飞行器隐身技术
飞行器隐身技术的研究与应用

飞行器隐身技术的研究与应用随着科技的迅猛发展,飞行器的技术水平也得到了极大的提高,尤其是飞行器隐身技术的研究与应用,使得飞行器不再容易被探测到,增加了其在军事和民用领域的应用。
一、飞行器隐身技术的背景在军事领域,飞行器隐身技术被广泛用于战略轰炸机、战斗机和无人机等作战武器上,使其在作战中能够摆脱敌人的掌握和攻击,增强其生存能力。
在民用领域,隐身技术被用于减少飞行器对地形与建筑物的影响,避免产生噪音污染,提升飞行器的安全性能,降低维护成本等。
二、飞行器隐身技术的应用1.战争中的应用飞行器隐身技术在军事作战中的应用具有重要意义,能够使战机或导弹实现隐身、远程攻击、优秀的机动性和恶劣环境下的生存性能。
如美国的F-35隐身战斗机就是一款搭载了隐身技术的先进战斗机,在常规的夜间和白天作战中都具有很强的优势。
2.民用领域的应用在民用领域,飞行器隐身技术被应用于无人机、民用航空器、高速列车等交通工具上,提高其在音响与空气污染等方面的性能。
例如:无人机的应用越来越多,除了用于科学研究,也可以在日常生活中作为一种高效、安全、便捷的交通工具,以缓解交通拥堵所带来的一系列问题。
三、飞行器隐身技术的实现方式1.雷达反射物减少技术这种技术的实现主要是通过使用具备特殊吸波特性的材料,来减少雷达反射物,从而达到隐形目的。
这个技术主要应用于航空器的外形设计上。
2.红外线探测器抑制技术它利用超薄镜片来抑制探测器所接收的红外线辐射,从而达到隐形的目的。
该技术主要应用在航空器的冷却系统和发动机等部分,来减少热量的辐射。
3.探测系统干扰技术这种技术主要利用干扰仪来隐藏飞行器的位置,使得探测器不能正确地确定飞行器的位置,从而避免被攻击。
这个技术主要应用于战斗机和轰-6等飞行器上。
四、飞行器隐身技术的发展趋势飞行器隐身技术的发展趋势主要是多功能和信息化的方向。
多功能化体现在了隐身、侦察、侦听、信息传输等一系列功能上,信息化则主要体现在了机载计算机、导航与通信系统的建设上。
隐身飞机原理

隐身飞机原理
隐身飞机原理即常常被称为隐身技术,主要是指利用特殊设计和材料,使飞机在雷达、红外和可见光等探测系统中减少被探测的可能性,提高隐形性能。
首先,隐身飞机采用了外形设计的几何理论。
通过减少飞机表面的凸起部分和边缘,减小飞机的雷达反射截面积(RCS)。
这意味着飞机从雷达的角度看起来更小,减少了被雷达探测到的可能性。
其次,隐身飞机使用了吸波材料来减少雷达反射。
这种材料能够将雷达波吸收或散射,减少反射回雷达的能量。
吸波材料被涂覆在飞机表面,减少了雷达反射信号的强度,使飞机在雷达系统中更难被探测到。
此外,隐身飞机还采用了内部嵌入的传感器和电子设备来监测外部环境,并及时做出调整。
飞机上的电子设备可以监测到来自雷达和红外传感器的探测信号,并根据信号做出实时调整,使飞机保持最佳的隐身性能。
还有一种常用的隐身措施是使用RCS降低涂层。
这些涂层可
以对飞机进行涂覆,从而减少飞机面积对雷达和其他传感器的反射。
这种涂层通常由一种特殊的材料制成,能够吸收或散射入射的雷达波。
综上所述,隐身飞机通过外形设计、吸波材料、传感器和涂层等多种措施,以减小飞机的雷达反射截面积和被探测的可能性,
提高飞机的隐形性能。
这些技术的应用使隐身飞机在战争和情报侦察等领域具有重要作用。
飞行器等离子体隐身技术 精品

3飞行器等离子体隐身技术方绍强 ,赵尚弘 ,余侃民 ,刘 涛(空军工程大学 电讯工程学院 ,陕西 西安 710077 )摘 要 :结合目前国际上飞行器隐身技术的发展状况 ,对等离子体隐身技术及其特点作了介 绍 ,并对其在飞机隐身领域的应用及前景进行了分析 。
分析发现等离子体隐身技术较其他类型的 隐身技术最大的优点是不影响飞机的机动性能 ,且费用低廉 ,具有很高的应用价值 。
关键词 :隐身 ;等离子体 ;飞机中图分类号 : T N97; V218文献标识码 : A文章编号 : 1009 2086X ( 2005) 02 20032204P l a s m a stea lth techn i que of a i rcra f tF ANG Shao 2q i ang, Z HAO Shang 2hong, Y U Kan 2m in, L I U Tao( The Te l ecomm un i ca t i on Enginee r ing I n s titu t e, A F EU , Shaanxi X i ′an 710077, Ch i na)A b s tra c t : Com b i ned w ith the p re s en t in t e r na t i ona l situa t i on of the stea l th techn i que of a i rc r aft, thep la s m a stea l th techn i que and its cha r ac t e r istic a r e in t r oduced . The app lica t i on and fu t u r e of the p la s m a stea l th techn i que of a i rc r aft is ana l yzed . Comp a r ed w ith o t he r stea l th techn i que, the mo s t advan t age of thep la s m a stea l th techn i que is tha t it doe s n ′t affec t the m a neuve r ab i lity of a i rc r aft, ha s l ow co s t and good ap 2 p lica t i on p e r s p e c t ive .Key word s : Stea l th; P l a s m a ; A irc r aft美国的隐身兵器发展较快 ,目前居世界领先地 位 。
飞行器隐身技术

进入座舱内。 • 镀膜不影响舱盖的透明度,既保证了飞行员的视野又可以降低RCS值。
F-117座舱盖
控制散射方向,使散射能量集中在雷达威胁区域之外
• 将飞机的主要散射能量偏离雷达的威胁区域,从而来 降低飞机的后向散射能量,降低雷达发现飞机的概率。
• 任一目标的RCS可用一个各向均匀辐射的等效反射器的投 影面积(横截面积)来定义,这个等效反射器与被定义的
目标在接收方向单位立体角内具有相同的回波功率。
任意形状
相同的RCS
球
RCS的数学表达式
相同
R 任意形状
RCS
球
目标截获的功率
符号定义:
Ii:目标处入射波的功率流密度 Ir:在接收机处散射波的功率流密度 A:接收天线的等效面积 R:表示目标到接收天线的距离 Ω:表示空间立体 Ω=A/R2:从目标看接收天线所张的
• 降低目标和背景的可见光反差
上下表面的迷彩不一致
向下看不见
向上看不清
红外抑制--吸热冷却装置
• 降低目标和背景的热辐射反差 • 分形技术
I like this
3—5微米的喷流热辐射抑制 8--12微米的分形技术
夜间拍摄的红外图象
噪声控制
• 直升机的噪声控制问题 • 低空低速无人机的噪声控制问题 • 潜艇的的噪声控制问题
Es Ei
2
lim
R
4R 2
Hs Hi
2
单站RCS与双站RCS
单站雷达 双站雷达
影响RCS的因素
• 目标材料的电性能 • 目标的几何外形 • 目标被雷达波照射的方位 • 入射波的波长 • 入射场极化形式和接收天
飞行器隐身技术的研究与应用

飞行器隐身技术的研究与应用第一章:引言近年来,飞行器隐身技术已经成为了世界科技的热门话题。
飞行器隐身技术的研究和应用可以使得飞行器的隐蔽性增强,从而提升其作战效果和生存能力。
本文将探讨飞行器隐身技术的研究进展和应用现状,以及未来的发展方向。
第二章:飞行器隐身技术的基础知识飞行器隐身技术是基于电磁波特性的一种技术。
当飞行器的外形、大小、高度、速度、飞行方向和射频辐射等属性与背景特征相协调时,可以使电磁波的反射、散射、吸收和透射等特征减小或消除,从而降低了被探测和定位的概率,达到了隐身的目的。
飞行器隐身技术可以分为几种基本类型。
第一种是减少反射面积的隐身技术,通过精确设计飞行器的外壳形状和表面特性,使其具有较低的雷达反射截面,从而使其难以被雷达探测到。
第二种是吸收和散射电磁波的隐身技术,通过涂覆特定的涂层或材料,可以使电磁波在飞行器表面吸收和散射,从而使其电磁波反射减少,达到隐身目的。
第三种是分摊和干扰电磁波的隐身技术,通过对雷达产生噪声和分散雷达探测,使雷达无法捕捉到有用的信号。
第三章:飞行器隐身技术的应用现状飞行器隐身技术在现代战争中已经广泛应用。
例如,美国F-35战斗机就采用了先进的隐身技术,可以在电磁干扰干扰环境下完成空中侦察、空中对地攻击等作战任务。
此外,在潜艇领域,隐身技术也得到了广泛应用,可以在水下环境下完成侦查任务。
飞行器隐身技术也被应用于民用领域。
例如,隐身无人机已经成为了无人机技术的一个热门话题。
这种无人机可以用于自主测量、探测和监测。
在电磁干扰和信号屏蔽环境中,无人机可以通过隐身技术来提高侦测和监测效率。
此外,隐身技术还可以应用于空气清洁器和空调系统等,提高空气质量。
第四章:飞行器隐身技术的研究现状和未来发展方向目前,飞行器隐身技术已经有了很大的发展。
例如,先进的天线等仪器的设计、微波和红外突破技术和材料基础研究等都取得了突破性进展。
未来,飞行器隐身技术的研究还将面临一些挑战和机遇。
飞行器隐身技术现状及其未来发展趋势

等 离 子体 隐 身 技 术 有 着 自身 独 特 的 优 势 , 体 而 言 主 大
要 包 括 : 先 , 以 大 大 降 低 维 护 费 用 。主 要 是 它 没 有 必 要 [ ]粱 百川 . 源 隐 身技 末研 究 ] 上 海 航 天 ,9 6 () 2l . 首 可 2 有 J. l9 ,4 1一6 改 变 装 备 的气 动 外 形 设 计 , 需 吸 波 材 料 和 涂 层 。其 次 . 无 可
一
3 O 一 2
术 美 国和 俄 国 始 终 处 于 世 界 领 先 水 平 。
3 2 等 离 子 体 隐 身 技 术 的 优 点 .
参 考 文 献
[]杨青 真 , 红梅 , 泽 辉 . 行 器 隐 身技 术发 展 状 况[] 航 天 电子 1 王 常 飞 J.
对 抗 , 0 4,6 5 . 比较 容 易 维 护 。 由 于 改 变 了 传 统 的 被 动实 现手段 , 由被 动 转 向 了 主 动 , 得 维 护 起 来 方 便 而 且 简 单 。 使
3 3 等 离 子 体 隐 身技 术 的 缺 点 .
2 传 统 飞 行 器 隐 身 技 术
隐 身 技 术 的 发 展 日新 月 异 , 成 为 了 各 国军 事 竞 相 追 也
也 是 极 其 庞 大 , 论 从 成 本 角 度 还 是 运 行 控 制 的 角 度 都 不 无 甚合算 。
雷 达 隐 身 有 其 自身 独 特 的 机 理 , 主 要 是 通 过 抑 制 、 它 减 4 飞 行 器 隐 身 技 术 的 未 来 发 展 趋 势
. 弱 、 收 和 偏 转 目标 的 雷 达 回 波 强 度 来 减 小 雷 达 的 散 射 截 4 1 材 料 发 展 趋 势 吸 飞行器未来 的发 展很 大程 度 上取 决于 其材 料 的进步 , 面 , 地 方 雷 达 接 收 不 到 足 够 强 度 的 回波 信 号 , 样 就 使 得 使 这
飞机隐身技术

飞机隐身技术隐身飞机自诞生以来,就一直受到各国的广泛关注,各个国家也开始启动了自己的隐身飞机的研发项目,其中包括,德国的“萤火虫”隐身飞机计划,俄罗斯的S-37等,以及其中最引人注目的当属美国开发的第一,第二,第三代隐身飞机。
第一代以F-117和夭折的A-12为代表,F- 117A首次用于实战是在1989年12月了美国对巴拿马的军事行动,遂行轰炸任务,取得巨大成功。
这让隐身飞机被各国所重视。
飞机隐身技术包括雷达隐身技术、红外隐身技术、电子隐身技术、可见光隐身技术、声波隐身技术、电磁隐身技术等,由于现代防空体系中最为重要、使用最广、发展最快的探测器是雷达,因此,雷达隐身技术成为最主要的隐身技术。
雷达隐身技术的核心就是降低目标的雷达散射截面积(RCS)。
目前可采取的RCS减缩手段主要包括外形隐身技术、材料隐身技术及对消技术和等离子体隐身技术。
1 外形隐身技术外形隐身技术就是在一定的约束条件下设计军用目标各部件和整机的外形,使它的RCS 最小,主要理论依据来自目标各部件的电磁散射机理[4],目前采用的主要措施有:①采用翼身融合体,全埋式座舱和半埋式发动机,使机翼与机身、座舱与机身平滑过渡,融为一体;②机翼采用飞翼、带圆钝前缘的V型大三角翼、低置三角翼、平底翼融合体以及活动翼结构等;③努力减少飞机表面能造成散射的突起物、取消一切外挂武器和吊舱,将外挂设备全部置于机内;④借助机身遮挡强的散射源,将发动机进气口设在机身背部,进气道采用锯齿形;⑤座舱盖镀上金属镀膜,使雷达波不能透射入座舱内部;⑥采用倾斜双垂尾或V型尾翼;⑦采用尖形鼻锥;⑧改进天线罩,采用可收放天线等等。
2 材料隐身技术材料隐身技术就是采用能吸收或透过雷达波的涂料或复合材料,使雷达波有来无回、多来少回。
目前主要使用的是雷达吸波材料,此类材料可将雷达波能量转化为其他形式运动的能量,并通过该运动的耗散作用转化为热能。
美国的B- 2A、F- 117A和F- 22等隐身飞机均在金属蒙皮、机翼前后缘、垂尾和进气道等强回波部位大量使用吸波材料来减小RCS。
飞机的隐身措施

飞机的隐身研究及措施隐形对于一般人来说都不陌生,虽然这些说法大多数来自小说和神话,但是在现实生活中也不乏隐形的例子。
比如说变色龙就能够通过改变自己的颜色来进行隐形。
人们通过研究仿生学,并且应用了最新的技术和材料,终于在庞大的飞机上也实现了隐形。
从原理上来说,隐形飞机的隐形并不是让我们的肉眼都看不到,它的目的是让雷达无法侦察到飞机的存在。
隐形飞机在现阶段能够尽量减少或者消除雷达接收到的有用信号,虽然是最为秘密的军事机密之一,隐形技术已经受到了全世界的极大关注。
一.飞机的隐身研究隐身技术定义是:在飞机研制过程中设法降低其可探测性,使之不易被敌方发现、跟踪和攻击的专门技术,当前的研究重点是雷达隐身技术和外形隐身技术。
简言之,隐身就是使敌方的各种探测系统(如雷达等)发现不了己方的飞机,无法实施拦截和攻击。
早在第二次世界大战中,美国便开始使用隐身技术来减少飞机被敌方雷达发现的可能。
雷达隐身技术避开雷达是实现隐身的关键。
雷达隐身技术是怎样实现的呢?首先我们得分析雷达的工作方式,雷达是利用无线电波发现目标,并测定其位置的设备。
由于无线电波具有恒速、定向传播的规律,因此,当雷达波碰到飞行目标飞机、导弹等时,一部分雷达波便会反射回来,根据反射雷达波的时间和方位便可以计算出飞行目标的位置。
由此可见,飞机要想不被雷达发现,除了超低空飞行避开雷达波的探测范围外,就得想办法降低对雷达波的反射,使反射雷达波弱到敌人无法辨别的地步。
衡量飞行器雷达回波强弱的物理量为雷达散射截面积(英文名称RadarCross-Section,缩写为RCS),是指飞机对雷达波的有效反射面积,雷达隐身的方法便是采用各种手段来减小飞机的RCS。
例如美国的B-52轰炸机的RCS大于100平方米,很容易被雷达发现,而与其同类的采用了隐身技术的轰炸机B-2的RCS约为0.01平方米,一般雷达很难探测到它。
二.飞机的隐身措施1.可见光隐身(运用隐蔽色降低肉眼可视度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ka
RCS的单位
• RCS的单位是一个面积 :m2 • 由于目标RCS随方位变化剧烈,故也常用 平方米的分贝数(dBsm)来表示。
• 减少10dBsm意味回波功率只剩下1/10 • 减少20dBsm意味回波功率只剩下1/100 • 减少30dBsm意味回波功率只剩下1/1000
单站RCS与双站RCS
单站雷达
双站雷达
影响RCS的因素
• • • • • 目标材料的电性能 目标的几何外形 目标被雷达波照射的方位 入射波的波长 入射场极化形式和接收天 线的极化形式
入射波波长与RCS的关系
• 低频区 • 谐振区 • 高频区(光学区)
– 目标上某一点对该目标其 它点的散射场贡献与入射 场相比是很小的,可以将 这个目标的散射场看作由 各独立的散射中心的散射 场组成的。 – 绝大多数飞机都处于高频 区,对于高频区目标的散 射机理和RCS的研究,具有 重要的实用意义。
U-2高空侦察机
• 巡航飞行高
–两万米以上
• 吸波涂料 • 能减弱红外辐射的尾喷
SR-71高空高速侦察机
B-1B战略轰炸机
隐身技术在飞行器中应用的发展概况
• 80年代
–F-117 实用隐身战斗机
• 1989年,在巴拿马的空降作战 • 1991年,海湾战争 • 1999年
–B-2 隐身战略轰炸机
对强散射源进行摭挡
F-22进气道RCS测试模型
• 采用S形弯管进气道遮挡压气 机,使电磁波不能直接照射 到压气机。
–F-22
• 利用金属栅网遮盖进气道
–网孔尺寸远小于雷达波长 –电磁波将从栅网上散射而不进 入进气道 –F-117
对强散射源进行摭挡
• 座舱是不可避免的散射源,其中有飞行员和各种仪表及设备,座舱结 构比较复杂,形成一个空腔体。 • 入射波经座舱盖后,必然构成强反射。 • 在座舱盖表面蒸镀上一层不透波的金属膜,遮挡住雷达波,使其不能 进入座舱内。 • 镀膜不影响舱盖的透明度,既保证了飞行员的视野又可以降低RCS值。
Lockheed Martin-Boeing TierIII Minus Low-Observable UAV DarkStar
Northrop Grumman Stealth UAV
X-47
X-47A
Boeing X-45 Unmanned Combat Aerial Vehicle (UCAV)
• Avionics • External Aircraft Geometry – Common modules – minimum type – Low observable – Liquid cooling for reliability – Low supersonic drag – Low observable apertures – Unrestricted • Radar maneuverability • Infrared • Propulsion • Communications/Navigations – Low observable supersonic • Electronics warefare inlet – Ada real time software – Low observable augmenter/thrust vectoring • Other subsystems and equipment • Low observable air data sensors • Low observable canopy
将飞机的雷达回波的主要能量控制在少数很窄的方位内
B-2隐身轰炸机外形的所有边缘 只有两个方向 F-22战斗机外形轮廓的方向尽可能一致
结论
• 隐身性能已成为衡量未来军用机先进性的 一个重要判据。
• 隐身设计已成为军用飞机的一个重要方面。
典型目标的RCS量值
雷达隐身技术
RCS缩减的三种方法
• 雷达隐身技术= RCS缩减技术 • RCS缩减的常用三种方法
–外形 –材料 –阻抗加载
外形隐身技术
• 外形隐身技术是最有效的措施之一
几何横截面积相同的物体RCS的比较,波长3cm
正方形平板:b=0.18(m),σ=14.66(m2)
圆球:a=0.1(m),σ=0.031(m2)
其它隐身设计概念
多学科一体化设计
Structure Electromagnetics
CFD
先进设计 Controls
Propulsion
雷达散射截面
雷达散射截面概念
• 雷达散射截面 (Radar Cross section, 缩写 RCS) 是雷达隐 身技术中最关键的概念,它表征了目标在雷达波照射下所 产生回波强度的一种物理量。 • 任一目标的 RCS 可用一个各向均匀辐射的等效反射器的投 影面积(横截面积)来定义,这个等效反射器与被定义的 目标在接收方向单位立体角内具有相同的回波功率。
• 1999年
F-117 隐身战斗机
B-2 隐身战略轰炸机
• • • • 飞翼式布局 背部进气道 复合材料 吸波材料
隐身技术在飞行器中应用的发展概况
• 90年代
–F-22 战斗机
• 低可探测性 • 高机动性和敏捷性 • 超音速巡航能力 • 能携带不少于F-15的有效负载 • 航程大
–其它飞行器
F-117座舱盖
控制散射方向,使散射能量集中在雷达威胁区域之外 • 将飞机的主要散射能量偏离雷达的威胁区域,从而来 降低飞机的后向散射能量,降低雷达发现飞机的概率。
平板式外形结构F-117A隐身战斗机 使回波偏离雷达威胁区 回波在雷 达威胁区
回波偏离雷 达威胁区
消除角反射器效应
• 角反射器是强散射源
飞行器隐身技术
南京航空航天大学 航空宇航学院
什么是隐身技术
• 广义
–可以把各种反探测的技术均称之为隐身技术 –英文:Stealth Technology
• 狭义
–飞行器被发现概率的大小,主要决定于其信噪 比S/N的值
• 增大N值,即增强背景噪声信号的强度---干扰技术 • 降低S值,即降低飞行器自身的目标特征信号强度--隐身技术 • 低可见度技术,英文Low Observable Technology
圆锥:a=0.1(m),α=15°,σ=0.013(m2)
锥球:a=0.1(m),α=15°,σ=0.00018(m2)
外形隐身技术
• 减少散射源 • 将强散射源转化为若散射源
• 遮挡技术
• 控制散射方向,使散射能量集中在雷达威胁区域 之外 • 消除二面角效应 • 将飞行器的雷达回波的主要能量控制在少数很窄 的方位内,使两个波峰之间的回波信号非常弱。
飞行器隐身技术
应用于飞行器设计
雷达隐身技术
红外隐身技术
抗声波隐身技术
减缩RCS
降低红外辐射
降低噪声
抗可见光 隐身技术
RCS 计算和测量 电磁理论
红外辐射 计算和测量
噪声分析 计算、测试
光源分析 光强计算 光学
红外辐射理论
声学
隐身技术在飞行器中应用的发展概况
• 早期:
–HolHXV2轻型轰炸机,飞翼布局, 吸波材料 –U-2高空侦察机, –SR-71高空高速侦察机 –B-1B战略轰炸机
减少散射源
• 布局
– 飞翼 – 无尾三角翼 – 双垂尾
• 减少外挂 • 较少开口,缝隙,台阶
几种低RCS布局
YF-23
F-22无尾飞机X-Fra bibliotek7减少外挂
F-15 F-22
F-16
将强散射源转化为若散射源
• 将镜面反射转化为边缘绕射 • 机头的修形
对强散射源进行摭挡
有遮挡和无遮挡时发动机短舱的RCS曲线
RCS的数学表达式
• 根据电磁场理论 , 功率流密度正比于电场强度 E的平方 (或磁场强度H的平方)。 • RCS可定义为:目标在单位立体角内向接收机处散射功 率密度与入射波在目标上的功率密度之比的4倍。
lim
R
E 4R Ei
2
s 2
lim 4R 2
R
H Hi
s 2
•
BOEING-SIKORSKY RAH-66 COMANCHE STEALTH HELICOPTER
Raytheon (General Dynamics) AGM-129 ACM
The AGM-129 ACM (Advanced Cruise Missile) is a stealthy, nuclear-armed cruise missile used exclusively by B-52H Stratofortress strategic bombers.
–垂尾与平尾相互垂直构成一个角反射器效应 –机身和机翼之间也可能存在角反射器效应
• 机身机翼融合体 • 斜置尾翼
机身机翼融合体与斜置尾翼
YF-23
F-22
将飞机的雷达回波的主要能量控制在少数很窄的方位内
• 在某些方位飞机上总存在一些构成主要散射源的边缘 或表面。 • 将飞机的雷达回波的主要能量控制在少数很窄的方位 内,使波峰之间的回波信号非常弱。 • 通过仔细设计飞机的外形,使飞机的RCS在雷达波照射 的整个方位内,只有在少数很窄的方位内才出现峰值, 并使两个峰值之间的RCS非常小。 • 由于回波峰值之间的RCS很小,与背景噪声难于区别, 从而使敌方雷达接收不到连续的信号,难以确定飞机 是一个实在的目标还仅是一个瞬变噪声,降低了雷达 发现飞机的概率。
X-36
• McDonnell Douglas and the National Aeronautics and Space Administration (NASA) have developed a tailless research aircraft that could dramatically change the design of future stealthy fighters. This innovative design promises to reduce weight, drag and radar signature and increase range, maneuverability and survivability of future fighter aircraft.