薄膜物理与技术课件-11
薄膜物理与技术绪论

生物医学领域应用
生物传感器
利用生物功能化的薄膜制备生物传感器,实现对生物分子和细胞 的灵敏检测和实时监测。
药物传递与控制释放
通过制备药物载体薄膜,实现药物的精确传递和可控释放,提高药 物的疗效和降低副作用。
医疗器械与植入物
利用薄膜材料制备医疗器械和植入物,提高医疗器械的性能和使用 寿命,降低医疗成本。
子器件。
光学工业
用于制造反射镜、光学 仪器、光电器件等。
机械工业
用于制造耐磨、耐腐蚀 的表面涂层和刀具等。
生物医学
用于制造人工关节、牙 齿等生物医学材料。
02
薄膜制备技术
物理气相沉积技术
真空蒸发沉积
溅射沉积
利用加热蒸发材料,使其原子或分子从熔 融态或气态转化为蒸气态,并在基体表面 凝结形成薄膜。
成薄膜。
溶胶凝胶法
将欲形成薄膜的元素或化合物 以溶胶凝胶的形式涂敷在基体 表面,经过热处理或化学处理 形成薄膜。
电泳沉积法
利用电场作用将欲形成薄膜的 颗粒在基体表面沉积形成薄膜 。
化学镀法
利用还原剂将欲形成薄膜的金 属离子还原成金属原子,并在
基体表面沉积形成薄膜。
溅射法
直流溅射法
磁控溅射法
利用直流电源作为溅射电源,使气体 辉光放电,产生等离子体轰击靶材, 使靶材原子或分子被溅射出来,并在 基体表面凝结形成薄膜。
弹性模量是衡量薄膜在受力时抵抗变形能力 的指标。
拉伸强度与延伸率
拉伸强度和延伸率是评估薄膜在受力时的力 学性能和耐久性的重要参数。
电学性能表征
总结词
电学性能表征是评估薄膜在电场作用下 的行为和性能表现的关键手段。
介电常数与介质损耗
介电常数和介质损耗是衡量薄膜在电 场中储能和能量损耗的重要参数。
(推荐)《薄膜物理》PPT课件

铁 (Fe) 甲烷 (CH4)
氯 (Cl2) 一氧化碳 (CO)
-12.4 -118.0 -62.5 14.7 31.0 3700.0 -82.5
144 -140.2
可以看出,氮、氢、氩、氧和空气等物质的临界温度远低于室
温,所以常温下它们是气体;水蒸气、有机物质和气态金属的
平均自由程与分子密度n和分子直径σ的平方成反比关系
kT 22P
平均自由程与压强成反比,与温度成正比
37
稀薄气体的基本性质
若气体种类和温度一定的情况下
P常数
在25℃的空气情况下
P 0 .66 cm 7 Pa
或 0.667cm
P
38
稀薄气体的基本性质
三、碰撞次数与余弦定律
入射频率:单位时间内,在单位面积的器壁上发生碰撞的分子
RNAk (NA:阿伏伽德罗常数) n= 7.2×1022 P/T (个/m3)
在标准状态下,任何气体分子密度为3×1019 个/cm3 当 P = 1.3 ×10-11 Pa 的真空度时 T = 293 K 则 n = 4 ×103个/cm3
目前,即使采用最先进的真空制备手段所能达到的最低压强 下,每立方厘米的体积中仍然有几百个气体分子
18
真空的基本知识
PnkT PVM m RT
P: 压强(Pa) n: 气体分子密度(个/m3) V:体积(m3) m:气体质量(kg) M:气体分子量(kg/mol) T: 绝对温度(K) k: 玻尔兹曼常数(1.3810-23J/K) R:气体普适常数(8.314J/K·mol)
19
真空的基本知识
21
真空的基本知识
压强的表示方法: 国际单位:帕斯卡 (Pascal) 其它单位:托 (Torr) 毫米汞柱(mmHg) 毫巴(bar)
薄膜物理与技术

1、为什么要真空?真空的概念?真空的用途?答:真空蒸发、溅射镀膜和离子镀膜等常称为物理气相沉积(PVD法)是基本的薄膜制作技术。
他们均要求淀积薄膜的空间要有一定的真空度。
因此,真空技术是薄膜制作技术的基础,获得并保持所需的真空环境,是镀膜的必要条件。
所谓真空是指低于一个大气压的气体空间。
同正常的大气相比,是比较稀薄的气体状态。
粗真空(105~102Pa):真空浸渍工艺低真空(102~10-1):真空热处理高真空(10-1~10-6):分子按直线飞行超高真空(< 10-6):一得到纯净的气体;二获得纯净的固体表面2、分子的三种速率答:最可几速度:平均速度:均方根速度:3、气体的临界温度:对于每种气体都有一个特定的温度,高于此温度时,气体无论如何压缩都不会液化,这个温度称为该气体的临界温度。
利用临界温度来区分气体与液体。
高于临界温度的气态物质称为气体,低于临界温度称为蒸汽。
极限压强(极限真空):对于任何一个真空系统而言,都不可能得到绝对真空(p=0),而是具有一定的压强Pu,称为极限压强(或极限真空),这是该系统所能达到的最低压强,是真空系统是否满足镀膜需要的重要指标之一。
4、溅射:所谓溅射,是指何能粒子轰击固体表面(靶),使固体原子(或分子)从表面射出的现象。
5、CVD(化学气相沉积):化学气相沉积是一种化学气相生长法,简称CVD技术。
这种方法是把含有构成薄膜元素的一种或几种化合物的单质气体供给基片,利用加热、等离子体、紫外光乃至激光等能源,借助气相作用或在基片表面的化学反应(热分解或化学合成)生成要求的薄膜。
6、薄膜的组织结构:是指它的结晶形态,分为四种类型:无定型结构、多晶结构、纤维结构和单晶结构。
7、薄膜的缺陷:在薄膜的生长和形成过程中各种缺陷都会进入到薄膜之中。
这些缺陷对薄膜产生重要的影响。
他们与薄膜制作工艺密切相关。
点缺陷:在基体温度低时或蒸发过程中温度的急剧变化会在薄膜中产生许多点缺陷,这些点缺陷对薄膜电阻率产生较大影响。
薄膜物理与技术-绪论

液相外延生长
溶液生长法
将基底浸入含有所需材料的溶液 中,通过控制溶液浓度、温度等 因素,使材料在基底表面外延生 长形成薄膜。
溶胶凝胶法
利用前驱体溶液在基底表面进行 水解、缩聚等化学反应,形成凝 胶态薄膜,再经过热处理等后处 理形成固态薄膜。
04
薄膜特性与性能
力学性能
弹性模量
描述薄膜在受力时抵抗弹性变 形的能力,是材料刚度的度量
介电常数
衡量电场作用下,介质中电位移与电场强度 之比的虚部,与电容、电场能量有关。
热电效应
当温度梯度存在时,薄膜中产生电动势的现 象,与热能转换为电能有关。
光学性能
反射、折射与散射
描述光波通过薄膜时的行为,包括光 的传播方向和强度的变化。
吸收光谱
描述光波通过薄膜时被吸收的特性, 与光的频率和薄膜的组成有关。
例如,在显示器中,通过在玻璃基板表面蒸镀不同材质和厚 度的薄膜,可以形成多层结构,控制光的反射和透射,从而 实现高清晰度和高亮度的显示效果。
能源与环境领域
薄膜技术在能源与环境领域也具有广泛的应用。薄膜材料 在太阳能电池、燃料电池、环境监测和治理等领域中发挥 着重要作用。通过改进薄膜材料的性能,可以提高能源利 用效率和环境质量。
02
薄膜物理基础
原子结构与电子状态
原子结构
原子由原子核和核外电子组成,原子 核由质子和中子组成。原子的电子状 态由主量子数、角量子数和磁量子数 决定。
电子状态
电子在原子中的状态可以用电子云、 能级和电子自旋等描述。电子的跃迁 和能量吸收、发射与物质的光学、电 学和热学性质密切相关。
晶体结构与缺陷
薄膜物理与技术-绪论
目录
• 薄膜的定义与分类 • 薄膜物理基础 • 薄膜制备技术 • 薄膜特性与性能 • 薄膜应用领域
《材料物理薄膜物理》课件

CONTENTS 目录
• 材料物理与薄膜物理概述 • 材料的基本性质 • 薄膜的制备与生长机制 • 薄膜的物理性能与应用 • 材料与薄膜物理与薄膜物理概述
材料物理的定义与重要性
定义
材料物理是一门研究材料结构、性能和应用的科学,主要关注材料的基本组成 、微观结构和宏观性质之间的关系。
CHAPTER 03
薄膜的制备与生长机制
薄膜的制备方法
01
02
03
物理气相沉积法
利用物理过程将材料蒸发 或溅射到基底上形成薄膜 ,包括真空蒸发、溅射和 离子束沉积等。
化学气相沉积法
通过化学反应将气体转化 为固态薄膜,包括热化学 气相沉积和等离子体增强 化学气相沉积等。
液相外延法
在单晶基底上通过控制温 度和成分,使溶质从溶液 中析出,形成单晶薄膜。
介电性能
薄膜的介电常数和介质损耗是其电学 性能的重要参数,影响其在电子和微 波器件中的应用。
薄膜的磁学性能
磁导率与磁损耗
磁性薄膜的磁导率和磁损耗特性决定了其在磁记录、磁传感 器等领域的应用。
磁各向异性
不同方向的磁化行为,影响磁性薄膜的磁学性能和应用。
薄膜的应用领域
光学仪器制造
高反射、高透过的光学薄膜广 泛应用于各种光学仪器制造。
材料在循环应力作用下抵抗断裂的能力, 与其使用寿命密切相关。
材料的热学性质
热容与热导率
描述材料在温度变化时吸收或释放热量的能 力,以及热量在材料内部的传导速度。
热稳定性
材料在温度变化时保持其物理和化学性质稳 定的能力。
热膨胀
材料在温度升高时体积增大的现象。
热辐射
材料发射或吸收电磁辐射的能力,与温度和 波长有关。
薄膜物理与技术

将气体在电场的作用下离化,形成离子束或等离子体,然后轰击材 料表面,使其原子或分子沉积在基底表面形成薄膜。
化学气相沉积(CVD)
常压化学气相沉积(APCVD)
在常压下,将反应气体在气相中发生化学反应,生成固态物质并沉积在基底表面形成薄膜 。
低压化学气相沉积(LPCVD)
在较低的压力下,将反应气体在气相中发生化学反应,生成固态物质并沉积在基底表面形 成薄膜。
等离子体增强化学气相沉积(PECVD)
利用等离子体激活反应气体,使其发生化学反应,生成固态物质并沉积在基底表面形成薄 膜。
液相外延(LPE)
溶胶-凝胶法
将金属盐溶液通过脱水、聚合 等过程转化为凝胶,然后在一
定条件下转化为薄膜。
化学镀
利用化学反应在基底表面沉积 金属或合金薄膜。
电镀
利用电解原理在基底表面沉积 金属或合金薄膜。
薄膜的特性与性能参数
特性
薄膜具有一些独特的物理和化学特性, 如高表面面积、高纯度、高密度等, 这些特性使得薄膜在电子、光学、磁 学等领域具有广泛的应用前景。
性能参数
评估薄膜性能的参数包括表面粗糙度、 透光性、导电性、硬度等,这些参数 决定了薄膜在不同领域的应用效果。
薄膜的形成与生长机制
形成
薄膜的形成通常是通过物理或化学方法将物质蒸发或溅射到基材表面,然后凝 结或反应形成薄膜。
涉及其他非主要性能的表征,如化学稳定性、热稳定性等。
详细描述
除了光学、力学和电学性能表征外,还有其他一些非主要性能的表征方法,如化学稳定 性表征和热稳定性表征等。这些性能参数对于评估薄膜在不同环境条件下的稳定性和耐 久性具有重要意义,尤其在化学反应容器制造和高温环境应用等领域中具有重要价值。
[课件](讲义1)薄膜物理与技术PPT
薄膜物理与技术PPT](https://img.taocdn.com/s3/m/0fb96d25eff9aef8941e06b4.png)
主要参考书
薄膜物理与器件. 肖定全、朱建国、朱基亮等,国防工业 出版社 (2011-05) 半导体薄膜技术与物理. 叶志镇、吕建国、吕斌,浙江大 学出版社 (2008-09) 薄膜物理与技术. 杨邦朝、王文生,电子科技大学出版社 (2006-09) 薄膜材料制备原理、技术及应用. 唐伟忠,冶金工业出版 社(2003-01) 薄膜科学与技术手册. 田民波、刘德令,机械工业出版社, (1991) Internet
2018/12/4
20
按薄膜厚度和晶体结构
• 超薄膜 • 二维纳米薄膜 • 薄膜 • 厚膜 • 单晶薄膜 • 多晶薄膜 • 非晶薄膜/微晶 • 纳米晶薄膜
2018/12/4
~ 10 nm < 100 nm < 10 µ m 10 ~ 100 µ m
21
四、薄膜的历史
1000多年前,阿拉伯人发明了电镀 7世纪,溶液镀银工艺 19世纪中,电解法、化学反应法、真空蒸镀法等 20世纪以来,学术和实际应用中取得丰硕成果,溅射法 近年来,Sol-Gel法、激光闪蒸法……
1. 2. 2. 3. 4. 5.
2018/12/4
19
按照材料特性(按σ,ε,u)
按电导率( σ )分有: 金属薄膜 半导体薄膜 绝缘体薄膜 超导体薄膜 光电薄膜 … 按( ε )分有: 介质薄膜
铁电薄膜
压电薄膜 热电薄膜
按导磁率( u )分有: 磁性薄膜 非磁性薄膜
2018/12/4
8
薄膜科学包括:
(1) 薄膜制造技术—— 气相沉积生长法(PVD、CVD…) 氧化生长法 Sol-gel法 电镀(电解)法 … (2)薄膜的形成(生长)—— 从气相原子凝结→形成晶核→核长 大 →网状结构(不连续性)→成膜(连续性)
《薄膜物理》ppt课件

溶胶-凝胶法在铁电薄膜 制备中的运用
铁电研讨可大体分为四个阶段:
第一阶段是从1920年法国人Valasek发现了罗息盐的极化, 导致了“铁电性〞概念的出现开场 第一阶段是1940年~1958年。1941年,Slater提出了铁电体 的 第一个根本微观模型同时铁电唯象实际开场建立并趋成熟, 这一时期的实际与实验研讨任务,奠定铁电资料的自发极化、 相变和畴构造了解的根底 第三阶段是1959年~1979年,发现钙钛矿构造的PbTiO3、 Pb(ZrTi)O3(PZT)、PbLa〕(ZrTi)O3(PLZT)系列、钨青铜构造 的铌酸盐系列等大量铁电体,铁电的软模实际出现并根本完善, 也称软模阶段,这一阶段,现代铁电学根本成熟
在铁电薄膜的许多运用中,铁电存储器尤其引人注目 铁电存储器具有非易失性、快速存取与抗辐射等特点, 使得它在计算机、航空航天、军工国防领域呈现宽广的 运用前景,引起全世界科技界的极大关注
图 1-7 美国军用飞机中的非挥发存储器(1988) Fig. 1-7 NV-RAM used in fighter planes of U. S. A.
从水羟基配位的无机母体来制备凝胶时,取决于诸多要素,如 pH梯度、浓度、加料方式、控制的成胶速度、温度等
溶胶-凝胶法
聚合反响的另一种方式是氧基聚合,构成氧桥M-O-M;这 种聚合过程要求在金属的配位层中没有水配体,即氧-羟基配
体
溶胶-凝胶法
2. 金属有机分子的水解聚合反响 金属烷氧基化合物(M(OR)n )是金属氧化物的溶胶-凝胶合成 中常用的反响物分子母体,几乎一切金属(包括镧系金属)均 可构成这类化合物
氢氧化铁溶胶的制备
分散相在介质中的溶解度须极小是构成溶胶的必要条件之一
溶胶-凝胶法