人教版数学初中九年级下册全册配套课件

合集下载

人教版九年级数学下册全册课件(共24份)

人教版九年级数学下册全册课件(共24份)

A 的 邻 边 b c o sA 斜 边 c
斜边c
∠A的对边a
锐角A的对边与邻边的比叫做锐 A 角∠A的正切,记作tanA,即
∠A的邻边 b
C
A 的 对 边 a ta n A A 的 邻 边 b
二、新课讲解
在Rt△ABC中,∠C=90°,我们把锐角A 的对边与邻边的比叫做锐角∠A的余切,记 作cotA,即
B C
知 识 点 一
A
二、新课讲解
分析:这个问题可以归结为,在Rt△ABC “在直角三角形中,30°角所对的边 等于斜边的一半”,即
A 的对边 BC 1 斜边 AB 2
知 识 点 一
可得AB=2BC=70m,
也就是说,需要准备 70m长的水管. B
第二十八章 锐角三角函数
28.1 锐角三角函数(1)
一、新课引入
如图:在Rt △ABC中,∠C=90°,
B
角:∠A+ ∠B =90°
勾股定理
A ┌ C
边:AC2 + BC2 = AB2
在直角三角形中,边与角之间有什么关 系呢?
一、新课引入
直角三角形ABC可以简记为Rt△ABC; 直角∠C所对的边AB称为斜边,用c表示; 直角边BC称为 ∠A的对边,用a表示;
想一想acacabac在rtabc中c90我们把锐角a的邻边与斜边的比叫做锐角a的余弦记作cosa即结论cos的邻边斜边锐角a的对边与邻边的比叫做锐角a的正切记作tana即的对边的邻边a的邻边斜边在rtabc中c90我们把锐角a的对边与邻边的比叫做锐角a的余切记作cota即的邻边的对边锐角a的正弦余弦正切余切都叫做的锐角三角函数

8
4 8 = = sinA = AB 10 5

新人教版九年级数学下册全册ppt课件

新人教版九年级数学下册全册ppt课件

2 000 1 000 100 . ; (3)p ( 1) t ; ( 2) h v S S
概念辨析
2.下列哪些关系式中的 y 是 x 的反比例函数? 2 y (1)y=4x; (2) =3; (3)y=- ; x x 1 2 (4)y=6x+1; (5)y=x -1; (6)y= 2 ; x (7)xy=123 .
例题探究
例1 已知 y 是 x 的反比例函数,并且当 x=2 时, y=6. (1)写出 y 关于 x 的函数解析式; (2)当 x=4 时,求 y 的值.
拓展练习
3.已知 y 与 x2 成反比例,并且当 x=3 时,y=4. (1)写出 y 关于 x 的函数解析式; (2)当 x=1.5 时,求 y 的值; (3)当 y=6 时,求 x 的值.
最新部编本人教版(RJ)九年级数学下册
内含大量动画全真演绎教学内容 打造中学数学高效课堂的首选教学课件
可修改,可直接使用教育部审定版本,首发九年级下册
26.1 反比例函数(第1课时)
情境引入
问题1 京沪线铁路全程为 1 463 km,某次列车的 平均速度 v(单位:km/h)随此次列车的全程运行时间 t(单位:h)的变化而变化. (1)平均速度 v,运行时间 t 存在什么数量关系? (2)这两个变量间有函数关系吗?试说明理由. (3)你能写出 v 关于 t 的解析式吗?
情境引入
问题5
6 6 反比例函数 y 与 y 的图象有什么 x x
共同特征?有什么不同点?不同点是由什么决定的?
问题6 k 取不同的值时,上述结论是否适用于所有 反比例函数?
形成概念
函数 图象形状 k>0 图象位置
图象变化 趋势 函数值 增减规律 在每个象限 内,y 都随 x 的增大而 减小

人教版年九年级数学下册全册课件共份ppt22

人教版年九年级数学下册全册课件共份ppt22

人教版年九年级数学下册全册课件共 份ppt22 (PPT 优秀课 件)
人教版年九年级数学下册全册课件共 份ppt22 (PPT 优秀课 件)
四、强化训练
解:梯形CDEF和梯形EFAB相似, 由此可得: CD EF EF AB
CD 4, AB 9
4 EF EF 9 EF 6 EF 是梯形的边长
答:四边形A1B1C1D1中最长的边长是15cm。
人教版年九年级数学下册全册课件共 份ppt22 (PPT 优秀课 件)
人教版年九年级数学下册全册课件共 份ppt22 (PPT 优秀课 件)
四、强化训练
4、如图,AB∥EF∥CD,CD=4, AB=9,若梯形CDEF与梯形EFAB相似, 求EF的长.

认真阅读课本第36至38页的内容,完 成下面练习并体验知识点的形成过程.
例1、图(1)的△A1B1C1是由正△ABC放大后 得到的,观察这两个图形,它们的对应角有 什么关系?对应边又有什么关系呢?
二、新课讲解
相 似
知多 识边 点形 一的
性 质
解:△A1B1C1和△ABC相似
A __=_A1
B_=__B1
2
A. 3
3
B. 2
C.
2 5
4
D. 9
3
2、已知2a-3b=0,b≠0,则a∶b=___2__.
人教版年九年级数学下册全册课件共 份ppt22 (PPT 优秀课 件)
人教版年九年级数学下册全册课件共 份ppt22 (PPT 优秀课 件)
四、强化训练
3、已知四边形ABCD和四边形A1B1C1D1相似,四 边形ABCD的最长边和最短边的长分别是10cm和 4cm,如果四边形A1B1C1D1的最短边的长是6cm, 那么四边形A1B1C1D1中最长的边长是多少?

人教版九年级下册数学全册课件

人教版九年级下册数学全册课件

解得 m =-2.
方法总结:已知某个函数为反比例函数,只需要根
据反比例函数的定义列出方程(组)求解即可,如本 题中 x 的次数为-1,且系数不等于0.
2021/12/20
练一练 1. 当m= ±1 时,y 2x m 2 是反比例函数. 2. 已知函数 y (k 2)(k 1) 是反比例函数,则
S
.
n
2021/12/20
问题:观察以上三个解析式,你觉得它们有什么共 同特点?
v 1463, y 1000, S 1.68104 .
t
x
n
都具有 分式 的形式,其中 分子 是常数.
一般地,形如 y k (k为常数,k ≠ 0) 的函数, x
叫做反比例函数,其中 x 是自变量,y 是函数.
函数自变量的取值范围.
2021/12/20
想一想:反比例函数除了可以用 y k (k ≠ 0) 的形式 x
表示,还有没有其他表达方式?
反比例函数的三种表达方式:(注意 k ≠ 0) y k, x y kx1, xy k.
2021/12/20
练一练 下列函数是不是反比例函数?若是,请指出 k 的值.
2021/12/20
第二十六章 反比例函数
26.1 反比例函数
26.1.1 反比例函数
2021/12/20
学习目标 1. 理解并熟练掌握反比例函数的概念. (重点) 2. 从实际问题中抽象出反比例函数的概念,能据已知条 件确定反比例函数的解析式. (重点、难点)
2021/12/20
生活中我们常常通过控制电阻的变化来实现舞台 灯光的效果. 在电压 U 一定时,当 R 变大时,电流 I 变小,灯光就变暗,相反,当 R 变小时,电流 I 变大, 灯光变亮. 你能写出这些量之间的关系式吗?

人教版九年级(初三)数学下册全套PPT课件

人教版九年级(初三)数学下册全套PPT课件

教材基本内容
判定 性质 正弦 余弦
正切
Байду номын сангаас
中心投影
反比例函数的 性质
平行投影
九 年 级 数 学
主视图 下 册
左视图
俯视图
重难点
位似变换 及作图
相似三角形性质 的实际应用(测 量、建筑等)
三角函数概念、 特殊三角函数值
解直角三角形 及其实际应用
锐角三角函数
锐角三角函数的概念 及转化思想的应用
相似三角形的判定 及相似的性质
教学建议
1、补充比例的有关知识,奠定知识基础。 2、加强与全等三角形的类比较学习,体会知识之间 的联系。 3、本章推理证明的难度增大,注意引导学生提高推 理能力,特别是证明问题方法的多样化和非常规化。 4、善于总结基本图形(“A”、“X”图,一些实际 测量的经典图形等) 5、利用相似解决实际问题时,力求知识化,避免过 难问题。要涉及相似三角形的与圆和函数结合的问 题,培养学生解决综合问题能力。 6、关注学生的学习兴趣和参与程度。
位似中心是原点 对应点的坐标比 为k或-k
相似形
相似多边形
对应角相等, 对应边成比例, 周长的比=相似比 面积的比=相似比的平方
知 识 逻 辑 联 系
两图形位似 对应顶点的连线 交于一点 对应边平行
课时安排 教学时间大约需要13课时,具体安排如下: 27.1 图形的相似 2课时 27.2 相似三角形 6课时 27.3 位似 3课时 数学活动 小结 2课时
相 似
两种投影含义 及简单应用
反比例函数的图 像
认识并会 画三视图
反比例函数
反比例函数的实 际应用
视图与投影
反比例函数 的图像及性 质

新人教版九年级数学下册全册完整课件

新人教版九年级数学下册全册完整课件
问题2 某住宅小区要种植一块面积为
1 000 m2的矩形草坪,草坪的长 y (单位:m)随宽 x(单位:m)的变
化而变化. 问题3 已知北京市的总面积为 1.68×104 km2 ,人均占有面积 S (单位: km2 /人)随全市总人口 n(单 位:人)的变化而变化.
形成概念
v 1 463
t
y 1 000 x
S 1.68104
y k(k ≠ 0) x
n
一般地,形如
y k(k 为常数,且 k ≠ 0)
x
的函数,叫做反比例函数,其中 x 是自变
量,y 是函数. 自变量 x 的取值范围是不等于 0 的一切实数.
1.下列哪些关系式中的 y 是 x 的反
比例函数?
(1)y=4x;
(2) y =3;度v是时间t的反比例函数,当t
v 14t63 取每一个确定的值时,v都有唯一确定的值与其
对应。
2、问题2和问题3呢?
在问题(2)中,当面积一定(1000㎡)时,
y 1000 表示长y是宽x的反比例函数,当
x
2
x取每一个确定的值时,y都有唯一确定的 值与其对应。
3、练习
指出下列函数中,哪一个成反比例函数关系 (1) y kx,1 xy=k(上述两个式子中k均为常数,
2、一次函数: y=kx+b(k、b为常数,k≠0)
3、正比例函数: y=kx(k为常数,k≠0)
二、讲授新知
1、具体事例 下列问题中,变量间具有函数关系吗?如
果有,它们的解析式有什么共同特点?
(1)京沪线铁路全程为1463km,某次列车平均 速度v(单位:km/h)随此次列车的全程运行时 间t(单位:h)的变化而变化;
复习题27
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档