰好从P 点离开电场,经过磁场的作用后恰好从Q 点回到电场。

已知MN 、PQ 的长度均为L=0.5m ,不考虑重力对带电粒子的影响,不考虑相对论效应。

(1)求电场强度E 的大小; (2)求磁感应强度B 的大小;(3)在左侧虚线上M 点的下方取一点C ,且CM=0.5m ,带负电的粒子从C 点沿平行MN 方向射入电场,该带负电粒子与上述带正电粒子除电性相反外其他都相同。

若两带电粒子经过磁场后同时分别运动到Q 点和P 点,求两带电粒子在A 、C 两点射入电场的时间差。

【答案】(1) 16/N C (2) 21.610T -⨯ (3) 43.910s -⨯ 【解析】 【详解】(1)带正电的粒子在电场中做类平抛运动,有:L=v 0t2122L qE t m = 解得E=16N/C(2)设带正电的粒子从P 点射出电场时与虚线的夹角为θ,则:0tan v qE t mθ=可得θ=450粒子射入磁场时的速度大小为2v 0粒子在磁场中做匀速圆周运动:2v qvB m r=由几何关系可知2r L = 解得B=1.6×10-2T(3)两带电粒子在电场中都做类平抛运动,运动时间相同;两带电粒子在磁场中都做匀速圆周运动,带正电的粒子转过的圆心角为32π,带负电的粒子转过的圆心角为2π;两带电粒子在AC 两点进入电场的时间差就是两粒子在磁场中的时间差; 若带电粒子能在匀强磁场中做完整的圆周运动,则其运动一周的时间22r mT v qBππ==; 带正电的粒子在磁场中运动的时间为:4135.910s 4t T -==⨯; 带负电的粒子在磁场中运动的时间为:4212.010s 4t T -==⨯ 带电粒子在AC 两点射入电场的时间差为412 3.910t t t s -∆=-=⨯2.如图所示,虚线MN 沿竖直方向,其左侧区域内有匀强电场(图中未画出)和方向垂直纸面向里,磁感应强度为B 的匀强磁场,虚线MN 的右侧区域有方向水平向右的匀强电场.水平线段AP 与MN 相交于O 点.在A 点有一质量为m ,电量为+q 的带电质点,以大小为v 0的速度在左侧区域垂直磁场方向射入,恰好在左侧区域内做匀速圆周运动,已知A 与O 点间的距离为03mv qB ,虚线MN 右侧电场强度为3mgq,重力加速度为g .求:(1)MN 左侧区域内电场强度的大小和方向;(2)带电质点在A 点的入射方向与AO 间的夹角为多大时,质点在磁场中刚好运动到O 点,并画出带电质点在磁场中运动的轨迹;(3)带电质点从O 点进入虚线MN 右侧区域后运动到P 点时速度的大小v p .【答案】(1)mgq,方向竖直向上;(2);(3)013v .【解析】 【详解】(1)质点在左侧区域受重力、电场力和洛伦兹力作用,根据质点做匀速圆周运动可得:重力和电场力等大反向,洛伦兹力做向心力;所以,电场力qE =mg ,方向竖直向上; 所以MN 左侧区域内电场强度mgE q左=,方向竖直向上; (2)质点在左侧区域做匀速圆周运动,洛伦兹力做向心力,故有:200mv Bv q R=,所以轨道半径0mv R qB=; 质点经过A 、O 两点,故质点在左侧区域做匀速圆周运动的圆心在AO 的垂直平分线上,且质点从A 运动到O 的过程O 点为最右侧;所以,粒子从A 到O 的运动轨迹为劣弧; 又有033AO mv d R ==;根据几何关系可得:带电质点在A 点的入射方向与AO 间的夹角1260AOd arcsin Rθ==︒; 根据左手定则可得:质点做逆时针圆周运动,故带电质点在磁场中运动的轨迹如图所示:;(3)根据质点在左侧做匀速圆周运动,由几何关系可得:质点在O 点的竖直分速度00360y v v sin =︒=,水平分速度001602x v v cos v =︒=;质点从O 运动到P 的过程受重力和电场力作用,故水平、竖直方向都做匀变速运动; 质点运动到P 点,故竖直位移为零,所以运动时间023y v v t g==所以质点在P 点的竖直分速度032yP y v v v ==, 水平分速度000317322xP x v qE v v t v g v m =+==;所以带电质点从O 点进入虚线MN 右侧区域后运动到P 点时速度22013P yP xP v v v v =+=;3.如图,光滑水平桌面上有一个矩形区域abcd ,bc 长度为2L ,cd 长度为1.5L ,e 、f 分别为ad 、bc 的中点.efcd 区域存在竖直向下的匀强磁场,磁感应强度为B ;质量为m 、电荷量为+q 的绝缘小球A 静止在磁场中f 点.abfe 区域存在沿bf 方向的匀强电场,电场强度为26qB Lm;质量为km 的不带电绝缘小球P ,以大小为qBL m 的初速度沿bf 方向运动.P 与A发生弹性正碰,A 的电量保持不变,P 、A 均可视为质点.(1)求碰撞后A 球的速度大小;(2)若A 从ed 边离开磁场,求k 的最大值;(3)若A 从ed 边中点离开磁场,求k 的可能值和A 在磁场中运动的最长时间.【答案】(1)A 21k qBL v k m =⋅+(2)1(3)57k =或13k =;32m t qB π=【解析】 【分析】 【详解】(1)设P 、A 碰后的速度分别为v P 和v A ,P 碰前的速度为qBL v m= 由动量守恒定律:P A kmv kmv mv =+ 由机械能守恒定律:222P A 111222kmv kmv mv =+ 解得:A 21k qBL v k m=⋅+(2)设A 在磁场中运动轨迹半径为R , 由牛顿第二定律得: 2A A mv qvB R= 解得:21kR L k =+ 由公式可得R 越大,k 值越大如图1,当A 的轨迹与cd 相切时,R 为最大值,R L = 求得k 的最大值为1k =(3)令z 点为ed 边的中点,分类讨论如下:(I )A 球在磁场中偏转一次从z 点就离开磁场,如图2有222()(1.5)2LR L R =+-解得:56L R = 由21k R L k =+可得:57k =(II )由图可知A 球能从z 点离开磁场要满足2LR ≥,则A 球在磁场中还可能经历一次半圆运动后回到电场,再被电场加速后又进入磁场,最终从z 点离开. 如图3和如图4,由几何关系有:2223()(3)22L R R L =+- 解得:58L R =或2L R = 由21k R L k =+可得:511k =或13k = 球A 在电场中克服电场力做功的最大值为2226m q B L W m=当511k =时,A 58qBL v m =,由于2222222A 12521286qB L q B L mv m m⋅=>当13k =时,A 2qBL v m =,由于2222222A 1286qB L q B L mv m m⋅=<综合(I )、(II )可得A 球能从z 点离开的k 的可能值为:57k =或13k = A 球在磁场中运动周期为2mT qBπ= 当13k =时,如图4,A 球在磁场中运动的最长时间34t T = 即32mt qBπ=4.如图所示,MN 为绝缘板,CD 为板上两个小孔,AO 为CD 的中垂线,在MN 的下方有匀强磁场,方向垂直纸面向外(图中未画出),质量为m 电荷量为q 的粒子(不计重力)以某一速度从A 点平行于MN 的方向进入静电分析器,静电分析器内有均匀辐向分布的电场(电场方向指向O 点),已知图中虚线圆弧的半径为R ,其所在处场强大小为E ,若离子恰好沿图中虚线做圆周运动后从小孔C 垂直于MN 进入下方磁场.()1求粒子运动的速度大小;()2粒子在磁场中运动,与MN 板碰撞,碰后以原速率反弹,且碰撞时无电荷的转移,之后恰好从小孔D 进入MN 上方的一个三角形匀强磁场,从A 点射出磁场,则三角形磁场区域最小面积为多少?MN 上下两区域磁场的磁感应强度大小之比为多少?()3粒子从A 点出发后,第一次回到A 点所经过的总时间为多少?【答案】(1)EqRm;(2)212R ;11n +;(3)2πmR Eq 。

高考物理带电粒子在磁场中的运动题20套(带答案)含解析

高考物理带电粒子在磁场中的运动题20套(带答案)含解析

高考物理带电粒子在磁场中的运动题20套(带答案)含解析一、带电粒子在磁场中的运动专项训练1.如图所示,xOy 平面处于匀强磁场中,磁感应强度大小为B ,方向垂直纸面向外.点3,0P L ⎛⎫ ⎪ ⎪⎝⎭处有一粒子源,可向各个方向发射速率不同、电荷量为q 、质量为m 的带负电粒子.不考虑粒子的重力.(1)若粒子1经过第一、二、三象限后,恰好沿x 轴正向通过点Q (0,-L ),求其速率v 1;(2)若撤去第一象限的磁场,在其中加沿y 轴正向的匀强电场,粒子2经过第一、二、三象限后,也以速率v 1沿x 轴正向通过点Q ,求匀强电场的电场强度E 以及粒子2的发射速率v 2;(3)若在xOy 平面内加沿y 轴正向的匀强电场E o ,粒子3以速率v 3沿y 轴正向发射,求在运动过程中其最小速率v.某同学查阅资料后,得到一种处理相关问题的思路:带电粒子在正交的匀强磁场和匀强电场中运动,若所受洛伦兹力与电场力不平衡而做复杂的曲线运动时,可将带电粒子的初速度进行分解,将带电粒子的运动等效为沿某一方向的匀速直线运动和沿某一时针方向的匀速圆周运动的合运动. 请尝试用该思路求解. 【答案】(1)23BLq m (2221BLq32230B E E v B +⎛⎫ ⎪⎝⎭【解析】 【详解】(1)粒子1在一、二、三做匀速圆周运动,则2111v qv B m r =由几何憨可知:()2221133r L r L ⎛⎫=-+ ⎪ ⎪⎝⎭得到:123BLqv m=(2)粒子2在第一象限中类斜劈运动,有:133L v t=,212qE h t m = 在第二、三象限中原圆周运动,由几何关系:12L h r +=,得到289qLB E m=又22212v v Eh =+,得到:2221BLqv =(3)如图所示,将3v 分解成水平向右和v '和斜向的v '',则0qv B qE '=,即0E v B'= 而'223v v v ''=+ 所以,运动过程中粒子的最小速率为v v v =''-'即:22003E E v v B B ⎛⎫=+- ⎪⎝⎭2.欧洲大型强子对撞机是现在世界上最大、能量最高的粒子加速器,是一种将质子加速对撞的高能物理设备,其原理可简化如下:两束横截面积极小,长度为l -0质子束以初速度v 0同时从左、右两侧入口射入加速电场,出来后经过相同的一段距离射入垂直纸面的圆形匀强磁场区域并被偏转,最后两质子束发生相碰。

高考必备物理带电粒子在磁场中的运动技巧全解及练习题(含答案)及解析

高考必备物理带电粒子在磁场中的运动技巧全解及练习题(含答案)及解析

高考必备物理带电粒子在磁场中的运动技巧全解及练习题(含答案)及解析一、带电粒子在磁场中的运动专项训练1.如图所示,两条竖直长虚线所夹的区域被线段MN 分为上、下两部分,上部分的电场方向竖直向上,下部分的电场方向竖直向下,两电场均为匀强电场且电场强度大小相同。

挡板PQ 垂直MN 放置,挡板的中点置于N 点。

在挡板的右侧区域存在垂直纸面向外的匀强磁场。

在左侧虚线上紧靠M 的上方取点A,一比荷qm=5×105C/kg 的带正电粒子,从A 点以v 0=2×103m/s 的速度沿平行MN 方向射入电场,该粒子恰好从P 点离开电场,经过磁场的作用后恰好从Q 点回到电场。

已知MN 、PQ 的长度均为L=0.5m ,不考虑重力对带电粒子的影响,不考虑相对论效应。

(1)求电场强度E 的大小; (2)求磁感应强度B 的大小;(3)在左侧虚线上M 点的下方取一点C ,且CM=0.5m ,带负电的粒子从C 点沿平行MN 方向射入电场,该带负电粒子与上述带正电粒子除电性相反外其他都相同。

若两带电粒子经过磁场后同时分别运动到Q 点和P 点,求两带电粒子在A 、C 两点射入电场的时间差。

【答案】(1) 16/N C (2) 21.610T -⨯ (3) 43.910s -⨯ 【解析】 【详解】(1)带正电的粒子在电场中做类平抛运动,有:L=v 0t2122L qE t m = 解得E=16N/C(2)设带正电的粒子从P 点射出电场时与虚线的夹角为θ,则:0tan v qE t mθ=可得θ=450粒子射入磁场时的速度大小为2v 0粒子在磁场中做匀速圆周运动:2v qvB m r=由几何关系可知2r L = 解得B=1.6×10-2T(3)两带电粒子在电场中都做类平抛运动,运动时间相同;两带电粒子在磁场中都做匀速圆周运动,带正电的粒子转过的圆心角为32π,带负电的粒子转过的圆心角为2π;两带电粒子在AC 两点进入电场的时间差就是两粒子在磁场中的时间差; 若带电粒子能在匀强磁场中做完整的圆周运动,则其运动一周的时间22r mT v qBππ==; 带正电的粒子在磁场中运动的时间为:4135.910s 4t T -==⨯; 带负电的粒子在磁场中运动的时间为:4212.010s 4t T -==⨯ 带电粒子在AC 两点射入电场的时间差为412 3.910t t t s -∆=-=⨯2.如图所示,在一直角坐标系xoy 平面内有圆形区域,圆心在x 轴负半轴上,P 、Q 是圆上的两点,坐标分别为P (-8L ,0),Q (-3L ,0)。

高考物理带电粒子在磁场中的运动基础练习题及解析

高考物理带电粒子在磁场中的运动基础练习题及解析

高考物理带电粒子在磁场中的运动基础练习题及解析一、带电粒子在磁场中的运动专项训练1.如图所示,xOy 平面处于匀强磁场中,磁感应强度大小为B ,方向垂直纸面向外.点3,03P L ⎛⎫ ⎪ ⎪⎝⎭处有一粒子源,可向各个方向发射速率不同、电荷量为q 、质量为m 的带负电粒子.不考虑粒子的重力.(1)若粒子1经过第一、二、三象限后,恰好沿x 轴正向通过点Q (0,-L ),求其速率v 1;(2)若撤去第一象限的磁场,在其中加沿y 轴正向的匀强电场,粒子2经过第一、二、三象限后,也以速率v 1沿x 轴正向通过点Q ,求匀强电场的电场强度E 以及粒子2的发射速率v 2;(3)若在xOy 平面内加沿y 轴正向的匀强电场E o ,粒子3以速率v 3沿y 轴正向发射,求在运动过程中其最小速率v.某同学查阅资料后,得到一种处理相关问题的思路:带电粒子在正交的匀强磁场和匀强电场中运动,若所受洛伦兹力与电场力不平衡而做复杂的曲线运动时,可将带电粒子的初速度进行分解,将带电粒子的运动等效为沿某一方向的匀速直线运动和沿某一时针方向的匀速圆周运动的合运动. 请尝试用该思路求解. 【答案】(1)23BLq m (2221BLq32230B E E v B +⎛⎫ ⎪⎝⎭【解析】 【详解】(1)粒子1在一、二、三做匀速圆周运动,则2111v qv B m r =由几何憨可知:()2221133r L r L ⎛⎫=-+ ⎪ ⎪⎝⎭得到:123BLqv m=(2)粒子2在第一象限中类斜劈运动,有:133L v t=,212qE h t m = 在第二、三象限中原圆周运动,由几何关系:12L h r +=,得到289qLB E m=又22212v v Eh =+,得到:22219BLqv m=(3)如图所示,将3v 分解成水平向右和v '和斜向的v '',则0qv B qE '=,即0E v B'= 而'223v v v ''=+ 所以,运动过程中粒子的最小速率为v v v =''-'即:22003E E v v B B ⎛⎫=+- ⎪⎝⎭2.如图,光滑水平桌面上有一个矩形区域abcd ,bc 长度为2L ,cd 长度为1.5L ,e 、f 分别为ad 、bc 的中点.efcd 区域存在竖直向下的匀强磁场,磁感应强度为B ;质量为m 、电荷量为+q 的绝缘小球A 静止在磁场中f 点.abfe 区域存在沿bf 方向的匀强电场,电场强度为26qB Lm;质量为km 的不带电绝缘小球P ,以大小为qBL m 的初速度沿bf 方向运动.P 与A发生弹性正碰,A 的电量保持不变,P 、A 均可视为质点.(1)求碰撞后A 球的速度大小;(2)若A 从ed 边离开磁场,求k 的最大值;(3)若A 从ed 边中点离开磁场,求k 的可能值和A 在磁场中运动的最长时间.【答案】(1)A 21k qBL v k m =⋅+(2)1(3)57k =或13k =;32m t qB π=【解析】 【分析】 【详解】(1)设P 、A 碰后的速度分别为v P 和v A ,P 碰前的速度为qBLv m= 由动量守恒定律:P A kmv kmv mv =+ 由机械能守恒定律:222P A 111222kmv kmv mv =+ 解得:A 21k qBL v k m=⋅+(2)设A 在磁场中运动轨迹半径为R , 由牛顿第二定律得: 2A A mv qvB R= 解得:21kR L k =+ 由公式可得R 越大,k 值越大如图1,当A 的轨迹与cd 相切时,R 为最大值,R L = 求得k 的最大值为1k =(3)令z 点为ed 边的中点,分类讨论如下:(I )A 球在磁场中偏转一次从z 点就离开磁场,如图2有222()(1.5)2LR L R =+-解得:56L R = 由21k R L k =+可得:57k =(II )由图可知A 球能从z 点离开磁场要满足2LR ≥,则A 球在磁场中还可能经历一次半圆运动后回到电场,再被电场加速后又进入磁场,最终从z 点离开.如图3和如图4,由几何关系有:2223()(3)22L R R L =+-解得:58L R =或2LR = 由21k R L k =+可得:511k =或13k = 球A 在电场中克服电场力做功的最大值为2226m q B L W m=当511k =时,A 58qBL v m =,由于2222222A 12521286qB L q B L mv m m ⋅=>当13k =时,A 2qBL v m =,由于2222222A 1286qB L q B L mv m m⋅=<综合(I )、(II )可得A 球能从z 点离开的k 的可能值为:57k =或13k = A 球在磁场中运动周期为2mT qBπ= 当13k =时,如图4,A 球在磁场中运动的最长时间34t T = 即32mt qBπ=3.在如图所示的平面直角坐标系中,存在一个半径R =0.2m 的圆形匀强磁场区域,磁感应强度B =1.0T ,方向垂直纸面向外,该磁场区域的右边缘与y 坐标轴相切于原点O 点。

高考物理带电粒子在磁场中的运动及其解题技巧及练习题(含答案)

高考物理带电粒子在磁场中的运动及其解题技巧及练习题(含答案)

高考物理带电粒子在磁场中的运动及其解题技巧及练习题(含答案)一、带电粒子在磁场中的运动专项训练1.如图所示,两条竖直长虚线所夹的区域被线段MN 分为上、下两部分,上部分的电场方向竖直向上,下部分的电场方向竖直向下,两电场均为匀强电场且电场强度大小相同。

挡板PQ 垂直MN 放置,挡板的中点置于N 点。

在挡板的右侧区域存在垂直纸面向外的匀强磁场。

在左侧虚线上紧靠M 的上方取点A,一比荷qm=5×105C/kg 的带正电粒子,从A 点以v 0=2×103m/s 的速度沿平行MN 方向射入电场,该粒子恰好从P 点离开电场,经过磁场的作用后恰好从Q 点回到电场。

已知MN 、PQ 的长度均为L=0.5m ,不考虑重力对带电粒子的影响,不考虑相对论效应。

(1)求电场强度E 的大小; (2)求磁感应强度B 的大小;(3)在左侧虚线上M 点的下方取一点C ,且CM=0.5m ,带负电的粒子从C 点沿平行MN 方向射入电场,该带负电粒子与上述带正电粒子除电性相反外其他都相同。

若两带电粒子经过磁场后同时分别运动到Q 点和P 点,求两带电粒子在A 、C 两点射入电场的时间差。

【答案】(1) 16/N C (2) 21.610T -⨯ (3) 43.910s -⨯ 【解析】 【详解】(1)带正电的粒子在电场中做类平抛运动,有:L=v 0t2122L qE t m = 解得E=16N/C(2)设带正电的粒子从P 点射出电场时与虚线的夹角为θ,则:0tan v qE t mθ=可得θ=450粒子射入磁场时的速度大小为2v 0粒子在磁场中做匀速圆周运动:2v qvB m r=由几何关系可知2r L = 解得B=1.6×10-2T(3)两带电粒子在电场中都做类平抛运动,运动时间相同;两带电粒子在磁场中都做匀速圆周运动,带正电的粒子转过的圆心角为32π,带负电的粒子转过的圆心角为2π;两带电粒子在AC 两点进入电场的时间差就是两粒子在磁场中的时间差; 若带电粒子能在匀强磁场中做完整的圆周运动,则其运动一周的时间22r mT v qBππ==; 带正电的粒子在磁场中运动的时间为:4135.910s 4t T -==⨯; 带负电的粒子在磁场中运动的时间为:4212.010s 4t T -==⨯ 带电粒子在AC 两点射入电场的时间差为412 3.910t t t s -∆=-=⨯2.如图所示,在两块水平金属极板间加有电 压U 构成偏转电场,一束比荷为510/qC kg m=的带正电的粒子流(重力不计),以速度v o =104m/s 沿 水平方向从金属极板正中间射入两板.粒子经电 场偏转后进入一具有理想边界的半圆形变化磁场 区域,O 为圆心,区域直径AB 长度为L =1m , AB 与水平方向成45°角.区域内有按如图所示规 律作周期性变化的磁场,已知B 0=0. 5T ,磁场方向 以垂直于纸面向外为正.粒子经偏转电场后,恰好从下极板边缘O 点与水平方向成45°斜向下射入磁场.求:(1)两金属极板间的电压U 是多大?(2)若T o =0.5s ,求t =0s 时刻射人磁场的带电粒子在磁场中运动的时间t 和离开磁场的位置.(3)要使所有带电粒子通过O 点后的运动过程中 不再从AB 两点间越过,求出磁场的变化周期B o ,T o 应满足的条件.【答案】(1)100V (2)t=5210s π-⨯,射出点在AB 间离O 点0.042(3)5010s 3T π-<⨯【解析】试题分析:(1)粒子在电场中做类平抛运动,从O 点射出使速度代入数据得U=100V (2)粒子在磁场中经过半周从OB 中穿出,粒子在磁场中运动时间射出点在AB 间离O 点(3)粒子运动周期,粒子在t=0、….时刻射入时,粒子最可能从AB 间射出如图,由几何关系可得临界时 要不从AB 边界射出,应满足得考点:本题考查带电粒子在磁场中的运动3.如图所示,在平面直角坐标系xOy 的第二、第三象限内有一垂直纸面向里、磁感应强度为B 的匀强磁场区域△ABC ,A 点坐标为(0,3a ),C 点坐标为(0,﹣3a ),B 点坐标为(3a -,-3a ).在直角坐标系xOy 的第一象限内,加上方向沿y 轴正方向、场强大小为E=Bv 0的匀强电场,在x=3a 处垂直于x 轴放置一平面荧光屏,其与x 轴的交点为Q .粒子束以相同的速度v 0由O 、C 间的各位置垂直y 轴射入,已知从y 轴上y =﹣2a 的点射入磁场的粒子在磁场中的轨迹恰好经过O 点.忽略粒子间的相互作用,不计粒子的重力. (1)求粒子的比荷;(2)求粒子束射入电场的纵坐标范围;(3)从什么位置射入磁场的粒子打到荧光屏上距Q 点最远?求出最远距离.【答案】(1)0v Ba(2)0≤y≤2a (3)78y a =,94a【解析】 【详解】(1)由题意可知, 粒子在磁场中的轨迹半径为r =a 由牛顿第二定律得Bqv 0=m 2v r故粒子的比荷v q m Ba= (2)能进入电场中且离O 点上方最远的粒子在磁场中的运动轨迹恰好与AB 边相切,设粒子运动轨迹的圆心为O ′点,如图所示.由几何关系知O ′A =r ·ABBC=2a 则OO ′=OA -O ′A =a即粒子离开磁场进入电场时,离O 点上方最远距离为OD =y m =2a所以粒子束从y 轴射入电场的范围为0≤y ≤2a(3)假设粒子没有射出电场就打到荧光屏上,有3a =v 0·t 02019222qE y t a a m ==>, 所以,粒子应射出电场后打到荧光屏上粒子在电场中做类平抛运动,设粒子在电场中的运动时间为t ,竖直方向位移为y ,水平方向位移为x ,则 水平方向有x =v 0·t竖直方向有212qE y t m=代入数据得x设粒子最终打在荧光屏上的点距Q 点为H ,粒子射出电场时与x 轴的夹角为θ,则00tan y x qE x v m v v v θ⋅===有H =(3a -x )·tan θ=当=y =98a 时,H 有最大值 由于98a <2a ,所以H 的最大值H max =94a ,粒子射入磁场的位置为y =98a -2a =-78a4.如图所示,同轴圆形区域内、外半径分别为R 1=1 m 、R 2,半径为R 1的圆内分布着B 1=2.0 T 的匀强磁场,方向垂直于纸面向外;外面环形磁场区域分布着B 2=0.5 T 的匀强磁场,方向垂直于纸面向内.一对平行极板竖直放置,极板间距d,右极板与环形磁场外边界相切,一带正电的粒子从平行极板左板P 点由静止释放,经加速后通过右板小孔Q ,垂直进入环形磁场区域.已知点P 、Q 、O 在同一水平线上,粒子比荷4×107C /kg ,不计粒子的重力,且不考虑粒子的相对论效应.求:(1) 要使粒子不能进入中间的圆形磁场区域,粒子在磁场中的轨道半径满足什么条件?(2) 若改变加速电压大小,可使粒子进入圆形磁场区域,且能竖直通过圆心O,则加速电压为多大?(3) 从P点出发开始计时,在满足第(2)问的条件下,粒子到达O点的时刻.【答案】(1) r1<1m. (2) U=3×107V. (3) t=(6.1×10-8+12.2×10-8k)s(k=0,1,2,3,…)【解析】【分析】(1)画出粒子恰好不进入中间磁场区的临界轨迹,先根据几何关系求出半径;(2)画出使粒子进入圆形磁场区域,且能竖直通过圆心O的轨迹,结合几何关系求解半径,然后根据洛伦兹力提供向心力列方程,再根据动能定理对直线加速过程列方程,最后联立方程组求解加速电压;(3)由几何关系,得到轨迹对应的圆心角,求解粒子从Q孔进入磁场到第一次到O点所用的时间,然后考虑周期性求解粒子到达O点的时刻.【详解】(1) 粒子刚好不进入中间磁场时轨迹如图所示,设此时粒子在磁场中运动的半径为r1,在Rt△QOO1中有r12+R22=(r1+R1)2代入数据解得r1=1m粒子不能进入中间磁场,所以轨道半径r1<1m.(2) 轨迹如图所示,由于O、O3、Q共线且水平,粒子在两磁场中的半径分别为r2、r3,洛伦兹力不做功,故粒子在内外磁场的速率不变,由qvB=m2 v r得r=mv qB易知r3=4r2且满足(r2+r3)2=(R2-r2)2+r32解得r2=34m,r33m又由动能定理有qU=12mv 2 代入数据解得U =3×107V .(3)带电粒子从P 到Q 的运动时间为t 1,则t 1满足12v t 1=d 得t 1=10-9s令∠QO 2O 3=θ,所以cos θ=0.8,θ=37°(反三角函数表达亦可) 圆周运动的周期T =2mqBπ 故粒子从Q 孔进入磁场到第一次到O 点所用的时间为8221372180532610360360m m t s qB qB ππ-⨯⨯⨯-=+= 考虑到周期性运动,t 总=t 1+t 2+k(2t 1+2t 2)=(6.1×10-8+12.2×10-8k)s (k =0,1,2,3,…).5.如图所示,在直角坐标系x0y 平面的一、四个象限内各有一个边长为L 的正方向区域,二三像限区域内各有一个高L ,宽2L 的匀强磁场,其中在第二象限内有垂直坐标平面向外的匀强磁场,第一、三、四象限内有垂直坐标平面向内的匀强磁场,各磁场的磁感应强度大小均相等,第一象限的x<L ,L<y<2L 的区域内,有沿y 轴正方向的匀强电场.现有一质量为四电荷量为q 的带负电粒子从坐标(L ,3L/2)处以初速度0v 沿x 轴负方向射入电场,射出电场时通过坐标(0,L)点,不计粒子重力.(1)求电场强度大小E ;(2)为使粒子进入磁场后途经坐标原点0到达坐标(-L ,0)点,求匀强磁场的磁感应强度大小B ;(3)求第(2)问中粒子从进入磁场到坐标(-L,0)点所用的时间.【答案】(1)2mvEqL=(2)04nmvBqL=n=1、2、3 (3)2Ltvπ=【解析】本题考查带电粒子在组合场中的运动,需画出粒子在磁场中的可能轨迹再结合物理公式求解.(1)带电粒子在电场中做类平抛运动有:0L v t=,2122Lat=,qE ma=联立解得:2mvEqL=(2)粒子进入磁场时,速度方向与y 轴负方向夹角的正切值tan xyvvθ==l速度大小02sinvv vθ==设x为每次偏转圆弧对应的弦长,根据运动的对称性,粒子能到达(一L,0 )点,应满足L=2nx,其中n=1、2、3......粒子轨迹如图甲所示,偏转圆弧对应的圆心角为2π;当满足L=(2n+1)x时,粒子轨迹如图乙所示.若轨迹如图甲设圆弧的半径为R,圆弧对应的圆心角为2π.则有2R,此时满足L=2nx联立可得:22Rn=由牛顿第二定律,洛伦兹力提供向心力,则有:2vqvB mR=得:04nmvBqL=,n=1、2、3....轨迹如图乙设圆弧的半径为R,圆弧对应的圆心角为2π.则有222x R,此时满足()221L n x=+联立可得:()2212R n =+由牛顿第二定律,洛伦兹力提供向心力,则有:222v qvB m R =得:()02221n mv B qL+=,n=1、2、3....所以为使粒子进入磁场后途经坐标原点0到达坐标(-L ,0)点,求匀强磁场的磁感应强度大小04nmv B qL =,n=1、2、3....或()02221n mv B qL+=,n=1、2、3.... (3) 若轨迹如图甲,粒子从进人磁场到从坐标(一L ,0)点射出磁场过程中,圆心角的总和θ=2n×2π×2=2nπ,则02222n n m L t T qB v ππππ=⨯==若轨迹如图乙,粒子从进人磁场到从坐标(一L ,0)点射出磁场过程中,圆心角的总和θ=(2n+1)×2π=(4n+2)π,则2220(42)(42)2n n m Lt T qB v ππππ++=⨯== 粒子从进入磁场到坐标(-L ,0)点所用的时间为02222n n m Lt T qB v ππππ=⨯==或2220(42)(42)2n n m Lt T qB v ππππ++=⨯==6.如图所示,在竖直面内半径为R 的圆形区域内存在垂直于面向里的匀强磁场,其磁感应强度大小为B ,在圆形磁场区域内水平直径上有一点P ,P 到圆心O 的距离为2R,在P 点处有一个发射正离子的装置,能连续不断地向竖直平面内的各方向均匀地发射出速率不同的正离子. 已知离子的质量均为m ,电荷量均为q ,不计离子重力及离子间相互作用力,求:(1)若所有离子均不能射出圆形磁场区域,求离子的速率取值范围;(2)若离子速率大小02BqRv m=,则离子可以经过的磁场的区域的最高点与最低点的高度差是多少。

高考物理带电粒子在磁场中的运动的技巧及练习题及练习题(含答案)及解析

高考物理带电粒子在磁场中的运动的技巧及练习题及练习题(含答案)及解析

高考物理带电粒子在磁场中的运动的技巧及练习题及练习题(含答案)及解析一、带电粒子在磁场中的运动专项训练1.如图所示,两条竖直长虚线所夹的区域被线段MN 分为上、下两部分,上部分的电场方向竖直向上,下部分的电场方向竖直向下,两电场均为匀强电场且电场强度大小相同。

挡板PQ 垂直MN 放置,挡板的中点置于N 点。

在挡板的右侧区域存在垂直纸面向外的匀强磁场。

在左侧虚线上紧靠M 的上方取点A,一比荷qm=5×105C/kg 的带正电粒子,从A 点以v 0=2×103m/s 的速度沿平行MN 方向射入电场,该粒子恰好从P 点离开电场,经过磁场的作用后恰好从Q 点回到电场。

已知MN 、PQ 的长度均为L=0.5m ,不考虑重力对带电粒子的影响,不考虑相对论效应。

(1)求电场强度E 的大小; (2)求磁感应强度B 的大小;(3)在左侧虚线上M 点的下方取一点C ,且CM=0.5m ,带负电的粒子从C 点沿平行MN 方向射入电场,该带负电粒子与上述带正电粒子除电性相反外其他都相同。

若两带电粒子经过磁场后同时分别运动到Q 点和P 点,求两带电粒子在A 、C 两点射入电场的时间差。

【答案】(1) 16/N C (2) 21.610T -⨯ (3) 43.910s -⨯ 【解析】 【详解】(1)带正电的粒子在电场中做类平抛运动,有:L=v 0t2122L qE t m = 解得E=16N/C(2)设带正电的粒子从P 点射出电场时与虚线的夹角为θ,则:0tan v qE t mθ=可得θ=450粒子射入磁场时的速度大小为2v 0粒子在磁场中做匀速圆周运动:2v qvB m r=由几何关系可知2r L = 解得B=1.6×10-2T(3)两带电粒子在电场中都做类平抛运动,运动时间相同;两带电粒子在磁场中都做匀速圆周运动,带正电的粒子转过的圆心角为32π,带负电的粒子转过的圆心角为2π;两带电粒子在AC 两点进入电场的时间差就是两粒子在磁场中的时间差; 若带电粒子能在匀强磁场中做完整的圆周运动,则其运动一周的时间22r mT v qBππ==; 带正电的粒子在磁场中运动的时间为:4135.910s 4t T -==⨯; 带负电的粒子在磁场中运动的时间为:4212.010s 4t T -==⨯ 带电粒子在AC 两点射入电场的时间差为412 3.910t t t s -∆=-=⨯2.如图所示,一质量为m 、电荷量为+q 的粒子从竖直虚线上的P 点以初速度v 0水平向左射出,在下列不同情形下,粒子经过一段时间后均恰好经过虚线右侧的A 点.巳知P 、A 两点连线长度为l ,连线与虚线的夹角为α=37°,不计粒子的重力,(sin 37°=0.6,cos 37°=0.8).(1)若在虚线左侧存在垂直纸面向外的匀强磁场,求磁感应强度的大小B 1;(2)若在虚线上某点固定一个负点电荷,粒子恰能绕该负点电荷做圆周运动,求该负点电荷的电荷量Q (已知静电力常量为是);(3)若虚线的左侧空间存在垂直纸面向外的匀强磁场,右侧空间存在竖直向上的匀强电场,粒子从P 点到A 点的过程中在磁场、电场中的运动时间恰好相等,求磁场的磁感应强度的大小B 2和匀强电场的电场强度大小E .【答案】(1)0152mv B ql = (2)2058mv l Q kq = (3)0253mv B ql π= 220(23)9mv E qlππ-=【解析】【分析】【详解】(1)粒子从P到A的轨迹如图所示:粒子在磁场中做匀速圆周运动,设半径为r1由几何关系得112 cos25r l lα==由洛伦兹力提供向心力可得2011vqv B mr=解得:0152mvBql=(2)粒子从P到A的轨迹如图所示:粒子绕负点电荷Q做匀速圆周运动,设半径为r2由几何关系得252cos8lr lα==由库仑力提供向心力得2222vQqk mr r=解得:258mv lQkq=(3)粒子从P到A的轨迹如图所示:粒子在磁场中做匀速圆周运动,在电场中做类平抛运动 粒子在电场中的运动时间00sin 35l lt v v α== 根据题意得,粒子在磁场中运动时间也为t ,则2Tt = 又22mT qB π=解得0253mv B qlπ=设粒子在磁场中做圆周运动的半径为r ,则0v t r π= 解得:35l r π=粒子在电场中沿虚线方向做匀变速直线运动,21cos 22qE l r t mα-=⋅ 解得:220(23)9mv E qlππ-=3.某控制带电粒子运动的仪器原理如图所示,区域PP′M′M 内有竖直向下的匀强电场,电场场强E =1.0×103V/m ,宽度d =0.05m ,长度L =0.40m ;区域MM′N′N 内有垂直纸面向里的匀强磁场,磁感应强度B =2.5×10-2T ,宽度D =0.05m ,比荷qm=1.0×108C/kg 的带正电的粒子以水平初速度v 0从P 点射入电场.边界MM′不影响粒子的运动,不计粒子重力.(1) 若v 0=8.0×105m/s ,求粒子从区域PP′N′N 射出的位置;(2) 若粒子第一次进入磁场后就从M′N′间垂直边界射出,求v 0的大小; (3) 若粒子从M′点射出,求v 0满足的条件.【答案】(1)0.0125m (2) 3.6×105m/s. (3) 第一种情况:v 0=54.00.8()10/21nm s n -⨯+ (其中n =0、1、2、3、4)第二种情况:v 0=53.20.8()10/21nm s n -⨯+ (其中n =0、1、2、3).【解析】 【详解】(1) 粒子以水平初速度从P 点射入电场后,在电场中做类平抛运动,假设粒子能够进入磁场,则竖直方向21··2Eq d t m= 得2mdt qE=代入数据解得t =1.0×10-6s 水平位移x =v 0t 代入数据解得x =0.80m因为x 大于L ,所以粒子不能进入磁场,而是从P′M′间射出, 则运动时间t 0=L v =0.5×10-6s , 竖直位移201··2Eq y t m==0.0125m 所以粒子从P′点下方0.0125m 处射出.(2) 由第一问可以求得粒子在电场中做类平抛运动的水平位移x =v 0 2mdqE粒子进入磁场时,垂直边界的速度 v 1=qE m ·t =2qEd m设粒子与磁场边界之间的夹角为α,则粒子进入磁场时的速度为v =1v sin α在磁场中由qvB =m 2v R得R =mv qB粒子第一次进入磁场后,垂直边界M′N′射出磁场,必须满足x +Rsinα=L 把x =v 02md qE 、R =mv qB 、v =1v sin α、12qEdv m =代入解得 v 0=L·2Eqmd-E B v 0=3.6×105m/s.(3) 由第二问解答的图可知粒子离MM′的最远距离Δy =R -Rcosα=R(1-cosα) 把R =mv qB 、v =1v sin α、12qEd v m=代入解得 12(1cos )12tan sin 2mEd mEd y B q B q ααα-∆==可以看出当α=90°时,Δy 有最大值,(α=90°即粒子从P 点射入电场的速度为零,直接在电场中加速后以v 1的速度垂直M M′进入磁场运动半个圆周回到电场)1max 212mv m qEd mEdy qB qB m B q∆===Δy max =0.04m ,Δy max 小于磁场宽度D ,所以不管粒子的水平射入速度是多少,粒子都不会从边界NN′射出磁场.若粒子速度较小,周期性运动的轨迹如下图所示:粒子要从M′点射出边界有两种情况, 第一种情况: L =n(2v 0t +2Rsinα)+v 0t 把2md t qE =R =mv qB 、v 1=vsinα、12qEdv m=代入解得 0221221L qE n E v n md n B=⋅++v 0= 4.00.821n n -⎛⎫ ⎪+⎝⎭×105m/s(其中n =0、1、2、3、4)第二种情况:L =n(2v 0t +2Rsinα)+v 0t +2Rsinα 把2md t qE =、R =mv qB 、v 1=vsinα、12qEd v m=02(1)21221L qE n E v n md n B+=⋅++v0=3.20.821nn-⎛⎫⎪+⎝⎭×105m/s(其中n=0、1、2、3).4.如图所示,在两块长为3L、间距为L、水平固定的平行金属板之间,存在方向垂直纸面向外的匀强磁场.现将下板接地,让质量为m、电荷量为q的带正电粒子流从两板左端连线的中点O以初速度v0水平向右射入板间,粒子恰好打到下板的中点.若撤去平行板间的磁场,使上板的电势φ随时间t的变化规律如图所示,则t=0时刻,从O点射人的粒子P经时间t0(未知量)恰好从下板右边缘射出.设粒子打到板上均被板吸收,粒子的重力及粒子间的作用力均不计.(1)求两板间磁场的磁感应强度大小B.(2)若两板右侧存在一定宽度的、方向垂直纸面向里的匀强磁场,为了使t=0时刻射入的粒子P经过右侧磁场偏转后在电场变化的第一个周期内能够回到O点,求右侧磁场的宽度d 应满足的条件和电场周期T的最小值T min.【答案】(1)0mvBqL=(2)223cos2d R a R L≥+=;min(632)LTπ+=【解析】【分析】【详解】(1)如图,设粒子在两板间做匀速圆周运动的半径为R1,则012qv B mvR=由几何关系:222113()()22L LR R=+-解得0mvBqL=(2)粒子P从O003L v t=01122y L v t =解得0y v =设合速度为v ,与竖直方向的夹角为α,则:0tan yv v α== 则=3πα00sin 3v v v α== 粒子P 在两板的右侧匀强磁场中做匀速圆周运动,设做圆周运动的半径为R 2,则212sin L R α=,解得23R =右侧磁场沿初速度方向的宽度应该满足的条件为22cos d R R L α≥+=; 由于粒子P 从O 点运动到下极板右侧边缘的过程与从上板右边缘运动到O 点的过程,运动轨迹是关于两板间的中心线是上下对称的,这两个过程经历的时间相等,则:2min 0(22)2R T t v πα--=解得()min 023L T v π=【点睛】带电粒子在电场或磁场中的运动问题,关键是分析粒子的受力情况和运动特征,画出粒子的运动轨迹图,结合几何关系求解相关量,并搞清临界状态.5.如图所示,同轴圆形区域内、外半径分别为R 1=1 m 、R 2,半径为R 1的圆内分布着B 1=2.0 T 的匀强磁场,方向垂直于纸面向外;外面环形磁场区域分布着B 2=0.5 T 的匀强磁场,方向垂直于纸面向内.一对平行极板竖直放置,极板间距d,右极板与环形磁场外边界相切,一带正电的粒子从平行极板左板P 点由静止释放,经加速后通过右板小孔Q ,垂直进入环形磁场区域.已知点P 、Q 、O 在同一水平线上,粒子比荷4×107C /kg ,不计粒子的重力,且不考虑粒子的相对论效应.求:(1) 要使粒子不能进入中间的圆形磁场区域,粒子在磁场中的轨道半径满足什么条件?(2) 若改变加速电压大小,可使粒子进入圆形磁场区域,且能竖直通过圆心O,则加速电压为多大?(3) 从P点出发开始计时,在满足第(2)问的条件下,粒子到达O点的时刻.【答案】(1) r1<1m. (2) U=3×107V. (3) t=(6.1×10-8+12.2×10-8k)s(k=0,1,2,3,…)【解析】【分析】(1)画出粒子恰好不进入中间磁场区的临界轨迹,先根据几何关系求出半径;(2)画出使粒子进入圆形磁场区域,且能竖直通过圆心O的轨迹,结合几何关系求解半径,然后根据洛伦兹力提供向心力列方程,再根据动能定理对直线加速过程列方程,最后联立方程组求解加速电压;(3)由几何关系,得到轨迹对应的圆心角,求解粒子从Q孔进入磁场到第一次到O点所用的时间,然后考虑周期性求解粒子到达O点的时刻.【详解】(1) 粒子刚好不进入中间磁场时轨迹如图所示,设此时粒子在磁场中运动的半径为r1,在Rt△QOO1中有r12+R22=(r1+R1)2代入数据解得r1=1m粒子不能进入中间磁场,所以轨道半径r1<1m.(2) 轨迹如图所示,由于O、O3、Q共线且水平,粒子在两磁场中的半径分别为r2、r3,洛伦兹力不做功,故粒子在内外磁场的速率不变,由qvB=m2 v r得r=mv qB易知r3=4r2且满足(r2+r3)2=(R2-r2)2+r32解得r2=34m,r33m又由动能定理有qU=12mv 2 代入数据解得U =3×107V .(3)带电粒子从P 到Q 的运动时间为t 1,则t 1满足12v t 1=d 得t 1=10-9s令∠QO 2O 3=θ,所以cos θ=0.8,θ=37°(反三角函数表达亦可) 圆周运动的周期T =2mqBπ 故粒子从Q 孔进入磁场到第一次到O 点所用的时间为8221372180532610360360m m t s qB qB ππ-⨯⨯⨯-=+= 考虑到周期性运动,t 总=t 1+t 2+k(2t 1+2t 2)=(6.1×10-8+12.2×10-8k)s (k =0,1,2,3,…).6.(18分)如图甲所示,相隔一定距离的竖直边界两侧为相同的匀强磁场区,磁场方向垂直纸面向里,在边界上固定两长为L 的平行金属极板MN 和PQ ,两极板中心各有一小孔1S 、2S ,两极板间电压的变化规律如图乙所示,正反向电压的大小均为0U ,周期为0T 。

高考物理带电粒子在磁场中的运动专项训练及答案含解析

高考物理带电粒子在磁场中的运动专项训练及答案含解析

高考物理带电粒子在磁场中的运动专项训练及答案含解析一、带电粒子在磁场中的运动专项训练1.如图所示,两条竖直长虚线所夹的区域被线段MN 分为上、下两部分,上部分的电场方向竖直向上,下部分的电场方向竖直向下,两电场均为匀强电场且电场强度大小相同。

挡板PQ 垂直MN 放置,挡板的中点置于N 点。

在挡板的右侧区域存在垂直纸面向外的匀强磁场。

在左侧虚线上紧靠M 的上方取点A,一比荷qm=5×105C/kg 的带正电粒子,从A 点以v 0=2×103m/s 的速度沿平行MN 方向射入电场,该粒子恰好从P 点离开电场,经过磁场的作用后恰好从Q 点回到电场。

已知MN 、PQ 的长度均为L=0.5m ,不考虑重力对带电粒子的影响,不考虑相对论效应。

(1)求电场强度E 的大小; (2)求磁感应强度B 的大小;(3)在左侧虚线上M 点的下方取一点C ,且CM=0.5m ,带负电的粒子从C 点沿平行MN 方向射入电场,该带负电粒子与上述带正电粒子除电性相反外其他都相同。

若两带电粒子经过磁场后同时分别运动到Q 点和P 点,求两带电粒子在A 、C 两点射入电场的时间差。

【答案】(1) 16/N C (2) 21.610T -⨯ (3) 43.910s -⨯ 【解析】 【详解】(1)带正电的粒子在电场中做类平抛运动,有:L=v 0t2122L qE t m = 解得E=16N/C(2)设带正电的粒子从P 点射出电场时与虚线的夹角为θ,则:0tan v qE t mθ=可得θ=450粒子射入磁场时的速度大小为2v 0粒子在磁场中做匀速圆周运动:2v qvB m r=由几何关系可知2r L = 解得B=1.6×10-2T(3)两带电粒子在电场中都做类平抛运动,运动时间相同;两带电粒子在磁场中都做匀速圆周运动,带正电的粒子转过的圆心角为32π,带负电的粒子转过的圆心角为2π;两带电粒子在AC 两点进入电场的时间差就是两粒子在磁场中的时间差; 若带电粒子能在匀强磁场中做完整的圆周运动,则其运动一周的时间22r mT v qBππ==; 带正电的粒子在磁场中运动的时间为:4135.910s 4t T -==⨯; 带负电的粒子在磁场中运动的时间为:4212.010s 4t T -==⨯ 带电粒子在AC 两点射入电场的时间差为412 3.910t t t s -∆=-=⨯2.如图纸面内的矩形 ABCD 区域存在相互垂直的匀强电场和匀强磁场,对边 AB ∥CD 、AD ∥BC ,电场方向平行纸面,磁场方向垂直纸面,磁感应强度大小为 B .一带电粒子从AB 上的 P 点平行于纸面射入该区域,入射方向与 AB 的夹角为 θ(θ<90°),粒子恰好做匀速直线运动并从 CD 射出.若撤去电场,粒子以同样的速度从P 点射入该区域,恰垂直 CD 射出.已知边长 AD=BC=d ,带电粒子的质量为 m ,带电量为 q ,不计粒子的重力.求:(1)带电粒子入射速度的大小;(2)带电粒子在矩形区域内作直线运动的时间; (3)匀强电场的电场强度大小.【答案】(1)cos qBd m θ(2)cos sin m qB θθ (3)2cos qB dm θ【解析】【分析】画出粒子的轨迹图,由几何关系求解运动的半径,根据牛顿第二定律列方程求解带电粒子入射速度的大小;带电粒子在矩形区域内作直线运动的位移可求解时间;根据电场力与洛伦兹力平衡求解场强. 【详解】(1) 设撤去电场时,粒子在磁场中做匀速圆周运动的半径为R ,画出运动轨迹如图所示,轨迹圆心为O .由几何关系可知:cos d Rθ=洛伦兹力做向心力:200v qv B m R= 解得0cos qBdv m θ=(2)设带电粒子在矩形区域内作直线运动的位移为x ,有sin d xθ= 粒子作匀速运动:x=v 0t 联立解得cos sin m t qB θθ=(3)带电粒子在矩形区域内作直线运动时,电场力与洛伦兹力平衡:Eq=qv 0B解得2qB dE mcos θ=【点睛】此题关键是能根据粒子的运动情况画出粒子运动的轨迹图,结合几何关系求解半径等物理量;知道粒子作直线运动的条件是洛伦兹力等于电场力.3.欧洲大型强子对撞机是现在世界上最大、能量最高的粒子加速器,是一种将质子加速对撞的高能物理设备,其原理可简化如下:两束横截面积极小,长度为l -0质子束以初速度v 0同时从左、右两侧入口射入加速电场,出来后经过相同的一段距离射入垂直纸面的圆形匀强磁场区域并被偏转,最后两质子束发生相碰。

高考物理带电粒子在磁场中的运动的技巧及练习题及练习题(含答案)

高考物理带电粒子在磁场中的运动的技巧及练习题及练习题(含答案)

高考物理带电粒子在磁场中的运动的技巧及练习题及练习题(含答案)一、带电粒子在磁场中的运动专项训练1.如图所示,一质量为m 、电荷量为+q 的粒子从竖直虚线上的P 点以初速度v 0水平向左射出,在下列不同情形下,粒子经过一段时间后均恰好经过虚线右侧的A 点.巳知P 、A 两点连线长度为l ,连线与虚线的夹角为α=37°,不计粒子的重力,(sin 37°=0.6,cos 37°=0.8).(1)若在虚线左侧存在垂直纸面向外的匀强磁场,求磁感应强度的大小B 1;(2)若在虚线上某点固定一个负点电荷,粒子恰能绕该负点电荷做圆周运动,求该负点电荷的电荷量Q (已知静电力常量为是);(3)若虚线的左侧空间存在垂直纸面向外的匀强磁场,右侧空间存在竖直向上的匀强电场,粒子从P 点到A 点的过程中在磁场、电场中的运动时间恰好相等,求磁场的磁感应强度的大小B 2和匀强电场的电场强度大小E .【答案】(1)0152mv B ql = (2)2058mv l Q kq = (3)0253mv B ql π= 220(23)9mv E qlππ-=【解析】 【分析】 【详解】(1)粒子从P 到A 的轨迹如图所示:粒子在磁场中做匀速圆周运动,设半径为r 1 由几何关系得112cos 25r l l α== 由洛伦兹力提供向心力可得2011v qv B m r =解得:0 152mv Bql=(2)粒子从P到A的轨迹如图所示:粒子绕负点电荷Q做匀速圆周运动,设半径为r2由几何关系得252cos8lr lα==由库仑力提供向心力得2222vQqk mr r=解得:258mv lQkq=(3)粒子从P到A的轨迹如图所示:粒子在磁场中做匀速圆周运动,在电场中做类平抛运动粒子在电场中的运动时间00sin35l ltv vα==根据题意得,粒子在磁场中运动时间也为t,则2Tt=又22mTqBπ=解得0253mvBqlπ=设粒子在磁场中做圆周运动的半径为r,则0v t rπ=解得:35l rπ=粒子在电场中沿虚线方向做匀变速直线运动,21cos22qEl r tmα-=⋅解得:220(23)9mvEqlππ-=2.如图甲所示,在直角坐标系中的0≤x≤L区域内有沿y轴正方向的匀强电场,右侧有以点(2L,0)为圆心、半径为L的圆形区域,与x轴的交点分别为M、N,在xOy平面内,从电离室产生的质量为m、带电荷量为e的电子以几乎为零的初速度从P点飘入电势差为U 的加速电场中,加速后经过右侧极板上的小孔Q点沿x轴正方向进入匀强电场,已知O、Q两点之间的距离为2L,飞出电场后从M点进入圆形区域,不考虑电子所受的重力。

(物理)高考必备物理带电粒子在磁场中的运动技巧全解及练习题(含答案)

(物理)高考必备物理带电粒子在磁场中的运动技巧全解及练习题(含答案)

(物理)高考必备物理带电粒子在磁场中的运动技巧全解及练习题(含答案)一、带电粒子在磁场中的运动专项训练1.如图所示,在xOy 坐标系中,第Ⅰ、Ⅱ象限内无电场和磁场。

第Ⅳ象限内(含坐标轴)有垂直坐标平面向里的匀强磁场,第Ⅲ象限内有沿x 轴正向、电场强度大小为E 的匀强磁场。

一质量为m 、电荷量为q 的带正电粒子,从x 轴上的P 点以大小为v 0的速度垂直射入电场,不计粒子重力和空气阻力,P 、O 两点间的距离为202mv qE。

(1)求粒子进入磁场时的速度大小v 以及进入磁场时到原点的距离x ;(2)若粒子由第Ⅳ象限的磁场直接回到第Ⅲ象限的电场中,求磁场磁感应强度的大小需要满足的条件。

【答案】(102v ;20mv qE (2)0(21)EB v ≥【解析】 【详解】(1)由动能定理有:2220011222mv qE mv mv qE ⋅=- 解得:v 2v 0设此时粒子的速度方向与y 轴负方向夹角为θ,则有cosθ=022v v =解得:θ=45° 根据tan 21xyθ=⋅=,所以粒子进入磁场时位置到坐标原点的距离为PO 两点距离的两倍,故20mv x qE=(2)要使粒子由第Ⅳ象限的磁场直接回到第Ⅲ象限的电场中,其临界条件是粒子的轨迹与x 轴相切,如图所示,由几何关系有:s=R+R sinθ又:2v qvB mR=解得:(21)EBv+=故(21)EBv+≥2.如图所示,在平面直角坐标系xOy的第二、第三象限内有一垂直纸面向里、磁感应强度为B的匀强磁场区域△ABC,A点坐标为(0,3a),C点坐标为(0,﹣3a),B点坐标为(23a-,-3a).在直角坐标系xOy的第一象限内,加上方向沿y轴正方向、场强大小为E=Bv0的匀强电场,在x=3a处垂直于x轴放置一平面荧光屏,其与x轴的交点为Q.粒子束以相同的速度v0由O、C间的各位置垂直y轴射入,已知从y轴上y=﹣2a的点射入磁场的粒子在磁场中的轨迹恰好经过O点.忽略粒子间的相互作用,不计粒子的重力.(1)求粒子的比荷;(2)求粒子束射入电场的纵坐标范围;(3)从什么位置射入磁场的粒子打到荧光屏上距Q点最远?求出最远距离.【答案】(1)0vBa(2)0≤y≤2a(3)78y a=,94a【解析】【详解】(1)由题意可知,粒子在磁场中的轨迹半径为r=a由牛顿第二定律得Bqv 0=m 20v r故粒子的比荷v q m Ba= (2)能进入电场中且离O 点上方最远的粒子在磁场中的运动轨迹恰好与AB 边相切,设粒子运动轨迹的圆心为O ′点,如图所示.由几何关系知O ′A =r ·ABBC=2a 则OO ′=OA -O ′A =a即粒子离开磁场进入电场时,离O 点上方最远距离为OD =y m =2a所以粒子束从y 轴射入电场的范围为0≤y ≤2a (3)假设粒子没有射出电场就打到荧光屏上,有3a =v 0·t 02019222qE y t a a m ==>, 所以,粒子应射出电场后打到荧光屏上粒子在电场中做类平抛运动,设粒子在电场中的运动时间为t ,竖直方向位移为y ,水平方向位移为x ,则 水平方向有x =v 0·t竖直方向有212qE y t m=代入数据得x 2ay设粒子最终打在荧光屏上的点距Q 点为H ,粒子射出电场时与x 轴的夹角为θ,则0 02tan yx qE xv m v yv v aθ⋅===有H=(3a-x)·tan θ=(32)2a y y-当322a y y-=时,即y=98a时,H有最大值由于98a<2a,所以H的最大值H max=94a,粒子射入磁场的位置为y=98a-2a=-78a3.核聚变是能源的圣杯,但需要在极高温度下才能实现,最大难题是没有任何容器能够承受如此高温。

高考必备物理带电粒子在磁场中的运动技巧全解及练习题(含答案)含解析

高考必备物理带电粒子在磁场中的运动技巧全解及练习题(含答案)含解析

高考必备物理带电粒子在磁场中的运动技巧全解及练习题(含答案)含解析一、带电粒子在磁场中的运动专项训练1.如图所示,两条竖直长虚线所夹的区域被线段MN 分为上、下两部分,上部分的电场方向竖直向上,下部分的电场方向竖直向下,两电场均为匀强电场且电场强度大小相同。

挡板PQ 垂直MN 放置,挡板的中点置于N 点。

在挡板的右侧区域存在垂直纸面向外的匀强磁场。

在左侧虚线上紧靠M 的上方取点A,一比荷qm=5×105C/kg 的带正电粒子,从A 点以v 0=2×103m/s 的速度沿平行MN 方向射入电场,该粒子恰好从P 点离开电场,经过磁场的作用后恰好从Q 点回到电场。

已知MN 、PQ 的长度均为L=0.5m ,不考虑重力对带电粒子的影响,不考虑相对论效应。

(1)求电场强度E 的大小; (2)求磁感应强度B 的大小;(3)在左侧虚线上M 点的下方取一点C ,且CM=0.5m ,带负电的粒子从C 点沿平行MN 方向射入电场,该带负电粒子与上述带正电粒子除电性相反外其他都相同。

若两带电粒子经过磁场后同时分别运动到Q 点和P 点,求两带电粒子在A 、C 两点射入电场的时间差。

【答案】(1) 16/N C (2) 21.610T -⨯ (3) 43.910s -⨯ 【解析】 【详解】(1)带正电的粒子在电场中做类平抛运动,有:L=v 0t2122L qE t m = 解得E=16N/C(2)设带正电的粒子从P 点射出电场时与虚线的夹角为θ,则:0tan v qE t mθ=可得θ=450粒子射入磁场时的速度大小为2v 0粒子在磁场中做匀速圆周运动:2v qvB m r=由几何关系可知2r L = 解得B=1.6×10-2T(3)两带电粒子在电场中都做类平抛运动,运动时间相同;两带电粒子在磁场中都做匀速圆周运动,带正电的粒子转过的圆心角为32π,带负电的粒子转过的圆心角为2π;两带电粒子在AC 两点进入电场的时间差就是两粒子在磁场中的时间差; 若带电粒子能在匀强磁场中做完整的圆周运动,则其运动一周的时间22r mT v qBππ==; 带正电的粒子在磁场中运动的时间为:4135.910s 4t T -==⨯; 带负电的粒子在磁场中运动的时间为:4212.010s 4t T -==⨯ 带电粒子在AC 两点射入电场的时间差为412 3.910t t t s -∆=-=⨯2.如图所示,一质量为m 、电荷量为+q 的粒子从竖直虚线上的P 点以初速度v 0水平向左射出,在下列不同情形下,粒子经过一段时间后均恰好经过虚线右侧的A 点.巳知P 、A 两点连线长度为l ,连线与虚线的夹角为α=37°,不计粒子的重力,(sin 37°=0.6,cos 37°=0.8).(1)若在虚线左侧存在垂直纸面向外的匀强磁场,求磁感应强度的大小B 1;(2)若在虚线上某点固定一个负点电荷,粒子恰能绕该负点电荷做圆周运动,求该负点电荷的电荷量Q (已知静电力常量为是);(3)若虚线的左侧空间存在垂直纸面向外的匀强磁场,右侧空间存在竖直向上的匀强电场,粒子从P 点到A 点的过程中在磁场、电场中的运动时间恰好相等,求磁场的磁感应强度的大小B 2和匀强电场的电场强度大小E .【答案】(1)0152mv B ql = (2)2058mv l Q kq = (3)0253mv B ql π= 220(23)9mv E qlππ-=【解析】【分析】【详解】(1)粒子从P到A的轨迹如图所示:粒子在磁场中做匀速圆周运动,设半径为r1由几何关系得112 cos25r l lα==由洛伦兹力提供向心力可得2011vqv B mr=解得:0152mvBql=(2)粒子从P到A的轨迹如图所示:粒子绕负点电荷Q做匀速圆周运动,设半径为r2由几何关系得252cos8lr lα==由库仑力提供向心力得2222vQqk mr r=解得:258mv lQkq=(3)粒子从P到A的轨迹如图所示:粒子在磁场中做匀速圆周运动,在电场中做类平抛运动 粒子在电场中的运动时间00sin 35l lt v v α== 根据题意得,粒子在磁场中运动时间也为t ,则2Tt = 又22mT qB π=解得0253mv B qlπ=设粒子在磁场中做圆周运动的半径为r ,则0v t r π= 解得:35l r π=粒子在电场中沿虚线方向做匀变速直线运动,21cos 22qE l r t mα-=⋅ 解得:220(23)9mv E qlππ-=3.如图所示,在一直角坐标系xoy 平面内有圆形区域,圆心在x 轴负半轴上,P 、Q 是圆上的两点,坐标分别为P (-8L ,0),Q (-3L ,0)。

2025届高考物理复习:经典好题专项(带电粒子在直线边界磁场中的运动)练习(附答案)

2025届高考物理复习:经典好题专项(带电粒子在直线边界磁场中的运动)练习(附答案)

2025届高考物理复习:经典好题专项(带电粒子在直线边界磁场中的运动)练习1. 如图所示,竖直线MN ∥PQ ,MN 与PQ 之间距离为a ,其间存在垂直纸面向里的匀强磁场,磁感应强度为B ,O 是MN 上一点,O 处有一粒子源,某时刻放出大量速率均为v (方向均垂直磁场方向)、比荷一定的带负电的粒子(粒子重力及粒子间的相互作用力不计),已知沿图中与MN 成θ=60°角方向射入的粒子恰好垂直PQ 射出磁场,则粒子在磁场中运动的最长时间为( )A.πa 3vB.3πa 3vC.4πa 3vD.2πa v2.(2023ꞏ四川宜宾市模拟)如图所示,L 1和L 2为两条平行的磁场边界线,L 1上方和L 2下方都是垂直纸面向里、范围足够大、且磁感应强度大小相等的匀强磁场,L 1和L 2之间无磁场;A 、B 两点是L 2上相距一定距离的两点。

一带电粒子从A 点以初速度v 0与L 2成30°角斜向右上方射出,经过偏转后恰好过B 点,不计重力,下列说法正确的是( )A .该粒子一定是带正电B .该粒子经过B 点时的速度一定跟在A 点时的速度相同C .若只稍微增大该粒子在A 点的初速度,它将仍可能经过B 点D .若只将该粒子在A 点的初速度方向改为与L 2成60°角斜向右上方,它将不可能经过B 点3.(多选)如图所示,等腰直角三角形区域内分布有垂直纸面向里的匀强磁场,腰长AB =2 m ,O 为BC 的中点,磁感应强度B 0=0.25 T ,一群质量m =1×10-7 kg 、电荷量q =-2×10-3 C 的带电粒子以速度v =5×103 m/s 垂直于BO ,从BO 之间射入磁场区域,不计带电粒子重力及相互之间的作用,则( )A .在AC 边界上有粒子射出的长度为(2-1) mB .C 点有粒子射出C .在AB 边界上有粒子射出的长度为1 mD .在磁场中运动时间最长的粒子从底边距B 点(2-1) m 处入射4. (2023ꞏ四川遂宁市模拟)如图所示,平面直角坐标系xOy 内,存在垂直纸面向里的匀强磁场, 磁感应强度 B =0.2 T ,原点O 有一粒子源,能向纸面内各个方向释放出比荷为4×108 C/kg 的带正电粒子,粒子初速度 v 0=8×106 m/s ,不计粒子重力及相互之间作用, 有一与 x 轴成 45°角倾斜放置的足够长挡板跨越第一、三、四象限,P 是挡板与 x 轴交点,OP =16 2 cm ,则挡板上被粒子打中的区域长度为( )A .24 cmB .16 cmC .20 cmD .32 cm5. (多选)(2023ꞏ四川达州市模拟)如图所示,一个棱长为l 的立方体空间被对角平面MNPQ 划分成两个区域,平面MNPQ 左侧存在磁感应强度大小B 1=m v ql 、方向沿z 轴负方向的匀强磁场,右侧存在磁感应强度大小B 2=m v (2-1)ql、方向沿z 轴正方向的匀强磁场。

(物理)高考必备物理带电粒子在磁场中的运动技巧全解及练习题(含答案)及解析

(物理)高考必备物理带电粒子在磁场中的运动技巧全解及练习题(含答案)及解析

(物理)高考必备物理带电粒子在磁场中的运动技巧全解及练习题(含答案)及解析一、带电粒子在磁场中的运动专项训练1.如图所示,两条竖直长虚线所夹的区域被线段MN 分为上、下两部分,上部分的电场方向竖直向上,下部分的电场方向竖直向下,两电场均为匀强电场且电场强度大小相同。

挡板PQ 垂直MN 放置,挡板的中点置于N 点。

在挡板的右侧区域存在垂直纸面向外的匀强磁场。

在左侧虚线上紧靠M 的上方取点A,一比荷qm=5×105C/kg 的带正电粒子,从A 点以v 0=2×103m/s 的速度沿平行MN 方向射入电场,该粒子恰好从P 点离开电场,经过磁场的作用后恰好从Q 点回到电场。

已知MN 、PQ 的长度均为L=0.5m ,不考虑重力对带电粒子的影响,不考虑相对论效应。

(1)求电场强度E 的大小; (2)求磁感应强度B 的大小;(3)在左侧虚线上M 点的下方取一点C ,且CM=0.5m ,带负电的粒子从C 点沿平行MN 方向射入电场,该带负电粒子与上述带正电粒子除电性相反外其他都相同。

若两带电粒子经过磁场后同时分别运动到Q 点和P 点,求两带电粒子在A 、C 两点射入电场的时间差。

【答案】(1) 16/N C (2) 21.610T -⨯ (3) 43.910s -⨯ 【解析】 【详解】(1)带正电的粒子在电场中做类平抛运动,有:L=v 0t2122L qE t m = 解得E=16N/C(2)设带正电的粒子从P 点射出电场时与虚线的夹角为θ,则:0tan v qE t mθ=可得θ=450粒子射入磁场时的速度大小为2v 0粒子在磁场中做匀速圆周运动:2v qvB m r=由几何关系可知22r L =解得B=1.6×10-2T(3)两带电粒子在电场中都做类平抛运动,运动时间相同;两带电粒子在磁场中都做匀速圆周运动,带正电的粒子转过的圆心角为32π,带负电的粒子转过的圆心角为2π;两带电粒子在AC 两点进入电场的时间差就是两粒子在磁场中的时间差; 若带电粒子能在匀强磁场中做完整的圆周运动,则其运动一周的时间22r mT v qBππ==; 带正电的粒子在磁场中运动的时间为:4135.910s 4t T -==⨯; 带负电的粒子在磁场中运动的时间为:421 2.010s 4t T -==⨯带电粒子在AC 两点射入电场的时间差为412 3.910t t t s -∆=-=⨯2.如图所示,一质量为m 、电荷量为+q 的粒子从竖直虚线上的P 点以初速度v 0水平向左射出,在下列不同情形下,粒子经过一段时间后均恰好经过虚线右侧的A 点.巳知P 、A 两点连线长度为l ,连线与虚线的夹角为α=37°,不计粒子的重力,(sin 37°=0.6,cos 37°=0.8).(1)若在虚线左侧存在垂直纸面向外的匀强磁场,求磁感应强度的大小B 1;(2)若在虚线上某点固定一个负点电荷,粒子恰能绕该负点电荷做圆周运动,求该负点电荷的电荷量Q (已知静电力常量为是);(3)若虚线的左侧空间存在垂直纸面向外的匀强磁场,右侧空间存在竖直向上的匀强电场,粒子从P 点到A 点的过程中在磁场、电场中的运动时间恰好相等,求磁场的磁感应强度的大小B 2和匀强电场的电场强度大小E .【答案】(1)0152mv B ql = (2)2058mv lQ kq= (3)0253mv B ql π=220(23)9mvEqlππ-=【解析】【分析】【详解】(1)粒子从P到A的轨迹如图所示:粒子在磁场中做匀速圆周运动,设半径为r1由几何关系得112cos25r l lα==由洛伦兹力提供向心力可得2011vqv B mr=解得:0152mvBql=(2)粒子从P到A的轨迹如图所示:粒子绕负点电荷Q做匀速圆周运动,设半径为r2由几何关系得252cos8lr lα==由库仑力提供向心力得2222vQqk mr r=解得:258mv lQkq=(3)粒子从P到A的轨迹如图所示:粒子在磁场中做匀速圆周运动,在电场中做类平抛运动 粒子在电场中的运动时间00sin 35l lt v v α== 根据题意得,粒子在磁场中运动时间也为t ,则2Tt = 又22mT qB π=解得0253mv B qlπ=设粒子在磁场中做圆周运动的半径为r ,则0v t r π= 解得:35l r π=粒子在电场中沿虚线方向做匀变速直线运动,21cos 22qE l r t mα-=⋅ 解得:220(23)9mv E qlππ-=3.如图所示,一匀强磁场磁感应强度为B ;方向向里,其边界是半径为R 的圆,AB 为圆的一直径.在A 点有一粒子源向圆平面内的各个方向发射质量m 、电量-q 的粒子,粒子重力不计.(1)有一带电粒子以的速度垂直磁场进入圆形区域,恰从B 点射出.求此粒子在磁场中运动的时间.(2)若磁场的边界是绝缘弹性边界(粒子与边界碰撞后将以原速率反弹),某粒子沿半径方向射入磁场,经过2次碰撞后回到A 点,则该粒子的速度为多大?(3)若R=3cm、B=0.2T,在A点的粒子源向圆平面内的各个方向发射速度均为3×105m/s、比荷为108C/kg的粒子.试用阴影图画出粒子在磁场中能到达的区域,并求出该区域的面积(结果保留2位有效数字).【答案】(1)(2)(3)【解析】【分析】(1)根据洛伦兹力提供向心力,求出粒子的半径,通过几何关系得出圆弧所对应的圆心角,根据周期公式,结合t=T求出粒子在磁场中运动的时间.(2)粒子径向射入磁场,必定径向反弹,作出粒子的轨迹图,通过几何关系求出粒子的半径,从而通过半径公式求出粒子的速度.(3)根据粒子的半径公式求出粒子的轨道半径,作出粒子轨迹所能到达的部分,根据几何关系求出面积.【详解】(1)由得r1=2R粒子的运动轨迹如图所示,则α=因为周期.运动时间.(2)粒子运动情况如图所示,β=.r2=R tanβ=R由得(3)粒子的轨道半径r3==1.5cm粒子到达的区域为图中的阴影部分区域面积为S=πr 32+2×π(2r 3)2−r 32=9.0×10-4m 2【点睛】本题考查了带电粒子在磁场中的运动问题,需掌握粒子的半径公式和周期公式,并能画出粒子运动的轨迹图,结合几何关系求解.该题对数学几何能力要求较高,需加强这方面的训练.4.平面直角坐标系的第一象限和第四象限内均存在垂直纸面向里的匀强磁场,磁感应强度大小分别为2B 和B (B 的大小未知),第二象限和第三象限内存在沿﹣y 方向的匀强电场,x 轴上有一点P ,其坐标为(L ,0)。

【物理】高考必备物理带电粒子在磁场中的运动技巧全解及练习题(含答案)及解析

【物理】高考必备物理带电粒子在磁场中的运动技巧全解及练习题(含答案)及解析

【物理】高考必备物理带电粒子在磁场中的运动技巧全解及练习题(含答案)及解析一、带电粒子在磁场中的运动专项训练1.如图所示,一质量为m 、电荷量为+q 的粒子从竖直虚线上的P 点以初速度v 0水平向左射出,在下列不同情形下,粒子经过一段时间后均恰好经过虚线右侧的A 点.巳知P 、A 两点连线长度为l ,连线与虚线的夹角为α=37°,不计粒子的重力,(sin 37°=0.6,cos 37°=0.8).(1)若在虚线左侧存在垂直纸面向外的匀强磁场,求磁感应强度的大小B 1;(2)若在虚线上某点固定一个负点电荷,粒子恰能绕该负点电荷做圆周运动,求该负点电荷的电荷量Q (已知静电力常量为是);(3)若虚线的左侧空间存在垂直纸面向外的匀强磁场,右侧空间存在竖直向上的匀强电场,粒子从P 点到A 点的过程中在磁场、电场中的运动时间恰好相等,求磁场的磁感应强度的大小B 2和匀强电场的电场强度大小E .【答案】(1)0152mv B ql = (2)2058mv lQ kq= (3)0253mv B ql π= 220(23)9mv E qlππ-=【解析】 【分析】 【详解】(1)粒子从P 到A 的轨迹如图所示:粒子在磁场中做匀速圆周运动,设半径为r 1 由几何关系得112cos 25r l l α==由洛伦兹力提供向心力可得2011v qv Bm r =解得:0152mv B ql=(2)粒子从P 到A 的轨迹如图所示:粒子绕负点电荷Q 做匀速圆周运动,设半径为r 2 由几何关系得252cos 8l r l α==由库仑力提供向心力得20222v Qqk mr r = 解得:2058mv lQ kq=(3)粒子从P 到A 的轨迹如图所示:粒子在磁场中做匀速圆周运动,在电场中做类平抛运动 粒子在电场中的运动时间00sin 35l lt v v α== 根据题意得,粒子在磁场中运动时间也为t ,则2Tt = 又22mT qB π=解得0253mv B qlπ=设粒子在磁场中做圆周运动的半径为r ,则0v t r π= 解得:35l r π=粒子在电场中沿虚线方向做匀变速直线运动,21cos 22qE l r t mα-=⋅ 解得:220(23)9mv E qlππ-=2.如图所示,xOy 平面处于匀强磁场中,磁感应强度大小为B ,方向垂直纸面向外.点3,0P L ⎛⎫ ⎪ ⎪⎝⎭处有一粒子源,可向各个方向发射速率不同、电荷量为q 、质量为m 的带负电粒子.不考虑粒子的重力.(1)若粒子1经过第一、二、三象限后,恰好沿x 轴正向通过点Q (0,-L ),求其速率v 1;(2)若撤去第一象限的磁场,在其中加沿y 轴正向的匀强电场,粒子2经过第一、二、三象限后,也以速率v 1沿x 轴正向通过点Q ,求匀强电场的电场强度E 以及粒子2的发射速率v 2;(3)若在xOy 平面内加沿y 轴正向的匀强电场E o ,粒子3以速率v 3沿y 轴正向发射,求在运动过程中其最小速率v.某同学查阅资料后,得到一种处理相关问题的思路:带电粒子在正交的匀强磁场和匀强电场中运动,若所受洛伦兹力与电场力不平衡而做复杂的曲线运动时,可将带电粒子的初速度进行分解,将带电粒子的运动等效为沿某一方向的匀速直线运动和沿某一时针方向的匀速圆周运动的合运动. 请尝试用该思路求解. 【答案】(1)23BLq m (2221BLq32230B E E v B +⎛⎫ ⎪⎝⎭【解析】【详解】(1)粒子1在一、二、三做匀速圆周运动,则2111v qv B m r =由几何憨可知:()22211r L r ⎫=-+⎪⎪⎝⎭得到:123BLqv m=(2)粒子2在第一象限中类斜劈运动,有:13L v t=,212qE h t m = 在第二、三象限中原圆周运动,由几何关系:12L h r +=,得到289qLB E m=又22212v v Eh =+,得到:29v m=(3)如图所示,将3v 分解成水平向右和v '和斜向的v '',则0qv B qE '=,即0E v B'=而v ''=所以,运动过程中粒子的最小速率为v v v =''-'即:0E v B =3.如图甲所示,在直角坐标系中的0≤x≤L 区域内有沿y 轴正方向的匀强电场,右侧有以点(2L ,0)为圆心、半径为L 的圆形区域,与x 轴的交点分别为M 、N ,在xOy 平面内,从电离室产生的质量为m 、带电荷量为e 的电子以几乎为零的初速度从P 点飘入电势差为U 的加速电场中,加速后经过右侧极板上的小孔Q 点沿x 轴正方向进入匀强电场,已知O 、Q 两点之间的距离为2L,飞出电场后从M 点进入圆形区域,不考虑电子所受的重力。

高考物理带电粒子在磁场中的运动技巧(很有用)及练习题含解析

高考物理带电粒子在磁场中的运动技巧(很有用)及练习题含解析

高考物理带电粒子在磁场中的运动技巧(很有用)及练习题含解析一、带电粒子在磁场中的运动专项训练1.如图所示,一质量为m 、电荷量为+q 的粒子从竖直虚线上的P 点以初速度v 0水平向左射出,在下列不同情形下,粒子经过一段时间后均恰好经过虚线右侧的A 点.巳知P 、A 两点连线长度为l ,连线与虚线的夹角为α=37°,不计粒子的重力,(sin 37°=0.6,cos 37°=0.8).(1)若在虚线左侧存在垂直纸面向外的匀强磁场,求磁感应强度的大小B 1;(2)若在虚线上某点固定一个负点电荷,粒子恰能绕该负点电荷做圆周运动,求该负点电荷的电荷量Q (已知静电力常量为是);(3)若虚线的左侧空间存在垂直纸面向外的匀强磁场,右侧空间存在竖直向上的匀强电场,粒子从P 点到A 点的过程中在磁场、电场中的运动时间恰好相等,求磁场的磁感应强度的大小B 2和匀强电场的电场强度大小E .【答案】(1)0152mv B ql = (2)2058mv l Q kq = (3)0253mv B ql π= 220(23)9mv E qlππ-=【解析】 【分析】 【详解】(1)粒子从P 到A 的轨迹如图所示:粒子在磁场中做匀速圆周运动,设半径为r 1 由几何关系得112cos 25r l l α== 由洛伦兹力提供向心力可得2011v qv B m r =解得:0 152mv Bql=(2)粒子从P到A的轨迹如图所示:粒子绕负点电荷Q做匀速圆周运动,设半径为r2由几何关系得252cos8lr lα==由库仑力提供向心力得2222vQqk mr r=解得:258mv lQkq=(3)粒子从P到A的轨迹如图所示:粒子在磁场中做匀速圆周运动,在电场中做类平抛运动粒子在电场中的运动时间00sin35l ltv vα==根据题意得,粒子在磁场中运动时间也为t,则2Tt=又22mTqBπ=解得0253mvBqlπ=设粒子在磁场中做圆周运动的半径为r,则0v t rπ=解得:35l r π=粒子在电场中沿虚线方向做匀变速直线运动,21cos 22qE l r t mα-=⋅ 解得:220(23)9mv E qlππ-=2.科学家设想在宇宙中可能存在完全由反粒子构成的反物质.例如:正电子就是电子的反粒子,它跟电子相比较,质量相等、电量相等但电性相反.如图是反物质探测卫星的探测器截面示意图.MN 上方区域的平行长金属板AB 间电压大小可调,平行长金属板AB 间距为d ,匀强磁场的磁感应强度大小为B ,方向垂直纸面向里.MN 下方区域I 、II 为两相邻的方向相反的匀强磁场区,宽度均为3d ,磁感应强度均为B ,ef 是两磁场区的分界线,PQ 是粒子收集板,可以记录粒子打在收集板的位置.通过调节平行金属板AB 间电压,经过较长时间探测器能接收到沿平行金属板射入的各种带电粒子.已知电子、正电子的比荷是b ,不考虑相对论效应、粒子间的相互作用及电磁场的边缘效应.(1)要使速度为v 的正电子匀速通过平行长金属极板AB ,求此时金属板AB 间所加电压U ;(2)通过调节电压U 可以改变正电子通过匀强磁场区域I 和II 的运动时间,求沿平行长金属板方向进入MN 下方磁场区的正电子在匀强磁场区域I 和II 运动的最长时间t m ; (3)假如有一定速度范围的大量电子、正电子沿平行长金属板方向匀速进入MN 下方磁场区,它们既能被收集板接收又不重叠,求金属板AB 间所加电压U 的范围.【答案】(1)Bvd (2)Bb π(3)3B 2d 2b <U <221458B d b【解析】 【详解】(1)正电子匀速直线通过平行金属极板AB ,需满足Bev=Ee因为正电子的比荷是b ,有 E=U d联立解得:u Bvd =(2)当正电子越过分界线ef 时恰好与分界线ef 相切,正电子在匀强磁场区域I 、II 运动的时间最长。

(含答案)带电粒子在直线边界磁场中的运动

(含答案)带电粒子在直线边界磁场中的运动

带电粒子在直线边界磁场中的运动一、基础知识1、带电粒子在有界磁场中运动的几种常见情形 (1)直线边界(进出磁场具有对称性,如图所示)(2)平行边界(存在临界条件,如图所示)(3)圆形边界(沿径向射入必沿径向射出,如图所示)图72、确定粒子运动的圆心,找出轨迹对应的圆心角,再求运动时间 二、练习1、如图所示,质量为m ,电荷量为+q 的带电粒子,以不同的初速度两次从O 点垂直于磁感线和磁场边界向上射入匀强磁场,在洛伦兹力作用下分别从M 、N 两点射出磁场,测得OM ∶ON =3∶4,则下列说法中错误的是 ( )A .两次带电粒子在磁场中经历的时间之比为3∶4B .两次带电粒子在磁场中运动的路程长度之比为3∶4C .两次带电粒子在磁场中所受的洛伦兹力大小之比为3∶4D .两次带电粒子在磁场中所受的洛伦兹力大小之比为4∶3 答案 AD解析 设OM =2r 1,ON =2r 2,故r 1r 2=OM ON =34,路程长度之比s M s N =πr 1πr 2=34,B 正确;由r =m v qB 知v 1v 2=r 1r 2=34,故F M F N =q v 1B q v 2B =34,C 正确,D 错误;由于T =2πm Bq ,则t M t N =12TM 12T N=1,A 错. 2、(2012·广东理综·15)质量和电荷量都相等的带电粒子M 和N ,以不同的速率经小孔S 垂直进入匀强磁场,运行的半圆轨迹如图中虚线所示.下列表述正确的是 ( )A .M 带负电,N 带正电薄B .M 的速率小于N 的速率C .洛伦兹力对M 、N 做正功D .M 的运行时间大于N 的运行时间 答案 A解析 由左手定则知M 带负电,N 带正电,选项A 正确;带电粒子在磁场中做匀速圆周运动且向心力F 向=F 洛,即m v 2r =q v B 得r =m vqB,因为M 、N 的质量、电荷量都相等,且r M >r N ,所以v M >v N ,选项B 错误;M 、N 运动过程中,F 洛始终与v 垂直,F 洛不做功,选项C 错误;由T =2πmqB知M 、N两粒子做匀速圆周运动的周期相等且在磁场中的运动时间均为T2,选项D 错误.3、如图所示,在一矩形区域内,不加磁场时,不计重力的带电粒子以某一初速度垂直左边界射入,穿过此区域的时间为t .若加上磁感应强度为B 、垂直纸面向外的匀强磁场,带电粒子仍以原来的初速度入射,粒子飞出磁场时偏离原方向60°,利用以上数据可求出下列物理量中的( )A .带电粒子的比荷B .带电粒子在磁场中运动的周期C .带电粒子的初速度D .带电粒子在磁场中运动的半径 答案 AB解析 由带电粒子在磁场中运动的偏转角,可知带电粒子运动轨迹所对的圆心角为60°,因此由几何关系得磁场宽度l =r sin 60°=m v 0qB sin 60°,又未加磁场时有l =v 0t ,所以可求得比荷q m =sin 60°Bt,A项对;周期T =2πmqB 也可求出,B 项对;因初速度未知,所以C 、D 项错.4、如图所示的虚线框为一长方形区域,该区域内有一垂直于纸面向里的匀强磁场,一束电子以不同的速率从O 点垂直于磁场方向、沿图中方向射入磁场后,分别从a 、b 、c 、d 四点射出磁场,比较它们在磁场中的运动时间t a 、t b 、t c 、t d ,其大小关系是 ( )A .t a <t b <t c <t dB .t a =t b =t c =t dC .t a =t b >t d >t cD .t a =t b >t c >t d答案 D解析 由洛伦兹力与速度的方向关系可知,从a 、b 两点射出的电子都完成了半个周期的运动,即t a=t b =T 2;从c 点和d 点射出的电子在磁场中转过的圆心角都小于180°,且θd <θc ,故t d <t c <T 2,D 选项正确.5、带电粒子以初速度v 0从a 点进入匀强磁场,如图所示.运动中经过b 点,Oa =Ob ,若撤去磁场加一个与y 轴平行的匀强电场,仍以v 0从a 点进入电场,粒子仍能通过b 点,那么电场强度E 与磁感应强度B 之比为( )A .v 0B .1C .2v 0D.v 02答案 C解析 带电粒子在匀强磁场中做匀速圆周运动,O 为圆心,故Oa =Ob =r =m v 0qB ,①带电粒子在匀强电场中做类平抛运动,故Ob =v 0t =Oa =qE 2m t 2=2m v 20qE,②由①②得EB=2v 0,故选项C 对.6、(2011·海南单科·10)空间存在方向垂直于纸面向里的匀强磁场,图中的正方形为其边界.一细束由两种粒子组成的粒子流沿垂直于磁场的方向从O 点入射.这两种粒子带同种电荷,它们的电荷量、质量均不同,但其比荷相同,且都包含不同速率的粒子.不计重力.下列说法正确的是( )A .入射速度不同的粒子在磁场中的运动时间一定不同B .入射速度相同的粒子在磁场中的运动轨迹一定相同C .在磁场中运动时间相同的粒子,其运动轨迹一定相同D .在磁场中运动时间越长的粒子,其轨迹所对的圆心角一定越大 答案 BD解析 带电粒子进入磁场后,在洛伦兹力的作用下做匀速圆周运动,根据q v B =m v 2r得轨道半径r =m vqB,粒子的比荷相同,故不同速度的粒子在磁场中运动的轨道半径不同,轨迹不同;相同速度的粒子,轨道半径相同,轨迹相同,故B 正确.带电粒子在磁场中做匀速圆周运动的周期T =2πr v =2πmqB ,故所有带电粒子的运动周期均相同,若带电粒子都从磁场左边界出磁场,则这些粒子在磁场中的运动时间是相同的,但不同速度的粒子,其运动轨迹不同,故A 、C 错误.根据θt =2πT 得θ=2πT t ,所以运动时间t 越长,运动轨迹所对的圆心角θ越大,故D 正确.7、如图所示,一足够长的矩形区域abcd 内充满方向垂直纸面向里的、磁感应强度为B 的匀强磁场,在ad 边中点O ,垂直于磁场射入一速度方向跟ad 边夹角θ=30°、大小为v 0的带正电粒子.已知粒子质量为m ,电荷量为q ,ad 边长为L ,ab 边足够长,粒子重力不计,求:(1)粒子能从ab 边上射出磁场的v 0大小范围;(2)如果带电粒子不受上述v 0大小范围的限制,求粒子在磁场中运动的最长时间.答案 (1)qBL 3m <v 0≤qBL m (2)5πm3qB解析 (1)若粒子速度为v 0,轨迹半径为R ,由 q v 0B =m v 20R ,则R =m v 0qB若轨迹与ab 边相切,如图所示,设此时相应速度为v 01,则R 1+R 1sin θ=L2将R 1=m v 01qB 代入上式并由题给数据可得v 01=qBL 3m若轨迹与cd 边相切,设此时粒子速度为v 02,则R 2-R 2sin θ=L2将R 2=m v 02qB 代入上式可得v 02=qBLm所以粒子能从ab 边上射出磁场的v 0应满足qBL 3m <v 0≤qBLm. (2)粒子在磁场中经过的弧所对的圆心角越大,在磁场中运动的时间越长.由图可知,在磁场中运动的半径r ≤R 1时,运动时间最长,此时弧所对的圆心角为(360°-2θ). 所以最长时间为t =(360°-2θ)m qB =5πm 3qB.8、如图所示,在真空区域内,有宽度为L 的匀强磁场,磁感应强度为B ,磁场方向垂直纸面向里,MN 、PQ 为磁场的边界.质量为m 、带电荷量为-q 的粒子,先后两次沿着与MN 夹角为θ(0°<θ<90°)的方向垂直于磁感线射入匀强磁场中,第一次粒子是经电压U 1加速后射入磁场的,粒子刚好没能从PQ 边界射出磁场;第二次粒子是经电压U 2加速后射入磁场的,粒子刚好能垂直于PQ 射出磁场.(不计粒子重力,粒子加速前的速度认为是零,U 1、U 2未知)(1)加速电压U 1、U 2的比值U 1U 2为多少?(2)为使粒子经电压U 2加速射入磁场后沿直线射出PQ 边界,可在磁场区域加一个匀强电场,求该电场的场强大小.答案 (1)cos 2 θ(1+cos θ)2(2)B 2qLm cos θ解析 (1)如图所示,第一次粒子刚好没能从PQ 边界射出磁场,表明粒子在磁场中的轨 迹刚好与PQ 相切,如图中的轨迹1.设轨迹半径为r 1,由几何关系得:r 1+r 1cos θ=L ,解得r 1=L1+cos θ.第二次粒子刚好能垂直PQ 边界射出磁场,粒子在磁场中的轨迹圆心为图到:r 2=Lcos θ中的O 2点,运行轨迹为轨迹2,设轨迹半径为r 2,由几何关系得由动能定理及牛顿第二定律得qU =12m v 2,q v B =m v 2r ,r =2mqUBq ,从而可得r 1r 2= U 1U 2,所以U 1U 2=r 21r 22=cos 2 θ(1+cos θ)2. (2)若加入一个匀强电场后使电场力恰好能平衡洛伦兹力,则粒子将沿直线射出PQ 边界,场强方向为垂直速度方向斜向下,设场强大小为E ,则Eq =Bq v 2,解得E =B v 2 ①由于粒子经电压U 2且未加电场时的轨迹半径r 2=L cos θ=m v 2Bq ,可得v 2=BqLm cos θ②①②联立可得E =B2qLmcos θ,方向与水平方向成θ角斜向右下方.9、(2012·江苏单科·9)如图所示,MN 是磁感应强度为B 的匀强磁场的边界.一质量为m 、电荷量为q 的粒子在纸面内从O 点射入磁场.若粒子速度为v 0,最远能落在边界上的A 点.下列说法正确的有( )A .若粒子落在A 点的左侧,其速度一定小于v 0B .若粒子落在A 点的右侧,其速度一定大于v 0C .若粒子落在A 点左右两侧d 的范围内,其速度不可能小于v 0-qBd2mD .若粒子落在A 点左右两侧d 的范围内,其速度不可能大于v 0+qBd2m答案 BC解析 带电粒子在磁场中做匀速圆周运动,q v 0B =m v 20r ,所以r =m v 0qB ,当带电粒子从不同方向由O点以速度v 0进入匀强磁场时,其轨迹是半径为r 的圆,轨迹与边界的交点位置最远是离O 点2r 的距离,即OA =2r ,落在A 点的粒子从O 点垂直入射,其他粒子则均落在A 点左侧,若落在A 点右侧则必须有更大的速度,选项B 正确.若粒子速度虽然比v 0大,但进入磁场时与磁场边界夹角过大或过小,粒子仍有可能落在A 点左侧,选项A 、D 错误.若粒子落在A 点左右两侧d 的范围内,设其半径为r ′,则r ′≥2r -d 2,代入r =m v 0qB ,r ′=m v qB ,解得v ≥v 0-qBd2m,选项C 正确.10、(2012·海南单科·16)图20(a)所示的xOy 平面处于匀强磁场中,磁场方向与xOy 平面(纸面)垂直,磁感应强度B 随时间t 变化的周期为T ,变化图线如图(b)所示.当B 为+B 0时,磁感应强度方向指向纸外.在坐标原点O 有一带正电的粒子P ,其电荷量与质量之比恰好等于2πTB 0.不计重力.设P 在某时刻t 0以某一初速度沿y 轴正向从O 点开始运动,将它经过时间T 到达的点记为A .(a) (b)(1)若t 0=0,则直线OA 与x 轴的夹角是多少?(2)若t 0=T4,则直线OA 与x 轴的夹角是多少?答案 (1)0 (2)π2解析 (1)设粒子P 的质量、电荷量与初速度分别为m 、q 与v ,粒子P 在洛伦兹力作用下,在xOy 平面内做圆周运动,分别用R 与T ′表示圆周的半径和运动周期,则有q v B 0=m (2πT ′)2R① v =2πR T ′②由①②式与已知条件得T ′=T粒子P 在t =0到t =T2时间内,沿顺时针方向运动半个圆周,到达x轴上B 点,此时磁场方向反转;继而,在t =T2到t =T 时间内,沿逆时针方向运动半个圆周,到达x轴上A 点,如图所示.OA 与x 轴的夹角θ=0(2)粒子P 在t 0=T 4时刻开始运动,在t =T 4到t =T2时间内,沿顺时针方向运动14个圆周,到达C 点,此时磁场方向反转;继而,在t =T 2到t =T 时间内,沿逆时针方向运动半个圆周,到达B 点,此时磁场方向再次反转;在t =T 到t =5T 4时间内,沿顺时针方向运动14个圆周,到达A 点,如图所示.由几何关系可知,A 点在y 轴上,即OA 与x 轴的夹角θ=π2.。

高考必备物理带电粒子在磁场中的运动技巧全解及练习题(含答案)

高考必备物理带电粒子在磁场中的运动技巧全解及练习题(含答案)

高考必备物理带电粒子在磁场中的运动技巧全解及练习题(含答案)一、带电粒子在磁场中的运动专项训练1.如图所示,一质量为m 、电荷量为+q 的粒子从竖直虚线上的P 点以初速度v 0水平向左射出,在下列不同情形下,粒子经过一段时间后均恰好经过虚线右侧的A 点.巳知P 、A 两点连线长度为l ,连线与虚线的夹角为α=37°,不计粒子的重力,(sin 37°=0.6,cos 37°=0.8).(1)若在虚线左侧存在垂直纸面向外的匀强磁场,求磁感应强度的大小B 1;(2)若在虚线上某点固定一个负点电荷,粒子恰能绕该负点电荷做圆周运动,求该负点电荷的电荷量Q (已知静电力常量为是);(3)若虚线的左侧空间存在垂直纸面向外的匀强磁场,右侧空间存在竖直向上的匀强电场,粒子从P 点到A 点的过程中在磁场、电场中的运动时间恰好相等,求磁场的磁感应强度的大小B 2和匀强电场的电场强度大小E .【答案】(1)0152mv B ql = (2)2058mv l Q kq = (3)0253mv B ql π= 220(23)9mv E qlππ-=【解析】 【分析】 【详解】(1)粒子从P 到A 的轨迹如图所示:粒子在磁场中做匀速圆周运动,设半径为r 1 由几何关系得112cos 25r l l α== 由洛伦兹力提供向心力可得2011v qv B m r =解得:0 152mv Bql=(2)粒子从P到A的轨迹如图所示:粒子绕负点电荷Q做匀速圆周运动,设半径为r2由几何关系得252cos8lr lα==由库仑力提供向心力得2222vQqk mr r=解得:258mv lQkq=(3)粒子从P到A的轨迹如图所示:粒子在磁场中做匀速圆周运动,在电场中做类平抛运动粒子在电场中的运动时间00sin35l ltv vα==根据题意得,粒子在磁场中运动时间也为t,则2Tt=又22mTqBπ=解得0253mvBqlπ=设粒子在磁场中做圆周运动的半径为r,则0v t rπ=解得:35l r π=粒子在电场中沿虚线方向做匀变速直线运动,21cos 22qE l r t mα-=⋅ 解得:220(23)9mv E qlππ-=2.欧洲大型强子对撞机是现在世界上最大、能量最高的粒子加速器,是一种将质子加速对撞的高能物理设备,其原理可简化如下:两束横截面积极小,长度为l -0质子束以初速度v 0同时从左、右两侧入口射入加速电场,出来后经过相同的一段距离射入垂直纸面的圆形匀强磁场区域并被偏转,最后两质子束发生相碰。

高考物理一轮复习第九章带电粒子在直线边界磁场中的运动备考精炼

高考物理一轮复习第九章带电粒子在直线边界磁场中的运动备考精炼

68 带电粒子在直线边界磁场中的运动[方法点拨] (1)一般步骤:画轨迹,定圆心,求半径或圆心角;(2)注意“运动语言”与“几何语言”间的翻译,如:速度对应圆周半径;时间对应圆心角或弧长或弦长等;(3)掌握一些圆的几何知识,如:偏转角等于圆心角;同一直线边界,出射角等于入射角等.1.(多选)A、B两个离子同时从匀强磁场的直边界上的P、Q点分别以60°和30°(与边界的夹角)射入磁场,又同时分别从Q、P点穿出,如图1所示.设边界上方的磁场范围足够大,下列说法中正确的是( )图1A.A为正离子,B为负离子B.A、B两离子运动半径之比为1∶ 3C.A、B两离子速率之比为1∶ 3D.A、B两离子的比荷之比为2∶12.(多选)如图2所示,在一单边有界磁场的边界上有一粒子源O,沿垂直磁场方向,以相同速率向磁场中发出了两种粒子,a为质子(11H),b为α粒子(42He),b的速度方向垂直于磁场边界,a的速度方向与b 的速度方向之间的夹角为θ=30°,两种粒子最后都打到了位于磁场边界位置的光屏OP上,则( )图2A.a、b两粒子运动周期之比为2∶3B.a、b两粒子在磁场中运动时间之比为2∶3C.a、b两粒子在磁场中运动的轨迹半径之比为1∶2D.a、b两粒子打到光屏上的位置到O点的距离之比为1∶23.(2020·陕西商洛质检)如图3所示,在直角坐标系xOy中,x轴上方有匀强磁场,磁感应强度的大小为B,磁场方向垂直于纸面向外.许多质量为m、电荷量为+q的粒子,以相同的速率v沿纸面,由x轴负方向与y轴正方向之间各个方向从原点O射入磁场区域.不计重力及粒子间的相互作用.下列图中阴影部分表示带电粒子在磁场中可能经过的区域,其中R=mvqB,正确的图是( )图34.(多选)(2020·江西省重点中学盟校第一次联考)如图4所示,在直角坐标系xOy 平面的第一象限内,存在着垂直纸面向里的匀强磁场,磁感应强度为B ,有一束质量为m 、电荷量为q 的带正电粒子(不计重力)从x 轴上坐标为(a,0)的P 点,以α=30°入射,其速度大小任意,则( )图4A .粒子到达x 轴上的范围是0~aB .运动中与y 轴相切的粒子1和垂直到达y 轴的粒子2在y 轴上的坐标之比y 1∶y 2=1∶(3+23)C .所有粒子从入射到射出时间范围是2πm 3qB <t≤5πm3qBD .所有粒子从入射到射出时间范围是πm qB <t≤5πm3qB5.(多选)(2020·广东深圳第一次调研)如图5所示,竖直平行线MN 、PQ 间距离为a ,其间存在垂直纸面向里的匀强磁场(含边界PQ),磁感应强度为B ,MN 上O 处的粒子源能沿不同方向释放比荷为qm 的带负电粒子,速度大小相等、方向均垂直磁场.粒子间的相互作用及重力不计.设粒子速度方向与射线OM 夹角为θ,当粒子沿θ=60°射入时,恰好垂直PQ 射出.则( )图5A .从PQ 边界射出的粒子在磁场中运动的最短时间为πm3qBB .沿θ=120°射入的粒子,在磁场中运动的时间最长C .粒子的速率为aqBmD .PQ 边界上有粒子射出的长度为23a6.(2020·陕西黄陵中学模拟)如图6所示,在边长ab =1.5L 、bc =3L 的矩形区域内存在着垂直纸面向里、磁感应强度为B 的匀强磁场,在ad 边中点O 处有一粒子源,可以垂直磁场向区域内各个方向发射速度大小相等的同种带电粒子.若沿Od 方向射入的粒子从磁场边界cd 离开磁场,该粒子在磁场中运动的时间为t 0,圆周运动半径为L ,不计粒子的重力和粒子间的相互作用.下列说法正确的是( )图6A .粒子带负电B .粒子在磁场中做匀速圆周运动的周期为4t 0C .粒子的比荷为πBt 0D .粒子在磁场中运动的最长时间为2t 07.(2020·四川成都模拟)如图7所示,边界OA 与OC 之间分布有垂直纸面向里的匀强磁场,边界OA 上有一粒子源S.某一时刻,从S 平行于纸面向各个方向以某一速率发射出大量比荷为qm 的同种带正电粒子,经过一段时间有大量粒子从边界OC 射出磁场.已知磁场的磁感应强度大小为B ,∠AOC=60°,O 、S 两点间的距离为L ,从OC 边界射出的粒子在磁场中运动的最短时间t =2πm3qB,忽略重力的影响和粒子间的相互作用,则粒子的速率为( )图7 A.qBL 2m B.qBL m C.3qBL 2m D.3qBL m8.(多选)(2020·辽宁本溪联合模拟)如图8所示,L 1和L 2为平行线,L 1上方和L 2下方都是垂直纸面向里的磁感应强度相同的匀强磁场,A 、B 两点都在L 2上,带电粒子从A 点以初速度v 与L 2成30°角斜向上射出,经过偏转后正好过B 点,经过B 点时速度方向也斜向上,不计重力,下列说法中正确的是( )图8A .带电粒子一定带正电B .带电粒子经过B 点时的速度一定跟在A 点的速度相同C .若带电粒子在A 点时的初速度变大(方向不变),该粒子将不能经过B 点D .若只将带电粒子在A 点的初速度方向改为与L 2成60°角斜向上,它一定不经过B 点9.(2020·福建福州3月质检)如图9所示,真空室内存在匀强磁场,磁场方向垂直于纸面向里,磁感应强度的大小B =0.60 T ,磁场内有一块足够大的平面感光板ab ,板面与磁场方向平行,板上某点S′的正下方有一个点状的α放射源S ,SS′的距离为l =16 cm ,放射源S 向各个方向发射α粒子,速度大小都是v =3.0×106 m/s ,已知α粒子的比荷q m=5.0×107C/kg.现只考虑在图示平面中运动的α粒子.求:图9(1)α粒子运动的轨道半径r ;(2)通过作图,标出ab 上被打中的区域,并求出其长度P 1P 2的大小;(3)在磁场中运动时间最短的α粒子射出粒子源S 的速度方向与SS′的夹角.答案精析1.BD [A 向右偏转,根据左手定则知,A 为负离子,B 向左偏转,根据左手定则知,B 为正离子,A 项错误;离子在磁场中做圆周运动,设PQ 的距离为l ,由几何关系可得r =l2sin θ,sin 60°∶sin 30°=3∶1,则A 、B 两离子运动半径之比为1∶3,B 项正确;离子的速率v =r·2θt ,时间相同,半径之比为1∶3,圆心角之比为2∶1,则速率之比为2∶3,C 项错误;根据r =mv qB 知,q m =vBr ,因为速度大小之比为2∶3,半径之比为1∶3,则比荷之比为2∶1,D 项正确.]2.BC [由qvB =mv 2r 和v =2πr T 知,带电粒子在匀强磁场中做匀速圆周运动的周期T =2πmqB ,则a 、b 两粒子运动周期之比T a ∶T b =m a q a ∶m bq b=1∶2,选项A 错误;a 粒子在匀强磁场中运动轨迹对应的圆心角为240°,运动时间为2T a 3,b 粒子在匀强磁场中运动轨迹对应的圆心角为180°,运动时间为T b2,a 、b 两粒子在匀强磁场中运动的时间之比为t a ∶t b =2T a 3∶T b 2=2∶3,选项B 正确;由qvB =m v 2r ,解得r =mvqB ,由此可知a 、b 两粒子在匀强磁场中运动的轨迹半径之比为r a ∶r b =m a q a ∶m bq b =1∶2,选项C 正确;a 粒子打到光屏上的位置到O 点的距离为2r a cos 30°=3r a ,b 粒子打到光屏上的位置到O 点的距离为2r b ,a 、b 两粒子打到光屏上的位置到O 点的距离之比为3r a ∶2r b =3∶4,选项D 错误.] 3.D 4.BC 5.BD6.D [由题设条件作出以O 1为圆心的轨迹圆弧,如图所示,由左手定则可知该粒子带正电,选项A 错误;由图中几何关系可得sin θ=32L L =32,解得θ=π3,可得T =6t 0,选项B 错误;根据洛伦兹力公式和牛顿第二定律可得T =2πm qB ,解得m q =3t 0B π,选项C 错误;根据周期公式,粒子在磁场中运动时间t =mαqB,在同一圆中,半径一定时,弦越长,其对应的圆心角α越大,则粒子在磁场中运动时间最长时的轨迹是以O 2为圆心的圆弧,如图所示,由图中几何关系可知α=2π3,解得t =2t 0,选项D 正确.]7.A [由于粒子速率一定,带电粒子在磁场中运动时间最短时,轨迹所对应弦长最短,即弦长d =Lsin 60°=32L ,由最短时间t =2πm 3qB 知粒子运动轨迹所对应圆心角为120°,由几何关系知Rsin 60°=12d ,由洛伦兹力提供向心力,得qvB =m v 2R ,解得v =qBL2m,选项A 正确.]8.BD [画出带电粒子运动的可能轨迹,B 点的位置如下图,分别是正负电荷的轨迹,正负电荷都可能,A 错误.经过B位置时粒子的速度方向也斜向上,速度跟在A点时的速度相同,故B正确;根据轨迹,粒子经过边界L1时入射点与出射点间的距离与经过边界L2时入射点与出射点间的距离相同,与速度无关,所以当初速度大小稍微增大一点,但保持方向不变,它仍能经过B点,故C错误;如图,设L1与L2之间的距离为d,则A到B的距离为x=2dtan θ,所以,若将带电粒子在A点的初速度方向改为与L2成60°角斜向上,它就只经过一个周期后一定不经过B点,故D正确.]9.(1)10 cm (2)见解析(3)53°解析(1)α粒子做匀速圆周运动,设运动的轨道半径为r由牛顿第二定律得qvB=mv2r解得r=mvqB=10 cm(2)由于α粒子轨道半径确定,粒子源与ab板间距离确定,由图甲可得,α粒子只能打在P1、P2两点之间S′P1=(2r)2-l2=202-162 cm=12 cmS′P2=r2-(l-r)2=102-(16-10)2 cm=8 cm因此P1P2=S′P1+S′P2=20 cm(3)当α粒子打到放射源正上方位置S′时,运动时间最短.由图乙可知sin θ=l2r=0.8得θ=53°因此α粒子与SS′方向成θ=53°射出粒子源时,粒子在磁场中运动的时间最短.2019-2020学年高考物理模拟试卷一、单项选择题:本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的1.如图所示,真空中等边三角形OMN 的边长为L=2.0m ,在M 、N 两点分别固定电荷量均为62.010C q -=+⨯的点电荷,已知静电力常量9229.010N m /C k =⨯⋅,则两点电荷间的库仑力的大小和O点的电场强度的大小分别为( )A .339.010N,7.810N /C -⨯⨯B .339.010N,9.010N /C -⨯⨯ C .231.810N,7.810N /C -⨯⨯D .231.810N,9.010N /C -⨯⨯2.一物体沿水平面做匀减速直线运动,其运动的xt t-图象如图所示。

2022版高考物理专题67带电粒子在直线边界磁场中的运动练习含解析

2022版高考物理专题67带电粒子在直线边界磁场中的运动练习含解析

高考物理专题练习:专题67 带电粒子在直线边界磁场中的运动1.一般步骤:画轨迹,定圆心,求半径或圆心角.2.在直线边界,粒子进出磁场具有对称性,同一直线边界,出射角等于入射角.3.平行边界存在临界条件:与边界相切是过不过边界的临界条件.1.(多选)(2020·山东潍坊市检测)如图1所示,一束电子以大小不同的速率沿图示方向垂直飞入横截面是一正方形的匀强磁场区域,下列判断正确的是( )图1A .电子在磁场中运动时间越长,其轨迹线越长B .电子在磁场中运动时间越长,其轨迹线所对应的圆心角越大C .在磁场中运动时间相同的电子,其轨迹线不一定重合D .电子的速率不同,它们在磁场中运动时间一定不相同 答案 BC解析 T =2πm qB ,不变,由t =θ2πT 知,电子在磁场中运动时间与轨迹对应的圆心角成正比,所以电子在磁场中运动的时间越长,其轨迹线所对应的圆心角θ越大,电子飞入匀强磁场中做匀速圆周运动,由半径公式r =mvqB知,轨迹半径与速率成正比,则电子的速率越大,在磁场中的运动轨迹半径越大,结合运动轨迹图象可知,电子运动时间越长,轨迹线不一定越长,故A 错误,B 正确.由周期公式T =2πmqB知,周期与电子的速率无关,所以在磁场中的运动周期相同,若它们在磁场中运动时间相同,但轨迹不一定重合,比如:轨迹4与5,它们的运动时间相同,但它们的轨迹对应的半径不同,即它们的速率不同,故C 正确,D 错误.2.(2020·湖北荆门市1月调考)如图2所示,在x 轴上方存在垂直于纸面向里的匀强磁场,磁感应强度为B ,在xOy 平面内,从原点O 处沿与x 轴正方向成θ角(0<θ<π)以速率v发射一个带正电的粒子(重力不计).则下列说法正确的是( )图2A .若θ一定,v 越大,则粒子在磁场中运动的时间越短B .若θ一定,v 越大,则粒子在磁场中运动的角速度越大C .若v 一定,θ越大,则粒子在磁场中运动的时间越短D .若v 一定,θ越大,则粒子在离开磁场的位置距O 点越远 答案 C解析 粒子运动周期T =2πm Bq ,当θ一定时,粒子在磁场中运动时间:t =2π-2θ2πT =π-θπT ,ω=2πT ,由于t 、ω均与v 无关,故A 、B 错误,C 正确;当v 一定时,由r =mvBq知,r一定;当θ从0变至π2的过程中,θ越大,粒子离开磁场的位置距O 点越远;当θ大于π2时,θ越大,粒子离开磁场的位置距O 点越近,故D 错误.3.(多选)A 、B 两个离子同时从匀强磁场的直边界上的P 、Q 点分别以60°和30°(与边界的夹角)射入磁场,又同时分别从Q 、P 点穿出,如图3所示.设边界上方的磁场范围足够大,下列说法中正确的是( )图3A .A 为正离子,B 为负离子B .A 、B 两离子运动半径之比为1∶ 3C .A 、B 两离子速率之比为1∶ 3D .A 、B 两离子的比荷之比为2∶1 答案 BD解析 A 向右偏转,根据左手定则知,A 为负离子,B 向左偏转,根据左手定则知,B 为正离子,A 项错误;离子在磁场中做圆周运动,设PQ 的距离为l ,由几何关系可得r =l2sin θ,sin 60°∶sin 30°=3∶1,则A 、B 两离子运动半径之比为1∶3,B 项正确;离子的速率v =r ·2θt,时间相同,半径之比为1∶3,圆心角之比为2∶1,则速率之比为2∶3,C 项错误;根据r =mv qB 知,q m =vBr,因为速度大小之比为2∶3,半径之比为1∶3,则比荷之比为2∶1,D 项正确.4.(2020·河北九校联考)如图4所示,直线OM 上方存在着垂直纸面方向的匀强磁场(未画出),一电子从O 点垂直OM 射入磁场,经过时间t 0从O 点右侧某位置射出磁场.现使电子从O 点向左上方射入磁场,速度方向与OM 成150°角,则( )图4A .磁场方向垂直纸面向里,电子在磁场中经历的时间为53t 0B .磁场方向垂直纸面向外,电子在磁场中经历的时间为53t 0C .磁场方向垂直纸面向里,电子在磁场中经历的时间为13t 0D .磁场方向垂直纸面向外,电子在磁场中经历的时间为13t 0答案 A解析 电子垂直OM 进入磁场后,经半个周期从O 点右侧离开磁场,由左手定则可知,磁场方向垂直纸面向里,由周期公式可知,t 0=T 2=πmqB.当电子向左上方垂直射入磁场时,由几何关系可知电子在磁场中运动的轨迹圆弧所对的圆心角为θ=53π,故其在磁场中的运动时间t=θ2πT =5πm 3qB =53t 0,A 正确,B 、C 、D 错误. 5.(2020·贵州贵阳市四校联考)在如图5所示的xOy 平面的第一象限内,存在着垂直纸面向里、磁感应强度分别为B 1、B 2的两个匀强磁场(图中未画出).Oa 是两磁场的边界,且与x 轴的夹角为45°.一不计重力、带正电的粒子从坐标原点O 沿x 轴正向射入磁场.之后粒子在磁场中的运动轨迹恰与y 轴相切但未离开磁场.则两磁场磁感应强度的比值B 1B 2为( )图5A.14 B .2 C.12 D .4 答案 C解析 设带电粒子在B 1中运动的半径为R 1,在B 2中运动的半径为R 2,根据条件作出粒子的运动轨迹如图所示由图中几何关系可知R 1=2R 2,根据qvB =m v 2R 可得B 1B 2=R 2R 1=12,故C 正确,A 、B 、D 错误.6.(2020·贵州贵阳市模拟)如图6所示,aefc 和befd 是垂直于纸面向里的匀强磁场Ⅰ、Ⅱ的边界,磁场Ⅰ、Ⅱ的磁感应强度分别为B 1、B 2,且B 2=2B 1,一质量为m 、电荷量为q 的带电粒子垂直边界ae 从P 点射入磁场Ⅰ,后经f 点进入磁场Ⅱ,并最终从fc 边界射出磁场区域.不计粒子重力,该带电粒子在磁场中运动的总时间为( )图6A.2πm qB 1 B.3πm 2qB 1 C.πm qB 1 D.3πm4qB 1答案 B解析 粒子在磁场中运动只受洛伦兹力作用,故粒子做圆周运动,洛伦兹力提供向心力,故有qvB =m v 2R ,则有R =mvqB.粒子垂直边界ae 从P 点射入磁场Ⅰ,后经f 点进入磁场Ⅱ,故根据几何关系可得:粒子在磁场Ⅰ中做圆周运动的半径为磁场宽度d ;根据轨道半径表达式,由两磁场区域磁感应强度大小关系可得:粒子在磁场Ⅱ中做圆周运动的半径为磁场宽度d2,那么,根据几何关系可得:粒子从P 到f 转过的中心角为90°,粒子在f 点沿fd 方向进入磁场Ⅱ;然后粒子在磁场Ⅱ中转过180°,在e 点沿ea 方向进入磁场Ⅰ;最后,粒子在磁场Ⅰ中转过90°后从fc 边界射出磁场区域;故粒子在两个磁场区域分别转过180°,根据周期T =2πr v =2πm qB 可得:该带电粒子在磁场中运动的总时间为t =12T 1+12T 2=3πm2qB 1.7.(2020·陕西宝鸡中学第三次模拟)如图7所示,等腰直角三角形OPQ ,直角边OP 、OQ 长度均为L ,直角三角形平面内(包括边界)有一垂直平面向外的匀强磁场,磁感应强度大小为B ,在PQ 边下方放置一带电粒子发射装置,它由P 向Q 缓慢移动的同时沿垂直PQ 边发射出速率都是v 的相同正粒子,已知带电粒子的比荷为q m =2vBL,粒子的重力、粒子之间的相互作用力不计.则粒子在磁场中运动的最长时间为( )图7A.2πL3v B.πL vC.2πLvD.πL 2v答案 D解析 根据qvB =mv 2R 代入数据,可知带电粒子在磁场中运动的轨道半径R =L2,根据左手定则可知,粒子恰好与PO 边相切时运动时间最长,如图所示.根据对称性可知,运动轨迹也恰好与OQ 相切,恰好运动了半个圆周,因此运动的最长时间为t =π×L2v =πL2v,D 正确,A 、B 、C 错误.8.(多选)(2020·湘赣十四校联考)如图8所示,在矩形区域ABCD 内有一垂直纸面向里的匀强磁场,AB =5 3 cm ,AD =10 cm ,磁感应强度B =0.2 T .在AD 的中点P 有一个发射正离子的装置,能够连续不断地向纸面内的各个方向均匀地发射出速率为v =1.0×105m/s 的正离子,离子的质量m =2.0×10-12kg ,电荷量q =1.0×10-5C ,离子的重力不计,不考虑离子之间的相互作用,则( )图8A .从边界BC 边飞出的离子中,BC 中点飞出的离子在磁场中运动的时间最短B .边界AP 段无离子飞出C .从CD 、BC 边飞出的离子数之比为1∶2D .若离子可从B 、C 两点飞出,则从B 点和C 点飞出的离子在磁场中运动的时间相等 答案 ACD解析 由于离子的速率一定,所以离子运动的半径确定,在离子转过的圆心角小于π的情况下,弦长越短,圆心角越小,时间越短,弦长相等,时间相等,所以从BC 中点飞出的离子对应的弦长最短,所用时间最短,离子从B 、C 两点飞出对应的弦长相等,所以运动时间相等,故A 、D 正确;由洛伦兹力方向可知,离子逆时针方向旋转,发射方向与PA 方向夹角较小的离子会从AP 段飞出,故B 错误;由公式R =mvqB得:R =0.1 m ,通过图可知,α∶β=1∶2,所以从CD 、BC 边飞出的离子数之比为1∶2,故C 正确.9.(2020·山东泰安市一模)如图9所示,在屏MN 上方有磁感应强度为B 的匀强磁场,磁场方向垂直于纸面向里,P 为屏上的一个小孔,PC 与MN 垂直.一群质量为m 、带电荷量为-q 的粒子(不计重力),以相同的速率v ,从P 处沿垂直于磁场的方向射入磁场区域,粒子入射方向在与磁场B 垂直的平面内,且散开在与PC 夹角为θ的范围内,则在屏MN 上被粒子打中的区域的长度为( )图9A.2mv1-cos θqBB.2mv 1-sin θqBC.2mv cos θqBD.2mv sin θqB答案 A解析 粒子做匀速圆周运动,洛伦兹力提供向心力,由牛顿第二定律得:qvB =m v 2r,解得粒子的轨迹半径r =mv qB.粒子沿着右侧边界射入,轨迹如图甲,此时出射点最近,和边界交点与P 间距为2r cos θ;粒子沿着左侧边界射入,轨迹如图丙,此时出射点最近,和边界交点与P 间距为2r cos θ;粒子垂直边界MN 射入,轨迹如图乙,此时出射点最远,和边界交点与P 间距为2r ;故屏MN 上被粒子打中的区域的长度为2r -2r cos θ=2r (1-cos θ)=2mv1-cos θqB.10.(2020·四川泸州市高三下学期三诊)如图10所示,一足够长的平行边界PQ 的有界匀强磁场,磁感应强度大小为B ,方向垂直纸面向里,磁场宽度为d .一质量为m ,电荷量为q 的带负电粒子,以一定的速度与边界P 成60°角垂直磁场方向射入匀强磁场,从另一边界Q 与边界线成30°角射出磁场,不计粒子重力.求:图10(1)粒子做匀速圆周运动的速度大小; (2)粒子在磁场中运动的时间. 答案 (1)3-1qBdm(2)πm2qB解析 (1)由几何关系得R sin 30°+R sin 60°=d 解得R =(3-1)d粒子在磁场中做匀速圆周运动,洛伦兹力提供向心力,则qvB =m v 2R解得v =3-1qBdm.(2)带电粒子在磁场中运动qvB =m v 2R ,T =2πRv联立以上两式得T =2πmqB由几何关系得,带电粒子在磁场中转过的角度为90°,则t =14×2πm qB =πm2qB.11.(2020·江西赣州市期末)如图11所示,在矩形区域abcO 内存在一个垂直纸面向外,磁感应强度大小为B 的匀强磁场,Oa 边长为3L ,ab 边长为L .现从O 点沿着Ob 方向垂直磁场射入各种速率的带正电粒子,已知粒子的质量为m 、带电荷量为q (粒子所受重力及粒子间相互作用忽略不计),求:图11(1)垂直ab 边射出磁场的粒子的速率v ; (2)粒子在磁场中运动的最长时间t m . 答案 (1)23qBL m (2)πm3qB解析 (1)粒子垂直ab 边射出磁场时的运动轨迹如图,设粒子做匀速圆周运动的轨迹半径为R ,由几何关系可知: tan θ=L3L=33, 则θ=π6,sin θ=Oa OO 1=3LR ,故R =23L .粒子在磁场中做匀速圆周运动,由洛伦兹力提供向心力有qvB =m v 2R解得v =23qBLm(2)由做匀速圆周运动可知T =2πR v =2πm Bq因此粒子在磁场中做匀速圆周运动的周期不变,和速度无关,由几何关系可知最大圆心角α=2θ=π3可知粒子在磁场中运动的最长时间t m =α2πT =πm3Bq.12.(2020·湖南赢在高考模拟)如图12所示,直角三角形abc 区域存在方向垂直纸面向外的匀强磁场,磁感应强度大小为B ,其中θ=37°,一质量为m 、带电荷量为q 的正粒子(不计重力)以不同速度垂直射入ac 边界匀强磁场区域内,入射点O 到a 点的距离为d ,ab 边长为2d .试求:图12(1)要使粒子能从bc 边射出磁场,求v 的取值范围. (2)从bc 边射出的粒子在磁场中运动时间t 的范围. 答案 (1)3qBd 10m <v ≤3qBd 2m (2)53πm 180qB ≤t <πmqB解析 由几何关系可知:ac =ab cos 37°=1.6d ,bc =ab sin 37°=1.2d要使粒子从bc 边射出磁场,其最小半径:R ≥Oc2=0.3d又:qvB =m v 2R得:v >qBR m =3qBd 10m. 运动时间:t 1=12T =12×2πm qB =πmqB;从bc 边射出磁场,轨道半径最大时,其轨道与ab 相切(如图),由几何知识可得:粒子与ab 相切的点应在b 点,根据几何关系,其最大的半径R 2:sin 37°=R 2R 2+d ,得:R 2=3d2又:qvB =m v 2R得:v ≤qBR 2m =3qBd2m对应的运动时间:t 1=53360T =53360×2πm qB =53πm 180qBv 的取值范围:3qBd 10m <v ≤3qBd2m运动时间:53πm 180qB ≤t <πmqB .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考物理专项练习68 带电粒子在直线边界磁场中的运动1. (多选)A 、B 两个离子同时从匀强磁场的直边界上的P 、Q 点分别以60°和30°(与边界的夹角)射入磁场,又同时分别从Q 、P 点穿出,如图所示.设边界上方的磁场范围足够大,下列说法中正确的是( )A .A 为正离子,B 为负离子 B .A 、B 两离子运动半径之比为1∶3C .A 、B 两离子速率之比为1∶3D .A 、B 两离子的比荷之比为2∶12. (多选)如图所示,在一单边有界磁场的边界上有一粒子源O ,沿垂直磁场方向,以相同速率向磁场中发出了两种粒子,a 为质子(11H),b 为α粒子(42He),b 的速度方向垂直于磁场边界,a 的速度方向与b 的速度方向之间的夹角为θ=30°,两种粒子最后都打到了位于磁场边界位置的光屏OP 上,则( )A .a 、b 两粒子运动周期之比为2∶3B .a 、b 两粒子在磁场中运动时间之比为2∶3C .a 、b 两粒子在磁场中运动的轨迹半径之比为1∶2D .a 、b 两粒子打到光屏上的位置到O 点的距离之比为1∶23. 如图所示,在直角坐标系xOy 中,x 轴上方有匀强磁场,磁感应强度的大小为B ,磁场方向垂直于纸面向外.许多质量为m 、电荷量为+q 的粒子,以相同的速率v 沿纸面,由x 轴负方向与y 轴正方向之间各个方向从原点O 射入磁场区域.不计重力及粒子间的相互作用.下列图中阴影部分表示带电粒子在磁场中可能经过的区域,其中R =mvqB,正确的图是( )4. (多选)如图所示,在直角坐标系xOy 平面的第一象限内,存在着垂直纸面向里的匀强磁场,磁感应强度为B ,有一束质量为m 、电荷量为q 的带正电粒子(不计重力)从x 轴上坐标为(a,0)的P 点,以α=30°入射,其速度大小任意,则( )A .粒子到达x 轴上的范围是0~aB .运动中与y 轴相切的粒子1和垂直到达y 轴的粒子2在y 轴上的坐标之比y 1∶y 2=1∶(3+23)C .所有粒子从入射到射出时间范围是2πm 3qB <t ≤5πm3qBD .所有粒子从入射到射出时间范围是πm qB <t ≤5πm3qB5. (多选)如图所示,竖直平行线MN 、PQ 间距离为a ,其间存在垂直纸面向里的匀强磁场(含边界PQ ),磁感应强度为B ,MN 上O 处的粒子源能沿不同方向释放比荷为qm 的带负电粒子,速度大小相等、方向均垂直磁场.粒子间的相互作用及重力不计.设粒子速度方向与射线OM 夹角为θ,当粒子沿θ=60°射入时,恰好垂直PQ 射出.则( )A .从PQ 边界射出的粒子在磁场中运动的最短时间为πm3qBB .沿θ=120°射入的粒子,在磁场中运动的时间最长C .粒子的速率为aqBmD .PQ 边界上有粒子射出的长度为23a6. 如图所示,在边长ab =1.5L 、bc =3L 的矩形区域内存在着垂直纸面向里、磁感应强度为B 的匀强磁场,在ad 边中点O 处有一粒子源,可以垂直磁场向区域内各个方向发射速度大小相等的同种带电粒子.若沿Od 方向射入的粒子从磁场边界cd 离开磁场,该粒子在磁场中运动的时间为t 0,圆周运动半径为L ,不计粒子的重力和粒子间的相互作用.下列说法正确的是( )A .粒子带负电B .粒子在磁场中做匀速圆周运动的周期为4t 0C .粒子的比荷为πBt 0D .粒子在磁场中运动的最长时间为2t 0 7. 如图所示,边界OA 与OC 之间分布有垂直纸面向里的匀强磁场,边界OA 上有一粒子源S .某一时刻,从S 平行于纸面向各个方向以某一速率发射出大量比荷为qm 的同种带正电粒子,经过一段时间有大量粒子从边界OC 射出磁场.已知磁场的磁感应强度大小为B ,∠AOC =60°,O 、S 两点间的距离为L ,从OC 边界射出的粒子在磁场中运动的最短时间t =2πm3qB ,忽略重力的影响和粒子间的相互作用,则粒子的速率为( )A.qBL 2mB.qBL mC.3qBL2mD.3qBLm8. (多选)如图所示,L 1和L 2为平行线,L 1上方和L 2下方都是垂直纸面向里的磁感应强度相同的匀强磁场,A 、B 两点都在L 2上,带电粒子从A 点以初速度v 与L 2成30°角斜向上射出,经过偏转后正好过B 点,经过B 点时速度方向也斜向上,不计重力,下列说法中正确的是( )A .带电粒子一定带正电B .带电粒子经过B 点时的速度一定跟在A 点的速度相同C .若带电粒子在A 点时的初速度变大(方向不变),该粒子将不能经过B 点D .若只将带电粒子在A 点的初速度方向改为与L 2成60°角斜向上,它一定不经过B 点9. 如图所示,真空室内存在匀强磁场,磁场方向垂直于纸面向里,磁感应强度的大小B =0.60 T ,磁场内有一块足够大的平面感光板ab ,板面与磁场方向平行,板上某点S ′的正下方有一个点状的α放射源S ,SS ′的距离为l =16 cm ,放射源S 向各个方向发射α粒子,速度大小都是v =3.0×106 m/s ,已知α粒子的比荷qm =5.0×107 C/kg.现只考虑在图示平面中运动的α粒子.求:(1) α粒子运动的轨道半径r ;(2) 通过作图,标出ab 上被打中的区域,并求出其长度P 1P 2的大小;(3) 在磁场中运动时间最短的α粒子射出粒子源S 的速度方向与SS ′的夹角.参考答案1. BD [A 向右偏转,根据左手定则知,A 为负离子,B 向左偏转,根据左手定则知,B 为正离子,A 项错误;离子在磁场中做圆周运动,设PQ 的距离为l ,由几何关系可得r =l2sin θ,sin 60°∶sin 30°=3∶1,则A 、B 两离子运动半径之比为1∶3,B 项正确;离子的速率v =r ·2θt ,时间相同,半径之比为1∶3,圆心角之比为2∶1,则速率之比为2∶3,C 项错误;根据r =mv qB 知,q m =vBr ,因为速度大小之比为2∶3,半径之比为1∶3,则比荷之比为2∶1,D 项正确.]2. BC [由qvB =mv 2r 和v =2πr T 知,带电粒子在匀强磁场中做匀速圆周运动的周期T =2πmqB,则a 、b 两粒子运动周期之比T a ∶T b =m a q a ∶m bq b =1∶2,选项A 错误;a 粒子在匀强磁场中运动轨迹对应的圆心角为240°,运动时间为2T a 3,b 粒子在匀强磁场中运动轨迹对应的圆心角为180°,运动时间为T b2,a 、b 两粒子在匀强磁场中运动的时间之比为t a ∶t b =2T a 3∶T b 2=2∶3,选项B 正确;由qvB =m v 2r ,解得r =mvqB ,由此可知a 、b 两粒子在匀强磁场中运动的轨迹半径之比为r a ∶r b =m a q a ∶m bq b =1∶2,选项C 正确;a 粒子打到光屏上的位置到O 点的距离为2r a cos 30°=3r a ,b 粒子打到光屏上的位置到O 点的距离为2r b ,a 、b 两粒子打到光屏上的位置到O 点的距离之比为3r a ∶2r b =3∶4,选项D 错误.] 3. D 4. BC 5. BD6.D [由题设条件作出以O 1为圆心的轨迹圆弧,如图所示,由左手定则可知该粒子带正电,选项A 错误;由图中几何关系可得sin θ=32L L =32,解得θ=π3,可得T =6t 0,选项B 错误;根据洛伦兹力公式和牛顿第二定律可得T =2πm qB ,解得m q =3t 0Bπ,选项C 错误;根据周期公式,粒子在磁场中运动时间t=mαqB,在同一圆中,半径一定时,弦越长,其对应的圆心角α越大,则粒子在磁场中运动时间最长时的轨迹是以O 2为圆心的圆弧,如图所示,由图中几何关系可知α=2π3,解得t =2t 0,选项D 正确.]7. A [由于粒子速率一定,带电粒子在磁场中运动时间最短时,轨迹所对应弦长最短,即弦长d =L sin60°=32L ,由最短时间t =2πm 3qB 知粒子运动轨迹所对应圆心角为120°,由几何关系知R sin 60°=12d ,由洛伦兹力提供向心力,得qvB =m v 2R,解得v =qBL2m,选项A 正确.]8. BD [画出带电粒子运动的可能轨迹,B 点的位置如下图,分别是正负电荷的轨迹,正负电荷都可能,A 错误.经过B 位置时粒子的速度方向也斜向上,速度跟在A 点时的速度相同,故B 正确;根据轨迹,粒子经过边界L 1时入射点与出射点间的距离与经过边界L 2时入射点与出射点间的距离相同,与速度无关,所以当初速度大小稍微增大一点,但保持方向不变,它仍能经过B 点,故C 错误;如图,设L 1与L 2之间的距离为d ,则A 到B 的距离为x =2dtan θ,所以,若将带电粒子在A 点的初速度方向改为与L 2成60°角斜向上,它就只经过一个周期后一定不经过B 点,故D 正确.] 9. (1)10 cm (2)见解析 (3)53°解析 (1)α粒子做匀速圆周运动,设运动的轨道半径为r 由牛顿第二定律得qvB =m v 2r 解得r =mvqB =10cm(2)由于α粒子轨道半径确定,粒子源与ab 板间距离确定,由图甲可得,α粒子只能打在P 1、P 2两点之间S ′P 1=(2r )2-l 2=202-162 cm =12 cmS ′P 2=r 2-(l -r )2=102-(16-10)2 cm =8 cm 因此P 1P 2=S ′P 1+S ′P 2=20 cm(3)当α粒子打到放射源正上方位置S ′时,运动时间最短.由图乙可知sin θ=l 2r =0.8得θ=53°因此α粒子与SS ′方向成θ=53°射出粒子源时,粒子在磁场中运动的时间最短.。

相关文档
最新文档