圆的典型基本图形
圆的标准方程完整ppt课件
圆的方程可以用来求解与圆有关的切线问题,如切线方程、切点坐 标等。
圆的方程在物理问题中的应用
描述圆形运动轨迹
在物理学中,圆的方程可以用来描述物体做圆周运动时的轨迹。
计算圆形运动的物理量
利用圆的方程,可以计算物体做圆周运动时的线速度、角速度、向 心加速度等物理量。
解决与圆有关的物理问题
切线与半径垂直
切线垂直于经过切点的 半径。
切线长定理
从圆外一点引圆的两条 切线,它们的切线长相
等。
04
圆的方程在实际问题中的应用
圆的方程在几何问题中的应用
确定圆的位置和大小
通过圆的方程,可以准确地确定圆心的坐标和半径的长度,从而 确定圆的位置和大小。
判断点与圆的位置关系
利用圆的方程,可以判断一个点是否在圆上、圆内或圆外,从而解 决相关的几何问题。
3
解决与圆有关的经济问题
圆的方程还可以用来解决一些与圆有关的经济问 题,如圆形区域的经济发展、圆形市场的竞争等 。
05
圆的方程与其他知识点的联系
圆的方程与直线方程的关系
直线与圆的位置关系
通过比较圆心到直线的距离与半径的大小关系,可以确定直线与 圆是相切、相交还是相离。
切线方程
当直线与圆相切时,切线的斜率与圆心和切点的连线垂直,由此 可以求出切线的方程。
根据两点间距离公式,有 $OP = sqrt{(x - a)^{2} + (y
- b)^{2}}$。
将 $OP = r$ 代入上式,得到 $(x - a)^{2} + (y - b)^{2} =
r^{2}$。
方程中参数的意义
$a, b$
01
圆心坐标,表示圆心的位置。
圆的认识
您现在的位置:360教育网 >> 中学 >> 同步辅导 >> 初中三年级同步辅导【本讲教育信息】一. 教学内容:§28.1 圆的认识二. 学习目标:理解圆及弦、弧、圆心角、圆周角的概念;了解弧、弦、圆心角的关系,以及圆的对称性及垂径定理;探索并了解圆周角与圆心角的关系、直径与圆周角的特征。
三. 重点、难点:1. 重点:圆的对称性、圆周角的一些性质。
2. 难点:垂直于弦的直径的性质定理。
四. 知识梳理:1. 圆的基本元素⑴圆的定义在平面内,线段OA绕它固定的一个端点O旋转一周,另一端点A随之旋转所形成的图形叫做圆,记作“⊙O”,读作“圆O”,其中O叫做圆心,OA叫做半径。
说明:①以上关于圆的定义是从圆的形成角度而给出的。
这与在七年级学习角的定义一样,角也可以从角的形成上来定义:一条射线绕着它的端点从一个位置旋转到另一个位置所形成的图形。
角还可以定义为:有公共端点的两条射线组成的图形。
事物之间都是有联系的,圆也可以这样定义:到定点(圆心)的距离等于定长(半径)的点的集合。
②圆心确定圆的位置,半径确定圆的大小。
⑵与圆有关的概念①弦与直径。
连结圆上任意两点的线段叫做弦。
经过圆心的弦叫做直径。
(如图,线段AB是弦,AC是直径)。
由此可知:直径是弦,而弦不一定是直径,直径是圆中最长的弦。
②弧与半圆。
圆上任意两点间的部分叫做圆弧,简称弧。
直径所对的弧叫做半圆。
大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧。
如图,叫做劣弧,叫做优弧。
而叫做半圆。
想一想,图中还有哪些弧?由弦及其所对的弧组成的图形叫做弓形,如图,弦AB与及组成两个不同的弓形。
③同圆与同心圆。
同圆是指同一个圆;同心圆是指圆心相同,半径不等的圆。
下面图⑴中的两个圆就是以O为圆心的同心圆。
⑴⑵④等圆与等弧。
能够重合的两个圆叫做等圆。
或者说半径相等的两个圆是等圆。
上图⑵中的⊙O1、⊙O2就是两个等圆。
等弧是指能够完全重合的弧。
圆的有关概念、性质与圆有关的位置关系
【2020中考数学专项复习】:圆的有关概念、性质与圆有关的位置关系【考纲要求】1. 圆的基本性质和位置关系是中考考查的重点,但不会有太复杂的大题出现;2.中考试题中将更侧重于具体问题中考查圆的定义及点与圆的位置关系,对应用、创新、开放探究型题目,会根据当前的政治形势、新闻背景和实际生活去命题,进一步体现数学来源于生活,又应用于生活.【知识网络】【考点梳理】考点一、圆的有关概念及性质1.圆的有关概念圆、圆心、半径、等圆;弦、直径、弦心距、弧、半圆、优弧、劣弧、等弧;三角形的外接圆、三角形的内切圆、三角形的外心、三角形的内心、圆心角、圆周角.要点诠释:等弧:在同圆或等圆中,能够互相重合的弧叫做等弧.2.圆的对称性圆是轴对称图形,任何一条直径所在直线都是它的对称轴,圆有无数条对称轴;圆是以圆心为对称中心的中心对称图形;圆具有旋转不变性.3.圆的确定不在同一直线上的三个点确定一个圆.要点诠释:圆心确定圆的位置,半径确定圆的大小.4.垂直于弦的直径垂径定理 垂直于弦的直径平分这条弦,并且平分弦所对的两条弧. 推论 平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.要点诠释:在图中(1)直径CD ,(2)CD ⊥AB ,(3)AM =MB ,(4)C C A B =,(5)AD BD =.若上述5个条件有2个成立,则另外3个也成立.因此,垂径定理也称“五二三定理”.即知二推三. 注意:(1)(3)作条件时,应限制AB 不能为直径.5.圆心角、弧、弦之间的关系定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量也相等. 6.圆周角圆周角定理 在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半. 推论1 在同圆或等圆中,相等的圆周角所对的弧也相等.推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径. 要点诠释:圆周角性质的前提是在同圆或等圆中. 7.圆内接四边形(1)定义: 圆内接四边形:顶点都在圆上的四边形,叫圆内接四边形.(2)性质:圆内接四边形对角互补,外角等于内对角(即它的一个外角等于它相邻内角的对角).考点二、与圆有关的位置关系1.点和圆的位置关系设⊙O的半径为r,点P到圆心的距离OP=d,则有:点P在圆外⇔d>r;点P在圆上⇔d=r;点P在圆内⇔d<r.要点诠释:圆的确定:①过一点的圆有无数个,如图所示.②过两点A、B的圆有无数个,如图所示.③经过在同一直线上的三点不能作圆.④不在同一直线上的三点确定一个圆.如图所示.2.直线和圆的位置关系(1)切线的判定切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线.(会过圆上一点画圆的切线)(2)切线的性质切线的性质定理圆的切线垂直于过切点的半径.(3)切线长和切线长定理切线长经过圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长.切线长定理从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.要点诠释:直线l是⊙O的切线,必须符合两个条件:①直线l经过⊙O上的一点A;②OA⊥l.(4)三角形的内切圆:与三角形各边都相切的圆叫做三角形的内切圆.(5)三角形的内心:三角形内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心. 三角形的内心到三边的距离都相等.要点诠释:(1) 任何一个三角形都有且只有一个内切圆,但任意一个圆都有无数个外切三角形;(2) 解决三角形内心的有关问题时,面积法是常用的,即三角形的面积等于周长与内切圆半径乘积的一半,即(S为三角形的面积,P为三角形的周长,r为内切圆的半径).(3) 三角形的外心与内心的区别:(1)离相等,即外心不一定在三角形内部(1)(2)OABAC心在三角形内部3.圆和圆的位置关系(1)基本概念两圆相离、相切、外离、外切、相交、内切、内含的定义.(2)请看下表:要点诠释:①相切包括内切和外切,相离包括外离和内含.其中相切和相交是重点.②同心圆是内含的特殊情况.③圆与圆的位置关系可以从两个圆的相对运动来理解.④“R-r”时,要特别注意,R>r.考点三、与圆有关的规律探究1.和圆有关的最长线段和最短线段了解和圆有关的最长线段与最短线段,对有关圆的性质的了解极为重要,下面对有关问题进行简单论述. (1)圆中最长的弦是直径.如图①,AB是⊙O的直径,CD为非直径的弦,则AB>CD,即直径AB是最长的弦.过圆内一点最短的弦,是与过该点的直径垂直的弦,如图②,P是⊙O内任意一点,过点P作⊙O的直径AB,过P作弦CD⊥AB于P,则CD是过点P的最短的弦.(2)圆外一点与圆上一点的连线中,最长的线段与最短的线段都在过圆心的直线上.如图所示,P 在⊙O 外,连接PO 交⊙O 于A ,延长PO 交⊙O 于B ,则在点P 与⊙O 上各点连接的线段中,PB 最长,PA 最短.(3)圆内一点与圆上一点的连线中,最长的线段与最短的线段也都在过圆心的直线上.如图所示,P 为⊙O 内一点,直径过点P ,交⊙O 于A 、B 两点,则PB 最长、PA 最短. 2.与三角形内心有关的角(1)如图所示,I 是△ABC 的内心,则∠BIC=90°+A ∠21.(2)如图所示,E 是△ABC 的两外角平分线的交点,A BEC ∠21-°90=∠.(3)如图所示,E 是△ABC 内角与外角的平分线的交点,∠E=A ∠21.(4) 如图所示,⊙O 是△ABC 的内切圆,D 、E 、F 分别为切点,则∠DOE =180°-∠A .(5)如图所示,⊙O 是△ABC 的内切圆,D 、E 、F 为切点,A DFE ∠21-°90=∠.(5) 如图所示,⊙O 是△ABC 的内切圆,D 、E 、F 为切点,P 为DE 上一点,则A DPE ∠21+=°90=∠.【典型例题】类型一、圆的性质及垂径定理的应用1.已知:如图所示,⊙O 中,半径OA =4,弦BC 经过半径OA 的中点P ,∠OPC =60°,求弦BC 的长.【总结升华】圆的半径、弦长的一半、弦心距三条线段组成一个直角三角形,其中一个锐角为弦所对圆心角的一半,可充分利用它们的关系解决有关垂径定理的计算问题.2.如图所示,在⊙O 中,弦AB 与CD 相交于点M ,AD BC =,连接AC . (1)求证:△MAC 是等腰三角形;(2)若AC 为⊙O 直径,求证:AC 2=2AM ·AB . 【总结升华】本题考查的是圆周角定理,涉及到全等三角形的判定与性质、相似三角形的判定与性质、等腰三角形的判定与性质及三角形内角和定理,涉及面较广,难度适中. 举一反三:【变式】如图所示,在⊙O 中,AB =2CD ,则( )A .2AB CD > B .2AB CD <C .2AB CD = D .AB 与2CD 的大小关系无法确定3.已知:如图所示,△ABC内接于⊙O,BD⊥半径AO于D.(1)求证:∠C=∠ABD;(2)若BD=4.8,sinC=45,求⊙O的半径.【总结升华】解决圆周角的问题中常用的方法有两种:一是把圆周角转化为同弧所对圆心角的一半的角;二是将圆周角的顶点移动到使其一边经过圆心.类型二、圆的切线判定与性质的应用4.已知:如图所示,AB是⊙O的直径,∠BAC=30°,M是OA上一点,过M作AB的垂线交AC于点N,交BC的延长线于点E,直线CF交EN于点F,且∠ECF=∠E.(1)求证:CF是⊙O的切线;(2)设⊙O的半径为1,且AC=CE,求MO的长.【总结升华】有关切线的判定,主要有两种类型,若题目已经给出了直线与圆有公共点,可采用“连半径证垂直”的方法(此题就如此);若要判定的直线与已知圆的公共点没有给出,可采用“过圆心作垂线,证垂线段等于半径”的方法,简称“作垂直证半径”.举一反三:【变式】如图所示,△ABC中,AB=C,BC=a,CA=b,面积为S.⊙O是△ABC的内切圆,求内切圆半径r.类型三、切线的性质与等腰三角形、勾股定理综合运用5.如图所示,⊙O是Rt△ABC的外接圆,AB为直径,∠ABC=30°,CD是⊙O的切线,ED⊥AB于F.(1)判断△DCE的形状;(2)设⊙O的半径为1,且21-3=OF,求证△DCE≌△OCB.【总结升华】本题考查了切线的性质、等边三角形的判定和性质、等腰三角形的判定、勾股定理、全等三角形的判定和性质.解题的关键是证明△AOC是正三角形.举一反三:【变式】如图所示,PQ=3,以PQ为直径的圆与一个以5为半径的圆相切于点P,正方形ABCD的顶点A、B在大圆上,小圆在正方形的外部且与CD切于点Q,则AB=________.6.如图所示,⊙O的直径AB=4,点P是AB延长线上的一点,PC切⊙O于点C,连接AC.PM平分∠APC交AC于M.(1)若∠CPA=30°,求CP的长及∠CMP的度数;(2)若点P在AB的延长线上运动,你认为∠CMP的大小是否发生变化?若变化,说明理由;若不变化,请求出∠CMP的度数;(3)若点P在直径BA的延长线上,PC切⊙O于点C,则∠CMP的大小是否变化?【总结升华】解第(2)小题时,引用“设∠CPA=α”这一方法,用代数方法计算得出结论,降低了解题的难度.举一反三:【变式】如图所示,AB是⊙O的直径,C是EA的中点,CD⊥AB于D,CD与AE相交于F.(1)求证:AC2=AF·AE;(2)求证:AF=CF.中考总复习:圆的有关概念、性质与圆有关的位置关系—巩固练习(提高)【巩固练习】 一、选择题1. 已知两圆的直径分别是2厘米与4厘米,圆心距是3厘米,则这两个圆的位置关系是 ( )A.相交B.外切C.外离D.内含2.如图,AB 为⊙ O 的直径,CD 为弦,AB⊥CD ,如果∠BOC=70°,那么∠A 的度数为 ( )A. 70°B.35°C. 30°D. 20°3.已知AB 是⊙O 的直径,点P 是AB 延长线上的一个动点,过P 作⊙O 的切线,切点为C ,∠APC 的平分线交AC 于点D ,则∠CDP 等于 ( )A.30°B.60°C.45°D.50°第2题 第3题 第4题 第5题4.如图,⊙O 的半径为5,弦AB 的长为8,M 是弦AB 上的动点,则线段OM 长的最小值为( )A. 5B. 4C. 3D. 25.如图所示,四边形ABCD 中,DC∥AB,BC=1,AB=AC=AD=2.则BD 的长为 ( )A.B.C.D.6. 如图,O为原点,点A的坐标为(3,0),点B的坐标为(0,4),⊙D过A、B、O三点,点C为上一点(不与O、A两点重合),则cosC的值为()A. B. C.D.二、填空题7.已知⊙O的半径为1,圆心O到直线l的距离为2,过l上任一点A作⊙O的切线,切点为B,则线段AB长度的最小值为 .8.如图,AD,AC分别是⊙O的直径和弦.且∠CAD=30°.OB⊥AD,交AC于点B.若OB=5,则BC的长等于 .9.如图所示,已知⊙O中,直径MN=10,正方形ABCD的四个顶点分别在半径OM、OP以及⊙O上,并且∠POM=45°,则AB的长为________.第8题第9题第10 题10.如图所示,在边长为3 cm的正方形中,与相外切,且分别与边相切,分别与边相切,则圆心距= cm.11.如图所示,是的两条切线,是切点,是上两点,如果∠E=46°,∠DCF=32°那么∠A的度数是 .12.在圆的内接等腰三角形ABC(三角形ABC三个顶点均在圆周上)中,圆心到底边BC的距离为3cm,圆的半径为7cm,则腰AB的长为 .AB34354345ABCD1O2O1O,DA DC 2O,BA BC12O O,EB EC O,B C,A D O三、解答题13.如图所示,AC 为⊙O 的直径且PA⊥AC,BC 是⊙O 的一条弦,直线PB 交直线AC 于点D ,32==DO DC DP DB . (1)求证:直线PB 是⊙O 的切线;(2)求cos∠BCA 的值.14.如图所示,点A 、B 在直线MN 上,AB =11厘米,⊙A 、⊙B 的半径均为1厘米.⊙A 以每秒2厘米的速度自左向右运动,与此同时,⊙B 的半径也不断增大,其半径r(厘米)与时间t(秒)之间的关系式为r =1+t(t ≥0).(1)试写出点A 、B 之间的距离d(厘米)与时间t(秒)之间的函数关系式;(2)问点A 出发后多少秒两圆相切?15. 如图所示,半径为2.5的⊙O 中,直径AB 的不同侧有定点C 和动点P .已知BC:CA =4:3,点P 在AB 上运动,过点C 作CP 的垂线,与PB 的延长线交于点Q .(1)当点P 运动到与点C 关于AB 对称时,求CQ 的长;(2)当点P 运动到AB 的中点时,求CQ 的长;(3)当点P 运动到什么位置时,CQ 取到最大值,并求此时CQ 的长.16. 如图1至图4中,两平行线AB 、CD 间的距离均为6,点M 为AB 上一定点.思考如图1,圆心为0的半圆形纸片在AB ,CD 之间(包括AB ,CD ),其直径MN 在AB 上,MN=8,点P 为半圆上一点,设∠MOP=α.当α= 度时,点P 到CD 的距离最小,最小值为 .探究一在图1的基础上,以点M 为旋转中心,在AB ,CD 之间顺时针旋转该半圆形纸片,直到不能再转动为止,如图2,得到最大旋转角∠BMO= 度,此时点N 到CD 的距离是 .探究二将如图1中的扇形纸片NOP 按下面对α的要求剪掉,使扇形纸片MOP 绕点M 在AB ,CD 之间顺时针旋转.(1)如图3,当α=60°时,求在旋转过程中,点P 到CD 的最小距离,并请指出旋转角∠BMO 的最大值;(2)如图4,在扇形纸片MOP 旋转过程中,要保证点P 能落在直线CD 上,请确定α的取值范围. (参考数椐:sin49°=,cos41°=,tan37°=.)343434。
圆的典型基本图形
圆的典型基本图形图形1:如图1:AB 是⊙O 的直径,点E 、C 是⊙O 上的两点。
(1)在“AC 平分∠BAE ”;“AD ⊥CD ”;“DC 是⊙O 的切线”三个论断中,知二推一。
(2)如图2、3,DE 等于弓形BCE 的高;DC =AE 的弦心距OF (或弓形BCE 的半弦EF )。
(3)如图(4):若CK ⊥AB 于K ,则:①CK=CD ;BK=DE ;CK=BE/2=DC ;AE+AB=2BK=2AD ; ②⊿ADC ∽⊿ACB (或AC 2=AD•AB )(4)在(1)中的条件①、②、③中任选两个条件,当BG ⊥CD 于E 时(如图5),则: ①DE=GB ;②DC=CG ;③AD+BG=AB ;④AD•BG=DG 2/4=DC 2图形2:如图:Rt ⊿ABC 中,∠ACB =90°。
点O 是AC 上一点,以OC 为半径作⊙O 交AC 于点E ,基本结论有:(1)在“BO 平分∠CBA ”;“BO ∥DE ”;“AB 是⊙O 的切线”;“BD=BC ”。
四个论断中,知一推三。
(2)①G 是⊿BCD 的内心;②③⊿BCO ∽⊿CDE(或BO•DE=CO•CE )(3)如图(3),若①BC=CE ,则:②tan ∠ADE=AE/AD=1/2; ③BC :AC :AB =3:4:5 ;(在①、②、③中知一推二)④设BE 、CD 交于点H ,,则BH=2EH图形3:如图:Rt ⊿ABC 中,∠ABC =90°,以AB 为直径作⊙O 交AC 于D ,基本结论有:如右图:(1)DE 切⊙O ↔ E 是BC 的中点; (2)若DE 切⊙O ,则: DE=BE=CE ;如图1:DE ∥AB ↔⊿ABC 、⊿CDE图5图4图3图2图1CG=GD图形4::以直角梯形ABCD 的直腰为直径的圆切斜腰于E, 基本结论有:(1)如图1:①AD+BC =CD ; ②∠COD =∠AEB =90°; ③OD 平分∠ADC (或OC 平分∠BCD );(注:在①、②、③及④“CD 是⊙O 的切线”四个论断中,知一推三)(2)如图2,连AE 、CO ,则有:CO ∥AE ,CO•AE =2R 2(与基本图形2重合)(3)如图3,若EF ⊥AB 于F ,交AC 于G ,则:EG =FG .图形5:如图:直线PR ⊥⊙O 的半径OB 于E ,PQ 切⊙O 于Q ,BQ 交直线PQ 于R 。
以圆为基本图形的物品或标志
以圆为基本图形的物品或标志
1、禁止饮食标志:这个标志为圆形内添加饮料食物标识表示饮食,在地铁车厢里常见这种禁止饮食标志。
2、禁止掉头标志:这个标志为圆形内添加调转箭头及斜线,表示禁止调头。
3、禁止烟火标志:这个圆形内添加香烟火柴的标志表示禁止烟火,通常在加油站会见到这种禁止烟火标志。
4、禁止吸烟标志:以圆为基本图形,内里有香烟标识,再以斜杠表示禁止,整个构成禁止吸烟标志。
5、国家节水标志:
由水滴、手掌和地球变形而成。
绿色的圆形代表地球,象征节约用水是保护地球生态的重要措施。
标志留白部分像一只手托起一滴水,手是拼音字母JS的变形,寓意为节水,表示节水需要公众参与,鼓励人们从我做起,人人动手节约每一滴水,手又像一条蜿蜒的河流,象征滴水汇成江河。
九年级数学专题复习圆的有关概念、性质与圆有关的位置关系
总复习圆的有关概念、性质与圆有关的位置关系【考纲要求】1. 圆的基本性质和位置关系是中考考查的重点,但圆中复杂证明及两圆位置关系中证明会有下降趋势,不会有太复杂的大题出现;2.中考试题中将更侧重于具体问题中考查圆的定义及点与圆的位置关系,对应用、创新、开放探究型题目,会根据当前的政治形势、新闻背景和实际生活去命题,进一步体现数学来源于生活,又应用于生活.【知识网络】【考点梳理】考点一、圆的有关概念及性质 1.圆的有关概念圆、圆心、半径、等圆;弦、直径、弦心距、弧、半圆、优弧、劣弧、等弧;三角形的外接圆、三角形的内切圆、三角形的外心、三角形的内心、圆心角、圆周角. 要点进阶:等弧:在同圆或等圆中,能够互相重合的弧叫做等弧. 2.圆的对称性圆是轴对称图形,任何一条直径所在直线都是它的对称轴,圆有无数条对称轴; 圆是以圆心为对称中心的中心对称图形; 圆具有旋转不变性. 3.圆的确定不在同一直线上的三个点确定一个圆.要点进阶:圆心确定圆的位置,半径确定圆的大小. 4.垂直于弦的直径垂径定理 垂直于弦的直径平分这条弦,并且平分弦所对的两条弧. 推论 平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.要点进阶:在图中(1)直径CD ,(2)CD ⊥AB ,(3)AM =MB ,(4)C C A B =,(5)AD BD =.若上述5个条件有2个成立,则另外3个也成立.因此,垂径定理也称“五二三定理”.即知二推三.注意:(1)(3)作条件时,应限制AB不能为直径.5.圆心角、弧、弦之间的关系定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量也相等.6.圆周角圆周角定理在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论1 在同圆或等圆中,相等的圆周角所对的弧也相等.推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径.要点进阶:圆周角性质的前提是在同圆或等圆中.7.圆内接四边形(1)定义: 圆内接四边形:顶点都在圆上的四边形,叫圆内接四边形.(2)性质:圆内接四边形对角互补,外角等于内对角(即它的一个外角等于它相邻内角的对角).考点二、与圆有关的位置关系1.点和圆的位置关系设⊙O的半径为r,点P到圆心的距离OP=d,则有:点P在圆外⇔d>r;点P在圆上⇔d=r;点P在圆内⇔d<r.要点进阶:圆的确定:①过一点的圆有无数个,如图所示.②过两点A、B的圆有无数个,如图所示.③经过在同一直线上的三点不能作圆.④不在同一直线上的三点确定一个圆.如图所示.2.直线和圆的位置关系(1)切线的判定切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线.(会过圆上一点画圆的切线)(2)切线的性质切线的性质定理圆的切线垂直于过切点的半径.(3)切线长和切线长定理切线长经过圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长.切线长定理从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.要点进阶:直线l是⊙O的切线,必须符合两个条件:①直线l经过⊙O上的一点A;②OA⊥l.(4)三角形的内切圆:与三角形各边都相切的圆叫做三角形的内切圆.(5)三角形的内心:三角形内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心. 三角形的内心到三边的距离都相等.要点进阶:(1) 任何一个三角形都有且只有一个内切圆,但任意一个圆都有无数个外切三角形;(2) 解决三角形内心的有关问题时,面积法是常用的,即三角形的面积等于周长与内切圆半径乘积的一半,即(S为三角形的面积,P为三角形的周长,r为内切圆的半径).(3) 三角形的外心与内心的区别:名称确定方法图形性质外心(三角形外接圆的圆心) 三角形三边中垂线的交点(1)到三角形三个顶点的距离相等,即OA=OB=OC;(2)外心不一定在三角形内部内心(三角形内切圆的圆心) 三角形三条角平分线的交点(1)到三角形三边距离相等;(2)OA、OB、OC分别平分∠BAC、∠ABC、∠ACB; (3)内心在三角形内部.3.圆和圆的位置关系(1)基本概念两圆相离、相切、外离、外切、相交、内切、内含的定义.(2)请看下表:要点进阶:①相切包括内切和外切,相离包括外离和内含.其中相切和相交是重点.②同心圆是内含的特殊情况.③圆与圆的位置关系可以从两个圆的相对运动来理解.④“R-r”时,要特别注意,R>r.考点三、与圆有关的规律探究1.和圆有关的最长线段和最短线段了解和圆有关的最长线段与最短线段,对有关圆的性质的了解极为重要,下面对有关问题进行简单论述.(1)圆中最长的弦是直径.如图①,AB是⊙O的直径,CD为非直径的弦,则AB>CD,即直径AB是最长的弦.过圆内一点最短的弦,是与过该点的直径垂直的弦,如图②,P是⊙O内任意一点,过点P作⊙O的直径AB,过P作弦CD⊥AB于P,则CD是过点P的最短的弦.(2)圆外一点与圆上一点的连线中,最长的线段与最短的线段都在过圆心的直线上.如图所示,P在⊙O外,连接PO交⊙O于A,延长PO交⊙O于B,则在点P与⊙O上各点连接的线段中,PB最长,PA最短.(3)圆内一点与圆上一点的连线中,最长的线段与最短的线段也都在过圆心的直线上.如图所示,P为⊙O内一点,直径过点P,交⊙O于A、B两点,则PB最长、PA最短.2.与三角形内心有关的角(1)如图所示,I是△ABC的内心,则∠BIC1902A =+∠°.(2)如图所示,E是△ABC的两外角平分线的交点,1902BEC A ∠=-∠°.(3)如图所示,E是△ABC内角与外角的平分线的交点,12E A ∠=∠.(4)如图所示,⊙O是△ABC的内切圆,D、E、F分别为切点,则∠DOE=180°-∠A.(5)如图所示,⊙O是△ABC的内切圆,D、E、F为切点,1902DFE A ∠=-∠°.(6)如图所示,⊙O是△ABC的内切圆,D、E、F为切点,P为DE上一点,则1902 DPE A ∠=+∠°.【典型例题】类型一、圆的性质及垂径定理的应用例1.已知:如图所示,⊙O中,半径OA=4,弦BC经过半径OA的中点P,∠OPC=60°,求弦BC的长.例2.如图所示,在⊙O 中,弦AB 与CD 相交于点M ,AD BC =,连接AC . (1)求证:△MAC 是等腰三角形;(2)若AC 为⊙O 直径,求证:AC 2=2AM ·AB .举一反三:【变式】如图所示,在⊙O 中,AB =2CD ,则( )A .2AB CD > B .2AB CD <C .2AB CD = D .AB 与2CD 的大小关系无法确定例3.已知:如图所示,△ABC 内接于⊙O ,BD ⊥半径AO 于D .(1)求证:∠C =∠ABD ;(2)若BD =4.8,sinC =45,求⊙O 的半径.类型二、圆的切线判定与性质的应用例4.如图,AB是⊙O的直径,点C是⊙O上一点,AD与过点C的切线垂直,垂足为点D,直线DC与AB 的延长线相交于点P,弦CE平分∠ACB,交AB于点F,连接BE.(1)求证:AC平分∠DAB;(2)求证:△PCF是等腰三角形;(3)若AC=8,BC=6,求线段BE的长.举一反三:【变式】如图,以△ABC的BC边上一点O为圆心的圆,经过A,B两点,且与BC边交于点E,D为BE的下半圆弧的中点,连接AD交BC于F,AC=FC.(1)求证:AC是⊙O的切线;(2)已知圆的半径R=5,EF=3,求DF的长.类型三、切线的性质与等腰三角形、勾股定理综合运用例5.如图所示,⊙O是Rt△ABC的外接圆,AB为直径,∠ABC=30°,CD是⊙O的切线,ED⊥AB于F.(1)判断△DCE的形状;(2)设⊙O的半径为1,且312OF-=,求证△DCE≌△OCB.举一反三:【变式】如图所示,PQ=3,以PQ为直径的圆与一个以5为半径的圆相切于点P,正方形ABCD的顶点A、B在大圆上,小圆在正方形的外部且与CD切于点Q,则AB=________.例6.如图所示,⊙O的直径AB=4,点P是AB延长线上的一点,PC切⊙O于点C,连接AC.PM平分∠APC交AC于M.(1)若∠CPA=30°,求CP的长及∠CMP的度数;(2)若点P在AB的延长线上运动,你认为∠CMP的大小是否发生变化?若变化,说明理由;若不变化,请求出∠CMP的度数;(3)若点P在直径BA的延长线上,PC切⊙O于点C,那么∠CMP的大小是否变化?请直接写出你的结论.举一反三:A的中点,CD⊥AB于D,CD与AE相交于F.【变式】如图所示,AB是⊙O的直径,C是E(1)求证:AC2=AF·AE;(2)求证:AF=CF.【巩固练习】一、选择题1. 在△ABC中,,∠C=45°,AB=8,以点B为圆心4为半径的⊙B与以点C为圆心的⊙C相离,则⊙C的半径不可能为()A.5 B.6 C.7 D.152.如图,AB为⊙ O 的直径,CD 为弦,AB⊥CD,如果∠BOC=70°,那么∠A的度数为()A. 70°B.35°C. 30°D. 20°3.已知AB是⊙O的直径,点P是AB延长线上的一个动点,过P作⊙O的切线,切点为C,∠APC的平分线交AC于点D,则∠CDP等于()A.30°B.60°C.45°D.50°第2题第3题第4题第5题4.如图,⊙O的半径为5,弦AB的长为8,M是弦AB 上的动点,则线段OM长的最小值为()A. 5B. 4C. 3D. 25.如图所示,四边形ABCD中,DC∥AB,BC=1,AB=AC=AD=2.则BD的长为()A. 14B. 15C. 32D. 236. 如图,O 为原点,点A 的坐标为(3,0),点B 的坐标为(0,4),⊙D 过A 、B 、O 三点,点C 为0AB 上一点(不与O 、A 两点重合),则cosC 的值为( )A .34B .35 C .43D .45二、填空题7.已知⊙O 的半径为1,圆心O 到直线l 的距离为2,过l 上任一点A 作⊙O 的切线,切点为B ,则线段AB 长度的最小值为 .8.如图,AD ,AC 分别是⊙O 的直径和弦.且∠CAD=30°.O B⊥AD,交AC 于点B .若OB=5,则BC 的长等于 .9.如图所示,已知⊙O 中,直径MN =10,正方形ABCD 的四个顶点分别在半径OM 、OP 以及⊙O 上,并且∠POM =45°,则AB 的长为________.第8题 第9题 第10 题10.如图所示,在边长为3 cm 的正方形ABCD 中,1O 与2O 相外切,且1O 分别与,DA DC 边相切,2O 分别与,BA BC 边相切,则圆心距12O O = cm .11.如图所示,,EB EC 是O 的两条切线,,B C 是切点,,A D 是O 上两点,如果∠E=46°,∠DCF=32°那么∠A 的度数是 .12.如图,在⊙O 中,AB 是直径,点D 是⊙O 上一点,点C 是的中点,CE⊥AB 于点E ,过点D 的切线交EC 的延长线于点G ,连接AD ,分别交CE 、CB 于点P 、Q ,连接AC ,关于下列结论:①∠BAD=∠ABC;②GP=GD;③点P 是∠ACQ 的外心,其中正确结论是 (只需填写序号).三、解答题13.如图所示,AC 为⊙O 的直径且PA⊥AC,BC 是⊙O 的一条弦,直线PB 交直线AC 于点D ,DB DC 2DP DO 3==.(1)求证:直线PB 是⊙O 的切线; (2)求cos∠BCA 的值.14.如图所示,点A、B在直线MN上,AB=11厘米,⊙A、⊙B的半径均为1厘米.⊙A以每秒2厘米的速度自左向右运动,与此同时,⊙B的半径也不断增大,其半径r(厘米)与时间t(秒)之间的关系式为r =1+t(t≥0).(1)试写出点A、B之间的距离d(厘米)与时间t(秒)之间的函数关系式;(2)问点A出发后多少秒两圆相切?15.已知⊙O的直径AB=10,弦BC=6,点D在⊙O上(与点C在AB两侧),过D作⊙O的切线PD.(1)如图①,PD与AB的延长线交于点P,连接PC,若PC与⊙O相切,求弦AD的长;(2)如图②,若PD∥AB,①求证:CD平分∠ACB;②求弦AD的长.16. 如图1至图4中,两平行线AB、CD间的距离均为6,点M为AB上一定点.思考如图1,圆心为0的半圆形纸片在AB,CD之间(包括AB,CD),其直径MN在AB上,MN=8,点P 为半圆上一点,设∠MOP=α.当α=度时,点P到CD的距离最小,最小值为.探究一在图1的基础上,以点M为旋转中心,在AB,CD 之间顺时针旋转该半圆形纸片,直到不能再转动为止,如图2,得到最大旋转角∠BMO=度,此时点N到CD的距离是.探究二将如图1中的扇形纸片NOP按下面对α的要求剪掉,使扇形纸片MOP绕点M在AB,CD之间顺时针旋转.(1)如图3,当α=60°时,求在旋转过程中,点P到CD的最小距离,并请指出旋转角∠BMO的最大值;(2)如图4,在扇形纸片MOP旋转过程中,要保证点P能落在直线CD上,请确定α的取值范围.(参考数椐:sin49°=34,cos41°=34,tan37°=34.)。
圆中的基本图形和常见数学思想
初 中数 学 教 师 的 任 务是 教 会 学 生 思考 , 于思 考 , 语 有 云: 善 古 学
1 圆 外 引 阋的 两 条 切线 , 线长 相 等 ; . 从 切
2 .三 角 形 的 内心 是 三 角 形 三条 角 平 分 线 的交 点 , 且 到 三 角形 三条 边 的 距 离相 等 ; 并 3三角 形 的 面 积 和周 长 、 . 内切 圆半 径 三 者 的关
一
圆一 直 是 初 中 阶段 数 学学 习 的一 个 难 点 , 为 圆 中知 识 点 很 因 多 , 合 性 也很 强 。而 且 中 考 中 圆常 常 和 四边 形 , 综 三角 形 , 至 代 甚
数 中的 二 次 函数 结合 起 来 考 察学 生 的能 力 。所 以学 生 遇 到 圆 的综 合 题 往往 觉 得 相 当 吃力 。针 对 这 种情 况 , 我一 直 在 考虑 如何 突 破 圆的 教学 难 关 , 学 生 对 圆 不再 望 而 生畏 , 且提 高 解 题 能 力 。 让 并
2相 似 关 系 : . 3害1 定 理 。 . 线 这个 图形 中涵 盖 了 : 1弦 切 角 等 于所 夹 弧 所 对 的 圆周 角 : .
2相 似 关 系 : . 3切 割 线 定 理 。 . 这 个 图 形 中 涵盖 了 :
训 练学 生 去 发 现 和识 别 基 本 图 形 。 另外 为 了得 到基 本 图形 时需 有 要 我们 添 加 辅 助 线 。 嘲 中常 见 辅 助线 有 : 1 已知 直 径 时 , 构 造 直径 所 对 的圆 周 角 。 . 常
我 觉得 老 师 有 必要 把 网 中涵 盖 的 知识 点 融 入 到几 个 基 本 图 形 中 , 教 会 学 生在 复 杂 的 图形 中提 炼 出基 本 图形 。另 外 一定 要 帮 并 助 学 生进 行 解 题 方 法 的训 练 和 总 结 。让 他 们 熟 悉 圆 中常 用 的 数 学 方 法 。我 归纳 了以 下几 个 方 面 的 内容 , 述如 下 。 概 圆 中基 本 图 形 主要 有 :
人教版数学九年级上学期课时练习-圆及有关概念(知识讲解)(人教版)
专题24.1 圆及有关概念(知识讲解)【学习目标】1.理解圆的本质属性;经历探索点与圆的位置关系的过程,会运用点到圆心的距离与圆的半径之间的数量关系判断点与圆的位置关系;2.了解圆及其有关概念,理解弦、弧、半圆、优弧、劣弧、同心圆、等圆、等弧等与圆有关的概念,理解概念之间的区别和联系;【要点梳理】要点一、圆的定义第一定义:如图,在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,固定的端点O叫做圆心,线段OA叫做半径. 以点O为圆心的圆,记作“⊙O”,读作“圆O”.特别说明:①圆心确定圆的位置,半径确定圆的大小;确定一个圆应先确定圆心,再确定半径,二者缺一不可;②圆是一条封闭曲线.第二定义:圆心为O,半径为r的圆是平面内到定点O的距离等于定长r的点的集合. 特别说明:①定点为圆心,定长为半径;②圆指的是圆周,而不是圆面;③强调“在一个平面内”是非常必要的,事实上,在空间中,到定点的距离等于定长的点的集合是球面,一个闭合的曲面.1.点和圆的三种位置关系:由于平面上圆的存在,就把平面上的点分成了三个集合,即圆内的点,圆上的点和圆外的点,这三类点各具有相同的性质和判定方法;设⊙O的半径为r,点P到圆心的距离为d,则有要点二、与圆有关的概念1.弦弦:连结圆上任意两点的线段叫做弦.直径:经过圆心的弦叫做直径.弦心距:圆心到弦的距离叫做弦心距.特别说明:直径是圆中通过圆心的特殊弦,也是圆中最长的弦,即直径是弦,但弦不一定是直径.2.弧弧:圆上任意两点间的部分叫做圆弧,简称弧.以A、B为端点的弧记作,读作“圆弧AB”或“弧AB”.半圆:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆; 优弧:大于半圆的弧叫做优弧;劣弧:小于半圆的弧叫做劣弧.特别说明:①半圆是弧,而弧不一定是半圆;②无特殊说明时,弧指的是劣弧.3.同心圆与等圆圆心相同,半径不等的两个圆叫做同心圆.圆心不同,半径相等的两个圆叫做等圆.同圆或等圆的半径相等.4.等弧在同圆或等圆中,能够完全重合的弧叫做等弧.特别说明:①等弧成立的前提条件是在同圆或等圆中,不能忽视;②圆中两平行弦所夹的弧相等.类型一、圆的定义1.如图,已知O 的圆心原点()0,0O ,半径长为(10,8),A a 是O 上的在第一象限的点,求a 的值.【答案】6【分析】根据圆的基本性质,可得OA =10,再由(),8A a ,可得AB =8,然后由勾股定理,求出OB =6,即可求解.解:如图,过点B 作AB ⊥x 轴于点B ,连接OA ,⊥O 的半径长为10,⊥OA =10,⊥(),8A a ,⊥AB =8,在Rt AOB 中,由勾股定理得:6OB = ,⊥(),8A a 在第一象限内,⊥0a > ,⊥6a =.【点拨】本题主要考查了圆的基本性质,勾股定理,点的坐标,熟练掌握圆的基本性质,勾股定理是解题的关键.举一反三:【变式1】 ABC 中,90C ∠=︒.求证:A B C ,,三点在同一个圆上.【分析】取AB 的中点O ,根据直角三角形的性质得到CO =AO =BO ,故可求解. 解:如图所示,取AB 的中点O ,连接CO在Rt ⊥ABC 中,⊥AO = BO ,⊥ACB = 90°,⊥CO =12AB ,即CO =AO =BO .⊥A ,B ,C 三点在同一个圆上,圆心为点O .【点拨】此题主要考查证明三点共圆,解题的关键是熟知圆的基本性质及直角三角形的特点.【变式2】如图,已知MN 为O 的直径,四边形ABCD ,EFGD 都是正方形,小正方形EFGD 的面积为16,求圆的半径.【答案】r =【分析】连接OC ,OF ,设O 的半径为r ,2AD x =,则12DO AD x ==,在Rt ⊥COD 和Rt ⊥FOG 中,分别根据勾股定理可得222(2)832x x x x +=++,解方程即可求解.解:如图,连接OC ,OF ,设O 的半径为r ,2AD x =,则12DO AD x ==, ⊥222DO CD CO +=,⊥222(2)x x r +=,⊥正方形EFGD 的面积为16,⊥4DG FG ==,⊥4OG x =+,又⊥222OF OG FG =+,⊥2222(4)4832r x x x =++=++,⊥222(2)832x x x x +=++, 解得14x =,22x =-(不合题意,舍去),⊥2224880r =+=,r =【点拨】本题考查勾股定理的应用圆的认识和性质,解题的关键是熟练掌握在一个直角三角形中两条直角边的平方和等于斜边的平方.类型二、与圆有关的概念3.如图,在O 中,半径有________,直径有________,弦有________,劣弧有________,优弧有________.【答案】OA,OB,OC,OD AB AB,BC AC,BC,BD,CD,AD ADC,BAC,BAD,ACD,DAC【分析】根据圆的基本概念,即可求解.解:在O中,半径有OA,OB,OC,OD;直径有AB;弦有AB,BC;劣弧有AC,BC,BD,CD,AD;优弧有ADC,BAC,BAD,ACD,DAC;故答案为:OA,OB,OC,OD;AB;AB,BC;AC,BC,BD,CD,AD;ADC,BAC,BAD,ACD,DAC.【点拨】本题主要考查了圆的基本概念,熟练掌握圆的半径、直径、弦、弧的概念是解题的关键.举一反三:【变式1】小于半圆的弧(如图中的________)叫做______;大于半圆的弧(用三个字母表示,如图中的_______)叫做______ .【注意】1)弧分为是优弧、劣弧、半圆.2)已知弧的两个起点,不能判断它是优弧还是劣弧,需分情况讨论.【答案】AC劣弧ABC优弧【变式2】如图,以点A为端点的优弧是____________,以点A为端点的劣弧是_____________.【答案】AEC,ADE AE,AC【分析】根据劣弧和优弧的定义求解.解:在⊥O中,以A为端点的优弧有AEC,ADE;以A为端点的劣弧有AE,AC;故答案为:AEC,ADE;AE,AC.【点拨】本题考查了圆的认识:掌握与圆有关的概念,注意:大于半圆的弧是优弧,小于半圆的弧是劣弧,半圆既不是优弧,也不是劣弧.类型三、点和圆的位置关系3.已知⊥O的半径r=5cm,圆心O到直线l的距离d=OD=3cm,在直线l上有P、Q、R三点,且有PD=4cm,QD>4cm,RD<4cm,P、Q、R三点与⊥O位置关系各是怎样的【答案】PD=4cm,点P在⊥O上.QD>4cm,点Q在⊥O外.RD<4cm,点R在⊥O 内.【分析】依题意画出图形(如图所示),计算出P、Q、R三点到圆心的距离与圆的半径比较大小.解:连接PO,QO,RO.⊥PD=4cm,OD=3cm,⊥PO5r==.⊥ 点P 在⊥O 上.5QO r ===,⊥ 点Q 在⊥O 外.5RO r ==,⊥ 点R 在⊥O 内.【点拨】本题主要考查点与圆的位置关系,点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.举一反三:【变式1】已知:如图,△ABC 中,90,2cm,4cm AC C C B ∠==︒=,CM 是中线,以C长为半径画圆,则点A 、B 、M 与⊥C 的关系如何?【答案】点A 在⊥O 内;点B 在⊥C 外;M 点在⊥C 上【分析】点与圆的位置关系由三种情况:设点到圆心的距离为d ,则当d =r 时,点在圆上;当d >r 时,点在圆外;当d <r 时,点在圆内.解:根据勾股定理,有AB =cm );⊥CA =2cm ,⊥点A 在⊥O 内,⊥BC =4cm ,⊥点B 在⊥C 外;由直角三角形的性质得:CM⊥M 点在⊥C 上.【点拨】本题考查了对点与圆的位置关系的判断.关键要记住若半径为r,点到圆心的距离为d,则有:当d>r时,点在圆外;当d=r时,点在圆上,当d<r时,点在圆内.【变式2】画图说明:端点分别在两条互相垂直的直线上,且长度为5 cm的所有线段的中点所组成的图形.【答案】以两条已知直线的交点(垂足)为圆心,2.5 cm长为半径的一个圆.【分析】如图所示,当线段两个端点在O,F时,此时的的中点为B点,同理可知也可在A,G,H点,这些点在已知直线的交点为圆心,2.5 cm长为半径的一个圆上;当线段两个端点在C,D时,其中点为E,根据直角三角形斜边上的中点是斜边的一半知CE=DE=OE,则E点在以O为圆心2.5 cm长为半径的一个圆上;综上即可画出图形.解:如图所示,以两条已知直线的交点(垂足)为圆心,2.5 cm长为半径的一个圆.【点拨】此题主要考查点与圆的关系,解题的关键是正确理解题意,再画出图形.类型四、圆中弦的问题4、已知:线段AB = 4 cm,画图说明:和点A、B的距离都不大于3 cm的所有点组成的图形.【答案】所求图形为阴影部分(包括阴影的边界).【分析】以A,B点为圆心,半径为3作圆,重叠的部分即为所求.解:如图所示,以点A,B为圆心,3cm为半径画圆,两个圆相交的部分为阴影部分,图中阴影部分就是到点A和点B的距离都不大于3 cm的所有点组成的图形.【点拨】此题主要考查点与圆的位置关系,解题的关键是根据题意画出图形,根据所学的点与圆的位置关系的判断方法来解答.举一反三:【变式1】如图所示,AB 为O 的一条弦,点C 为O 上一动点,且30BCA ∠=︒,点E ,F 分别是AC ,BC 的中点,直线EF 与O 交于G ,H 两点,若O 的半径为7,求GE FH +的最大值.【答案】GE FH +的最大值为212. 【分析】由GE FH +和EF 组成O 的弦GH ,在O 中,弦GH 最长为直径14,而EF 可求,所以GE FH +的最大值可求.解:连结AO ,BO ,⊥30BCA ∠=︒ ⊥60BOA ∠=︒⊥AOB 为等边三角形,7AB =⊥点E ,F 分别是AC ,BC 的中点 ⊥1722EF AB ==,⊥ GH 为O 的一条弦 ⊥GH 最大值为直径14 ⊥GE FH +的最大值为7211422-=. 【点拨】利用直径是圆中最长的弦,可以解决圆中一些最值问题.【变式2】如图,已知等边⊥ABC 的边长为8,点 P 是 AB 边上的一个动点(与点 A 、B 不重合).直线 l 是经过点 P 的一条直线,把⊥ABC 沿直线 l 折叠,点 B 的对应点是点B '.当 PB =6 时,在直线 l 变化过程中,求⊥ACB'面积的最大值.【答案】【分析】如图,过点P 作PH AC ⊥,当B ',P ,H 共线时,ACB '△的面积最大,求出PH 的长即可解决问题.解:如图,过点P 作PH ⊥AC ,由题可得,B '在以P 为圆心,半径长为6的圆上运动,当HP 的延长线交圆P 于点B '时面积最大,在Rt APH 中,8AB =,6PB =,2PA ∴=, ABC 是等边三角形,60PAH ∴∠=︒,1AH ∴=,PH =6BH ∴=ACB S '∴的最大值为18(6242⨯⨯=. 【点拨】本题考查圆与三角形综合问题,根据题意构造出图形是解题的关键. 类型五、与圆周长和面积有关的问题5、如图所示,求如图正方形中阴影部分的周长.(结果可保留π)【答案】正方形中阴影部分的周长为()2060cm π+【分析】阴影部分的周长=半圆弧长+14圆弧长+正方形边长的3倍,依此计算即可求解. 解:根据题意得:1110(cm)2l d ππ==, 2210(cm 41)r l ππ=⋅=, ()1010602060cm C πππ=++=+.故正方形中阴影部分的周长为()2060cm π+.【点拨】本题主要考查列代数式,解题的关键是掌握圆的周长公式.举一反三:【变式1】如图,长方形的长为a ,宽为b ,在它的内部分别挖去以b 为半径的四分之一圆和以b 为直径的半圆.(1)用含a 、b 的代数式表示阴影部分的面积;(2)当a =8,b =4时,求阴影部分的面积(π取3).【答案】(1)阴影部分的面积=ab ﹣38πb 2;(2)14.【分析】 (1)根据阴影部分面积=矩形面积-14圆的面积-半圆的面积,结合图形14圆的半径、半圆的半径和矩形的宽的关系,并利用它们的面积公式即可求解.(2)将a ,b 的值代入(1)中所求的代数式进行计算.解:(1)14圆的半径即为矩形的宽=b ,半圆的半径为矩形宽的12=12b , 阴影部分面积=矩形面积-14圆的面积-半圆的面积即:阴影部分面积=2221113()4228ab b b ab b πππ--=- (2)因为π取3,将84a b ==,代入(1)所得的代数式得:原式=238434=148⨯-⨯⨯. 【点拨】本题考查求圆的面积的公式及根据题意列代数式,明确阴影部分面积=矩形面积-14圆的面积-半圆的面积是解题的关键. 【变式2】如图,长方形的长为a ,宽为2a ,用整式表示图中阴影部分的面积,并计算当2a =时阴影部分的面积(π取3.14).【答案】2(2)4a π-,1.14 【分析】根据对称性用a 表示出阴影的面积,再将a=2代入求解即可.解:由题意可知:S 阴=211442222a a a π⎡⎤⎛⎫-⋅⋅⎢⎥ ⎪⎝⎭⎢⎥⎣⎦ 2(2)4a π-= 当2a =时,S 阴=(3.142)4 1.144-⨯=. 【点拨】本题考查列代数式、代数式求值、圆的面积公式、三角形的面积公式,解答的关键是找出面积之间的关系,利用基本图形的面积公式解决问题.类型六、坐标系中圆的问题6、如图,点P 是反比例函数(0)k y x x=<图象上一点,PA x ⊥轴于点A ,点M 在y 轴上,M 过点A ,与y 轴交于B 、D ,已知A 、B 两点的坐标分别为()()6,00,2A B -,,PB 的延长线交M 于另一点C .(1)求M 的半径的长;(2)当45APB ∠=︒时,试求出k 的值;(3)在(2)的条件下,请求出线段PC 的长.【答案】(1) 10 (2) 48- (3) 【分析】(1)设()0,M m ,由题意知,22AM BM =,即()()()2226002m m --+-=-,求出满足要求的m ,求出MB 的长,进而可得半径;(2)由题意,设()6,P n -,设过P B ,的直线的解析式为y ax b =+,交x 轴于E ,将P B ,代入得62a b n b -+=⎧⎨=⎩,可得过P B ,的直线的解析式为226n y x -=+,将0y =代入,求得12,02E n -⎛⎫ ⎪-⎝⎭,由45APB ∠=︒ ,90PAB ∠=︒,可知AP PE =,则()1262n n -=---,求出满足要求的n 值,得到P 点坐标,然后代入反比例函数解析式求k 即可;(3)由(2)可知,过P B ,的直线的解析式为28226y x x -=+=-+,设(),2C a a -+,由题意知,10MC =,则()2222810a a +-++=,求出符合要求的a 值,进而可得C 的坐标,然后利用勾股定理求PC 的值即可.(1)解:设()0,M m ,由题意知,22AM BM =,即()()()2226002m m --+-=-,解得:8m =-,⊥()0,8M -,⊥()2810--=,⊥M 的半径的长为10.(2)解:由题意,设()6,P n -,设过P B ,的直线的解析式为y ax b =+,交x 轴于E ,如图,将P B ,代入得62a b n b -+=⎧⎨=⎩, 解得262n a b -⎧=⎪⎨⎪=⎩, ⊥过P B ,的直线的解析式为226n y x -=+, 将0y =代入得122x n-=-, ⊥12,02E n -⎛⎫ ⎪-⎝⎭, ⊥45APB ∠=︒ ,90PAE ∠=︒,⊥45PEA ∠=︒,⊥AP AE =, ⊥()1262n n-=---, 整理得280n n -=,解得8n =,0n =(不合题意,舍去),⊥()6,8P -,将()6,8P -代入k y x =得,86k =-, 解得48k =-,⊥k 的值为48-.(3)解:由(2)可知,过P B ,的直线的解析式为28226y x x -=+=-+, 设(),2C a a -+,由题意知,10MC =,⊥()2222810a a +-++=,解得10a =, 0a =(不合题意,舍去),⊥()10,8C -,⊥PC =⊥PC 的长为【点拨】本题考查了圆的概念,反比例函数与一次函数的综合,等角对等边,勾股定理等知识.解题的关键在于对知识的熟练掌握与灵活运用.举一反三:【变式1】如图,在平面直角坐标系中,方程222()()x a y b r -+-=表示圆心是(),a b ,半径是r 的圆,其中0a >,0b >.(1)请写出方程22(3)(4)25x y ++-=表示的圆的半径和圆心的坐标;(2)判断原点()0,0和第(1)问中圆的位置关系.【答案】(1)半径为5,圆心()3,4- (2)在圆上【分析】(1)根据题目所给的“在平面直角坐标系中,方程222()()x a y b r -+-=表示圆心是(),a b ,半径是r 的圆”即可直接得出答案;(2)将原点()0,0的坐标代入22(3)(4)25x y ++-=,即可判断出点与圆的位置关系.(1)解:在平面直角坐标系中,方程222()()x a y b r -+-=表示圆心是(),a b ,半径是r 的圆,∴将22(3)(4)25x y ++-=化成()2223(4)5x y --+-=⎡⎤⎣⎦, ∴22(3)(4)25x y ++-=表示的圆的半径为5,圆心的坐标为()3,4-;(2)解:将原点()0,0代入22(3)(4)25x y ++-=,左边2222(03)(04)3491625=++-=+=+==右边,∴原点()0,0在22(3)(4)25x y ++-=表示的圆上.【点拨】此题主要考查对未学知识以新定义形式出现的题型,读懂题意,根据新定义解决问题是本题的关键.【变式2】阅读下列材料:平面上两点P 1(x 1,y 1),P 2(x 2,y 2)之间的距离表示为12PP =,称为平面内两点间的距离公式,根据该公式,如图,设P (x ,y )是圆心坐标为C (a ,b )、半径为r 的圆上任意一点,则点P r =,变形可得:(x ﹣a )2+(y ﹣b )2=r 2,我们称其为圆心为C (a ,b ),半径为r 的圆的标准方程.例如:由圆的标准方程(x ﹣1)2+(y ﹣2)2=25可得它的圆心为(1,2),半径为5.根据上述材料,结合你所学的知识,完成下列各题.(1)圆心为C (3,4),半径为2的圆的标准方程为: ;(2)若已知⊥C 的标准方程为:(x ﹣2)2+y 2=22,圆心为C ,请判断点A (3,﹣1)与⊥C 的位置关系.【答案】(1)()()223425x y -+-=;(2)点A 在⊥C 的内部.【分析】(1)先设圆上任意一点的坐标(x ,y ),根据圆的标准方程公式求解即可;(2)先根据圆的标准方程求出圆心坐标,利用两点距离公式求出点A 到圆心的距离d ,然后与半径r 相比较,d >r ,点在圆外,d =r ,点在圆上,d <r ,点在圆内,即可判断点A与圆的位置关系.解:(1)设圆上任意一点的坐标为(x ,y ),⊥()()223425x y -+-=,故答案为()()223425x y -+-=;(2)⊥⊥C 的标准方程为:(x ﹣2)2+y 2=22,⊥圆心坐标为C (2,0),⊥点A (3,﹣1),AC 2 ⊥点A 在⊥C 的内部.【点拨】本题考查两点距离公式的拓展内容,圆的标准方程,正确理解题意、熟练掌握基本知识是解题关键.。
九年级数学《圆》知识点归纳及分类训练
<<圆>>知识点归纳(1)掌握圆的有关性质和计算① 弧、弦、圆心角之间的关系:在同圆或等圆中,如果两条劣弧(优弧)、两条两个圆心角中有一组量对应相等,那么它们所对应的其余各组量也分别对应相等.② 垂径定理: 垂直于弦的直径平分这条弦,并且平分弦所对的两条弧. 垂径定理的推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧. 弦的垂直平分线经过圆心,并且平分弦所对的两条弧.平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.③ 在同一圆内,同弧或等弧所对的圆周角相等,都等于该弧所对的圆心角的一半. ④ 圆内接四边形的性质:圆的内接四边形对角互补,并且任何一个外角等于它的内对角. (2)点与圆的位置关系① 设点与圆心的距离为d ,圆的半径为r ,则点在圆外d r ⇔>; 点在圆上d r ⇔=; 点在圆内d r ⇔<. ② 过不在同一直线上的三点有且只有一个圆. 一个三角形有且只有一个外接圆. ③ 三角形的外心是三角形三边垂直平分线的交点.三角形的外心到三角形的三个顶点的距离相等.(3)直线与圆的位置关系① 设圆心到直线l 的距离为d ,圆的半径为r ,则直线与圆相离d r ⇔>;直线与圆相切d r ⇔=;直线与圆相交d r ⇔<.② 切线的性质:与圆只有一个公共点;圆心到切线的距离等于半径;圆的切线垂直于过切点的半径. ③ 切线的识别:如果一条直线与圆只有一个公共点,那么这条直线是圆的切线. 到圆心的距离等于半径的直线是圆的切线.经过半径的外端且垂直与这条半径的直线是圆的切线.④ 三角形的内心是三角形三条内角平分线的交点. 三角形的内心到三角形三边的距离相等. ⑤ 切线长:圆的切线上某一点与切点之间的线段的长叫做这点到圆的切线长. ⑥ 切线长定理:从圆外一点引圆的两条切线,它们的切线长相等.这一点和圆心的连线平分这两条切线的夹角.(4)与圆有关的计算① 弧长公式:180n rl π= 扇形面积公式:213602n r S lr π==扇形 (其中为n 圆心角的度数,r 为半径) ② 圆柱的侧面展开图是矩形.圆柱体也可以看成是一个矩形以矩形的一边为轴旋转而形成的几何体. 圆柱的侧面积=底面周长×高 圆柱的全面积=侧面积+2×底面积③ 圆锥的侧面展开图是扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.圆锥体可以看成是由一个直角三角形以一条直角边为轴旋转而成的几何体. ④ 圆锥的侧面积=12×底面周长×母线;圆锥的全面积=侧面积+底面积能力提升(一)—— 圆中的有关概念和性质一、知识点回顾:1.确定一个圆有两要素,一是 ,二是 ,圆心确定 、半径确定 ;2.圆既是 对称图形,又是 对称图形;它的对称中心是 ,对称轴是 ,有 条对称轴。
新人教版初中数学——圆的性质及与圆有关的位置关系-知识点归纳及中考典型题解析
人教版初中数学——圆的性质及与圆有关的位置关系知识点归纳及中考典型例题解析一、圆的有关概念1.与圆有关的概念和性质(1)圆:平面上到定点的距离等于定长的所有点组成的图形.(2)弦与直径:连接圆上任意两点的线段叫做弦,过圆心的弦叫做直径,直径是圆内最长的弦.(3)弧:圆上任意两点间的部分叫做弧,小于半圆的弧叫做劣弧,大于半圆的弧叫做优弧.(4)圆心角:顶点在圆心的角叫做圆心角.(5)圆周角:顶点在圆上,并且两边都与圆还有一个交点的角叫做圆周角.(6)弦心距:圆心到弦的距离.2.注意(1)经过圆心的直线是该圆的对称轴,故圆的对称轴有无数条;(2)3点确定一个圆,经过1点或2点的圆有无数个.(3)任意三角形的三个顶点确定一个圆,即该三角形的外接圆.二、垂径定理及其推论1.垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.关于垂径定理的计算常与勾股定理相结合,解题时往往需要添加辅助线,一般过圆心作弦的垂线,构造直角三角形.2.推论(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧.三、圆心角、弧、弦的关系1.定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等.圆心角、弧和弦之间的等量关系必须在同圆等式中才成立.2.推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.四、圆周角定理及其推论1.定理一条弧所对的圆周角等于它所对的圆心角的一半.2.推论(1)在同圆或等圆中,同弧或等弧所对的圆周角相等.(2)直径所对的圆周角是直角.圆内接四边形的对角互补.在圆中求角度时,通常需要通过一些圆的性质进行转化.比如圆心角与圆周角间的转化;同弧或等弧的圆周角间的转化;连直径,得到直角三角形,通过两锐角互余进行转化等.五、与圆有关的位置关系1.点与圆的位置关系设点到圆心的距离为d.(1)d<r⇔点在⊙O内;(2)d=r⇔点在⊙O上;(3)d>r⇔点在⊙O外.判断点与圆之间的位置关系,将该点的圆心距与半径作比较即可.2.直线和圆的位置关系位置关系相离相切相交图形公共点个数0个1个2个数量关系d>r d=r d<r由于圆是轴对称和中心对称图形,所以关于圆的位置或计算题中常常出现分类讨论多解的情况.六、切线的性质与判定1.切线的性质(1)切线与圆只有一个公共点.(2)切线到圆心的距离等于圆的半径.(3)切线垂直于经过切点的半径.利用切线的性质解决问题时,通常连过切点的半径,利用直角三角形的性质来解决问题.2.切线的判定(1)与圆只有一个公共点的直线是圆的切线(定义法).(2)到圆心的距离等于半径的直线是圆的切线.(3)经过半径外端点并且垂直于这条半径的直线是圆的切线.切线判定常用的证明方法:①知道直线和圆有公共点时,连半径,证垂直;②不知道直线与圆有没有公共点时,作垂直,证垂线段等于半径.七、三角形与圆1.三角形的外接圆相关概念经过三角形各顶点的圆叫做三角形的外接圆,外接圆的圆心叫做三角形的外心,这个三角形叫做圆的内接三角形.外心是三角形三条垂直平分线的交点,它到三角形的三个顶点的距离相等.2.三角形的内切圆与三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.内心是三角形三条角平分线的交点,它到三角形的三条边的距离相等.考向一圆的基本认识1.在一个圆中可以画出无数条弦和直径.2.直径是弦,但弦不一定是直径.3.在同一个圆中,直径是最长的弦.4.半圆是弧,但弧不一定是半圆.弧有长度和度数,规定半圆的度数为180°,劣弧的度数小于180°,优弧的度数大于180°.5.在同圆或等圆中能够互相重合的弧是等弧,度数或长度相等的弧不一定是等弧.典例1下列命题中正确的有①弦是圆上任意两点之间的部分;②半径是弦;③直径是最长的弦;④弧是半圆,半圆是弧.A.1个B.2个C.3个D.4个【答案】A【解析】①弦是圆上任意两点之间所连线段,所以①错误;②半径不是弦,所以②错误;③直径是最长的弦,正确;④只有180°的弧才是半圆,所以④错误,故选A.1.把圆的半径缩小到原来的14,那么圆的面积缩小到原来的A.12B.14C.18D.1162.半径为5的圆的一条弦长不可能是A.3 B.5 C.10 D.12考向二垂径定理1.垂径定理中的“弦”为直径时,结论仍然成立.2.垂径定理是证明线段相等、弧相等的重要依据,同时也为圆的计算和作图问题提供了理论依据.典例2如图,已知⊙O的半径为6 cm,两弦AB与CD垂直相交于点E,若CE=3 cm,DE=9 cm,则AB=A3cm B.3cm C.3D.3【答案】D【解析】如图,连接OA,∵⊙O的半径为6 cm,CE+DE=12 cm,∴CD是⊙O的直径,∵CD⊥AB,∴AE=BE,OE=3,OA=6,∴AE=2233OA OE-=,∴AB=2AE=63,故选D.典例3如图,将半径为2 cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为A.2 cm B.3cmC.23cm D.25cm【答案】C【解析】在图中构建直角三角形,先根据勾股定理得AD的长,再根据垂径定理得AB的长.作OD⊥AB于D,连接OA.根据题意得OD=12OA=1cm,再根据勾股定理得:AD3,根据垂径定理得AB3.故选C.3.如图,⊙O的直径为10,圆心O到弦AB的距离OM的长为4,则弦AB的长是A.3 B.6 C.4 D.84.如图,某菜农在蔬菜基地搭建了一个横截面为圆弧形的蔬菜大棚,大棚的跨度弦AB的长为8515米,大棚顶点C离地面的高度为2.3米.(1)求该圆弧形所在圆的半径;(2)若该菜农的身高为1.70米,则他在不弯腰的情况下,横向活动的范围有几米?考向三弧、弦、圆心角、圆周角1.圆心角的度数等于它所对弧的度数,把顶点在圆心的周角等分成360份,每一份的圆心角是1°的角,1°的圆心角对着1°的弧.2.圆周角要具备两个特征:①顶点在圆上;②角的两边都和圆相交,二者缺一不可.典例4如图,在⊙O中∠O=50°,则∠A的度数为A.50°B.20°C.30°D.25°【答案】D【解析】∠A=12BOC=12×50°=25°.故选D.典例5如图,AB是⊙O的直径,△ACD内接于⊙O,延长AB,CD相交于点E,若∠CAD=35°,∠CDA=40°,则∠E的度数是A.20°B.25°C.30°D.35°【答案】B【解析】如图,连接BD,∵AB是⊙O的直径,∴∠ADB=90°,由三角形内角和定理得,∠ACD=180°﹣∠CAD﹣∠CDA=105°,∴∠ABD=180°﹣∠ACD=75°,∴∠BAD=90°﹣∠ABD=15°,∴∠E=∠CDA﹣∠DAB=25°,故选B.5.如图,AB为⊙O的直径,点C在⊙O上,若∠OCA=50°,AB=4,则BC的长为A.103πB.109πC.59πD.518π6.如图,AB是⊙O的直径,=BC CD DE,∠COD=38°,则∠AEO的度数是A.52°B.57°C.66°D.78°考向四点、直线与圆的位置关系1.点和圆的位置关系:①在圆上;②在圆内;③在圆外.2.直线和圆的位置关系:相交、相切、相离.典例6已知⊙O的半径是5,点A到圆心O的距离是7,则点A与⊙O的位置关系是A.点A在⊙O上B.点A在⊙O内C.点A在⊙O外D.点A与圆心O重合【答案】C【解析】∵O的半径是5,点A到圆心O的距离是7,即点A到圆心O的距离大于圆的半径,∴点A在⊙O外.故选C.【点睛】直接根据点与圆的位置关系的判定方法进行判断.典例7在△ABC中,AB=AC=2,∠A=150°,那么半径长为1的⊙B和直线AC的位置关系是A.相离B.相切C.相交D.无法确定【答案】B【解析】过B作BD⊥AC交CA的延长线于D,∵∠BAC=150,∴∠DAB=30°,∴BD=11222AB=⨯=1,即B到直线AC的距离等于⊙B的半径,∴半径长为1的⊙B和直线AC的位置关系是相切,故选B.【点睛】本题考查了直线与圆的位置关系的应用,过B作BD⊥AC交CA的延长线于D,求出BD和⊙B的半径比较即可,主要考查学生的推理能力.7.如图,⊙O的半径为5cm,直线l到点O的距离OM=3cm,点A在l上,AM=3.8cm,则点A与⊙O的位置关系是A.在⊙O内B.在⊙O上C.在⊙O外D.以上都有可能8.如图,⊙O的半径OC=5cm,直线l⊥OC,垂足为H,且l交⊙O于A、B两点,AB=8cm,则l沿OC 所在直线向下平移__________cm时与⊙O相切.考向五切线的性质与判定有圆的切线时,常常连接圆心和切点得切线垂直半径,这是圆中作辅助线的一种方法.典例8如图,⊙O以AB为直径,PB切⊙O于B,近接AP,交⊙O于C,若∠PBC=50°,∠ABC=A.30°B.40°C.50°D.60°【答案】B【解析】∵⊙O以AB为直径,PB切⊙O于B,∴∠PBA=90°,∵∠PBC=50°,∴∠ABC=40°.故选B.典例9如图,Rt△ABC中,∠C=90°,AB=5,AC=3,点E在中线AD上,以E为圆心的⊙E分别与AB、BC相切,则⊙E的半径为A.78B.67C.56D.1【答案】B【解析】作EH⊥AC于H,EF⊥BC于F,EG⊥AB于G,连接EB,EC,设⊙E的半径为r,如图,∵∠C=90°,AB=5,AC=3,∴BC22AB AC-,而AD为中线,∴DC=2,∵以E为圆心的⊙E分别与AB、BC相切,∴EG=EF=r,∴HC=r,AH=3–r,∵EH∥BC,∴△AEH∽△ADC,∴EH∶CD=AH∶AC,即EH=233r-(),∵S △ABE +S △BCE +S △ACE =S △ABC , ∴()1112154333422232r r r ⨯⨯+⨯⨯+⨯⨯-=⨯⨯,∴67r =.故选B .9.已知四边形ABCD 是梯形,且AD ∥BC ,AD <BC ,又⊙O 与AB 、AD 、CD 分别相切于点E 、F 、G ,圆心O 在BC 上,则AB +CD 与BC 的大小关系是 A .大于 B .等于C .小于D .不能确定10.如图,以等腰△ABC 的腰AB 为⊙O 的直径交底边BC 于D ,DE AC ⊥于E .求证:(1)DB DC =; (2)DE 为⊙O 的切线.1.下列关于圆的叙述正确的有①圆内接四边形的对角互补; ②相等的圆周角所对的弧相等;③正多边形内切圆的半径与正多边形的半径相等; ④同圆中的平行弦所夹的弧相等.A .1个B .2个C .3个D .4个2.如图,AB 是⊙O 的直径,C 是⊙O 上一点(A 、B 除外),∠AOD =136°,则∠C 的度数是A .44°B .22°C .46°D .36°3.如图,半径为5的⊙A 中,弦BC ,ED 所对的圆心角分别是∠BAC ,∠EAD ,已知DE =6,∠BAC +∠EAD =180°,则弦BC 的长等于A .41B .34C .8D .64.如图,在平面直角坐标系中,过格点A ,B ,C 作一圆弧,则圆心坐标是A .点(1,0)B .点(2,1)C .点(2,0)D .点(2.5,1)5.如图,O 的直径8AB =,30CBD ∠=︒,则CD 的长为A .2B .3C .4D .36.如图,一圆内切四边形ABCD ,且BC =10,AD =7,则四边形的周长为A .32B .34C .36D .387.已知在⊙O 中,AB =BC ,且34AB AMC =∶∶,则∠AOC =__________.8.如图,A 、B 、C 、D 都在⊙O 上,∠B =130°,则∠AOC 的度数是__________.9.如图,PA 、PB 分别切⊙O 于A 、B ,并与圆O 的切线DC 分别相交于D 、C .已知△PCD 的周长等于14 cm ,则PA =__________cm .10.如图,在⊙O 的内接四边形ABCD 中,AB AD =,120C ∠=︒,点E 在弧AD 上.若AE 恰好为⊙O的内接正十边形的一边,DE 的度数为__________.11.如图,半圆O 的直径是AB ,弦AC 与弦BD 交于点E ,且OD ⊥AC ,若∠DEF =60°,则tan ∠ABD =__________.12.如图,AB为⊙O的直径,C、F为⊙O上两点,且点C为弧BF的中点,过点C作AF的垂线,交AF 的延长线于点E,交AB的延长线于点D.(1)求证:DE是⊙O的切线;(2)如果半径的长为3,tan D=34,求AE的长.13.如图,在△ABC中,∠C=90°,点O在AC上,以OA为半径的⊙O交AB于点D,BD的垂直平分线交BC于点E,交BD于点F,连接DE.(1)判断直线DE与⊙O的位置关系,并说明理由;(2)若AC=6,BC=8,OA=2,求线段DE的长.14.如图1,⊙O是△ABC的外接圆,AB是直径,D是⊙O外一点且满足∠DCA=∠B,连接AD.(1)求证:CD是⊙O的切线;(2)若AD⊥CD,CD=2,AD=4,求直径AB的长;(3)如图2,当∠DAB=45°时,AD与⊙O交于E点,试写出AC、EC、BC之间的数量关系并证明.1.如图,在O 中,AB 所对的圆周角50ACB ∠=︒,若P 为AB 上一点,55AOP ∠=︒,则POB ∠的度数为A .30°B .45°C .55°D .60°2.如图,AD 是O 的直径,AB CD =,若40AOB ∠=︒,则圆周角BPC ∠的度数是A .40︒B .50︒C .60︒D .70︒3.如图,AB ,AC 分别是⊙O 的直径和弦,OD AC ⊥于点D ,连接BD ,BC ,且10AB =,8AC =,则BD 的长为A .25B .4C .213D .4.84.如图,PA 、PB 为圆O 的切线,切点分别为A 、B ,PO 交AB 于点C ,PO 的延长线交圆O 于点D ,下列结论不一定成立的是A .PA =PB B .∠BPD =∠APDC .AB ⊥PDD .AB 平分PD5.如图,PA 、PB 是⊙O 切线,A 、B 为切点,点C 在⊙O 上,且∠ACB =55°,则∠APB 等于A .55°B .70°C .110°D .125°6.如图,AB 是⊙O 的直径,AC 是⊙O 的切线,A 为切点,若∠C =40°,则∠B 的度数为A .60°B .50°C .40°D .30°7.如图,AB 是⊙O 的直径,点C 、D 是圆上两点,且∠AOC =126°,则∠CDB =A .54°B .64°C .27°D .37°8.如图,AB 为O 的直径,BC 为O 的切线,弦AD ∥OC ,直线CD 交的BA 延长线于点E ,连接BD .下列结论:①CD 是O 的切线;②CO DB ⊥;③EDA EBD △∽△;④ED BC BO BE ⋅=⋅.其中正确结论的个数有A .4个B .3个C .2个D .1个9.如图,C 、D 两点在以AB 为直径的圆上,2AB =,30ACD ∠=︒,则AD =__________.10.如图,△ABC 内接于⊙O ,∠CAB =30°,∠CBA =45°,CD ⊥AB 于点D ,若⊙O 的半径为2,则CD 的长为__________.11.如图,四边形ABCD内接于⊙O,AB=AC,AC⊥BD,垂足为E,点F在BD的延长线上,且DF=DC,连接AF、CF.(1)求证:∠BAC=2∠CAD;(2)若AF=10,BC=45,求tan∠BAD的值.12.如图,在△ABC中,BA=BC,∠ABC=90°,以AB为直径的半圆O交AC于点D,点E是BD上不与点B,D重合的任意一点,连接AE交BD于点F,连接BE并延长交AC于点G.(1)求证:△ADF≌△BDG;(2)填空:①若AB=4,且点E是BD的中点,则DF的长为__________;②取AE的中点H,当∠EAB的度数为__________时,四边形OBEH为菱形.1.【答案】D【解析】设原来的圆的半径为r ,则面积S 1=πr 2, ∴半径缩小到原来的14后所得新圆的面积22211π()π416S r r ==, ∴22211π116π16rS S r ==,故选D . 2.【答案】D【解析】∵圆的半径为5,∴圆的直径为10,又∵直径是圆中最长的弦,∴圆中任意一条弦的长度10l ≤,故选D . 3.【答案】B【解析】如图,连接OA ,∵O 的直径为10,5OA ∴=,∵圆心O 到弦AB 的距离OM 的长为4, 由垂径定理知,点M 是AB 的中点,12AM AB =, 由勾股定理可得,3AM =,所以6AB =.故选B .4.【解析】(1)如图所示:CO ⊥AB 于点D ,设圆弧形所在圆的半径为xm ,根据题意可得:DO 2+BD 2=BO 2, 则(x –2.3)2+851×12)2=x 2,解得x =3. 变式训练答:圆弧形所在圆的半径为3米;(2)如图所示:当MN =1.7米,则过点N 作NF ⊥CO 于点F ,可得:DF =1.7米,则FO =2.4米,NO =3米,故FN =223 2.4-=1.8(米), 故该菜农身高1.70米,则他在不弯腰的情况下,横向活动的范围有3.6米. 5.【答案】B【解析】根据题意可知:∠OAC =∠OCA =50°,则∠BOC =2∠OAC =100°,则弧BC 的长度为:100π210π1809⨯=,故选B .6.【答案】B【解析】∵=BC CD DE =,∴∠BOC =∠DOE =∠COD =38°, ∴∠BOE =∠BOC +∠DOE +∠COD =114°,∴∠AOE =180°–∠BOE =66°, ∵OA =OE ,∴∠AEO =(180°–∠AOE )÷2=57°,故选B . 7.【答案】A【解析】如图,连接OA ,则在直角△OMA 中,根据勾股定理得到OA =223 3.823.445+=<. ∴点A 与⊙O 的位置关系是:点A 在⊙O 内.故选A .8.【答案】2【解析】连接OA .∵直线和圆相切时,OH =5,又∵在直角三角形OHA 中,HA =AB ÷2=4,OA =5,∴OH =3. ∴需要平移5–3=2(cm ).故答案为:2.【点睛】本题考查垂径定理及直线和圆的位置关系.注意:直线和圆相切,应满足d =R . 9.【答案】B【解析】如图,连接OF ,OA ,OE ,作AH ⊥BC 于H .∵AD 是切线,∴OF ⊥AD ,易证四边形AHOF 是矩形,∴AH =OF =OE , ∵S △AOB =12•OB •AH =12•AB •OE ,∴OB =AB ,同理可证:CD =CO , ∴AB +CD =BC ,故选B .【点睛】本题考查了切线的性质,切线垂直于过切点的半径,正确作出辅助线是关键. 10.【解析】(1)如图,连AD ,∵AB 是直径,∴90ADB ∠=︒,AD BC ⊥, 又AB AC =,∴D 为BC 中点,DB DC =; (2)连OD ,∵D 为BC 中点,OA OB =, ∴OD 为ABC △中位线,OD AC ∥, 又DE AC ⊥于,E ∴90ODE DEC ∠=∠=︒, ∴DE 为⊙O 的切线.1.【答案】B【解析】①圆内接四边形的对角互补;正确;②相等的圆周角所对的弧相等;错误;③正多边形内切圆的半径与正多边形的半径相等;错误;④同圆中的平行弦所夹的弧相等;正确; 正确的有2个,故选B . 2.【答案】B【解析】∵∠AOD =136°,∴∠BOD =44°,∴∠C =22°,故选B . 3.【答案】C【解析】如图,延长CA ,交⊙A 于点F ,考点冲关∵∠BAC+∠BAF=180°,∠BAC+∠EAD=180°,∴∠BAF=∠DAE,∴BF=DE=6,∵CF是直径,∴∠ABF=90°,CF=2×5=10,∴BC=228CF BF-=.故选C.4.【答案】C【解析】根据勾股定理可知A、B、C点到(2,0)的距离均为5,然后可知圆心为(2,0)或者通过AB、BC的垂直平分线求解也可以.故选C.5.【答案】C【解析】如图,作直径DE,连接CE,则∠DCE=90°,∵∠DBC=30°,∴∠DEC=∠DBC=30°,∵DE=AB=8,∴12DC DE==4,故选C.6.【答案】B【解析】由题意可得圆外切四边形的两组对边和相等,所以四边形的周长=2×(7+10)=34.故选B.7.【答案】144°【解析】根据AB=BC可得:弧AB的度数和弧BC的度数相等,则弧AMC的度数为:(360°÷10)×4=144°,则∠AOC =144°. 8.【答案】100°【解析】∵∠B =130°,∴∠D =180°-130°=50°,∴∠AOC =2∠D =100°.故答案为100°. 9.【答案】7【解析】如图,设DC 与⊙O 的切点为E ;∵PA 、PB 分别是⊙O 的切线,且切点为A 、B ,∴PA =PB ; 同理,可得:DE =DA ,CE =CB ;则△PCD 的周长=PD +DE +CE +PC =PD +DA +PC +CB =PA +PB =14(cm ); ∴PA =PB =7cm ,故答案是:7. 10.【答案】84︒【解析】如图,连接BD ,OA ,OE ,OD ,∵四边形ABCD 是圆的内接四边形,∴180BAD C ∠+∠=︒, ∵120C ∠=︒,∴60BAD ∠=︒,∵AB AD =,∴ABD △是正三角形,∴60ABD ∠=︒,2120AOD ABD ∠=∠=︒, ∵AE 恰好是⊙的内接正十边形的一边,∴3603610AOE ︒∠==︒, ∴1203684DOE ∠=︒-︒=︒,∴DE 的度数为84°.故答案为:84°.113【解析】∵OD ⊥AC ,∠DEF =60°, ∴∠D =30°,∵OD=OB,∴∠ABD=∠D=30°,∴tan∠ABD=33,故答案为:33.12.【解析】(1)连接OC,如图.∵点C为弧BF的中点,∴弧BC=弧CF,∴∠BAC=∠FAC.∵OA=OC,∴∠OCA=∠OAC,∴∠OCA=∠FAC,∴OC∥AE.∵AE⊥DE,∴OC⊥DE,∴DE是⊙O的切线;(2)在Rt△OCD中,∵tan D=34OCCD=,OC=3,∴CD=4,∴OD=22OC CD+=5,∴AD=OD+AO=8.在Rt△ADE中,∵sin D=35OC AEOD AD==,∴AE=245.13.【解析】(1)直线DE与⊙O相切,理由如下:如图,连接OD,∵OD=OA,∴∠A=∠ODA,∵EF是BD的垂直平分线,∴EB=ED,∴∠B=∠EDB,∵∠C=90°,∴∠A+∠B=90°,∴∠ODA+∠EDB=90°,∴∠ODE=180°–90°=90°,∴直线DE与⊙O相切;(2)连接OE,设DE=x,则EB=ED=x,CE=8–x,∵∠C=∠ODE=90°,∴OC2+CE2=OE2=OD2+DE2,∴42+(8–x)2=22+x2,解得:x=4.75,则DE=4.75.14.【解析】(1)如图1,连接OC.∵OB=OC,∴∠OCB=∠B,∵∠DCA=∠B,∴∠DCA=∠OCB,∵AB是直径,∴∠ACB=90°,∴∠DCA+∠ACO=∠OCB+∠ACO=90°,即∠DCO=90°,∴CD是⊙O的切线.(2)∵AD⊥CD,CD=2,AD=4.∴222425AC=+=由(1)可知∠DCA=∠B,∠D=∠ACB=90°,∴△ADC∽△ACB,∴AD ACAC AB=2525=,∴AB=5.(3)2AC BC EC=+,如图2,连接BE,在AC上截取AF=BC,连接EF.∵AB 是直径,∠DAB =45°, ∴∠AEB =90°,∴△AEB 是等腰直角三角形, ∴AE =BE ,又∵∠EAC =∠EBC ,∴△ECB ≌△EFA ,∴EF =EC , ∵∠ACE =∠ABE =45°, ∴△FEC 是等腰直角三角形, ∴2FC EC =,∴2AC AF FC BC EC =+=.1.【答案】B【解析】∵∠ACB =50°,∴∠AOB =2∠ACB =100°,∵∠AOP =55°,∴∠POB =45°,故选B . 2.【答案】B【解析】∵AB CD =,40AOB ∠=︒,∴40COD AOB ∠=∠=︒, ∵180AOB BOC COD ∠+∠+∠=︒,∴100BOC ∠=︒, ∴1502BPC BOC ∠=∠=︒,故选B . 3.【答案】C【解析】∵AB 为直径,∴90ACB ∠=︒,∴22221086BC AB AC =--=,∵OD AC ⊥,∴142CD AD AC ===, 直通中考在Rt CBD △中,2246213BD =+=.故选C .4.【答案】D【解析】∵PA ,PB 是⊙O 的切线,∴PA =PB ,所以A 成立;∠BPD =∠APD ,所以B 成立; ∴AB ⊥PD ,所以C 成立;∵PA ,PB 是⊙O 的切线,∴AB ⊥PD ,且AC =BC ,只有当AD ∥PB ,BD ∥PA 时,AB 平分PD ,所以D 不一定成立,故选D . 5.【答案】B【解析】如图,连接OA ,OB ,∵PA ,PB 是⊙O 的切线,∴PA ⊥OA ,PB ⊥OB ,∵∠ACB =55°,∴∠AOB =110°, ∴∠APB =360°-90°-90°-110°=70°.故选B .6.【答案】B【解析】∵AC 是⊙O 的切线,∴AB ⊥AC ,且∠C =40°,∴∠ABC =50°,故选B . 7.【答案】C【解析】∵∠AOC =126°,∴∠BOC =180°-∠AOC =54°,∵∠CDB =12∠BOC =27°.故选C . 8.【答案】A【解析】如图,连接DO .∵AB 为O 的直径,BC 为O 的切线,∴90CBO ∠=︒,∵AD OC ∥,∴DAO COB ∠=∠,ADO COD ∠=∠. 又∵OA OD =,∴DAO ADO ∠=∠,∴COD COB ∠=∠.在COD △和COB △中,CO CO COD COB OD OB =⎧⎪∠=∠⎨⎪=⎩,∴COD COB △≌△,∴90CDO CBO ∠=∠=︒.又∵点D 在O 上,∴CD 是O 的切线,故①正确,∵COD COB △≌△,∴CD CB =,∵OD OB =,∴CO 垂直平分DB ,即CO DB ⊥,故②正确; ∵AB 为O 的直径,DC 为O 的切线,∴90EDO ADB ∠=∠=︒,∴90EDA ADO BDO ADO ∠+∠=∠+∠=︒,∴ADE BDO ∠=∠, ∵OD OB =,∴ODB OBD ∠=∠,∴EDA DBE ∠=∠, ∵E E ∠=∠,∴EDA EBD △∽△,故③正确;∵90EDO EBC ∠=∠=︒,E E ∠=∠,∴EOD ECB △∽△, ∴ED ODBE BC=,∵OD OB =, ∴ED BC BO BE ⋅=⋅,故④正确,故选A . 9.【答案】1【解析】∵AB 为直径,∴90ADB ∠=︒,∵30B ACD ∠=∠=︒,∴112122AD AB ==⨯=. 故答案为:1. 10.【答案】2【解析】如图,连接CO 并延长交⊙O 于E ,连接BE ,则∠E =∠A =30°,∠EBC =90°,∵⊙O 的半径为2,∴CE =4,∴BC =12CE =2, ∵CD ⊥AB ,∠CBA =45°,∴CD =22BC =2,故答案为:2. 11.【解析】(1)∵AB =AC ,∴AB AC =,∠ABC =∠ACB ,∴∠ABC =∠ADB ,∠ABC =(180°-∠BAC )=90°-∠BAC ,∵BD⊥AC,∴∠ADB=90°-∠CAD,∴12∠BAC=∠CAD,∴∠BAC=2∠CAD.(2)∵DF=DC,∴∠DFC=∠DCF,∴∠BDC=2∠DFC,∴∠BFC=12∠BDC=12∠BAC=∠FBC,∴CB=CF,又BD⊥AC,∴AC是线段BF的中垂线,AB=AF=10,AC=10.又BC=45,设AE=x,CE=10-x,由AB2-AE2=BC2-CE2,得100-x2=80-(10-x)2,解得x=6,∴AE=6,BE=8,CE=4,∴DE=648AE CEBE⋅⨯==3,∴BD=BE+DE=3+8=11,如图,作DH⊥AB,垂足为H,∵12AB·DH=12BD·AE,∴DH=11633105 BD AEAB⋅⨯==,∴BH2244 5BD DH-=,∴AH=AB-BH=10-446 55=,∴tan∠BAD=331162 DHAH==.12.【解析】(1)∵BA=BC,∠ABC=90°,∴∠BAC=45°,∵AB是⊙O的直径,∴∠ADB=∠AEB=90°,∴∠DAF+∠BGD=∠DBG+∠BGD=90°,∴∠DAF=∠DBG,∵∠ABD+∠BAC=90°,∴∠ABD=∠BAC=45°,∴AD=BD,∴△ADF≌△BDG.(2)①如图2,过F作FH⊥AB于H,∵点E是BD的中点,∴∠BAE=∠DAE,∵FD⊥AD,FH⊥AB,∴FH=FD,∵FHBF=sin∠ABD=sin45°2,∴22FDBF=BF2FD,∵AB=4,∴BD=4cos45°2,即BF+FD22+1)FD2,∴FD=2221=4-22,故答案为:4-22.②连接OH,EH,∵点H是AE的中点,∴OH⊥AE,∵∠AEB=90°,∴BE⊥AE,∴BE∥OH,∵四边形OBEH为菱形,∴BE=OH=OB=12 AB,∴sin∠EAB=BEAB=12,∴∠EAB=30°.故答案为:30°.31。
圆的基本图形研究—双切图2020.3.30
圆的基本图形研究——双切图基本模型(课本P101—6)【例1】(2018年武汉中考题)如图,PA 是⊙O 的切线,A 是切点,AC 是直径,AB 是弦,连接PB 、PC ,PC 交AB 于点E ,且PA =PB .(1)求证:PB 是⊙O 的切线;(2)若∠APC =3∠BPC ,求CEPE 的值.【例2】(课本P101—6改)如图,AB 是⊙O 的直径,PB 、PC 是⊙O 的切线,切点分别为B 、C ,PA 交⊙O 于点D ,连接CD ,∠BPC=2∠A .(1)求证:CD ∥AB ;(2)求tan ∠A 的值;(3)求tan ∠PCD 的值.典题精练:1、如图,PA 、PB 分别与⊙O 相切于点A 、B ,PO 的延长线交⊙O 于点C ,连接BC 、OA .(1)求证:∠POA=2∠PCB ;(2)若OA=3,PA=4,求tan ∠PCB 的值.2、如图,AB 、AD 是⊙O 的切线,切点分别为B 、D ,DE 是⊙O 的直径,连接BE 、OA .(1)求证:BE ∥OA ;(2)若AD=DE ,求sin ∠DAB 的值.3、如图,PA 、PB 分别与⊙O 相切于点A 、B ,AC 是⊙O 的直径,连接BC .(1)求证:;APB ACB ∠-︒=∠2190(2)连接PC ,若PB=6,PC=10,求sin ∠PCB 的值.4、如图,PA 、PB 分别与⊙O 相切于A 、B 两点,AC 是⊙O 的直径.(1)如图1,连接OP 、AB ,求证:OP ⊥AB ;(2)如图2,过点B 作BE ⊥AC 于点E ,连接PE ,若AP=AC ,求tan ∠PEB 的值.5、如图,P 为⊙O 外一点,PA 、PB 分别切⊙O 于A 、B 两点,点C 为⊙O 上的一点.(1)如图1,若AC 为直径,求证:OP ∥BC ;(2)如图2,若sin ∠P=1312,求tan ∠C 的值.。
圆的知识点总结及典型例题
圆的知识点总结(一)圆的有关性质[知识归纳]1. 圆的有关概念:圆、圆心、半径、圆的内部、圆的外部、同心圆、等圆;弦、直径、弦心距、弧、半圆、优弧、劣弧、等弧、弓形、弓形的高;圆的内接三角形、三角形的外接圆、三角形的外心、圆内接多边形、多边形的外接圆;圆心角、圆周角、圆内接四边形的外角。
2. 圆的对称性圆是轴对称图形,经过圆心的每一条直线都是它的对称轴,圆有无数条对称轴;圆是以圆心为对称中心的中心对称图形;圆具有旋转不变性。
3. 圆的确定不在同一条直线上的三点确定一个圆。
4. 垂直于弦的直径垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧;推论1(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。
垂径定理及推论1可理解为一个圆和一条直线具备下面五个条件中的任意两个,就可推出另外三个:①过圆心;②垂直于弦;③平分弦(不是直径);④平分弦所对的优弧;⑤平分弦所对的劣弧。
推论2圆的两条平行弦所夹的弧相等。
5. 圆心角、弧、弦、弦心距之间的关系定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等;所对的弦的弦心距相等。
推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。
此定理和推论可以理解成:在同圆或等圆中,满足下面四个条件中的任何一个就能推出另外三个:①两个圆心角相等;②两个圆心角所对的弧相等;③两个圆心角或两条弧所对的弦相等;④两条弦的弦心距相等。
圆心角的度数等于它所对的弧的度数。
6. 圆周角定理一条弧所对的圆周角等于它所对的圆心角的一半;推论1同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧也相等;推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径;推论3如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
九年级数学上册(人教版)第二十四章《圆》课件
O A 2023/1/4
︵ ︵ D ∵ ∠COD =∠AOB ∴ AB = CD C ∴AB=CD
.r
O
S = nπr2
360
2023/1/4
或
S
=
1
2
lr
4.圆柱的展开图:
A
D
h Br C
S侧 =2πr h S全=2πr h+2 π r2
2023/1/4
5.圆锥的展开图:
a h
r S侧 =πr a S全=πr a+ π r2
2023/1/4
a 侧面
底面
常见的基本图形及结论:
AC
A
2023/1/4
构成等腰解疑难; 灵活应用才方便。
2023/1/4
典型例题:
1.如图, ⊙O的直径AB=12,以OA为直径的 ⊙O1交大圆的弦AC于D,过D点作小圆的 切线交OC于点E,交AB于F.
C
DE A O1 O F B
(1)说明D是AC的中点.
(2)猜想DF与OC的位 置关系,并说明理由. (3)若DF=4,求OF的长.
. (3)弦心距
O
2023/1/4
二. 圆的基本性质 1.圆的对称性: (1)圆是轴对称图形,经过圆心的每一条直 线都是它的对称轴.圆有无数条对称轴. (2)圆是中心对称图形,并且绕圆心旋转 任何一个角度都能与自身重合,即圆具 有旋转不变性.
.
2023/1/4
2.同圆或等圆中圆心角、弧、弦之间的关系:
2024版《圆的周长》圆PPT优秀课件
2024/1/30
5
圆周率π的引入与应用
圆周率π的引入
圆周率是一个无理数,即无限不循环小数,它表示圆的周长与直径的比值。
圆周率π的应用
圆周率在几何、三角学、数学分析、物理学等领域都有广泛的应用,如计算圆 的周长、面积、球体、圆柱体的表面积和体积等。
2024/1/30
6
02
圆的周长公式推导
2024/1/30
《圆的周长》圆 PPT优秀课件
2024/1/301Biblioteka contents目录
2024/1/30
• 圆的周长基本概念 • 圆的周长公式推导 • 实际应用举例与解析 • 练习题与答案解析 • 课堂小结与拓展延伸 • 互动环节与作业布置
2
01
圆的周长基本概念
2024/1/30
3
圆的定义及性质回顾
2024/1/30
圆的定义
平面上所有与定点(圆心)距离等 于定长(半径)的点的集合。
圆的性质
圆是中心对称图形,也是轴对称图 形;圆的任意一条直径所在的直线 都是圆的对称轴。
4
周长定义及计算方法
周长定义
围绕有限面积的区域边缘的长度积分, 叫做周长,也就是图形一周的长度。
圆的周长计算方法
圆的周长=2πr,其中r为圆的半径,π 为圆周率。
12
几何图形中相关知识点联系
1 2
圆的周长与直径的关系 圆的周长是直径的π倍,即C=πd。这个公式是 圆的基本性质之一,也是计算圆的相关问题的基 础。
圆的周长与半径的关系 圆的周长也可以表示为半径的2π倍,即C=2πr。 这个公式可以用来计算圆的半径或周长。
3
圆的周长与面积的关系 圆的面积可以表示为πr²,而圆的周长可以表示 为2πr。因此,圆的面积与周长的平方成正比。
圆中的基本图形和常见数学思想
圆中的基本图形和常见数学思想圆一直是初中阶段数学学习的一个难点,因为圆中知识点很多,综合性也很强。
而且中考中圆常常和四边形,三角形,甚至代数中的二次函数结合起来考察学生的能力。
所以学生遇到圆的综合题往往觉得相当吃力。
针对这种情况,笔者一直在考虑如何突破圆的教学难关,让学生对圆不再望而生畏,并且提高解题能力。
教师有必要把圆中涵盖的知识点融入到几个基本图形中,并教会学生在复杂的图形中提炼出基本图形。
另外一定要帮助学生进行解题方法的训练和总结。
让他们熟悉圆中常用的数学方法。
笔者归纳了以下几个方面的内容,概述如下。
1 圆中基本图形主要有这个图形中涵盖了:1、垂径定理及其推论;2、同弧所对的圆心角是圆周角的两倍;3、半径、弦心距、弓形高、弦长四者的关系;4、直径所对的圆周角是直角这个图形中涵盖了:1、圆的内接四边形的对角互补,外角等于内对角,2、相似关系;3、割线定理这个图形中涵盖了:1、弦切角等于所夹弧所对的圆周角,2、相似关系;3、切割线定理这个图形中涵盖了:1、三角形的外心是三角形三条垂直平分线的交点,并且到三角形三个顶点的距离相等2、同弧所对的圆心角是圆周角的两倍这个图形中涵盖了:1、从圆外引圆的两条切线,切线长相等。
2、三角形的内心是三角形三条角平分线的交点,并且到三角形三条边的距离相等3、三角形的面积和周长、内切圆半径三者的关系,4、三角形两条内角角平分线组成的夹角与第三个内角的关系这个图形中涵盖了:1、同弧所对的圆周角相等,2、相似关系,3、相交弦定理这个图形中涵盖了:1、直径所对的圆周角是直角,90度的圆周角所对的弦是直径2、相似关系,射影定理,3、直角三角形的外心在斜边的中点4、直角三角形的外接圆的半径等于斜边的一半这个图形中涵盖了:1、连心线垂直平分公共弦2、圆的对称性这个图形中涵盖了:等边三角形的内切圆半径、外接圆半径、等边三角形的边长三者的比例关系。
这个图形中涵盖了:正方形的内切圆半径、外接圆半径、正方形的边长三者的比例关系。
《圆的认识》圆PPT优秀教学课件
04
圆的综合应用举例
求解切线方程问题
切线定义及性质
典型例题解析
回顾切线定义,阐述切线与半径垂直 的性质。
选取具有代表性的切线方程问题,详 细解析求解过程。
切线方程求解方法
通过圆心坐标和切线斜率,利用点斜 式或斜截式求解切线方程。
求解切线长问题
切线长定义及性质
回顾切线长定义,阐述切线与半 径、切线长与弦长的关系。
圆心、半径和直径
01
02
03
圆心
圆的中心,用字母O表示。
半径
连接圆心和圆上任意一点 的线段,用字母r表示。
直径
通过圆心且两端点都在圆 上的线段,用字母d表示, 且d=2r。
圆的周长与面积
圆的周长
围绕圆形绘制的线的长度,计算公 式为C=2πr或C=πd。
圆的面积
圆形所占平面的大小,计算公式为 S=πr²。
半径
03
一般方程中,半径$r=frac{sqrt{D^{2}+E^{2}-4F}}{2}$。
圆的参数方程
01 02
定义
以点$O(a,b)$为圆心,$r$为半径的圆的参数方程为 $left{ begin{array}{l} x=a+rcostheta y=b+rsintheta end{array} right.$,其中$theta$为参数。
求解割线性质问题
割线性质概述
总结割线的性质,如割 线与半径的关系、割线 定理等。
割线性质应用
利用割线性质解决与圆 相关的角度、长度等问 题。
典型例题解析
选取具有代表性的割线 性质问题,详细解析求 解过程。
05
与圆相关的数学问题拓展
点到直线距离公式推导及应用
圆的基本概念和性质—知识讲解(基础)
圆的基本概念和性质—知识讲解(基础)【学习目标】1.知识目标:在探索过程中认识圆,理解圆的本质属性;2.能力目标:了解圆及其有关概念,理解弦、弧、半圆、优弧、劣弧、同心圆、等圆、等弧等与圆有关的概念,理解概念之间的区别和联系;3.情感目标:通过圆的学习养成学生之间合作的习惯.【要点梳理】要点一、圆的定义及性质1.圆的定义(1)动态:如图,在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,固定的端点O叫做圆心,线段OA叫做半径. 以点O为圆心的圆,记作“⊙O”,读作“圆O”.要点诠释:①圆心确定圆的位置,半径确定圆的大小;确定一个圆应先确定圆心,再确定半径,二者缺一不可;②圆是一条封闭曲线.(2)静态:圆心为O,半径为r的圆是平面内到定点O的距离等于定长r的点的集合.要点诠释:①定点为圆心,定长为半径;②圆指的是圆周,而不是圆面;③强调“在一个平面内”是非常必要的,事实上,在空间中,到定点的距离等于定长的点的集合是球面,一个闭合的曲面.2.圆的性质①旋转不变性:圆是旋转对称图形,绕圆心旋转任一角度都和原来图形重合;圆是中心对称图形,对称中心是圆心;②圆是轴对称图形:任何一条直径所在直线都是它的对称轴.或者说,经过圆心的任何一条直线都是圆的对称轴.要点诠释:①圆有无数条对称轴;②因为直径是弦,弦又是线段,而对称轴是直线,所以不能说“圆的对称轴是直径”,而应该说“圆的对称轴是直径所在的直线”.3.两圆的性质两个圆组成的图形是一个轴对称图形,对称轴是两圆连心线(经过两圆圆心的直线叫做两圆连心线).要点二、与圆有关的概念1.弦弦:连结圆上任意两点的线段叫做弦.直径:经过圆心的弦叫做直径.弦心距:圆心到弦的距离叫做弦心距.要点诠释:直径是圆中通过圆心的特殊弦,也是圆中最长的弦,即直径是弦,但弦不一定是直径.为什么直径是圆中最长的弦?如图,AB是⊙O的直径,CD是⊙O中任意一条弦,求证:AB≥CD.证明:连结OC、OD∵AB=AO+OB=CO+OD≥CD(当且仅当CD过圆心O时,取“=”号)∴直径AB是⊙O中最长的弦.2.弧弧:圆上任意两点间的部分叫做圆弧,简称弧.以A、B为端点的弧记作,读作“圆弧AB”或“弧AB”.半圆:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆;优弧:大于半圆的弧叫做优弧;劣弧:小于半圆的弧叫做劣弧.要点诠释:①半圆是弧,而弧不一定是半圆;②无特殊说明时,弧指的是劣弧.3.同心圆与等圆圆心相同,半径不等的两个圆叫做同心圆.圆心不同,半径相等的两个圆叫做等圆.同圆或等圆的半径相等.4.等弧在同圆或等圆中,能够完全重合的弧叫做等弧.要点诠释:①等弧成立的前提条件是在同圆或等圆中,不能忽视;②圆中两平行弦所夹的弧相等.【典型例题】类型一、圆的定义1.在下列说法中:①圆心决定圆的位置;②半径决定圆的大小;③半径相等的圆是同心圆;④两个半径相等且圆心不同的圆是等圆,你认为正确的结论有()A.1个B.2个C.3个D.4个【答案】C.【解析】对照圆的定义及同心圆、等圆的概念进行判断.显然①②④正确,③不正确.【总结升华】考查确定圆的条件,同心圆、等圆的定义.举一反三:【变式】下列命题中,正确的个数是()⑴直径是弦,但弦不一定是直径;⑵半圆是弧,但弧不一定是半圆;⑶半径相等且圆心不同的两个圆是等圆;⑷一条弦把圆分成的两段弧中,至少有一段是优弧.A.1个B.2个C.3个D.4个【答案】⑴、⑵、⑶是正确的,⑷是不正确的.故选C.类型二、圆及有关概念2.判断题(对的打√,错的打×,并说明理由)①半圆是弧,但弧不一定是半圆;()②弦是直径;()③长度相等的两段弧是等弧;()④直径是圆中最长的弦. ()【答案】①√②×③×④√.【解析】①因为半圆是弧的一种,弧可分为劣弧、半圆、优弧三种,故正确;②直径是弦,但弦不一定都是直径,只有过圆心的弦才是直径,故错;③只有在同圆或等圆中,长度相等的两段弧才是等弧,故错;④直径是圆中最长的弦,正确.【总结升华】理解弦与直径的关系,等弧的定义.举一反三:【变式】下列说法错误的是( )A.半圆是弧B.圆中最长的弦是直径C.半径不是弦D.两条半径组成一条直径【答案】弧有三类,分别是优弧、半圆、劣弧,所以半圆是弧,A正确;直径是弦,并且是最长的弦,B 正确;半径的一个端点为圆心,另一个端点在圆上,不符合弦的定义,所以不是弦,C正确;两条半径只有在同一直线上时,才能组成一条直径,否则不是,故D错误.所以选D.3.直角三角形的三个顶点在⊙O上,则圆心O在 .【答案】斜边的中点.【解析】根据圆的定义知圆心O到三角形的三个顶点距离相等,由三角形斜边的中线等于斜边的一半可知,斜边上的中点到各顶点的距离相等.【总结升华】圆心到圆上各点的距离相等.4.判断正误:有AB、CD,AB的长度为3cm, CD的长度为3cm,则AB与CD是等弧. 【答案】错误.【解析】“能够完全重合的弧叫等弧”.在半径不同的圆中也可以出现弧的长度相等,但它们不会完全重合,因此,只有在同圆或等圆中,长度相等的弧才是等弧.【总结升华】在同圆或等圆中,长度相等的弧才是等弧.举一反三:【变式】有的同学说:“从优弧和劣弧的定义看,大于半圆的弧叫优弧,小于半圆的弧叫劣弧,所以优弧一定比劣弧长.”试分析这个观点是否正确.甲同学:此观点正确,因为优弧大于半圆,劣弧小于半圆,所以优弧比劣弧长.乙同学:此观点不正确,如果两弧存在于半径不相等的两个圆中,如图,⊙O中的优弧AmB,中的劣弧CD,它们的长度大小关系是不确定的,因此不能说优弧一定比劣弧长.请你判断谁的说法正确?【答案】弧的大小的比较只能是在同圆或等圆中进行. 乙的观点正确.类型三、圆的对称性5.已知:如图,两个以O为圆心的同心圆中,大圆的弦AB交小圆于C,D.求证:AC=BD.【答案与解析】证明:过O点作OM⊥AB于M,交大圆与E、F两点.如图,则EF所在的直线是两圆的对称轴,所以AM=BM,CM=DM,故AC=BD.【总结升华】作出与AB垂直的圆的对称轴,由圆的对称性可证得结论.。
圆中的基本图形和常见数学思想
圆中的基本图形和常见数学思想
圆是一种普遍存在的图形,被广泛应用在各种场景中,并备受称赞。
圆某种程度上是自成一体的,其来源可以被追溯到古希腊抽象数学思想及其抽象图形,尤其是著后的极点,它的简洁多样性使得圆在文学作品和艺术作品中被广泛使用,成为圆形派的代表。
古希腊哲学家柏拉图把圆描绘为:“完整的,圆润的,无限靠近完美的形状”。
虽然圆有无穷多种形状,但它们具有共同的特征,比如高度对称性,每个角都距离圆心相等。
其他一些基本形状也可以以圆的形式呈现,如椭圆、抛物线和圆环,而它们也可以成为解决许多数学问题的很好工具。
圆几乎在任何领域都有重要的作用,它可以被应用到几何学,物理学,工程学和计算机科学等诸多课程中。
几何学尤其依赖圆来描述三维物体,圆的形状可以用来定位及构建平面图形,绘制表面积与体积之类。
在物理学中,圆被认为是最接近完美的形状,它们可以被用来表示多种物理运动的特性,如,电场的发射,以及力的传递。
在工程学,圆形的零件通常比其它形状的零件更容易制造,因为它们可以用更少的材料和工序完成。
在计算机科学中,圆的概念可被用来描述一系列的操作,如,圆弧,圆心坐标计算,椭圆拟合,圆心距等。
在游戏开发中,圆也被广泛使用,比如,碰撞检测系统,物体运动模拟,以及视图和摄影技术等。
总之,圆是一种普遍存在的基本图形,其形状极具艺术性,被广
泛应用到各种场景中。
它带来的数学思想和理论比其他几何形状要多,并且可以用来解决许多现实世界的问题,是当前重要的研究课题之一。
初中数学竞赛——圆1.圆的基本性质
初中数学竞赛——圆 1.圆的基本性质(总13页)-本页仅作为预览文档封面,使用时请删除本页-第1讲圆的基本性质知识总结归纳一.圆的定义:(1)描述性定义:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,其中固定端点O叫做圆心,OA叫做半径.(2)集合性定义:平面内到定点的距离等于定长的点的集合叫做圆,顶点叫做圆心,定长叫做半径.(3)圆的表示方法:通常用符号⊙表示圆,定义中以O为圆心,OA为半径的圆记作“O⊙”,读作“圆O”。
(4)同圆、同心圆、等圆:圆心相同且半径相等的圆叫同圆;圆心相同,半径不相等的两个圆叫做同心圆;能够重合的两个圆叫做等圆.注意:同圆或等圆的半径相等.二.弦和弧:(1)弦:连结圆上任意两点的线段叫做弦.(2)直径:经过圆心的弦叫做圆的直径,直径等于半径的2倍.(3)弦心距:从圆心到弦的距离叫做弦心距.(4)弧:圆上任意两点间的部分叫做圆弧,简称弧.以A B、为端点的圆弧记作AB,读作弧AB.(5)等弧:在同圆或等圆中,能够互相重合的弧叫做等弧.(6)半圆:圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆.(7)优弧、劣弧:大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧.(8)弓形:由弦及其所对的弧组成的图形叫做弓形.三.垂径定理:(1)垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.(2)推论1:①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;②弦的垂直平分线经过圆心,并且平分弦所对的两条弧;③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.(3)推论2:圆的两条平行弦所夹的弧相等.四.圆心角和圆周角(1)圆心角:顶点在圆心的角叫做圆心角.将整个圆分为360等份,每一份的弧对应1︒的圆心角,我们也称这样的弧为1︒的弧.圆心角的度数和它所对的弧的度数相等.(2)圆周角:顶点在圆上,并且两边都和圆相交的角叫做圆周角.(3)圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半.推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧相等.推论2:半圆(或直径)所对的圆周角是直角,90︒的圆周角所对的弦是直径.推论3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.(4)圆心角、弧、弦、弦心距之间的关系定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等.推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量分别相等.五.直线与圆的位置关系⊙的半径为r,圆心O到直线l的距离为d,则直线和圆的位置关系如下表:设O六.切线的判定(1)定义法:和圆只有一个公共点的直线是圆的切线; (2)距离法:和圆心距离等于半径的直线是圆的切线;(3)定理:经过半径的外端并且垂直于这条半径的直线是圆的切线.七.弦切角定理弦切角的度数等于它所夹的弧的度数的一半。
圆的证明与计算 (基本图形)
圆的证明与计算(基本图形)圆的证明与计算是中考中的一类重要的问题,此题完成情况的好坏对解决后面问题的发挥有重要的影响,所以解决好此题比较关键。
一、考点分析:1.圆中的重要定理:(1)圆的定义:主要是用来证明四点共圆.(2)垂径定理:主要是用来证明——弧相等、线段相等、垂直关系,以及中点等等.(3)三者之间的关系定理: 主要是用来证明——弧相等、线段相等、圆心角相等.(4)圆周角性质定理及其推论: 主要是用来证明——直角、角相等、弧相等.(5)切线的性质定理:主要是用来证明——垂直关系.(6)切线的判定定理: 主要是用来证明直线是圆的切线.(7)切线长定理: 线段相等、垂直关系、角相等.2.圆中几个关键元素之间的相互转化:弧、弦、圆心角、圆周角等都可以通过相等来互相转化.这在圆中的证明和计算中经常用到.二、考题形式分析:主要以解答题的形式出现,近几年武汉市中考题的22题的第1问主要是判定切线;第2问主要是与圆有关的计算:①求线段长(或面积);②求线段比;③求角度的三角函数值(实质还是求线段比)。
三、解题方法:1、判定切线的方法:(1)若切点明确,则“连半径,证垂直”。
常见手法有:全等转化;平行转化;直径转化;中线转化等;有时可通过计算结合相似、勾股定理证垂直;(2)若切点不明确,则“作垂直,证半径”。
常见手法:角平分线定理;等腰三角形三线合一,隐藏角平分线;(07武汉)22.(本题8分)如图,等腰三角形ABC中,AC=BC=10,AB=12。
以BC为直径作⊙O交AB于点D,交AC于点G,DF⊥AC,垂足为F,交CB的延长线于点E。
(1)求证:直线EF是⊙O的切线;(2)求sin∠E的值。
(第22题图)(10武汉)22.(本题满分8分) 如图,点O 在∠APB 的平分线上,⊙O 与PA 相切于点C . (1) 求证:直线PB 与⊙O 相切;(2) PO 的延长线与⊙O 交于点E .若⊙O 的半径为3,PC=4.求弦CE 的长.2、与圆有关的计算:计算圆中的线段长或线段比,通常与勾股定理、垂径定理与三角形的全等、相似等知识的结合,形式复杂,无规律性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆的典型基本图形
图形1:如图1:AB 是⊙O 的直径,点E 、C 是⊙O 上的两点。
(1)在“AC 平分∠BAE ”;“AD ⊥CD ”;“DC 是⊙O 的切线”三个论断中,知二推一。
(2)如图2、3,DE 等于弓形BCE 的高;DC =AE 的弦心距OF (或弓形BCE 的半弦EF )。
(3)如图(4):若CK ⊥AB 于K ,则:
①CK=CD ;BK=DE ;CK=BE/2=DC ;AE+AB=2BK=2AD ; ②⊿ADC ∽⊿ACB (或AC 2=AD •AB )
(4)在(1)中的条件①、②、③中任选两个条件,当BG ⊥CD 于E 时(如图5),则: ①DE=GB ;②DC=CG ;
③AD+BG=AB ;④AD •BG=DG 2/4=DC 2
图形2:如图:Rt ⊿ABC 中,∠ACB =90°。
点O 是AC 上一点,以OC 为半径作⊙O 交AC 于点E ,基本结论有:
(1)在“BO 平分∠CBA ”;“BO ∥DE ”;“AB 是⊙O 的切线”;“BD=BC ”。
四个论断中,知一推三。
(2)①G 是⊿BCD 的内心;②
③⊿BCO ∽⊿CDE(或BO •DE=CO •CE ) (3)如图(3),若①BC=CE ,则:②
tan ∠ADE=AE/AD=1/2; ③BC :AC :AB =3:4:5 ;
(在①、②、③中知一推二)④设BE 、CD 交于点H ,,则BH=2EH
图形
3:如图:Rt ⊿ABC 中,∠ABC =90°,以AB 为直径作⊙
O 交AC 于D ,基本结论有:
如右图:(1)DE
切⊙O ↔ E 是BC 的中点; (2)若DE 切⊙O ,则: DE=BE=CE ;
如图1:DE ∥AB ↔⊿ABC 、⊿CDE
图5图4
图3图2图1CG=GD
图形4::以直角梯形ABCD 的直腰为直径的圆切斜腰于E, 基本结论有:
(1)如图1:①AD+BC =CD ; ②∠COD =∠AEB =90°; ③OD 平分∠ADC (或OC 平分∠BCD );(注:在①、②、③及④“CD 是⊙O 的切线”四个论断中,知一推三)
(2)如图2,连AE 、CO ,则有:CO ∥AE ,CO •AE =2R 2(与基本图形2重合)
(3)如图3,若EF ⊥AB 于F ,交AC 于G ,则:EG =FG .
图形5:如图:直线PR ⊥⊙O 的半径OB 于E ,PQ 切⊙O
于Q ,BQ 交直线PQ 于R 。
基本结论有
(1)PQ=PR (⊿PQR 是等腰三角形);
(2)在“PR ⊥OB ”、“PQ 切⊙O ”
、“PQ=PR ”中,知二推一
(3)2PR ·RE=BR ·RQ=BE ·2R=AB
2
图形6:如图,⊿ABC 内接于⊙
O ,I 为△ABC 的内心。
基本结论有:
(1)如图1,①BD=CD=ID ;②
DI 2=DE ·DA ; ③∠AIB =90°+ 1/2∠ACB ;
(2)如图
2,若∠BAC =60°,则:BD+CE=BC.
图形
7:已知,AB 是⊙O 的直径,C 是 中点,CD ⊥AB 于D 。
BG 交CD 、AC 于
E 、
F 。
基本结论有:
(1)CD =1/2BG ;BE=EF=CE ;GF=2DE (反之,由CD =1/2BG 或BE=EF 可得:C 是 中点)
(2)OE=1/2AF ,OE ∥AC ;⊿ODE ∽⊿AGF
(3)BE ·BG=BD ·BA
(4)若D 是OB 的中点,则:①⊿CEF 是等边三角形;② 图1图3
图2图1图2BG A
BC=CG=AG BG。