8 羰基化过程
第八章 羰基化过程
进展1—催化剂的均相固相化
为了克服铑膦催化剂制备和回收复杂的缺点,↓消耗量,↓产 品分离步骤等,进行了均相催化剂固载化的研究,即把均相 催化剂固定在有一定表面的固体上,使反应在固定的活性位 上进行,催化剂兼有均相和多相催化的优点。 固 相 化 方 法 化学键合法
通过各种化学键合把络合催化剂负载于高分子载体上 (eg:苯乙烯和二乙烯基苯共聚物 、离子交换树脂 )
HxMy(CO)zLn
中心原子 配体
中心原子
工业上采用的羰基合成催化剂的中心原子主要为:
钴和铑
配位体
CO、PR3(膦)、 P(OR)3 (亚磷酸酯)、 AsR3 (胂)、 SbR3 (锑) R——烷基、芳基、环烷基、杂环基等
反应相
一类是将配位催化剂固载化,使用液体或气体原料进行多 相反应,最终实现产物与催化剂分离的目的。 另一类是催化剂和反应产物处于互不相溶的两种液相之中, 反应后只需进行简单的相分离,便可达到分离催化剂的目 的——两相催化体系。
物理吸附法
吸附于硅胶、氧化铝、活性炭、分子筛等无机载体 上,或将催化剂溶于高沸点溶剂后,再浸于载体上
目前活性金属流失问题成为阻碍固相络合催化剂实际应用的 主要障碍 !
进展2-非铑催化剂
铑是稀贵资源,故利用受到限制。 国外除对铑催化剂的回收利用进一步研究外,对 非铑催化剂的开发也非常重视。其中铂系催化剂 有很好的苗头:我国研究了Pt-Sn-P系催化剂。日
主要包括加氢和产品精制两个过程
2.丙烯低压氢甲酰化合成正丁醛
(1)反应条件
a. 温度
T↑ →r丁醛↑ ,r副↑ ,催化剂失活速度↑
T↓ →催化剂活性低,用量大
100-110℃
b.压力
最新8羰基化过程汇总
8.3 烯烃的氢甲酰化 一.化学原理
(1)主、副反应(丙烯) 主:
副:a.异构醛
b.加氢生成丙烷
平行反应
c.醛加氢生成醇--连串反应
(2)热力学
放热反应,热效应较大 平衡常数大,热力学有利,动力学控制 副反应比主反应热力学有利,选择催化 剂和工艺条件促进主反应
d.催化剂 HRh(Co)x(PPh3)y
x+y=4
PPh3↑ ,正/异丁醛↑ ,r ↓
羰基化反应。
2 低压法甲醇羰化反应合成醋酸基本原理
Monsanto低压法采用铑碘催化剂体系,主要 化学反应如下:
动力学研究表明,与BASF高压法不同,Monsanto低 压法合成醋酸反应对甲醇与一氧化碳为零级,对铑 及碘为一级,反应速率的控制步骤为碘甲烷的氧化 加成。动力学方程式如下:
反应速度常数为3.5×106e-14.7/RTL/mol·s,式中活化 能的单位是kJ/mol。Leabharlann (3)催化剂①羰基钴
T ↑ ,PCO ↑ 催化剂↑ ,PCO ↑
缺点:正异构醛比例低,催化剂热稳定性差
②膦羰基钴
配位基膦(PR3) 特点:
a.稳定性增加,活性降低 b.直链产物选择性增加 C.加氢活性较高 d.副产物少 e.适应性差
③膦羰基铑
选择性好,活性高,异构化性能高 催化剂稳定,可在较低压力下操作
(3)氢酯化(与CO和ROH反应)
(4)不对称合成
生成单一对映体的醛 某些结构的烯烃进行羰基合成反应能生成含有对映 异构体的醛。若使用特殊的催化剂,使生成的两种 对映体含量不完全相等,理想情况下仅生成某种单 一对映体,这样的反应称作不对称催化氢甲酰化反 应。
化学工艺学第八章-4丙烯羰基化合成丁醇、辛醇
化学工艺学第八章-4丙烯羰基化合成丁醇、辛醇第八章羰基化过程8(4 丙烯羰基化合成丁醇、辛醇 8(4(1 烯烃氢甲酰化反应的基本原理8(4(1(1 反应过程烯烃氢甲酰化主反应是生成正构醛,由于原料烯烃和产物醛都具有较高的反应活性,故有连串副反应和平行副反应发生。
平行副反应主要是异构醛的生成和原料烯烃的加氢,这两个反应是衡量催化剂选择性的重要指标。
主要连串副反应是醛加氢生成醇和缩醛的生成。
以丙烯氢甲酰化为例说明。
主反应CH= CHCH+CO+H?CHCHCHCHO (8—39) 232322副反应CH=CHCH+CO+H (CH3)CHCHO (8—40) 2222异丁醛CH2=CHCH+HCHCHCH (8—41) 22323CHCHCHCHO+H?CHCHCHCHOH (8—42) 322232222CHCHCHCHO?CHCHCHCH(OH)CH(CH())CHCH (8—43) 32232223缩二丁醛CHCHCHCHO+(CH)CHCHO ? 32232CHCH(CH)33CH(OH)CH(CHO)CHCH 23缩醛 (8—44)在过量丁醛存在下,在反应条件下,缩丁醛又能进一步与丁醛化合,生成环状缩醛、链状三聚物,缩醛很容易脱水生成另一种副产物烯醛CHCHCH(OH)CH(CHO)CHCH?CHCHCHCH—C(CH)CHO +HO CH32223322252(8—45) 8(4(1(2 催化剂各种过渡金属羰基配位化合物催化剂对氢甲酰反应均有催化作用,工业上经常采用的有羰基钴和羰基铑催化剂,现分别讨论如下。
1.催化剂及特性催化剂名称活性组分缺点HCO(CO) 羰基钴催化剂热稳定性差,容易分解析出钴而失去4活性HCO(CO).[P(n-R)] 膦羰基钴催化33剂可看作是[P(n-R)]取催化剂的热稳定性好,直链正构醛的3代了HCO(CO)中的选择性佳,加氢活性高、醛缩合及醇4CO.(R为烷基、芳基、醛缩合等连串副反应少等优点。
羰基化过程
• 用这种方法改变催化剂的性能称之为催化剂的改 性,引入的新配体也叫作改性剂。改变配位体的研 究构成了羰基合成催化剂研究的重要方面。
化 学 工 程 与 工 艺 教 研 室
化 学 工 艺 学 电 子 教 案
8.2.2 配位体
• 三价膦(PR3)的改性效果最为优越,已被工业采用。 • 羰基钴催化剂的主要问题是在较高的CO压力下才能稳定, 且产物的n/i不高。改性目标首先是克服这两个缺点。与 CO配体相比,三价膦是强的δ电子给予体,弱的π电子接 受体,PR3取代CO与钴配位后,增大了钴原子上的负电荷 密度。钴将增强的负电荷密度再通过适当轨道反馈给未取 代的CO,从而加强了钴对CO的配合能力,使整个分子的 稳定性增加。从而使改性后的催化剂可以在较低的压力下 进行反应,但同时造成剐作用是反应速度下降很多,必须 以提高催化剂浓度等方法加以弥补。三价膦是一个不等性 sp3杂化轨道构型,配位后呈四面体结构,因此比原先直线 形的CO配体产生更强的定向效应。大的方向位阻有利于生 成正构醛,使反应的正异比增加。另外对于羰基钴来说, 三价膦改性剂大大增加催化剂的加氢活性,一方面可以使 生成的醛直接加氢为醇,省去了加氢步骤,另一方面烯烃 加氢成烷烃的副反应也明显增加。
化 学 工 程 与 工 艺 教 研 室
化 学 工 艺 学 电 子 教 案
8.3.1 甲醇羰化反应合成醋酸的基本原理 • BASF高压法与Monsanto低压法甲醇羰化反 应合成醋酸化学原理基本相同,反应过程大 同小异,也都有一个催化剂循环和一个助催 化剂循环。并且都采用第Ⅷ族元素为催化 剂,碘为助催化剂,但因具体金属元素不同. 活性、中间体组成相异,催化效果有差别, 反应动力学、反应速率控制步骤也有所不同。 化
化 学 工 程 与 工 艺 教 研 室
(最新整理)8.羰基合成(新)解析
闪蒸 反应
槽
釜
轻组 分槽
脱水 塔
重组 废酸气 分槽 提塔
2021/7/26
34
2. 甲醇低压羰基化生产醋酸工艺流程
解吸塔
吸收塔
驰放气
CO CH3OH
含CH3I的醋酸溶液
反应器
闪蒸槽
轻组分
轻组分塔
重组分
轻组分
脱水塔
2021/7/26
醋酸 侧线
含重组分的醋酸
(最新整理)8.羰基合成(新)解析
2021/7/26
1
第8章 羰基合成
8.1.概述 8.2.甲醇低压羰基化合成醋酸 8.3.丙烯羰基化合成丁辛醇
2021/7/26
2
第8章 羰基合成
基本要求 1、理解羰基合成的定义、类型;
2、掌握羰基合成反应催化剂结构、类型;
3、了解醋酸和丁辛醇主要生产方法;
4、掌握甲醇低压羰基化反应原理、工艺流程 及其优缺点,丙烯羰基化合成丁辛醇原理、催 化剂、工艺条件。
2021/7/26
24
8.2.1 醋酸生产方法简介
2、乙烯直接氧化法 条件: 钯基催化剂、150℃、操作压力 0.9MPa固定床反应器; 特点:工艺流程简单、操作压力低、投 资省、废水少。
2021/7/26
25
8.2.1 醋酸生产方法简介
3、丁烷或轻油氧化法 原料:正丁烷或轻油、空气 条件:醋酸为溶剂,醋酸钴、醋酸铬或醋酸锰 催化剂,170~200℃、5.0MPa、 特点:收率75%~80%、副产物多,产品分离 比较复杂,甲酸含量高,对设备腐蚀严重。
2021/7/26
20
8.2 甲醇低压羰基化合成醋酸
8.羰基化过程
2 低压法甲醇羰化反应合成醋酸基本原理
Monsanto低压法采用铑碘催化剂体系,主要 化学反应如下:
动力学研究表明,与BASF高压法不同,Monsanto低 压法合成醋酸反应对甲醇与一氧化碳为零级,对铑 及碘为一级,反应速率的控制步骤为碘甲烷的氧化 加成。动力学方程式如下: 反应速度常数为3.5×106e-14.7/RTL/mol· s,式中活化 能的单位是kJ/mol。
二 丙烯氢甲酰化合成丁、辛醇
1.丁、辛醇用途及合成路线 (1)用途 (2)合成路线
①乙烯为原料,乙醛缩合法 ②氢甲酰化法 a. 液相法 催化剂:羰基钴-高压 膦羰基铑-低压
b.在碱存在下缩合为辛烯醛
c.
2.丙烯低压氢甲酰化合成正丁醛 (1)反应条件
a. 温度
T↑ ,r丁醛↑ ,r副↑ ,催化剂失活速度↑ T↓ ,催化剂活性低,用量大
一.甲醇羰化反应合成醋酸的基本原理
1 高压法甲醇羰化反应合成醋酸基本原理
BASF高压法采用钴碘催化循环,过程如下图所示。
要求温度较高,为了在较高温度下稳定[Co(CO)4]-络合物,必须提 高CO分压,为了提高高压羰基化法的经济竟争力,BASF及Shell公 司在钴、碘催化系统中加入Pd、Pt、Ir、Ru以及Cu的盐类或络合物, 实现了在较低温度80~200℃、较低的压力7.1~30.4MPa下进行甲醇 羰基化反应。
烯烃与合成气(CO/H2)或一定配比的一氧化碳及氢 气在过渡金属配合物的催化作用下发生加成反应,生 成比原料烯烃多一个碳原子的醛。这个反应被命名为 羰基合成 (oxo synthesis),也称作Rö elen反应。 过渡金属络合物(主要是羰基化合物)催化剂下,有 机化合物引入羰基。 均相反应,反应条件温和,选择性好。
化工工艺学-第四章-羰基化反应讲解
起点
工业化
廉价烯烃原料, 及增塑剂用 醇的需求量 增加,促使 了羰基合成 的高速发展
高速发展
以丙烯为原料用氢甲酰化法生产(丁)辛醇,主要包括下列三个过程:
①在过渡金属羰基配合物催化剂存在下,丙烯氢甲酰化合成丁醛。
CH3CH=CH2 CO H2 CH3CH2CH2CHO
②丁醛在碱存在下缩合为辛烯醛
羰
基
CH CH+CO+H2O CH2=CHCOOH
在双键或叁键两端的 C原子上分别加上一个 氢和一个羧基,故又 称氢羧基化反应。
合 成
③不饱和烃在醇存在下的羰基化(与CO和醇反应)
反 应
RCH=CH2+CO+ROH RCH2CH2COOR
类 型
CH CH+CO+ROH CH2=CHCOOR
甲醇的羰化反应
聊城大学2013级化工工艺学讲义
•概念:羰基化即羰基合成,指有CO参与的在过渡金属络合物 (主要是羰基化合物)催化剂下,有机化合物分子中引入羰基。 这个反应被命名为羰基合成 (Carbonyl synthesis),也叫Röelen 反应。 •重要意义:工业上羰基化往往是碳一化学工业部门开发下游产 品的一个重要手段。 •两大类:不饱和化合物的羰化反应和甲醇的羰化反应。
CH3OOC-COOCH3+2H2O HOOC-COOH+2CH3OH
CH3OOC-COOCH3+4H2 CH2OH CH2OH+2CH3OH
以过渡金属(M)为中心原子的羰基氢化合物,可以被 某种配体(L)所改性,一般形式为HxMy(CO)zLn
HMCO L HMCO L CO
m
m-1
羰
8.羰基化过程.
2 低压法甲醇羰化反应合成醋酸基本原理
Monsanto低压法采用铑碘催化剂体系,主要 化学反应如下:
动力学研究表明,与BASF高压法不同,Monsanto低 压法合成醋酸反应对甲醇与一氧化碳为零级,对铑 及碘为一级,反应速率的控制步骤为碘甲烷的氧化 加成。动力学方程式如下:
反应速度常数为3.5×106e-14.7/RTL/mol·s,式中活化 能的单位是kJ/mol。
d.催化剂 HRh(Co)x(PPh3)y
x+y=4
PPh3↑ ,正/异丁醛↑ ,r ↓
(2)工艺流程
合成气 净化
丙烯 净化
放空
反
气液
应
分离
器
异丁醛 正丁醛
(3)反应器
不锈钢釜式反应器 搅拌器、冷却装置、气体分布器
(4)低压法特点
优点: 反应条件温和 副反应少,原料消耗少 催化剂易分离回收 污染少 缺点:
1.不饱和化合物的羰化反应
(1)氢甲酰化(与CO和H2反应)
在双键两端的C原子上分别加上一个 氢和一个甲酰基(-HCHO)
①烯烃的氢甲酰化 CH2=CH2+CO+H2→CH3CH2CHO
②烯烃衍生物的氢甲酰化 (不饱和醇、醛、酯、醚,含卤素、含氮化合物)
(2)氢羧基化(与CO和H2O反应)
(3)氢酯化(与CO和ROH反应)
烯烃与合成气(CO/H2)或一定配比的一氧化碳及氢 气在过渡金属配合物的催化作用下发生加成反应,生 成比原料烯烃多一个碳原子的醛。这个反应被命名为 羰基合成 (oxo synthesis),也称作Röelen反应。
过渡金属络合物(主要是羰基化合物)催化剂下,有 机化合物引入羰基。
第八章 羰基化过程(14版)
HCo(CO)4
Co2(CO)8需要一定CO分压保持稳定
◆羰基钴催化剂的主要缺点
是热稳定性差,容易分解析出钴而失去活性, 在高的一氧化碳分压下操作,产品中正/异醛比例 较低。
●膦羰基钴催化剂
以配位基膦(PR3)、亚磷酸酯(P(OR)3) 、胂(AsR3)、
(SbR3)(各配位基中R可以是烷基、芳基、环烷基或
收率为59%。副产3.5%的甲烷和4.5%的其他液体副 产物。乙酸纯度为99.8%
●Monsanto低压法生产工艺流程
反应温度175-200℃,压力3MPa 甲醇+CO+催化剂母液+精制返回轻馏分+含水醋酸
催化剂母液
无水醋酸 脱重塔
脱轻塔
脱水塔 成品醋酸
反应产物+未反应物
醋酸 高级羧酸 废酸塔 重质酸
8.1.2 甲醇的羰化反应
●甲醇羰化合成醋酸(Monsanto法)
CH3OH+CO→CH3COOH
●醋酸甲酯羰化合成醋酐(Tennessce eastman)
CH3OH+CO→CH3COOH CH3COOH+CH3OH →CH3COOCH3 CH3COOCH3+CO → (CH3CO)2O3
●甲醇羰化合成甲酸
异构化活性很高,正/异醛比率只有50/50。
●膦羰基铑催化剂
膦配位基取代部分羰基-HRh(CO)(PPh3)3
异构化反应大大被抑制,正/异醛比率达到15:1
催化剂性能稳定
能在较低CO压力下操作。能反复循环使用。
催化剂母体商品名叫ROPAC,使用时溶于三苯基磷
Rh(C5H7O2)(CO)(PPh3) Rh≥20.9%
●烯烃衍生物的氢甲酰化
第4章 羰基化
氢甲酰基化催化剂的性能比较
Co2(CO)8 140~180 ~ 25~35 ~ 0.1~1.0 ~ 3~4 ~ 80 10 ≈1 ≈9 0.5~1 ~
HCo(CO)3PBu3
HRh(CO)3 100~130 ~ 20~30 ~ 10-3~10-2 ≈1 ≥98 <1 <1 <1 0.3~0.6 ~
HRh(CO)2(PPh3)2
160~200 ~ 5~10 ~ 0.5~1.0 ~ 6~8 ~ - ≈80 ≈15 ≈5 0.1~0.2 ~
80~120 ~ 15~25 ~ 10-3~10-2 10~14 ~ ≈96 - ≈2 ≈2 0.1~0.25 ~
列出了钴、 表4-1列出了钴、铑及其配位体催化性能的比较,第 列出了钴 铑及其配位体催化性能的比较, 1,2列是用羰基钴和丁基膦配位的羰基钴催化的比较, , 列是用羰基钴和丁基膦配位的羰基钴催化的比较 列是用羰基钴和丁基膦配位的羰基钴催化的比较, 看出:配位催化的反应温度稍高,但反应压力大大降低, 看出:配位催化的反应温度稍高,但反应压力大大降低, 这在工业生产上是容易实施的;从产物看, 这在工业生产上是容易实施的;从产物看,后者正构醛 比例高, 比例高,但醛被进一步还原成醇或烯烃加氢成烷烃的量 都大大增多。 都大大增多。 1,3列比较,用羰基钴和羰基铑催化,可以看出铑 , 列比较 用羰基钴和羰基铑催化, 列比较, 的用量远远小于钴,使用铑催化反应温度比钴低, 的用量远远小于钴,使用铑催化反应温度比钴低,但明 显正构醛比例小,而第 列是用配位体改性铑催化 列是用配位体改性铑催化, 显正构醛比例小,而第4列是用配位体改性铑催化,反 应温度和压力都比前者低,而正构醛比例大大提高。 应温度和压力都比前者低,而正构醛比例大大提高。
8 羰基化过程
化学工艺学
过渡金属络合物(主要是羰基化合物)
催化剂下,有机化合物引入羰基的反应
均归入羰基化反应 不饱和化合物的羰化 甲醇的羰化
均相反应,反应条件温和,选择性好。
化学工艺学
8.1.1 不饱和化合物的羰化反应
(1)氢甲酰化(与CO和H2反应)
在双键两端的C原子上分别加上一个氢和 一个甲酰基(-HCHO) ①烯烃的氢甲酰化
羰基合成催化典型结构
中心原子:过渡金属(M) 配位体(L) 一般形式:HxMy(CO)zLn
化学工艺学
中心原子
工业 凡能形成羰基氢化物的过渡金属都有可能 Only!!! 具有羰基化催化活性
第VIII族元素钴、铑为中心原子的催化剂 活性较高 铑的自然资源稀少,价格是钴的1000倍以 上,但它是目前应用最广的羰基合成催化 剂体系。
化学工艺学
②烯烃衍生物的氢甲酰化 (不饱和醇、醛、酯、醚,含卤素、含氮化合物)
(2)氢羧基化(与CO和H2O反应)
化学工艺学
(3)氢酯化(与CO和ROH反应)
(4)不对称合成
生成单一对映体Biblioteka 醛 医药、香料、农药、食品添加剂等
化学工艺学
8.1.2 甲醇的羰化反应
甲醇羰基化合成醋酸(BASF法、孟山都法):
又称氢甲酰化反应(hydro-formylation)或羰
基合成(oxo-synthesis)
化学工艺学
生产脂肪醇
习惯上,烯烃与合成气反应生成醛,再加氢生产醇的过 程也称作羰基合成
反应式
RCH=CH2十CO+H2 →RCH2CH2CHO+RCH(CHO)CH3 烯烃羰基化 RCH2CH2CHO+H2→ RCH2CH2CH2OH 醛加氢
化工工艺学第八章羰基化过程
(催化剂:羰基钴-高压; 膦羰基铑-低压) 2CH 3CH 2CH 2CHO -H2O
OH-
CH 3CH 2CH 2CH=C-CHO
CH3CH2CH2CH=C-CHO C2H5
Ni
+H2
C 2H 5
辛醇(2-乙基己醇)
该合成方法的关键在于正丁醛的合成
8.4.2
烯烃氢甲酰化反应催化剂p276-277
(7) 副产物很少,三废排放物也少,生产环境清洁。
(8) 操作安全可靠。
◆ Monsanto甲醇低压羰基合成醋酸的缺点
(1)催化剂铑资源有限 (2)设备用耐腐蚀材料昂贵。
第四节
丙烯羰基化合成丁、辛醇
●丁/辛醇性质、用途 ◆丁醇
无色透明的油状液体,有微臭,可与水形成共
沸物,沸点117.7℃,主要用途是作为树脂、油漆、
●Monsanto低压法生产工艺流程
甲醇+CO+催化剂母液+精制返回轻馏分+含水醋酸
催化剂母液
无水醋酸 脱重塔
脱轻塔
脱水塔 成品醋酸
反应产物+未反应物
醋酸 高级羧酸 废酸塔 重质酸
醋酸和高级羧酸 含粗醋 酸、轻 馏分
回收醋酸 175~200℃,总压 未反应物、 催化剂母液 轻馏分、含水醋酸 3MPa,CO分压 轻馏分 1~1.5MPa
之中,反应后只需进行简单的相分离,便可达到分
离催化剂的目的。
★担载液相催化剂(SLPC): 适应于气固反应
★担载水相催化剂(SAPC):适应于气固反应
液固(油相)反应
第三节
●醋酸的用途
甲醇羰基化合成醋酸
醋酸是重要的有机原料,主要用于生产醋酸乙烯、 醋酐、对苯二甲酸、聚乙烯醇、醋酸酯、氯乙酸、醋
8.羰基合成(新)详解
以Rh配合物和HI为催化剂系统的甲醇低压羰基
化反应具体反应方程式如下:
速率控制步骤 反 应 机 理
动力学方程—孟山都法
甲醇低压法羰基化合成乙酸法 研究表明:动力学方程式如下:
d [CH 3COOH ] k[CH 3 I ][ Rh 配合物 ] dr
2. 甲醇低压羰基化生产醋酸工艺流程
(4) 反应系统和精制系统合为一体; (5)副产物很少,三废排放物也少,生产环境清 洁
3 工艺的优缺点 主要缺点: 催化剂铑的资源有限,设备用的耐腐蚀 材料昂贵。
4、 甲醇低压羰基化合成醋酸研究新进展 主要方面:
1、开发出高活性、低水含量、 低消耗的高效催 化剂体系, 以大幅提高现有装置的产能, 有效 降低生产成本;
③膦羰基铑催化剂
选择性好,催化剂性能比较稳定,
活性比羰基氢钴高102~104倍,正/异构 醛比例也高 。 (方法:改变配位基和中心原子)
8.2 甲醇低压羰基化合成醋酸
主要内容:
1、醋酸生产方法简介 2、甲醇低压羰基化合成醋酸 (原理、工艺流程及其优缺点)
醋酸的用途
醋酸是一种重要的基本有机化工原料,主要
其他用途:溶剂、脱水剂、消泡剂、
分散剂、浮选剂、石油添加剂 。
8.3.1 丁辛醇生产方法简介
乙醛缩合法 发酵法 工业化生产主要方法 齐格勒法 羰基合成法
8.3.1 丁辛醇生产方法简介 1、乙醛缩合法:
P(OR)3
3、各类催化剂的特点
①羰基钴催化剂
羰基钴催化剂的活性组分、热稳定性
差、容易分解;异构化活性高
P(OR)3
3、各类催化剂的特点
②膦羰基钴催化剂
热稳定性增加,对直链产物的选择性
了解化学反应的羰基化反应过程
了解化学反应的羰基化反应过程羰基化反应是有机化学中一个重要的反应类型,其反应中羰基(C=O)与含有可官能团的化合物发生反应,形成新的羰基化合物。
本文将对羰基化反应的基本概念、机理以及应用进行探讨。
一、基本概念羰基化反应广泛存在于有机合成中,是合成有机化合物的基础反应之一。
羰基化反应中的羰基通常指酮或醛中的羰基碳,可以与含有活泼亲核团的化合物(如醇、胺等)发生反应。
这种反应产生的产物被称为羰基化合物。
二、反应机理在羰基化反应中,羰基碳上的氢被亲核试剂取代,形成亲核加成产物。
常见的亲核试剂有醇、胺、硫醇等。
反应可以分为两个步骤进行。
首先是亲核试剂的加成反应,亲核试剂的氧、氮或硫原子攻击羰基碳上的δ+碳,形成五元环中的中间体。
这个步骤是速度决定步骤,副产物是无机盐。
接下来是走向生成产物的消除反应,中间体内部的负离子通过与质子发生消除反应,生成羰基化产物。
三、应用羰基化反应在有机合成中具有广泛的应用。
下面将介绍三个具有代表性的例子。
1. 醇的羰基化反应醇可以与醛或酮反应,发生羰基化反应,形成醚。
这种反应是合成醚化合物的重要方法之一。
羰基化反应中,醇的氧原子攻击醛或酮中的羰基碳,形成醚中的氧-碳键。
这个反应条件温和,产率较高。
2. 胺的羰基化反应胺可以与醛或酮反应,发生羰基化反应,形成胺酮或胺醛。
这种反应是合成胺酮或胺醛的重要方法之一。
胺的氮原子攻击醛或酮中的羰基碳,形成胺酮或胺醛中的碳-氮键。
这个反应可以选择性地发生,从而合成具有特定结构和活性的化合物。
3. 二硫化物的羰基化反应二硫化物(如二巯基甲烷)可以与醛或酮反应,发生羰基化反应,形成硫酮或硫酮。
这种反应是合成硫酮或硫酮的重要方法之一。
这个反应可发生于中性或碱性条件下,产率较高,反应稳定。
总结:羰基化反应是有机合成中常用的一种反应类型,可以合成具有特定结构和活性的化合物。
它有着广泛的应用领域,如醚的合成、胺酮或胺醛的合成和硫酮或硫酮的合成。
通过了解羰基化反应的基本概念和机理,我们能够更好地理解这种重要的有机化学反应,并在实验和应用中应用它们。
羰基化过程
第八章羰基化过程8.3 甲醇羰基化合成醋酸1.醋酸的用途:醋酸是重要的有机原料,主要用于生产醋酸乙烯、醋酐、对苯二甲酸、聚乙烯醇、醋酸酯、氯乙酸、醋酸纤维素等。
醋酸也用于医药、农药、染料、涂料、合成纤维、塑料和黏合剂等行业。
工业上醋酸的生产方法有多种,但以甲醇为原料羰基合成醋酸工艺,不但原料价廉易得,而且生成醋酸的选择性高达99%以上,基本上无副产物;投资省,生产费用低,相对乙醛氧化法有明显的优势。
8.3.1 甲醇羰化反应合成醋酸的基本原理甲醇羰化反应合成醋酸主要有BASF高压法与孟山都低压法,二种方法的化学原理基本相同,反应过程大同小异。
8.3.1.1 高压法甲醇羰化反应合成醋酸基本原理BAsF高压法采用钴碘催化循环,过程如图所示。
整个催化反应方程式如下:Co2(CO)8(催化剂)CH3COOH + HI HCo(CO)4CH3I + H2O(络合物1)CHCOI (络合物5) CH3(络合物2)+ HICH3COCo(CO)4CH3COCo(CO)4(络合物4)(络合物3)对应反应式见P380(8-22)-(8-29).上述反应中,首先是Co2(CO)8(催化剂原位)与H2O +CO反应得到HCo(CO)4 (络合物1),CH3OH与HI反应得到CH3I(碘甲烷),CH3I(碘甲烷)又与HCo(CO)4 (络合物1)反应得到CH3Co(CO)4(络合物2)+ HI,HI完成一个循环。
CH3Co(CO)4(络合物2)与H2O反应转化为CH3COCo(CO)4(络合物3), CH3COCo(CO)4(络合物3)与CO反应得到CH3COCo(CO)4络合物4), (络合物4)与HI反应得到(络合物5), (络合物5)与H2O反应的到CH3COOH + HCo(CO)4 +HI,HI完成了另一个循环, HCo(CO)4(络合物1)也完成了一个循环.上述一系列复杂的反应过程要求在较高的温度下才能保持合理反应速率,而为了在较高温度下稳定[Co(CO)4]-(络合物1)]配位化合物,必须提高一氧化碳分压,从而决定了高压法生产工艺的苛刻反应条件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
化工工艺学
随着一碳化学的发展,有一氧化碳参与 的反应类型逐渐增多,通常将在过渡金 属配合物(主要是羰基配合物)催化剂存在 下,有机化合物分子中引入羰基的反应 均归入羰化反应的范围,其中主要有两 大类。
化工工艺学
过渡金属络合物(主要是羰基化合物)
催化剂下,有机化合物引入羰基。
均相反应,反应条件温和,选择性好。
(4)不对称合成生Fra bibliotek单一对映体的醛
化工工艺学
2.甲醇的羰化反应
(1)合成醋酸 孟山都法(Monsanto acetic acid process)
(2)合成醋酐
化工工艺学
(3)合成甲酸
(4)合成草酸酯、碳酸二甲酯、乙二醇
化工工艺学
8.2羰基化反应的理论基础
在催化反应中,凡催化剂以配合物的 形式与反应分子配位使其活化,反应分 子在配合物体内进行反应形成产物,产 物自配合体中解配,最后催化剂还原, 这样的催化剂称为配位(络合)催化剂,这 样的催化过程被称之为配位(络合)催化过 程。羰基合成反应是典型的配位催化反 应。
化工工艺学
b.在碱存在下缩合为辛烯醛
c.
化工工艺学
2.丙烯低压氢甲酰化合成正丁醛
(1)反应条件
a. 温度
T↑ ,r丁醛↑ ,r副↑ ,催化剂失活速度↑ T↓ ,催化剂活性低,用量大
100-110℃ b.压力
1.8MPa
c.原料配比
H2 ↑ ,丙烯↑ ,丙烷↑ ,原料损失↑ ∴ 控制H2和丙烯的量
压力
PCO ↑ ,r ↓ 总压不变: 钴: PCO ↑ ,正/异↑ 铑: PCO ↑ ,正/异↓ PH2 ↑ ,r ↑ ,正/异↑
溶剂
a.溶解催化剂 b.反应在气相中进行 c.移走反应热
化工工艺学
8.3 丙烯氢甲酰化合成丁、辛醇
1.丁、辛醇用途及合成路线 (1)用途 (2)合成路线
①乙烯为原料,乙醛缩合法 ②氢甲酰化法 a. 液相法 催化剂:羰基钴-高压 膦羰基铑-低压
化工工艺学
8.2.3 相
配位催化被归类于均相催化。这种反应 方式的缺点是催化剂与反应产物处于同 一相中而难以进行分离。为了克服这缺 点,引出了关于催化剂“应用相”的研 究。在羰基合成催化剂研究中,此类关 于“相”的研究占有重要地位。
化工工艺学
按照此类研究的特点,可大体将其分作两 种类型,一类是将配位催化剂用各种物理的或 化学的方法以固相形式担载在某种固相载体上, 使用液体或气体原料进行多相反应,最终实现 产物与催化剂分离的目的。 另一类是设法使催化剂和反应产物处于互 不相溶的两种液相之中,反应后只需进行简单 的相分离,便可达到分离催化剂的目的。这种 反应体系又称作两相催化体系。最有代表性的 是采用水溶液膦配位体改性的水溶性铑膦催化 剂,已经实现了工业化。
化工工艺学
催化剂性能优劣 : 催化剂的活性和选择性 对反应条件的要求和适用范围 催化剂的稳定性和寿命 耐毒化作用和再生可能性 经济方面 催化剂的活性:单位金属浓度在单位时间内催化 产生的目的产物的量来表示。 选择性包括化学选择性、区域选择性(醛基的位 置)、对映体选择性(不对称合成)。
化工工艺学
8.2羰基化反应的理论基础
羰基合成的催化剂往往是“原位”形成的。所谓 “原位(in situ)”是指加入反应体系中的化合物或 配合物在反应条件下就地形成催化剂,同时产生 催化作用。这种加入反应体系的化合物或配合物 称为催化剂前体或催化剂母体,而真正起作用的 被称为催化剂活性结构。羰基合成催化剂的典型 结构是以过渡金属(M)为中心原子的羰基氢化物, 它可以被某种配位体(L)所改性,一般形式表示为 HxMy(CO)zLn。
化工工艺学
8.3 甲醇低压羰化制醋酸
1.化学原理 (1)主副反应 主: CH3OH + CO CH3COOH 副: 酯 二甲醚 CO + H2O CO2 + H2
化工工艺学
(2)催化剂
活性组分 [Rh+(CO)2I2] 助剂:HI、CH3I、I2
(3)反应机理 自学
化工工艺学
(3)工艺流程
化工工艺学
一、中心原子
第Ⅷ族过渡金属的羰基合成催化活性顺 序如下 Rh>>Co>>Ir,Ru>Os>Pt>Pd>Fe>Ni
化工工艺学
工业上采用的羰基合成催化剂,其中心原子只 有钴和铑。未经改性的羰基钴作催化剂,需要 苛刻的反应条件,工业上采用的反应压力高达 30MPa。经配体改性后,反应压力可以降低, 但催化剂活性下降很多,反应生成醛的选择性 亦发生变化,故限制了其应用范围。未改性的 羰基铑同样需要高的反应压力,并且产物的区 域选择性很差,未能在工业上采用。经配体改 性的羰基铑催化剂,反应条件缓和,在催化剂 浓度很低的情况下,即有满意的反应速度,产 物的化学选择性和区域选择性都大大优越于钴。
选择性好,活性高,异构化性能高 催化剂稳定,可在较低压力下操作
(4)反应机理与动力学
化工工艺学
H HCo(CO)3 RCH CH2 OC Co CO OC R RCH 2CH2CHO
H OC Co CO OC R
RCH 2CH2 CO Co OC CO CO O RH2CH2 C OC H Co CO H CO O H2 RH2CH2 C CO Co OC CO CH2CH2R OC Co CO OC CO
第八章 羰基化过程
化工工艺学
烯烃与合成气(CO/H2)或一定配比的一氧化碳及氢 气在过渡金属配合物的催化作用下发生加成反应,生成 比原料烯烃多一个碳原子的醛。称为羰基合成。
RCH-CH2+CO+H2→RCH2CH2CHO+RCH(CHO)CH3
•这一反应的主要工业用途是生产脂肪醇,习惯 上又将由烯烃与合成气反应生成醛,然后再加 氢(或醛先缩合再加氢)生产醇的过程也称作羰 基合成。可以看做烯烃双键两端的碳原子分别 加上一个氢和一个甲酰基(-HCO),因此又称作 氢甲酰化
化工工艺学
8.1 反应类型
1.不饱和化合物的羰化反应
(1)氢甲酰化(与CO和H2反应)
在双键两端的C原子上分别加上一个氢和 一个甲酰基(-HCHO) ①烯烃的氢甲酰化
化工工艺学
②烯烃衍生物的氢甲酰化 (不饱和醇、醛、酯、醚,含卤素、含氮化合物)
(2)氢羧基化(与CO和H2O反应)
化工工艺学
(3)氢酯化(与CO和ROH反应)
化工工艺学
羰基合成是一个重要的工业过程。1948年美国 建成一座以庚烯为原料年产2600t异辛醇的羰基 合成装置。 •20世纪50~60年代,羰基合成工业在世界范围 内的高速发展。用羰基合成法生产醇,尤其是 以丙烯为原料生产丁醇和辛醇,被认为是最经 济的生产方法。20世纪70年代中期羰基合成技 术经历了以羰基钴为催化剂的传统高压法向以 改性铑为催化剂的低压法的转变。
化工工艺学
二、配位体
配合物中配位体和中心原子之问, 以及诸配位体之间是相互影响的。改变 配位体必然影响整个配合物的电子结构 和空间结构,从而影响其催化活性。
化工工艺学
经典的羰基合成催化剂是过渡金属的羰基氢化物,其 中一个或几个CO基团可以被其他配位体所取代:
用这种方法改变催化剂的性能称之为催化剂的改性, 引入的新配体也叫作改性剂。改变配位体的研究构成 了羰基合成催化剂研究的重要方面。
反应 精制 轻组分回收 催化剂制备与再生
化工工艺学
优缺点
优点: (1)原料多样化 (2)S和X高 (3)催化系统稳定 (4)反应和精制系统合为一体 (5)Ni-Mo合金耐腐蚀 (6)计算机控制保持最佳 (7)副产物少 (8)操作安全可靠 缺点:铑资源少,设备昂贵
化工工艺学
①羰基钴
(3)催化剂
化工工艺学
(3)催化剂
①羰基钴
T ↑ ,PCO ↑ 催化剂↑ ,PCO ↑
缺点:正异构醛比例低,催化剂热稳定性差
化工工艺学
②膦羰基钴
配位基膦(PR3) 特点:
a.稳定性增加,活性降低 b.直链产物选择性增加 C.加氢活性较高 d.副产物少 e.适应性差
化工工艺学
③膦羰基铑
化工工艺学
(5)烯烃结构的影响
①对反应速度影响 a.双键位置与反应速度密切相关,直链α –烯烃反应 最快 b.支链降低反应速度 ②对产物影响 a.环戊烯、环己烯反应无异构醛生成 b.双键位置对正/异比无影响 c.带支链:醛基加到α -碳原子
化工工艺学
(6)影响反应的因素
温度
T↑ ,r ↑ ,正/异↓ ,重组分及醇↑ T不宜过高,钴: 140-180℃ ,铑:100-110 ℃
化工工艺学
除上述两类方法外.还提出了介于这两类 方法之间的两种新型催化剂,担载液相 催化剂和担载水相催化剂。前者是将均 相催化剂溶液担载在多孔性载体的孔隙 之中,在反应条件下催化剂仍保持液相 状态,而反应原料及产物以气相状态与 催化剂共存于反应器中。若担载的催化 剂为水溶性催化剂便成为SAPC,它不仅 适用气/固反应也适用于液(油相)/固反 应。
T ↑ ,PCO ↑ 催化剂↑ ,PCO ↑
T( ℃)
PCO(MPa)
催化剂用量
20 0.05 0.2% 150 4 0.2% 150 8 0.9% 缺点:正异构醛比例低,催化剂热稳定性差
化工工艺学
三种氢甲酰化催化剂性能比较
催化剂 温度,℃ 压力,MPa 催化剂浓度,% 生成烷烃量 产物 正/异比