探索性问题

合集下载

例说探索性问题的常用解法

例说探索性问题的常用解法

20 21/ o2 5 o

J 动 , 9 点c D 运 点 从 同时 m发 , m s 以3c / 的速度 向点曰 运动 ,其 中一 个 动点 到 达端 点 时 , 一 个动 点 也 随之停 止 运 另 动 ,! 在P Q J ! l , 的运 动过 程 中,四边 形 J 尸 D是 否 可 能 为 平 行 四边 形 ? 如 C 果 可能 , 出P Q的运动 时 间 : 求 , 如果 不
例说探索性问题的常用解法
0 江西 宜 丰 桥 西 中 学 钱 英

将 抛物 线 c :一 、了 + . y /
性 的考题 , 因此 , 同学们必须突破这
个 难点 . 面是 我 对 这类 问 题解 法 的 下

因 为 P B= /AC 9 。 P D = D B= 0 . B
A曰 C. 所 以 △ D一 △ 日C 所 以
图7
粥p 学 21 辆 数
( 4 l 即2 一 = x 所 以x 6 所 2 一 )C n, 4 x 3 , =.
( ) -. 1AP- o
( ) 大 小 不 会 随 点P 转 移 而 2 的 的
等 分 点
变化 , 由如 下 : 理 因为 △4 c 等 边 P是
三 角 形 ,所 以P P . AP = 0.因 A= C / C 6 。 _
A, E 为顶 点 的 四 边 形 是 矩 形 的 Ⅳ. .
点P 发 , 出 沿射 线 P 方 向 以 2 ms C / c 的 速 度运 动 , P 以点 为圆心 ,( 为半 径 P) 长
C 3c| = r L因为 点P O0的 在
内部 . 以 oP与o0只能 内切 . 据 所 一 根 两 圆 内切 时 半 径 问 的 关 系 可 知 5 —

开放性和探索性问题

开放性和探索性问题
评注:本题给出了两种探究方式,解法一的方式是从式子的 意义出发,联立方程组求解,运用了分类讨论的数学思想, 对思维的严谨性要求较高。解法二的方式是从直观图形出发, 找到了思维的依靠点,这样便于找到各种情况,很难出现遗 漏。
2020/5/6
例3:在棱长为a的正方体ABCD-A1B1C1D1中,E、F 分别是棱BC、CD上的点,且BE=CF.
长郡中学高三数学组
2020/5/6
解决这类问题的途径:通过分析判断, 演绎推理,观察联想,化归转化,尝试 探求,猜想验证等多种思维形式去寻找 解题途径。
探索性问题分条件探索性问题,结 论探索性问题和存在探索性问题。
2020/5/6
一、条件探索性问题 解决条件探索性问题的策略有: (1)模仿分析法。将题设和结论视为已知条件, 分别进行演绎再有机地结合起来,推导出所需寻求 的条件。 (2)设出题目中指定的探索条件,将此假设为已知, 结合题设条件列出满足结论的等量或不等量关系, 通过解方程或不等式,求出所需寻找的条件。
得x,y 1 ,1 a ,
当且仅当 a1时,12aa2,11aa221,1a
综上所述可知,
当 a 2,或 a 2,或 a 1 时,(AB) C为含有
两个元素的集合;
2020/5/6
当 a 2,或 a 0,或 a1时,(AB) C
为含有三个元素的集合
y n x
m
如图1
y
n x
m
如图2
2020/5/6
方便。而解法二通过换元,使得式子更为规范。
2020/5/6
例2、设集合 A x , y |a y 1 x , B x , y |x y a ,
C x ,y |x 2 y 2 1问:

开放性与探索性问题

开放性与探索性问题

探索型问题一(开放性问题)【考点透视】习惯上,人们把命题者对解题者的要求,将数学问题分为两类:一类是问题的条件和结论都有确定要求的题型;另一类是条件和结论中至少有一个没有确定要求的题型,并称前者为封闭题型,后者为开放题型.开放性问题的基本形式有:条件开放题(问题的条件不完备);结论开放题(问题的结论不确定或不唯一),这些问题的解决,需解题者经过探索确定结论或补全条件,将开放性问题转化为封闭性问题,然后选择合适的解题途径完成最后的解答. 现在还出现一些其他形式的开放题,如解题策略的开放题和题干结构的开放题. 前者主要侧重于解题方法或策略的选择和设计,后者主要是所给题目不完整,需要解题者把题目补充完整,然后完成解答.开放性问题对于训练和考查学生的发散思维,进而培养学生的创新意识和创新能力是十分有益的.教育部在《2000年初中毕业、升学考试改革的指导意见》中特别指出:数学考试“应设计一定结合情境的问题和开放性问题”.由于各地认真贯彻执行这一指导意见,所以在近年的各地中考中,开放性试题越来越受到命题者的青睐,也越来越受到广大初中教师和学生的重视. 【典型例题】 一、条件开放题解条件开放题,一种是直接补齐条件,使题目结论成立;另一种是需要我们作出探索去补齐条件使题目结论成立. 这两种情况所需补充的条件往往不惟一.例1 (1)如图7.1,△ABC 中,AB=AC ,D 为AC 边上的一点,要使 △ABC∽△BCD,还需要添加一个条件,这个条件可以是__________ _______________________(只需填写一个你认为适当的条件即可).(2001年淄博市中考题) (2)如图7.2,在△ABC 和△FED 中,AD=FC ,AB=FE ,当添加条 件:__________________时,就可得到△ABC≌△FED(只需填写一个你认为正确的条件). (2003年无锡市中考题) 解:(1)BD=BC.(也可以是:∠ABC=∠BDC;或∠A=∠DBC;或BC∶CD=AC∶BC;或BC 2=AC•CD 中的某一个)(2)∠A=∠F. (或BC=ED 等) 说明:开放题的一个显著特点是:答案的不唯一性. 第(1)小题中,我们只需给出能使结论成立的一个答案即可.例2 一个二元一次方程和一个二元二次方程组成的二元二次方程组的解是2,4x y =⎧⎨=⎩和2,4x y =-⎧⎨=-⎩,试写出符合要求的方程组____________________________.(只要填写一个即可)(2000年安徽省中考题)分析:我们只要分别构造出一个既含x ,又含y 的一个二元一次方程和一个二元二次方程. 构造方程实际上就是寻找x 与y 之间的关系.解:2,8.y x xy =⎧⎨=⎩说明:方程与函数有着紧密的联系,如果我们把方程组的解看作对应于平面直角坐标系中的两个点A (2,4),B (-2,-4),则我们可以写出过这两个点的一个一次函数的解析式(也是一个二元一次方程)和一个二次函数的解析式(也是一个二元二次方程,这个方程不唯一).B A CD 图7.1AB C DEF 图7.2本题在解法上可以用代数的方法来解,也可用几何的方法来解(形数结合——一种重要的数学思想方法);可以用待定系数法,运用演绎推理的方法来解,也可用直觉思维的方法来解,所以本题既是一个条件开放题,也是一个策略开放题.例3 已知:如图7.3.1,四边形ABCD 是⊙O 的内接四边形,A 是BD 的中点,过A 点的切线与CB 的延长线交于点E.(1)求证:AB•DA=CD•BE;(2)若点E 在CB 延长线上运动,点A 在BD 上运动,使切线EA 变为割线EFA ,其它条件不变,问具备什么条件使原结论成立?(要求画出示意图,注明条件,不要求证明)(2000年北京海淀区中考题)分析:本题的(2)是一个条件开放题.由于本题的结论与(1)相同,所以这一条件的获得,我们可以从(1)的证明过程中受到启示.(1)证明:连结AC.∵A 是BD 的中点,∴AB AD =,∠ACB=∠ACD.∵EA 切⊙O 于A ,∴∠EAB=∠ACB.又∵∠ABE=∠D,∴△EAB∽△ACD,∴AB∶CD=EB∶AD, ∴AB•AD=CD•BE.(2)解:如图7.3.2中,若有△EAB∽△ACD,则原结论成立,故我们只需探求使△EAB∽△ACD 的条件. 由于∠ABE=∠D,所以只要∠BAE=∠DAC 即可,这只要BF CD =即可.所以本题只要BF AD =,原结论就成立.说明:探求条件的过程,是一个由果索因的过程,这是数学中的一种重要的解题方法——分析法. 例4 如图7.4,AB 、AC 分别是⊙O 的直径和弦,D 为劣弧AC 上一点,DE⊥AB 于点H ,交⊙O 于点E ,交AC 于点F ,P 为ED 的延长线上一点.(1)当△PCF 满足什么条件时,PC 与⊙O 相切?为什么?(2)点D 在劣弧AC 的什么位置时,才能使AD 2=DE·DF?为什么? (2002年济南市中考题)分析:(1)连OC.要使PC 与⊙O 相切,则只需∠PCO=900即可. 由∠OCA=∠OAC,∠PFC=∠AFH,即可寻找出△PCF 所要满足的条件 (2)要使AD 2=DE·DF,即AD DFDE AD=,也就是要使△DAF∽△DEA, 这样问题就较容易解决了.解:(1)当PC=PF (或∠PCF=∠PFC,或△PCF 是等边三角形)时,PC 与⊙O 相切. 连OC.∵PC=PF,∴∠PCF=∠PFC,图7.3.1图7.3.2H BAEP O CD F 图7.4∴∠PCO=∠PCF+∠OCA=∠PFC+∠OAC=∠AFH+∠AHF=900, ∴PC 与⊙O 相切.(2)当点D 是AC 的中点时,AD 2=DE·DF. 连结AE.∵AD CD =,∴∠DAF=∠DEA. 又∵∠ADF=∠EDA,∴△DAF∽△DEA, ∴AD DF DE AD=,即AD 2=DE·DF. 说明:本题是探索性开放题,在解决这类问题时,我们常从要获得的结论出发来探求该结论成立的条件.如第(1)小题中,若要PC 与⊙O 相切,则我们需要怎样的条件.第(2)小题也是如此.二、结论开放题结论开放题通常是结论不确定或不惟一,解题时,需作出探索来确定结论是否成立或会有那些结论. 例5 如图7.5.1,以等腰三角形ABC 的一腰AB 为直径的⊙O 交BC 于D ,过D 作DE⊥AC 于E ,可得结论DE 是⊙O 的切线.问:(1)若点O 在AB 上向点B 移动,以O 为圆心,OB 长为半径的圆 仍交BC 于D ,DE⊥AC 的条件不变,那么上述结论是否还成立?请说明理由.(2)如果AB=AC=5cm, sinA=35,那么圆心O 在AB 的什么位置时,⊙O与AC 相切? (2001年黑龙江省中考题)分析:(1)连OD. ∵OB=OD,∴∠OBD=∠ODB=∠C,∴ OD∥AC, 从而可得OD⊥DE,结论仍然成立.(2)若⊙O 与AC 相切,设切点为F ,连OF ,则由Rt△AOF 中可 求得OF=158,即OB=158. 解:(1)结论仍然成立. 如图7.5.2,连OD ,则OD=OB ,∠OBD=∠ODB. 又AB=AC ,∴∠B=∠C,∴∠ODB=∠C, ∴OD∥AC.∵DE⊥AC,∴OD⊥DE, ∴DE 是⊙O 的切线.(2)如图7.5.3,若AC 与⊙O 切于点F ,连OF ,则OF⊥AC,即△AOF 是直角三角形,∴sinA=355OF OB AO OB ==-, ∴OB=158, 即当OB=158时,⊙O 与AC 相切.说明:本例的两小题都属于结论不确定性的开放性问题. 第(1)小题是直接从题设条件出发探求结论是否成立;第(2)小题是从题设的结论出发来探求结论成立的条件,这也是解决这类问题的常用图7.5.1AOBECD图7.5.2ABCO F图7.5.3方法.例6 如图7.6.1,⊙O 的直径AB ,过半径OA 的中点G 作弦CE⊥AB,在CB 上取一点D ,分别作直线CD 、ED ,交直线AB 于点F 、M.(1)求∠COA 和∠FDM 的度数;(2)求证:△FDM∽△COM;(3)如图7.6.2,若将垂足G 改取为半径OB 上任意一 点,点D 改取在EB 上,仍作直线CD 、ED ,分别交直线 AB 于点F 、M. 试判断:此时是否仍有△FDM∽△COM? 证明你的结论. (2003年苏州市中考题)(1)解:∵AB 是⊙O 的直径,CE⊥AB,∴AC CE ,CG=EG.在Rt△COG 中,∵OG=12OC ,∴∠OCG=30,∴∠COA=60. 又∠CDE 的度数=12CAE 的度数=AC 的度数=∠COA=60,∴∠FDM=180-∠COA=120.(2)证明:∵∠COM=180-∠COA=120,∴∠COM=∠FDM. 在Rt△CGM 和Rt△EGM 中, GM=GM ,CG=EG ,∴Rt△CGM≌Rt△EGM, ∴∠GMC=∠GME.又∠DMF=∠GME,∴∠OMC=∠DMF, ∴△FDM∽△COM.(3)解:结论仍然成立.∵∠FDM=180-∠CDE, ∴∠CDE 的度数=12CAE 的度数=AC 的度数=∠COA, ∴∠FDM=180-∠COA=∠COM.∵AB 为直径,CE⊥AB,∴在Rt△CGM 和Rt△EGM 中, GM=GM ,CG=EG ,∴Rt△CGM≌Rt△EGM, ∴∠GMC=∠GME, ∴△FDM∽△COM.说明:本题的第(3)小题是在第(2)小题改变条件的情况下,探求结论是否还成立. 在探求时应寻着(2)的解题思路来进行.三、解题策略开放题解题策略开放题,现在更多的是以要求解题者设计解题方案来设计题目.例7 一副三角板由一个等腰直角三角形和一个含300的直角三角形组成,利用这副三角板构成一个含15DAF C EDM OG BAF CEMO G B 图7.6.1图7.6.20角的方法很多,请你画出其中两种不同构成的示意图,并在图上作出必要的标注,不写作法.(2000年荆州市中考题)分析:本题可利用这副三角板中的角做“加减运算”:600-450,或450-300,或600+450-900等来得到150的角.解:如图所示. 图7.7.1中就包含有两中构造方法,∠ABD和∠ACD都等于15;图7.7.2中,∠EFG=15.请同学们试着拼出其它的图形.说明:这类拼图组合,给出了一定的条件,但解决问题的办法需要我们自己来寻找. 通常解决这类问题的方法不惟一. 用现有的工具去解决问题,这在实际生产和生活中常会遇到.例8 如图,把边长为2cm的正方形剪成四个全等的直角三角形.请用这四个直角三角形拼成符合下列要求的图形(全部用上,互不重叠且不留空隙),并把你的拼法仿照图1按实际大小画在方格纸内(方格为1cm×1cm).(1)不是正方形的菱形(一个);(2)不是正方形的矩形(一个);(3)梯形(一个);(4)不是矩形和菱形的平行四边形(一个);(5)不是梯形和平行四边形的凸四边形(一个);(6)与以上画出的图形不全等的其他凸四边形(画出的图互不全等,能画出几个画几个,至少画三个). (2001年徐州市中考题)解:(1)(2)3)(4)(5)(6)说明:本例是一道设计图形的开放性试题,这类题近几年在全国各地的中考试题中经常出现.设计型开放题,有利于培养学生的发散性思维能力,有利于充分发挥学生的想象力和创造力,这对培养学生的创新意识和创新精神具有着积极的作用,例9 有一种“二十四点”游戏,其规则是这样的:任取四个1至13之间的自然数,将这四个数(每个数用且只用一次)进行加减乘除四则运算,使其结果等于24.例如对1,2,3,4,可以运算得(1+2+3)×4=24(注意上述运算与4×(1+2+3)应视作相同方法的运算).现有四个有理数3,4,-6,10,用上述规则写出三种不同方法的算式,使其结果等于24,运算如下:(1)_____________________;(2)________________________;(3)_________________________.AB CD EFG图7.7.1 图7.7.1图7.8另有四个有理数3,-5,7,-13,可通过运算式(4)____________________________,使其结果等于24. (2001年杭州市中考题)分析:“二十四点”游戏,小学生也可参加. 本题将数的范围扩大到整数范围,变成新的游戏,其实就是有理数的运算.本题具有开放性,答案是不唯一的.解:(1)3×[4+(-6)+10]=24;(2)4-(-6)÷3×10=24;(3)(10-4)-3×(-6)=24. (4)[(-5)×(-13)+7]÷3=24.说明:本题将有理数的运算与学生熟知的游戏结合起来,使数学学习更具趣味性.四、题目结构开放题以看作是一个条件开放题.例10 某一学生在做作业时,不慎将墨水瓶打翻,使一道作业题只看到如下字样:“甲、乙两地相距40千米,摩托车的速度为45千米/时,运货汽车的速度为35千米/(涂黑部分表示被墨水覆盖的若干文字)请将这道作业题补充完整,并列方程解答.(2001年吉林省中考题)分析:这里“距离”和“速度”都有了,故我们可以考虑从时间上去把本题补完整. 解一:摩托车和运货汽车同时从甲地驶向乙地,则摩托车比运货汽车早到几分钟?设摩托车比运货汽车早到x 分钟,则4040603545x ⎛⎫-⨯= ⎪⎝⎭,x=4021.答:摩托车比运货汽车早到4021分钟. 解二:摩托车和运货汽车分别从甲地和乙地同时相向而行,则几分钟后它们相遇? 设摩托车与运货汽车出发x 分钟后相遇,则(45+35)×60x= 40,x=30. 答:摩托车与运货汽车出发30分钟后相遇.解三:运货汽车从甲地出发10分钟后,摩托车从甲地出发去追赶运货汽车,问在到达乙地前,摩托车能否追上运货汽车?运货汽车走完全程需408357=小时,摩托车走完全程需408459=小时, 摩托车比运货汽车少用88167963-=小时.∵1610906360126-=>, ∴摩托车在运货汽车到达乙地前能追上.解四:摩托车和运货汽车分别从甲、乙两地沿由甲地往乙地的方向同向而行,问经过几小时摩托车可追上运货汽车?设经过x 小时摩托车可追上运货汽车,则 45x=40+35x ,解得x=4.答:经过4小时摩托车可追上运货汽车.说明:由于行程问题是大家比较熟悉的应用问题,所以我们还可以编出很多这样的问题来,同学们不妨试试.习题七一、填空题 1.(1)写出和为6的两个无理数_________________.(2003年绍兴市中考题)(2)若关于x 的方程x 2+kx-12=0的两根均是整数,则k 的值可以是______________.(只要求写出两个) (2001年浙江省中考题) 2.如图,在△ABC 中,以AB 为直径的⊙O 交BC 于点D ,连结AD ,请你添加一个条件,使△ABD≌△ACD,并说明全等的理由. 你添加的条件是_________________________.(2002年金华市中考题) 二、解答题3.做一做:用四块如图1的瓷砖聘成一个正方形,使 拼成的图案成轴对称图形.请你在图2、图3 图4中各画出一种拼法(要求三种拼法各不 相同,所画图案中的阴影部分用斜线表示).(2003年无锡市中考题)4.先根据要求编写应用题,再解答你所编写的应用题.编写要求:(1)编写一道行程问题的应用题,使得根据题意列出的方程为120120110x x -=+; (2)所编应用题完整,题意清楚,联系生活实际且解符合实际. (2001年青岛市中考题)5.同学们知道:只有两边和一角对应相等的两个三角形不一定全等.你如何处理和安排这三个条件,使这两个三角形全等.请你仿照方案(1),写出方案(2)、(3)、(4). 解:设有两边和一角对应相等的两个三角形. 方案(1):若这角的对边恰好是这两边中的大边,则这两个三角形全等.(2000年广东省中考题)6.如图,⊙O 与⊙O 1完外切于点T ,PT 为其内公切线,AB 为其外公切线,A 、B 为切点,AB 与TP 相交于点P,根据图中所给出的已知条件及线段,请写出一个正确结论,并加以证明.(2001年杭州市中考题) 7.如图,在△ABC 中,点D 、E 分别在边AB 、AC 上,给出5个论断: ①CD⊥AB;②BE⊥AC;③AE=CE;④∠ABE=30;⑤CD=BE. (1)如果论断①②③④都成立,那么论断⑤一定成立吗? 答:____________;(2)从论断①②③④中选取3个作为条件,将论断⑤作为结论, 组成一个真命题,那么你选的3个论断是__________________ (只需填论断的序号);(3)用(2)中你选的3个论断作为条件,论断⑤作为结论,组图1 图2 图3 图4 第3题A BP TO O 第6题ABD C E第7题BAE成一道证明题,画出图形,写出已知、求证,并加以证明.(2003年徐州市中考题)8.如图,AB=AE,∠ABC=∠AED,BC=ED,点F是CD的中点.(1)求证:AF⊥CD;(2)在你连接BE后,还能得出什么新的结论?请写出三个(不要求证明).(2002年江西省中考题)9.已知在直角坐标系中,直线y=+x轴、y轴分别交于点A、点B,以AB为一边的等腰△ABC的底角为300,请在坐标系中画出△ABC,并求出点C的坐标.(2000年北京市崇文区中考题)10.如图,已知直线MN与以AB为直径的半圆相切于点C,∠A=28.(1)求∠ACM的度数;(2)在MN上是否存在点D,使AB•CD=AC•BC?为什么?(2001年广州市中考题)参考答案:1. (1(2) 1,-1(或4,-4;或11,-11)2.答案不唯一. 添加的条件可以是:①AB=AC;②∠B=∠C;③BD=DC(或D是BC中点);④∠BAD=∠CAD (或AD平分∠BAC)等.3.略.4.所编应用题符合编写要求. 正确设未知数、列方程,正确求出方程的解.5.方案(2):若这角是直角,则这两个三角形全等.方案(3):在两个钝角三角形中,有两边和一角对应相等的两个三角形.方案(4):在两个锐角三角形中,有两边和一角对应相等的两个三角形.6.AB=2PT. 证明略.7.(1)一定. (2)①、③、④. (3)已知,如图,在△ABCD、E分别在AB、AC上,CD⊥AB,AE=CE,∠ABE=30. 求证:CD=BE. 证明:作EF∥CD交AB于F. ∵AE=CE,∴AF=FD,∴CD=2EF. ∵CD⊥AB,∴EF⊥AB. 在Rt△EFB中,∠EFB=90,∠EBF=30,∴BE=2EF,∴CD=BE. 图要正确.8.(1)证明:连结AC、AD,∵AB=AE,∠ABC=∠AED,BC=ED,∴△ABC≌△AED,∴AC=A D. 又∵F为CD的中点,∴AF⊥CD.(2)①BE∥CD;②AF⊥BE;③△ACF≌△ADF;④∠BCF=∠EDF;⑤五边形ABCDE是以直线AF为对称轴的轴对称图形. (还可写出其它的结果)9.如图,C1(6,0),C2(0,-,C3(0),C4(-4,A BCMN第10题ACBDEF第7题C5(2),C6(2,.10.(1)∵AB是直径,∠ACB=90. 又∠A=28,∴∠B=62.又MN是切线,C为切点,∴∠ACM=62.(2)在MN上存在符合条件的点D. 证明:过点A作AD⊥MN 于D. 在Rt△ABC和Rt△ACD中,MN切半圆ACB于点C,∴∠B=∠ACD,∴△ABC∽△ACD,∴AB BCAC CD,即AB•CD=AC•BC.(注:可编辑下载,若有不当之处,请指正,谢谢!)。

探索性问题的推理验证与分类讨论

探索性问题的推理验证与分类讨论

D .Z 与 C为 直 径 的 圆 相 交 于
பைடு நூலகம்
点 P ,Q,P 的 中 点 为 H,则 0 H 上加 ,Q 点 的 坐 Q
标 争 )‘PI C} 为(, .' lI ・ I A= . = 1 0

4B的方 程 是 y k 2 ( ≠1. 入 一 : = (一 ) ) 代 2有 ( 一 )2 1 k X+ 4 x ( 2: ,则 1 是 上 述 方 程 的两 个 实 根 , U 一4 + ) 0 , 所

} 析 J 答这 类 探 索 性 问 分 解
题 ,可 先 假 设 “ 象 ” 存 在 . 对 然 后 根 据 题 设 条 件 探 究 可 能 的 “ 象” 对 .并 进 行 验 证 或 否 定 . 假
Il ,

假 设 存 在 。推 理 验 证
l 1已知 双 曲线 X一 2的左 、右焦 点分 别 为 例 I 2 =

l 示} 启 本题 主要 考查 直线、 圆和抛物 线等 平 面解
析 几何 的 基 础 知 识 . 考 查 综 合 运 用 数 学 知 识 进 行 推
, ,
过 点 的动 直 线 与 双 曲线 相交 于 A,B两 点 .
在 轴 上 是 否 存 在 定 点 c.使

为常 数 ? 若 存
设 满 足 条 件 的 直 线 £ 在 ,其 存
方程 为 y a = 。设 4C 的 中 点 为

\o |


在 ,求 出 点 C的坐 标 :若 不 存在 ,请 说 明 理 由 .
( )涉及 到 圆锥 曲线 焦 点 弦 的 问题 .还 可 以 利 用 2
圆锥 曲 线 的 焦 半 径 公 式 ( 圆 锥 曲线 的 第 二 定 义 ) 即 ,

探索性问题——精选推荐

探索性问题——精选推荐

探索性问题【考点梳理】一、探索性问题如果把一个数学问题看作是由条件、解题依据、解题方法和结论这四个要素组成的一个系统,那么我们把这四个要素中有两个是未知的数学问题称为探索性问题。

条件不完备和结论不确定是探索性问题的基本特征。

二、探索型问题的基本类型1.条件追溯型这类问题的外在形式是针对一个结论,条件未知需探究,或条件增删需确定,或条件正误需判断。

解决这类问题的基本策略是执果索因,先寻找结论成立的必要条件,再通过检验或论证找到结论成立的充分条件。

在执果索因的推理过程中,不考虑推理过程的可逆与否,误将必要条件当作充分条件,是一种常见错误,必须引起注意。

确定条件是否多余时要着眼于每个条件对所求(或所证)对象的确定性,判断条件正误时多从构造反例入手。

2.结论探索型这类问题的基本特征是有条件而无结论或结论的正确与否需要确定。

探索结论而后论证结论是解决这类问题的一般型式。

3.存在判断型判断存在型问题是指判断在某些确定条件下的某一数学对象(数值、图形、函数等)是否存在或某一结论是否成立的探索性问题,解决这类问题通常假设题中的数学对象存在(或结论成立)或暂且认可其中一部分的结论,然后在这个前提下进行逻辑推理,若由此导出矛盾,则否定假设;否则,给出肯定结论的证明。

4.方法探究型这里指的是需要非常规的解题方法或被指定要用两种以上的方法解决同一个问题,难度较高的构造法即属此型。

在探究方法的过程中,常常需要研究简化形式但保持本质的特殊情形,运用类比、猜测、联想来探路,解题过程中创新成分比较高。

三、思想方法解决探索性问题,较少现成的套路和常规程序,需要较多的分析和数学思想方法的综合运用。

对观察、联想、类比、猜测、抽象、概括诸方面的能力有较高要求。

高考题中一般对这类问题有如下方法:1.直接法2.观察—猜测—证明3.赋值法4.数形结合 5.联想类比6.从特殊到一般7.从特殊到一般再到特殊8.等价转化四、怎样提高解探索问题的能力1.注重双基的训练,夯实基础知识。

探索性问题

探索性问题

[规律方法] 对于结论探索性问题,需要先得出一个结论, 再进行证明.注意含有两个变量的问题,变量归一是常用 的解题思想,一般把其中的一个变量转化为另一个变量, 根据题目条件,确定变量的值,遇到数列中的比较大小问 题可以采用构造函数,根据函数的单调性进行证明,这是 解决复杂问题常用的方法.
存在探索性问题
(1)求证:A1C⊥平面 AB1C1; (2)若 D 是棱 CC1 的中点,在棱 AB 上是否存在一点 E,使 得 DE∥平面 AB1C1?若存在,请确定点 E 的位置;若不 存在,请说明理由.
[解]
(1)证明:∵AB=2BC,AC= 3BC,
π ∴△ABC 为直角三角形且∠ACB= , 2 ∴BC⊥AC,又 AA1⊥平面 ABC, ∴BC⊥AA1,又 AA1∩AC=A, ∴BC⊥平面 ACC1A1, ∴BC⊥A1C,B1C1⊥A1C. ∵AC=AA1, ∴侧面 ACC1A1 为正方形, ∴AC1⊥A1C. 又 B1C1∩AC1=C1, ∴A1C⊥平面 AB1C1.
n n
[规律方法]
对于数列问题,一般要先求出数列的通项,
不是等差数列和等比数列的要转化为等差数列或等比数 列.遇到 Sn 要注意利用 Sn 与 an 的关系将其转化为 an,再 研究其具体性质.遇到(-1)n 型的问题要注意分 n 为奇数 与偶数两种情况进行讨论,本题易忘掉对 n 的奇偶性的讨 论而致误.
条件探索性问题
此类问题的基本特征是: 针对一个结论, 条件未知需探求, 或条件增删需确定,或条件正误需判定,解决此类问题的 基本策略是:执果索因,先寻找结论成立的必要条件,再 通过检验或认证找到结论成立的充分条件,在“执果索 因”的过程中,常常会犯的一个错误是不考虑推理过程的 可逆与否,误将必要条件当作充分条件,应引起注意.

微专题4:+立体几何中的探索问题+2022-2023学年高一下学期数学人教A版(2019)必修第二册

微专题4:+立体几何中的探索问题+2022-2023学年高一下学期数学人教A版(2019)必修第二册
若 BE =1,在折叠后的线段 AD 上是否存在一点 P,使得 CP ∥平面 ABEF?若存在,求出λ的值,若不存在,说明理由.
解:AD 上存在一点 P,AP=λPD,使得 CP
∥平面 ABEF,此时λ=3. 2
理由如下: 当λ=32时,AP=32PD,可知AADP=35,如图,过点 P 作 MP∥FD 交 AF 于点 M,连接 EM,PC,则有MFDP=AADP=35, 又 BE=1,可得 FD=5,故 MP=3, 又 EC=3,MP∥FD∥EC,故有 MP 綊 EC, 故四边形 MPCE 为平行四边形,所以 CP∥ME,
变式:如图,直三棱柱 ABC A1B1C1中,D,E分别是棱BC , AB的中点,点F在棱 CC1 上,已知AB=AC,AA1 3 , BC=CF=2.
(1)求证: C1E//平面ADF; (2)在棱 BB1 上是否存在点M,使平面 CAM 平面ADF ,若存在,试求出BM的值; 若不存在,请说明理由.
又BM=1,BC=2,CD=1,FC=2, Rt△CBM≌Rt△FCD
故 CM DF
DF . AD=D DF,AD
易证CM ,又

平面ADF,
故CM 平面ADF .
CAM
又 平面 CAM ,故平面
平面ADF.
翻折中的位置关系探索问题
例 3:如图,四边形 ABCD 中,AB⊥AD,AD∥BC,AD=6, BC=4,E,F 分别在 BC,AD 上,EF∥AB.现将四边形 ABCD 沿 EF 折起,使平面 ABEF⊥平面 EFDC.
证明如下:因为AB=AC, AD 平面ABC,故 AD BC.
在直三棱柱 ABC
中, A1B1C1
BB1
平面
ABC

圆锥曲线的热点问题—定点、定值、探索性问题

圆锥曲线的热点问题—定点、定值、探索性问题
圆锥曲线的热点问题——定点、定值、探索性问题
索引
1.定点问题 圆锥曲线中的定点问题是高考命题的一个热点,也是圆锥曲线问题中的一个 难点.解决这个难点没有常规的方法,但解决这个难点的基本思想是明确的, 定点问题必然是在变化中所表现出来的不变的量,那么就可以用变量表示问 题中的直线方程、数量积、比例关系等,而这些直线方程、数量积、比例关 系中不受变量影响的某个点,就是要求的定点.求解这类难点问题的关键就是 引进变化的参数表示直线方程、数量积、比例关系等,根据等式恒成立、数 式变换等寻找不受参数影响的量.
索引
思维升华
圆锥曲线中定点问题的两种解法 (1)引进参数法:引进动点的坐标或动线中系数为参数表示变化量,再研究变 化的量与参数何时没有关系,找到定点. (2)特殊到一般法,根据动点或动线的特殊情况探索出定点,再证明该定点与 变量无关.
索引
类型二 定值问题
例 2 已知椭圆的中心为坐标原点 O,焦点在 x 轴上,斜率为 1 且过椭圆右焦点 →→
索引
代入椭圆方程整理得 λ2(x21+3y21)+μ2(x22+3y22)+2λμ(x1x2+3y1y2)=3b2. 又∵x21+3y21=3b2,x22+3y22=3b2, x1x2+3y1y2=4x1x2-3c(x1+x2)+3c2=32c2-92c2+3c2=0, ∴λ2+μ2=1,故 λ2+μ2 为定值.
索引
又∵O→N∥a,∴13=ba22,∴a2=3b2, 故椭圆方程为 x2+3y2=3b2. 又过右焦点的直线 AB 的方程为 y=x-c. 联立yx=2+x3-y2c=,3b2, 得 4x2-6cx+3c2-3b2=0. ∴x1+x2=32c,x1x2=3c2-4 3b2=38c2. 设 M(x,y),则由O→M=λO→A+μO→B可得xy==λλyx11++μμyx22,,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

六.探索性问题
一、探索性问题是指命题中缺少一定的题设或没有明确的结论,需要经过推断、补充、并加以证明的问题.其典型特点是不确定性.主要包括(1)条件探索型,(2)结论探索型,(3)存在性探索型等.
条件探索型是指结论已明确,需要探索发现使结论成立的条件的题目;结论探索型是指在一定的条件下无结论或结论不明确,需要探索发现与之相应的结论的题目;而存在型探索题是指在一定的前提下,需探索发现某种数学关系是否存在的题目。

探索性问题由于它的题型新颖、涉及面广、综合性强、难度较大,不仅能考查学生的数学基础知识,而且能考查学生的创新意识以及发现问题、提出问题、分析问题并解决问题的能力,因而倍受关注。

探索性问题解法,根据已知条件,从基础知识和基本数学思想方法出发,结合基本图形,抓住本质联系进行探究,常用观察、试验、联想、归纳、类比等方法,进行分析、归纳、猜想、比较、推理等,直到得出答案。

题目的答案也是多种多样的,有的题目有唯一解,有的题无解,也有的题要分几种情况讨论。

解结论探索型题的方法是由因导果;解条件探索型的方法是执果索因;解存在性探索题先假设要探索的问题存在,继而进行推导与计算,若得出矛盾或错误的结论,则不存在,反之即为所求的结论。

解题时应注意知识的综合运用。

二、理解掌握
例一、已知:(如图)要使ΔABC ∽ΔAPB ,需要添加的条件是_____(只填一个).(答案:
∠ABP=∠C,或∠ABC=∠APC,或AB 2=AP ·AC)
说明:该图是初二几何的基本图形,是解决其他问题的基础,应牢记。

例二、如图, ☉O 与☉O1外切于点T ,AB 为其外公切线,PT 为内公切线,AB 与PT 相交于点P,根据图中所给出的已知条件及线段,请写出一个正确结论,并加以证明.(本题将按正确答案的难易程度评分)
A
B C P
结论1: PA=PB=PT 结论2:AT⊥BT.(或AT2+BT2=AB2)
结论3: ∠BAT=∠TBO1结论4: ∠OTA=∠PTB
结论5:∠APT=∠BO1T 结论6:∠BPT=∠AOT
结论7:ΔOAT∽ΔPBT 结论8:ΔAPT∽ΔBO1T
设OT=R, O1T=r, 结论9:PT2=Rr
结论10: AB=2√Rr 结论11:S梯形AOO1B=(R+r)√Rr
结论12:以AB为直径的☉P必定与直线OO1相切于T点.
说明:你还能得出其它的结论吗?试试看。

本题是由初三几何书上的例题改编的,对基本图形的再认识,对图形间的内在关系的深刻挖掘,有助于透彻理解知识。

例三、已知二次函数y=1/2x2+bx+c的图象经过点A(-3,6)、和x轴交于点B(-1,0)和点C,抛物线的顶点为P.
(1)求这个函数的解析式;
(2)线段OC上是否存在点D,使∠BAC=∠CPD
分析:函数的解析式为y=1/2x2-x-3/2
=1/2(x-1)2-2,
各点坐标分别为:A(-3,6)、B(-1,0)、C(3,0)、
E(-3,0)、F(1,O)、P(1,-2).
设存在点D(a,0),使∠CAB=∠CPD.作AE⊥x轴于点E,则ΔAEC和ΔPFC都是等腰直角三角形,∴AC=6√2,PC=2√2,∠ACE=∠PCD=45°∵∠CAB=∠CPD ∴ΔABC∽ΔPDC∴AC:PC=BC:DC,即6√2 : 2√2=4 :(3-a)
解之得:a=5/3. ∴存在这样的点D(5/3,0),使∠CAB=∠CPD.
说明:本题是代数与几何结合的探索性题,涉及的知识点多,难点是寻求数与形的结合点,用到的数学思想方法多,如数形结合思想,方程思想,转化思想,待定系数法,配方法,采用观察、试验、猜想、比较等方法,把角相等转化为三角形相似,利用对应边成比例的关系得出方程,从而解决问题。

与函数有关的探索题如果所求的点在图象上,有时还要代入解析式,利用方程组来解决问题。

三、巩固训练
1、已知AC 、AB 是☉O 的弦,AB > AC,(如图)能否在AB 上确定一点E ,使AC2=AE ·AB 分析:作 AM=AC ,连结CM 交AB 于点E ,连结CB ,可证ΔACE ∽Δ ABC ,即可得出结论。

2、关于x的方程x 2-(5k+1)x+k 2-2=0,是否存在负数k ,使方程的两个实数根的倒数和为4?若存在,求出满足条件的k 的值;若不存在,说明理由。

提示:设方程的两个实数根为x1、x2.
由根与系数关系,得x 1+x 2=5k+1,x 1x 2=k 2-2.
由题意知得方程,化简得 4k 2-5k-9=0, ∴ k 1=-1,k2=9/4(不合题意,舍去)
把k=-1代入根的判别式,Δ=20>0.
∴ 存在满足条件的k,k=-1.
3、已知一次函数Y=-X+6和反比例函数Y=k/x (k ≠0).(1)k 满足什么条件时,这两个函数在(2)设(1)中的两个公共点分别为A 、B,∠AOB是锐角还是钝角?
C B
答案:(1)k<9且k ≠0:
(2)分两种情况讨论当0<k<9时,∠AOB是锐角;当k<0时,∠AOB是钝角。

四、拓展应用
1、如图,在矩形ABCD 中,AB=12厘米,BC=6厘米,点P 沿AB 边从点A 开始向点B 以2厘米/秒的速度移动;点Q 沿DA 边从点D 开始向点A 以1厘米/秒的速度移动。

如果P 、Q 同时出发,用t (秒)表示移动的时间(0≤t ≤6),
那么(1)当t 为何值时,ΔQAP 为等腰三角形?
(2)求四边形QAPC 的面积;提出一个与计算结果有关的结论;
(3)当t 为何值时,以点Q 、A 、P 为顶点的三角形 与ΔABC 相似?
解:(1)对于任时刻的t ,AP=2t ,DQ=t ,QA=6-t 。

当QA=AP 时,ΔQAP 为等腰三角形,即6-t=2t ,解得t=2(秒),
∴当t=2秒时,ΔQAP 为等腰三角形,
(2) 在ΔQAC 中,QA=6-t ,QA 边上的高DC=12,
∴S ΔQAC=1/2QA ·DC=1/2(6-t )·12=36-6t.
在ΔAPC 中,AP=2t,BC=6,
∴S ΔAPC =1/2AP ·BC=1/2·2t ·6=6t.
∴S 四边形QAPC= S ΔQAC + S ΔAPC =(36-6t)+6t=36(厘米2)
(3)略解:分两种情况讨论: ①当QA :AB=AP:BC 时,ΔQAP ∽ΔABC ,
可解得t=1.2(秒)
②当QA:BC =AP:AB 时, ΔPAQ ∽Δ ABC ,可解得t=3(秒)
∴ 当t=1.2秒或t=3秒时,以点Q 、A 、P 为顶点的三角形与ΔABC 相似.
2、如图,已知在矩形ABCD 中,E 为AD 的中点,EF ⊥EC ,交AB 于点F ,连结FC (AB>AE )。

(1)ΔAEF 与ΔECF 是否相似。

若相似,证明你的结论;若不相似,说明理由。

(2)设AB/BC=k ,是否存在这样的k 值,使得ΔAEF 与ΔECF 相似?
若存在,证明你的结论;
若不存在,说明理由。

A B
C
D
P Q
A
B C D F。

相关文档
最新文档