2019某地产项目四月份暖春运动季系列(挑战卡路里·寻找城市燃烧体主题)活动策划方案
含百分率问题的实际应用-含答案
含百分率问题的实际应用类型一 与一次方程结合(2019·重庆A 卷)某文明小区有50平方米和80平方米两种户型的住宅,50平方米住宅套数是80平方米住宅套数的2倍,物管公司每月底按每平方米2元收取当月物管费,该小区全部住宅都入住且每户均按时全额缴纳物管费. (1)该小区每月可收取物管费90 000元,问该小区共有多少套80平方米的住宅? (2)为建设“资源节约型社会”,该小区物管公司5月初推出活动一:“垃圾分类送礼物”,50平方米和80平方米的住户分别有40%和20%参加了此次活动,为提高大家的积极性,6月份准备把活动一升级为活动二:“垃圾分类抵扣物管费”,同时终止活动一,经调查与测算,参加活动一的住户会全部参加活动二,参加活动二的住户会大幅增加,这样6月份参加活动的50平方米的总户数在5月份参加活动的同户型户数的基础上将增加2a%,每户物管费将会减少310a%;6月份参加活动的80平方米的总户数在5月份参加活动的同户型户数的基础上将增加6a%,每户物管费将会减少14a%,这样,参加活动的这部分住户6月份总共缴纳的物管费比他们按原方式共缴纳的物管费将减少518a%,求a 的值.【分析】(1)根据总共收取的物管费为90 000元,列一次方程求解;(2)先分别确定参与活动一的户数以及所交物管费以及参与活动二的住户和所交物管费,再根据题意列关于a%的方程求解. 【自主解答】1.(2019·江北区一模)某公司销售两种椅子,普通椅子价格是每把180元,实木椅子的价格是每把400元.(1)该公司在2019年第一月销售了两种椅子共900把,销售总金额达到了272 000元,求两种椅子各销售了多少把?(2)第二月正好赶上市里开展家具展销活动,公司决定将普通椅子每把降30元后销售,实木椅子每把降价2a%(a>0)后销售,在展销活动的第一周,该公司的普通椅子销售量比上一月全月普通椅子的销售量多了103a%,实木椅子的销售量比上一月全月实木椅子的销售量多了a%,这一周两种椅子的总销售金额达到了251 000元,求a的值.2.(2019·宜昌)HW公司2018年使用自主研发生产的“QL”系列甲、乙、丙三类芯片共2 800万块,生产了2 800万部手机.其中乙类芯片的产量是甲类芯片的2倍,丙类芯片的产量比甲、乙两类芯片产量的和还多400万块.这些“QL”芯片解决了该公司2018年生产的全部手机所需芯片的10%.(1)求2018年甲类芯片的产量;(2)HW公司计划2020年生产的手机全部使用自主研发的“QL”系列芯片,从2019年起逐年扩大“QL”芯片的产量.2019年,2020年这两年,甲类芯片每年的产量都比前一年增长一个相同的百分数m%,乙类芯片的产量平均每年增长的百分数比m%小1,丙类芯片每年的产量每年按相同数量递增.2018年到2020年,丙类芯片三年的总产量达到1.44亿块.这样,2020年HW公司的手机产量比2018年全年的手机产量多10%.求丙类芯片2020年的产量及m的值.3.(2019·重庆B卷)某菜市场有2.5平方米和4平方米两种摊位,2.5平方米的摊位数是4平方米摊位数的2倍.管理单位每月底按每平方米20元收取当月管理费,该菜市场全部摊位都有商户经营且各摊位均按时全额缴纳管理费.(1)菜市场每月可收取管理费4 500元,求该菜市场共有多少个4平方米的摊位?(2)为推进环保袋的使用,管理单位在5月份推出活动一:“使用环保袋送礼物”,2.5平方米和4平方米两种摊位的商户分别有40%和20%参加了此项活动,为提高大家使用环保袋的积极性,6月份准备把活动一升级为活动二:“使用环保袋抵扣管理费”,同时终止活动一.经调查与测算,参加活动一的商户会全部参加活动二,参加活动二的商户会显著增加,这样,6月份参加活动二的2.5平方米的摊位的总个数将在5月份参加活动一的同面积个数的基础上增加2a%,每个摊位的管理费将会减少310a%;6月份参加活动二的4平方米摊位的总个数将在5月份参加活动一的同面积个数的基础上增加6a%,每个摊位的管理费将会减少14a%.这样,参加活动二的这部分商户6月份总共缴纳的管理费比他们按原方式共缴纳的管理费将减少518a%,求a的值.类型二 与不等式结合(2019·綦江区一模)暑假是旅游旺季,为吸引游客,某旅游公司推出两条“精品路线”——“亲子游”和“夏令营”.(1)7月份,“亲子游”和“夏令营”活动的价格分别为8 000元/人和12 000元/人.其中,参加“夏令营”活动的游客人数为“亲子游”活动游客人数的2倍少300人,且“夏令营”线路的旅游总收入不低于“亲子游”线路旅游总收入的一半,问:参加“亲子游”线路的旅游人数至少有多少人?(2)到了8月份,该旅游公司实行降价促销活动,“亲子游”和“夏令营”线路的价格分别下降32a%和a%(a <20),旅游人数在7月份对应最小值的基础上分别上升3a%和5a%,当月旅游总收入达到256.32万元,求a.【分析】(1)设参加“亲子游”线路的游客人数为x 人,则参加“夏令营”活动的游客人数为(2x -300)人,根据题意列出不等式求得答案即可;(2)由(1)可知,参加“夏令营”活动的游客人数的最小值为60人,由题意得0.8(1-32a%)×180(1+3a%)+1.2(1-a%)×60(1+5a%)=256.32,求得a 值即可求得答案. 【自主解答】1.(2019·九龙坡区校级模拟)某水果店以每千克6元的价格购进一批水果,由于销售状况良好,该店又购进一些同一种水果,第二次进货价格比第一次每千克便宜了1元,已知两次一共进货600千克.(1)若该水果店两次进货的总费用不超过3 200元,求第一次至多购进水果多少千克?(2)在(1)的条件下,以第一次购进最大重量时的数量进货,在销售过程中,第一次购进的水果有3%的损耗,其售价比其进价多2a元,第二次购进的水果有5%的损耗,其售价比其进价多a元,该水果店希望售完两批水果后获利31.75%,求a的值.2.(2019·南岸区模拟)夏日来临,为了保证顾客每天都能吃到新鲜水果,“每日鲜果”水果店要求当日批发购进的某水果当天必须全部售出.该水果购进的价格为5元/千克.经调查发现,当销售单价为10元/千克时,销售量为200千克;销售单价每上涨1元/千克,销售量就会减少40千克.(1)若每天至少卖出120千克,销售单价最高定为多少?(2)某天“每日鲜果”水果店按(1)中最高售价的方案进货,以(1)中的最高售价销售了3a千克的水果后,店内保鲜及冷凝系统发生故障,导致剩下水果中的a%变质而无法销售.店长马上决定将剩余可销售的水果立刻榨汁,并分装保鲜瓶中(每瓶能装果汁0.5千克)售卖,随后果汁被一抢而空.已知此水果的出汁率为40%(即1千克水果可榨出0.4千克果汁),每瓶果汁售价为10元.若当天销售完毕后水果店因销售此水果获得的总利润为648元,求a的值.拓展类型不含百分比的实际应用题1.(2019·南岸区校级模拟)某水果店5月份购进甲、乙两种水果共花费1 700元,其中甲种水果8元/千克,乙种水果18元/千克.6月份,这两种水果的进价上调为:甲种水果10元/千克,乙种水果20元/千克.(1)若该店6月份购进这两种水果的数量与5月份都相同,将多支付货款300元,求该店5月份购进甲、乙两种水果分别是多少千克?(2)若6月份将这两种水果进货总量减少到120千克,且甲种水果不超过乙种水果的3倍,则6月份该店需要支付这两种水果的货款最少应是多少元?2.(2019·渝中区二模)京东快递仓库使用机器人分拣货物,已知一台机器人的工作效率相当于一名分拣工人的20倍,若用一台机器人分拣8 000件货物,比原先16名工人分拣这些货物要少用23小时.(1)求一台机器人一小时可分拣多少件货物?(2)受“双十一”影响,重庆主城区某京东仓库11月11日当天收到快递72万件,为了在8小时之内分拣完所有快递货物,公司调配了20台机器人和20名分拣工人,工作3小时之后,又调配了若干台机器人进行增援,则该公司至少再调配多少台机器人进行增援才能在规定的时间内完成任务?3.(2019·南岸区二模)为了倡导绿色出行,某市政府今年投资112万元,建成40个公共自行车站点,共计配置720辆公共自行车,今后将逐年增加投资,用于建设新站点、配置公共自行车.预计2019年将投资340.5万元,新建120个公共自行车站点、配置2 205辆公共自行车.(1)分别求出每个站点的造价和公共自行车的单价;(2)若到2020年该市政府将再建造m个新站点和配置(2 600-m)台公共自行车,并且自行车数量(2 600-m)不超过新站点数量m的12倍,求市政府至少要投入多少万元的资金?(注:从今年起至2020年,每个站点的造价和公共自行车的单价每年都保持不变)参考答案【例1】解:(1)设该小区有x套80平方米住宅,则50平方米的住宅有2x(套),根据题意得2(50×2x+80x)=90 000,解得x=250.答:该小区共有250套80平方米的住宅;(2)参与活动一:50平方米住宅每户所交物管费为100元,有500×40%=200户参与活动一,80平方米住宅每户所交物管费为160元,有250×20%=50户参与活动一;参与活动二:50平方米住宅每户所交物管费为100(1-310a%)元,有200(1+2a%)户参与活动二;80平方米住宅每户所交物管费为160(1-14a%)元,有50(1+6a%)户参与活动二.由题意得:100(1-310a%)·200(1+2a%)+160(1-14a%)·50(1+6a%)=[200(1+2a%)×100+50(1+6a%)×160](1-518a%),令t=a%,化简得t(2t-1)=0,解得t1=0(舍),t2=12,∴a=50.答:a的值为50.跟踪训练1.解:(1)设普通椅子销售了x把,实木椅子销售了y把,依题意,得:⎩⎪⎨⎪⎧x +y =900,180x +400y =272 000,解得:⎩⎪⎨⎪⎧x =400y =500. 答:普通椅子销售了400把,实木椅子销售了500把;(2)依题意,得:(180-30)×400(1+103a%)+400(1-2a%)×500(1+a%)=251 000,整理,得:a 2-225=0,解得:a 1=15,a 2=-15(不合题意,舍去).答:a 的值为15.2.解:(1)设2018年甲类芯片的产量为x 万块,由题意得x +2x +(x +2x)+400=2 800,解得x =400.答:2018年甲类芯片的产量为400万块;(2)2018年丙类芯片的产量为3x +400=1 600万块,设丙类芯片的产量每年增加的数量为y 万块,则1 600+1 600+y +1 600+2y =14 400,解得y =3 200.∴丙类芯片2020年的产量为1 600+2×3 200=8 000万块.2018年HW 公司手机产量为2 800÷10%=28 000万部,400(1+m%)2+2×400(1+m%-1)2+8 000=28 000×(1+10%),设m%=t ,化简得3t 2+2t -56=0,解得t 1=4,t 2=-143(舍). ∴m%=4,即m =400,答:丙类芯片2020年的产量为8 000万块,m 的值为400.3.解:(1)设该菜市场共有x 个4平方米的摊位,则有2x 个2.5平方米的摊位, 依题意得:20·4x+20·2.5·2x=4 500,解得x =25.答:该菜市场共有25个4平方米的摊位;(2)由(1)可知,5月份参加活动一的2.5平方米摊位的个数为25×2×40%=20个,5月份参加活动一的4平方米摊位的个数为25×20%=5个,依题意得:20(1+2a%)×20×2.5×310a%+5(1+6a%)×20×4×14a%=[20(1+2a%)×20×2.5+5(1+6a%)×20×4]×518a%, 整理得a 2-50a =0,解得a =0(舍),或a =50,答:a 的值为50.【例2】解:(1)设参加“亲子游”线路的游客人数为x 人,则参加“夏令营”活动的游客人数为(2x -300)人,由题意得12 000(2x -300)≥12×8 000x,解得x≥180, ∴参加“亲子游”线路的旅游人数至少有180人;(2)由(1)可知,参加“夏令营”活动的游客人数的最小值为60人,由题意得0.8(1-32a%)×180(1+3a%)+1.2(1-a%)×60(1+5a%)=256.32, 设a%=t ,整理得:50t 2-25t +2=0,解得t =0.4(舍去)或t =0.1,∴a=10.跟踪训练1.解:(1)设第一次购进水果x 千克,根据题意,得:6x +5(600-x)≤3 200,解得:x≤200,答:第一次至多购进水果200千克;(2)第一次至多购进水果200千克,则第二次购进400千克,根据题意,得: (6+2a)×200(1-3%)-200×6+(5+a)×400(1-5%)-400×5=3 200×31.75%,解得:a =1.5,故a 的值为1.5.2.解:(1)设销售单价上涨x 元/千克,则销售量为(200-40x)千克,根据题意得:200-40x≥120,解得:x≤2,∴10+x≤12.答:销售单价最高定为12元/千克;(2)根据题意得:12×3a+(120-3a)(1-a %)×0.4÷0.5×10-120×5=648, 整理,得:a 2+10a -1 200=0,解得:a 1=30,a 2=-40(不合题意,舍去).答:a 的值为30.拓展类型1.解:(1)设该店5月份购进甲种水果x 千克,购进乙种水果y 千克,根据题意得:⎩⎪⎨⎪⎧8x +18y =1 70010x +20y =1 700+300, 解得:⎩⎪⎨⎪⎧x =100y =50. 答:该店5月份购进甲种水果100千克,购进乙种水果50千克.(2)设购进甲种水果a 千克,需要支付的货款为w 元,则购进乙种水果(120-a)千克,根据题意得:w =10a +20(120-a)=-10a +2 400.∵甲种水果不超过乙种水果的3倍,∴a≤3(120-a),解得:a≤90.∵k=-10<0,∴w 随a 值的增大而减小,∴当a =90时,w 取最小值,最小值为-10×90+2 400=1 500.∴6月份该店需要支付这两种水果的货款最少应是1 500元.2.解:(1)设一名工人每小时可分拣x 件货物,则一台机器人每小时可分拣20x 件货物,根据题意得:8 00016x -8 00020x =23, 解得:x =150.经检验:x =150 是原方程的根,且符合实际.∴20x =3 000.答:一台机器人每小时可以分拣3 000件货物.(2)设公司需再调配y 台机器人进行增援才能在规定时间内完成任务,根据题意得:8×(20×150+20×3 000)+(8-3)×3 000y≥720 000,解得:y≥14.4.∵y 为正整数,∴y 的最小整数解为15.答:公司至少再调配15台机器人进行增援才能在规定时间内完成任务.3.解:(1)设每个站点造价x 万元,公共自行车单价为y 万元.根据题意可得: ⎩⎪⎨⎪⎧40x +720y =112120+2 205y =340.5, 解得:⎩⎪⎨⎪⎧x =1y =0.1. 答:每个站点造价为1万元,公共自行车单价为0.1万元;(2)∵公共自行车数量(2 600-m)不超过新站点数量m 的12倍,∴2 600-m≤12m,解得:m≥200,∵要使市政府的资金最少,则m 取最小的正整数200,∴市政府至少要投入的资金=(2 600-200)×0.1+200×1=440(万元).。
班级团建的活动策划书(6篇)
班级团建的活动策划书(6篇)班级团建的活动策划书(精选6篇)班级团建的活动策划书篇1一、活动主题:班级户外烧烤活动二、活动目的:春暖花开,正是同学们踏青春游的好时节,班委会举办此次烧烤活动,为丰富同学们的课余生活,加强班级同学之间的联系,增进同学之间的感情,促使我们10级体教4班级能尽快成为一个具有凝聚力的团结的大家庭。
三、活动时间:20__年4月23日四、活动地点:湘潭和平公园五、策划、组织单位:10体教4班六、参与人员:体教4班七、组织方式:骑自行车。
这种自助游方式更适合我们年轻人,相信大家会喜欢的。
(亮点1)八、具体活动安排:全班分成2组,每小组十个人(可按照策划的分组),烧烤计划不变,并在烧烤过程中插入各种小游戏和小竞赛项目,按组积分,最后得分最高的一组将得到奖励。
除积分外,期间在游戏中的获胜者也给予小奖品,以活跃气氛调动大家的积极性。
下面是具体的活动流程:1、到市场去预订烧烤食物,并在出发当天清晨去买回来。
具体工作分到各组。
(所需食物和用品清单列在后面)。
2、出发的时间定在早上10整。
请同学们在9::50在篮球场前面单车集合。
3、指定几名负责人,按组组织带领同学们安全有序的前往目的地,到达目的地的时间大约为早上10:45。
4、到达目的地之后自由活动,参观景区景点。
组织者利用空隙吹一些气球。
5、自由参观活动完之后,召集大家玩一个踩气球的小游戏。
每3人为一组,单脚绑在一起,每个人脚上绑5个气球,三人互踩对方身上的气球,谁的气球留到了最后为胜,可为所在的那一组加一分。
(亮点2)6、玩完游戏,大约11点,烧烤活动开始。
每组烤出老师指定的某一食物,最终由老师评出最佳厨师奖。
(亮点3)7、在公园玩一些集体的游乐项目。
骑车到齐白石广场去照相。
晚上晚晚场,桃园阁。
预算150元。
九、经费预算:经费预算:门票:200元两台食物:200元牛肉猪肉合计15斤,韭菜,白菜,火腿肠,鸡翅膀,肉丸,菜花,豆腐干,地瓜,腊肠,圣女果,桔子,梨,水、饮料十、分组:1、谭思吟,肖文清,赖玉蓉,周威杰,刘丽,刘芳芳,陈亚玲,旷文分组婉,陈依茹,罗雪娇。
单位组织活动的活动方案8篇
单位组织活动的活动方案8篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作汇报、工作报告、工作总结、工作计划、合同协议、条据书信、规章制度、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as work reports, work reports, work summaries, work plans, contract agreements, policy letters, rules and regulations, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please pay attention!单位组织活动的活动方案8篇方案的准备可以帮助我们预测和解决可能出现的问题和挑战,活动方案的充分准备能够提前与之协调,确保活动的顺利进行,以下是本店铺精心为您推荐的单位组织活动的活动方案8篇,供大家参考。
2019年北京市第二次普通高中学业水平合格性考试数学试题(解析版)
2019年北京市第二次普通高中学业水平合格性考试数学试题一、单选题1.已知集合{}1,2M =,{}2,3N =,那么M N ⋂等于( ) A.φ B.{}1C.{}2D.{}3【答案】C【解析】根据交集运算直接写出结果. 【详解】因为{}1,2M =,{}2,3N =,所以{}2M N =,故选:C. 【点睛】本题考查集合的交集运算,难度较易.2.已知向量()2,1a =r,()0,2b =- ,那么a b + 等于( )A.()2,3B.()21,C.()20,D.()2,1-【答案】D【解析】根据向量加法的坐标运算直接写出结果. 【详解】因为()2,1a =r,()0,2b =-,所以()()()20,122,1a b +=++-=-,故选:D. 【点睛】本题考查向量加法的坐标表示,难度较易.3.2019年中国北京世界园艺博览会于4月29日至10月7日在北京市延庆区举办.如果小明从中国馆、国际馆、植物馆、生活体验馆四个展馆中随机选择一个进行参观,那么他选择的展馆恰为中国馆的概率为( ) A.12B.14C.18D.116【答案】B【解析】根据随机事件的概率计算完成求解. 【详解】可能出现的选择有4种,满足条件要求的种数为1种,则14P =, 故选:B. 【点睛】本题考查利用古典概型完成随机事件的概率的求解,难度较易.古典概型的概率计算公式:(目标事件的数量)÷(基本事件的总数). 4.圆心为()2,3A -,半径等于5的圆的方程是( ) A.22(2)(3)5x y -++= B.22(2)(3)5x y ++-= C.22(2)(3)25x y -++= D.22(2)(3)25x y ++-=【答案】C【解析】对比圆的标准方程:()()222x a y b r -+-=进行判断即可. 【详解】因为圆心(),a b 即为()2,3-,半径=5r ,所以圆的标准方程为:()()222325x y -++=,故选:C. 【点睛】本题考查根据圆心和半径写出圆的标准方程,难度较易.5.已知向量()2,1a =-r,()1,b m =,且a b ⊥,那么m 等于( )A.0B.1C.2D.3【答案】C【解析】根据向量垂直对应的坐标关系计算出m 的值. 【详解】因为a b ⊥,所以()2110m -⨯+⨯=,所以2m =, 故选:C. 【点睛】本题考查向量垂直对应的坐标表示,难度较易.已知()11,a x y =r ,()22,b x y =r,若a b ⊥,则有:12120x x y y +=.6.直线30x y +-=与直线10x y -+=的交点坐标是( ) A.()2,2 B.()2,2-C.()1,3-D.()1,2【答案】D【解析】联立二元一次方程组求解交点坐标. 【详解】据题意有:31x y x y +=⎧⎨-=-⎩,解得:12x y =⎧⎨=⎩,所以交点坐标为()1,2,故选:D. 【点睛】本题考查利用直线方程求解直线交点坐标,难度较易.直线的方程可认为是二元一次方程,两直线的交点坐标即为二元一次方程组的解对应的坐标形式.7.已知平面向量,a b 满足1a b ==r r,且a 与b 夹角为60°,那么a b ⋅等于( )A.14B.13C.12D.1【答案】C【解析】根据数量积公式完成计算. 【详解】因为11cos 1122a b a b θ⋅=⋅⋅=⨯⨯=, 故选:C. 【点睛】本题考查向量数量积的计算,难度较易. 8.函数()()lg 1f x x =-的定义域为( ) A.R B.()1,+∞C.()0,∞+D.(),1-∞【答案】B【解析】根据真数大于零计算出的x 范围即为定义域. 【详解】因为10x ->,所以1x >,即定义域为()1,+∞, 故选:B. 【点睛】本题考查对数型函数的定义域,难度较易.对数型函数计算定义域,注意对应的真数大于零.9.已知点()1,1A -,()2,4B ,那么直线AB 的斜率为( )A.1B.2C.3D.4【答案】A【解析】根据斜率的计算公式直接计算出斜率. 【详解】因为()1,1A -,()2,4B ,所以()41121AB k -==--,故选:A. 【点睛】本题考查根据两点坐标计算出两点构成的直线的斜率,难度较易.已知()11,A x y ,()22,B x y ,则2121AB y y k x x -=-.10.为庆祝中华人民共和国成立70周年,某学院欲从A ,B 两个专业共600名学生中,采用分层抽样的方法抽取120人组成国庆宣传团队,已知A 专业有200名学生,那么在该专业抽取的学生人数为( ) A.20 B.30C.40D.50【答案】C【解析】先计算出抽样比,然后根据(A 专业人数)乘以(抽样比)即可得到应抽取的人数. 【详解】据题意可知:抽样比为12016005=,则A 专业抽取人数为1200405⨯=人, 故选:C. 【点睛】本题考查分层抽样的应用,难度较易.若要计算分层抽样的每一层应抽取数量,先要计算抽样比,利用每一层数量乘以抽样比得到该层应抽取的数量. 11.()cos αβ-等于( ) A.cos cos sin sin αβαβ+ B.cos cos sin sin αβαβ- C.sin cos cos sin αβαβ+ D.sin cos cos sin αβαβ-【答案】A【解析】根据两角差的余弦公式直接得到结果. 【详解】因为()cos cos cos sin sin αβαβαβ-=+, 故选:A. 【点睛】本题考查两角差的余弦公式的记忆,难度较易.12.已知函数()f x 是定义域为R 的奇函数,且()12f -=-,那么()1f 的值为( ) A.0 B.12C.1D.2【答案】D【解析】根据奇函数找到()1f 与()1f -的关系即可计算出()1f 的值. 【详解】因为()f x 是定义域为R 的奇函数,所以()()112f f -=-=-,所以()12f =, 故选:D. 【点睛】本题考查根据奇函数的特性求值,难度较易.若()f x 是定义域内的奇函数,则有:()()f x f x -=-.13.如图,在直三棱柱111ABC A B C -中,AB AC ⊥,如果3AB =,1AC =,12AA =,那么直三棱柱111ABC A B C -的体积为( )A.2B.3C.4D.6【答案】B【解析】根据棱柱的体积公式求解直三棱柱的体积. 【详解】因为AB AC ⊥,所以322ABCAB AC S ⋅==; 所以11113232ABC A B C ABC V S AA -=⨯=⨯=,故选:B.【点睛】本题考查棱柱的体积计算公式,难度较易.棱柱体积计算公式:V S h =⋅,其中S 是棱柱的底面积,h 是棱柱的高. 14.13sin6π的值为( )A.12【答案】A 【解析】先将136π变形为[]2,,0,2k k Z απαπ+∈∈,然后根据诱导公式一计算结果. 【详解】 因为13266πππ=+,所以131sin sin sin 66226ππππ⎛⎫=== ⎪+⎝⎭, 故选:A. 【点睛】本题考查诱导公式的运用,难度较易.注意诱导公式一:()()sin 2sin k k Z απα+=∈,()()cos 2cos k k Z απα+=∈.15.函数()3f x x x =-的零点的个数是( )A.0B.1C.2D.3【答案】D【解析】将()f x 因式分解后即可判断零点的个数. 【详解】因为()()()311f x x x x x x =-=+-,所以令()0f x =则有:1x =-或0或1,即零点有3个, 故选:D. 【点睛】本题考查函数的零点个数,难度较易.对于可直接进行因式分解的函数,可通过因式分解判断每个因式为零的情况,然后确定零点个数. 16.要得到函数2sin 3y x π⎛⎫=+ ⎪⎝⎭的图象.只需将函数2sin y x =的图象( ) A.向左平移3π个单位 B.向右平移3π个单位C.向左平移6π个单位 D.向右平移6π个单位 【答案】A【解析】根据三角函数的图像变换中的相位变换确定结果. 【详解】根据相位变换的左加右减有:2sin y x =向左移动3π个单位得到2sin 3y x π⎛⎫=+ ⎪⎝⎭,故选:A. 【点睛】本题考查三角函数的图象变换中的相位变换,难度较易.相位变换时注意一个原则:左加右减.17.直线l 经过点()1,1A ,且与直线230x y --=平行,则l 的方程为( ) A.21y x =+ B.112y x =+ C.112y x =-- D.21y x =-【答案】D【解析】根据平行关系设出直线的一般式方程,代入坐标求解出一般式方程并转化为斜截式方程. 【详解】设l 方程为:()203x y C C -+=≠-,代入()1,1A 有:210C -+=,所以1C =-, 所以l 方程为:210x y --=,即21y x =-, 故选:D. 【点睛】本题考查根据直线间的平行关系求解直线的方程,难度较易.已知直线方程为:10Ax By C ++=,与其平行的直线方程可设为:()2120Ax By C C C ++=≠.18.如果函数()log a f x x =(0a >且1a ≠)的图象经过点()4,2,那么a 的值为( ) A.14B.12C.2D.4【答案】C【解析】将点代入函数解析式中计算出a 的值即可. 【详解】因为()log a f x x =图象经过点()4,2,所以log 42a =,所以24a =且0a >且1a ≠,解得:2a =, 故选:C. 【点睛】本题考查根据对数函数图象所过点求解函数解析式,难度较易.通过函数图象所过点求解函数解析式的问题,可考虑直接将点代入函数解析式中求解参数值. 19.已知0.32=a ,32b =,12c -=,那么a ,b ,c 的大小关系为( ) A.a b c >> B.b a c >> C.c a b >> D.c b a >>【答案】B【解析】根据指数函数单调性比较大小. 【详解】因为2xy =在R 上是增函数,又10.33-<<,所以10.33222-<<,所以b a c >>, 故选:B. 【点睛】本题考查利用指数函数单调性比较指数幂的大小,难度较易.对于指数函数()xf x a=(0a >且1a ≠):若1a >,则()xf x a =是R 上增函数;若01a <<,则()xf x a =是R 上减函数.20.函数()sin cos f x x x =的最小正周期是( ) A.4πB.2π C.πD.2π【答案】C【解析】利用二倍角公式先化简,然后根据周期计算公式计算最小正周期. 【详解】因为()1sin cos sin 22f x x x x ==,所以222T πππω===, 故选:C. 【点睛】本题考查二倍角公式、周期公式的应用,难度较易.常见的二倍角公式有:2222sin 22sin cos ,cos 2cos sin 2cos 112sin x x x x x x x x ==-=-=-.21.在ABC △中,角A ,B ,C 所对应的边分别为a ,b ,c ,如果30A =︒,45B =︒,2b =,那么a 等于( )D.3【答案】A【解析】根据正弦定理得到边角对应关系,然后计算a 的值. 【详解】由正弦定理可知:sin sin a b A B=,所以2sin 30sin 45a =︒︒,解得:a =故选:A. 【点睛】本题考查利用正弦定理解三角形,难度较易.正弦定理对应的等式:2sin sin sin a b cR A B C===(R 是三角形外接圆的半径). 22.已知4sin 5α=,0,2πα⎛⎫∈ ⎪⎝⎭,那么()cos πα-等于( ) A.45-B.35-C.35D.45【答案】B【解析】先根据诱导公式将待求式子化简,然后根据平方和为1去计算相应结果. 【详解】因为()cos cos παα-=-;又因为22sin cos 1αα+=且0,2πα⎛⎫∈ ⎪⎝⎭,所以3cos 5α==, 所以()3cos 5πα-=-, 故选:B. 【点睛】本题考查根据诱导公式求解给值求值问题,难度较易.利用平方和为1去计算相应三角函数值时,注意根据角度的范围去判断相应的三角形函数值的正负号.23.已知圆C :2260x y x +-=与直线l :10x y -+=,那么圆心C 到直线l 的距离为( )A. B.D.1【答案】B【解析】先确定圆心,根据点到直线的距离公式求解圆心到直线的距离.【详解】圆的方程可变形为:()2239x y -+=,所以圆心C 为()3,0,所以圆心C 到l 的距离为:d ==故选:B. 【点睛】本题考查圆心的确定以及点到直线的距离公式,难度较易.圆的标准方程为:()()()2220x a y b r r -+-=>,其中圆心为(),a b ,半径为r .24.已知幂函数()nf x x =,它的图象过点()2,8,那么12f ⎛⎫ ⎪⎝⎭的值为( ) A.18B.14C.12D.1【答案】A【解析】先通过函数图象过点()2,8,计算出n 的值,然后再计算12f ⎛⎫⎪⎝⎭的值. 【详解】因为()nf x x =过点()2,8,所以28n =,所以3n =,所以()3f x x =,则3111228f ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭, 故选:A. 【点睛】本题考查幂函数的解析式求解以及根据幂函数解析式求值,难度较易.25.生态环境部环境规划院研究表明,京津冀区域PM2.5主要来自工业和民用污染,其中冬季民用污染占比超过50%,最主要的源头是散煤燃烧.因此,推进煤改清洁能源成为三地协同治理大气污染的重要举措.2018年是北京市压减燃煤收官年,450个平原村完成了煤改清洁能源,全市集中供热清洁化比例达到99%以上,平原地区基本实现“无煤化”,为了解“煤改气”后居民在采暖季里每月用气量的情况,现从某村随机抽取100户居民进行调查,发现每户的用气量都在150立方米到450立方米之间,得到如图所示的频率分布直方图.在这些用户中,用气量在区间[)300,350的户数为( )A.5B.15C.20D.25【答案】D【解析】计算出[)300,350的频率,用抽取的总数量乘以对应的频率即可得到对应段的户数. 【详解】根据频率分布直方图可知:[)300,350的频率为0.005500.25⨯=,所以用气量在[)300,350的户数为:0.2510025⨯=户,故选:D. 【点睛】本题考查根据频率分布直方图完成相应计算,难度较易,观察频率分布直方图时,注意纵轴并不表示频率,而是频率除以组距,因此每一段区间对应的小长方形的面积即为该段的频率.26.在ABC ∆中,角A ,B ,C 所对应的边分别为a ,b ,c ,如果60A =︒,3b =,ABC ∆的面积S =a 等于( )B.7D.17【答案】A【解析】先根据面积公式计算出c 的值,然后利用60A =︒以及余弦定理求解a 的值. 【详解】因为1sin 242S bc A ===,所以2c =;又因为222cos 2b c a A bc+-=,所以2194212a +-=,所以a =故选:A. 【点睛】本题考查三角形面积公式的应用以及利用余弦定理解三角形,难度较易.解三角形时常用的面积公式有三个,解答问题时要根据题意进行选择.27.设m ,n 是两条不同的直线,α,β是两个不同的平面,给出下列四个命题: ①如果//m α,n ⊂α,那么//m n ;②如果m α⊥,n α⊥,那么//m n ; ③如果//αβ,m α⊂,那么//m β;④如果αβ⊥,m α⊂,那么m β⊥. 其中正确的命题是( ) A.①② B.②③C.③④D.①④【答案】B【解析】通过判定定理、性质定理、定义、举例的方式逐项分析. 【详解】①如图所示长方体,11A C ∥平面ABCD ,BD ⊂平面ABCD ,但是11A C 不平行BD ,故错误;②根据垂直于同一平面的两条直线互相平行,可知正确;③根据两个平面平行时,其中一个平面内的任意直线平行于另一个平面,可知正确;④如图所示长方体,平面ABCD ⊥平面11BCC B 且1BC ⊂平面11BCC B ,但此时1BC 显然不垂直于平面ABCD ,故错误;综上:②③正确. 故选:B. 【点睛】本题考查符号语言下的空间中的点、线、面的位置关系的命题的真假判断,难度一般.处理符号语言表示的命题真假的问题,常用的方法有:根据判定、性质定理直接判断;根据定义判断;根据示意图、举例判断.二、解答题28.某同学解答一道三角函数题:“已知函数()()2sin 22f x x ππϕϕ⎛⎫=+-<< ⎪⎝⎭,且()0f =(Ⅰ)求ϕ的值;(Ⅱ)求函数()f x 在区间5,63ππ⎡⎤-⎢⎥⎣⎦上的最大值及相应x 的值.” 该同学解答过程如下:解答:(Ⅰ)因为()02sin f ϕ==sin 2ϕ=.因为22ππϕ-<<,所以3πϕ=.(Ⅱ)因为563x ππ-≤≤,所以2233x πππ-≤+≤.令3t x π=+,则223t ππ-≤≤.画出函数2sin y t =在2,23ππ⎡⎤-⎢⎥⎣⎦上的图象, 由图象可知,当2t π=,即6x π=时,函数()f x 的最大值为()max 2f x =.下表列出了某些数学知识:请写出该同学在解答过程中用到了此表中的哪些数学知识.【答案】任意角的概念,弧度制的概念,任意角的正弦的定义,函数sin y x =的图象,三角函数的周期性,正弦函数在区间[]0,2π上的性质,参数A ,ω,ϕ对函数()sin y A ωx φ=+图象变化的影响.【解析】根据解答过程逐步推导所用的数学知识. 【详解】 首先22ππϕ-<<,这里出现了负角和弧度表示角,涉及的是任意角的概念和弧度制的概念;由sin ϕ=ϕ的范围解出3πϕ=,这里涉及的是任意角的正弦的定义;解题时所画的图象涉及的是函数sin y x =的图象;作出图象后可根据周期性以及单调性计算出最大值,这里涉及的是三角函数的周期性,正弦函数在区间[]0,2π上的性质;用换元法构造正弦函数的图象其实利用的是平移的思想,这里涉及的是参数A ,ω,ϕ对函数()sin y A ωx φ=+图象变化的影响. 【点睛】本题考查三角函数章节内容的综合应用,难度一般.由解答的过程分析其中涉及的知识点,这种题型比较灵活,需要注意到每一步是根据什么得到的,这就要保证对每一块的知识点都很熟悉.29.如图,在三棱锥P ABC -中,PA ⊥平面ABC ,点D ,E ,F 分别为PC ,AB ,AC 的中点.(Ⅰ)求证://BC 平面DEF ; (Ⅱ)求证:DF BC ⊥.阅读下面给出的解答过程及思路分析.解答:(Ⅰ)证明:在ABC ∆中,因为E ,F 分别为AB ,AC 的中点,所以①. 因为BC ⊄平面DEF ,EF ⊂平面DEF ,所以//BC 平面DEF . (Ⅱ)证明:因为PA ⊥平面ABC ,BC ⊂平面ABC ,所以②. 因为D ,F 分别为PC ,AC 的中点,所以//DF PA .所以DF BC ⊥. 思路分析:第(Ⅰ)问是先证③,再证“线面平行”; 第(Ⅱ)问是先证④,再证⑤,最后证“线线垂直”.以上证明过程及思路分析中,设置了①~⑤五个空格,如下的表格中为每个空格给出了三个选项,其中只有一个正确,请选出你认为正确的选项,并填写在答题卡的指定位置.【答案】①A ;②B ;③C ;④A ;⑤B .【解析】①:由中位线分析;②线面垂直的性质分析;③由线线推导线面;④由线面垂直推导线线垂直;⑤由线线平行推导线线垂直.【详解】①因为EF 是中位线,所以//EF BC ,故选A ;②PA ⊥平面ABC ,BC ⊂平面ABC ,可通过线面垂直得到线线垂直,故选B ;③通过中位线,先证线线平行,再证线面平行,故选C ;④根据PA BC ⊥可知:先证明线线垂直,故选A ;⑤由//DF PA 可知:再证线线平行,故选B. 【点睛】本题考查线线、线面平行以及线线、线面垂直的证明和理解,难度较易.证明线线平行多数情况可根据中位线或者证明平行四边形来解决问题,有时候也可以根据线面平行的性质定理去证明线线平行.30.某同学解答一道解析几何题:“已知直线l :24y x =+与x 轴的交点为A ,圆O :()2220x y r r +=>经过点A .(Ⅰ)求r 的值;(Ⅱ)若点B 为圆O 上一点,且直线AB 垂直于直线l ,求AB .” 该同学解答过程如下:解答:(Ⅰ)令0y =,即240x +=,解得2x =-,所以点A 的坐标为()2,0-. 因为圆O :()2220x y rr +=>经过点A ,所以2r =.(Ⅱ)因为AB l ⊥.所以直线AB 的斜率为2-.所以直线AB 的方程为()022y x -=-+,即24y x =--. 代入224x y +=消去y 整理得2516120x x ++=, 解得12x =-,265x =-.当265x =-时,285y =-.所以点B 的坐标为68,55⎛⎫-- ⎪⎝⎭.所以||AB ==指出上述解答过程中的错误之处,并写出正确的解答过程. 【答案】直线AB 的斜率为2-不对,见解析【解析】根据:两直线垂直(直线斜率都存在),对应的直线斜率乘积为1-,判断出AB 对应的直线方程的斜率错误. 【详解】因为AB l ⊥,所以直线AB 的解率为12.所以直线AB 的方程为()1022y x -=-+,即22x y =--. 代入224x y +=消去x 整理得2580y y +=,解得10y =,285y =-. 当285y =-时,265x =.所以B 的坐标为68,55⎛⎫- ⎪⎝⎭.所以||AB ==.【点睛】本题考查直线与圆的综合应用以及两直线垂直时对应的斜率关系的判断,难度一般.当两条直线12l l 、 的斜率都存在且为12k k 、时,若12l l ⊥,则有121k k ?-.31.土壤重金属污染已经成为快速工业化和经济高速增长地区的一个严重问题,污染土壤中的某些重金属易被农作物吸收,并转入食物链影响大众健康.A ,B 两种重金属作为潜在的致癌物质,应引起特别关注.某中学科技小组对由A ,B 两种重金属组成的1000克混合物进行研究,测得其体积为100立方厘米(不考虑物理及化学变化),已知重金属A 的密度大于311g /cm ,小于312g /cm ,重金属B 的密度为38.65g /cm .试计算此混合物中重金属A 的克数的范围.【答案】大于3948367克,小于4363147克. 【解析】根据题意设未知数x y 、,根据条件构建新的方程从而找到y 与x 的关系,利用函数的单调性来分析混合物中重金属A 的克数的范围. 【详解】设重金属A 的密度为3g /cm x ,此混合物中含重金属A 为y 克. 由题意可知,重金属B 为()1000y -克,且10001008.65y y x -+=.解得()13511128.65xy x x =<<-.因为1358.6513518.658.65x y x x ⎛⎫==+ ⎪--⎝⎭,所以当8.65x >时,y 随x 的增大而减小,因为1112x <<, 所以8.658.658.65135113511351128.658.65118.65y x ⎛⎫⎛⎫⎛⎫⨯+<=+<⨯+ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭.解得39434836316747y <<.故此混合物中重金属A 的克数的范围是大于3948367克,小于43 63147克.【点睛】本题考查函数的实际应用,难度一般.首先对于未给出函数的实际问题,第一步需要设未知数,第二步需要根据条件所给等量关系构建新函数(注意定义域),第三步就是根据函数知识求解相应问题.。
2019编辑2019年全国中考数学真题分类汇编:一元二次方程和应用(含答案).doc
2019年全国中考数学真题分类汇编:一元二次方程及应用一、选择题1.(2019年山东省滨州市)用配方法解一元二次方程x2﹣4x+1=0时,下列变形正确的是()A.(x﹣2)2=1 B.(x﹣2)2=5 C.(x+2)2=3 D.(x﹣2)2=3【考点】解一元二次方程【解答】解:x2﹣4x+1=0,x2﹣4x=﹣1,x2﹣4x+4=﹣1+4,(x﹣2)2=3,故选:D.2. (2019年四川省达州市)某公司今年4月的营业额为2500万元,按计划第二季度的总营业额要达到9100万元,设该公司5、6两月的营业额的月平均增长率为x.根据题意列方程,则下列方程正确的是()A.2500(1+x)2=9100B.2500(1+x%)2=9100C.2500(1+x)+2500(1+x)2=9100D.2500+2500(1+x)+2500(1+x)2=9100【考点】一元二次方程的应用【解答】解:设该公司5、6两月的营业额的月平均增长率为x.根据题意列方程得:2500+2500(1+x)+2500(1+x)2=9100.故选:D.3. (2019年广西贵港市)若α,β是关于x的一元二次方程x2-2x+m=0的两实根,且+=-,则m等于()A. B. C. 2 D. 3【考点】一元二次方程根与系数的关系【解答】解:α,β是关于x的一元二次方程x2-2x+m=0的两实根,∴α+β=2,αβ=m,∵+===-,∴m=-3;故选:B.4. (2019年江苏省泰州市)方程2x2+6x-1=0的两根为x1、x2,则x1+x2等于()A .-6B .6C .-3D . 3 【考点】一元二次方程根与系数的关系【解答】试题分析:∵一元二次方程2x 2+6x -1=0的两个实根分别为x 1,x 2,由两根之和可得; ∴x 1+x 2=﹣26=3, 故答案为:C .5. (2019年河南省)一元二次方程(x +1)(x ﹣1)=2x +3的根的情况是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .只有一个实数根D .没有实数根【考点】一元二次方程根的判别式【解答】解:原方程可化为:x 2﹣2x ﹣4=0, ∴a =1,b =﹣2,c =﹣4,∴△=(﹣2)2﹣4×1×(﹣4)=20>0, ∴方程由两个不相等的实数根. 故选:A .6. (2019年甘肃省天水市)中国“一带一路”给沿线国家和地区带来很大的经济效益,沿 线某地区居民2016年人均年收入20000元,到2018年人均年收入达到39200元.则该地区 居民年人均收入平均增长率为 .(用百分数表示) 【考点】一元二次方程的应用【解答】解:设该地区居民年人均收入平均增长率为x , 20000(1+x )2=39200,解得,x 1=0.4,x 2=﹣2.4(舍去),∴该地区居民年人均收入平均增长率为40%, 故答案为:40%.7. (2019年甘肃省)若一元二次方程x 2﹣2kx +k 2=0的一根为x =﹣1,则k 的值为( ) A .﹣1B .0C .1或﹣1D .2或0【考点】一元二次方程的解【解答】解:把x =﹣1代入方程得:1+2k +k 2=0, 解得:k =﹣1, 故选:A .8. (2019年湖北省鄂州市)关于x 的一元二次方程x 2﹣4x +m =0的两实数根分别为x 1、x 2,且x1+3x2=5,则m的值为()A.B.C.D.0【考点】一元二次方程根与系数的关系【解答】解:∵x1+x2=4,∴x1+3x2=x1+x2+2x2=4+2x2=5,∴x2=,把x2=代入x2﹣4x+m=0得:()2﹣4×+m=0,解得:m=,故选:A.9. (2019年湖北省荆州市)若一次函数y=kx+b的图象不经过第二象限,则关于x的方程x2+kx+b=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.无法确定【考点】一元二次方程根的判别式【解答】解:∵一次函数y=kx+b的图象不经过第二象限,∴k>0,b≤0,∴△=k2﹣4b>0,∴方程有两个不相等的实数根.故选:A.10. (2019年黑龙江省伊春市)某校“研学”活动小组在一次野外实践时,发现一种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是43,则这种植物每个支干长出的小分支个数是()A.4 B.5 C.6 D.7【考点】一元二次方程的应用【解答】解:设这种植物每个支干长出x个小分支,依题意,得:1+x+x2=43,解得:x1=﹣7(舍去),x2=6.故选:C.11. (2019年内蒙古包头市)已知等腰三角形的三边长分别为a、b、4,且a、b是关于x的一元二次方程x2﹣12x+m+2=0的两根,则m的值是()A.34 B.30 C.30或34 D.30或36【考点】一元二次方程根与系数的关系【解答】解:当a=4时,b<8,∵a、b是关于x的一元二次方程x2﹣12x+m+2=0的两根,∴4+b=12,∴b=8不符合;当b=4时,a<8,∵a、b是关于x的一元二次方程x2﹣12x+m+2=0的两根,∴4+a=12,∴a=8不符合;当a=b时,∵a、b是关于x的一元二次方程x2﹣12x+m+2=0的两根,∴12=2a=2b,∴a=b=6,∴m+2=36,∴m=34;故选:A.12. (2019年内蒙古赤峰市)某品牌手机三月份销售400万部,四月份、五月份销售量连续增长,五月份销售量达到900万部,求月平均增长率.设月平均增长率为x,根据题意列方程为()A.400(1+x2)=900 B.400(1+2x)=900C.900(1﹣x)2=400 D.400(1+x)2=900【考点】一元二次方程的应用【解答】解:设月平均增长率为x,根据题意得:400(1+x)2=900.故选:D.13. (2019年内蒙古呼和浩特市)若x1,x2是一元二次方程x2+x﹣3=0的两个实数根,则x22﹣4x12+17的值为()A.﹣2 B.6 C.﹣4 D.4【考点】一元二次方程的根与系数的关系【解答】解:∵x1,x2是一元二次方程x2+x﹣3=0的两个实数根,∴x1+x2=﹣1,x1•x2=﹣3,x12+x1=3,∴x22﹣4x12+17=x12+x22﹣5x12+17=(x1+x2)2﹣2x1x2﹣5x12+17=(﹣1)2﹣2×(﹣3)﹣5x12+17=24﹣5x22=24﹣5(﹣1﹣x1)2=24﹣5(x12+x1+1)=24﹣5(3+1)=4,故选:D.14. (2019年内蒙古通辽市)一个菱形的边长是方程x2﹣8x+15=0的一个根,其中一条对角线长为8,则该菱形的面积为()A.48 B.24 C.24或40 D.48或80【考点】一元二次方程的应用【解答】解:(x﹣5)(x﹣3)=0,所以x1=5,x2=3,∵菱形一条对角线长为8,∴菱形的边长为5,∴菱形的另一条对角线为2=6,∴菱形的面积=×6×8=24.故选:B.15. (2019年新疆)若关于x的一元二次方程(k﹣1)x2+x+1=0有两个实数根,则k的取值范围是()A.k≤B.k>C.k<且k≠1D.k≤且k≠1【考点】一元二次方程根的判别式【解答】解:∵关于x的一元二次方程(k﹣1)x2+x+1=0有两个实数根,∴,解得:k≤且k≠1.故选:D.16.(2019年新疆)在某篮球邀请赛中,参赛的每两个队之间都要比赛一场,共比赛36场.设有x个队参赛,根据题意,可列方程为()A.x(x﹣1)=36 B.x(x+1)=36C.x(x﹣1)=36 D.x(x+1)=36【考点】一元二次方程的应用【解答】解:设有x个队参赛,根据题意,可列方程为:x(x﹣1)=36,故选:A.二、填空题1.(2019年上海市)如果关于x的方程x2﹣x+m=0没有实数根,那么实数m的取值范围是.【考点】一元二次方程根的判别式【解答】解:由题意知△=1﹣4m<0,∴m>.故填空答案:m>.2. (2019年山东省济宁市)已知x=1是方程x2+bx﹣2=0的一个根,则方程的另一个根是.【考点】一元二次方程的根与系数的关系【解答】解:∵x=1是方程x2+bx﹣2=0的一个根,∴x1x2==﹣2,∴1×x2=﹣2,则方程的另一个根是:﹣2,故答案为﹣2.3. (2019年山东省青岛市)若关于x的一元二次方程2x2﹣x+m=0有两个相等的实数根,则m的值为.【考点】一元二次方程根的判别式【解答】解:根据题意得:△=1﹣4×2m=0,整理得:1﹣8m=0,解得:m=,故答案为:.4. (2019年山东省枣庄市)已知关于x的方程ax2+2x﹣3=0有两个不相等的实数根,则a的取值范围是.【考点】一元二次方程根的判别式【解答】解:由关于x的方程ax2+2x﹣3=0有两个不相等的实数根得△=b 2﹣4ac =4+4×3a >0, 解得a > 则a >且a ≠0故答案为a >且a ≠05. (2019年四川省资阳市)a 是方程2x 2=x +4的一个根,则代数式4a 2﹣2a 的值是 . 【考点】一元二次方程的解【解答】解:∵a 是方程2x 2=x +4的一个根, ∴2a 2﹣a =4,∴4a 2﹣2a =2(2a 2﹣a )=2×4=8. 故答案为:8.6. (2019年江苏省泰州市)若关于x 的方程x 2+2x +m =0有两个不相等的实数根,则m 的取值范围是 .【考点】一元二次方程根的判别式【解答】∵关于x 的方程x 2+2x +m =0有两个不相等的实数根,∴△=4﹣4m >0 解得:m <1,∴m 的取值范围是m <1. 故答案为:m <1.7. (2019年江苏省扬州市)一元二次方程()22-=-x x x 的根为___.【考点】一元二次方程的解法 【解答】解:()22-=-x x x()()021=--x x x 1=1, x 2=28. (2019年湖北省十堰市)对于实数a ,b ,定义运算“◎”如下:a ◎b =(a +b )2﹣(a ﹣b )2.若(m +2)◎(m ﹣3)=24,则m = .【考点】一元二次方程的解法【解答】解:根据题意得[(m +2)+(m ﹣3)]2﹣[(m +2)﹣(m ﹣3)]2=24, (2m ﹣1)2﹣49=0,(2m ﹣1+7)(2m ﹣1﹣7)=0, 2m ﹣1+7=0或2m ﹣1﹣7=0,所以m 1=﹣3,m 2=4. 故答案为﹣3或4.9. (2019年甘肃省武威市)关于x 的一元二次方程x 2+x +1=0有两个相等的实数根,则m 的取值为 .【考点】一元二次方程根的判别式 【解答】解:由题意,△=b 2﹣4ac =()2﹣4=0得m =4 故答案为410. (2019年辽宁省本溪市)如果关于x 的一元二次方程x 2﹣4x +k =0有实数根,那么k 的取值范围是 .【考点】一元二次方程根的判别式 【解答】解:根据题意得:△=16﹣4k ≥0, 解得:k ≤4. 故答案为:k ≤4.11. (2019年西藏)一元二次方程x 2﹣x ﹣1=0的根是 . 【考点】一元二次方程的解法【解答】解:△=(﹣1)2﹣4×(﹣1)=5, x =,所以x 1=,x 2=.故答案为x 1=,x 2=.三、解答题1.(2019年安徽省)解方程2x 1=4-()【考点】一元二次方程的解法【解答】利用直接开平方法:x-1=2或x-1=-2 ∴ , 2.(2019年北京市)关于x 的方程22210x x m -+-=有实数根,且m 为正整数,求m 的值及此时方程的根.【考点】一元二次方程根的判别式、一元二次方程的解法【解答】∵01222=-+-m x x 有实数根,∴△≥0,即0)12(4)2(2≥---m ,∴1≤m∵m 为正整数,∴1=m ,故此时二次方程为,0122=+-x x 即0)1(2=-x∴121==x x ,∴1=m ,此时方程的根为121==x x3.(2019年乐山市)已知关于x 的一元二次方程04)4(2=++-k x k x . (1)求证:无论k 为任何实数,此方程总有两个实数根; (2)若方程的两个实数根为1x 、2x ,满足431121=+x x ,求k 的值; (3)若Rt △ABC 的斜边为5,另外两条边的长恰好是方程的两个根1x 、2x ,求∆Rt ABC的内切圆半径.【考点】一元二次方程根的判别式、一元二次方程的解法、一元二次方程根与系数关系、内切圆 【解答】(1)证明: 0)4(16816)4(222≥-=+-=-+=∆k k k k k ,∴无论k 为任何实数时,此方程总有两个实数根.(2)由题意得:421+=+k x x ,k x x 421=⋅, 431121=+x x,432121=⋅+∴x x x x ,即4344=+k k , 解得:2=k ;(3)解方程得:41=x ,k x =2,根据题意得:22254=+k ,即3=k , 设直角三角形ABC 的内切圆半径为r ,如图, 由切线长定理可得:5)4()3(=-+-r r ,∴直角三角形ABC 的内切圆半径r =12543=-+;4.(2019年重庆市)某文明小区50平方米和80平方米两种户型的住宅,50平方米住宅套数是80平方米住宅套数的2倍.物管公司月底按每平方米2元收取当月物管费,该小区全部住宅都人住且每户均按时全额缴纳物管费.(1)该小区每月可收取物管费90000元,问该小区共有多少套80平方米的住宅? (2)为建设“资源节约型社会”,该小区物管公司5月初推出活动一:“垃圾分类送礼物”,50平方米和80平方米的住户分别有40%和20%参加了此次括动.为提离大家的积扱性,6月份准备把活动一升级为活动二:“拉圾分类抵扣物管费”,同时终止活动一.经调査与测算,参加活动一的住户会全部参加活动二,参加活动二的住户会大幅增加,这样,64月份参加活动的50平方米的总户数在5月份参加活动的同户型户数的基础上将增加2a%,每户物管费将会减少a%;6月份参加活动的80平方米的总户数在5月份参加活动的同户型户数的基础上将增加6a%,每户物管费将会减少a%.这样,参加活动的这部分住户6月份总共缴纳的物管费比他们按原方式共缴纳的物管费将减少a%,求a的值.【考点】一元一次方程的应用与解法、一元二次方程的应用与解法【解答】(1)解:设该小区有x套80平方米住宅,则50平方米住宅有2x套,由题意得:2(50×2x+80x)=90000,解得x=250答:该小区共有250套80平方米的住宅.(2)参与活动一:50平方米住宅每户所交物管费为100元,有500×40%=200户参与活动一,80平方米住宅每户所交物管费为160元,有250×20%=50户参与活动一;参与活动二:50平方米住宅每户所交物管费为100(1﹣%)元,有200(1+2a%)户参与活动二;80平方米住宅每户所交物管费为160(1﹣%)元,有50(1+6a%)户参与活动二.由题意得100(1﹣%)•200(1+2a%)+160(1﹣%)•50(1+6a%)=[200(1+2a%)×100+50(1+6a%)×160](1﹣a%)令t=a%,化简得t(2t﹣1)=0∴t1=0(舍),t2=,∴a=50.答:a的值为50.5. (2019年山东省德州市)习近平总书记说:“读书可以让人保持思想活力,让人得到智慧启发,让人滋养浩然之气”.某校为响应我市全民阅读活动,利用节假日面向社会开放学校图书馆.据统计,第一个月进馆128人次,进馆人次逐月增加,到第三个月末累计进馆608人次,若进馆人次的月平均增长率相同.(1)求进馆人次的月平均增长率;(2)因条件限制,学校图书馆每月接纳能力不超过500人次,在进馆人次的月平均增长率不变的条件下,校图书馆能否接纳第四个月的进馆人次,并说明理由.【考点】一元二次方程的应用与解法【解答】解:(1)设进馆人次的月平均增长率为x,则由题意得:128+128(1+x )+128(1+x )2=608 化简得:4x 2+12x -7=0 ∴(2x -1)(2x +7)=0, ∴x =0.5=50%或x =-3.5(舍)答:进馆人次的月平均增长率为50%. (2)∵进馆人次的月平均增长率为50%,∴第四个月的进馆人次为:128(1+50%)3=128×=432<500答:校图书馆能接纳第四个月的进馆人次.6. (2019年四川省攀枝花市)攀枝花得天独厚,气候宜人,农产品资源极为丰富,其中晚 熟芒果远销北上广等大城市。
2020地产项目9-10月暖场(潮玩视界成长探秘主题)活动策划方案
缤纷创想
Colorful Ideas
由缤纷天使将教师节主题生日蛋糕 送到舞台中央,由主持人邀请现场领导、 教师、现场的小朋友共同上台 共同许下最真挚的愿望,共同切开蛋糕。 与全场来宾共同感受充满温情的时刻
新奇祝福
New Blessing
坐席区顶部两侧, 挂满新奇幸运彩蛋, 每个彩蛋里面都有小礼品 在切蛋糕的瞬间, 所有的彩蛋将从天而降, 将最美好的祝愿派发给现场的每位来宾。
务。随着品牌发展,博沃思教育于2018年推出Powers Family课程产品, 为中国家庭提供家庭教育与心理辅导服务。
现今,博沃思教育秉承“科学教育,为爱而生”理念, 立足中国、面向国际。
专注于青少年认知力训练(Powers Kid)和家庭教育支持(Powers Family), 为中国家庭提供专业化、科学化的一站式家庭教育服务。
(9月26日-27日)
探秘·无限潜能
对自己的了解越多,对世界的认知才能更广, 每个童年都有成为科学家的梦想, 每个创想都值得被挖掘,
需要一个窗口,打开新视界,发现更优秀的自己。
Potential training camp
牧云溪谷潜能开发训练营
BEYOND THE VALLEY
VGCC 维格教育
资源引入 Resource introduction
VGCC 维格教育,
是一家专业领先的Stem
(Science科学、Technology技术、Engineering工程、Mathematics数学) 教育机构,邀请北美本土在职的精英教师团队亲临深圳授课,
全英文学术环境,带给孩子原汁原味的Stem课程体验。
根据教师节主题及牧云溪谷花园 定制专属教师节创意蛋糕 融入校园的元素与花园造型 打造独一无二的缤纷回忆 共同感受专属牧云溪谷·专属教师恩情 的一次欢乐盛典。
2019年中考复习试题-九年级上数学一元二次方程与实际问题(含解析答案)
一元二次方程与实际问题一.选择题(共12小题)1.某品牌手机三月份销售400万部,四月份、五月份销售量连续增长,五月份销售量达到900万部,求月平均增长率.设月平均增长率为x,根据题意列方程为()A.400(1+x2)=900B.400(1+2x)=900C.900(1﹣x)2=400D.400(1+x)2=9002.某校“研学”活动小组在一次野外实践时,发现一种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是43,则这种植物每个支干长出的小分支个数是()A.4B.5C.6D.73.扬帆中学有一块长30m,宽20m的矩形空地,计划在这块空地上划出四分之一的区域种花,小禹同学设计方案如图所示,求花带的宽度.设花带的宽度为xm,则可列方程为()A.(30﹣x)(20﹣x)=×20×30B.(30﹣2x)(20﹣x)=×20×30C.30x+2×20x=×20×30D.(30﹣2x)(20﹣x)=×20×304.某商品经过连续两次降价,售价由原来的每件25元降到每件16元,则平均每次降价的百分率为()A.20%B.40%C.18%D.36%5.化肥厂1月份某种化肥的产量为20万吨,通过技术革新,产量逐月上升,第一季度共生产这种化肥95万吨,求2、3月份平均每月增产的百分率是多少?若设2、3月份平均每月增产的百分率为x,根据题意列方程为()A.20(1+x)=95B.20(1+x)2=95C.20(1+x)+20(1+x)2=95D.20+20(1+x)+20(1+x)2=956.在某篮球邀请赛中,参赛的每两个队之间都要比赛一场,共比赛36场.设有x个队参赛,根据题意,可列方程为()A.x(x﹣1)=36B.x(x+1)=36C.x(x﹣1)=36D.x(x+1)=367.将一块长方形桌布铺在长为3m,宽为2m的长方形桌面上,各边下垂的长度相同,且桌布的面积是桌面面积的2倍,求桌布下垂的长度设桌布下垂的长度为xm,则所列的方程是()A.(2x+3)(2x+2)=2×3×2B.2(x+3)(x+2)=3×2C.(x+3)(x+2)=2×3×2D.2(2x+3)2x+2)=3×28.《九章算术》勾股章有一问题,其意思是:现有一竖立着的木柱,在木柱上端系有绳索,绳索从木柱上端顺木柱下垂后,堆在地面的部分尚有3尺,牵着绳索退行,在离木柱根部8尺处时绳索用尽,请问绳索有多长?若设绳索长度为x尺,根据题意,可列方程为()A.82+x2=(x﹣3)2B.82+(x+3)2=x2C.82+(x﹣3)2=x2D.x2+(x﹣3)2=829.如图,在△ABC中,∠ABC=90°,AB=4cm,BC=3cm,动点P,Q分别从点A,B同时开始移动(移动方向如图所示),点P的速度为cm/s,点Q的速度为1cm/s,点Q移动到点C后停止,点P也随之停止运动,若使△PBQ的面积为,则点P运动的时间是()A.2s B.3s C.4s D.5s10.2018年第一季度,合肥高新区某企业营收入比2017年同期增长12%,2019年第一季度营收入比2018年同期增长10%,设2018年和2019年第一季度营收入的平均增长率为x,则可列方程()A.2x=12%+10%B.(1+x)2=1+12%+10%C.1+2x=(1+12%)(1+10%)D.(1+x)2=(1+12%)(1+10%)11.2019年2月底某种疫苗的原价为80元/支,2019年两会后因实施医保新措施,4月份经过两次连续降价后该疫苗的价格为60元,求此疫苗的月平均降价率.设此疫苗的月平均降价率x,则可列方程为()A.80(1﹣2x)=60B.80(1﹣x)2=60C.80(1+x)2=100D.60(1﹣x)2=8012.如图,有一张矩形纸片,长10cm,宽6cm,在它的四角各剪去一个同样的小正方形,然后折叠成一个无盖的长方体纸盒.若纸盒的底面(图中阴影部分)面积是32cm2,求剪去的小正方形的边长.设剪去的小正方形边长是xcm,根据题意可列方程为()A.10×6﹣4×6x=32B.(10﹣2x)(6﹣2x)=32C.(10﹣x)(6﹣x)=32D.10×6﹣4x2=32二.填空题(共3小题)13.如图,在一块长12m,宽8m的矩形空地上,修建同样宽的两条互相垂直的道路(两条道路各与矩形的一条平行),剩余部分栽种花草,且栽种花草的面积77m2,设道路的宽为xm,则根据题意,可列方程为.14.某产品每件的生产成本为50元,原定销售价65元,经市场预测,从现在开始的第一季度销售价格将下降10%,第二季度又将回升5%.若要使半年以后的销售利润不变,设每个季度平均降低成本的百分率为x,根据题意可列方程是.15.某种药品经过两次降价,由每盒50元调至36元,若第二次降价的百分率是第一次的2倍.设第一次降价的百分率为x,由题意可列得方程:.三.解答题(共21小题)16.如图,有一块矩形硬纸板,长30cm,宽20cm.在其四角各剪去一个同样的正方形,然后将四周突出部分折起,可制成一个无盖长方体盒子.当剪去正方形的边长取何值时,所得长方体盒子的侧面积为200cm2?17.改善小区环境,争创文明家园.如图所示,某社区决定在一块长(AD)16m,宽(AB)9m的矩形场地ABCD上修建三条同样宽的小路,其中两条与AB平行,另一条与AD平行,其余部分种草.要使草坪部分的总面积为112m2,则小路的宽应为多少?18.为加快新旧动能转换,提高公司经济效益,某公司决定对近期研发出的一种电子产品进行降价促销,使生产的电子产品能够及时售出,根据市场调查:这种电子产品销售单价定为200元时,每天可售出300个;若销售单价每降低1元,每天可多售出5个.已知每个电子产品的固定成本为100元,问这种电子产品降价后的销售单价为多少元时,公司每天可获利32000元?19.随着粤港澳大湾区建设的加速推进,广东省正加速布局以5G等为代表的战略性新兴产业,据统计,目前广东5G基站的数量约1.5万座,计划到2020年底,全省5G基站数是目前的4倍,到2022年底,全省5G基站数量将达到17.34万座.(1)计划到2020年底,全省5G基站的数量是多少万座?(2)按照计划,求2020年底到2022年底,全省5G基站数量的年平均增长率.20.HW公司2018年使用自主研发生产的“QL”系列甲、乙、丙三类芯片共2800万块,生产了2800万部手机,其中乙类芯片的产量是甲类芯片的2倍,丙类芯片的产量比甲、乙两类芯片产量的和还多400万块.这些“QL”芯片解决了该公司2018年生产的全部手机所需芯片的10%.(1)求2018年甲类芯片的产量;(2)HW公司计划2020年生产的手机全部使用自主研发的“QL”系列芯片.从2019年起逐年扩大“QL”芯片的产量,2019年、2020年这两年,甲类芯片每年的产量都比前一年增长一个相同的百分数m%,乙类芯片的产量平均每年增长的百分数比m%小1,丙类芯片的产量每年按相同的数量递增.2018年到2020年,丙类芯片三年的总产量达到1.44亿块.这样,2020年的HW公司的手机产量比2018年全年的手机产量多10%,求丙类芯片2020年的产量及m的值.21.某地计划对矩形广场进行扩建改造.如图,原广场长50m,宽40m,要求扩充后的矩形广场长与宽的比为3:2.扩充区域的扩建费用每平方米30元,扩建后在原广场和扩充区域都铺设地砖,铺设地砖费用每平方米100元.如果计划总费用642000元,扩充后广场的长和宽应分别是多少米?22.某菜市场有2.5平方米和4平方米两种摊位,2.5平方米的摊位数是4平方米摊位数的2倍.管理单位每月底按每平方米20元收取当月管理费,该菜市场全部摊位都有商户经营且各摊位均按时全额缴纳管理费.(1)菜市场毎月可收取管理费4500元,求该菜市场共有多少个4平方米的摊位?(2)为推进环保袋的使用,管理单位在5月份推出活动一:“使用环保袋送礼物”,2.5平方米和4平方米两种摊位的商户分别有40%和20%参加了此项活动.为提高大家使用环保袋的积极性,6月份准备把活动一升级为活动二:“使用环保袋抵扣管理费”,同时终止活动一.经调査与测算,参加活动一的商户会全部参加活动二,参加活动二的商户会显著增加,这样,6月份参加活动二的2.5平方米摊位的总个数将在5月份参加活动一的同面积个数的基础上增加2a%,毎个摊位的管理费将会减少a%;6月份参加活动二的4平方米摊位的总个数将在5月份参加活动一的同面积个数的基础上增加6a%,每个摊位的管理费将会减少a%.这样,参加活动二的这部分商户6月份总共缴纳的管理费比他们按原方式共缴纳的管理费将减少a%,求a的值.23.建造一个面积为130m2的长方形养鸡场,鸡场的一边靠墙,墙长为a米,另三边用竹篱笆围成,如果篱笆总长为33米.(1)求养鸡场的长与宽各为多少米?(2)若10≤a<18,题中的解的情况如何?24.如图,在矩形ABCD中,AD=6cm,BC=12cm,点P从点B出发沿线段BC、CD以2cm/s的速度向终点D运动;同时,点Q从点C出发沿线段CD、DA以1cm/s的速度向终点A运动(P、Q两点中,只要有一点到达终点,则另一点运动立即停止).(1)运动停止后,哪一点先到终点?另一点离终点还有多远?(2)在运动过程中,△APQ的面积能否等于22cm2?若能,需运动多长时间?若不能,请说明理由.25.某书店积极响应政府“改革创新,奋发有为”的号召,举办“读书节“系列活动.活动中故事类图书的标价是典籍类图书标价的1.5倍,若顾客用540元购买图书,能单独购买故事类图书的数量恰好比单独购买典籍类图书的数量少10本.(1)求活动中典籍类图书的标价;(2)该店经理为鼓励广大读者购书,免费为购买故事类的读者赠送图1所示的精致矩形包书纸.在图1的包书纸示意图中,虚线是折痕,阴影是裁剪掉的部分,四角均为大小相同的正方形,正方形的边长为折叠进去的宽度.已知该包书纸的面积为875cm2(含阴影部分),且正好可以包好图2中的《中国故事》这本书,该书的长为21cm,宽为15cm,厚为1cm,请直接写出该包书纸包这本书时折叠进去的宽度.26.水果店进口一种高档水果,卖出每斤水果盈利(毛利润)5元,每天可卖出1000斤,经市场调査后发现,在进价不变的情况下,若每斤售价涨0.5元,每天销量将减少40斤.(1)若以每斤盈利9元的价钱出售,问每天能盈利多少元?(2)若水果店要保证每天销售这种水果的毛利润为6000元,同时又要使顾客觉得价不太贵,则每斤水果应涨价多少元?27.我市某企业安排65名工人生产甲、乙两种产品,每人每天生产2件甲产品获1件乙产品,经测第,甲产品每件可获利15元,乙产品每件可获利120元,而实际生产中,生产乙产品需要额外支出一定的费用,经过核算,每生产1件乙产品,当天平均每件获利减少2元,设每天安排x人生产乙产品(1)根据信息填表:(2)若每天生产甲产品可获得的利润比生产乙产品可获得的利润多650元,试问:该企业每天生产甲、乙产品可获得总利润是多少元?(3)根据市场需求,该企业在不增加工人的情况下,需要增加生产丙产品,要求每天甲、丙两种产品的产量相等.已知每人每天可生产1件丙(每人每天只能生产一件产品),丙产品每件可获利30元.要使该企业每天生产三种产品也能获得第(2)题中同样的利润,请问该企业应如何安排工人进行生产?28.某地特产槟榔芋深受欢迎,某商场以7元/千克收购了3000千克优质槟榔芋,若现在马上出售,每千克可获得利润3元.根据市场调查发现,近段时间内槟榔芋的售价每天上涨0.2元/千克,为了获得更大利润,商家决定先贮藏一段时间后再出售.根据以往经验,这批槟榔芋的贮藏时间不宜超过100天,在贮藏过程中平均每天损耗约10千克.(1)若商家将这批槟榔芋贮藏x天后一次性出售,请完成下列表格:(2)将这批槟榔芋贮藏多少天后一次性出售最终可获得总利润29000元?29.有一张面积为100cm2的正方形贺卡,另有一个长方形信封,长宽之比为5:3,面积为150cm2,能将这张贺卡不折叠的放入此信封吗?请通过计算说明你的判断.30.如图所示,有一长方形的空地,长为x米,宽为12米,建筑商把它分成甲、乙、丙三部分,甲和乙为正方形,现计划甲建筑成住宅区,乙建成商场,丙开辟成公园.(1)请用含x的代数式表示正方形乙的边长:米;(2)若丙地的面积为32平方米,请求出x的值.31.如图,某农家拟用已有的长为8m的墙或墙的一部分为一边,其它三边用篱笆围成一个面积为12m2的矩形园子.设园子中平行于墙面的篱笆长为ym(其中y≥4),另两边的篱笆长分别为xm.(1)求y关于x的函数表达式,并求x的取值范围.(2)若仅用现有的11m长的篱笆,且恰好用完,请你帮助设计围制方案.32.探究:在一次聚会上,规定每两个人见面必须握手,且只握手1次(1)若参加聚会的人数为3,则共握手次:;若参加聚会的人数为5,则共握手次;(2)若参加聚会的人数为n(n为正整数),则共握手次;(3)若参加聚会的人共握手28次,请求出参加聚会的人数.拓展:嘉嘉给琪琪出题:“若线段AB上共有m个点(含端点A,B),线段总数为30,求m的值.”琪琪的思考:“在这个问题上,线段总数不可能为30”琪琪的思考对吗?为什么?33.如图,将边长为6cm的正方形纸片ABCD,剪去图中阴影部分的四个全等的直角三角形,再沿图中的虚线折起,可以得到一个长方体盒子,(A、B、C、D正好重合于上底面一点,且AE=BF),若所得到的长方体盒子的表面积为11cm2,求线段AE的长.34.现有一块宽为a(a>2),长是宽的2倍的矩形空地,想采取下列两种方案进行改造.方案一:如图①,在矩形内预留一块宽为1,长为2的小矩形空地,剩下部分(阴影部分)进行绿化,记绿化面积为S1;方案二:如图②,在矩形内部四周预留宽均为1的小路,剩下部分(阴影部分)进行绿化,记绿化面积为S2;(1)请用含a的代数式表示S1和S2;(2)当a=4时,比较哪一种方案的绿化面积大?35.阅读理解:给定一个矩形,如果存在另一个矩形,它的周长和面积分别是已知矩形的周长和面积的2倍,则这个矩形是给定矩形的“加倍”矩形.如图,矩形A1B1C1D1是矩形ABCD的“加倍”矩形.解决问题:(1)当矩形的长和宽分别为3,2时,它是否存在“加倍”矩形?若存在,求出“加倍”矩形的长与宽,若不存在,请说明理由.(2)边长为a的正方形存在“加倍”正方形吗?请做出判断,并说明理由36.春临大地,学校决定给长12米,宽9米的一块长方形展示区进行种植改造现将其划分成如图两个区域:区域Ⅰ矩形ABCD部分和区域Ⅱ四周环形部分,其中区域Ⅰ用甲、乙、丙三种花卉种植,且EF平分BD,G,H分别为AB,CD中点.(1)若区域Ⅰ的面积为Sm2,种植均价为180元/m2,区域Ⅱ的草坪均价为40元/m2,且两区域的总价为16500元,求S的值.(2)若AB:BC=4:5,区域Ⅱ左右两侧草坪环宽相等,均为上、下草坪环宽的2倍①求AB,BC的长;②若甲、丙单价和为360元/m2,乙、丙单价比为13:12,三种花卉单价均为20的整数倍.当矩形ABCD中花卉的种植总价为14520元时,求种植乙花卉的总价.一元二次方程与实际问题参考答案与试题解析一.选择题(共12小题)1.【解答】解:设月平均增长率为x,根据题意得:400(1+x)2=900.故选:D.2.【解答】解:设这种植物每个支干长出x个小分支,依题意,得:1+x+x2=43,解得:x1=﹣7(舍去),x2=6.故选:C.3.【解答】解:设花带的宽度为xm,则可列方程为(30﹣2x)(20﹣x)=×20×30,故选:D.4.【解答】解:设降价的百分率为x根据题意可列方程为25(1﹣x)2=16解方程得,(舍)∴每次降价得百分率为20%故选:A.5.【解答】解:设2、3月份平均每月增产的百分率为x,依题意.得20+20(1+x)+20(1+x)2=95,故选:D.6.【解答】解:设有x个队参赛,根据题意,可列方程为:x(x﹣1)=36,故选:A.7.【解答】解:设桌布铺到桌面上时各边垂下的长度为xm,则桌布的长为(3+2x)m,宽为(2+2x)m,依题意得(2x+3)(2x+2)=2×3×2,故选:A.8.【解答】解:设绳索长为x尺,可列方程为(x﹣3)2+82=x2,故选:C.9.【解答】解:设动点P,Q运动t秒后,能使△PBQ的面积为,则BP为(4﹣t)cm,BQ为tcm,由三角形的面积计算公式列方程得,(4﹣t)×t=,解得t1=3,t2=5(舍去,不合题意).∴动点P,Q运动3或5秒时,能使△PBQ的面积为cm2.故选:B.10.【解答】解:设2018年和2019年第一季度营收入的平均增长率为x,则可列方程(1+x)2=(1+12%)(1+10%),故选:D.11.【解答】解:设此疫苗的月平均降价率x,则可列方程为80(1﹣x)2=60,故选:B.12.【解答】解:设剪去的小正方形边长是xcm,则纸盒底面的长为(10﹣2x)cm,宽为(6﹣2x)cm,根据题意得:(10﹣2x)(6﹣2x)=32.故选:B.二.填空题(共3小题)13.【解答】解:∵道路的宽应为x米,∴由题意得,(12﹣x)(8﹣x)=77,故答案为:(12﹣x)(8﹣x)=77.14.【解答】解:设每个季度平均降低成本的百分率为x,依题意,得:65×(1﹣10%)×(1+5%)﹣50(1﹣x)2=65﹣50.故答案为:65×(1﹣10%)×(1+5%)﹣50(1﹣x)2=65﹣50.15.【解答】解:设第一次降价的百分率为x,则第二次降价的百分率为2x,依题意,得:50(1﹣x)(1﹣2x)=36.故答案为:50(1﹣x)(1﹣2x)=36.三.解答题(共21小题)16.【解答】解:设剪去正方形的边长为xcm,则做成无盖长方体盒子的底面长为(30﹣2x)cm,宽为(20﹣2x)cm,高为xcm,依题意,得:2×[(30﹣2x)+(20﹣2x)]x=200,整理,得:2x2﹣25x+50=0,解得:x1=,x2=10.当x=10时,20﹣2x=0,不合题意,舍去.答:当剪去正方形的边长为cm时,所得长方体盒子的侧面积为200cm2.17.【解答】解:设小路的宽应为xm,根据题意得:(16﹣2x)(9﹣x)=112,解得:x1=1,x2=16.∵16>9,∴x=16不符合题意,舍去,∴x=1.答:小路的宽应为1m.18.【解答】解:设降价后的销售单价为x元,则降价后每天可售出[300+5(200﹣x)]个,依题意,得:(x﹣100)[300+5(200﹣x)]=32000,整理,得:x2﹣360x+32400=0,解得:x1=x2=180.180<200,符合题意.答:这种电子产品降价后的销售单价为180元时,公司每天可获利32000元.19.【解答】解:(1)1.5×4=6(万座).答:计划到2020年底,全省5G基站的数量是6万座.(2)设2020年底到2022年底,全省5G基站数量的年平均增长率为x,依题意,得:6(1+x)2=17.34,解得:x1=0.7=70%,x2=﹣2.7(舍去).答:2020年底到2022年底,全省5G基站数量的年平均增长率为70%.20.【解答】解:(1)设2018年甲类芯片的产量为x万块,由题意得:x+2x+(x+2x)+400=2800,解得:x=400;答:2018年甲类芯片的产量为400万块;(2)2018年万块丙类芯片的产量为3x+400=1600万块,设丙类芯片的产量每年增加的数量为y万块,则1600+1600+y+1600+2y=14400,解得:y=3200,∴丙类芯片2020年的产量为1600+2×3200=8000万块,2018年HW公司手机产量为2800÷10%=28000万部,400(1+m%)2+2×400(1+m%﹣1)2+8000=28000×(1+10%),设m%=t,化简得:3t2+2t﹣56=0,解得:t=4,或t=﹣(舍去),∴t=4,∴m%=4,∴m=400;答:丙类芯片2020年的产量为8000万块,m=400.21.【解答】解:设扩充后广场的长为3xm,宽为2xm,依题意得:3x•2x•100+30(3x•2x﹣50×40)=642000解得x1=30,x2=﹣30(舍去).所以3x=90,2x=60,答:扩充后广场的长为90m,宽为60m.22.【解答】解:(1)设该菜市场共有x个4平方米的摊位,则有2x个2.5平方米的摊位,依题意,得:20×4x+20×2.5×2x=4500,解得:x=25.答:该菜市场共有25个4平方米的摊位.(2)由(1)可知:5月份参加活动一的2.5平方米摊位的个数为25×2×40%=20(个),5月份参加活动一的4平方米摊位的个数为25×20%=5(个).依题意,得:20(1+2a%)×20×2.5×a%+5(1+6a%)×20×4×a%=[20(1+2a%)×20×2.5+5(1+6a%)×20×4]×a%,整理,得:a2﹣50a=0,解得:a1=0(舍去),a2=50.答:a的值为50.23.【解答】解:(1)设养鸡场的宽为x米,则长为(33﹣2x)米,依题意,得:(33﹣2x)x=130,解得:x1=6.5,x2=10,∴33﹣2x=20或13.答:养鸡场的长为20米宽为6.5米或长为13米宽为10米.(2)∵10≤a<18,∴33﹣2x=13,∴养鸡场的长为13米宽为10米.24.【解答】解:(1)点P从开始到运动停止用的时间为:(12+6)÷2=9s,点Q从开始到运动停止用的时间为:(6+12)÷1=18s,∵9<18,只要有一点到达终点,则另一点运动立即停止,∴点P先到终点,此时点Q离终点的距离是:(6+12)﹣1×9=9cm,答:点P先到终点,此时点Q离终点的距离是9cm;(2)在运动过程中,△APQ的面积能等于22cm2,当P从点B运动到点C的过程中,设点P运动时间为as,∵△APQ的面积能否等于22cm2,∴12×6﹣=22,解得,此方程无解;当点P从C到D的过程中,设点P运动的时间为(b+6)s,∵△APQ的面积能否等于22cm2,∴12×6﹣=22,解得,b1=6+(舍去),b2=6﹣,即需运动(6﹣)s,△APQ的面积能否等于22cm2.25.【解答】解:(1)设典籍类图书的标价为元,由题意,得﹣10=.解得x=18.经检验:x=18是原分式方程的解,且符合题意.答:典籍类图书的标价为18元;(2)设折叠进去的宽度为ycm,则(2y+15×2+1)(2y+21)=875,化简得y2+26y﹣56=0,∴y=2或﹣28(不合题意,舍去),答:折叠进去的宽度为2cm.26.【解答】解:(1)1000﹣×40=680(斤),9×680=6120(元).答:每天能盈利6120元.(2)设每斤水果涨价x元,则每天可卖出(1000﹣40×)斤水果,依题意,得:(x+5)(1000﹣40×)=6000,解得:x1=2.5,x2=5.又∵要使顾客觉得价不太贵,∴x=2.5.答:每斤水果应涨价2.5元.27.【解答】解:(1)设每天安排x人生产乙产品,则每天安排(65﹣x)人生产甲产品,每天可生产x件乙产品,每件的利润为(120﹣2x)元,每天可生产2(65﹣x)件甲产品.故答案为:2(65﹣x);120﹣2x.(2)依题意,得:15×2(65﹣x)﹣(120﹣2x)•x=650,整理,得:x2﹣75x+650=0解得:x1=10,x2=65(不合题意,舍去),∴15×2(65﹣x)+(120﹣2x)•x=2650.答:该企业每天生产甲、乙产品可获得总利润是2650元.(3)设该企业安排m人生产甲产品,则安排2m人生产丙产品,安排(65﹣3m)人生产乙产品,依题意,得:15×2m+30×2m+[120﹣2(65﹣3m)](65﹣3m)=2650,整理,得:3m2﹣85m+550=0,解得:m1=10,x2=(不合题意,舍去),∴2m=20,65﹣3m=35.答:该企业应安排10人生产甲产品,35人生产乙产品,20人生产丙产品.28.【解答】解:(1)7+3=10(元),x天后出售的售价为(10+0.2x)元/千克,可供出售的槟榔芋重量为(3000﹣10x)千克.故答案为:10;10+0.2x;3000﹣10x.(2)依题意,得:(10+0.2x)(3000﹣10x)﹣7×3000=29000,整理,得:x2﹣250x+10000=0,解得:x1=50,x2=200.∵x2=200>100,不合题意,舍去,∴x=50.答:将这批槟榔芋贮藏50天后一次性出售最终可获得总利润29000元.29.【解答】解:设长方形信封的长为5xcm,宽为3xcm.由题意得:5x•3x=150,解得:x=(负值舍去)所以长方形信封的宽为:3x=3,∵=10,∴正方形贺卡的边长为10cm.∵(3)2=90,而90<100,∴3<10,答:不能将这张贺卡不折叠的放入此信封中.30.【解答】解:(1)因为甲和乙为正方形,结合图形可得丙的长为:(x﹣12)米.同样乙的边长也为(x﹣12)米故答案是:(x﹣12);(2)结合(1)得,丙的宽为(24﹣x),所以丙的面积为:(x﹣12)(24﹣x)列方程得,(x﹣12)(24﹣x)=32解方程得x1=20,x2=16.31.【解答】解:(1)∵矩形的面积为12m2,∴y=.∵4≤y≤8,∴1.5≤x≤3.(2)∵篱笆长11m,∴y=(11﹣2x)m.依题意,得:xy=12,即x(11﹣2x)=12,解得:x1=1.5,x2=4(舍去),∴y=11﹣2x=8.答:矩形园子的长为8m,宽为1.5m.32.【解答】解:探究:(1)3×(3﹣1)÷2=3,5×(5﹣1)÷2=10.故答案为:3;10.(2)∵参加聚会的人数为n(n为正整数),∴每人需跟(n﹣1)人握手,∴握手总数为.故答案为:.(3)依题意,得:=28,整理,得:n2﹣n﹣56=0,解得:n1=8,n2=﹣7(舍去).答:参加聚会的人数为8人.拓展:琪琪的思考对,理由如下:如果线段数为30,则由题意,得:=30,整理,得:m2﹣m﹣60=0,解得m1=,m2=(舍去).∵m为正整数,∴没有符合题意的解,∴线段总数不可能为30.33.【解答】解:设AE=BF=xcm,由题意可得,长方体盒子的底面为正方形,其边长为xcm,长方体盒子的高为cm,∵得到的长方体盒子的表面积为11cm2∴2[2x2+x(6﹣2x)+x(6﹣2x)]=11,整理得:4x2﹣24x+11=0,解得x=0.5或x=5.5(舍去),∴线段AE的长0.5cm.34.【解答】解:(1)S1=a×2a﹣1×2=2a2﹣2,S2=(2a﹣1﹣1)(a﹣1﹣1)=2a2﹣6a+4;(2)当a=4时,S1=2×42﹣2=30,S2=2×42﹣6×4+4=12,∵30>12,∴方案一的绿化面积大.35.【解答】(1)解:存在;设“加倍”矩形的一边为x,则另一边为(10﹣x)则:x(10﹣x)=12 (3分)解之得:x1=5+,x2=5﹣,∴10﹣x1=5﹣;10﹣x2=5﹣;答:“加倍”矩形的长为5+,宽为5﹣;(2)不存在.因为两个正方形是相似图形,当它们的周长比为2时,则面积比必定是4,所以不存在.36.【解答】解:(1)由题意180S+(108﹣S)×40=16500,解得S=87.∴S的值为87;(2)①设区域Ⅱ上、下草坪环宽度为a,则左右两侧草坪环宽度为2a,由题意(9﹣2a):(12﹣4a)=4:5,解得a=,∴AB=9﹣2a=8,CB=12﹣4a=10;②设乙、丙瓷砖单价分别为13x元/m2和12x元/m2,则甲的单价为(360﹣12x)元/m2,∵GH∥AD,∴甲的面积=矩形ABCD的面积的一半=40,设乙的面积为s,则丙的面积为(40﹣s),由题意40(360﹣12x)+13x•s+12x•(40﹣s)=14520,解得s=,∵0<s<40,∴0<<40,又∵360﹣12x>0,综上所述,3<x<30,39<13x<390,∵三种花卉单价均为20的整数倍,∴乙花卉的总价为:1560元.。
沪教版(上海)六年级数学第二学期第六章一次方程(组)和一次不等式(组)难点解析试题(名师精选)
第六章一次方程(组)和一次不等式(组)难点解析考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列不等式是一元一次不等式的是( )A .23459x x >-B .324x -<C .12x < D .4327x y -<-2、已知1x =是关于x 的方程2133x m x +-=-的解,则m 的值为( ) A .1- B .1 C .2 D .33、不等式3+2x ≥1的解在数轴上表示正确的是( )A .B .C .D .4、关于x 的方程32kx x -=的解是整数,则整数k 的可能值有( )A .1个B .2个C .3个D .4个5、若a b >,那么下列各式中正确的是( )A .11+<+a bB .a b ->-C .33a b -<-D .222a b <+ 6、《孙子算经》记载:“今有三人共车,二车空;二人共车,九人步,问人与车各几何?”大致意思是:今有若干人乘车,若每3人共乘一辆车,最终剩余2辆车;若每2人共乘一辆车,最终剩余9人无车可乘.问共有多少人?有多少辆车?若设有x 人,有y 辆车,根据题意,所列方程组正确的是( )A .()229x x y x y ⎧-=⎨+=⎩B .()3229y x y x ⎧-=⎨+=⎩C .()3229x y y x ⎧-=⎨+=⎩D .()3229y x x y⎧-=⎨+=⎩ 7、若m >n ,则下列不等式不成立的是( )A .m +4>n +4B .﹣4m <﹣4nC .44m n >D .m ﹣4<n ﹣48、据北京市公园管理中心统计数据显示,10月1日至3日,市属11家公园及中国园林博物馆共12个景点接待市民游客105.23万人,比去年同期增长了5.7%,求去年同期这12个景点接待市民游客人数.设去年同期这12个景点接待市民游客x 万人,则可列方程为( )A .()1 5.7105.23x -=%B .()1 5.7105.23x +=%C .105..7352x =+%D .105.2735.x =-%9、《九章算术》是中国古代的一本重要数学著作,其中有一道方程的应用题:“五只雀、六只燕,共重16两,雀重燕轻.互换其中一只,恰好一样重.问每只雀、燕的重量各为多少?”解:设雀每只x 两,燕每只y 两,则可列出方程组为( )A .561656x y x y y x +=⎧⎨+=+⎩B .561645x y x y y x+=⎧⎨+=+⎩ C .651665x y x y y x +=⎧⎨+=+⎩ D .651654x y x y y x+=⎧⎨+=+⎩ 10、下列方程中是一元一次方程的是( )A .xy ﹣2=9B .2y ﹣1=6C .x +2y =3D .x 2﹣2x +1=0第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、定义:对于任意两个有理数a ,b ,可以组成一个有理数对(a ,b ),我们规定(a ,b )=a +b -1.例如(2,5)2512-=-+-=.根据上述规定解决下列问题:(1)有理数对(2,1)-=_______;(2)当满足等式(5,32)5x m -+=的x 是正整数时,则m 的正整数值为_______.2、如果一个数的56是65,那么这个数是_____.3、临近春节,商场开展打折促销活动,某商品如果按原售价的八折出售,将盈利10元;如果按原售价的六折出售,将亏损50元.问该商品的原售价为多少元?设该商品的原售价为x 元,则列方程为______.4、植树期间,某志愿者小组植树,如果每个人植10棵,则还剩6棵;如每个人植12棵,则缺6棵,设该小组共有x 人植树,则可列方程为_________.5、一瓶消毒液打八折后售价为48元,那么这瓶消毒液的原价是______元.三、解答题(5小题,每小题10分,共计50分)1、列方程解应用题迎接2022年北京冬奥会,响应“三亿人上冰雪”的号召,全民参与冰雪运动的积极性不断提升.我国2019年总滑雪人次比2016年总滑雪人次多了约680.5万,2019年旱雪人次约占本年总滑雪人次的1.5%,比2016年总滑雪人次的2%多2.6万.2019年总滑雪人次是多少万?2、在一次美化校园活动中,老师先安排31名同学去拔草,18名同学去植树,后又增派20名同学去支援他们,结果拔草的人数是植树人数的2倍.问支援的同学中拔草和植树的分别是多少名同学?3、某校七年级组织去北京世园公园开展综合实践活动.已知参加活动的教师和学生共70人;其中学生人数比教师人数的3倍还多6人,问参加活动的教师和学生各有多少人?4、解方程:(1)7x ﹣18=2(4﹣3x );(2)312y -+1=312-y . 5、解方程:(1)()5524x x -+=-(2)3142125x x -+=--参考答案-一、单选题1、B【分析】根据含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式进行分析即可.【详解】解:A 、未知数的次数含有2次,不是一元一次不等式,故此选项不合题意;B 、是一元一次不等式,故此选项符合题意;C 、1x是分式,故该不等式不是一元一次不等式,故此选项不合题意;D 、含有两个未知数,不是一元一次不等式,故此选项不合题意;故选:B .【点睛】此题主要考查了一元一次不等式定义,关键是掌握一元一次不等式的定义.2、A【分析】把x =1代入方程计算即可求出m 的值.【详解】解:把1x =代入方程得:211313m ⨯+-=-, 解得:1m =-,故选:A .【点睛】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.3、B【分析】不等式移项,合并同类项,把x 系数化为1求出解集,表示在数轴上即可.【详解】解:不等式3+2x ≥1,移项得:2x ≥1﹣3,合并同类项得:2x ≥﹣2,解得:x ≥﹣1,数轴表示如下:.故选:B .【点睛】本题考查了一元一次不等式的解法,熟练掌握解一元一次不等式的步骤是解答本题的关键.不等式的解集在数轴上表示时,空心圈表示不包含该点,实心点表示包含该点.4、D【分析】先求出方程的解,再根据解是整数得到整数k 的取值.【详解】解:解关于x 的方程32kx x -=得32x k =- ∵方程的解是整数∴k -2等于±3或±1故k 的值为5或-1或3或1故选D .【点睛】此题主要考查解一元一次方程,解题的关键是根据方程的解得情况得到k 的关系式.5、C【分析】根据不等式的性质判断.【详解】解:∵a b >,∴a +1>b +1,故选项A 错误;∵a b >,∴-a <-b ,故选项B 错误;∵a b >,∴33a b -<-,故选项C 正确;∵a b >,∴22a b >,故选项D 错误; 故选:C .【点睛】此题考查了不等式的性质,熟记不等式的性质是解题的关键.6、B【分析】根据“每3人乘一车,最终剩余2辆空车;若每2人同乘一车,最终剩下9人因无车可乘而步行”,即可得出关于x ,y 的二元一次方程组,此题得解.【详解】依题意,得:()3229y xy x ⎨-+⎧⎩==故选:B【点睛】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.7、D【分析】根据不等式的基本性质对各选项进行逐一分析即可.【详解】解:A .∵m >n ,∴m +4>n +4,故该选项正确,不符合题意;B .∵m >n ,∴44m n -<-,故该选项正确,不符合题意;C .∵m >n , ∴44m n >,故该选项正确,不符合题意; D .∵m >n ,∴44->-,故该选项错误,符合题意;m n故选:D.【点睛】本题考查不等式的基本性质.掌握不等式的基本性质“1.不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;2.不等式两边都乘(或除以)同一个正数,不等号的方向不变;3.不等式两边都乘(或除以)同一个负数,不等号的方向改变.”是解答本题的关键.8、B【分析】设去年同期这12个景点接待市民游客x万人,根据接待市民游客105.23万人,比去年同期增长了5.7%列出方程即可.【详解】解:设去年同期这12个景点接待市民游客x万人,根据接待市民游客105.23万人,比去年同期增长了5.7%列出方程得,()%,+=x1 5.7105.23故选:B.【点睛】本题考查了一元一次方程的应用,解题关键是熟练掌握题目中的数量关系,找到等量关系,列出方程.9、B【分析】根据题意列二元一次方程组即可.【详解】解:设雀每只x两,燕每只y两则五只雀为5x,六只燕为6y共重16两,则有5616x y +=互换其中一只则五只雀变为四只雀一只燕,即4x +y六只燕变为五只燕一只雀,即5y +x且一样重即45x y y x +=+由此可得方程组561645x y x y y x+=⎧⎨+=+⎩. 故选:B .【点睛】列二元一次方程组解应用题的一般步骤审:审题,明确各数量之间的关系;设:设未知数(一般求什么,就设什么);找:找出应用题中的相等关系;列:根据相等关系列出两个方程,组成方程组;解:解方程组,求出未知数的值;答:检验方程组的解是否符合题意,写出答案.10、B【分析】根据一元一次方程的定义,只含有一个未知数,并且含未知数的项的次数为1的整式方程,对各选项一一进行分析即可.【详解】解:A .xy ﹣2=9是二元二次方程,不符合一元一次方程的定义,故选项A 项错误,B .2y ﹣1=6,符合一元一次方程的定义,是一元一次方程,故选项B 项正确,C .x +2y =3是二元一次方程,不符合一元一次方程的定义,故选项C 项错误,D .x 2﹣2x +1=0是一元二次方程,不符合一元一次方程的定义,故选项D 项错误,故选B .【点睛】本题考查了一元一次方程的定义,正确掌握一元一次方程的定义是解题的关键.二、填空题1、0 1或4【分析】(1)根据定义求解即可;(2)由定义可得53215x m -++-=,解方程得1123m x -=,再由题意,可得1123,1129m m -=-=,求出相应的m 值即可.【详解】解:(1)∵(a ,b )=a +b -1∴(2,1)=2+(1)1=11=0----故答案为:0;(2)∵(5,32)5x m -+=∴53215x m -++-=∴x =11−2x 3 ∵x 是正整数,m 的值也是正整数∴1123,1129m m -=-=解得,41m m ==,故答案为:4或1【点睛】本题考查新定义,理解定义,将所求问题转化为一元一次方程进行求解即可. 2、3625【分析】设这个数是x ,根据这个数的56是65,即可得出关于x 的一元一次方程,解之即可得出结论.【详解】解:设这个数是x , 依题意得:56x =65,解得:x =3625. 故答案为:3625. 【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键. 3、0.8x -10=0.6x +50【分析】设该商品的原售价为x 元,然后根据成本不变列出方程即可.【详解】解:设该商品的原售价为x 元,根据题意得:0.8x -10=0.6x +50,故答案为:0.8x -10=0.6x +50.【点睛】此题考查了从实际问题中抽象出一元一次方程,弄清题中的等量关系是解本题的关键.4、10+6126x x =-【分析】首先理解题意找出题中存在的等量关系:每人种10棵时的树的总数=每人种12棵时的树的总数,根据此等式列方程即可.【详解】解:设该小组共有x 人种树,则每个人种10棵时的共有(10x +6)棵树;每个人种12棵时共有(12x −6)棵树,根据等量关系列方程得:10x +6=12x −6,故答案为:10+6126x x =-【点睛】本题考查了列一元一次方程,列方程解应用题的关键是找出题目中的相等关系,有的题目所含的等量关系比较隐藏,要注意仔细审题,耐心寻找.5、60【分析】设这瓶消毒液的原价是x 元,根据题意列出方程求解即可.【详解】解:设这瓶消毒液的原价是x 元,根据题意列方程得,0.848x =,解得60x =;故答案为:60.【点睛】本题考查了一元一次方程的应用,解题关键是熟练把握题目中的数量关系,列出方程求解.三、解答题1、2202万【分析】设2016年总滑雪人次为x 万,则2019年总滑雪人次为:680.5x 万,再用两种方法表示2019年旱雪人次,从而建立方程,再解方程即可.【详解】解:设2016年总滑雪人次为x 万,则2019年总滑雪人次为:680.5x 万,2019年旱雪人次为:680.5 1.5%x 万,则680.5 1.5%=2% 2.6x x ,整理得:1.5680.5 1.52260x x解得:1521.5,x所以2019年总滑雪人次为:1521.5680.52202万,答2019年总滑雪人次为:2202万.【点睛】本题考查的是一元一次方程的应用,确定“2019年旱雪人次为:680.51.5%x 万或2%2.6x 万”是解本题的关键.2、支援的同学中有15名同学拔草,有5名同学植树【分析】设支援拔草的有x 人,则支援植树的有(20-x )人,根据等量关系:原来拔草人数+支援拔草的人数=2×(原来植树的人数+支援植树的人数),列方程即可.【详解】解:设支援的同学中拔草的有x 名同学,根据题意得,()3122018x x +=⨯-+ 解得:15x =20155-=,所以,支援的同学中有15名同学拔草,有5名同学植树.【点睛】本题考查了一元一次方程的应用,做题的关键是根据题意列出方程.3、教师有16人,学生有54人【分析】设教师有x 人,则学生有(3x +6)人.根据题意列出方程,即可求解.【详解】解:设教师有x 人,则学生有(3x +6)人.根据题意得:(36)70x x ++=.解这个方程,得:16x =.36316654x +=⨯+=.答:教师有16人,学生有54人.【点睛】本题主要考查了一元一次方程的应用,明确题意,准确得到等量关系是解题的关键. 4、(1)2x =;(2)1y =-.【分析】(1)去括号,移项,合并同类项,系数化1即可;(2)去分母,去括号,移项,合并同类项,系数化1即可.(1)解:()718243x x -=-,去括号得:71886x x -=-,移项得:76818x x +=+,合并同类项得:1326x =,系数化1得:2x =;(2) 解:3121123y y --+=, 去分母得:()()3316221y y -+=-,去括号得:93642y y -+=-,移项得:94236y y -=-+-,合并同类项得:55y =-,系数化1得:1y =-.【点睛】本题考查一元一次方程的解法,掌握一元一次方程的解法与步骤是解题关键.5、(1)3x =;(2)17x =- 【分析】(1)方程去括号,移项合并,把x 系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x 系数化为1,即可求出解;【详解】解:(1)去括号得:52524x x -+=-移项合并同类项得:721x =x 系数化为得:3x =(2)3142125x x -+=- 去分母去括号得:1558410x x -=+-移项合并同类项得:71x =-系数化为1得:17x =- 【点睛】此题考查了解一元一次方程,解方程去分母时注意各项都乘以各分母的最小公倍数.。
吉林省“五地六校”2025届高三最后一模数学试题含解析
吉林省“五地六校”2025届高三最后一模数学试题注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若命题:从有2件正品和2件次品的产品中任选2件得到都是正品的概率为三分之一;命题:在边长为4的正方形内任取一点,则的概率为,则下列命题是真命题的是( ) A . B . C . D .2.已知函数()1f x +是偶函数,当()1,x ∈+∞时,函数()f x 单调递减,设12a f ⎛⎫=- ⎪⎝⎭,()3b f =,()0c f =,则a b c 、、的大小关系为()A .b a c <<B .c b d <<C .b c a <<D .a b c <<3.将函数f (x )=sin 3x 3 3x +1的图象向左平移6π个单位长度,得到函数g (x )的图象,给出下列关于g (x )的结论: ①它的图象关于直线x =59π对称; ②它的最小正周期为23π; ③它的图象关于点(1118π,1)对称; ④它在[51939ππ,]上单调递增. 其中所有正确结论的编号是( )A .①②B .②③C .①②④D .②③④4.设i 为虚数单位,则复数21z i =-在复平面内对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限 5.在ABC ∆中,点D 是线段BC 上任意一点,2AM AD =,BM AB AC λμ=+,则λμ+=( ) A .12- B .-2 C .12 D .26.数列{}n a 满足:3111,25n n n n a a a a a ++=-=,则数列1{}n n a a +前10项的和为 A .1021 B .2021 C .919 D .18197.椭圆是日常生活中常见的图形,在圆柱形的玻璃杯中盛半杯水,将杯体倾斜一个角度,水面的边界即是椭圆.现有一高度为12厘米,底面半径为3厘米的圆柱形玻璃杯,且杯中所盛水的体积恰为该玻璃杯容积的一半(玻璃厚度忽略不计),在玻璃杯倾斜的过程中(杯中的水不能溢出),杯中水面边界所形成的椭圆的离心率的取值范围是( ) A .50,6⎛⎤ ⎥ ⎝⎦ B .5,15⎡⎫⎪⎢⎪⎣⎭ C .250,5⎛⎤ ⎥ ⎝⎦ D .25,15⎡⎫⎪⎢⎪⎣⎭8.设m ,n 是两条不同的直线,α,β是两个不同的平面,给出下列四个命题:①若//m n ,m β⊥,则n β⊥;②若//m α,//m β,则//αβ;③若m α⊥,//n α,则m n ⊥;④若//m α,m β⊥,则αβ⊥;其中真命题的个数为( )A .1B .2C .3D .49.对某两名高三学生在连续9次数学测试中的成绩(单位:分)进行统计得到折线图,下面是关于这两位同学的数学成绩分析. ①甲同学的成绩折线图具有较好的对称性,故平均成绩为130分;②根据甲同学成绩折线图提供的数据进行统计,估计该同学平均成绩在区间内; ③乙同学的数学成绩与测试次号具有比较明显的线性相关性,且为正相关;④乙同学连续九次测验成绩每一次均有明显进步. 其中正确的个数为( )A .B .C .D . 10.已知数列{}n a 是公差为()d d ≠0的等差数列,且136,,a a a 成等比数列,则1a d=( ) A .4 B .3 C .2 D .1 11.ABC 中,点D 在边AB 上,CD 平分ACB ∠,若CB a =,CA b =,2a =,1b =,则CD =( ) A .2133a b + B .1233a b + C .3455a b + D .4355a b + 12.已知12log 13a =131412,13b ⎛⎫= ⎪⎝⎭,13log 14c =,则,,a b c 的大小关系为( ) A .a b c >> B .c a b >> C .b c a >> D .a c b >>二、填空题:本题共4小题,每小题5分,共20分。
2022地产项目11-12月月度暖场凛然秋冬岁岁平安主题活动策划方案
星际·探索(宇航员DIY)
•NASA这门课程将教我们如何成为一名合格的宇航员:学习宇航员知识,了解航空工程师如何研制出能够承受自然力宇宙飞 船,设计使宇航员的模型,探索宇航员如何在太空中长期生活和工作...... 我们将综合运用物理、数学、几何、空间构造等学科知识和技术,设计出自己的解决方案,在这个过程中,团队合作尤为重要。
互动礼品
Interactive gift
现场互动游戏均由礼品相送
经典儿时俄罗斯方块游戏机
狂欢 玺遇豪门
12月10-11日
-用最狂欢的姿态迎接暖冬佳节-拉斯维加斯,风情派对,博弈暖场-
-激情博弈-体验XXXX的豪门盛宴-
迎宾签到,博弈之旅
Welcome sign in game tour
• 活动现场设置签到区,安排签到人员现 场签到。签到可领取2000的筹码,筹 码券参与拉斯维加斯博彩
每月提供不同活动内容,主题以暖心及好礼回馈形式进行展现
11 月 活 动 铺 排
EVENT LAYOUT
活动类型/TYPE
活动时间/TIME
11月5日-6日(2天)
XXXX11月暖场 (4场)
11月12日-14日(2天) 11月19日-20日(2天)
11月26日-27日(2天)
活动主题 / THEME
真人版俄罗斯方块
Real life Tetris
现场设置真人版俄罗斯方块道具 规则:每组家庭大人+孩子组合,速拼方块,使所 有的方块排满框架,用时最少者胜出,获得胜出礼 品 如单组家庭比赛,则按规定时间排满框架后,可获 得礼品
灌篮高手投篮比赛
Shooting machine competition
感受下云朵的柔软, 吃货的胃可是能装下整片天空的!
2019.11.16成都第四季度事业单位《职测》真题及答案解析
2019年11月16日成都第四季度事业单位考试《职业能力倾向测验》(锦江、金牛、邛崃、大邑、金堂(定向)、简阳、温江、都江堰)1. 某校园准备在100米长的楼道放上11盆绿色植物做装饰,不管怎么放,至少有( )盆植物之间距离不超过10米。
A2 B3 C4 D12. 一列火车需经过一隧道,已知该隧道长150米,车身长160米,车头在隧道外时行驶速度为144千米/小时,车头一旦接触隧道口,其行驶速度即变为108千米/小时(忽略变速时间),则该火车从进入隧道到完全通过需要的时间为( )秒。
A31/3 B5 C9 D21/43. 菜公司生产一批零件,如果所有人都参加生产,平均每人需要生产6个;如果只由男员工完成,平均每人需要生产15个;如果只由女员工完成,平均每人需要生产( )个。
A10 B14 C9 D124.某学生语文、数学、英语三科的平均成绩是87分,其中语文、数学总分为172分,语文、英语的平均成绩为81分,则该生的语文成绩是( )分。
A89 B99 C92 D735.小华家住12楼,某日因停电必须爬楼梯,从1楼到5楼用去1分钟,若以此速度,小华还需要( )分钟才能到家。
A1.5 B2 C1.75 D1.46. 有一杯在电炉上加热的水,水杯容积为60毫升,现装有2/3水溶液。
电炉加热使水挥发的速度为1ml/min,在加热10分钟后,用滴管匀速向水杯中滴加水。
已知每12滴水为一毫升,且水杯中的水量在半小时内需保持不低于容量的1/5,不超过容量的3/4,则最低以每分钟( )滴的速度向杯中加入清水。
A6 B4 C5 D107. 一周长为400米的圆形操场,每隔4米插上一面红旗,每两面红旗的中间插上一面黄旗,再在每面红旗和黄旗的中间插上一面蓝旗,则共需要旗子( )。
A400面B200面C401面D399面8. 已知某一年的5月有5个星期二,4个星期三,则这个月的12号是星期( )。
A六B三C四D五9. 科室组织运动会,有羽毛球和网球两项运动,已知科室里面的人有参加一项的,也有参加两项的。
北京市2019届九年级4月月考数学试卷【含答案及解析】
匕京市2019届九年级4月月考数学试卷【含答案及解析】姓名____________ 班级_______________ 分数____________ 题号-二二三总分得分、单选题1.第24届冬季奥林匹克运动会,将于2022年02月04日〜2022年02月20日在中华人民共和国北京市和张家口市联合举行。
在会徽的图案设计中,设计者常常利用对称性进行设计。
下列四个图案是历届会徽图案上的一部分图形,其中不是轴对称图形的是()A.2. 某种流感病毒的直径在0.00 000 012 米左右,将0.00 000 012用科学记数法表示应为()A. 0.12 X 10-6B. 12 X 10-8C. 1.2 X 10 -6D. 1.2 X 10-73.A B C D】 4 4 ■* I ■ I.J -2 一1 O 1 2 3 xA.点A与点DB. 点A与点CC.点B与点CD. 点B与点D3. :的值是()A. 3B.- 3C. ± 3D. 6D. 154. 如图,AB// CE,F交CE于点D, DE=DF Z B=40。
,则/E的度数为(5. 如果a=b+4,那么代数式2a2-4ab+2b2-25的值是()A. 32B. 7C. -7D. 577.下列几何体中,主视图和俯视图都为矩形的是()8. 如图是本地区一种产品30天的销售图象,产品日销售量y (单位:件)与时间t (单位: 天)的大致函数关系如图①,图②是一件产品的销售利润z (单位:元)与时间t (单位: 天)的函数关系,已知日销售利润=日销售量x—件产品的销售利润,下列结论错误的是()O\ _' )图①冒②A. 日销售量为150件的是第12天与第30天B. 第10天销售一件产品的利润是15元C. 从第1天到第20天这段时间内日销售利润将先增加再减少D. 第18天的日销售利润是1225元9. 已知二次函数y=2x2+m%如图,此二次函数的图象经过点(0, -4 ),正方形ABCD的顶点C、D在x轴上,A、B恰好在二次函数的图象上,则图中阴彩部分的面积之和为()A. 2B. 4C. 8D. 1810. 某校九年级学生共900人,为了解这个年级学生的体能,从中随机抽取部分学生进行1 min的跳绳测试,并指定甲、乙、丙、丁四名同学对这次测试结果的数据作出整理,下图是这四名同学提供的部分信息:甲:将全体测试数据分成6组绘成直方图(如图);乙:跳绳次数不少于105次的同学占96%;丙:第①、②两组频率之和为0.12,且第②组与第⑥组频数都是12;丁:第②、③、④组的频数之比为4: 17: 15。
2019年4月9日星期二初三基础
2019年4月9日星期二初三基础
1. 深圳市教育局在全市中小学开展“四点半活动”试点工作,某校为了
了解学生参与“四点半活动”项目的情况,对初中的部分学生进行
了随机调查,调查项目分为“科技创新”类,“体育活动”类,“艺术
表演”类,“植物种植”类及“其他”类共五大类别,并根据调查的数
据绘制了下面两幅不完整的统计图,请你根据图中提供的信息解
答下面的问题.
(1)请求出此次被调查学生的总人数人;
(2)根据以上信息,补全条形统计图;
(3)求出扇形统计图中,“体育活动”的圆心角等于度;
(4)如果本校初中部有名学生,请估计参与“艺术表演”类项目的学生大约多少人?
2. 如图,在楼房前有两棵树与楼房在同一直线上,且垂直于地面,为了测量树,的高度,小明爬
到楼房顶部处,视线恰好可以经过树的顶部点到达树的底部点,俯角为,此时小亮测得太阳光线恰好经过树的顶部点到达楼房的底部点,与地面的夹角为,树的影长为米,请求出树,的高度.(结果保留根号)。
北师大版2021年九年级数学上册期末测试卷及答案【最新】
北师大版2021年九年级数学上册期末测试卷及答案【最新】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.﹣3的绝对值是( )A .﹣3B .3C .-13D .132.已知抛物线24y x bx =-++经过(2,)n -和(4, )n 两点,则n 的值为( )A .﹣2B .﹣4C .2D .4 3.等式33=11x x x x --++成立的x 的取值范围在数轴上可表示为( ) A .B .C .D . 4.某气象台发现:在某段时间里,如果早晨下雨,那么晚上是晴天;如果晚上下雨,那么早晨是晴天,已知这段时间有9天下了雨,并且有6天晚上是晴天,7天早晨是晴天,则这一段时间有( ) A .9天 B .11天 C .13天 D .22天5.已知平行四边形ABCD ,AC 、BD 是它的两条对角线,那么下列条件中,能判断这个平行四边形为矩形的是( )A .∠BAC=∠DCAB .∠BAC=∠DAC C .∠BAC=∠ABD D .∠BAC=∠ADB6.把函数2(1)2y x =-+的图象向右平移1个单位长度,平移后图象的函数解析式为( )A .22y x =+B .2(1)1y x =-+C .2(2)2y x =-+D .2(1)3y x =-- 7.如图,在OAB 和OCD 中,,,,40OA OB OC OD OA OC AOB COD ==>∠=∠=︒,连接,AC BD 交于点M ,连接OM .下列结论:①AC BD =;②40AMB ∠=︒;③OM 平分BOC ∠;④MO 平分BMC ∠.其中正确的个数为( ).A .4B .3C .2D .18.如图,在ABC ∆中,2AC =,4BC =,D 为BC 边上的一点,且CAD B ∠=∠.若ADC ∆的面积为a ,则ABD ∆的面积为( )A .2aB .52aC .3aD .72a 9.图甲和图乙中所有的正方形都全等,将图甲的正方形放在图乙中的①②③④某一位置,所组成的图形不能围成正方体的位置是( )A .①B .②C .③D .④10.如图,P 为等边三角形ABC 内的一点,且P 到三个顶点A ,B ,C 的距离分别为3,4,5,则△ABC 的面积为( )A .25394+B .25392+C .18253+D .253182+ 二、填空题(本大题共6小题,每小题3分,共18分)1.计算:2131|32|2218-⎛⎫--+= ⎪⎝⎭____________.2.分解因式:244m m ++=___________.3.已知关于x 的一元二次方程mx 2+5x+m 2﹣2m=0有一个根为0,则m=_____.4.在Rt ABC ∆中,90C =∠,AD 平分CAB ∠,BE 平分ABC ∠,AD BE 、相交于点F ,且4,2AF EF ==,则AC =__________.5.如图,反比例函数y=k x的图象经过▱ABCD 对角线的交点P ,已知点A ,C ,D 在坐标轴上,BD ⊥DC ,▱ABCD 的面积为6,则k=_________.6.PM2.5是指大气中直径小于或等于0.0000025m 的颗粒物,将0.0000025用科学计数法表示为___________.三、解答题(本大题共6小题,共72分)1.解方程:23121x x =+-2.先化简,再求值:233()111a a a a a -+÷--+,其中a=2+1.3.如图,在▱ABCD 中,E 是BC 的中点,连接AE 并延长交DC 的延长线于点F .(1)求证:AB=CF ;(2)连接DE ,若AD=2AB ,求证:DE ⊥AF .4.如图,在ABC 中,点D E 、分别在边BC AC 、上,连接AD DE 、,且B ADE C ∠=∠=∠.(1)证明:BDA CED △∽△;(2)若45,2B BC ∠=︒=,当点D 在BC 上运动时(点D 不与B C 、重合),且ADE 是等腰三角形,求此时BD 的长.5.为了了解居民的环保意识,社区工作人员在光明小区随机抽取了若干名居民开展主题为“打赢蓝天保卫战”的环保知识有奖问答活动,并用得到的数据绘制了如图条形统计图:请根据图中信息,解答下列问题:(1)本次调查一共抽取了 名居民;(2)求本次调查获取的样本数据的平均数、众数和中位数;(3)社区决定对该小区500名居民开展这项有奖问答活动,得10分者设为“一等奖”,请你根据调查结果,帮社区工作人员估计需准备多少份“一等奖”奖品.6.某商店在2014年至2016年期间销售一种礼盒.2014年,该商店用3500元购进了这种礼盒并且全部售完;2016年,这种礼盒的进价比2014年下降了11元/盒,该商店用2400元购进了与2014年相同数量的礼盒也全部售完,礼盒的售价均为60元/盒.(1)2014年这种礼盒的进价是多少元/盒?(2)若该商店每年销售这种礼盒所获利润的年增长率相同,问年增长率是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、B4、B5、C6、C7、B8、C9、A10、A二、填空题(本大题共6小题,每小题3分,共18分)1、2+m+2、()223、245、-36、2.5×10-6三、解答题(本大题共6小题,共72分)1、x=52、3、详略.BD=1,理由见详解.4、(1)理由见详解;(2)25、(1)50;(2)平均数是8.26;众数为8;中位数为8;(3)需要一等奖奖品100份.6、(1)35元/盒;(2)20%.。
2023-2024学年高一数学2019试题14.2.2分层抽样2
14.2.2分层抽样一、单选题1.每年的3月15日是“国际消费者权益日”,某地市场监管局在当天对某市场的20家肉制品店、100家粮食加工品店和15家乳制品店进行抽检,要用分层抽样的方法从中抽检54家,则粮食加工品店需要被抽检()A.30家B.35家C.40家D.45家2.某校共有男女学生共有1500人,采用分层抽样的方法抽取容量为100人的样本,样本中男生有55人,则该校女生人数是()A.825B.800C.750D.6753.北京2022年冬奥会吉祥物“冰墩墩”和冬残奥会吉样物“雪容融”很受欢迎,现工厂决定从20只“冰墩墩”,15只“雪容融”和10个北京2022年冬奥会会徽中,采用比例分配分层随机抽样的方法,抽取一个容量为n的样本进行质量检测,若“冰墩墩”抽取了4只,则n为()A.3B.2C.5D.94.某学校为了解三年级、六年级、九年级这三个年级之间的学生的课业负担情况,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是()A.抽签法B.简单随机抽样C.分层随机抽样D.随机数法5.某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本.若样本中的青年职工为14人,则样本容量为()A.15B.20C.25D.306.某校高三年级有男生500人,女生400人,为了解该年级学生的体重状况,从男生中随机抽取25人,从女生中随机抽取20人进行调查.这种抽样方法是()A.分层随机抽样B.抽签法C.随机数法D.其他随机抽样二、多选题7.(多选)下例命题正确的是()A.简单随机抽样每个个体被抽到的机会不一样,与先后有关;B.统计报表是我国取得国民经济和社会发展情况基本统计资料的一种重要手段;C .统计报表既可以越级汇总,也可以层层上报、逐级汇总,以便满足各级管理部门对主管系统和区域统计资料的需要;D .分层抽样中,每个个体被抽到的可能性与层数及分层有关.8.某公司生产三种型号的轿车,产量分别为1500辆,6000辆和2000辆为检验该公司的产品质量,公司质监部门要抽取57辆进行检验,则下列说法正确的是( ) A .应采用分层随机抽样抽取B .应采用抽签法抽取C .三种型号的轿车依次应抽取9辆,36辆,12辆D .这三种型号的轿车,每一辆被抽到的概率都是相等的三、填空题9.某校共有师生2400人,其中教师200人,男学生1200人,女学生1000人.现用比例分配的分层随机抽样方法从所有师生中抽取一个容量为n 的样本,已知从女学生中抽取的人数为80,那么n =___________.10.某校采用分层抽样的方法从三个年级的学生中抽取一个容量为150的样本进行关于线上教学实施情况的问卷调查,已知该校高一年级共有学生660人,高三年级共有540人.抽取的样本中高二年级有50人,则该校高二学生总数是_________人.11.第24届冬季奥林匹克运动会(The XXIV Olympic Winter Games ),即2022年北京冬季奥运会,计划于2022年2月4日星期五开幕,2月20日星期日闭幕.北京冬季奥运会设7个大项,15个分项,109个小项.某大学青年志愿者协会接到组委会志愿者服务邀请,计划从大一至大三青年志愿者中选出24名志愿者,参与北京冬奥会高山滑雪比赛项目的服务工作.已知大一至大三的青年志愿者人数分别为50,40,30,则按分层抽样的方法,在大一青年志愿者中应选派__________人.12.某学校在校学生有2000人,为了增强学生的体质,学校举行了跑步和登山比赛,每人都参加且只参加其中一项比赛,高一、高二、高三年级参加跑步的人数分别为a ,b ,c ,且::2:5:3a b c =,全校参加登山的人数占总人数的14.为了了解学生对本次比赛的满意程度,按分层抽样的方法从中抽取一个容量为200的样本进行调查,则应从高三年级参加跑步的学生中抽取人数为______.四、解答题13.一汽车厂生产A、B、C三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如下表所示(单位:辆):按类用分层抽样的方法在这个月生产的轿车中抽取50辆,其中有A类轿车10辆.(1)求z的值;(2)用分层抽样的方法在C类轿车中抽取一个容量为5的样本,应如何抽取?14.学校要在高一年级450名同学中随机选取45人参加暑假的夏令营,试完成以下工作:(1)设计一个随机抽样方案;(2)设计一个分层抽样方案,使得选取出男生23名,女生22名;(3)如果全年级有9个班,设计一个分层抽样方案,使得各班随机选取5人.。
中考数学学习中的问题与解答
中考数学学习中的问题与解答很多初中学生在学习数学的时候会碰到这样一种状况:明明自己已经很用功了,可是成绩无法提高。
这个时候,我们需要考虑一个问题:我用功的方式是不是正确?第一个问题是很多同学都不愿意多打草稿多画图。
举个例子,每位同学在解题的时候,都会先读一遍题目,然后根据题目的要求来解题。
但是,不少同学在读了“一遍”题目之后,就急于下手,结果苦思冥想半天,都无法得出答案。
这个时候,我通常会建议同学们再读几遍题目,尤其是几何题,综合题。
因为题目给了很多已知条件,这些已知条件都是用文字跟数学符号来表达的,在我们大脑中很难一下子转化成自己的语言。
这时候如果我们再读几遍,把所有已知条件都以自己的方式充分地理解透,然后自己画个图,如果已经有图,就将这些条件标注到图上。
由于人的大脑在短时间之内记忆的东西是有限的,如同电脑CPU,所以,我们应该尽量地将大脑的功能用在计算和推理上,而不要让她承担记忆的任务;将这些需要记忆的条件和推理得出的结论都交给草稿纸和图表,大脑自然能够更轻松地去对付题目的问题了。
第二个问题,有的同学在解题的时候自信心不足,不敢下手。
其实很多人在最初接触一些难题的时候都没有思路,包括数学老师在内。
但是在如何对待这个思路盲区上,有经验的老师和不自信的同学就截然不同了。
很多人在碰到这种问题时,似乎有一种完美主义思想:要一步就找到正确思路,把题目解答出来。
举个例子,用添加辅助线的方式解答几何题,辅助线的方式有很多种加法,这个时候,很多同学会在挑选哪种添加方法上花费很多时间去思考,他们中大多数的心理是怕作图的时候做错了,然后不得不改变思路,由于不愿意花时间去改变原来已经深思熟虑的那条思路,所以干脆力求一次就做对。
其实,一次就做对,是需要很多的练习和长期的经验积累才能够达到的,这种数感和图感的建立不是短期可以建立的。
同学们需要做的,其实很简单,有了思路,就把自己的思路写下来,然后证明你的思路是正确的;如果无法证明,则另外想思路。
四川省泸州市(新版)2024高考数学人教版摸底(预测卷)完整试卷
四川省泸州市(新版)2024高考数学人教版摸底(预测卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题如图所示,已知正四棱柱的上下底面的边长为3,高为4,点M,N分别在线段和上,且满足,下底面ABCD的中心为点O,点P,Q分别为线段和MN上的动点,则的最小值为()A.B.C.D.第(2)题已知等比数列{}的前n项和为,则”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件第(3)题现有甲、乙两组数据,每组数据均由六个数组成,其中甲组数据的平均数为,方差为,乙组数据的平均数为,方差为.若将这两组数据混合成一组,则新的一组数据的方差为()A.B.C.D.第(4)题已知集合,则中元素的个数为()A.9B.8C.5D.4第(5)题北京冬奥会的举办掀起了一阵冰雪运动的热潮.某高校在本校学生中对“喜欢滑冰是否与性别有关”做了一次调查,参与调查的学生中,男生人数是女生人数的倍,有的男生喜欢滑冰,有的女生喜欢滑冰.若根据独立性检验的方法,有的把握认为是否喜欢滑冰和性别有关,则参与调查的男生人数可能为()参考公式:,其中.参考数据:A.B.C.D.第(6)题2021年4月23日是第26个世界读书日,某市举行以“颂读百年路,展阅新征程”为主题的读书大赛活动,以庆祝中国共产党成立100周年.比赛分初赛和复赛两个阶段进行,规定:初赛成绩大于90分的具有复赛资格,某校有1000名学生参加了初赛,所有学生的成绩均在区间内,其频率分布直方图如下图所示,则该校获得复赛资格的人数为()A.650B.660C.680D.700第(7)题已知圆锥SO的轴截面是边长为2的正三角形,过其底面圆周上一点A作平面,若截圆锥SO得到的截口曲线为椭圆,则该椭圆的长轴长的最小值为()A.B.1C.D.2第(8)题已知集合,,则().A.B.C.D.二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题已知椭圆:的左右焦点分别为、,点在椭圆内部,点在椭圆上,椭圆的离心率为,则以下说法正确的是()A.离心率的取值范围为B.当时,的最大值为C.存在点,使得D.的最小值为第(2)题设数列的前项和为,则下列命题正确的是()A.若是等差数列,则B.若是等差数列,则C.若是正项等比数列,则D.若是正项等比数列,则第(3)题已知平面内两个给定的向量,满足,,则使得的可能有()A.0个B.1个C.2个D.无数个三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题已知数列的前项和为,且,若集合中恰有三个元素,则实数的取值范围是_______.第(2)题已知恰有两条不同的直线与曲线和都相切,则实数的取值范围是__________.第(3)题已知,若,则______.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题如图,已知四边形是矩形,平面,,,点M,N分别在线段上.(1)求证:直线平面.(2)若M,N分别是AB、PC的中点,求点C到平面BMN的距离.第(2)题已知函数,.(1)讨论的单调性;(2)当时,恒成立,求实数的取值范围.第(3)题在中,角A,B,C所对的边分别为a,b,c,且.(1)求角B的大小;(2)若,,求的面积.第(4)题如图,已知抛物线,点,过点任作两条直线,分别与抛物线交于A,B与C,D.(1)若的斜率分别为,求四边形的面积;(2)设(ⅰ)找到满足的等量关系;(ⅱ)交于点,证明:点在定直线上.第(5)题在中,内角的对边分别为,,,.(1)证明:;(2)若,当A取最大值时,求的面积.。
安徽省亳州市2024年数学(高考)部编版能力评测(备考卷)模拟试卷
安徽省亳州市2024年数学(高考)部编版能力评测(备考卷)模拟试卷一、单项选择题(本题包含8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的)(共8题)第(1)题1.命题“若函数在其定义域内是减函数,则”的逆否命题是()A.若,则函数在其定义域内不是减函数B.若,则函数在其定义域内不是减函数C.若,则函数在其定义域内是减函数D.若,则函数在其定义域内是减函数.第(2)题复数z=i·(1+i)(i为虚数单位)在复平面上对应的点位于A.第一象限B.第二象限C.第三象限D.第四象限第(3)题复数在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限第(4)题在某项测量中,测得变量,若在内取值的概率为0.8,则在内取值的概率为()A.0.2B.0.1C.0.8D.0.4第(5)题某企业举办冬季趣味运动会,在跳绳比赛中,名参赛者的成绩(单位:个)分别是、、、、、、、、、,则这组数据的中位数是()A.B.C.D.第(6)题函数f(x)=㏑x的图象与函数g(x)=x2-4x+4的图象的交点个数为A.0B.1C.2D.3第(7)题在复平面内,复数对应向量(O为坐标原点),设,以射线Ox为始边,OZ为终边逆时针旋转的角为,则,法国数学家棣莫弗发现棣莫弗定理:,,则,由棣莫弗定理导出了复数乘方公式:,则复数所对应的点位于().A.第一象限B.第二象限C.第三象限D.第四象限第(8)题已知,且,则的取值范围是()(注:选择项中的为自然对数的底数)A.B.C.D.二、多项选择题(本题包含3小题,每小题6分,共18分。
在每小题给出的四个选项中,至少有两个选项正确。
全部选对的得6分,选对但不全的得3分,有选错或不答的得0分) (共3题)第(1)题在复数城内,大小成为了没有意义的量,那么我们能否赋予它一个定义呢,在实数域内,我们通常用绝对值来描述大小,而复数域中也相应的有复数的模长来代替绝对值,于是,我们只需定义复数的正负即可,我们规定复数的“长度”即为模长,规定在复平面x轴上方的复数为正,在x轴下方的复数为负,在x轴上的复数即为实数大小.“大小”用符号+“长度”表示,我们用来表示复数的“大小”,例如:,,,,,则下列说法正确的是()A.在复平面内表示一个圆B.若,则方程无解C.若为虚数,且,则D.复平面内,复数对应的点在直线上,则最小值为第(2)题如图,棱长为4的正方体中,点,分别为、的中点,下列结论正确的是()A.B.直线与平面所成角的正切值为3C.平面D.平面截正方体的截面周长为第(3)题设点为抛物线:的焦点,过点斜率为的直线与抛物线交于两点(点在第一象限),直线交抛物线的准线于点,若,则下列说法正确的是()A.B.C.D.的面积为(为坐标原点)三、填空(本题包含3个小题,每小题5分,共15分。
湖南省怀化市2024高三冲刺(高考数学)苏教版能力评测(自测卷)完整试卷
湖南省怀化市2024高三冲刺(高考数学)苏教版能力评测(自测卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题在中,,,,点P是所在平面内一点,,且满足,若,则的最小值是( )A.B.C .1D.第(2)题4月26日,2023北京大兴半程马拉松暨第七届“花绘北京悦跑大兴”半程马拉松赛新闻发布会举行.此次赛事由北京市大兴区人民政府主办,大兴区体育局、大兴区魏善庄镇人民政府共同承办,将于5月21日鸣枪开跑.据了解,本届赛事赛道起、终点设在魏庄村,赛道途经北京市半壁店村,穿过北京月季文化产业园、中国古老月季园、宜德源田野文化园等多个月季主题园区和森林氧吧,选手可在奔跑过程中,感受月季为小镇带来的变化.小张为参加“花绘北京·悦跑大兴”半程马拉松赛,每天坚持健身运动.依据小张2022年1月至2022年11月期间每月跑步的里程(单位:十公里)数据,整理并绘制成折线图,根据该折线图,下列结论正确的是()A .月跑步里程逐月增加B .月跑步里程的极差小于18C .月跑步里程的分位数为7月份对应的里程数D .1月至5月的月跑步里程的方差相对于6月至11月的月跑步里程的方差更大第(3)题已知集合,则集合的子集个数为( )A .4B .3C .2D .1第(4)题定义域均为D 的三个函数,,满足条件:对任意,点与点都关于点对称,则称是关于的“对称函数”.已知函数,,是关于的“对称函数“,记的定义域为D ,若对任意,都存在,使得成立,则实数a 的取值范围是( )A ..B ..C ..D ..第(5)题已知定义在R上的奇函数,满足,且当时,,则( )A .6B .3C .0D.第(6)题如图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC .△ABC 的三边所围成的区域记为I ,黑色部分记为II ,其余部分记为III .在整个图形中随机取一点,此点取自I ,II ,III 的概率分别记为p 1,p 2,p 3,则A .p 1=p 2B .p 1=p 3C .p 2=p 3D .p 1=p 2+p 3第(7)题已知正方体的棱长为1,每条棱所在直线与平面所成的角都相等,则截此正方体所得截面面积的最大值为A .B .C .D .第(8)题设无穷正数数列,如果对任意的正整数,都存在唯一的正整数,使得,那么称为内和数列,并令,称为的伴随数列,则( )A .若为等差数列,则为内和数列B .若为等比数列,则为内和数列C .若内和数列为递增数列,则其伴随数列为递增数列D .若内和数列的伴随数列为递增数列,则为递增数列二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题下列是函数图象的对称轴方程的是( )A.B .C .D .第(2)题数列的前项和为,若, ,则下列结论正确的是( )A .B .C .为递增数列D .为周期数列第(3)题已知函数,则( )A.当时,函数的最小正周期为B.函数图象的对称轴是C.当时,是函数的一个最大值点D.函数在区间内不单调,则三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题曲线在处的切线方程为___________.第(2)题某种产品的广告支出费用x (单位:万元)与销售量y (单位:万件)之间的对应数据如表所示:广告支出费用x 2.2 2.6 4.0 5.3 5.9销售量y 3.8 5.47.011.612.2根据表中的数据可得回归直线方程 2.27x ,R 2≈0.96,则①第三个样本点对应的残差 1②在该回归模型对应的残差图中,残差点比较均匀地分布在倾斜的带状区域中③销售量的多少有96%是由广告支出费用引起的上述结论判断中有一个是错误的,其序号为 _____________第(3)题已知是函数的一个零点,且,则的最小值为__________.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题设函数若,求实数a 的取值范围.第(2)题在课外体育活动中,甲、乙两名同学进行投篮游戏,每人投3次,每投进一次得2分,否则得0分.已知甲每次投进的概率为,且每次投篮相互独立;乙第一次投篮,投进的概率为,从第二次投篮开始,若前一次投进,则该次投进的概率为,若前一次没有投进,则该次投进的概率为.(1)求甲3次投篮得4分的概率;(2)若乙3次投篮得分为,求的分布列和数学期望.第(3)题已知向量,,函数.(1)求函数的单调递增区间;(2)求函数在上的最大值和最小值以及对应的的值.第(4)题如图,底面△为正三角形的直三棱柱中,,,是的中点,点在平面内,.(Ⅰ)求证:;(Ⅱ)求证:∥平面;(Ⅲ)求二面角的大小.第(5)题如图,在圆柱体中,,,劣弧的长为,AB为圆O的直径.(1)在弧上是否存在点C(C,在平面同侧),使,若存在,确定其位置,若不存在,说明理由;(2)求二面角的余弦值.。
广西百色市2024年数学(高考)统编版质量检测(提分卷)模拟试卷
广西百色市2024年数学(高考)统编版质量检测(提分卷)模拟试卷一、单项选择题(本题包含8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的)(共8题)第(1)题宋元时期数学名著《算学启蒙》中有关“松竹并生”的问题:松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等.如图是源于该思想的一个程序框图,若输入的a,b分别为4、2,则输出的n的值是()A.2B.3C.4D.5第(2)题已知集合,则()A.B.C.D.第(3)题在中,是边上的点,满足,在线段上(不含端点),且,则的最小值为()A.B.C.D.8第(4)题双曲线C:的一个焦点为F,过点F作双曲线C的一条渐近线的垂线,垂足为A,且交y轴于B,若A为BF的中点,则双曲线的离心率为()A.B.C.2D.第(5)题若对任意的,,且,,则m的取值范围是()A.B.C.D.第(6)题某企业举办冬季趣味运动会,在跳绳比赛中,名参赛者的成绩(单位:个)分别是、、、、、、、、、,则这组数据的中位数是()A.B.C.D.第(7)题已知幂函数的图象过,,()是函数图象上的任意不同两点,则下列结论中正确的是()A.B.C.D.第(8)题已知,则()A.B.C.D.二、多项选择题(本题包含3小题,每小题6分,共18分。
在每小题给出的四个选项中,至少有两个选项正确。
全部选对的得6分,选对但不全的得3分,有选错或不答的得0分) (共3题)第(1)题已知随机事件A,B发生的概率分别为,,下列说法正确的是().A.若,则A,B相互独立B.若A,B互斥,则A,B不相互独立C.若,则D.若,则第(2)题某组数据方差的计算公式为,则()A.样本的容量是3B.样本的中位数是3C.样本的众数是3D.样本的平均数是3第(3)题已知,则()A .的最小正周期是B.在上单调递减C.,D.的值域是三、填空(本题包含3个小题,每小题5分,共15分。
请按题目要求作答,并将答案填写在答题纸上对应位置) (共3题)第(1)题使成立的一组a,b的值为__________,__________.第(2)题已知函数,则在处的切线方程为___________.第(3)题小明随机播放A,B,C,D,E 五首歌曲中的两首,则A,B 两首歌曲至少有一首被播放的概率是______.四、解答题(本题包含5小题,共77分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【氛围布置-门头】
门头色调上采用比较轻快、年轻的彩色混搭系作为视觉呈现,并加入主题元素,彰显活力与生机。
【氛围布置-趣味导视牌】
每个挑战关卡设立趣味导视牌
【氛围布置-趣味拍照背景】
复古骑行之城市骑遇记
关于复古骑行
在这个生活节奏快速膨胀、信息爆炸的城市, 我们需要这种典雅的绅士淑女风格的存在让 逐渐浮躁与现实的心平静下来。 其实复古骑行就是那么一件简单的事情: 推上一辆心爱的单车,穿上一身有腔调的复 古服饰,既有时代情怀,又健康向上,生活 总该来点变化。
【活动亮点一】
用骑行感受复古情怀
得一处闲暇 觅一段浪漫 让时光在历史与现实中穿梭 现场用骑行感受复古情怀 增添骑行乐趣
【活动亮点二】
骑行创意轨迹 赢骑行顶级装备
用自行车为画笔 运用手机GPS定位 画一张属于自己的骑行轨迹图 朋友圈集赞助力 赢取骑行顶级装备
【活动流程】
签到 领取物资(服装、号码牌等) 暖场互动(拍照互动、等待骑行开始)
逃跑计划
想从这喧嚣的城市中逃跑 想从这拥挤的人潮中逃离 想从这雾霾的口罩中挣脱 城市之外,没有世俗之见 没有焦虑和不安,没有繁华后的孤独 只有采菊东篱下,悠然见南山的舒适宜人
户外:活动规划(一)
找当地的生态农庄,带领客户体验田间农作, 自给自足,同时开展农家美食课堂,
体验农村的大锅炤,享受田园美食带来的欢乐
在这美好的春日里,地产项目四月运动季
带领客户,去感受生命的活力,
去寻觅春天的踪迹和令人心驰向往的况境
【活动排期】
主题:《燃烧吧!卡路里》 时间:4月6日-7日
主题:《复古骑行》 时间:4月13日-14日
主题:《向往的生活》 时间:4月20日-21日
主题:《我和彩虹有个约会》 时间:4月27日-28日
燃烧吧!卡路里
【活动规则】
新城市健康方程式 用运动换取奖品 活动设立运动互动游戏环节 挑战者通过挑战得到所消耗卡路里的能量标签 通过收集的能量标签,换取健康大礼包
【卡路里鉴定所】
到访的客户在卡路里鉴定所领取到“卡路里护照”,每完成一个挑战,都能赢得卡路里能量标签印章,可兑换各种好礼。
【低卡美食区:bye bye 卡路里】
挑战卡路里 寻找城市燃烧体
地产项目四月份暖春运动季系列活动方案
【活动概况】
活动主题:挑战卡路里·寻找城市燃烧体 ——地产项目四月运动季
活动时间:2019年4月 活动地点:营销中心 活动对象:业主及意向客户 活动调性:活力、运动、健康、向上
【活动思路】
四月,是风吹大地万物蓬勃的时节 是情满外溢,春光乍泄的时节
营销中心:活动规划(二道
七种不同的色彩,不仅给人强烈的 视觉冲击感,更是让人心灵震撼! 这种美极致而张扬。它就是最近在 抖音、快手等小视频软件上爆红的 七彩滑道。 动感和刺激,调动每个细胞,人们 从上往下滑坡的时候,会让人感受 风一般速度的同时又能领略到大自 然的美好。
氛围布置:彩虹伞天空
在上空点缀彩虹伞,布置一片美丽的风景,捕捉美梦,与彩虹来一次完美的约会。
氛围布置
彩虹路
道路铺设彩虹地贴 营造彩色的梦
挑战卡路里 寻找城市燃烧体
地产项目四月份暖春运动季系列活动方案
主持人开场 领导致辞 极限单车表演 骑幻之旅(模特穿着复古风服装,与自行车走秀) 热身运动(专业教练现场带领大家运动热身) 鸣枪(领导登台鸣枪,宣布活动正式开始) 创意轨迹记录活动开始 颁奖仪式 抽奖互动 活动结束
【氛围布置-门头】
【氛围布置-合影背景】
采用伦敦特有的电话亭和老上海特有的黄包车,搭配古旧的海报墙作为本次的合影区
挑战规则:25秒内完成15下以上的平举重物深蹲,则获得100卡路里能量标签
【挑战关卡四:减脂战绳】
挑战规则:45秒内持续甩动战绳,使其成波浪形, 则获得150卡路里能量标签。
【挑战关卡五:平板撑一撑】
挑战规则:挑战者完成60秒以上的平板支撑,则获得180卡路里能量标签
【挑战关卡五:趣味平衡球】
签到有礼,每位签到来访的客户,均可获得一张霸王餐券,享用免费的低卡、健康的美食。
【挑战关卡一:超能发电站】
挑战规则:1分钟内踩动单车发电,点亮整条灯带,则获得100卡路里能量标签
【挑战关卡二:我跑我健康】
挑战规则:在跑步机上完成800米跑步,则获得200卡路里能量标签
【挑战关卡三:健康力量磅】
【氛围布置-互动环节】
现场设立卖花小姐姐和卖烟小哥哥等一些民国特色的售卖方式,与现场来宾互动。
向往的生活
活 动 背 景
繁忙的都市生活给人们带来了压力与浮躁,有调查显示近40.4%的人希望 远离喧嚣,避开拥挤,向往着从城市搬到农村,呼吸自然的空气,寻找内 心的声音。 同时由于国内慢综艺《向往的生活》、《哈哈农夫》的火爆,人们对于农 村自给自足的生活越发向往。 本次活动找寻都市生活中失去的绿色,让城市都市人亲近大自然,与阳光、 花朵、土壤、植物相处,触摸、感受它们的每一丝变化。
营销中心:活动规划(二)
“希望的田野” 稻草艺术展
营销中心:活动规划(二)
小景DP点
现场用稻草人、草堆、南瓜车作为氛 围布置,渲染氛围
营销中心:活动规划(二)
互动体验 春趣草编、微型景观DIY
手艺师傅现场编制灵活灵现的动物 为这个春天增添乐趣
同时来宾可亲手制作微型景观DIY 体验“园丁”的劳作过程