既有运营铁路路基变形及沉降监测方案

合集下载

版高速铁路线下工程沉降变形观测实施方案

版高速铁路线下工程沉降变形观测实施方案

版高速铁路线下工程沉降变形观测实施方案一、引言高速铁路是我国交通建设的重要组成部分,对于确保线路运行的安全和顺畅具有重要意义。

随着高速铁路建设规模的不断扩大和线路的不断延伸,对线路下工程的稳定性和安全性进行实时监测就显得尤为重要。

本方案旨在针对版高速铁路线下工程进行全面、准确的沉降变形观测,为工程的日常运维和维护提供数据参考。

二、观测目标1.在各关键节点上设置监测点,全面观测沉降变形情况;2.实时监测线下工程的稳定性和安全性;3.提供沉降变形数据,为工程的运维和维护提供参考。

三、观测方法和设备1.观测方法:(1)采用连续观测和定期点观测相结合的方式;(2)连续观测通过现场安装的多个测点,采用自动监测系统进行实时监测;(3)定期点观测按照事先制定的计划和频率进行,采用手动测量方法。

2.观测设备:(1)连续观测设备包括自动沉降仪、全站仪等;(2)定期点观测设备包括水平仪、测距仪等。

四、观测方案1.确定监测点位置:在版高速铁路线路下工程的关键位置,比如桥梁、地下通道等地段,选择具有代表性的位置设置监测点。

2.连续观测部分:(1)在各监测点上设置自动沉降仪,通过自动沉降仪实时记录土体的变形情况;(2)自动沉降仪读取的数据将通过数据采集系统上传至中心监控室,实现远程监测;(3)设立监测预警值,一旦数据超出预警值范围,立即启动应急处理措施,并及时上报相关部门。

3.定期点观测部分:(1)按照计划和频率,对各监测点进行手动测量;(2)利用水平仪、测距仪等设备,记录土体在不同时间点的沉降变形情况;(3)对测量数据进行分析,找出变形的趋势和规律,并记录至工程监测数据库。

五、数据处理与分析1.连续观测数据:(1)连续观测数据通过数据采集系统实时上传至中心监控室;(2)中心监控室对数据进行自动分析和处理,生成沉降变形曲线和图表;(3)根据数据的变化趋势,预测可能出现的问题,并提出相应的处理建议。

2.定期点观测数据:(1)定期点观测数据由监测人员手动记录,并进行整理与存档;(2)对数据进行统计和分析,生成各监测点的变形报告;(3)根据报告的分析结果,评估工程的稳定性和安全性,并提出相应的修复或加固措施。

铁路路基沉降观测方案

铁路路基沉降观测方案

铁路路基沉降观测方案铁路扩能改造工程路基沉降观测及变形观测评估方案编制:复核:审批:铁路路基沉降观测方案目录一、编制依据 (3)二、观测范围及主要内容 (3)三、沉降观测的组织及设备配备 (14)3.1成立沉降观测专题小组 (14)3.2主要设备配备 (14)四、沉降观测频次 (14)五、技术方案的实施 (15)5.1沉降监测网布设 (15)5.2沉降变形观测方法和基本要求 (16)5.3沉降观测基本要求 (17)六、评估方法和判定标准 (17)七、综合评估与资料整理 (18)铁路路基沉降观测方案一、编制依据1.1TB10101-99《新建铁路工程测量规范》1.2《客运专线铁路无碴轨道铺设条件评估技术指南》1.3《客运专线铁路路基工程施工质量验收暂行标准》1.4TZ212-2005《客运专线铁路路基工程施工技术指南》1.5JGJ/T 8-97《建筑变形测量规程》;1.6GB 50026-93《工程测量规范》;1.7GB 12897-91《国家一、二等水准测量规范》;1.8GB/T 18314-2001《全球定位系统(GPS)测量规范》。

二、观测范围及主要内容根据《客运专线铁路无碴轨道铺设条件评估技术指南》规定:沉降观测断面的间距一般不应大于50m,地势乎坦、地基条件均匀良好的路堑、高度小于5m的路堤可放宽到100m;地形、地质条件变化较大地段应适当加密。

湘桂铁路扩能改造工程路基填方的分布范围及设置计划见表1:表1填方的分布范围及设置计划3 / 18总计需要设置651个路基面沉降观测断面。

路基基底沉降观测等级为国家二等水准(工程测量规范中垂直位移监测网二等),沉降观测的观测精度为W±1mm,读数取位至0.01mm,仪器选择满足二等水准测量精度要求,使用DS03精度的精密电子水准仪,配套电子水准仪配编码水准尺。

路基两侧边桩位移观测等级为建筑变形测量二级。

沉降观测测点的设置见图1:13 / 18铁路路基沉降观测方案路肩观测桩路基观测桩路基观测桩三、沉降观测的组织及设备配备3.1成立沉降观测专题小组沉降观测专题小组由12人组成,组长1人,副组长2人。

铁路路基-工程沉降变形观测及评估方案[1]

铁路路基-工程沉降变形观测及评估方案[1]

新建铁路路基沉降变形观测及评估方案**** 客运专线公司2 0 1 0 年3 月目录第一章总则 (4)一、适用范围 (4)二、技术依据 (4)第二章组织管理 (6)一、职责分工 (6)(一)建设单位 (6)(二)施工单位 (6)(三)监理单位 (7)(四)设计单位 (8)(五)咨询单位 (8)(六)评估单位 (8)第三章通用要求 (10)一.沉降变形测量等级及精度要求 (10)二.沉降变形监测网主要技术要求及建网方式 (10)三.沉降变形测量点的布置要求 (12)四.沉降变形监测测量工作基本要求 (13)五.沉降变形监测观测具体要求 (14)六.沉降变形监测平行检测工作 (16)第四章专业要求 (17)一、路基工程 (17)(一)路基沉降变形观测 (17)ii欢迎下载(二)路基工程沉降评估 (28)(三)过渡段沉降变形观测 (30)(四)过渡段的沉降评估 (31)四、综合评估 (32)附件一:线下工程沉降变形观测及评估流程图 (33)附件二:资料传递程序 (35)附表4 路基沉降观测记录表(沉降观测桩) (38)附表5 路基观测桩沉降量记录汇总表 (39)附表6 路基沉降观测记录表(沉降板) (41)附表7 路基沉降板观测记录汇总表(沉降板) (42)附表8 路基沉降板观测记录表(剖面管) (43)附表9 路基分层沉降观测记录表. (44)附表10 路基分层沉降观测记录汇总表 (45)附表11 路基边桩位移观测记录表. (46)附表12 路基边桩位移观测记录汇总表 (47)附表13 过渡段沉降量记录汇总表. (48)第一章总则为指导铁路路基(含过渡段)的沉降变形观测、无碴轨道铺设条件的评估工作,制定本方案。

无碴轨道铺设条件评估的重点应是线下工程的沉降变形,评估应综合考虑沿线路方向各种结构物间的沉降变形关系,以标段为单位实施。

设计单位按照本指导方案,以标段为单位制定沉降观测设计方案。

无碴轨道铺设条件的评估数据必须采用先进、成熟、科学的检测手段取得,且必须真实可靠,全面反映工程实际状况。

2016年最新临近既有线沉降变形监测方案

2016年最新临近既有线沉降变形监测方案

新建**至**铁路客运专线***标邻近营业线变形监测专项施工方案编制:复核:审核:***********有限公司二〇**年**月新建**至**铁路客运专线***标邻近营业线变形监测专项施工方案目录1、工程概况 (1)2、监控目的 (1)3、编制依据 (1)4、监控内容 (1)5、监测施工与观测工艺流程图 (1)6、人员组织及仪器配置 (3)6.1人员组织 (3)6.2仪器配置 (3)7、监控量测的实施 (3)7.1建立监控量测网 (3)7.1.1工作基准点的埋设 (3)7.1.2平面控制网技术要求 (4)7.1.3高程控制网技术要求 (5)7.2变形监测观测标的布置 (6)7.2.1既有线轨道变形监测断面设置 (6)7.2.2新建铁路路基岩溶注浆段观测标的布置 (6)7.2.3既有涵洞接长观测标的布置 (8)7.2.5新建桥梁邻近既有线路基 (9)7.3变形监测方法及精度要求 (10)7.3.1既有线轨道监测方法及精度要求 (10)7.3.2水平位移观测方法及精度要求 (11)7.3.4垂直位移观测方法及精度要求 (11)7.4数据处理及信息反馈 (14)7.4.1一般规定 (14)7.4.2 观测数据处理 (14)7.4.3异常情况处理 (15)7.4.4监测数据反馈流程图 (15)7.4.5监测报告的形成 (16)8.监测记录表格 (17)1、工程概况新建**至**铁路客运专线****标邻近营业线主要工点有:**站及峡江**两侧路基及涵洞施工(对应**线里程K1600+900m~K1602+980m)、****施工(K1598+133m~K1598+395m)。

为保证既有线行车及设备安全,路基施工岩溶注浆、接长涵洞人工挖孔桩以及**桩基施工需对既有线路基监测和对轨道进行线检。

2、监控目的2.1保证营业线行车和设备安全;2.2提供信息反馈,为各方决策提供依据;2.3确保周边建筑物安全。

3、编制依据3.1《新建铁路工程测量规范》(TB10101-99)3.2《建筑变形测量规范》(JGJ8-2007)3.3《国家一、二等水准测量规范》(GB/T 12897-2006)3.4《铁路轨道工程施工质量验收标准》(TB10413-2003)3.5铁路营业线施工安全管理办法(铁运[2012]280号);3.6《**铁路局营业线施工及安全管理细则》(*铁运发〔2012〕610号);4、监控内容4.1既有线轨道变形观测;4.2既有线边坡沉降及水平位移观测;5、监测施工与观测工艺流程图图5.1.1监测施工与观测工艺流程图6、人员组织及仪器配置6.1人员组织邻近既有线施工,既有线路基沉降监测委托有资质的第三方(****有限公司),同时轨道轨距、水平、方向委托**工务段对进行检测,施工过程中项目派专职防护员在现场盯控,并设置两端防护员进行安全防护工作,确保施工和行人、行车安全。

铁路路基工程沉降变形观测及评估方案

铁路路基工程沉降变形观测及评估方案

铁路路基工程沉降变形观测及评估方案摘要:路基工程属于整个铁路工程中的关键环节之一,不仅担负着列车重量与轨道自身重量,而且还对列车运行安全有直接的影响。

在该环节中,对于路基的沉降观测是至关重要的,观测铁路路基沉降变形,制定评估方案是十分关键的,本文对此做了详细阐述,以供有关人员借鉴。

关键词:铁路路基工程;沉降变形观测;评估方案;沉降点;观测点路基是铁路线路工程的一个重要组成部分,是承受轨道结构重量和列车载荷的基础,也是线路工程中薄弱和不稳定的环节。

列车运行时,由于其自身具有一定重量,加之铁轨并不平整,因此容易导致路基沉降。

为此,本文将从观测铁路路基沉降的重要性入手,分析变形观测的内容与评估要求,研究路基变形监测的四阶段,并对设立沉降点和固定观测点,以及沉降观测数据处理与常见问题展开研究,以供参考。

一、观测铁路路基沉降的重要性近些年以来,国内铁路的建设数量快速上升,确保行车状态的平稳与可靠是当前铁路建设的基本要求。

而铁路路基是承载全部铁路轨道重要结构,对列车的平稳、可靠运行具有决定作用。

如果因为路基的沉降引起轨道的凹陷,则会使快速运行的列车产生振动,不利于可靠运行,所以,铁路对路基的沉降提出了极为严格的要求。

引起地面沉降的因素通常有以下两种,一是人为因素;二是自然因素。

铁轨通过的许多地区都有着程度不同的区域地面沉降现象。

由这类沉降导致的诸多问题十分不利于列车的平稳运行。

路基担负着列车重量与轨道自身重量,是整个线路工程中极为重要的部分。

在列车行进当中,因其自身的重量以及轨道的不平顺,会产生频率不同的振动,随着时间的延长,这种振动极有可能会引起路基沉降,所以,严密观测铁路路基地面沉降是很必要的。

二、变形观测的内容、评估要求1、沉降观测的主要内容通常来讲,路基变形观测的主要内容如下:即路堤处的变形观测、以及路基面、路基两侧坡脚、还有路基基底和路基两侧路肩的观测。

此外,从过渡段的层面来看,又分为以下的观测内容:即路桥过渡段的观测、还有路堤与路堑以及路堤与涵洞的过渡段观测。

高速铁路路基变形监测—路基沉降变形监测的目的及技术要求

高速铁路路基变形监测—路基沉降变形监测的目的及技术要求
以路基面沉降监测为主,主要在路基面布设沉降监测桩进行路基 沉降监测;路堤填筑较高时加强路堤填筑层沉降监测,在填筑层 增设单点沉降计监测填土层沉降;对于地基压缩层厚的较高路堤 地段进行路基基底、路堤填筑层及路基面沉降监测,在基底设单 点沉降计、沉降板、剖面沉降管,在填土层布设单点沉降计,在 路基面布设沉降监测桩进行各部位沉降监测。
项目五 高速铁路路基变形监测
一、沉降变形监测的目的
虽然设计中对土质路基、桥梁墩台基础等均进行了沉降变形 计算,采取了相应的设计措施,但设计的沉降分析和计算受勘测、 设计、施工、质量监测等众多环节的影响,其精度仅能达到估算 的程度,不足以控制无砟轨道工后沉降和差异沉降。
项目五 高速铁路路基变形监测
项目五 高速铁路路基变形监测
二、沉降变形监测的原则
为确保最终沉降量和工后沉降受控,合理确定无砟轨道的铺 设时间,应按照以下原则组织实施沉降变形观测:重点路基、兼 顾桥、立体监控、信息施工、数据真实、成果可控。通过对路基、 桥涵的沉降观测点的精密测量,沉降观测数据全面收集,系统、 综合分析沉降变形规律,验证或调整设计措施,使路基、桥涵工 程达到规定的变形控制要求。
项目五 高速铁路路基变形监测
二、沉降变形监测的原则
1、高速铁路无砟轨道变形控制原则
高速铁路无砟轨道路基变形控制十分严格,工后沉降一般 不应超过无砟轨道铺设后扣件允许的沉降调高量 15mm,路桥 或路隧交界处的差异沉降不应大于5mm,过渡段沉降造成的路 基与桥梁的折角不应大于1/1000。
项目五 高速铁路路基变形监测
项目五 高速铁路路基变形监测
五、变形监测网主要技术要求及建网方式
1、垂直位移监测网
(2)垂直位移监测网建网方式
监测网由于自然条件的变化、人为破坏等原因,不可避免的 有个别点位会发生变化。为了验证监测网点的稳定性,应对其进 行定期检测。

铁路沉降观测实施方案

铁路沉降观测实施方案

铁路沉降观测实施方案一、背景介绍铁路线路的沉降观测是指通过对于铁路路基、桥梁、隧道等结构变形进行定量观测,以及分析、评估结构变形导致的安全隐患和对列车运行的影响。

这对于保证铁路线路的安全运营、提高铁路线路运输能力具有重要意义。

因此,建立科学合理的铁路沉降观测实施方案十分必要。

二、观测目的1.确定铁路线路沉降的状况和变化趋势,及时预警并采取措施解决安全隐患;2.分析铁路沉降对列车运行的影响,为运输计划的调整和优化提供依据;3.评估铁路线路的安全状况,确保安全运营。

三、观测内容1.铁路线路各关键区段的路基、桥梁、隧道等结构的水平和垂直位移观测;2.铁路线路沉降监测点的选择和布设;3.按照观测点布设,进行观测设备的安装调试;4.观测数据的采集和处理;5.观测数据的分析、评估和报告编制。

四、观测方法1.设计观测点:依据铁路线路的特点和重要区段,确定观测点的位置和数量。

观测点应覆盖不同类型的结构,如路基、桥梁、隧道等。

观测点的数量要充分体现观测的全面性和代表性。

2.观测设备的选择和布设:根据观测内容和要求,选择合适的观测设备。

观测设备应具有高精度、稳定性好等特点。

观测设备的布设应考虑到易于安装、调试和维护。

3.观测数据的采集和处理:按照观测周期进行定期的观测数据采集。

观测数据采集的频率要根据实际情况进行确定,通常可以选择每月或每季度进行观测。

观测数据采集后,应及时进行处理和分析,提取关键指标,如沉降速率、变化趋势等。

4.观测数据的分析、评估和报告编制:根据观测数据的分析和评估结果,编制相应的报告。

报告应包括观测结果的说明、结论和建议等内容,以供相关部门参考。

五、观测质量控制1.观测设备的校准和维护:观测设备在安装前需要进行校准,保证其测量精度和准确性。

观测设备的维护和保养要定期进行,确保其正常工作。

2.观测数据的准确性和可靠性控制:观测数据采集应按照规定的流程和方法进行,确保数据的准确性和可靠性。

观测数据的处理要科学合理,采用合适的方法进行数据分析。

最新版高速铁路线下工程沉降变形观测实施方案

最新版高速铁路线下工程沉降变形观测实施方案

高速铁路线下工程沉降变形观测实施方案目录第一章总则.........................................................................................1...一、适用范围...................................................................................1...二、工作依据...................................................................................1... 第二章组织管理.................................................................................2...一、职责分工...................................................................................2...(一)项目经理部 2(二)各工区 2二、工作程序...................................................................................3... 第三章通用要求.................................................................................4...一.沉降变形测量等级及精度要求 ................................................ 4..二.沉降变形监测网主要技术要求及建网方式 .............................. 4.三.沉降变形测量点的布臵要求.................................................... 6..四.沉降变形监测测量工作基本要求............................................. 7..五.沉降变形监测观测具体要求.................................................... 8.. 第四章专业要求...............................................................................1 1.一、路基工程 .............................................................................. 1..1.(一)路基沉降变形观测 (11)(二)过渡段沉降变形观测 (19)二、桥涵工程.................................................................................20.(一)一般规定 (20)(二)桥涵沉降变形控制标准 (20)高速铁路线下工程沉降变形观测实施方案(三)沉降变形观测方案 (21)(四)观测资料要求 (25)(五)观测频次 (26)(六)其他 (28)附件一:线下工程沉降变形观测及评估流程图 ............................ 2. 9 附件二:资料传递程序................................................................ 3.1.附件三:附表 .............................................................................. 3..2.附表1 工程沉降变形观测准备工作检查记录表 (32)附表2 工程沉降变形观测结果评估验收记录表 (33)附表3 路基沉降水准测量记录表. (34)附表4 路基沉降观测记录表(沉降观测桩) (35)附表5 路基观测桩沉降量记录汇总表 (36)附表6 路基沉降观测记录表(沉降板) (37)附表7 路基沉降板观测记录汇总表(沉降板) (38)附表8 路基沉降板观测记录表(剖面管) (39)附表9 路基分层沉降观测记录表. (40)附表10 路基分层沉降观测记录汇总表 (41)附表11 路基边桩位移观测记录表. (42)附表12 路基边桩位移观测记录汇总表 (43)附表13 过渡段沉降量记录汇总表. (44)附表14 桥梁墩台沉降观测汇总表. (45)附表15 桥梁墩(台)沉降量记录表 (46)附表16 桥梁墩(台)沉降量记录汇总表 (47)附表17 涵洞沉降量记录表. (48)附表18 涵洞沉降量记录汇总表. (49)附表19 横剖面沉降测试记录表. (50)第一章总则为规范各工区对路基(含过渡段)、桥梁、涵洞等线下工程的沉降变形观测,特制定本方案。

【铁路方案】高速铁路线下工程沉降变形观测方案(水准测量)

【铁路方案】高速铁路线下工程沉降变形观测方案(水准测量)

目录1 总则 (1)2 沉降变形测量 (2)3 桥涵工程沉降变形观测技术要求 (11)4 隧道工程沉降变形观测技术要求 (18)5 过渡段工程沉降变形观测技术要求 (20)6 线下工程沉降评估 (21)7 数据传输流程与数据管理 (26)沉降变形观测方案1 总则1.1为指导xx铁路xx标管辖内的工程段,做好施工期间的沉降观测,通过对桥梁及隧道工程的沉降观测资料进行分析,预测工后沉降,提出加速路基沉降的措施,确定无碴轨道的铺设时间,评估路基工后沉降控制效果,确保无碴轨道结构的安全,制定本指导方案。

1.2、无碴轨道铺设条件评估的重点应是线下工程的变形,评估应综合考虑沿线路方向各种结构物间的变形关系,以标段为单位实施。

设计单位按照本指导方案,以标段为单位制定沉降观测设计方案。

1.3、基础工程的沉降观测数据必须采用先进、成熟、科学的检测手段取得,且必须真实可靠,全面反映工程实际状况。

1. 4 沉降变形评估应综合考虑沿线路方向各种结构物间的沉降变形关系,以区段为单位实施。

评估方法应根据不同的工程类型、地质情况、工程措施确定,能够真实反映工后沉降状况。

1.5 沉降变形观测、评估过程是确定铺设无砟轨道的关键时间节点和关键工序的主要依据之一,必需加强“零周期”(即初始值)的过程控制。

1.6 工作依据如下:(1)《客运专线铁路无砟轨道铺设条件评估技术指南》(铁建设[2006]158号);(2)《国家一、二等水准测量规范》(GB12897—2006);(3)《建筑沉降变形测量规程》(JGJ/T8-2007);(4)《铁路客运专线竣工验收暂行办法》(铁建设[2007]183号);(5)《客运专线无砟轨道铁路施工技术指南》(TZ216-2007);(6)《高速铁路工程测量规范》(TB10601-2009、J962-2009);(7)《全球定位系统(GPS)铁路测量规程》(TB10054-97);(8)《客运专线无砟轨道铁路设计指南》(铁建设函[2005]754号);(9)xx铁路工程设计文件;(10)铁道部有关规定。

路基沉降观测及变形观测实施方案

路基沉降观测及变形观测实施方案

路基沉降观测及变形观测实施方案摘要快速铁路轨道对路基工程的工后沉降要求严、标准高,设计中对土质路基进行沉降变形计算,采取相应的涉及措施。

客运专线铁路和客货共线铁路路基工程施工质量验收暂行标准及施工技术指南均规定:路基的工后沉降达不到设计要求时,严禁进入轨道工程施工工序。

关键词路基沉降;观测;变形观测;实施方案客运专线无碴轨道对路基、桥涵、隧道等线下工程的工后沉降要求严格、标准高,设计中对土质路基、桥涵墩台基础等分别进行了沉降变形计算,并采取了相应的设计措施。

但影响沉降计算的有很多因素,沉降计算的精度不足以控制无碴轨道工后沉降。

施工期也有严格的要求,其中必须按设计要求进行系统的沉降变形动态观测方式。

通过对沉降观测数据系统综合分析评估,验证或调整设计措施,使路基、桥涵、隧道工程达到规定的变形控制要求。

1 基准控制网及观测技术方案在南分路布设1个基准点(国家二等三角点)、沿线布设2~3个工作基点(约5~8km一个工作基点),加密测量控制点是要根据具体断面情况而定。

基点控制采用GPS相对静态方法,按国家GPS B级网点观测和精度要求,观测并连测GPS B级网点和国家一、二等三角点观测,建立位移平面基准控制网是需要通过观测数据基线向量外业数据质量检核、GPS网平差计算等数据处理。

基准控制网建立之后在位移和沉降观测期间,对基准控制网按位移和沉降观测的方法完成不少于三次的检核观测,若发现变化应对期间的观测成果进行必要的修正。

采用高精度数字水准仪,按国家二等水准观测和精度要求并连测国家一等水准点,通过观测量的各项改正、概算和平差计算建立沉降高程基准控制网。

横向位移观测,以工作基点(精度控制在0.5mm以内)为起算点,采用国家GPS C级网点(国家三等三角点)观测;采用仪器标称精度不低于2″且测距精度≤5mm 的全站仪;施测精度可达到1mm要求。

以填土高、观测时间、沉降量/位移为要素,绘制“填土高~时间~沉降量/位移关系曲线图” 。

路基沉降观测及变形观测实施方案

路基沉降观测及变形观测实施方案

路基沉降观测及变形观测实施方案一、引言路基沉降观测及变形观测是对公路、铁路等基础设施建设或运营过程中路基沉降、变形等问题进行监测和评估的重要手段,能够提供实时、准确的数据,为工程的设计、施工、运营和维护提供科学依据。

本文将针对路基沉降观测及变形观测的实施方案进行详细介绍。

1.沉降观测点布设根据实际工程情况,确定沉降观测点的布设位置。

通常情况下,观测点要覆盖整个路基范围,选取具有代表性的位置进行观测。

观测点要均匀分布,覆盖各种地质条件和工程环境。

2.观测点标志设置在观测点处设置具有固定位置的标志物,如地脚螺栓等,确保观测点的位置不会发生变化。

标志物要固定可靠,不受外力影响。

3.观测设备选择根据观测需要和实际情况,选择适合的沉降观测设备。

常用的观测设备有测水管、水准仪、全站仪等。

在选择设备时要考虑设备的测量精度、稳定性和可靠性,并进行校准和养护。

4.观测方法根据实际情况,选择合适的观测方法。

常用的观测方法有静态观测、动态观测、连续观测等。

观测方法要与设备配套,确保测量数据的准确性和可靠性。

5.观测频率根据工程的重要性和监测的需要,确定观测的频率。

通常情况下,初期观测频率要高,随着工程的进行,观测频率可以逐渐降低,但要保持一定的连续性。

1.观测点布设根据实际工程情况,确定变形观测点的布设位置。

观测点要能够反映工程变形的情况,覆盖整个工程范围,选取具有代表性的位置进行观测。

2.观测点标志设置在观测点处设置具有固定位置的标志物,确保观测点的位置不会发生变化。

标志物要固定可靠,不受外力影响。

3.观测设备选择根据观测需要和实际情况,选择适合的变形观测设备。

常用的观测设备有测距仪、全站仪、测角仪等。

在选择设备时要考虑设备的测量精度、稳定性和可靠性,并进行校准和养护。

4.观测方法根据实际情况,选择合适的观测方法。

常用的观测方法有静态观测、动态观测、连续观测等。

观测方法要与设备配套,确保测量数据的准确性和可靠性。

5.观测频率根据工程的重要性和监测的需要,确定观测的频率。

(整理)高标准铁路路基沉降变形监测解决方案

(整理)高标准铁路路基沉降变形监测解决方案

高标准铁路路基沉降变形监测解决方案单点沉降计,分层沉降计一、沉降监测的意义路基沉降是高标准铁路建设的重要难题之一。

通过我国多年路基稳定性处理经验的总结,过去常规使用的方法,如沙桩、粉喷桩、堆载预压、真空预压、强夯等均不能很好的满足高标准铁路路堤路基稳定性处理的要求。

目前,大规模采用的处理方法为以CF基桩(或管桩)和土木复合材料组成的桩网复合结构处理方法。

该方法能解决不同地质条件下的高标准铁路路基稳定性处理的要求,能使路堤基础在较短时间内沉降变形趋于稳定,达到工后“零”沉降的要求(一般工后总沉降不大于15mm)。

桩网复合路基处理结构是通过地质勘探资料和路基荷载(即路堤标高)情况,确定CF基桩的密度、大小、强度和桩身长度等指标。

以上指标的变化将大幅影响工程建造费用。

因此合理选择既能确保路基稳定,又能减少工程建造成本。

虽然设计者已对路基稳定性作了充分考虑,但是绝对的零沉降是不可能的。

路基沉降满足下列曲线形度。

路堤填筑完成后,时间越长路基稳定性越好。

也就是说,路堤填筑完成一定时间后,路基沉降变形趋于稳定,并且可以根据历史沉降数据预测工后一定时间内总的沉降量。

因此,准确的沉降监测具有非常重要的意义。

具体体现在以下几点。

1、对勘探、设计具有验证作用,积累不同地质条件下的路基处理经验,提高设计水平。

2、对施工质量水平的监测。

如CF基桩的密度、大小、长度以及桩身混凝土强度达不到设计要求时,路基可能长时间不能达到稳定目标,影响工程质量水平和工程建设工期。

3、控制工期。

通过沉降趋势和沉降预测评估,确定上部结构的施工时间。

如何时可以浇注轨道板、何时可以铺设轨道等。

因此,沉降观测是工程分部和竣工验收的重要依据。

4、工后营运期进行沉降监测是线路列车营运舒适度、行驶速度、营运安全、工程维护与保养、使用寿命等评估的重要基础依据。

二、传统沉降观测的方法及其优缺点。

沉降监测方法分为两大类,传统法和电测法。

传统法简单实用,人工测量,精度不高,能满足一般路基沉降监测的要求。

既有运营铁路路基变形及沉降监测方案

既有运营铁路路基变形及沉降监测方案

既有运营铁路路基变形及沉降监测方案既有铁路路基监测内容主要包括:路基面的几何形态、道床厚度、路基面的变形、基床厚度、路基基底的沉降变形与不均匀沉降等监测,有条件尚应进行基床土的应力测试。

既有铁路路基监测应布设在路基填料或基床土质不良、基底地质条件差、地形变化大、路基排水不畅、以及各种过渡段等部位。

尤以路基出现病害或潜在危险地段应加强加密监测。

监测点应设置在观测数据容易反馈,且不影响正常行车运营或对整治施工造成不便的部位。

1.1 监测布置原则1.1.1 路基面外观监测路基面外观监测主要包括道床厚度、路基面的几何形态(路肩形状、路基面宽度、路拱形状、横向坡度及其平整度、基床陷槽、翻浆冒泥点等)。

可在两侧路肩上安设固定测点,采取开挖道床后经纬仪测量或直接采用钎探丈量。

沿线路方向每隔100~200m设置一个监测断面(且每工点不少于2个监测断面),路基基床病害严重地段应适当加密。

1.1.2 变形监测路基变形监测主要包括路基面沉降监测、路基本体沉降监测、路基基底沉降监测、路基深厚层地基分层沉降监测、路基水平位移监测等。

既有铁路受行车运营影响,一般以路基面沉降监测为主,较直观适用,便于实施且不影响既有线行车运营,其它变形监测应用较少,主要原因是监测元件埋设对行车运营干扰较大,但对于既有铁路路基的稳定、沉降变形严重地段视现场实际情况而定。

路基变形监测布置图详见图1-1。

注:当同时进行路基本体监测与路堤基底沉降监测时,可在同一孔中上下分布埋设监测元件。

图1-1-1 既有铁路路基监测断面示意图(1)路基面沉降监测分别于既有路基内侧钢轨顶、两侧路肩各一个监测点,每个监测断面共3个点,两侧路肩处埋设位移监测桩(包桩),钢轨顶处在钢轨内侧刷红色油漆作为标识,用精准水准仪、经纬仪等仪器,采用精密测量方法。

一般每隔50m设置一处监测断面,过渡段路基必须设置。

(2)路基本体沉降监测当既有路基填料不良、压实度不足或较高填方等路基本体沉落变形较大时,可视需要进行路基本体沉降监测。

高速铁路线下工程沉降变形观测及评估实施计划方案

高速铁路线下工程沉降变形观测及评估实施计划方案

高铁线下项目沉降变形观测评价实施方案第一章总则为指导某高速铁路无砟轨道铺设,对路基(含过渡段)、桥梁、涵洞、隧道等离线工程的沉降变形进行了观测,并对观测数据进行了分析,包括施工后沉降预测。

,以评估无砟轨道的铺设条件,从而确定无砟轨道铺设的合理时间,保证无砟轨道结构的安全。

无砟轨道铺设条件评价的重点应该是离线工程的沉降变形。

评标应综合考虑沿线各构筑物的沉降变形关系,以标段为单位实施。

设计单位应当按照本指导方案,以标段为单位制定沉降观测设计方案。

无砟轨道铺设条件的评价数据必须通过先进、成熟、科学的检测手段获得,必须真实可靠,充分反映工程实际情况。

沉降变形的观测与评价过程是确定铺设无砟轨道关键时间节点和关键工序的主要依据之一。

要加强“零观测”(即初值)的过程控制。

一、适用范围本方案适用于高速铁路路基(含过渡段)、桥梁、涵洞、隧道施工过程中沉降变形的观测与评价。

二、工作基础1.《客运专线无砟轨道铺设条件评价技术导则》(铁建设[2006]158号);2、《客运专线无砟轨道测量技术暂行规定》(铁建设[20 06]189号);3、《国家一、二级水准仪规范》(GB12897-2006);4、《建筑沉降变形测量规程》(JGJ/T8-2007);5、《铁路客运专线竣工验收暂行办法》(铁建设[2007]1 83号);客运专线无砟轨道铁路施工技术导则》(TZ216-2007);7、《工程测量规程》(GB0026-93);8.《全球定位系统(GPS)铁路测量规程》(TB10054-97);9.《客运专线无砟轨道设计导则》(铁建设函[2005]754号);10、高速铁路工程设计文件一份;11、铁道部有关规定。

第二章组织管理一、职责分工高铁线下工程沉降变形观测评价是一项系统工程,需要施工各方各负其责,密切配合,确保观测数据和评价结果的真实可靠.(一)建设单位建设单位负责沉降变形观测及其评价的领导和协调,并对过程进行监督检查。

铁路路基沉降观测方案

铁路路基沉降观测方案

铁路路基沉降观测方案1. 简介铁路路基沉降观测是指对铁路路基沉降情况进行定期观测和监测,以保证铁路线路的稳定和安全。

铁路路基沉降观测方案是为了有效管理和控制铁路路基沉降而制定的一系列操作指南和方法。

本文将介绍铁路路基沉降观测方案的主要内容,包括观测目的、观测方法、观测频率和数据处理等方面的内容。

2. 观测目的铁路路基沉降观测的主要目的是为了:•监测铁路路基沉降情况,及时发现路基沉降问题;•分析沉降变化规律,评估沉降对铁路线路的影响;•提供科学依据和数据支持,指导路基维护和修复工作。

通过铁路路基沉降观测,可以及时发现和解决潜在的路基沉降问题,确保铁路线路的稳定和安全运营。

3. 观测方法铁路路基沉降观测主要采用以下几种方法:•野外观测:在路基上布设观测点,定期测量观测点的沉降情况。

观测点的选择应考虑路基的主要特征和潜在的沉降风险。

观测点的布设应均匀分布于路基上,覆盖整个路段。

•高精度测量仪器:采用高精度测量仪器对观测点进行测量,以实现对路基沉降的精确观测。

常用的测量仪器包括全站仪、水准仪等。

•数据记录与上传:观测数据应及时记录和上传至中心数据库,以便进行数据分析和处理。

4. 观测频率铁路路基沉降观测应定期进行,观测频率主要根据以下几个因素确定:•路基类型:不同类型的路基沉降速率有所不同,需要根据具体情况确定观测频率。

•路段状况:路段的使用情况和周围环境的变化也会影响路基的沉降情况,需要根据路段状况进行调整。

•紧急情况:在发生紧急情况(如地震、洪水等)时,需要增加观测频率,及时监测和评估路基的变化情况。

一般情况下,铁路路基沉降观测的频率为每年一次,可根据需要进行相应调整。

5. 数据处理铁路路基沉降观测数据的处理主要包括以下几个步骤:•数据整理:对观测数据进行整理和管理,包括数据的归档、统计和存档等工作。

•数据分析:对观测数据进行分析,包括沉降速率的计算、沉降趋势的分析等。

•结果评估:根据数据分析的结果,评估路基的沉降情况和对铁路线路的影响,判断是否需要采取修复措施。

铁路工程路基变形监测方案

铁路工程路基变形监测方案

铁路工程路基变形监测方案一、铁路工程路基变形监测的意义路基变形是指铁路路基在运行过程中因不同原因出现的土体移动、沉降变形等现象。

路基变形可能导致铁路道床不平整、轨道变形和列车运行不安全等问题。

因此,及时发现并处理路基变形问题对于保障铁路工程稳定性和安全性非常重要。

1. 提高铁路运行安全性及时监测路基变形可以帮助铁路管理部门了解路基变形的情况,及时采取相应的措施,避免路基变形对铁路运行带来不利影响,确保列车运行安全。

2. 保障铁路工程稳定性通过监测路基变形情况,可以及时发现路基变形的问题,采取相应的维护措施,保障铁路工程的稳定性和持续运行。

3. 降低维护成本及时发现并处理路基变形问题,可以有效降低维护成本,延长铁路工程的使用寿命,提高资源利用效率。

二、铁路工程路基变形监测的方法铁路工程路基变形监测通常采用传统测量方法和现代化监测技术相结合的方式进行。

传统测量方法包括现场实地测量和地质勘探等方式,现代化监测技术包括遥感监测、卫星监测、GPS定位监测、应力应变监测等技术。

1. 传统测量方法(1)现场实地测量:通过现场实地测量方式,对路基进行测量,了解路基的实际运行情况,但该方法工作量大,耗时长,且准确性无法保证。

(2)地质勘探:地质勘探是通过地质勘探手段对路基进行勘探,了解地下土体情况,从而了解路基的稳定性情况。

2. 现代化监测技术(1)遥感监测:通过遥感技术,使用遥感仪器对路基进行监测,获取路基的变形情况,并通过遥感图像分析路基变形情况。

(2)卫星监测:利用卫星遥感技术,通过卫星图像监测路基的变形情况,了解路基的稳定性情况。

(3)GPS定位监测:通过GPS技术对路基进行定位监测,了解路基的位移情况,及时发现并处理路基变形问题。

(4)应力应变监测:通过安装应力应变传感器对路基进行应力应变监测,了解路基的变形情况,发现问题及时采取相应措施。

以上监测方法相结合,可以全方位、多角度地对铁路工程路基变形情况进行监测,确保监测结果的准确性和全面性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

既有运营铁路路基变形及沉降监测方案既有铁路路基监测内容主要包括:路基面的几何形态、道床厚度、路基面的变形、基床厚度、路基基底的沉降变形与不均匀沉降等监测,有条件尚应进行基床土的应力测试。

既有铁路路基监测应布设在路基填料或基床土质不良、基底地质条件差、地形变化大、路基排水不畅、以及各种过渡段等部位。

尤以路基出现病害或潜在危险地段应加强加密监测。

监测点应设置在观测数据容易反馈,且不影响正常行车运营或对整治施工造成不便的部位。

1.1 监测布置原则1.1.1 路基面外观监测路基面外观监测主要包括道床厚度、路基面的几何形态(路肩形状、路基面宽度、路拱形状、横向坡度及其平整度、基床陷槽、翻浆冒泥点等)。

可在两侧路肩上安设固定测点,采取开挖道床后经纬仪测量或直接采用钎探丈量。

沿线路方向每隔100~200m设置一个监测断面(且每工点不少于2个监测断面),路基基床病害严重地段应适当加密。

1.1.2 变形监测路基变形监测主要包括路基面沉降监测、路基本体沉降监测、路基基底沉降监测、路基深厚层地基分层沉降监测、路基水平位移监测等。

既有铁路受行车运营影响,一般以路基面沉降监测为主,较直观适用,便于实施且不影响既有线行车运营,其它变形监测应用较少,主要原因是监测元件埋设对行车运营干扰较大,但对于既有铁路路基的稳定、沉降变形严重地段视现场实际情况而定。

路基变形监测布置图详见图1-1。

注:当同时进行路基本体监测与路堤基底沉降监测时,可在同一孔中上下分布埋设监测元件。

图1-1-1 既有铁路路基监测断面示意图(1)路基面沉降监测分别于既有路基内侧钢轨顶、两侧路肩各一个监测点,每个监测断面共3个点,两侧路肩处埋设位移监测桩(包桩),钢轨顶处在钢轨内侧刷红色油漆作为标识,用精准水准仪、经纬仪等仪器,采用精密测量方法。

一般每隔50m设置一处监测断面,过渡段路基必须设置。

(2)路基本体沉降监测当既有路基填料不良、压实度不足或较高填方等路基本体沉落变形较大时,可视需要进行路基本体沉降监测。

于既有路基路肩(或路堤原有地表横坡大于20%地段于两侧路肩处)采用预钻孔成孔后埋设高精度智能型单点沉降计,分别设置于基床表层底部、基床底层底部设置,当路基填高大于8.0m时,于基床以下路基填土中增加1~2个监测点。

一般每工点不少于2处沉降监测断面,过渡段路基必须设置。

(3)基底沉降监测当既有路基基底软弱沉降变形较大时,可进行路基基底沉降监测。

于既有路堤路肩处(或路堤原有地表横坡大于20%地段于两侧路肩处)采用预钻孔成孔后在路基基底地面埋设高精度智能型单点沉降计进行监测。

一般每工点不少于2处沉降监测断面,过渡段路基必须设置。

(4)深厚层地基分层沉降监测当既有路堤基底软弱层较厚且路基沉降变形严重时,可进行深厚层地基分层沉降监测。

于既有路堤路肩处(或路堤原有地表横坡或地基软弱层基底横坡大于20%地段于两侧路肩处)采用预钻孔成孔后在基底地基中埋设高精度智能型串联式分层沉降计,分层沉降计布设间距2.0~3.0m。

一般每工点不少于2处深层沉降监测断面,过渡段路基必须设置。

(5)路基水平位移监测当既有路基存在稳定变形且持续发展时可进行路基水平位移监测。

一般沿线路纵向每隔30~50m在距路堤坡脚外2m、10m处设置边桩进行路基水平位移监测。

当既有路基稳定变形量较大,必要时可在既有路基边坡或坡脚处(或路堤原有地表横坡大于20%地段于填方高的一侧)预钻孔成孔埋置测斜管(孔深应至稳定地层一定深度内),采用测斜仪精确地测量岩土层内部水平位移或变形。

一般每工点不少于2处水平位移监测断面。

1.1.3 应力监测视既有铁路路基基床病害情况,或提速、重载改造工程需要,必要时可进行基床土的应力监测。

在扣轨架空线路、限速慢行的条件下,开挖道床、基床,于既有铁路路基中心、钢轨、轨枕端头正下方的基床表面以下0.2m、0.7m、1.2m 深度处各埋设3个土压力盒,实测整治期与运营期既有路基基床土中的应力、列车动荷载对基床应力沿深度及横向分布情况以及基床铺设土工合成材料的应力应变状态。

一般每工点应设置不少于2处监测断面,每监测断面共9个监测点。

路基基床应力应变监测布置详见图1-1。

1.2 监测元件埋设与安装1.2.1位移监测桩采用φ28mm长1.2m的钢钎。

在路肩处将位移监测桩打入埋置至设计位置,埋置深度1.0m,桩周上部0.2m用水泥砂浆浇注固定,完成埋设后采用水准仪或全站仪测量桩顶高程作为初读数。

1.2.2位移边桩边桩埋设位置应按试验设计测量确定,边桩可采用打入埋设或开挖埋设,埋设深度0.9m,桩周上部0.3m用水泥砂浆浇注固定,完成埋设后采用经纬仪(或全站仪)测量边桩标高及距基桩的距离作为初始读数。

1.2.3单点沉降计1)单点沉降计采用智能数码单点位移计,属智能位移传感器,单点沉降计是由传感器、传递杆、传递杆保护管、锚固头、安装基座、测试导线等部分组成。

分层沉降计是由多个单点沉降计通过安装套件串联组成的。

2)埋设要点①在安装之前,需要对传感器进行检查,以确定其完好无损。

②采用钻孔引孔埋设,钻孔孔径Ф108mm,钻孔垂直,孔深应与沉降仪总长一致,应达到稳定硬层(最好为基岩),孔口应平整密实,引孔垂直度误差≤2°。

③成孔后,安装单点位移计前先在孔底灌注水泥砂浆,固定底端锚板。

④沉降计安装时,锚板朝下,法兰沉降板朝上,注意要用拉绳保护以防止元件自行掉落,采用合适方法将沉降计底端锚板压至设计深度。

单点位移计测杆等各部件安装好后,通过沉降盘的扁形孔将细沙灌入孔中回填,回填过程中使用事先放置的钢管夯实细沙。

根据回填高度逐步夯实细沙逐步抽出钢管,回填高度离孔顶-0.3米。

⑤每个测试断面的单点位移计埋设完成后,使用水泥沙浆将孔内未回填的部分和沉降盘位置浇注填满后,用原土盖使路基恢复原状。

位移计引出导线套钢丝波纹管进行保护,并挖槽集中从一侧引出路基,引入坡脚观测箱内,注意导线应适当松弛。

⑥元件埋入之前应采取措施保证孔径满足安装要求,一般埋设完成后3~5天待缩孔完成后测试初读数。

1.2.4 测斜管埋设可采用专用塑料硬管,其抗弯刚度应适应被测土体的水平位移,测斜导管内十字导槽应顺直,管端接口密合。

测斜是将测斜仪探头导轮卡置于预埋测斜导管的十字导槽内,从底部每隔0.5m依次测读,并通过数据处理计算求出不同深度处土体的水平位移。

埋设要点:①路堑开挖至设计埋设测斜管位置时,即应开始埋设测斜管。

②采用钻孔导孔埋设,钻孔垂直偏差率应小于1.5%,并无塌孔、缩孔现象,软土层应采用泥浆护壁,钻孔深度应不小于设计要求的深度。

③测斜管埋设前,应按设计用螺钉进行预组装:管底部用底盖封住,用外接头连接导管至大于埋设长度约0.3m;再根据钻架高度将预装好的导管从接头处拆卸分段备用。

④测斜管埋设时,按预装顺序从底部分段依次埋入,相邻两段沉降测斜管随埋随接,并及时灌水入管内,直至将测斜管压入孔底就位。

⑤调整测斜管内十字导槽方向与观测断面方向一致后,安装测斜管顶盖,并在测斜管周围回填中粗砂,并灌水使其密实。

⑥用水泥砂浆固定观测盒,对孔口进行长期保护。

⑦待测斜孔侧土回淤稳定后,连续测读数日,稳定读数作为初始读数。

1.2.5土压力盒①土压力盒埋设前应进行稳定、防水密封、压力标定、温度标定等工作,并进行编号。

②一般应先将埋设处的基床土仔细削平夯实,然后再安装压力盒。

埋设时应使压力盒的膜板直接与基床土接触,膜板要求与基床土底面齐平,不能凸出或凹进(凸出或凹进都会使实际测量值偏大或偏小)。

埋设前应该在压力盒的周边裹包一层厚度为1~2厘米的橡胶圈,并在其周围采用同性状的基床土分层回填压实,以免引起土压力的重分布,以保证测试的可靠性。

③所有信号线应通过预埋设PVC管引至路肩处的观测箱内。

1.3 监测方法、频率1.3.1 监测方法及测量精度要求①位移监测桩、位移边桩采用水准仪、经伟仪或全站仪进行监测。

所有标高水准测量应满足二等变形等级测量技术要求,按国家一等精密水准测量方法施测,测量精度:±1.0mm,读数取位至0.1mm。

②单点沉降计或串联式分层沉降计、土压力盒采用智能型振弦频率检测仪器进行测试。

主要监测元件技术参数指标见下表表1-3-1 主要监测元件参数指标1.3.2 监测频率①所有元件埋设后,必须测试初始读数,在正式开始前,必须对所有元件进行复测,作为正式初始读数。

②各阶段沉降观测频度应满足表1-3-2要求。

表1-3-2 路基沉降观测频次③测试过程中发现异常必须及时查明原因,尽快妥善处理。

1.3.3 元件保护要求①应成立专门监测测试小组,进行元器件的埋设、观测和保护工作,小组人员分工明确,责任到人。

②元件埋设前应根据现场情况进行编号,有导线的元件应将导线引出至路基路肩或坡脚观测箱内,并做好观测箱的保护。

③有监测元件埋设时或监测过程中损坏应及时补埋或经设计、监理确认采取其它替代措施。

④应制定稳妥的保护措施并认真执行,确保元器件不因人为、自然等因素而破坏。

⑤元器件埋设后,制作相应的标志旗或保护架插在上方。

1.3.4 资料整理要求①所有测试数据应真实、可靠,并有可追溯性;记录必须清晰,不得擦改;测试、记录人员必须签名。

各种监测数据记录格式应满足相应技术要求的规定。

②人工测试数据应当天及时输入电脑,核对无误后在计算机内保存,自动采集测试数据应及时在计算机内备份。

沉降观测资料及时输入沉降观测管理信息系统,以保证在观测过程中时时监控。

观测中有沉降异常情况应及时及时处理。

③按照资料提交要求及时对测试数据进行整理、分析、汇总,绘制有关分析曲线及完成有关报告。

④观测数据及观测报告作为评判路基工后沉降是否满足要求及作为工程竣工验收的依据。

1.3.5 沉降的评估方法与措施路基整治施工后,先持续监测不少于6个月的时间,根据这6个月的监测数据,绘制“时间—填土高—沉降量”曲线,按实测沉降推算法或沉降的反演分析法,分析并推算总沉降量、工后沉降值以及后期沉降速率,并初步分析推测最终沉降完成时间。

根据分析结果,验证、调整设计措施使地基处理达到预定的变形控制要求。

当评估结果表明沉降还不能满足要求时,则研究确定是否应继续观测或采取必要的加固处理措施,即进行“监测—评估—调整”循环,直至满足要求。

实测沉降推算:利用实测数据推算最终沉降量方法很多,常用的有双曲线法、三点法(对数曲线法)、沉降速率法、星野法及修正双曲线法等。

根据现有的研究成果,推算方法得到的结果与实际沉降对比,误差较小的推算方法有:复合地基为沉降速率法、双曲线法;等载(或超载)排水固结为三点法、双曲线法。

沉降的反演分析推算:利用先前实测沉降曲线进行反演分析,修正地基土设计参数,并重新进行沉降计算,再由实测沉降验证,经过多次循环分析计算,预测工后沉降量。

相关文档
最新文档