2019-2020年中考数学冲刺预测试模拟卷及答案

合集下载

2019-2020中考数学模拟试卷附答案

2019-2020中考数学模拟试卷附答案

2019-2020中考数学模拟试卷附答案一、选择题1.如图,下列四种标志中,既是轴对称图形又是中心对称图形的为()A.B.C.D.2.已知反比例函数 y=的图象如图所示,则二次函数 y =a x 2-2x和一次函数 y=bx+a 在同一平面直角坐标系中的图象可能是()A.B.C.D.3.通过如下尺规作图,能确定点D是BC边中点的是()A.B.C.D.4.在“朗读者”节目的影响下,某中学开展了“好书伴我成长”读书活动.为了解5月份八年级300名学生读书情况,随机调查了八年级50名学生读书的册数,统计数据如下表所示:册数01234人数41216171关于这组数据,下列说法正确的是()A.中位数是2 B.众数是17 C.平均数是2 D.方差是25.某球员参加一场篮球比赛,比赛分4节进行,该球员每节得分如折线统计图所示,则该球员平均每节得分为()A .7分B .8分C .9分D .10分6.不等式组213312x x +⎧⎨+≥-⎩<的解集在数轴上表示正确的是( ) A .B .C .D .7.如图,是由四个相同的小正方体组成的立体图形,它的左视图是( )A .B .C .D .8.已知直线//m n ,将一块含30°角的直角三角板ABC 按如图方式放置(30ABC ∠=︒),其中A ,B 两点分别落在直线m ,n 上,若140∠=︒,则2∠的度数为( )A .10︒B .20︒C .30°D .40︒9.某排球队6名场上队员的身高(单位:cm )是:180,184,188,190,192,194.现用一名身高为186cm 的队员换下场上身高为192cm 的队员,与换人前相比,场上队员的身高( )A .平均数变小,方差变小B .平均数变小,方差变大C .平均数变大,方差变小D .平均数变大,方差变大10.如图,点A ,B 在反比例函数y =(x >0)的图象上,点C ,D 在反比例函数y =(k >0)的图象上,AC ∥BD ∥y 轴,已知点A ,B 的横坐标分别为1;2,△OAC 与△CBD 的面积之和为,则k 的值为( )A .2B .3C .4D .11.如图是一个几何体的三视图(图中尺寸单位:cm ),根据图中所示数据求得这个几何体的侧面积是( )A .212cmB .()212πcm +C .26πcmD .28πcm 12.如图,AB 为⊙O 直径,已知为∠DCB=20°,则∠DBA 为( )A .50°B .20°C .60°D .70°二、填空题13.如图,⊙O 是△ABC 的外接圆,∠A =45°,则cos ∠OCB 的值是________.14.关于x 的一元二次方程2310ax x --=的两个不相等的实数根都在-1和0之间(不包括-1和0),则a 的取值范围是___________15.如图,在平面直角坐标系中,点O 为原点,菱形OABC 的对角线OB 在x 轴上,顶点A 在反比例函数y=2x 的图像上,则菱形的面积为_______.16.如图:在△ABC 中,AB=13,BC=12,点D ,E 分别是AB ,BC 的中点,连接DE ,CD ,如果DE=2.5,那么△ACD 的周长是_____.17.计算:2cos45°﹣(π+1)0+111()42-+=______. 18.在Rt△ABC 中,∠C=90°,AC=6,BC=8,点E 是BC 边上的动点,连接AE ,过点E 作AE 的垂线交AB 边于点F ,则AF 的最小值为_______19.如图,任意转动正六边形转盘一次,当转盘停止转动时,指针指向大于3的数的概率是_____.20.若关于x 的一元二次方程kx 2+2(k+1)x+k -1=0有两个实数根,则k 的取值范围是三、解答题21.矩形ABCD 的对角线相交于点O .DE ∥AC ,CE ∥BD .(1)求证:四边形OCED 是菱形;(2)若∠ACB =30°,菱形OCED 的而积为83,求AC 的长.22.修建隧道可以方便出行.如图:A ,B 两地被大山阻隔,由A 地到B 地需要爬坡到山顶C 地,再下坡到B 地.若打通穿山隧道,建成直达A ,B 两地的公路,可以缩短从A 地到B 地的路程.已知:从A 到C 坡面的坡度3i =B 到C 坡面的坡角45CBA ∠=︒,42BC =.(1)求隧道打通后从A 到B 的总路程是多少公里?(结果保留根号)(2)求隧道打通后与打通前相比,从A 地到B 地的路程约缩短多少公里?(结果精确到0.01)(2 1.414≈,3 1.732≈)23.解不等式组3415122x x x x ≥-⎧⎪⎨--⎪⎩>,并把它的解集在数轴上表示出来 24.如图,在Rt △ABC 中,∠C =90°,AD 平分∠BAC 交BC 于点D ,O 为AB 上一点,经过点A ,D 的⊙O 分别交AB ,AC 于点E ,F ,连接OF 交AD 于点G .(1)求证:BC是⊙O 的切线;(2)设AB =x ,AF =y ,试用含x ,y 的代数式表示线段AD 的长;(3)若BE =8,sinB =513,求DG 的长,25.如图,ABC ∆是边长为4cm 的等边三角形,边AB 在射线OM 上,且6OA cm =,点D 从点O 出发,沿OM 的方向以1cm/s 的速度运动,当D 不与点A 重合时,将ACD ∆绕点C 逆时针方向旋转60°得到BCE ∆,连接DE.(1)如图1,求证:CDE ∆是等边三角形;(2)如图2,当6<t<10时,DE 是否存在最小值?若存在,求出DE 的最小值;若不存在,请说明理由.(3)当点D 在射线OM 上运动时,是否存在以D ,E ,B 为顶点的三角形是直角三角形?若存在,求出此时t 的值;若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】解:A.不是轴对称图形,是中心对称图形,不符合题意;B.既是轴对称图形,也是中心对称图形,符合题意;C.不是轴对称图形,是中心对称图形,不符合题意;D.不是轴对称图形,也不是中心对称图形,不符合题意.故选B.2.C解析:C【解析】【分析】先根据抛物线y=ax2-2x过原点排除A,再由反比例函数图象确定ab的符号,再由a、b的符号和抛物线对称轴确定抛物线与直线y=bx+a的位置关系,进而得解.【详解】∵当x=0时,y=ax2-2x=0,即抛物线y=ax2-2x经过原点,故A错误;∵反比例函数y=的图象在第一、三象限,∴ab>0,即a、b同号,当a<0时,抛物线y=ax2-2x的对称轴x=<0,对称轴在y轴左边,故D错误;当a>0时,b>0,直线y=bx+a经过第一、二、三象限,故B错误;C正确.故选C.【点睛】本题主要考查了一次函数、反比例函数、二次函数的图象与性质,根据函数图象与系数的关系进行判断是解题的关键,同时考查了数形结合的思想.3.A解析:A【解析】【分析】作线段BC的垂直平分线可得线段BC的中点.【详解】作线段BC的垂直平分线可得线段BC的中点.由此可知:选项A符合条件,故选A.【点睛】本题考查作图﹣复杂作图,解题的关键是熟练掌握五种基本作图.4.A解析:A【解析】试题解析:察表格,可知这组样本数据的平均数为:(0×4+1×12+2×16+3×17+4×1)÷50=;∵这组样本数据中,3出现了17次,出现的次数最多,∴这组数据的众数是3;∵将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是2,∴这组数据的中位数为2,故选A .考点:1.方差;2.加权平均数;3.中位数;4.众数.5.B解析:B【解析】【分析】根据平均数的定义进行求解即可得.【详解】根据折线图可知该球员4节的得分分别为:12、4、10、6,所以该球员平均每节得分=1241064+++=8, 故选B .【点睛】本题考查了折线统计图、平均数的定义等知识,解题的关键是理解题意,掌握平均数的求解方法. 6.A解析:A【解析】【分析】先求出不等式组的解集,再在数轴上表示出来即可.【详解】213312x x +⎧⎨+≥-⎩<①② ∵解不等式①得:x <1,解不等式②得:x≥-1,∴不等式组的解集为-1≤x <1,在数轴上表示为:,故选A .【点睛】 本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集求出不等式组的解集是解此题的关键.7.A解析:A【解析】【分析】【详解】从左面看,这个立体图形有两层,且底层有两个小正方形,第二层的左边有一个小正方形.故选A .8.B解析:B【解析】【分析】根据平行线的性质判断即可得出结论.【详解】解:Q 直线//m n ,21180ABC BAC ∴∠+∠∠+∠=+︒,30ABC =︒∠Q ,90BAC ∠=︒,140∠=︒,218030904020∴∠=---︒︒=︒︒︒,故选:B .【点睛】本题考查的是平行线的性质,熟练掌握平行线的性质是解题的关键.9.A解析:A【解析】分析:根据平均数的计算公式进行计算即可,根据方差公式先分别计算出甲和乙的方差,再根据方差的意义即可得出答案.详解:换人前6名队员身高的平均数为x =1801841881901921946+++++=188, 方差为S 2=()()()()()()22222211801881841881881881901881921881941886⎡⎤-+-+-+-+-+-⎣⎦=683; 换人后6名队员身高的平均数为x =1801841881901861946+++++=187, 方差为S 2=()()()()()()22222211801871841871881871901871861871941876⎡⎤-+-+-+-+-+-⎣⎦=593∵188>187,683>593, ∴平均数变小,方差变小,故选:A.点睛:本题考查了平均数与方差的定义:一般地设n 个数据,x 1,x 2,…x n 的平均数为x ,则方差S 2=1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立. 10.C解析:C【解析】【分析】由题意,可得A (1,1),C (1,k ),B (2,),D (2,k ),则△OAC 面积=(k-1),△CBD 的面积=×(2-1)×(k-)=(k-1),根据△OAC 与△CBD 的面积之和为,即可得出k 的值.【详解】∵AC ∥BD ∥y 轴,点A ,B 的横坐标分别为1、2,∴A (1,1),C (1,k ),B (2,),D (2,k ),∴△OAC 面积=×1×(k-1),△CBD 的面积=×(2-1)×(k-)=(k-1),∵△OAC 与△CBD 的面积之和为,∴(k-1)+ (k-1)=,∴k =4.故选C .【点睛】本题考查反比例函数系数k的几何意义,三角形面积的计算,解题的关键是用k表示出△OAC与△CBD的面积.11.C解析:C【解析】【分析】根据三视图确定该几何体是圆柱体,再计算圆柱体的侧面积.【详解】先由三视图确定该几何体是圆柱体,底面半径是2÷2=1cm,高是3cm.所以该几何体的侧面积为2π×1×3=6π(cm2).故选C.【点睛】此题主要考查了由三视图确定几何体和求圆柱体的侧面积,关键是根据三视图确定该几何体是圆柱体.12.D解析:D【解析】题解析:∵AB为⊙O直径,∴∠ACB=90°,∴∠ACD=90°-∠DCB=90°-20°=70°,∴∠DBA=∠ACD=70°.故选D.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.二、填空题13.【解析】【分析】根据圆周角定理可得∠BOC=90°易求BC=OC从而可得cos ∠OCB的值【详解】∵∠A=45°∴∠BOC=90°∵OB=OC由勾股定理得BC=OC∴cos ∠OCB=故答案为【点睛】【解析】【分析】根据圆周角定理可得∠BOC=90°,易求OC,从而可得cos∠OCB的值.【详解】∵∠A=45°,∴∠BOC=90°∵OB=OC,由勾股定理得,OC,∴cos∠OCB=22OCBC OC==.故答案为2 2.【点睛】本题考查的是圆周角定理、等腰直角三角形的判定及锐角三角函数的定义,属较简单题目题目.14.<a<-2【解析】【分析】【详解】解:∵关于x的一元二次方程ax2-3x-1=0的两个不相等的实数根∴△=(-3)2-4×a×(-1)>0解得:a>−设f (x)=ax2-3x-1如图∵实数根都在-1解析:94-<a<-2【解析】【分析】【详解】解:∵关于x的一元二次方程ax2-3x-1=0的两个不相等的实数根∴△=(-3)2-4×a×(-1)>0,解得:a>−9 4设f(x)=ax2-3x-1,如图,∵实数根都在-1和0之间,∴-1<−32a-<0,∴a<−32,且有f(-1)<0,f(0)<0,即f(-1)=a×(-1)2-3×(-1)-1<0,f(0)=-1<0,解得:a<-2,∴−94<a<-2,故答案为−94<a<-2.15.4【解析】【分析】【详解】解:连接AC交OB于D∵四边形OABC是菱形∴AC⊥OB∵点A在反比例函数y=的图象上∴△AOD的面积=×2=1∴菱形OABC 的面积=4×△AOD的面积=4故答案为:4解析:4【解析】【分析】【详解】解:连接AC交OB于D.∵四边形OABC是菱形,∴AC⊥OB.∵点A在反比例函数y=2x的图象上,∴△AOD的面积=12×2=1,∴菱形OABC的面积=4×△AOD的面积=4故答案为:416.18【解析】【分析】根据三角形中位线定理得到AC=2DE=5AC∥DE根据勾股定理的逆定理得到∠ACB=90°根据线段垂直平分线的性质得到DC=BD根据三角形的周长公式计算即可【详解】∵DE分别是A解析:18【解析】【分析】根据三角形中位线定理得到AC=2DE=5,AC∥DE,根据勾股定理的逆定理得到∠ACB=90°,根据线段垂直平分线的性质得到DC=BD,根据三角形的周长公式计算即可.【详解】∵D,E分别是AB,BC的中点,∴AC=2DE=5,AC∥DE,AC2+BC2=52+122=169,AB2=132=169,∴AC2+BC2=AB2,∴∠ACB=90°,∵AC∥DE,∴∠DEB=90°,又∵E是BC的中点,∴直线DE是线段BC的垂直平分线,∴DC=BD,∴△ACD的周长=AC+AD+CD=AC+AD+BD=AC+AB=18,故答案为18.【点睛】本题考查的是三角形中位线定理、线段垂直平分线的判定和性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.17.【解析】解:原式==故答案为:解析:322 +.【解析】解:原式=212122⨯-++=322+.故答案为:322+.18.【解析】试题分析:如图设AF的中点为D那么DA=DE=DF所以AF的最小值取决于DE的最小值如图当DE⊥BC时DE最小设DA=DE=m此时DB=m由AB=DA+DB得m +m=10解得m=此时AF=2解析:15 2【解析】试题分析:如图,设AF的中点为D,那么DA=DE=DF.所以AF的最小值取决于DE的最小值.如图,当DE⊥BC时,DE最小,设DA=DE=m,此时DB=53m,由AB=DA+DB,得m+53m=10,解得m=154,此时AF=2m=152.故答案为15 2.19.【解析】【分析】根据概率的求法找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率【详解】共个数大于的数有个(大于);故答案为【点睛】本题考查概率的求法:如果一个事件有n种可解析:12.【解析】【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】Q共6个数,大于3的数有3个,P∴(大于3)31 62 ==;故答案为12.【点睛】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.20.k≥-13且k≠0【解析】试题解析:∵a=kb=2(k+1)c=k-1∴△=4(k+1)2-4×k×(k-1)=3k+1≥0解得:k≥-13∵原方程是一元二次方程∴k≠0考点:根的判别式解析:k≥,且k≠0【解析】试题解析:∵a=k,b=2(k+1),c=k-1,∴△=4(k+1)2-4×k×(k-1)=3k+1≥0,解得:k≥-,∵原方程是一元二次方程,∴k≠0.考点:根的判别式.三、解答题21.(1)证明见解析;(2)8.【解析】【分析】(1)熟记菱形的判定定理,本题可用一组邻边相等的平行四边形是菱形.(2)因为∠ACB=30°可证明菱形的一条对角线和边长相等,可证明和对角线构成等边三角形,然后作辅助线,根据菱形的面积已知可求解.【详解】解:(1)∵DE∥AC,CE∥BD∴四边形OCED是平行四边形∵四边形ABCD是矩形∴AO=OC=BO=OD∴四边形OCED是菱形(2)∵∠ACB=30°,∴∠DCO=90°-30°=60°又∵OD=OC∴△OCD是等边三角形过D作DF⊥OC于F,则CF=12OC,设CF=x,则OC=2x,AC=4x.在Rt△DFC中,tan60°=DF FC,∴DF=3x.∴OC•DF=83.∴x=2.∴AC=4×2=8.【点睛】本题考查了矩形的性质,对角线相等且互相平分,菱形的判定和性质,以及解直角三角形等知识点.22.(1)隧道打通后从A到B的总路程是(434)公里;(2)隧道打通后与打通前相比,从A地到B地的路程约缩短2.73公里.【解析】【分析】(1)过点C 作CD ⊥AB 于点D ,利用锐角三角函数的定义求出CD 及AD 的长,进而可得出结论.(2)由坡度可以得出A ∠的度数,从而得出AC 的长,根据AC CB AB +-即可得出缩短的距离.【详解】(1)作CD AB ⊥于点D ,在Rt BCD ∆中,∵45CBA ∠=︒,42BC =, ∴4CD BD ==.在Rt ACD ∆中, ∵1:3CD i AD==, ∴343AD CD ==, ∴()434AB =+公里.答:隧道打通后从A 到B 的总路程是()434+公里.(2)在Rt ACD ∆中,∵3CD i AD==, ∴30A ∠=︒,∴2248AC CD ==⨯=,∴842AC CB +=+∵434AB =,∴842434 2.73AC CB AB +-=+≈(公里).答:隧道打通后与打通前相比,从A 地到B 地的路程约缩短2.73公里.【点睛】本题考查的是解直角三角形的应用-坡度问题,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,需要熟记坡度和锐角三角函数的定义.23.-1<x≤1【解析】【分析】分别解两个不等式,然后根据数轴或“都大取大,都小取小,大小小大取中间,大大小小无解了”求解不等式组.【详解】 解:341{5122x x x x ≥--->①② 解不等式①可得x≤1, 解不等式②可得x >-1在数轴上表示解集为:所以不等式组的解集为:-1<x≤1.【点睛】本题考查了解不等式组,熟练掌握计算法则是解题关键.24.(1)证明见解析;xy 3013 【解析】【分析】(1)连接OD ,由AD 为角平分线得到一对角相等,再由等边对等角得到一对角相等,等量代换得到内错角相等,进而得到OD 与AC 平行,得到OD 与BC 垂直,即可得证; (2)连接DF ,由(1)得到BC 为圆O 的切线,由弦切角等于夹弧所对的圆周角,进而得到三角形ABD 与三角形ADF 相似,由相似得比例,即可表示出AD ;(3)连接EF ,设圆的半径为r ,由sinB 的值,利用锐角三角函数定义求出r 的值,由直径所对的圆周角为直角,得到EF 与BC 平行,得到sin ∠AEF=sinB ,进而求出DG 的长即可.【详解】(1)如图,连接OD ,∵AD 为∠BAC 的角平分线,∴∠BAD=∠CAD ,∵OA=OD ,∴∠ODA=∠OAD ,∴∠ODA=∠CAD ,∴OD ∥AC ,∵∠C=90°,∴∠ODC=90°,∴OD ⊥BC ,∴BC 为圆O 的切线;(2)连接DF ,由(1)知BC 为圆O 的切线,∴∠FDC=∠DAF ,∴∠CDA=∠CFD ,∴∠AFD=∠ADB ,∵∠BAD=∠DAF ,∴△ABD ∽△ADF , ∴AB AD AD AF =,即AD 2=AB•AF=xy , 则AD=xy ; (3)连接EF ,在Rt △BOD 中,sinB=513OD OB =, 设圆的半径为r ,可得5813r r =+, 解得:r=5,∴AE=10,AB=18,∵AE 是直径,∴∠AFE=∠C=90°,∴EF ∥BC ,∴∠AEF=∠B ,∴sin ∠AEF=513AF AE =, ∴AF=AE•sin ∠AEF=10×513=5013, ∵AF ∥OD ,∴501013513AG AF DG OD ===,即DG=1323AD , ∴AD=503013·1813AB AF =⨯=, 则DG=133033013231323⨯=.【点睛】圆的综合题,涉及的知识有:切线的判定与性质,相似三角形的判定与性质,锐角三角函数定义,勾股定理,以及平行线的判定与性质,熟练掌握各自的性质是解本题的关键.25.(1)详见解析;(2)存在,3;(3)当t=2或14s 时,以D 、E 、B 为顶点的三角形是直角三角形.【解析】试题分析:(1)由旋转的性质结合△ABC是等边三角形可得∠DCB=60°,CD=CE,从而可得△CDE 是等边三角形;(2)由(1)可知△CDE是等边三角形,由此可得DE=CD,因此当CD⊥AB时,CD最短,则DE最短,结合△ABC是等边三角形,AC=4即可求得此时DE=CD=23;(3)由题意需分0≤t<6,6<t<10和t>10三种情况讨论,①当0≤t<6时,由旋转可知,∠ABE=60°,∠BDE<60°,由此可知:此时若△DBE是直角三角形,则∠BED=90°;②当6<t<10s时,由性质的性质可知∠DBE=120°>90°,由此可知:此时△DBE不可能是直角三角形;③当t>10s时,由旋转的性质可知,∠DBE=60°,结合∠CDE=60°可得∠BDE=∠CDE+∠BDC=60°+∠BDC>60°,由此可得∠BED<60°,由此可知此时若△BDE 是直角三角形,则只能是∠BDE=90°;这样结合已知条件即可分情况求出对应的t的值了.试题解析:(1)∵将△ACD绕点C逆时针方向旋转60°得到△BCE,∴∠DCE=60°,DC=EC,∴△CDE是等边三角形;(2)存在,当6<t<10时,由(1)知,△CDE是等边三角形,∴DE=CD,由垂线段最短可知,当CD⊥AB时,CD最小,此时∠ADC=90°,又∵∠ACD=60°,∴∠ACD=30°,∴ AD=12AC=2,∴ CD=22224223AC AD-=-=,∴ DE=23(cm);(3)存在,理由如下:①当0s≤t<6s时,由旋转可知,∠ABE=60°,∠BDE<60°,∴此时若△DBE是直角三角形,则∠BED=90°,由(1)可知,△CDE是等边三角形,∴∠DEC=60°,∴∠CEB=∠BED-∠DEC=30°,∴∠CDA=∠CEB=30°,∵∠CAB=60°,∴∠ACD=∠ADC=30°,∴DA=CA=4,∴OD=OA﹣DA=6﹣4=2,∴t=2÷1=2(s);②当6s<t<10s时,由性质的性质可知∠DBE=120°>90°,∴此时△DBE不可能是直角三角形;③当t>10s时,由旋转的性质可知,∠DBE=60°,又由(1)知∠CDE=60°,∴∠BDE=∠CDE+∠BDC=60°+∠BDC,而∠BDC>0°,∴∠BDE>60°,∴只能∠BDE=90°,从而∠BCD=30°,∴BD=BC=4,∴OD=14cm,∴t=14÷1=14(s);综上所述:当t=2s或14s时,以D、E、B为顶点的三角形是直角三角形.点睛:(1)解第2小题的关键是:抓住点D在运动过程中,△DBE是等边三角形这一点得到DE=CD,从而可知当CD⊥AB时,CD最短,则DE最短,由此即可由已知条件解得DE的最小值;(2)解第3小题的关键是:根据点D的不同位置分为三段时间,结合已知条件首先分析出在每个时间段内△BDE中哪个角能够是直角,然后再结合已知条件进行解答即可求得对应的t的值了.。

2019-2020年中考数学最后冲刺预测试卷及答案

2019-2020年中考数学最后冲刺预测试卷及答案

2019-2020年中考数学最后冲刺预测试卷及答案考生注意:本卷共八大题,计 23 小题,满分 150 分,考试时间 120 分钟。

一、选择题(本题共10 小题,每小题4 分,满分40分)每一个小题都给出代号为A 、B 、C 、D 的四个结论,其中只有一个是正确的,把正确结论的代号写在题后的括号。

每一小题:选对得 4 分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分。

1.94-的平方根是………………【 】A. -5B. 1C. -1D. ±12.图(1)是一台计算机D 盘属性图的一部分,从中可以看出该硬盘容量的大小,请用科学记数法将该硬盘容量表示多少字节是(保留3位有效数字)………………【 】A .101011 D .1010916.1⨯3.下列调查方式,合适的是………………【 】 A .调查美菱牌电冰箱的市场占有率,采用普查方式 B .要了解安徽电视台科教频道的收视率,采用普查方式C .要保证“嫦娥一号”成功发射,对重要零部件的检查采用抽查方式D .要了解人们对环境的保护意识,采用抽查方式4. 把代数式244ax ax a -+分解因式,下列结果中正确的是………………【 】 A .2(2)a x - B .2(2)a x + C .2(4)a x - D .(2)(2)a x x +-5.下列四副图案中,不是轴对称图形的是…………………………【 】A. B. C. D. 6.化简分式2b ab b +的结果是……………………………… ……【 】 A. b a +1 B. b a 11+ C. 21b a + D. bab +17.如图,AB 为⊙O 的直径,点C 在⊙O 上,∠A =40°,则∠B 等于…………【 】 A .80° B .60° C .50° D .40°8.如图,在ABC Rt ∆中,∠C=90°,AC=3.将其绕B 点顺时针旋转一周,则分别以BA 、BC 为半径的圆形成一圆环.该圆环的面积为………………【 】A .π3B .π3C .π9D .π69.游乐园中的一种高空观光缆车由一个带有若干个吊篮的大园环组成.当园环在空中旋转时,吊篮始终保持竖直位置,如图所示,则人坐吊篮内时,相对地面,进行的运动是………【 】 A .翻折 B .旋转 C .平移 D .静止10.如图是二次函数y =ax 2+bx +c 图象的一部分,图象过点A (-3,0),对称轴为x =-1.给出四个结论:①b 2>4ac ;②2a+b=0;③a-b +c=0;④5a <b .其中正确结论是……【 】 (A )②④ (B )①④ (C )②③ (D )①③二、填空题(本题共 4 小题,每小题 5 分,满分 20 分) 11.如图:AB 是⊙O 的直径,弦CD ⊥AB ,垂足为E ,如果AB =12cm ,CD =8cm ,那么AE 的长为 cm ;12.已知:n 12是整数,则满足条件的最小正整数n 为 13.化简2)130(tan -︒=14.如图已知双曲线xky =( x >0)经过矩形OABC 的边AB 中点F ,交BC 于E ,且四边形OEBF 的面积为8,则k=三.(本题共 2 小题,每小题 8 分,满分 16 分) 15. ()(1212sin 60tan 452-⎛⎫-+-+- ⎪⎝⎭°°【解】16. 先化简,再求值:223(2)()()a b ab b b a b a b --÷-+-,其中112a b ==-,.【解】第第8题图 第14题图 第10题图 C A B O第7题图 第11题图(第17题图)四、(本题共 2 小题,每小题 8 分,满分 16 分)17. 国家规定“中小学生每天在校体育活动时间不低于1小时”.为此,我县就“你每天在校体育活动时间是多少”的问题随机调查了辖区内300名初中学生.根据调查结果绘制成的统计图(部分)如图所示,其中分组情况是:A 组:0.5h t <;B 组:0.5h 1h t <≤;C 组:1h 1.5h t <≤;D 组: 1.5h t ≥ 请根据上述信息解答下列问题:(1)C组的人数是 ;(2)本次调查数据的中位数落在 组内;(3)若我县约有36 000名初中学生,请你估计其中达国家规定体育活动时间的人约有多少?你每天参加体育锻炼的时间是多少?你认为学生参加体育锻炼的时间多了会影响学习成绩的提高吗?【解】18. 2008年北京奥运会的比赛门票开始接受公众预订.下表为北京奥运会官方票务网站公布的几种球类比赛的门票价格,某球迷准备用7000元预订8张下表中比赛项目的门票.(1)若全部资金用来预订男篮门票和乒乓球门票,问他可以订男篮门票和乒乓球门票各多少张? (2)若在现有资金7000元允许的范围内和总票数不变的前提下,他想预订下表中三种球类门票,其中男篮门票数与足球门票数相同,且乒乓球门票的费用不超过男篮门票的费用,求他能预订三种球类门票各多少张?五、(本题共2小题,每小题10分,满分20分)19. AD 是Rt △ABC 的高,∠BAC=90°,点P 在BC 上,斜边EF 的两端点E 、F 分别在AB 、AC 上,且斜边EF ∥BC ,BC=80cm ,AD=60cm ,求等腰直角△PEF 的面积?【解】20. 如图所示,点P 表示广场上的一盏照明灯.(1)请你在图中画出小敏在照明灯P 照射下的影子(用线段表示);(2)若小丽到灯柱MC 的距离为4.5米,照明灯P 到灯柱的距离为1.2米,小丽目测照明灯P 的仰角为55°,她的身高NB 为1.6米,试求照明灯P 到地面的距离(结果精确到0.1米).A E FB CP D(参考数据:tan55 1.428≈°,sin550.819≈°,cos550.574≈°)【解】六、(本题满分 12 分)21. 如图,某小区计划用现有的一面墙壁再砌高为1.2m 四面低墙,建造如图所示的长方形废弃池,用来装不同的废弃物,现已备足可以修高1.2m,长为12m 的低墙的材料,准备施工,设图中与现有的一面墙壁垂直的三面低墙的长度都为x m,即AB=CD=EF=x m.(不考虑低墙的厚度)(1)若想废弃池的总容积为 10.8 3m ,x 应等于多少?(2)求废弃池的总容积V 与x 的函数关系式,并直接写出自变量x 的取值范围. (3)若想使废弃池的总容积V 最大,x 应为多少?最大容积是多少? 【解】七、(本题满分 12 分)22. 如图,已知△ABC 中,AB=BC=1,ABC=90°,把一块含30°角的直角三角板DEF 的直角顶点D 放在AC 的中点上(直角三角板的短直角边为DE ,长直角边为DF),将直角三角板DEF 绕D 点按逆时钟方向旋转.(1)在图1中,DE 交AB 于点M,DF 交BC 于点N. ①证明:DM=DN②在这一过程中,直角三角板DEF 与△ABC 的重叠部分为四边形DMBN,请说明四边形DMBN 的面积是否发生变化?若发生变化,请说明是如何变化的;若不发生变化,求出其面积.小敏 小丽 4.5米C A MP N 55° B 灯柱(2) 在这一过程中,直角三角板DEF 与△ABC 的重叠部分为四边形DMBN,请说明四边形DMBN 的周长是否发生变化?若发生变化, 求出最大值或最小值是多少?若不发生变化,求出其周长..【解】八、(本题满分 14 分)23.四边形一条对角线所在直线上的点,如果到这条对角线的两端点的距离不相等,但到另一对角线的两个端点的距离相等,则称这点为这个四边形的准等距点.如图l ,点P 为四边形ABCD 对角线AC 所在直线上的一点,PD=PB ,PA≠PC ,则点P 为四边形ABCD 的准等距点.(1)如图2,画出菱形ABCD 的一个准等距点.(2)如图3,作出四边形ABCD 的一个准等距点(尺规作图,保留作图痕迹,不要求写作法).(3)如图4,在四边形ABCD 中,P 是AC 上的点,PA≠PC ,延长BP 交CD 于点E ,延长DP 交BC 于点F ,且∠CDF=∠CBE ,CE=CF .求证:点P 是四边形AB CD 的准等距点.(4)试研究四边形的准等距点个数的情况(说出相应四边形的特征及准等距点的个数,不必证明).07~ 08年高河镇中第一次模拟考试试卷数学参考答案A A MB A D CA NA E A F A 图111.)526(+ 12.3°13.331- 14.8 三.(本题共2小题,每小题8分,满分16分)15.解:原式=1+2-3+1=116.解:原式=ab b a b ab a 222222-=+---当1,21-==b a 时,原式1)1(212=-⨯⨯-= 四.(本题共2小题,每小题8分,共16分)17.解:(1)120; (2)C; (3)达国家规定体育活动时间的人数约占12060100%60%300+⨯=. 所以,达国家规定体育活动时间的人约有216006036000=⨯%(人). 18.解:(1)设可订男篮门票x 张,则乒乓球门票(8-x)张,根据题意得1000x+500(8-x)=7000, 解得 x=6, 8-x=2 故可订男篮门票6张,乒乓球门票2张.(2) 设可订男篮门票x 张,则乒乓球门票(8-2x)张,根据题意得⎩⎨⎧≤-≤-++xx x x x 1000)28(5007000)28(5008001000 解得4332≤≤x 因为x 是自然数, x 取2或3. 当x=2时,8-2x=4; 当x=3时,8-2x=2.答:可订男篮、门票各2张,乒乓球门票4张或订男篮、门票各3张,乒乓球门票2张五、(本题共2小题,每小题10分,满分20分)19.解: 576 20.解:约6.3米六、(本题满分 12 分) 21.解:(1)∵AB=CD=EF=x m ,∴AE=(12-3x)m , 8.10)312(2.1=-=x x V 解得x=1或3.(2) x x x x V 572518)312(2.12+-=-=,( 0<x <4) (3) ∵ 572)2(51857251822+--=+-=x x x V∴当x=2时,V 有最大值,最大容积为14.43m答: 若想使废弃池的总容积V 最大,x 应为2m,最大容积是14.43m . 七、(本题满分 12 分)22.(1)①证明:连结DB.在Rt △ABC 中,AB=BC,AD=CD. ∴DB=DC=AD,∠BDC=90°. ∴∠A=∠DBN=45°.∵∠ADM+∠MDB=∠BDN+∠MDB=90°, ∴∠ADM=∠BDN.∴△ADM ≌△BDN. 小敏 小丽 4.5米C A M P N 55°B 灯柱 E FD AEF B C P DM AA MB A DC AN AE AF A∴DM=DN(方法不唯一)②四边形DMBN 的面积不发生变化.由①,知△BMD ≌△CND. ∴S △BMD =S △CND∴S 四边形DMBN =S △DBN+ S △DMB =S △DBN+ S △DNC = S △DBC = 21S △ABC =41(方法不唯一)(2) 四边形DMBN 的周长发生变化.由①的三角形全等的证明,可知 AM=BN,BM=CN.故可设BM=x,BN=1-x,由勾股定理得 22)1(x x MN -+= ,则有DM=DN=22MN. 四边形DMBN 的周长为BM+BN+DM+DN=x+(1-x)+ 22)1(2x x -+∙=1+2122+-x x =1+41)21(22+-x∵0<x<1,∴当21=x 时,四边形DMBN 的周长有最小值为2,没有最大值. 八、(本题满分 14 分)23. 解:(1)如图2,点P 即为所画点. (答案不唯一.画图正确,无文字说明不扣分;点P 画在AC 中点不给分)(2)如图3,点P 即为所作点. (答案不唯一.作图正确,无文字说明不扣分;无痕迹或痕迹不清晰的酌情扣分)(3)连结DB ,在△DCF 与△BCE 中, ∠DCF=∠BCE , ∠CDF=∠CBE , ∠ CF=CE.∴△DCF ≌△BCE(AAS), ∴CD=CB ,∴∠CDB=∠CBD. ∴∠PDB=∠PBD , ∴PD=PB , ∵PA≠PC∴点P 是四边形ABCD 的准等距点.(4)①当四边形的对角线互相垂直且任何一条对角线不平分另一对角线或者对角线互相平分且不垂直时,准等距点的个数为0个;②当四边形的对角线不互相垂直,又不互相平分,且有一条对角线的中垂线经过另一对角线的中点时,准等距点的个数为1个;③当四边形的对角线既不互相垂直又不互相平分,且任何一条对角线的中垂线都不经过另一条对角线的中点时,准等距点的个数为2个;④四边形的对角线互相垂直且至少有一条对角线平分另一对角线时,准等距点有无数个.1分(.答案不唯一.画图正确,无文字说明不扣分;点P 画在A C 中点不给分)(第(4)小题只说出准等距点的个数,不能给满分)。

2019-2020中考数学模拟试题(带答案)

2019-2020中考数学模拟试题(带答案)

2019-2020中考数学模拟试题(带答案)一、选择题1.已知反比例函数 y =的图象如图所示,则二次函数 y =a x 2-2x 和一次函数 y =bx+a在同一平面直角坐标系中的图象可能是( )A .B .C .D .2.如图,在平面直角坐标中,正方形ABCD 与正方形BEFG 是以原点O 为位似中心的位似图形,且相似比为13,点A ,B ,E 在x 轴上,若正方形BEFG 的边长为12,则C 点坐标为( )A .(6,4)B .(6,2)C .(4,4)D .(8,4)3.华为Mate20手机搭载了全球首款7纳米制程芯片,7纳米就是0.000000007米.数据0.000000007用科学记数法表示为( ). A .7710⨯﹣B .80.710⨯﹣C .8710⨯﹣D .9710⨯﹣4.若直线1l 经过点()0,4,直线2l 经过点()3,2,且1l 与2l 关于x 轴对称,则1l 与2l 的交点坐标为( ) A .()6,0- B .()6,0 C .()2,0- D .()2,05.地球与月球的平均距离为384 000km ,将384 000这个数用科学记数法表示为( ) A .3.84×103 B .3.84×104 C .3.84×105 D .3.84×106 6.下列几何体中,其侧面展开图为扇形的是( )A .B .C .D .7.在庆祝新中国成立70周年的校园歌唱比赛中,11名参赛同学的成绩各不相同,按照成绩取前5名进入决赛.如果小明知道了自己的比赛成绩,要判断能否进入决赛,小明需要知道这11名同学成绩的( ) A .平均数 B .中位数 C .众数 D .方差 8.下列运算正确的是( )A .224a a a +=B .3412a a a ⋅=C .3412()a a =D .22()ab ab =9.如图,在矩形ABCD 中,AD=2AB ,∠BAD 的平分线交BC 于点E ,DH ⊥AE 于点H ,连接BH 并延长交CD 于点F ,连接DE 交BF 于点O ,下列结论:①∠AED=∠CED ;②OE=OD ;③BH=HF ;④BC ﹣CF=2HE ;⑤AB=HF ,其中正确的有( )A .2个B .3个C .4个D .5个10.函数21y x =-中的自变量x 的取值范围是( )A .x ≠12 B .x ≥1C .x >12D .x ≥1211.我们将在直角坐标系中圆心坐标和半径均为整数的圆称为“整圆”.如图,直线l :y=kx+43与x 轴、y 轴分别交于A 、B ,∠OAB=30°,点P 在x 轴上,⊙P 与l 相切,当P 在线段OA 上运动时,使得⊙P 成为整圆的点P 个数是( )A .6B .8C .10D .1212.若关于x 的方程333x m mx x++--=3的解为正数,则m 的取值范围是( ) A .m <92 B .m <92且m≠32C .m >﹣94D .m >﹣94且m≠﹣34二、填空题13.已知扇形的圆心角为120°,半径等于6,则用该扇形围成的圆锥的底面半径为_________.14.如图,∠MON=30°,点A 1,A 2,A 3,…在射线ON 上,点B 1,B 2,B 3,…在射线OM 上,△A 1B 1A 2,△A 2B 2A 3,△A 3B 3A 4…均为等边三角形.若OA 1=1,则△A n B n A n+1的边长为______.15.某品牌旗舰店平日将某商品按进价提高40%后标价,在某次电商购物节中,为促销该商品,按标价8折销售,售价为2240元,则这种商品的进价是______元.16.已知圆锥的底面圆半径为3cm,高为4cm,则圆锥的侧面积是________cm2.17.不等式组324111 2x xxx≤-⎧⎪⎨--<+⎪⎩的整数解是x=.18.等腰三角形一腰上的高与另一腰的夹角的度数为20°,则顶角的度数是.19.如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点处,当△为直角三角形时,BE的长为 .20.从﹣2,﹣1,1,2四个数中,随机抽取两个数相乘,积为大于﹣4小于2的概率是_____.三、解答题21.为调查广西北部湾四市市民上班时最常用的交通工具的情况,随机抽取了四市部分市民进行调查,要求被调查者从“A:自行车,B:电动车,C:公交车,D:家庭汽车,E:其他”五个选项中选择最常用的一项,将所有调查结果整理后绘制成如下不完整的条形统计图和扇形统计图,请结合统计图回答下列问题:(1)在这次调查中,一共调查了名市民,扇形统计图中,C组对应的扇形圆心角是 °;(2)请补全条形统计图;(3)若甲、乙两人上班时从A、B、C、D四种交通工具中随机选择一种,则甲、乙两人恰好选择同一种交通工具上班的概率是多少?请用画树状图或列表法求解.22.如图,抛物线y =ax 2+bx ﹣2与x 轴交于两点A (﹣1,0)和B (4,0),与Y 轴交于点C ,连接AC 、BC 、AB ,(1)求抛物线的解析式;(2)点D 是抛物线上一点,连接BD 、CD ,满足ABC 35DBC S S ∆=V ,求点D 的坐标; (3)点E 在线段AB 上(与A 、B 不重合),点F 在线段BC 上(与B 、C 不重合),是否存在以C 、E 、F 为顶点的三角形与△ABC 相似,若存在,请直接写出点F 的坐标,若不存在,请说明理由.23.数学活动课上,张老师引导同学进行如下探究:如图1,将长为的铅笔斜靠在垂直于水平桌面的直尺的边沿上,一端固定在桌面上,图2是示意图.活动一 如图3,将铅笔绕端点顺时针旋转,与交于点,当旋转至水平位置时,铅笔的中点与点重合.数学思考 (1)设,点到的距离. ①用含的代数式表示:的长是_________,的长是________;②与的函数关系式是_____________,自变量的取值范围是____________.活动二(2)①列表:根据(1)中所求函数关系式计算并补全表格. 6 5 4 3.5 3 2.5 2 1 0.5 00.551.21.581.02.4734.295.08②描点:根据表中数值,描出①中剩余的两个点.③连线:在平面直角坐标系中,请用平滑的曲线画出该函数的图象.数学思考(3)请你结合函数的图象,写出该函数的两条性质或结论.24.已知关于x的方程220x ax a++-=.(1)当该方程的一个根为1时,求a的值及该方程的另一根;(2)求证:不论a取何实数,该方程都有两个不相等的实数根.25.如图1,已知二次函数y=ax2+32x+c(a≠0)的图象与y轴交于点A(0,4),与x轴交于点B、C,点C坐标为(8,0),连接AB、AC.(1)请直接写出二次函数y=ax2+32x+c的表达式;(2)判断△ABC的形状,并说明理由;(3)若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,请写出此时点N的坐标;(4)如图2,若点N在线段BC上运动(不与点B、C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求此时点N的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】先根据抛物线y=ax2-2x过原点排除A,再由反比例函数图象确定ab的符号,再由a、b的符号和抛物线对称轴确定抛物线与直线y=bx+a的位置关系,进而得解.【详解】∵当x=0时,y=ax2-2x=0,即抛物线y=ax2-2x经过原点,故A错误;∵反比例函数y=的图象在第一、三象限,∴ab>0,即a、b同号,当a<0时,抛物线y=ax2-2x的对称轴x=<0,对称轴在y轴左边,故D错误;当a>0时,b>0,直线y=bx+a经过第一、二、三象限,故B错误;C正确.故选C.【点睛】本题主要考查了一次函数、反比例函数、二次函数的图象与性质,根据函数图象与系数的关系进行判断是解题的关键,同时考查了数形结合的思想.2.A解析:A【解析】【分析】直接利用位似图形的性质结合相似比得出AD的长,进而得出△OAD∽△OBG,进而得出AO的长,即可得出答案.【详解】∵正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为13,∴13 ADBG=,∵BG=12,∴AD=BC=4,∵AD∥BG,∴△OAD∽△OBG,∴13 OA OB=∴0A1 4OA3= +解得:OA=2,∴OB=6,∴C 点坐标为:(6,4), 故选A . 【点睛】此题主要考查了位似变换以及相似三角形的判定与性质,正确得出AO 的长是解题关键.3.D解析:D 【解析】 【分析】由科学记数法知90.000000007710-=⨯; 【详解】解:90.000000007710-=⨯; 故选:D . 【点睛】本题考查科学记数法;熟练掌握科学记数法10n a ⨯中a 与n 的意义是解题的关键.4.D解析:D 【解析】 【分析】根据1l 与2l 关于x 轴对称,可知2l 必经过(0,-4),1l 必经过点(3,-2),然后根据待定系数法分别求出1l 、2l 的解析式后,再联立解方程组即可求得1l 与2l 的交点坐标. 【详解】∵直线1l 经过点(0,4),2l 经过点(3,2),且1l 与2l 关于x 轴对称, ∴直线1l 经过点(3,﹣2),2l 经过点(0,﹣4), 设直线1l 的解析式y =kx +b ,把(0,4)和(3,﹣2)代入直线1l 的解析式y =kx +b , 则4342b k =⎧⎨+=-⎩,解得:24k b =-⎧⎨=⎩,故直线1l 的解析式为:y =﹣2x +4, 设l 2的解析式为y=mx+n ,把(0,﹣4)和(3,2)代入直线2l 的解析式y=mx+n ,则324m n n +=⎧⎨=-⎩,解得m 2n 4=⎧⎨=-⎩,∴直线2l 的解析式为:y =2x ﹣4,联立2424y xy x=-+⎧⎨=-⎩,解得:2xy=⎧⎨=⎩即1l与2l的交点坐标为(2,0).故选D.【点睛】本题考查了关于x轴对称的点的坐标特征、待定系数法求一次函数的解析式即两直线的交点坐标问题,熟练应用相关知识解题是关键.5.C解析:C【解析】试题分析:384 000=3.84×105.故选C.考点:科学记数法—表示较大的数.6.C解析:C【解析】【分析】根据特殊几何体的展开图逐一进行分析判断即可得答案.【详解】A、圆柱的侧面展开图是矩形,故A错误;B、三棱柱的侧面展开图是矩形,故B错误;C、圆锥的侧面展开图是扇形,故C正确;D、三棱锥的侧面展开图是三个三角形拼成的图形,故D错误,故选C.【点睛】本题考查了几何体的展开图,熟记特殊几何体的侧面展开图是解题关键.7.B解析:B【解析】【分析】由于比赛取前5名参加决赛,共有11名选手参加,根据中位数的意义分析即可.【详解】11个不同的成绩按从小到大排序后,中位数及中位数之后的共有5个数,故只要知道自己的成绩和中位数就可以知道是否进入决赛了.故选B.【点睛】本题考查了中位数意义.解题的关键是正确的求出这组数据的中位数.8.C解析:C【解析】 【分析】分别计算出各项的结果,再进行判断即可. 【详解】A.2222a a a +=,故原选项错误;B. 322223x x y xy x y xy y ++---,故原选项错误;C. 3412()a a =,计算正确;D. 222()ab a b =,故原选项错误. 故选C 【点睛】本题主要考查了合并同类项,同底数幂的乘法,幂的乘方以及积的乘方,熟练掌握运算法则是解题的关键.9.C解析:C 【解析】 【分析】 【详解】试题分析:∵在矩形ABCD 中,AE 平分∠BAD , ∴∠BAE=∠DAE=45°, ∴△ABE 是等腰直角三角形,∴AB ,∵AB , ∴AE=AD , 又∠ABE=∠AHD=90° ∴△ABE ≌△AHD (AAS ), ∴BE=DH , ∴AB=BE=AH=HD , ∴∠ADE=∠AED=12(180°﹣45°)=67.5°, ∴∠CED=180°﹣45°﹣67.5°=67.5°, ∴∠AED=∠CED ,故①正确; ∵∠AHB=12(180°﹣45°)=67.5°,∠OHE=∠AHB (对顶角相等), ∴∠OHE=∠AED , ∴OE=OH ,∵∠OHD=90°﹣67.5°=22.5°,∠ODH=67.5°﹣45°=22.5°, ∴∠OHD=∠ODH , ∴OH=OD ,∴OE=OD=OH,故②正确;∵∠EBH=90°﹣67.5°=22.5°,∴∠EBH=∠OHD,又BE=DH,∠AEB=∠HDF=45°∴△BEH≌△HDF(ASA),∴BH=HF,HE=DF,故③正确;由上述①、②、③可得CD=BE、DF=EH=CE,CF=CD-DF,∴BC-CF=(CD+HE)-(CD-HE)=2HE,所以④正确;∵AB=AH,∠BAE=45°,∴△ABH不是等边三角形,∴AB≠BH,∴即AB≠HF,故⑤错误;综上所述,结论正确的是①②③④共4个.故选C.【点睛】考点:1、矩形的性质;2、全等三角形的判定与性质;3、角平分线的性质;4、等腰三角形的判定与性质10.D解析:D【解析】【分析】由被开方数为非负数可行关于x的不等式,解不等式即可求得答案.【详解】由题意得,2x-1≥0,解得:x≥12,故选D.【点睛】本题考查了函数自变量的取值范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.11.A解析:A【解析】试题解析:∵直线l:与x轴、y轴分别交于A、B,∴B(0,∴在RT△AOB中,∠OAB=30°,∴OA=3OB=3×43=12,∵⊙P与l相切,设切点为M,连接PM,则PM⊥AB,∴PM=12 PA,设P(x,0),∴PA=12-x,∴⊙P的半径PM=12PA=6-12x,∵x为整数,PM为整数,∴x可以取0,2,4,6,8,10,6个数,∴使得⊙P成为整圆的点P个数是6.故选A.考点:1.切线的性质;2.一次函数图象上点的坐标特征.12.B解析:B【解析】【分析】【详解】解:去分母得:x+m﹣3m=3x﹣9,整理得:2x=﹣2m+9,解得:x=292m-+,已知关于x的方程333x m mx x++--=3的解为正数,所以﹣2m+9>0,解得m<92,当x=3时,x=292m-+=3,解得:m=32,所以m的取值范围是:m<92且m≠32.故答案选B.二、填空题13.2【解析】分析:利用圆锥的底面周长等于侧面展开图的扇形弧长列出方程进行计算即可详解:扇形的圆心角是120°半径为6则扇形的弧长是:=4π所以圆锥的底面周长等于侧面展开图的扇形弧长是4π设圆锥的底面半解析:2【解析】分析:利用圆锥的底面周长等于侧面展开图的扇形弧长,列出方程进行计算即可.详解:扇形的圆心角是120°,半径为6,则扇形的弧长是:1206180π⋅=4π,所以圆锥的底面周长等于侧面展开图的扇形弧长是4π,设圆锥的底面半径是r,则2πr=4π,解得:r=2.所以圆锥的底面半径是2.故答案为2.点睛:本题考查了弧长计算公式及圆锥的相关知识.理解圆锥的底面周长等于侧面展开图的扇形弧长是解题的关键.14.2n-1【解析】【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3以及A2B2=2B1A2得出A3B3=4B1A2=4A4B4=8B1A2=8A5B5=16B1A2…进而得解析:2n-1【解析】【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及A2B2=2B1A2,得出A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2…进而得出答案.【详解】∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°-120°-30°=30°,又∵∠3=60°,∴∠5=180°-60°-30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=1,∴A2B1=1,∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A2B2=2B1A2,B3A3=2B2A3,∴A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2=16,以此类推:△A n B n A n+1的边长为 2n-1.故答案是:2n-1.【点睛】此题主要考查了等边三角形的性质以及等腰三角形的性质,根据已知得出A3B3=4B1A2,A4B4=8B1A2,A5B5=16B1A2进而发现规律是解题关键.15.2000【解析】【分析】设这种商品的进价是x元根据提价之后打八折售价为2240元列方程解答即可【详解】设这种商品的进价是x元由题意得(1+40)x×08=2240解得:x=2000故答案为:2000解析:2000,【解析】【分析】设这种商品的进价是x元,根据提价之后打八折,售价为2240元,列方程解答即可.【详解】设这种商品的进价是x元,由题意得,(1+40%)x×0.8=2240,解得:x=2000,故答案为:2000.【点睛】本题考查了一元一次方程的应用——销售问题,弄清题意,熟练掌握标价、折扣、实际售价间的关系是解题的关键.16.15π【解析】【分析】设圆锥母线长为l根据勾股定理求出母线长再根据圆锥侧面积公式即可得出答案【详解】设圆锥母线长为l∵r=3h=4∴母线l=∴S侧=×2πr×5=×2π×3×5=15π故答案为15π解析:15π【解析】【分析】设圆锥母线长为l,根据勾股定理求出母线长,再根据圆锥侧面积公式即可得出答案.【详解】设圆锥母线长为l,∵r=3,h=4,∴母线5 =,∴S侧=12×2πr×5=12×2π×3×5=15π,故答案为15π.【点睛】本题考查了圆锥的侧面积,熟知圆锥的母线长、底面半径、圆锥的高以及圆锥的侧面积公式是解题的关键.17.﹣4【解析】【分析】先求出不等式组的解集再得出不等式组的整数解即可【详解】解:∵解不等式①得:x≤﹣4解不等式②得:x>﹣5∴不等式组的解集为﹣5<x≤﹣4∴不等式组的整数解为x=﹣4故答案为﹣4【解析:﹣4.【解析】【分析】先求出不等式组的解集,再得出不等式组的整数解即可.【详解】解:3241112x xxx≤-⎧⎪⎨--<+⎪⎩①②,∵解不等式①得:x≤﹣4,解不等式②得:x>﹣5,∴不等式组的解集为﹣5<x≤﹣4,∴不等式组的整数解为x=﹣4,故答案为﹣4.【点睛】本题考查了解一元一次不等式组和不等式组的整数解,能根据不等式的性质求出不等式组的解集是解此题的关键.18.110°或70°【解析】试题分析:此题要分情况讨论:当等腰三角形的顶角是钝角时腰上的高在外部根据三角形的一个外角等于与它不相邻的两个内角的和即可求得顶角是90°+20°=110°;当等腰三角形的顶角解析:110°或70°.【解析】试题分析:此题要分情况讨论:当等腰三角形的顶角是钝角时,腰上的高在外部.根据三角形的一个外角等于与它不相邻的两个内角的和,即可求得顶角是90°+20°=110°;当等腰三角形的顶角是锐角时,腰上的高在其内部,故顶角是90°﹣20°=70°.故答案为110°或70°.考点:1.等腰三角形的性质;2.分类讨论.19.3或32【解析】【分析】当△CEB′为直角三角形时有两种情况:①当点B′落在矩形内部时如答图1所示连结AC先利用勾股定理计算出AC=5根据折叠的性质得∠AB′E=∠B=90°而当△CEB′为直角三角解析:3或.【解析】【分析】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,先利用勾股定理计算出AC=5,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=3,可计算出CB′=2,设BE=x,则EB′=x,CE=4-x,然后在Rt△CEB′中运用勾股定理可计算出x.②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形.【详解】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,在Rt△ABC中,AB=3,BC=4,∴AC==5,∵∠B沿AE折叠,使点B落在点B′处,∴∠AB′E=∠B=90°,当△CEB′为直角三角形时,只能得到∠EB′C=90°,∴点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,∴E B=EB′,AB=AB′=3,∴CB′=5-3=2,设BE=x,则EB′=x,CE=4-x,在Rt△CEB′中,∵EB′2+CB′2=CE2,∴x2+22=(4-x)2,解得,∴BE=;②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形,∴BE=AB=3.综上所述,BE的长为或3.故答案为:或3.20.【解析】【分析】列表得出所有等可能结果从中找到积为大于-4小于2的结果数根据概率公式计算可得【详解】列表如下:-2 -1 1 2 -2 2 -2 -4 -1 2 -1 -2 1 -2 -解析:1 2【解析】【分析】列表得出所有等可能结果,从中找到积为大于-4小于2的结果数,根据概率公式计算可得.【详解】列表如下:-2-112-22-2-4-12-1-21-2-122-4-22∴积为大于-4小于2的概率为612=12,故答案为12.【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;用到的知识点为:概率=所求情况数与总情况数之比.三、解答题21.(1)2000,108;(2)作图见解析;(3).【解析】试题分析:(1)根据B 组的人数以及百分比,即可得到被调查的人数,进而得出C 组的人数,再根据扇形圆心角的度数=部分占总体的百分比×360°进行计算即可; (2)根据C 组的人数,补全条形统计图;(3)根据甲、乙两人上班时从A 、B 、C 、D 四种交通工具中随机选择一种画树状图或列表,即可运用概率公式得到甲、乙两人恰好选择同一种交通工具上班的概率. 试题解析:(1)被调查的人数为:800÷40%=2000(人),C 组的人数为:2000﹣100﹣800﹣200﹣300=600(人),∴C 组对应的扇形圆心角度数为:×360°=108°,故答案为:2000,108; (2)条形统计图如下:(3)画树状图得:∵共有16种等可能的结果,甲、乙两人选择同一种交通工具的有4种情况,∴甲、乙两人选择同一种交通工具上班的概率为:=.考点:列表法与树状图法;扇形统计图;条形统计图. 22.(1)213y x x 222=--;(2)D 的坐标为1727,2⎛- ⎝⎭,1727,2⎛⎫+ ⎪ ⎪⎝⎭,(1,﹣3)或(3,﹣2).(3)存在,F 的坐标为48,55⎛⎫- ⎪⎝⎭,(2,﹣1)或53,24⎛⎫- ⎪⎝⎭. 【解析】【分析】(1)根据点A ,B 的坐标,利用待定系数法可求出抛物线的解析式;(2)利用二次函数图象上点的坐标特征可求出点C 的坐标,结合点A ,B 的坐标可得出AB ,AC ,BC 的长度,由AC 2+BC 2=25=AB 2可得出∠ACB=90°,过点D 作DM∥BC,交x 轴于点M ,这样的M 有两个,分别记为M 1,M 2,由D 1M 1∥BC 可得出△AD 1M 1∽△ACB,利用相似三角形的性质结合S △DBC =35S ABC ∆ ,可得出AM 1的长度,进而可得出点M 1的坐标,由BM 1=BM 2可得出点M 2的坐标,由点B ,C 的坐标利用待定系数法可求出直线BC 的解析式,进而可得出直线D 1M 1,D 2M 2的解析式,联立直线DM 和抛物线的解析式成方程组,通过解方程组即可求出点D 的坐标;(3)分点E 与点O 重合及点E 与点O 不重合两种情况考虑:①当点E 与点O 重合时,过点O 作OF 1⊥BC 于点F 1,则△COF 1∽△ABC,由点A ,C 的坐标利用待定系数法可求出直线AC 的解析式,进而可得出直线OF 1的解析式,联立直线OF 1和直线BC 的解析式成方程组,通过解方程组可求出点F 1的坐标;②当点E 不和点O 重合时,在线段AB 上取点E ,使得EB =EC ,过点E 作EF 2⊥BC 于点F 2,过点E 作EF 3⊥CE,交直线BC 于点F 3,则△CEF 2∽△BAC∽△CF 3E .由EC =EB 利用等腰三角形的性质可得出点F 2为线段BC 的中点,进而可得出点F 2的坐标;利用相似三角形的性质可求出CF 3的长度,设点F 3的坐标为(x ,12x ﹣2),结合点C 的坐标可得出关于x 的方程,解之即可得出x 的值,将其正值代入点F 3的坐标中即可得出结论.综上,此题得解. 【详解】(1)将A (﹣1,0),B (4,0)代入y =ax 2+bx ﹣2,得:2016420a b a b --=⎧⎨+-=⎩ ,解得:1232a b ⎧=⎪⎪⎨⎪=-⎪⎩, ∴抛物线的解析式为y =12x 2﹣32x ﹣2.(2)当x =0时,y =12x 2﹣32x ﹣2=﹣2,∴点C 的坐标为(0,﹣2).∵点A 的坐标为(﹣1,0),点B 的坐标为(4,0),,BC=AB =5. ∵AC 2+BC 2=25=AB 2, ∴∠ACB=90°.过点D 作DM∥BC,交x 轴于点M ,这样的M 有两个,分别记为M 1,M 2,如图1所示. ∵D 1M 1∥BC, ∴△AD 1M 1∽△ACB. ∵S △DBC =35S ABC ∆,∴125AM AB =, ∴AM 1=2,∴点M 1的坐标为(1,0), ∴BM 1=BM 2=3,∴点M 2的坐标为(7,0).设直线BC 的解析式为y =kx+c (k≠0), 将B (4,0),C (0,﹣2)代入y =kx+c ,得: 402k c c +=⎧⎨=-⎩ ,解得:122k c ⎧=⎪⎨⎪=-⎩ , ∴直线BC 的解析式为y =12x ﹣2. ∵D 1M 1∥BC∥D 2M 2,点M 1的坐标为(1,0),点M 2的坐标为(7,0), ∴直线D 1M 1的解析式为y =12 x ﹣12 ,直线D 2M 2的解析式为y =12x ﹣72.联立直线DM 和抛物线的解析式成方程组,得:2112213222y x y x x ⎧=-⎪⎪⎨⎪=--⎪⎩或2172213222y x y x x ⎧=-⎪⎪⎨⎪=--⎪⎩,解得:112x y ⎧=⎪⎨=⎪⎩,222x y ⎧=⎪⎨=⎪⎩3313x y =⎧⎨=-⎩ ,4432x y =⎧⎨=-⎩,∴点D 的坐标为(2),(),(1,﹣3)或(3,﹣2).(3)分两种情况考虑,如图2所示.①当点E 与点O 重合时,过点O 作OF 1⊥BC 于点F 1,则△COF 1∽△ABC , 设直线AC 的解析设为y =mx+n (m≠0), 将A (﹣1,0),C (0,﹣2)代入y =mx+n ,得:-02m n n +=⎧⎨=-⎩ ,解得:22m n =-⎧⎨=-⎩ , ∴直线AC 的解析式为y =﹣2x ﹣2. ∵AC⊥BC,OF 1⊥BC,∴直线OF 1的解析式为y =﹣2x .连接直线OF 1和直线BC 的解析式成方程组,得:2122y xy x =-⎧⎪⎨=-⎪⎩ ,解得:4585xy⎧=⎪⎪⎨⎪=⎪⎩,∴点F1的坐标为(4 5,﹣85);②当点E不和点O重合时,在线段AB上取点E,使得EB=EC,过点E作EF2⊥BC于点F2,过点E作EF3⊥CE,交直线BC于点F3,则△CEF2∽△BAC∽△CF3E.∵EC=EB,EF2⊥BC于点F2,∴点F2为线段BC的中点,∴点F2的坐标为(2,﹣1);∵BC=25,∴CF2=12BC=5,EF2=12CF2=52,F2F3=12EF2=5,∴CF3=554.设点F3的坐标为(x,12x﹣2),∵CF3=554,点C的坐标为(0,﹣2),∴x2+[12x﹣2﹣(﹣2)]2=12516,解得:x1=﹣52(舍去),x2=52,∴点F3的坐标为(52,﹣34).综上所述:存在以C、E、F为顶点的三角形与△ABC相似,点F的坐标为(45,﹣85),(2,﹣1)或(52,﹣34).【点睛】本题考查了待定系数法求二次函数解析式、二次函数图象上点的坐标特征、勾股定理的逆定理、待定系数法求一次函数解析式、一次函数图象上点的坐标特征、平行线的性质、相似三角形的性质以及两点间的距离公式,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数解析式;(2)找出过点D且与直线BC平行的直线的解析式;(3)分点E与点O重合及点E与点O不重合两种情况,利用相似三角形的性质及等腰三角形的性质求出点F的坐标.23.(1) ),,;(2)见解析;(3)①随着的增大而减小;②图象关于直线对称;③函数的取值范围是.【解析】【分析】(1)①利用线段的和差定义计算即可.②利用平行线分线段成比例定理解决问题即可.(2)①利用函数关系式计算即可.②描出点,即可.③由平滑的曲线画出该函数的图象即可.(3)根据函数图象写出两个性质即可(答案不唯一).【详解】解:(1)①如图3中,由题意,,,,故答案为:,.②作于.,,,,,, 故答案为:,. (2)①当时,,当时,, 故答案为2,6. ②点,点如图所示.③函数图象如图所示.(3)性质1:函数值的取值范围为. 性质2:函数图象在第一象限,随的增大而减小.【点睛】 本题属于几何变换综合题,考查了平行线分线段成比例定理,函数的图象等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.24.(1)12,32-;(2)证明见解析. 【解析】试题分析:(1)根据一元二次方程根与系数的关系列方程组求解即可.(2)要证方程都有两个不相等的实数根,只要证明根的判别式大于0即可.试题解析:(1)设方程的另一根为x 1, ∵该方程的一个根为1,∴1111{211a x a x +=--⋅=.解得132{12x a =-=. ∴a 的值为12,该方程的另一根为32-. (2)∵()()222241248444240a a a a a a a ∆=-⋅⋅-=-+=-++=-+>,∴不论a取何实数,该方程都有两个不相等的实数根.考点:1.一元二次方程根与系数的关系;2. 一元二次方程根根的判别式;3.配方法的应用.25.(1)y=﹣14x2+32x+4;(2)△ABC是直角三角形.理由见解析;(3)点N的坐标分别为(﹣8,0)、(8﹣45,0)、(3,0)、(8+45,0).(4)当△AMN面积最大时,N点坐标为(3,0).【解析】【分析】(1)由点A、C的坐标利用待定系数法即可求出二次函数的解析式;(2)令二次函数解析式中y=0,求出点B的坐标,再由两点间的距离公式求出线段AB、AC、BC的长度,由三者满足AB2+AC2=BC2即可得出△ABC为直角三角形;(3)分别以A、C两点为圆心,AC长为半径画弧,与x轴交于三个点,由AC的垂直平分线与x轴交于一点,即可求得点N的坐标;(4)设点N的坐标为(n,0)(-2<n<8),通过分割图形法求面积,再根据相似三角形面积间的关系以及三角形的面积公式即可得出S△AMN关于n的二次函数关系式,根据二次函数的性质即可解决最值问题.【详解】(1)∵二次函数y=ax2+x+c的图象与y轴交于点A(0,4),与x轴交于点B、C,点C坐标为(8,0),∴,解得.∴抛物线表达式:y=﹣x2+x+4;(2)△ABC是直角三角形.令y=0,则﹣x2+x+4=0,解得x1=8,x2=﹣2,∴点B的坐标为(﹣2,0),由已知可得,在Rt△ABO中AB2=BO2+AO2=22+42=20,在Rt△AOC中AC2=AO2+CO2=42+82=80,又∵BC=OB+OC=2+8=10,∴在△ABC中AB2+AC2=20+80=102=BC2∴△ABC是直角三角形.(3)∵A(0,4),C(8,0),∴AC==4,①以A为圆心,以AC长为半径作圆,交x轴于N,此时N的坐标为(﹣8,0),②以C为圆心,以AC长为半径作圆,交x轴于N,此时N的坐标为(8﹣4,0)或(8+4,0)③作AC的垂直平分线,交x轴于N,此时N的坐标为(3,0),综上,若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,点N的坐标分别为(﹣8,0)、(8﹣4,0)、(3,0)、(8+4,0).(4)如图,设点N的坐标为(n,0),则BN=n+2,过M点作MD⊥x轴于点D,∴MD∥OA,∴△BMD∽△BAO,∴=,∵MN∥AC∴=,∴=,∵OA=4,BC=10,BN=n+2∴MD=(n+2),∵S△AMN=S△ABN﹣S△BMN=BN•OA﹣BN•MD=(n+2)×4﹣×(n+2)2=﹣(n﹣3)2+5,当n=3时,△AMN面积最大是5,∴N点坐标为(3,0).∴当△AMN面积最大时,N点坐标为(3,0).【点睛】本题考查了二次函数的综合问题,熟练掌握二次函数的知识点是本题解题的关键.。

2019-2020中考数学模拟试卷(附答案)

2019-2020中考数学模拟试卷(附答案)

2019-2020中考数学模拟试卷(附答案)一、选择题1.如图,矩形ABCD 中,AB=3,BC=4,动点P 从A 点出发,按A→B→C 的方向在AB 和BC 上移动,记PA=x ,点D 到直线PA 的距离为y ,则y 关于x 的函数图象大致是( )A .B .C .D .2.在下面的四个几何体中,左视图与主视图不相同的几何体是( )A .B .C .D .3.如图,在热气球C 处测得地面A 、B 两点的俯角分别为30°、45°,热气球C 的高度CD 为100米,点A 、D 、B 在同一直线上,则AB 两点的距离是( )A .200米B .3C .3米D .10031)米4.阅读理解:已知两点1122,,()(),M x y N x y ,则线段MN 的中点(),K x y 的坐标公式为:122x x x +=,122y y y +=.如图,已知点O 为坐标原点,点()30A -,,O e 经过点A ,点B 为弦PA 的中点.若点(),P a b ,则有,a b 满足等式:229a b +=.设(),B m n ,则,m n 满足的等式是( )A .229m n +=B .223922m n -⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭ C .()()222323m n ++= D .()222349m n ++= 5.将一副三角板和一张对边平行的纸条按如图摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是( )A .15°B .22.5°C .30°D .45° 6.已知平面内不同的两点A (a +2,4)和B (3,2a +2)到x 轴的距离相等,则a 的值为( )A .﹣3B .﹣5C .1或﹣3D .1或﹣57.如图,把一个正方形三次对折后沿虚线剪下,得到的图形是( )A .B .C .D .8.分式方程()()31112x x x x -=--+的解为( )A .1x =B .2x =C .1x =-D .无解9.下列各曲线中表示y 是x 的函数的是( )A .B .C .D .10.如图,O 为坐标原点,菱形OABC 的顶点A 的坐标为(34)-,,顶点C 在x 轴的负半轴上,函数(0)k y x x =<的图象经过顶点B ,则k 的值为( )A .12-B .27-C .32-D .36-11.某服装加工厂加工校服960套的订单,原计划每天做48套.正好按时完成.后因学校要求提前5天交货,为按时完成订单,设每天就多做x 套,则x 应满足的方程为( )A .96096054848x -=+B .96096054848x +=+C .960960548x-= D .96096054848x-=+ 12.如图中的几何体是由一个圆柱和个长方体组成的,该几何体的俯视图是( )A .B .C .D .二、填空题13.如图,∠MON=30°,点A 1,A 2,A 3,…在射线ON 上,点B 1,B 2,B 3,…在射线OM 上,△A 1B 1A 2,△A 2B 2A 3,△A 3B 3A 4…均为等边三角形.若OA 1=1,则△A n B n A n+1的边长为______.14.如图,添加一个条件: ,使△ADE ∽△ACB ,(写出一个即可)15.若a b =2,则222a b a ab --的值为________. 16.如图,一张三角形纸片ABC ,∠C=90°,AC=8cm ,BC=6cm .现将纸片折叠:使点A 与点B 重合,那么折痕长等于 cm .17.在一次班级数学测试中,65分为及格分数线,全班的总平均分为66分,而所有成绩及格的学生的平均分为72分,所有成绩不及格的学生的平均分为58分,为了减少不及格的学生人数,老师给每位学生的成绩加上了5分,加分之后,所有成绩及格的学生的平均分变为75分,所有成绩不及格的学生的平均分变为59分,已知该班学生人数大于15人少于30人,该班共有_____位学生.18.如图,将矩形ABCD 沿CE 折叠,点B 恰好落在边AD 的F 处,如果AB 2BC 3=,那么tan ∠DCF 的值是____.19.82=_______________.20.10a b b --=,则1a +=__.三、解答题21.某种蔬菜的销售单价y 1与销售月份x 之间的关系如图1所示,成本y 2与销售月份x 之间的关系如图2所示(图1的图象是线段,图2的图象是抛物线)(1)已知6月份这种蔬菜的成本最低,此时出售每千克的收益是多少元?(收益=售价﹣成本)(2)哪个月出售这种蔬菜,每千克的收益最大?简单说明理由.(3)已知市场部销售该种蔬菜4、5两个月的总收益为22万元,且5月份的销售量比4月份的销售量多2万千克,求4、5两个月的销售量分别是多少万千克?22.已知222111x x x A x x ++=---. (1)化简A ;(2)当x 满足不等式组1030x x -≥⎧⎨-<⎩,且x 为整数时,求A 的值. 23.荆门市是著名的“鱼米之乡”.某水产经销商在荆门市长湖养殖场批发购进草鱼和乌鱼(俗称黑鱼)共75千克,且乌鱼的进货量大于40千克.已知草鱼的批发单价为8元/千克,乌鱼的批发单价与进货量的函数关系如图所示.(1)请直接写出批发购进乌鱼所需总金额y (元)与进货量x (千克)之间的函数关系式;(2)若经销商将购进的这批鱼当日零售,草鱼和乌鱼分别可卖出89%、95%,要使总零售量不低于进货量的93%,问该经销商应怎样安排进货,才能使进货费用最低?最低费用是多少?24.已知:如图,在ABC V 中,AB AC =,AD BC ⊥,AN 为ABC V 外角CAM ∠的平分线,CE AN ⊥.(1)求证:四边形ADCE 为矩形;(2)当AD 与BC 满足什么数量关系时,四边形ADCE 是正方形?并给予证明25.小华想复习分式方程,由于印刷问题,有一个数“?”看不清楚:?1322x x+=--. (1)她把这个数“?”猜成5,请你帮小华解这个分式方程;(2)小华的妈妈说:“我看到标准答案是:方程的增根是2x=,原分式方程无解”,请你求出原分式方程中“?”代表的数是多少?【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】①点P在AB上时,点D到AP的距离为AD的长度,②点P在BC上时,根据同角的余角相等求出∠APB=∠PAD,再利用相似三角形的列出比例式整理得到y与x的关系式,从而得解.【详解】①点P在AB上时,0≤x≤3,点D到AP的距离为AD的长度,是定值4;②点P在BC上时,3<x≤5,∵∠APB+∠BAP=90°,∠PAD+∠BAP=90°,∴∠APB=∠PAD,又∵∠B=∠DEA=90°,∴△ABP∽△DEA,∴ABDE=APADAB APDE AD=,即34xy=,∴y=12x,纵观各选项,只有B选项图形符合,故选B.2.B解析:B【解析】【分析】由几何体的三视图知识可知,主视图、左视图是分别从物体正面、左面看所得到的图形,细心观察即可求解.【详解】A 、正方体的左视图与主视图都是正方形,故A 选项不合题意;B 、长方体的左视图与主视图都是矩形,但是矩形的长宽不一样,故B 选项与题意相符;C 、球的左视图与主视图都是圆,故C 选项不合题意;D 、圆锥左视图与主视图都是等腰三角形,故D 选项不合题意;故选B .【点睛】本题主要考查了几何题的三视图,解题关键是能正确画出几何体的三视图.3.D解析:D【解析】【分析】在热气球C 处测得地面B 点的俯角分别为45°,BD=CD=100米,再在Rt △ACD 中求出AD 的长,据此即可求出AB 的长.【详解】∵在热气球C 处测得地面B 点的俯角分别为45°,∴BD =CD =100米,∵在热气球C 处测得地面A 点的俯角分别为30°,∴AC =2×100=200米,∴AD∴AB =AD +BD =100(故选D .【点睛】本题考查了解直角三角形的应用--仰角、俯角问题,要求学生能借助仰角构造直角三角形并解直角三角形.4.D解析:D【解析】【分析】根据中点坐标公式求得点B 的坐标,然后代入,a b 满足的等式进行求解即可.【详解】∵点()30A -,,点(),P a b ,点(),B m n 为弦PA 的中点, ∴32a m -+=,02b n +=, ∴23,2a m b n =+=,又,a b 满足等式:229a b +=,∴()222349m n ++=,故选D .【点睛】本题考查了坐标与图形性质,解题的关键是理解中点坐标公式. 5.A解析:A【解析】试题分析:如图,过A 点作AB ∥a ,∴∠1=∠2,∵a ∥b ,∴AB ∥b ,∴∠3=∠4=30°,而∠2+∠3=45°,∴∠2=15°,∴∠1=15°.故选A .考点:平行线的性质.6.A解析:A【解析】分析:根据点A (a +2,4)和B (3,2a +2)到x 轴的距离相等,得到4=|2a +2|,即可解答.详解:∵点A (a +2,4)和B (3,2a +2)到x 轴的距离相等,∴4=|2a +2|,a +2≠3,解得:a =−3,故选A .点睛:考查点的坐标的相关知识;用到的知识点为:到x 轴和y 轴的距离相等的点的横纵坐标相等或互为相反数.7.C解析:C【解析】【分析】按照题中所述,进行实际操作,答案就会很直观地呈现.【详解】 解:将图形按三次对折的方式展开,依次为:.故选:C .【点睛】本题主要考查学生的动手能力及空间想象能力,对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.8.D解析:D【解析】分析:分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.详解:去分母得:x 2+2x ﹣x 2﹣x +2=3,解得:x =1,经检验x =1是增根,分式方程无解. 故选D .点睛:本题考查了分式方程的解,始终注意分母不为0这个条件.9.D解析:D【解析】根据函数的意义可知:对于自变量x 的任何值,y 都有唯一的值与之相对应,故D 正确. 故选D .10.C解析:C【解析】【分析】【详解】∵A (﹣3,4),∴,∵四边形OABC 是菱形,∴AO=CB=OC=AB=5,则点B 的横坐标为﹣3﹣5=﹣8,故B 的坐标为:(﹣8,4),将点B 的坐标代入k y x=得,4=8k -,解得:k=﹣32.故选C . 考点:菱形的性质;反比例函数图象上点的坐标特征. 11.D解析:D【解析】 解:原来所用的时间为:96048,实际所用的时间为:96048x +,所列方程为:96096054848x -=+.故选D . 点睛:本题考查了由实际问题抽象出分式方程,关键是时间作为等量关系,根据每天多做x 套,结果提前5天加工完成,可列出方程求解.12.D解析:D【解析】【分析】根据从上边看得到的图形是俯视图,可得答案.【详解】解:从上边看是一个圆形,圆形内部是一个虚线的正方形.故选:D.【点睛】本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.二、填空题13.2n-1【解析】【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3以及A2B2=2B1A2得出A3B3=4B1A2=4A4B4=8B1A2=8A5B5=16B1A2…进而得解析:2n-1【解析】【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及A2B2=2B1A2,得出A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2…进而得出答案.【详解】∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°-120°-30°=30°,又∵∠3=60°,∴∠5=180°-60°-30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=1,∴A2B1=1,∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A2B2=2B1A2,B3A3=2B2A3,∴A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2=16,以此类推:△A n B n A n+1的边长为 2n-1.故答案是:2n-1.【点睛】此题主要考查了等边三角形的性质以及等腰三角形的性质,根据已知得出A3B3=4B1A2,A4B4=8B1A2,A5B5=16B1A2进而发现规律是解题关键.14.∠ADE=∠ACB(答案不唯一)【解析】【分析】【详解】相似三角形的判定有三种方法:①三边法:三组对应边的比相等的两个三角形相似;②两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似;解析:∠ADE=∠ACB(答案不唯一)【解析】【分析】【详解】相似三角形的判定有三种方法:①三边法:三组对应边的比相等的两个三角形相似;②两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似;③两角法:有两组角对应相等的两个三角形相似.由此可得出可添加的条件:由题意得,∠A=∠A(公共角),则添加:∠ADE=∠ACB或∠AED=∠ABC,利用两角法可判定△ADE∽△ACB;添加:AD AEAC AB=,利用两边及其夹角法可判定△ADE∽△ACB.15.【解析】分析:先根据题意得出a=2b再由分式的基本性质把原式进行化简把a=2b代入进行计算即可详解:∵=2∴a=2b原式==当a=2b时原式==故答案为点睛:本题考查的是分式的化简求值熟知分式的基本解析:3 2【解析】分析:先根据题意得出a=2b,再由分式的基本性质把原式进行化简,把a=2b代入进行计算即可.详解:∵ab=2,∴a=2b,原式=()()() a b a b a a b+--=a b a +当a=2b时,原式=22b bb=32.故答案为32.点睛:本题考查的是分式的化简求值,熟知分式的基本性质是解答此题的关键.16.cm【解析】试题解析:如图折痕为GH由勾股定理得:AB==10cm由折叠得:AG=BG=AB=×10=5cmGH⊥AB∴∠AGH=90°∵∠A=∠A∠AGH=∠C=90°∴△ACB∽△AGH∴∴∴G解析:cm.【解析】试题解析:如图,折痕为GH,由勾股定理得:AB==10cm,由折叠得:AG=BG=AB=×10=5cm,GH⊥AB,∴∠AGH=90°,∵∠A=∠A,∠AGH=∠C=90°,∴△ACB∽△AGH,∴,∴,∴GH=cm.考点:翻折变换17.28【解析】【分析】设加分前及格人数为x人不及格人数为y人原来不及格加分为及格的人数为n人所以72x+58y=66(x+y)75(x+n)+59(y-n)=(66+5)(x+y)用n 分别表示xy得到解析:28【解析】【分析】设加分前及格人数为x人,不及格人数为y人,原来不及格加分为及格的人数为n人,所以,用n分别表示x、y得到x+y=n,然后利用15<n<30,n为正整数,n为整数可得到n=5,从而得到x+y的值.【详解】设加分前及格人数为x人,不及格人数为y人,原来不及格加分为为及格的人数为n人,根据题意得,解得,所以x+y=n,而15<n<30,n为正整数,n为整数,所以n=5,所以x+y=28,即该班共有28位学生.故答案为28.【点睛】本题考查了加权平均数:熟练掌握加权平均数的计算方法.构建方程组的模型是解题关键.18.【解析】【分析】【详解】解:∵四边形ABCD是矩形∴AB=CD∠D=90°∵将矩形ABCD沿CE折叠点B恰好落在边AD的F处∴CF=BC∵∴∴设CD =2xCF=3x∴∴tan∠DCF=故答案为:【点解析:52.【解析】【分析】【详解】解:∵四边形ABCD是矩形,∴AB=CD,∠D=90°,∵将矩形ABCD沿CE折叠,点B恰好落在边AD的F处,∴CF=BC,∵AB2BC3=,∴CD2CF3=.∴设CD=2x,CF=3x,∴22DF=CF CD5x-.∴tan∠DCF=DF5x5 CD=.【点睛】 本题考查翻折变换(折叠问题),翻折对称的性质,矩形的性质,勾股定理,锐角三角函数定义.19.【解析】【分析】先把化简为2再合并同类二次根式即可得解【详解】2-=故答案为【点睛】本题考查了二次根式的运算正确对二次根式进行化简是关键【解析】【分析】.【详解】=..【点睛】本题考查了二次根式的运算,正确对二次根式进行化简是关键.20.【解析】【分析】利用非负数的性质结合绝对值与二次根式的性质即可求出ab 的值进而即可得出答案【详解】∵+|b﹣1|=0又∵∴a﹣b=0且b ﹣1=0解得:a=b=1∴a+1=2故答案为2【点睛】本题主要解析:【解析】【分析】利用非负数的性质结合绝对值与二次根式的性质即可求出a ,b 的值,进而即可得出答案.【详解】b ﹣1|=0,0≥,|1|0b -≥,∴a ﹣b =0且b ﹣1=0,解得:a =b =1,∴a +1=2.故答案为2.【点睛】本题主要考查了非负数的性质以及绝对值与二次根式的性质,根据几个非负数的和为0,那么每个非负数都为0得到关于a 、b 的方程是解题的关键.三、解答题21.(1)6月份出售这种蔬菜每千克的收益是2元.(2)5月份出售这种蔬菜,每千克的收益最大.(3)4月份的销售量为4万千克,5月份的销售量为6万千克.【解析】分析:(1)找出当x=6时,y 1、y 2的值,二者作差即可得出结论;(2)观察图象找出点的坐标,利用待定系数法即可求出y 1、y 2关于x 的函数关系式,二者作差后利用二次函数的性质即可解决最值问题;(3)求出当x=4时,y 1﹣y 2的值,设4月份的销售量为t 万千克,则5月份的销售量为(t+2)万千克,根据总利润=每千克利润×销售数量,即可得出关于t 的一元一次方程,解之即可得出结论.详解:(1)当x=6时,y 1=3,y 2=1,∵y 1﹣y 2=3﹣1=2,∴6月份出售这种蔬菜每千克的收益是2元.(2)设y 1=mx+n ,y 2=a (x ﹣6)2+1.将(3,5)、(6,3)代入y 1=mx+n ,3563m n m n +=⎧⎨+=⎩,解得:237m n ⎧=-⎪⎨⎪=⎩, ∴y 1=﹣23x+7; 将(3,4)代入y 2=a (x ﹣6)2+1,4=a (3﹣6)2+1,解得:a=13, ∴y 2=13(x ﹣6)2+1=13x 2﹣4x+13. ∴y 1﹣y 2=﹣23x+7﹣(13x 2﹣4x+13)=﹣13x 2+103x ﹣6=﹣13(x ﹣5)2+73. ∵﹣13<0, ∴当x=5时,y 1﹣y 2取最大值,最大值为73, 即5月份出售这种蔬菜,每千克的收益最大. (3)当t=4时,y 1﹣y 2=﹣13x 2+103x ﹣6=2. 设4月份的销售量为t 万千克,则5月份的销售量为(t+2)万千克,根据题意得:2t+73(t+2)=22, 解得:t=4,∴t+2=6.答:4月份的销售量为4万千克,5月份的销售量为6万千克.点睛:本题考查了待定系数法求一次(二次)函数解析式、二次函数的性质以及一元一次方程的应用,解题的关键是:(1)观察函数图象,找出当x=6时y 1﹣y 2的值;(2)根据点的坐标,利用待定系数法求出y 1、y 2关于x 的函数关系式;(3)找准等量关系,正确列出一元一次方程.22.(1)11x-;(2)1【解析】【分析】(1)根据分式四则混合运算的运算法则,把A式进行化简即可.(2)首先求出不等式组的解集,然后根据x为整数求出x的值,再把求出的x的值代入化简后的A式进行计算即可.【详解】(1)原式=2(1)(1)(1)1x xx x x+-+--=111x xx x+---=11x xx+--=11x-(2)不等式组的解集为1≤x<3 ∵x为整数,∴x=1或x=2,①当x=1时,∵x﹣1≠0,∴A=11x-中x≠1,∴当x=1时,A=11x-无意义.②当x=2时,A=11x-=1=12-1考点:分式的化简求值、一元一次不等式组.23.(1)y=26(2040)24(40)x xx x⎧⎨>⎩剟;(2)该经销商应购进草鱼25千克,乌鱼50千克,才能使进货费用最低,最低费用为1400元.【解析】【分析】【详解】(1)批发购进乌鱼所需总金额y(元)与进货量x(千克)之间的函数关系式y=26(2040) 24(40)x xx x⎧⎨>⎩剟;(2)设该经销商购进乌鱼x千克,则购进草鱼(75﹣x)千克,所需进货费用为w元.由题意得:4089%(75)95%93%75 xx x>⎧⎨⨯-+⨯⎩…解得x≥50.由题意得w=8(75﹣x)+24x=16x+600.∵16>0,∴w 的值随x 的增大而增大.∴当x=50时,75﹣x=25,W 最小=1400(元).答:该经销商应购进草鱼25千克,乌鱼50千克,才能使进货费用最低,最低费用为1400元.24.(1)见解析 (2) 12AD BC =,理由见解析. 【解析】【分析】(1)根据矩形的有三个角是直角的四边形是矩形,已知CE ⊥AN ,AD ⊥BC ,所以求证∠DAE=90°,可以证明四边形ADCE 为矩形.(2)由正方形ADCE 的性质逆推得AD DC =,结合等腰三角形的性质可以得到答案.【详解】(1)证明:在△ABC 中,AB=AC ,AD ⊥BC , ∴∠BAD=∠DAC ,∵AN 是△ABC 外角∠CAM 的平分线, ∴∠MAE=∠CAE ,∴∠DAE=∠DAC+∠CAE=12×180°=90°, 又∵AD ⊥BC ,CE ⊥AN , ∴∠ADC=∠CEA=90°,∴四边形ADCE 为矩形.(2)当12AD BC =时,四边形ADCE 是一个正方形. 理由:∵AB=AC , AD ⊥BC ,BD DC ∴=12AD BC =Q ,AD BD DC ∴== , ∵四边形ADCE 为矩形, ∴矩形ADCE 是正方形. ∴当12AD BC =时,四边形ADCE 是一个正方形. 【点睛】本题考查矩形的判定以及正方形的性质的应用,同时考查了等腰三角形的性质,熟练掌握这些知识点是关键.25.(1)0x =;(2)原分式方程中“?”代表的数是-1.【解析】【分析】(1)“?”当成5,解分式方程即可,(2)方程有增根是去分母时产生的,故先去分母,再将x=2代入即可解答.【详解】(1)方程两边同时乘以()2x -得()5321x +-=-解得 0x =经检验,0x =是原分式方程的解.(2)设?为m,x-得方程两边同时乘以()2()+-=-321m xx=是原分式方程的增根,由于2x=代入上面的等式得所以把2()m+-=-3221m=-1所以,原分式方程中“?”代表的数是-1.【点睛】本题考查了分式方程解法和增根的定义及应用.增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.。

2019-2020数学中考模拟试卷(含答案)

2019-2020数学中考模拟试卷(含答案)

2019-2020数学中考模拟试卷(含答案)一、选择题1.在数轴上,与表示6的点距离最近的整数点所表示的数是( ) A .1 B .2 C .3 D .42.阅读理解:已知两点1122,,()(),M x y N x y ,则线段MN 的中点(),K x y 的坐标公式为:122x x x +=,122y y y +=.如图,已知点O 为坐标原点,点()30A -,,O e 经过点A ,点B 为弦PA 的中点.若点(),P a b ,则有,a b 满足等式:229a b +=.设(),B m n ,则,m n 满足的等式是( )A .229m n +=B .223922m n -⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭ C .()()222323m n ++= D .()222349m n ++= 3.九年级某同学6次数学小测验的成绩分别为:90分,95分,96分,96分,95分,89分,则该同学这6次成绩的中位数是( )A .94B .95分C .95.5分D .96分 4.函数21y x =-中的自变量x 的取值范围是( ) A .x ≠12 B .x ≥1 C .x >12 D .x ≥125.直线y =﹣kx +k ﹣3与直线y =kx 在同一坐标系中的大致图象可能是( ) A . B . C . D .6.二次函数y=ax 2+bx+c 的图象如图所示,对称轴是x=-1.有以下结论:①abc>0,②4ac<b 2,③2a+b=0,④a -b+c>2,其中正确的结论的个数是( )A .1B .2C .3D .4 7.下列二次根式中的最简二次根式是( )A .30B .12C .8D .0.5 8.某公司计划新建一个容积V(m 3)一定的长方体污水处理池,池的底面积S(m 2)与其深度h (m )之间的函数关系式为()0S V h h=≠,这个函数的图象大致是( ) A . B .C .D .9.下列计算正确的是( )A .()3473=a b a bB .()232482--=--b a b ab b C .32242⋅+⋅=a a a a a D .22(5)25-=-a a10.如图,已知////AB CD EF ,那么下列结论正确的是( )A .AD BC DF CE =B .BC DF CE AD = C .CD BC EF BE = D .CD AD EF AF= 11.如图,已知⊙O 的半径是2,点A 、B 、C 在⊙O 上,若四边形OABC 为菱形,则图中阴影部分面积为( )A .23π﹣23 B .13π﹣3 C .43π﹣23 D .43π﹣3 12.二次函数2y ax bx c =++的图象如图所示,则一次函数24y bx b ac =+-与反比例函数a b c y x++=在同一坐标系内的图象大致为( )A .B .C .D .二、填空题13.如图,∠MON=30°,点A 1,A 2,A 3,…在射线ON 上,点B 1,B 2,B 3,…在射线OM 上,△A 1B 1A 2,△A 2B 2A 3,△A 3B 3A 4…均为等边三角形.若OA 1=1,则△A n B n A n+1的边长为______.14.如图,在四边形ABCD 中,∠B=∠D=90°,AB =3, BC =2,tanA =43,则CD =_____.15.如图,Rt AOB ∆中,90AOB ∠=︒,顶点A ,B 分别在反比例函数()10y x x =>与()50y x x-=<的图象上,则tan BAO ∠的值为_____.16.已知关于x 的一元二次方程mx 2+5x+m 2﹣2m=0有一个根为0,则m=_____.17.如图是两块完全一样的含30°角的直角三角尺,分别记做△ABC 与△A′B′C′,现将两块三角尺重叠在一起,设较长直角边的中点为M ,绕中点M 转动上面的三角尺ABC ,使其直角顶点C 恰好落在三角尺A′B′C′的斜边A′B′上.当∠A =30°,AC =10时,两直角顶点C ,C′间的距离是_____.18.计算:2cos45°﹣(π+1)0+111()42-+=______. 19.在Rt△ABC 中,∠C=90°,AC=6,BC=8,点E 是BC 边上的动点,连接AE ,过点E 作AE 的垂线交AB 边于点F ,则AF 的最小值为_______20.分解因式:2x 2﹣18=_____.三、解答题21.在□AB CD ,过点D 作DE ⊥AB 于点E ,点F 在边CD 上,DF =BE ,连接AF ,BF.(1)求证:四边形BFDE 是矩形;(2)若CF=3,BF=4,DF=5,求证:AF平分∠DAB.22.某小区响应济南市提出的“建绿透绿”号召,购买了银杏树和玉兰树共150棵用来美化小区环境,购买银杏树用了12000元,购买玉兰树用了9000元.已知玉兰树的单价是银杏树单价的1.5倍,那么银杏树和玉兰树的单价各是多少?23.(12分)“世界那么大,我想去看看”一句话红遍网络,骑自行车旅行越来越受到人们的喜爱,各种品牌的山地自行车相继投放市场,顺风车行经营的A型车2015年6月份销售总额为3.2万元,今年经过改造升级后A型车每辆销售价比去年增加400元,若今年6月份与去年6月份卖出的A型车数量相同,则今年6月份A型车销售总额将比去年6月份销售总额增加25%.(1)求今年6月份A型车每辆销售价多少元?(用列方程的方法解答)(2)该车行计划7月份新进一批A型车和B型车共50辆,且B型车的进货数量不超过A 型车数量的两倍,应如何进货才能使这批车获利最多?A、B两种型号车的进货和销售价格如下表:A型车B型车进货价格(元/辆)11001400销售价格(元/辆)今年的销售价格240024.已知点A在x轴负半轴上,点B在y轴正半轴上,线段OB的长是方程x2﹣2x﹣8=0的解,tan∠BAO=12.(1)求点A的坐标;(2)点E在y轴负半轴上,直线EC⊥AB,交线段AB于点C,交x轴于点D,S△DOE=16.若反比例函数y=kx的图象经过点C,求k的值;(3)在(2)条件下,点M是DO中点,点N,P,Q在直线BD或y轴上,是否存在点P,使四边形MNPQ是矩形?若存在,请直接写出点P的坐标;若不存在,请说明理由.25.解不等式组3415122x x x x ≥-⎧⎪⎨--⎪⎩>,并把它的解集在数轴上表示出来【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】的大小,即可得到结果.【详解】46 6.25<<Q ,2 2.5∴<<,的点距离最近的整数点所表示的数是2,故选:B .【点睛】此题考查了实数与数轴,以及算术平方根,熟练掌握各自的性质是解本题的关键.2.D解析:D【解析】【分析】根据中点坐标公式求得点B 的坐标,然后代入,a b 满足的等式进行求解即可.【详解】∵点()30A -,,点(),P a b ,点(),B m n 为弦PA 的中点, ∴32a m -+=,02b n +=, ∴23,2a m b n =+=, 又,a b 满足等式:229a b +=,∴()222349m n ++=,故选D .【点睛】本题考查了坐标与图形性质,解题的关键是理解中点坐标公式.3.B解析:B【解析】【分析】根据中位数的定义直接求解即可.【详解】把这些数从小到大排列为:89分,90分,95分,95分,96分,96分,则该同学这6次成绩的中位数是:=95分;故选:B.【点睛】此题考查了确定一组数据的中位数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.4.D解析:D【解析】【分析】由被开方数为非负数可行关于x的不等式,解不等式即可求得答案.【详解】由题意得,2x-1≥0,解得:x≥12,故选D.【点睛】本题考查了函数自变量的取值范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.5.B解析:B【解析】【分析】若y=kx过第一、三象限,则k>0,所以y=-kx+k-3过第二、四象限,可对A、D进行判断;若y=kx过第二、四象限,则k<0,-k>0,k-3<0,所以y=-kx+k-3过第一、三象限,与y轴的交点在x轴下方,则可对B、C进行判断.【详解】A、y=kx过第一、三象限,则k>0,所以y=-kx+k-3过第二、四象限,所以A选项错误;B、y=kx过第二、四象限,则k<0,-k>0,k-3<0,所以y=-kx+k-3过第一、三象限,与y轴的交点在x轴下方,所以B选项正确;C、y=kx过第二、四象限,则k<0,-k>0,k-3<0,所以y=-kx+k-3过第一、三象限,与y轴的交点在x轴下方,所以C选项错误;D、y=kx过第一、三象限,则k>0,所以y=-kx+k-3过第二、四象限,所以D选项错误.故选B.【点睛】本题考查了一次函数的图象:一次函数y=kx+b(k≠0)的图象为一条直线,当k>0,图象过第一、三象限;当k<0,图象过第二、四象限;直线与y轴的交点坐标为(0,b).6.C解析:C【解析】【详解】①∵抛物线开口向下,∴a<0,∵抛物线的对称轴为直线x==﹣1,∴b=2a<0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc>0,所以①正确;②∵抛物线与x轴有2个交点,∴△=b2-4ac>0,∴4ac <b2,所以②正确;③∵b=2a,∴2a﹣b=0,所以③错误;④∵x=﹣1时,y>0,∴a﹣b+c>2,所以④正确.故选C.7.A解析:A【解析】【分析】根据最简二次根式的概念判断即可.【详解】A30B12=23C8=22,不是最简二次根式;D2 0.5=故选:A.【点睛】此题考查最简二次根式的概念,解题关键在于掌握(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式的二次根式,叫做最简二次根式.8.C解析:C【解析】【分析】【详解】解:由题意可知:00v h >>, , ∴ (0)v s h h=≠中,当v 的值一定时,s 是h 的反比例函数, ∴函数 (0)v s h h=≠的图象当00v h >>,时是:“双曲线”在第一象限的分支. 故选C. 9.C解析:C【解析】【分析】根据幂的乘方、单项式乘以单项式、合并同类项的运算法则及完全平方公式对各选项逐一计算即可得答案.【详解】A.43123()a b a b =,故该选项计算错误,B.()232482b a b ab b --=-+,故该选项计算错误, C.32242⋅+⋅=a a a a a ,故该选项计算正确,D.22(5)1025a a a -=-+,故该选项计算错误,故选B.【点睛】本题考查幂的乘方、单项式乘以单项式、合并同类项的运算法则及完全平方公式,熟练掌握运算法则是解题关键.10.A解析:A【解析】【分析】已知AB ∥CD ∥EF ,根据平行线分线段成比例定理,对各项进行分析即可.【详解】∵AB ∥CD ∥EF , ∴AD BC DF CE=. 故选A .【点睛】本题考查平行线分线段成比例定理,找准对应关系,避免错选其他答案.11.C解析:C【解析】分析:连接OB 和AC 交于点D ,根据菱形及直角三角形的性质先求出AC 的长及∠AOC的度数,然后求出菱形ABCO 及扇形AOC 的面积,则由S 菱形ABCO ﹣S 扇形AOC 可得答案. 详解:连接OB 和AC 交于点D ,如图所示:∵圆的半径为2,∴OB=OA=OC=2,又四边形OABC 是菱形,∴OB ⊥AC ,OD=12OB=1, 在Rt △COD 中利用勾股定理可知:22213-=,3 ∵sin ∠COD= 3CD OC = ∴∠COD=60°,∠AOC=2∠COD=120°,∴S 菱形ABCO =12B×AC=12×2×33 S 扇形AOC =2120243603ππ⨯⨯=, 则图中阴影部分面积为S 菱形ABCO ﹣S 扇形AOC =4233π- 故选C .点睛:本题考查扇形面积的计算及菱形的性质,解题关键是熟练掌握菱形的面积=12a•b (a 、b 是两条对角线的长度);扇形的面积=2360n r π,有一定的难度. 12.D解析:D【解析】【分析】根据二次函数图象开口向上得到a>0,再根据对称轴确定出b ,根据二次函数图形与x 轴的交点个数,判断24b ac -的符号,根据图象发现当x=1时y=a+b+c<0,然后确定出一次函数图象与反比例函数图象的情况,即可得解.【详解】∵二次函数图象开口方向向上,∴a >0,∵对称轴为直线02b x a=->, ∴b <0, 二次函数图形与x 轴有两个交点,则24b ac ->0,∵当x =1时y =a +b +c <0,∴24y bx b ac =+-的图象经过第二四象限,且与y 轴的正半轴相交, 反比例函数a b c y x++=图象在第二、四象限, 只有D 选项图象符合.故选:D.【点睛】 考查反比例函数的图象,一次函数的图象,二次函数的图象,掌握函数图象与系数的关系是解题的关键.二、填空题13.2n-1【解析】【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3以及A2B2=2B1A2得出A3B3=4B1A2=4A4B4=8B1A2=8A5B5=16B1A2…进而得 解析:2n-1【解析】【分析】根据等腰三角形的性质以及平行线的性质得出A 1B 1∥A 2B 2∥A 3B 3,以及A 2B 2=2B 1A 2,得出A 3B 3=4B 1A 2=4,A 4B 4=8B 1A 2=8,A 5B 5=16B 1A 2…进而得出答案.【详解】∵△A 1B 1A 2是等边三角形,∴A 1B 1=A 2B 1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°-120°-30°=30°,又∵∠3=60°,∴∠5=180°-60°-30°=90°,∵∠MON=∠1=30°,∴OA 1=A 1B 1=1,∴A2B1=1,∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A2B2=2B1A2,B3A3=2B2A3,∴A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2=16,以此类推:△A n B n A n+1的边长为 2n-1.故答案是:2n-1.【点睛】此题主要考查了等边三角形的性质以及等腰三角形的性质,根据已知得出A3B3=4B1A2,A4B4=8B1A2,A5B5=16B1A2进而发现规律是解题关键.14.【解析】【分析】延长AD和BC交于点E在直角△ABE中利用三角函数求得BE的长则EC的长即可求得然后在直角△CDE中利用三角函数的定义求解【详解】如图延长ADBC相交于点E∵∠B=90°∴∴BE=∴解析:6 5【解析】【分析】延长AD和BC交于点E,在直角△ABE中利用三角函数求得BE的长,则EC的长即可求得,然后在直角△CDE中利用三角函数的定义求解.【详解】如图,延长AD、BC相交于点E,∵∠B=90°,∴4 tan3BEAAB==,∴BE=44 3AB⋅=,∴CE=BE-BC=2,225AB BE+=,∴3 sin5ABEAE==,又∵∠CDE=∠CDA=90°,∴在Rt △CDE 中,sin CD E CE =, ∴CD=36sin 255CE E ⋅=⨯=. 15.【解析】【分析】过作轴过作轴于于是得到根据反比例函数的性质得到根据相似三角形的性质得到求得根据三角函数的定义即可得到结论【详解】过作轴过作轴于则∵顶点分别在反比例函数与的图象上∴∵∴∴∴∴∴∴故答案【解析】【分析】过A 作AC x ⊥轴,过B 作BD x ⊥轴于D ,于是得到90BDO ACO ∠=∠=︒,根据反比例函数的性质得到52BDO S ∆=,12AOC S ∆=,根据相似三角形的性质得到25BOD OAC S OB S OA ∆∆⎛⎫== ⎪⎝⎭,求得OB OA = 【详解】过A 作AC x ⊥轴,过B 作BD x ⊥轴于,则90BDO ACO ∠=∠=︒,∵顶点A ,B 分别在反比例函数()10y x x =>与()50y x x -=<的图象上, ∴52BDO S ∆=,12AOC S ∆=, ∵90AOB ∠=︒,∴90BOD DBO BOD AOC ∠+∠=∠+∠=︒,∴DBO AOC ∠=∠,∴BDO OCA ∆∆:, ∴252512BOD OACS OB S OA ∆∆⎛⎫=== ⎪⎝⎭,∴OB OA=∴tan OB BAO OA ∠==,【点睛】本题考查了相似三角形的判定与性质、反比例函数的性质以及直角三角形的性质.解题时注意掌握数形结合思想的应用,注意掌握辅助线的作法.16.2【解析】【分析】根据一元二次方程的定义以及一元二次方程的解的定义列出关于m的方程通过解关于m的方程求得m的值即可【详解】∵关于x的一元二次方程mx2+5x+m2﹣2m=0有一个根为0∴m2﹣2m=解析:2【解析】【分析】根据一元二次方程的定义以及一元二次方程的解的定义列出关于m的方程,通过解关于m的方程求得m的值即可.【详解】∵关于x的一元二次方程mx2+5x+m2﹣2m=0有一个根为0,∴m2﹣2m=0且m≠0,解得,m=2,故答案是:2.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的解的定义.解答该题时需注意二次项系数a≠0这一条件.17.5【解析】【分析】连接CC1根据M是ACA1C1的中点AC=A1C1得出CM=A1M=C1M=AC=5再根据∠A1=∠A1CM=30°得出∠CMC1=60°△MCC1为等边三角形从而证出CC1=CM解析:5【解析】【分析】连接CC1,根据M是AC、A1C1的中点,AC=A1C1,得出CM=A1M=C1M=12AC=5,再根据∠A1=∠A1CM=30°,得出∠CMC1=60°,△MCC1为等边三角形,从而证出CC1=CM,即可得出答案.【详解】解:如图,连接CC1,∵两块三角板重叠在一起,较长直角边的中点为M,∴M是AC、A1C1的中点,AC=A1C1,∴CM=A1M=C1M=12AC=5,∴∠A1=∠A1CM=30°,∴∠CMC1=60°,∴△CMC1为等边三角形,∴CC1=CM=5,∴CC1长为5.故答案为5.考点:等边三角形的判定与性质.18.【解析】解:原式==故答案为:解析:322 +.【解析】解:原式=212122⨯-++=322+.故答案为:322+.19.【解析】试题分析:如图设AF的中点为D那么DA=DE=DF所以AF的最小值取决于DE的最小值如图当DE⊥BC时DE最小设DA=DE=m此时DB=m由AB=DA+DB得m +m=10解得m=此时AF=2解析:15 2【解析】试题分析:如图,设AF的中点为D,那么DA=DE=DF.所以AF的最小值取决于DE的最小值.如图,当DE⊥BC时,DE最小,设DA=DE=m,此时DB=53m,由AB=DA+DB,得m+53m=10,解得m=154,此时AF=2m=152.故答案为15 2.20.2(x+3)(x﹣3)【解析】【分析】原式提取2再利用平方差公式分解即可【详解】原式=2(x2﹣9)=2(x+3)(x﹣3)故答案为:2(x+3)(x﹣3)【点睛】此题考查了提公因式法与公式法的综合解析:2(x+3)(x﹣3)【解析】【分析】原式提取2,再利用平方差公式分解即可.【详解】原式=2(x2﹣9)=2(x+3)(x﹣3),故答案为:2(x+3)(x﹣3)【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.三、解答题21.(1)见解析(2)见解析【解析】试题分析:(1)根据平行四边形的性质,可得AB与CD的关系,根据平行四边形的判定,可得BFDE是平行四边形,再根据矩形的判定,可得答案;(2)根据平行线的性质,可得∠DF A=∠F AB,根据等腰三角形的判定与性质,可得∠DAF=∠DF A,根据角平分线的判定,可得答案.试题分析:(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD.∵BE∥DF,BE=DF,∴四边形BFDE是平行四边形.∵DE⊥AB,∴∠DEB=90°,∴四边形BFDE是矩形;(2)∵四边形ABCD是平行四边形,∴AB∥DC,∴∠DF A=∠F AB.在Rt△BCF中,由勾股定理,得BC=22FC FB+=2234+=5,∴AD=BC=DF=5,∴∠DAF=∠DF A,∴∠DAF=∠F AB,即AF平分∠DAB.【点睛】本题考查了平行四边形的性质,利用了平行四边形的性质,矩形的判定,等腰三角形的判定与性质,利用等腰三角形的判定与性质得出∠DAF=∠DF A是解题关键.22.银杏树的单价为120元,则玉兰树的单价为180元.【解析】试题分析:根据题意可以列出相应的分式方程,从而可以解答本题.试题解析:解:设银杏树的单价为x元,则玉兰树的单价为1.5x元,根据题意得:1200090001501.5x x+=解得:x=120,经检验x=120是原分式方程的解,∴1.5x=180.答:银杏树的单价为120元,则玉兰树的单价为180元.23.(1)2000;(2)A型车17辆,B型车33辆【解析】试题分析:(1)设去年A型车每辆x元,那么今年每辆(x+400)元,列出方程即可解决问题.(2)设今年7月份进A型车m辆,则B型车(50﹣m)辆,获得的总利润为y元,先求出m的范围,构建一次函数,利用函数性质解决问题.试题解析:(1)设去年A型车每辆x元,那么今年每辆(x+400)元,根据题意得,解之得x=1600,经检验,x=1600是方程的解.答:今年A型车每辆2000元.(2)设今年7月份进A型车m辆,则B型车(50﹣m)辆,获得的总利润为y元,根据题意得50﹣m≤2m解之得m≥,∵y=(2000﹣1100)m+(2400﹣1400)(50﹣m)=﹣100m+50000,∴y随m 的增大而减小,∴当m=17时,可以获得最大利润.答:进货方案是A型车17辆,B型车33辆.考点:(1)一次函数的应用;(2)分式方程24.(1)(-8,0)(2)k=-19225(3)(﹣1,3)或(0,2)或(0,6)或(2,6)【解析】【分析】(1)解方程求出OB的长,解直角三角形求出OA即可解决问题;(2)求出直线DE、AB的解析式,构建方程组求出点C坐标即可;(3)分四种情形分别求解即可解决问题;【详解】解:(1)∵线段OB的长是方程x2﹣2x﹣8=0的解,∴OB=4,在Rt△AOB中,tan∠BAO=12 OBOA=,∴OA=8,∴A(﹣8,0).(2)∵EC⊥AB,∴∠ACD=∠AOB=∠DOE=90°,∴∠OAB+∠ADC=90°,∠DEO+∠ODE=90°,∵∠ADC=∠ODE,∴∠OAB=∠DEO,∴△AOB∽△EOD,∴OA OB OE OD=,∴OE:OD=OA:OB=2,设OD=m,则OE=2m,∵12•m•2m=16,∴m=4或﹣4(舍弃),∴D(﹣4,0),E(0,﹣8),∴直线DE的解析式为y=﹣2x﹣8,∵A(﹣8,0),B(0,4),∴直线AB的解析式为y=12x+4,由28142y xy x--⎧⎪⎨+⎪⎩==,解得24585xy⎧-⎪⎪⎨⎪⎪⎩==,∴C(245-,85),∵若反比例函数y=kx的图象经过点C,∴k=﹣192 25.(3)如图1中,当四边形MNPQ是矩形时,∵OD=OB=4,∴∠OBD=∠ODB=45°,∴∠PNB=∠ONM=45°,∴OM=DM=ON=2,∴BN=2,2,∴P(﹣1,3).如图2中,当四边形MNPQ是矩形时(点N与原点重合),易证△DMQ是等腰直角三角形,OP=MQ=DM=2,P(0,2);如图3中,当四边形MNPQ是矩形时,设PM交BD于R,易知R(﹣1,3),可得P (0,6)如图4中,当四边形MNPQ是矩形时,设PM交y轴于R,易知PR=MR,可得P(2,6).综上所述,满足条件的点P 坐标为(﹣1,3)或(0,2)或(0,6)或(2,6);【点睛】考查反比例函数综合题、一次函数的应用、矩形的判定和性质、相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题.25.-1<x≤1【解析】【分析】分别解两个不等式,然后根据数轴或“都大取大,都小取小,大小小大取中间,大大小小无解了”求解不等式组.【详解】 解:341{5122x x x x ≥--->①② 解不等式①可得x≤1,解不等式②可得x >-1在数轴上表示解集为:所以不等式组的解集为:-1<x≤1.【点睛】本题考查了解不等式组,熟练掌握计算法则是解题关键.。

2019-2020中考数学模拟试卷(附答案)

2019-2020中考数学模拟试卷(附答案)

2019-2020中考数学模拟试卷(附答案)一、选择题1.如图A ,B ,C 是上的三个点,若,则等于( )A .50°B .80°C .100°D .130° 2.预计到2025年,中国5G 用户将超过460 000 000,将460 000 000用科学计数法表示为( )A .94.610⨯B .74610⨯C .84.610⨯D .90.4610⨯3.在如图4×4的正方形网格中,△MNP 绕某点旋转一定的角度,得到△M 1N 1P 1,则其旋转中心可能是( )A .点AB .点BC .点CD .点D4.阅读理解:已知两点1122,,()(),M x y N x y ,则线段MN 的中点(),K x y 的坐标公式为:122x x x +=,122y y y +=.如图,已知点O 为坐标原点,点()30A -,,O e 经过点A ,点B 为弦PA 的中点.若点(),P a b ,则有,a b 满足等式:229a b +=.设(),B m n ,则,m n 满足的等式是( )A .229m n +=B .223922m n -⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭ C .()()222323m n ++= D .()222349m n ++=5.如图,⊙O 的半径为5,AB 为弦,点C 为»AB 的中点,若∠ABC=30°,则弦AB 的长为( )A .12B .5C .532D .536.若一组数据2,3,,5,7的众数为7,则这组数据的中位数为( )A .2B .3C .5D .7 7.已知11(1)11A x x ÷+=-+,则A =( ) A .21x x x -+ B .21x x - C .211x - D .x 2﹣18.矩形ABCD 与CEFG ,如图放置,点B ,C ,E 共线,点C ,D ,G 共线,连接AF ,取AF 的中点H ,连接GH .若BC=EF=2,CD=CE=1,则GH=( )A .1B .23C .22D .5 9.如图,将▱ABCD 沿对角线BD 折叠,使点A 落在点E 处,交BC 于点F ,若ABD 48∠=o ,CFD 40∠=o ,则E ∠为( )A .102oB .112oC .122oD .92o 10.若关于x 的一元二次方程kx 2﹣4x +3=0有实数根,则k 的非负整数值是( )A .1B .0,1C .1,2D .1,2,3 11.如图,斜面AC 的坡度(CD 与AD 的比)为1:2,5BC ,旗杆顶端B 点与A 点有一条彩带相连.若AB=10米,则旗杆BC 的高度为( )A .5米B .6米C .8米D .(3+5 )米 12.如图,在矩形ABCD 中,BC=6,CD=3,将△BCD 沿对角线BD 翻折,点C 落在点C 1处,BC 1交AD 于点E ,则线段DE 的长为( )A .3B .154C .5D .152二、填空题13.如图,直线l x ⊥轴于点P ,且与反比例函数11k y x=(0x >)及22k y x =(0x >)的图象分别交于A 、B 两点,连接OA 、OB ,已知OAB ∆的面积为4,则12k k =﹣________.14.色盲是伴X 染色体隐性先天遗传病,患者中男性远多于女性,从男性体检信息库中随机抽取体检表,统计结果如表: 抽取的体检表数n50 100 200 400 500 800 1000 1200 1500 2000 色盲患者的频数m3 7 13 29 37 55 69 85 105 138 色盲患者的频率m/n 0.060 0.070 0.065 0.073 0.074 0.069 0.069 0.071 0.070 0.069根据表中数据,估计在男性中,男性患色盲的概率为______(结果精确到0.01). 15.如图,直线a 、b 被直线l 所截,a ∥b ,∠1=70°,则∠2= .16.如图,点A 在双曲线y=4x上,点B 在双曲线y=k x (k≠0)上,AB ∥x 轴,过点A 作AD ⊥x 轴 于D .连接OB ,与AD 相交于点C ,若AC=2CD ,则k 的值为____.17.已知反比例函数的图象经过点(m ,6)和(﹣2,3),则m 的值为________.18.已知关于x 的一元二次方程2220ax x c ++-=有两个相等的实数根,则1c a+的值等于_______.19.如图,在平行四边形ABCD 中,连接BD ,且BD =CD ,过点A 作AM ⊥BD 于点M ,过点D 作DN ⊥AB 于点N ,且DN =32,在DB 的延长线上取一点P ,满足∠ABD =∠MAP +∠PAB ,则AP =_____.20.从﹣2,﹣1,1,2四个数中,随机抽取两个数相乘,积为大于﹣4小于2的概率是_____.三、解答题21.两个全等的直角三角形 ABC 和 DEF 重叠在一起,其中∠A=60°,AC=1.固定△ABC 不动,将△DEF 进行如下操作:(1)如图,△DEF 沿线段 AB 向右平移(即 D 点在线段 AB 内移动),连接 DC 、CF 、FB ,四边形 CDBF 的形状在不断的变化,但它的面积不变化,请求出其面积.(2)如图,当 D 点移到 AB 的中点时,请你猜想四边形CDBF 的形状,并说明理由.(3)如图,△DEF 的 D 点固定在 AB 的中点,然后绕 D 点按顺时针方向旋转△DEF,使 DF 落在 AB 边上,此时 F 点恰好与 B 点重合,连接 AE ,请你求出 sinα的值.22.计算:103212sin45(2π)--+-o .23.现代互联网技术的广泛应用,催生了快递行业的高速发展.小明计划给朋友快递一部分物品,经了解有甲、乙两家快递公司比较合适.甲公司表示:快递物品不超过1千克的,按每千克22元收费;超过1千克,超过的部分按每千克15元收费.乙公司表示:按每千克16元收费,另加包装费3元.设小明快递物品x 千克.(1)请分别写出甲、乙两家快递公司快递该物品的费用y (元)与x (千克)之间的函数关系式;(2)小明选择哪家快递公司更省钱?24.如图1,△ABC 内接于⊙O ,∠BAC 的平分线交⊙O 于点D ,交BC 于点E (BE >EC ),且3D 作DF ∥BC ,交AB 的延长线于点F .(1)求证:DF 为⊙O 的切线;(2)若∠BAC=60°,7,求图中阴影部分的面积;(3)若43AB AC =,DF+BF=8,如图2,求BF 的长.25.“安全教育平台”是中国教育学会为方便学长和学生参与安全知识活动、接受安全提醒的一种应用软件.某校为了了解家长和学生参与“防溺水教育”的情况,在本校学生中随机抽取部分学生作调查,把收集的数据分为以下4类情形:A.仅学生自己参与;B.家长和学生一起参与;C.仅家长自己参与; D.家长和学生都未参与.请根据图中提供的信息,解答下列问题:(1)在这次抽样调查中,共调查了________名学生;(2)补全条形统计图,并在扇形统计图中计算C类所对应扇形的圆心角的度数;(3)根据抽样调查结果,估计该校2000名学生中“家长和学生都未参与”的人数.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】试题分析:根据圆周的度数为360°,可知优弧AC的度数为360°-100°=260°,然后根据同弧所对的圆周角等于它所对的圆心角的一半,可求得∠B=130°.故选D考点:圆周角定理2.C解析:C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【详解】460 000 000=4.6×108.故选C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.B解析:B【解析】【分析】根据旋转中心的确认方法,作对应点连线的垂直平分线,再找到交点即可得到.【详解】解:∵△MNP绕某点旋转一定的角度,得到△M1N1P1,∴连接PP1、NN1、MM1,作PP1的垂直平分线过B、D、C,作NN1的垂直平分线过B、A,作MM1的垂直平分线过B,∴三条线段的垂直平分线正好都过B,即旋转中心是B.故选:B.【点睛】此题主要考查旋转中心的确认,解题的关键是熟知旋转的性质特点.4.D解析:D【解析】【分析】根据中点坐标公式求得点B的坐标,然后代入,a b满足的等式进行求解即可.【详解】∵点()30A -,,点(),P a b ,点(),B m n 为弦PA 的中点, ∴32a m -+=,02b n +=, ∴23,2a m b n =+=, 又,a b 满足等式:229a b +=,∴()222349m n ++=,故选D .【点睛】本题考查了坐标与图形性质,解题的关键是理解中点坐标公式. 5.D解析:D【解析】【分析】连接OC 、OA ,利用圆周角定理得出∠AOC=60°,再利用垂径定理得出AB 即可.【详解】连接OC 、OA ,∵∠ABC=30°,∴∠AOC=60°,∵AB 为弦,点C 为»AB 的中点,∴OC ⊥AB ,在Rt △OAE 中,53 ∴AB=53,故选D .【点睛】此题考查圆周角定理,关键是利用圆周角定理得出∠AOC=60°. 6.C解析:C【解析】试题解析:∵这组数据的众数为7,∴x=7,则这组数据按照从小到大的顺序排列为:2,3,5,7,7,中位数为:5.故选C.考点:众数;中位数. 7.B解析:B【解析】【分析】由题意可知A=111)11x x++-(,再将括号中两项通分并利用同分母分式的减法法则计算,再用分式的乘法法则计算即可得到结果.【详解】解:A=11111x x++-=111xx x+-g=21xx-故选B.【点睛】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.8.C解析:C【解析】分析:延长GH交AD于点P,先证△APH≌△FGH得AP=GF=1,GH=PH=12PG,再利用勾股定理求得PG=2,从而得出答案.详解:如图,延长GH交AD于点P,∵四边形ABCD和四边形CEFG都是矩形,∴∠ADC=∠ADG=∠CGF=90°,AD=BC=2、GF=CE=1,∴AD∥GF,∴∠GFH=∠PAH,又∵H是AF的中点,∴AH=FH,在△APH和△FGH中,∵PAH GFH AH FH AHP FHG ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△APH ≌△FGH (ASA ),∴AP=GF=1,GH=PH=12PG , ∴PD=AD ﹣AP=1,∵CG=2、CD=1,∴DG=1, 则GH=12PG=122, 故选:C . 点睛:本题主要考查矩形的性质,解题的关键是掌握全等三角形的判定与性质、矩形的性质、勾股定理等知识点.9.B解析:B【解析】【分析】由平行四边形的性质和折叠的性质,得出ADB BDF DBC ∠∠∠==,由三角形的外角性质求出1BDF DBC DFC 202∠∠∠===o ,再由三角形内角和定理求出A ∠,即可得到结果.【详解】 AD //BC Q ,ADB DBC ∠∠∴=,由折叠可得ADB BDF ∠∠=,DBC BDF ∠∠∴=,又DFC 40∠=o Q ,DBC BDF ADB 20∠∠∠∴===o ,又ABD 48∠=o Q ,ABD ∴V 中,A 1802048112∠=--=o o o o ,E A 112∠∠∴==o ,故选B .【点睛】本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理的综合应用,熟练掌握平行四边形的性质,求出ADB ∠的度数是解决问题的关键.10.A解析:A【解析】 【分析】 【详解】由题意得,根的判别式为△=(-4)2-4×3k , 由方程有实数根,得(-4)2-4×3k≥0, 解得k≤43, 由于一元二次方程的二次项系数不为零,所以k≠0,所以k 的取值范围为k≤43且k≠0, 即k 的非负整数值为1,故选A .11.A解析:A 【解析】试题分析:根据CD :AD=1:2,CD=3米,AD=6米,根据AB=10米,∠D=90°可得:米,则BC=BD -CD=8-3=5米.考点:直角三角形的勾股定理12.C解析:C 【解析】 【分析】 【详解】解:根据题意易证BE=DE ,设ED=x ,则AE=8﹣x ,在△ABE 中根据勾股定理得到关于线段AB 、AE 、BE 的方程x 2=42+(8﹣x )2, 解方程得x=5,即ED=5 故选C . 【点睛】本题考查翻折变换(折叠问题);勾股定理;方程思想.二、填空题13.【解析】【分析】根据反比例函数的几何意义可知:的面积为的面积为然后两个三角形面积作差即可求出结果【详解】解:根据反比例函数的几何意义可知:的面积为的面积为∴的面积为∴∴故答案为8【点睛】本题考查反比解析:【解析】 【分析】根据反比例函数k 的几何意义可知:AOP ∆的面积为112k ,BOP ∆的面积为212k ,然后两个三角形面积作差即可求出结果. 【详解】解:根据反比例函数k 的几何意义可知:AOP ∆的面积为112k ,BOP ∆的面积为212k , ∴AOB ∆的面积为121122k k -,∴1211422k k -=,∴128k k -=.故答案为8. 【点睛】本题考查反比例函数k 的几何意义,解题的关键是正确理解k 的几何意义,本题属于基础题型.14.07【解析】【分析】随着实验次数的增多频率逐渐稳定到的常数即可表示男性患色盲的概率【详解】解:观察表格发现随着实验人数的增多男性患色盲的频率逐渐稳定在常数007左右故男性中男性患色盲的概率为007故解析:07 【解析】 【分析】随着实验次数的增多,频率逐渐稳定到的常数即可表示男性患色盲的概率. 【详解】解: 观察表格发现,随着实验人数的增多,男性患色盲的频率逐渐稳定在常数0.07左右, 故男性中,男性患色盲的概率为0.07 故答案为:0.07. 【点睛】本题考查利用频率估计概率.15.110°【解析】∵a∥b∴∠3=∠1=70°∵∠2+∠3=180°∴∠2=110°解析:110° 【解析】∵a ∥b ,∴∠3=∠1=70°,∵∠2+∠3=180°,∴∠2=110°16.12【解析】【详解】解:设点A 的坐标为(a )则点B 的坐标为()∵AB ∥x 轴AC=2CD ∴∠BAC=∠ODC ∵∠ACB=∠DCO ∴△ACB ∽△DCO ∴∵OD=a 则AB=2a ∴点B 的横坐标是3a ∴3a=解析:12 【解析】 【详解】解:设点A 的坐标为(a ,4a ),则点B 的坐标为(ak 4,4a), ∵AB ∥x 轴,AC=2CD , ∴∠BAC=∠ODC , ∵∠ACB=∠DCO ,∴△ACB∽△DCO,∴AB AC2 DA CD1==,∵OD=a,则AB=2a,∴点B的横坐标是3a,∴3a=ak4,解得:k=12.故答案为12.17.-1【解析】试题分析:根据待定系数法可由(-23)代入y=可得k=-6然后可得反比例函数的解析式为y=-代入点(m6)可得m=-1故答案为:-1 解析:-1【解析】试题分析:根据待定系数法可由(-2,3)代入y=kx,可得k=-6,然后可得反比例函数的解析式为y=-6x,代入点(m,6)可得m=-1.故答案为:-1.18.【解析】【分析】根据关于x的一元二次方程ax2+2x+2﹣c=0有两个相等的实数根结合根的判别式公式得到关于a和c的等式整理后即可得到的答案【详解】解:根据题意得:△=4﹣4a(2﹣c)=0整理得:解析:【解析】【分析】根据“关于x的一元二次方程ax2+2x+2﹣c=0有两个相等的实数根”,结合根的判别式公式,得到关于a和c的等式,整理后即可得到的答案.【详解】解:根据题意得:△=4﹣4a(2﹣c)=0,整理得:4ac﹣8a=﹣4,4a(c﹣2)=﹣4,∵方程ax2+2x+2﹣c=0是一元二次方程,∴a≠0,等式两边同时除以4a得:12ca -=-,则12ca+=,故答案为:2.【点睛】本题考查了根的判别式,正确掌握根的判别式公式是解题的关键.19.6【解析】分析:根据BD=CDAB=CD可得BD=BA再根据AM⊥BDDN⊥AB即可得到DN=AM=3依据∠ABD=∠MAP+∠PAB∠ABD=∠P+∠BAP即可得到△APM是等腰直角三角形进而得到解析:6【解析】分析:根据BD=CD,AB=CD,可得BD=BA,再根据AM⊥BD,DN⊥AB,即可得到,依据∠ABD=∠MAP+∠PAB,∠ABD=∠P+∠BAP,即可得到△APM是等腰直角三角形,进而得到AM=6.详解:∵BD=CD,AB=CD,∴BD=BA,又∵AM⊥BD,DN⊥AB,∴,又∵∠ABD=∠MAP+∠PAB,∠ABD=∠P+∠BAP,∴∠P=∠PAM,∴△APM是等腰直角三角形,∴AM=6,故答案为6.点睛:本题主要考查了平行四边形的性质以及等腰直角三角形的性质的运用,解决问题给的关键是判定△APM是等腰直角三角形.20.【解析】【分析】列表得出所有等可能结果从中找到积为大于-4小于2的结果数根据概率公式计算可得【详解】列表如下: -2 -1 1 2 -2 2 -2 -4 -1 2 -1 -2 1 -2 -解析:1 2【解析】【分析】列表得出所有等可能结果,从中找到积为大于-4小于2的结果数,根据概率公式计算可得.【详解】列表如下:由表可知,共有12种等可能结果,其中积为大于-4小于2的有6种结果,∴积为大于-4小于2的概率为612=12,故答案为12.【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;用到的知识点为:概率=所求情况数与总情况数之比.三、解答题21.(1)过点C作CG⊥AB于G在Rt△ACG中∵∠A=60°∴sin60°=∴……………1分在Rt△ABC中∠ACB=90°∠ABC=30°∴AB=2 …………………………………………2分∴………3分(2)菱形………………………………………4分∵D是AB的中点∴AD=DB=CF=1在Rt△ABC中,CD是斜边中线∴CD=1……5分同理 BF=1 ∴CD=DB=BF=CF∴四边形CDBF是菱形…………………………6分(3)在Rt△ABE中∴……………………………7分过点D作DH⊥AE 垂足为H则△ADH∽△AEB ∴即∴ DH=……8分在Rt△DHE中sinα==…=…………………9分【解析】(1)根据平移的性质得到AD=BE,再结合两条平行线间的距离相等,则三角形ACD的面积等于三角形BEF的面积,所以要求的梯形的面积等于三角形ABC的面积.根据60度的直角三角形ABC中AC=1,即可求得BC的长,从而求得其面积;(2)根据直角三角形斜边上的中线等于斜边的一半和平移的性质,即可得到该四边形的四条边都相等,则它是一个菱形;(3)过D点作DH⊥AE于H,可以把要求的角构造到直角三角形中,根据三角形ADE的面积的不同计算方法,可以求得DH的长,进而求解.22.1 3【解析】【分析】根据负指数幂的性质、绝对值的性质、特殊角的三角函数值及零指数幂的性质分别化简各项后,再合并即可解答.【详解】原式122121 32=+-⨯+=12121 313=.【点睛】本题主要考查了实数运算,利用负指数幂的性质、绝对值的性质、特殊角的三角函数值及零指数幂的性质正确化简各数是解题关键.23.答案见解析【解析】试题分析:(1)根据“甲公司的费用=起步价+超出重量×续重单价”可得出y甲关于x的函数关系式,根据“乙公司的费用=快件重量×单价+包装费用”即可得出y乙关于x的函数关系式;(2)分0<x≤1和x>1两种情况讨论,分别令y甲<y乙、y甲=y乙和y甲>y乙,解关于x的方程或不等式即可得出结论.试题解析:(1)由题意知:当0<x≤1时,y甲=22x;当1<x时,y甲=22+15(x﹣1)=15x+7.y乙=16x+3;∴22?(01){157?(1)x xyx x甲<<=+>,=163y x+乙;(2)①当0<x≤1时,令y甲<y乙,即22x<16x+3,解得:0<x<12;令y 甲=y 乙,即22x=16x+3,解得:x=12; 令y 甲>y 乙,即22x >16x+3,解得:12<x≤1. ②x >1时,令y 甲<y 乙,即15x+7<16x+3,解得:x >4; 令y 甲=y 乙,即15x+7=16x+3,解得:x=4; 令y 甲>y 乙,即15x+7>16x+3,解得:0<x <4. 综上可知:当12<x <4时,选乙快递公司省钱;当x=4或x=12时,选甲、乙两家快递公司快递费一样多;当0<x <12或x >4时,选甲快递公司省钱. 考点:一次函数的应用;分段函数;方案型.24.(1)证明见解析(2)﹣2π;(3)3 【解析】 【分析】(1)连结OD ,如图1,由已知得到∠BAD=∠CAD ,得到»»BDCD =,再由垂径定理得OD ⊥BC ,由于BC ∥EF ,则OD ⊥DF ,于是可得结论;(2)连结OB ,OD 交BC 于P ,作BH ⊥DF 于H ,如图1,先证明△OBD 为等边三角形得到∠ODB=60°,OB=BD=BDF=∠DBP=30°,在Rt △DBP 中得到,PB=3,在Rt △DEP 中利用勾股定理可算出PE=2,由于OP ⊥BC ,则BP=CP=3,得到CE=1,由△BDE ∽△ACE ,得到AE 的长,再证明△ABE ∽△AFD ,可得DF=12,最后利用S 阴影部分=S △BDF ﹣S 弓形BD =S △BDF ﹣(S 扇形BOD ﹣S △BOD )进行计算; (3)连结CD ,如图2,由43AB AC =可设AB=4x ,AC=3x ,设BF=y ,由»»BDCD =得到CD=BD=△BFD ∽△CDA ,得到xy=4,再由△FDB ∽△FAD ,得到16﹣4y=xy ,则16﹣4y=4,然后解方程即可得到BF=3. 【详解】(1)连结OD ,如图1,∵AD 平分∠BAC 交⊙O 于D ,∴∠BAD=∠CAD ,∴»»BDCD =,∴OD ⊥BC , ∵BC ∥EF ,∴OD ⊥DF , ∴DF 为⊙O 的切线;(2)连结OB ,连结OD 交BC 于P ,作BH ⊥DF 于H ,如图1,∵∠BAC=60°,AD 平分∠BAC ,∴∠BAD=30°,∴∠BOD=2∠BAD=60°,∴△OBD 为等边三角形,∴∠ODB=60°,OB=BD= ∴∠BDF=30°,∵BC ∥DF ,∴∠DBP=30°,在Rt △DBP 中,PD=12,在Rt△DEP中,∵PD=3,DE=7,∴PE=22(7)(3)-=2,∵OP⊥BC,∴BP=CP=3,∴CE=3﹣2=1,易证得△BDE∽△ACE,∴AE:BE=CE:DE,即AE:5=1:7,∴AE=57,∵BE∥DF,∴△ABE∽△AFD,∴BE AEDF AD=,即5757125DF=,解得DF=12,在Rt△BDH中,BH=12BD=3,∴S阴影部分=S△BDF﹣S弓形BD=S△BDF﹣(S扇形BOD﹣S△BOD)=22160(23)3123(23)2π⨯⨯-+⨯=932π-;(3)连结CD,如图2,由43ABAC=可设AB=4x,AC=3x,设BF=y,∵»»BD CD=,∴CD=BD=23,∵∠F=∠ABC=∠ADC,∵∠FDB=∠DBC=∠DAC,∴△BFD∽△CDA,∴BD BFAC CD=,即23323x=,∴xy=4,∵∠FDB=∠DBC=∠DAC=∠FAD,而∠DFB=∠AFD,∴△FDB∽△FAD,∴DF BFAF DF=,即848y yy x y-=+-,整理得16﹣4y=xy,∴16﹣4y=4,解得y=3,即BF的长为3.考点:1.圆的综合题;2.相似三角形的判定与性质;3.切线的判定与性质;4.综合题;5.压轴题.25.(1)400;(2)补全条形图见解析;C类所对应扇形的圆心角的度数为54°;(3)该校2000名学生中“家长和学生都未参与”有100人.【解析】分析:(1)根据A类别人数及其所占百分比可得总人数;(2)总人数减去A、C、D三个类别人数求得B的人数即可补全条形图,再用360°乘以C 类别人数占被调查人数的比例可得;(3)用总人数乘以样本中D 类别人数所占比例可得. 详解:(1)本次调查的总人数为80÷20%=400人; (2)B 类别人数为400-(80+60+20)=240, 补全条形图如下:C 类所对应扇形的圆心角的度数为360°×60400=54°; (3)估计该校2000名学生中“家长和学生都未参与”的人数为2000×0N F N =100人. 点睛:本题考查了条形统计图、扇形统计图及用样本估计总体的知识,解题的关键是从统计图中整理出进一步解题的信息.。

2019-2020年中考数学最新预测模拟试卷及答案

2019-2020年中考数学最新预测模拟试卷及答案

ABC15°P A BC15°P(第7题)OABC (第8题)(12)382273.14osin605(第5题)2019-2020年中考数学最新预测模拟试卷及答案一.仔细选一选(本题有10小题,每小题3分,共30分)1.下列运算结果为2m 的式子是()A .63mmB .42mm C .12()m D .42mm2.下列美丽的图案中,既是轴对称图形又是中心对称图形的个数有()A .1个B .2个C .3个D .4个3.某校在“校园十佳歌手”比赛上,六位评委给1号选手的评分如下:90,96,91,96,95,94.那么,这组数据的众数和中位数分别是()A .96,94.5B .96,95C .95,94.5D .95,954.若关于x 的不等式组30x a x 有3个整数解,则a 的值可以是()A .2B .1C .0D .15.如图所示的两个转盘分别被均匀地分成3个和4个扇形,每个扇形上都标有一个实数。

同时自由转动两个转盘,转盘停止后(若指针指在分格线上,则重转),两个指针都落在无理数上的概率是()A .12B .13C .16D .1126.二次三项式2346x x 的值为9,则2463xx 的值为()A .18B .12C .9D .77.如图,将一个Rt △ABC 形状的楔子从木桩的底端点P 沿水平方向打入木桩底下,使木桩向上运动.已知楔子斜面的倾斜角为15°,若楔子沿水平方向前进6cm (如箭头所示),则木桩上升了()A .6sin15°cmB .6cos15°cmC .6tan15° cmD .6tan15cm8.如图,A 、B 是⊙O 上的两点,AC 是⊙O 的切线,∠OBA =70°,则∠BAC 等于()A .20°B .10°C .70°D .35°9.已知M 、N 两点关于y 轴对称,且点M 在反比例函数12yx的图像上,点N 在一次函数3yx 的图像上,设点M 的坐标为(a ,b ),则二次函数2()yabxa b x ()A .有最小值,且最小值是92B .有最大值,且最大值是92。

2019-2020年中考数学模拟试题及答案(最新整理)

2019-2020年中考数学模拟试题及答案(最新整理)

S22019-2020 年中考数学模拟试题及答案一、选择题:本大题共 10 小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得 3 分,选错、不选或选出的答案超过一个均记零分.1.世界文化遗产长城总长约为6700000m,若将6700000用科学记数法表示为6.7×10n(n 是正整数),则n的值为().A.5 B.6 C.7 D.82.下列运算正确的是()A.3x3-5x3=-2x B.6x3÷2x-2=3xC.()2=x6D.-3(2x-4)=-6x-123.实验学校九年级一班十名同学定点投篮测试,每人投篮六次,投中的次数统计如下:5,4,3,5,5,2,5,3,4,1,则这组数据的中位数,众数分别为()A.4,5 B.5,4 C.4,4 D.5,54.如图,边长为6 的大正方形中有两个小正方形,若两个小正方形的面积分别为S1、S2,则S1+S2的值为()S1A.16 B.17 C.18 D.195.河堤横断面如图所示,堤高BC=6 米,迎水坡AB 的坡比为 1:,则AB 的长为()A.12 B.4 米C.5 米D.6 米6.在一个可以改变体积的密闭容器内装有一定质量的某种气体,当改变容器的体积时,气体的密度也会随之改变,密度ρ(单位:k g/m2)与体积V(单位:m3)满足函数关系式ρ=k(kV为常数,k≠0),其图象如图所示,则k的值为()ρAO V第 5 题A.9 B.-9 C.4 D.-4X|k|B|1.c|O|m7.如图,▱A B C D的顶点A、B、D在⊙O上,顶点C在⊙O的直径B E上,∠A D C=54°,连接A E,则∠A E B的度数为()A、36°B、46°C、27°D63°8.将△D A E沿D E折叠,使点A落在对角线B D上的点A′处,则A E的长为.10A 、 10B 、 3C 、D 639.2013 年“中国好声音”全国巡演重庆站在奥体中心举行.童童从家出发前往观看,先匀速步行至轻轨车站,等了一会儿,童童搭乘轻轨至奥体中心观看演出,演出结束后,童童搭乘邻居刘叔叔的车顺利到家.其中x 表示童童从家出发后所用时间,y 表示童童离家的距离.下图能反映y 与x 的函数关系式的大致图象是()y y y yOx Ox OA.B.C.x OD.x(第9 题图)10.如图,在等腰直角∆ABC 中,∠ACB =90O,O 是斜边AB 的中点,点D、E 分别在直角边AC、BC 上,且∠DOE = 90O,DE 交OC 于点P.则下列结论:(1)图形中全等的三角形只有两对;(2)∆ABC 的面积等于四边形CDOE 面积的 2 倍;(3)CD +CE = 2OA ;(4)AD2+BE2= 2OP ⋅O C .其中正确的结论有()CED PA O B图 12图图A.1个B.2 个C.3 个D.4 个第Ⅱ卷(非选择题共 84 分)二、填空题:本大题共 8 小题,共 24 分,只要求填写最后结果,每小题填对得 4 分.11.已知实数a ,b 满足a+b=2,a-b=5,则(a+b)3·(a-b)3的值是12.如图6,R t△A B C的斜边A B=16,R t△A B C绕点O顺时针旋转后得到Rt∆A'B'C',则Rt∆A'B'C'的斜边A'B'上的中线C'D 的长度为.13.在一只不透明的口袋中放入红球 6 个,黑球 2 个,黄球n 个.这些球除颜色不同外,1其它无任何差别,搅匀后随机从中摸出一个恰好是黄球的概率为,则放入口袋中的黄球3总数n=.14.若一个一元二次方程的两个根分别是R t△A B C的两条直角边长,且S△A B C=3,请写出一个符合题意的一元二次方程.15.已知反比例函数y=6 在第一象限的图象如图所示,点A 在其图象上,点B 为x 轴正半x轴上一点,连接A O、A B,且A O=A B,则S△A O B=.16.如图,在⊙O中,过直径 AB 延长线上的点 C 作⊙O的一条切线,切点为 D,若A C=7,A B=4,则 s i n C的值为.DAO B C第16 题w W w.X k b1.c O m17.如图,放映幻灯时,通过光源,把幻灯片上的图形放大到屏幕上,若光源到幻灯片的距离为20c m,到屏幕的距离为60c m,且幻灯片中的图形的高度为6c m,则屏幕上图形的高度为c m.18.如图在,平面直角坐标系中R,t△O A B的顶点A在x轴的正1半轴上顶,点B的坐标(为3,3 ),点C的坐标为(,0),点P为2斜边OB 上的一动点,则PA+PC 的最小值为.三、解答题:本大题共 7 小题,共 64 分.解答要写出必要的文字说明、证明过程或演算步骤.19.(本题满分 7 分,第⑴题 4 分,第⑵题 4 分)(1)计算:2c o s45°﹣(﹣)﹣1﹣﹣(π﹣)0.(2)先简化,再求值:,其中x= .20.(本题满分 8 分)东营市某学校开展课外体育活动,决定开高A:篮球、B:乒乓球、C:踢毽子、D:跑步四种活动项目.为了解学生最喜欢哪一种活动项目(每人只选取一种).随机抽取了部分学生进行调查,并将调查结果绘成如下统计图,请你结合图中信息解答下列问题.⑴样本中最喜欢A 项目的人数所占的百分比为,其所在扇形统计图中对应的圆心角度数是度;⑵请把条形统计图补充完整;⑶若该校有学生 1000 人,请根据样本估计全校最喜欢踢毽子的学生人数约是多少?21.(本题满分 9 分) 如图,四边形ABCD 是平行四边形,以对角线BD 为直径作⊙O ,分别于BC 、AD 相交于点E 、F .(1)求证四边形BEDF 为矩形.新课标第一网(2)若BD2=BE ⋅BC 试判断直线CD 与⊙O 的位置关系,并说明理由.22.(本题满分9分)如图,△A B C中,A B=B C,A C=8,t a n A=k,P为A C边上一动点,设P C=x,作 PE∥AB 交 BC 于 E,PF∥BC 交 AB 于 F.(1)证明:△P C E是等腰三角形;(2)E M、F N、B H分别是△P E C、△A F P、△A B C的高,用含x和k的代数式表示E M、F N,并探究 EM、FN、BH 之间的数量关系;(3)当 k=4 时,求四边形 PEBF 的面积 S 与 x 的函数关系式.x 为何值时,S 有最大值?并求出 S 的最大值.23.(本题满分 10 分) 某工厂投入生产一种机器的总成本为 2000 万元.当该机器生产数量至少为 10 台,但不超过 70 台时,每台成本y 与生产数量x 之间是一次函数关系,函数y 与自变量x 的部分对应值如下表:(1)求y 与x 之间的函数关系式,并写出自变量x 的取值范围;(2)求该机器的生产数量;(3)市场调查发现,这种机器每月销售量z(台)与售价a(万元/台)之间满足如图所示的函数关系.该厂生产这种机器后第一个月按同一售价共卖出这种机器25 台,请你求出该厂第一个月销售这种机器的利润.(注:利润=售价-成本)z351555 75 a24.(本题满分 10 分)x(单位:台)102030y(单位:万元/台)605550如图一艘海上巡逻船在A 地巡航,这时接到B 地海上指挥中心紧急通知:在指挥中心北偏西60º方向的C地有一艘渔船遇险,要求马上前去救援.此时C地位于A地北偏西30°方向上.A地位于B地北偏调西75°方向上.A B两地之间的距离为12海里.求A.C两地之间的距离. (参考数据: 2 ≈l. 41, 3 ≈1.73, 6 ≈2.45.结果精确到0.1.)(m>0)与x轴25.(本题满分 12 分) 如图 1,已知抛物线的方程C1:y =-1 (x + 2)(x -m)m交于点B、C,与y 轴交于点E,且点B 在点C 的左侧.(1)若抛物线C1过点M(2,2),求实数m的值;(2)在(1)的条件下,求△B C E的面积;(3)在(1)的条件下,在抛物线的对称轴上找一点H,使得BH+EH 最小,求出点H 的坐标;(4)在第四象限内,抛物线C1上是否存在点F,使得以点B、C、F为顶点的三角形与△B C E 相似?若存在,求m 的值;若不存在,请说明理由.图 1数学试题参考答案与评分标准一、选择题:本大题共 10 小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得 3 分,选错、不选或选出的答案超过一个均记零分.1.【答案】B.2.【答案】C.3.【答案】A.4.【答案】B.5.【答案】B.6.【答案】:A.7.【答案】:A.8.【答案】A9.【答案】A10.【答案】C第Ⅱ卷(非选择题共 84 分)二、填空题:本大题共 8 小题,共 24 分,只要求填写最后结果,每小题填对得 4 分.11.【答案】100012.【答案】8.13.【答案】414.【答案】x2-5x+6=0215.【答案】6.16.【答案】:.17.【答案】:18.18.【答案】5 31 .2三、解答题:本大题共 7 小题,共 64 分.解答要写出必要的文字说明、证明过程或演算步骤.19. (本题满分 7 分,第⑴题 4 分,第⑵题 4 分)(1)计算:2c o s45°﹣(﹣)﹣1﹣﹣(π﹣)0.解:2c o s45°﹣(﹣)﹣1﹣﹣(π﹣)0,=2×﹣(﹣4)﹣2 ﹣1,= +4﹣2 ﹣1,=3﹣.(2)先简化,再求值:,其中x=.解:原式= ·= ,当 x= +1 时,原式= = .20.【答案】:(1)40%,144新|课|标|第|一|网(2)如图:(3)1000 ⨯10% = 100 人.【解析】:(1)100%-20%-10%-30%=40%,360°×40%=144°;(2)抽查的学生总人数:15÷30%=50,50-15-5-10=20(人).如图所示:(3)1000×10%=100(人).答:全校最喜欢踢毽子的学生人数约是100人.21.答案:⎨⎩ (1)证明: BD 为ΘO 的直径,∴∠DEB = ∠DFB = 90︒又 四边形ABCD 是平行四边形,∴ AD // BC .∴∠FBC = ∠DFB = 90︒, ∠EDA = ∠BED = 90︒∴四边形BEDF 为矩形. (2)直线CD 与ΘO 的位置关系为相切.理由如下: BD 2 = BE ⋅ BC ,∴ BD = BCBE BD∠DBC = ∠CBD ,∴∆BED ∴CD 与ΘO 相切.∆BDC ∴∠BDC = ∠BED = 90︒,即BD ⊥ CD .22. 【答案】(1)证明:∵A B =B C ,∴∠A=∠C ,∵P E ∥A B ,∴∠C P E =∠A ,∴∠C P E =∠C ,∴△P C E 是等腰三角形;(2) 解:∵△P C E 是等腰三角形,E M ⊥C P ,∴C M = C P = ,t a n C =t a n A=k ,∴E M =C M ·t a n C = ·k =,同理:F N =A N ·t a n A= ·k =4k ﹣ ,由于 B H =A H ·t a n A= ×8·k =4k ,而 E M +F N =+4k ﹣ =4k ,∴E M +F N =B H ;(3)解:当 k =4 时,E M =2x ,F N =16﹣2x ,B H =16,所以,S △P C E = x ·2x =x 2,S △A P F = (8﹣x )·(16﹣2x )=(8﹣x )2,S △A BC = ×8×16=64, S =S △A BC ﹣S △P C E ﹣S △A P F ,=64﹣x 2﹣(8﹣x )2,=﹣2x 2+16x , 配方得,S=﹣2(x ﹣4)2+32, 所以,当 x=4 时,S 有最大值 32.23. 【答案】:解:(1)设 y 与 x 的函数解析式为 y =kx +b ,⎧10k + b = 60,⎧k = - 1 , 根据题意,得 ⎨20k + b = 55, 解得 ⎪2 ⎪⎩b = 65.∴y 与 x 之间的函数关系式为 y = - 1x + 65 (10≤x ≤70).2(2)设该机器的生产数量为 x 台,根据题意,得 x ( - 1x + 65 )=2000,解得 x 1=50,x 2=80.∵2 10≤x ≤70,∴x =50.答:该机器的生产数量为 50 台.⎧55k + b = 35(3) 设销售数量 z 与售价 a 之间的函数关系式为 z =ka +b ,根据题意,得 ⎨75k + b = 15,⎧k = -1,解得 ⎨ ∴z =-a +90.⎩b = 90.⎩当z=25 时,a=65.设该厂第一个月销售这种机器的利润为w 万元,w=25×(65-2000 )=625(万元).5024【解】如图,过点B 作BD⊥CA,交CA 的延长线于点D,由题意,得∠A C B=60°-30°=30°.∠A B C=75°-60°=15°∴∠D A B=∠D B A=45°在R t⊿A D B中.A B=12.∠B A D=45°,∴B D=A D=AB cos 45 = 6 2在R t⊿B C D中,CD=BD=66 tan30∴AC = 6 6 - 6 2 ≈ 6.2 (海里)答:A C两地之间的距离约为6.2海里25.解答(1)将M(2,2)代入y=-1(x+2)(x-m),得2=-1⨯4(2-m).解得m=4.m m(2)当m=4时,y=-1(x+2)(x-4)=-1x2 +1x+2.所以C(4,0),E(0,2).4 4 2所以S△B C E=1BC⋅O E=1⨯6⨯2=6.2 2(3)如图 2,抛物线的对称轴是直线x=1,当H 落在线段EC 上时,BH+EH 最小.设对称轴与x 轴的交点为P,那么HP =EO .新|课|标|第| 一|网CP CO=因此HP =2 .解得HP =3 .所以点H 的坐标为(1, 3) .3 4 2 2(4)①如图3,过点B作E C的平行线交抛物线于F,过点F作FF′⊥x轴于F′.由于∠B C E=∠F B C,所以当CE=BC,即BC2=CE⋅BF时,△B C E∽△F B C.CB BF1(x + 2)(x -m)设点F 的坐标为(x, -1 (x + 2)(x -m)) ,由FF ' =EO ,得m=2 .m解得x=m+2.所以F′(m+2,0).BF ' CO x + 2 m 由CO =BF ',得m m + 4 .所以BF =(m +4)m2+ 4CE BF m2+ 4 BF m222(m + 4) m2+ 4由BC =CE ⋅BF ,得(m + 2) = m + 4 ⨯.m整理,得 0=16.此方程无解.图 2 图 3 图 4②如图4,作∠C B F=45°交抛物线于F,过点F作FF′⊥x轴于F′,由于∠E B C=∠C B F,所以BE=BC,即BC2=BE⋅BF时,△B C E∽△B F C.BC BF在R t△B FF′中,由FF′=B F′,得1(x+2)(x-m)=x+2.m解得x=2m.所以F′(2m,0).所以B F′=2m+2,BF=2(2m+2).由BC 2=BE ⋅BF ,得(m + 2)2= 2 2 ⨯ 2(2m + 2) .解得m = 2 ± 2 2 .综合①、②,符合题意的m 为2 + 2 2 .2019-2020 年中考数学模拟试题含答案(精选 5 套).注意事项:1.本试卷分选择题和非选择题两部分. 在本试题卷上作答无效;2.答题前,请认真阅读答题卷上的注意事项;3.考试结束后,将本试卷和答题卷一并交回.一、选择题(本大题满分 36 分,每小题 3 分. 在下列各题的四个备选答案中,只有一个是正确的,请在答题卷上把你认为正确的答案的字母代号按要求用 2B 铅笔涂黑)1. 2 sin 60°的值等于3A. 1B.C. 222.下列的几何图形中,一定是轴对称图形的有D. 3圆弧角扇形菱形等腰梯形A. 5 个B. 4 个C. 3 个D. 2 个3.据2013 年1 月24 日《桂林日报》报道,临桂县 2012 年财政收入突破 18 亿元,在广西各县中排名第二. 将 18 亿用科学记数法表示为A. 1.8×10B. 1.8×108C. 1.8×109D. 1.8×10104.估计8 -1 的值在A.0 到1 之间B. 1 到2 之间C. 2 到3 之间D. 3 至4 之间5.将下列图形绕其对角线的交点顺时针旋转 90°,所得图形一定与原图形重合的是A.平行四边形B. 矩形C. 正方形D. 菱形6.如图,由 5 个完全相同的小正方体组合成一个立体图形,它的左视图是A. B. C. D.7.为调查某校 1500 名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机抽取部分学生进行调查,并结合调查数据作出如图所示的扇形统计图. 根据统计图提供的信息,可估算出该校喜爱体育节目的学生共有A. 1200 名B. 450 名C. 400 名D. 300 名8.用配方法解一元二次方程x2 + 4x –5 = 0,此方程可变形为A. (x + 2)2= 9B. (x - 2)2 = 9C. (x + 2)2= 1D. (x - 2)2=19.如图,在△ABC中,AD,BE 是两条中线,则 S△EDC∶S△ABC=A. 1∶2B. 1∶4C. 1∶3D. 2∶310.下列各因式分解正确的是(第 7 题图)(第 9 题图)A. x2 + 2x -1=(x - 1)2B. - x2 +(-2)2=(x - 2)(x + 2)C. x3- 4x = x(x + 2)(x - 2)D. (x + 1)2= x2 + 2x + 111.如图,AB 是⊙O的直径,点 E 为BC 的中点,AB = 4,∠BED = 120°,则图中阴影部分的面积之和为 3 A.3 B. 2 3C.D. 1212. 如图,△ABC 中,∠C = 90°,M 是 AB 的中点,动点 P 从点 A出发,沿 AC 方向匀速运动到终点 C ,动点 Q 从点 C 出发,沿CB 方向匀速运动到终点 B. 已知 P ,Q 两点同时出发,并同时到达终点,连接 MP ,MQ ,PQ . 在整个运动过程中,△MPQ 的面积大小变化情况是 A. 一直增大 B. 一直减小 C. 先减小后增大D. 先增大后减小(第 12 题图)二、填空题(本大题满分 18 分,每小题 3 分,请将答案填在答题卷上,在试卷上答题无效) 113. 计算:│- │=.314. 已知一次函数 y = kx + 3 的图象经过第一、二、四象限,则 k 的取值范围是.15. 在 10 个外观相同的产品中,有 2 个不合格产品,现从中任意抽取 1 个进行检测,抽到合格产品的概率是.16. 在临桂新区建设中,需要修一段全长 2400m 的道路,为了尽量减少施工对县城交通所造成的影响,实际工作效率比原计划提高了 20%,结果提前 8 天完成任务,求原计划每天修路的长度. 若设原计划每天修路 x m ,则根据题意可得方程.17. 在平面直角坐标系中,规定把一个三角形先沿着 x 轴翻折,再向右平移 2 个单位称为 1 次变换. 如图,已知等边三角形ABC 的顶点 B ,C 的坐标分别是(-1,-1),(-3,-1),把 △ABC 经过连续 9 次这样的变换得到△A ′B ′C ′,则点 A 的对 应点 A ′ 的坐标是.18. 如图,已知等腰 Rt△ABC 的直角边长为 1,以 Rt△ABC 的斜边 AC 为直角边,画第二个等腰 Rt△ACD,再以 Rt△ACD 的斜边 AD 为直角边,画第三个等腰 Rt△ADE ……依此类推直到第五个等腰 Rt△AFG,则由这五个等腰直角三角形所构成的图形的面积为 .(第 17 题图)(第 18 题图)三、解答题(本大题 8 题,共 66 分,解答需写出必要的步骤和过程. 请将答案写在答题卷上,在试卷上答题无效)19. (本小题满分 8 分,每题 4 分)(1)计算:4 cos45°- 8 +(π- 3 )+(-1)3;n m(2)化简:(1 -m + n)÷m 2 - n 2 .20. (本小题满分 6 分)1 +x-x -1≤1,……①解不等式组: 2 33(x - 1)<2 x + 1. ……21.(本小题满分 6 分)如图,在△ABC中,AB = AC,∠ABC = 72°.(1)用直尺和圆规作∠ABC的平分线 BD 交AC 于点D(保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC的平分线 BD 后,求∠BDC的度数.(第 21 题图)22.(本小题满分 8 分)在开展“学雷锋社会实践”活动中,某校为了解全校 1200 名学生参加活动的情况,随机调查了 50 名学生每人参加活动的次数,并根据数据绘成条形统计图如下:(1)求这 50 个样本数据的平均数、众数和中位数;(2)根据样本数据,估算该校 1200 名学生共参加了多少次活动.23.(本小题满分 8 分)如图,山坡上有一棵树 AB,树底部B 点到山脚C 点的距离BC 为6 3 米,山坡的坡角为30°. 小宁在山脚的平地 F 处测量这棵树的高,点C 到测角仪 EF 的水平距离 CF = 1 米,从 E 处测得树顶部A 的仰角为 45°,树底部 B 的仰角为 20°,求树AB的高度.(参考数值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)(第 23 题图)24.(本小题满分 8 分)如图,PA,PB 分别与⊙O 相切于点 A,B,点 M 在 PB 上,且OM∥AP,MN⊥AP,垂足为 N.(1)求证:OM = AN;(2)若⊙O 的半径 R = 3,PA = 9,求 OM 的长.(第 24 题图)25.(本小题满分 10 分)某中学计划购买 A 型和B 型课桌凳共 200 套. 经招标,购买一套 A 型课桌凳比购买一套 B 型课桌凳少用 40 元,且购买 4 套A 型和5 套B 型课桌凳共需 1820 元.(1) 求购买一套 A 型课桌凳和一套 B 型课桌凳各需多少元? (2) 学校根据实际情况,要求购买这两种课桌凳总费用不能超过 40880 元,并且购买 A 型课桌2 凳的数量不能超过 B 型课桌凳数量的 ,求该校本次购买 A 型和 B 型课桌凳共有几种方3案?哪种方案的总费用最低?26. (本小题满分 12 分)在平面直角坐标系中,现将一块等腰直角三角板 ABC 放在第二象限,斜靠在两坐标轴上,点 C 为(-1,0). 如图所示,B 点在抛物线 y = 1 x 2 - 1x – 2 图象上,过点 B2 2作 BD ⊥x 轴,垂足为 D ,且 B 点横坐标为-3. (1) 求证:△BDC ≌ △COA; (2) 求 BC 所在直线的函数关系式; (3) 抛物线的对称轴上是否存在点 P ,使△ACP 是以 AC 为直角边的直角三角形?若存在,求出所有点 P 的坐标;若不存在,请说明理由.(第 26 题图)一、选择题2016 年初三适应性检测参考答案与评分意见题号 1 2 3 4 5 6 7 8 9 10 11 12 答案DACBCBDABCAC说明:第 12 题是一道几何开放题,学生可从几个特殊的点着手,计算几个特殊三角形面积从而 1降低难度,得出答案. 当点 P ,Q 分别位于 A 、C 两点时,S △MPQ = S △ABC ;当点 P 、Q 分别运动到 AC ,BC 21 1 1 11的中点时,此时,S △MPQ = × AC.BC = S △ABC ;当点 P 、Q 继续运动到点 C ,B 时,S △MPQ = S △ABC ,22 24 2故在整个运动变化中,△MPQ 的面积是先减小后增大,应选 C.二、填空题 14 82400 240013.; 14. k <0; 15.(若为扣 1 分); 16.-= 8;3510 31 x(1 20%)x17. (16,1+三、解答题3 ); 18. 15.5(或 ).22 19. (1)解:原式 = 4×-2 22 +1-1……2 分(每错 1 个扣 1 分,错 2 个以上不给分)= 0 .................................. 4 分m +n n m2-n2(2)解:原式 =(- )· ................................... 2分m +n m +n mm (m +n)(m -n)= ·.......................... 3 分m +n m= m –n ............................................................. 4分20. 解:由①得3(1 + x)- 2(x-1)≤6,............................... 1 分化简得x≤1. .......................................................................3 分由②得3x – 3 < 2x + 1, ................................................ 4 分化简得x<4. .......................................................................5 分∴原不等式组的解是x≤1. ...............................................6 分21.解(1)如图所示(作图正确得 3 分)(2)∵BD 平分∠ABC,∠ABC = 72°,1∴∠ABD = ∠ABC = 36°,......................................... 4 分2∵AB = AC,∴∠C =∠ABC = 72°,........................... 5 分∴∠A= 36°,∴∠BDC =∠A+∠ABD = 36° + 36°= 72°. ........ 6 分22.解:(1)观察条形统计图,可知这组样本数据的平均数是_ 1⨯ 3 + 2 ⨯ 7 + 3⨯17 + 4 ⨯18 + 5 ⨯5x = =3.3,................... 1 分50∴这组样本数据的平均数是3.3. ..................... 2 分∵在这组样本数据中,4 出现了 18 次,出现的次数最多,∴这组数据的众数是4. ........................... 4 分3 + 3∵将这组样本数据按从小到大的顺序排列,其中处在中间的两个数都是3,有=23.∴这组数据的中位数是3. .............. 6 分(2)∵这组数据的平均数是 3.3,∴估计全校 1200 人参加活动次数的总体平均数是 3.3,有 3.3×1200 = 3900.∴该校学生共参加活动约3960 次 ............................... 8分23.解:在Rt△BDC中,∠BDC = 90°,BC = 6 3米,∠BCD = 30°, ∴DC = BC ·cos30° ............................................ 1 分3 = 6 3 ×= 9,..................................... 2 分2∴DF = DC + CF = 9 + 1 = 10,… ....................... 3 分 ∴GE = DF = 10. ......................... 4 分 在 Rt △BGE 中,∠BEG = 20°, ∴BG = CG ·tan20° .......................................... 5 分=10×0.36=3.6, ....................................... 6 分 在 Rt △AGE 中,∠AEG = 45°,∴AG = GE = 10, ............................................... 7 分 ∴AB = AG – BG = 10 - 3.6 = 6.4. 答:树 AB 的高度约为 6.4 米 ........................... 8 分24. 解(1)如图,连接 OA ,则 OA⊥AP. .............. 1 分∵MN ⊥AP ,∴MN ∥OA. ........................ 2 分 ∵OM ∥AP ,∴四边形 ANMO 是矩形.∴OM = AN. .................................... 3 分 (2)连接 OB ,则 OB ⊥AP ,∵OA = MN ,OA = OB ,OM ∥BP , ∴OB = MN ,∠OMB =∠NPM.∴Rt △OBM ≌Rt △MNP. ...................... 5 分 ∴OM = MP. 设 OM = x ,则 NP = 9- x............................................ 6 分在 Rt △MNP 中,有 x 2 = 32+(9- x )2. ∴x = 5. 即 OM = 5 ..........................8 分25. 解:(1)设 A 型每套 x 元,则 B 型每套(x + 40)元 ............................. 1 分∴4x + 5(x + 40)=1820. ............................... 2 分 ∴x = 180,x + 40 = 220. 即购买一套 A 型课桌凳和一套 B 型课桌凳各需 180 元、220 元 ........................ 3 分 (2)设购买 A 型课桌凳 a 套,则购买 B 型课桌凳(200 - a )套.a ≤ 2(200 - a ),3∴ ........................................................................................... 4 分 180 a + 220(200- a )≤40880. 解得 78≤a ≤80. ............................... 5 分 ∵a 为整数,∴a = 78,79,80 ∴共有 3 种方案 .................................................................... 6 分 设购买课桌凳总费用为 y 元,则y = 180a + 220(200 - a )=-40a + 44000. ............ 7 分 ∵-40<0,y 随 a 的增大而减小, ∴当 a = 80 时,总费用最低,此时 200- a =120. ........... 9 分即总费用最低的方案是:购买A 型80 套,购买B 型120 套 ......................................... 10 分⎩2一、选择题2016 年中考数学模拟试题(二)1、 数-1, 5, 0, 2 中最大的数是()A 、 -1B 、 5C 、0D 、 222、9 的立方根是() A 、 ±3B 、3C 、 ± 3 9D 、 392 主视图左视图3、已知一元二次方程 x 2 - 4x + 3 = 0 的两根 x 1 、 x 2 ,则 x 1 + x 2 = () A 、4 B 、3 C 、-4 D 、-34、如图是某几何题的三视图,下列判断正确的是() A 、几何体是圆柱体,高为 2 B 、几何体是圆锥体,高为 2 C 、几何体是圆柱体,半径为 2 D 、几何体是圆柱体,半径为 25、若 a > b ,则下列式子一定成立的是()俯视图A 、 a + b > 0B 、 a - b > 0C 、 ab > 0D 、 a> 0bAB 6、如图 AB ∥DE ,∠ABC=20°,∠BCD=80°,则∠CDE=() A 、20° B 、80°C 、60°D 、100°7、已知 AB 、CD 是⊙O 的直径,则四边形 ACBD 是() A 、正方形B 、矩形C 、菱形D 、等腰梯形ED⎧x + 3 > 08、不等式组⎨-x ≥ -2 的整数解有()A 、0 个B 、5 个C 、6 个D 、无数个9、已知点 A (x 1, y 1), B (x 2 , y 2 ) 是反比例函数 y = x图像上的点,若 x 1 > 0 > x 2 , A 则一定成立的是() A 、 y 1 > y 2 > 0 C 、0 > y 1 > y 2B 、 y 1 > 0 > y 2 D 、 y 2 > 0 > y 1OO ‘B10、如图,⊙O 和⊙O ′相交于 A 、B 两点,且 OO’=5,OA=3, O’B =4,则 AB=( ) A 、5 B 、2.4 C 、2.5 D 、4.8 二、填空题11、正五边形的外角和为 A 12、计算: -m 3 ÷ m =13、分解因式: 3x 2- 3y 2=BC14、如图,某飞机于空中 A 处探测到目标 C ,此时飞行高度 AC=1200 米,从飞机上看地面控制点 B的俯角= 20︒,则飞机 A 到控制点 B 的距离约为 。

2019-2020中考数学模拟试题(含答案)

2019-2020中考数学模拟试题(含答案)

2019-2020中考数学模拟试题(含答案) 一、选择题1.如图所示,已知A(12,y1),B(2,y2)为反比例函数1yx=图像上的两点,动点P(x,0)在x正半轴上运动,当线段AP与线段BP之差达到最大时,点P的坐标是()A.(12,0)B.(1,0)C.(32,0)D.(52,0)2.华为Mate20手机搭载了全球首款7纳米制程芯片,7纳米就是0.000000007米.数据0.000000007用科学记数法表示为( ).A.7710⨯﹣B.80.710⨯﹣C.8710⨯﹣D.9710⨯﹣3.下表是某学习小组一次数学测验的成绩统计表:分数/分708090100人数/人13x1已知该小组本次数学测验的平均分是85分,则测验成绩的众数是()A.80分B.85分C.90分D.80分和90分4.菱形不具备的性质是()A.四条边都相等 B.对角线一定相等 C.是轴对称图形 D.是中心对称图形5.某球员参加一场篮球比赛,比赛分4节进行,该球员每节得分如折线统计图所示,则该球员平均每节得分为()A.7分B.8分C.9分D.10分6.如图,把一个正方形三次对折后沿虚线剪下,得到的图形是()A .B .C .D .7.下列计算正确的是( ) A .a 2•a=a 2 B .a 6÷a 2=a 3 C .a 2b ﹣2ba 2=﹣a 2bD .(﹣32a )3=﹣398a8.矩形ABCD 与CEFG ,如图放置,点B ,C ,E 共线,点C ,D ,G 共线,连接AF ,取AF 的中点H ,连接GH .若BC=EF=2,CD=CE=1,则GH=( )A .1B .23C .22D .529.如图,已知⊙O 的半径是2,点A 、B 、C 在⊙O 上,若四边形OABC 为菱形,则图中阴影部分面积为( )A .23π﹣23 B .13π﹣3 C .43π﹣23D .43π﹣3 10.一元二次方程(1)(1)23x x x +-=+的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根11.如图,点P 是矩形ABCD 的对角线AC 上一点,过点P 作EF ∥BC ,分别交AB ,CD 于E 、F ,连接PB 、PD .若AE=2,PF=8.则图中阴影部分的面积为( )A .10B .12C .16D .1812.如图,在矩形ABCD 中,BC=6,CD=3,将△BCD 沿对角线BD 翻折,点C 落在点C 1处,BC 1交AD 于点E ,则线段DE 的长为( )A.3B.154C.5D.152二、填空题13.在一个不透明的袋子中有若千个小球,这些球除颜色外无其他差别,从袋中随机摸出一球,记下其颜色,这称为一次摸球试验,然后把它重新放回袋中并摇匀,不断重复上述过程.以下是利用计算机模拟的摸球试验统计表:摸球实验次数100100050001000050000100000“摸出黑球”的次数36387201940091997040008“摸出黑球”的频率(结果保留小数点后三位)0.3600.3870.4040.4010.3990.400根据试验所得数据,估计“摸出黑球”的概率是_______(结果保留小数点后一位).14.如图,直线a、b被直线l所截,a∥b,∠1=70°,则∠2= .15.甲、乙两人在1200米长的直线道路上跑步,甲、乙两人同起点、同方向出发,并分别以不同的速度匀速前进,已知,甲出发30秒后,乙出发,乙到终点后立即返回,并以原来的速度前进,最后与甲相遇,此时跑步结束.如图,y(米)表示甲、乙两人之间的距离,x(秒)表示甲出发的时间,图中折线及数据表示整个跑步过程中y与x函数关系,那么,乙到达终点后_____秒与甲相遇.16.如图,正方形ABCD 的边长为2,点E 为边BC 的中点,点P 在对角线BD 上移动,则PE+PC 的最小值是 .17.当m =____________时,解分式方程533x mx x-=--会出现增根. 18.如图①,在矩形 MNPQ 中,动点 R 从点 N 出发,沿 N→P→Q→M 方向运动至点 M 处停止,设点 R 运动的路程为 x ,△MNR 的面积为 y ,如果 y 关于 x 的函数图象如图②所示,则矩形 MNPQ 的面积是________.19.已知10a b b -+-=,则1a +=__.20.如图是两块完全一样的含30°角的直角三角尺,分别记做△ABC 与△A′B′C′,现将两块三角尺重叠在一起,设较长直角边的中点为M ,绕中点M 转动上面的三角尺ABC ,使其直角顶点C 恰好落在三角尺A′B′C′的斜边A′B′上.当∠A =30°,AC =10时,两直角顶点C ,C′间的距离是_____.三、解答题21.解方程:x 21x 1x-=-. 22.如图1,△ABC 内接于⊙O ,∠BAC 的平分线交⊙O 于点D ,交BC 于点E (BE >EC ),且3D 作DF ∥BC ,交AB 的延长线于点F . (1)求证:DF 为⊙O 的切线;(2)若∠BAC=60°,7,求图中阴影部分的面积; (3)若43AB AC =,DF+BF=8,如图2,求BF 的长.23.如图1,已知二次函数y=ax2+ 3 2x+c(a≠0)的图象与y轴交于点A(0,4),与x轴交于点B、C,点C坐标为(8,0),连接AB、AC.(1)请直接写出二次函数y=ax2+32x+c的表达式;(2)判断△ABC的形状,并说明理由;(3)若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,请写出此时点N的坐标;(4)如图2,若点N在线段BC上运动(不与点B、C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求此时点N的坐标.24.修建隧道可以方便出行.如图:A,B两地被大山阻隔,由A地到B地需要爬坡到山顶C地,再下坡到B地.若打通穿山隧道,建成直达A,B两地的公路,可以缩短从A地到B地的路程.已知:从A到C坡面的坡度1:3i=,从B到C坡面的坡角45CBA∠=︒,42BC=公里.(1)求隧道打通后从A到B的总路程是多少公里?(结果保留根号)(2)求隧道打通后与打通前相比,从A地到B地的路程约缩短多少公里?(结果精确到0.012 1.414≈3 1.732)25.解不等式组3415122x xxx≥-⎧⎪⎨--⎪⎩>,并把它的解集在数轴上表示出来【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】求出AB的坐标,设直线AB的解析式是y=kx+b,把A、B的坐标代入求出直线AB的解析式,根据三角形的三边关系定理得出在△ABP中,|AP-BP|<AB,延长AB交x轴于P′,当P在P′点时,PA-PB=AB,此时线段AP与线段BP之差达到最大,求出直线AB于x轴的交点坐标即可.【详解】∵把A(12,y1),B(2,y2)代入反比例函数y=1x得:y1=2,y2=12,∴A(12,2),B(2,12),∵在△ABP中,由三角形的三边关系定理得:|AP-BP|<AB,∴延长AB交x轴于P′,当P在P′点时,PA-PB=AB,即此时线段AP与线段BP之差达到最大,设直线AB的解析式是y=kx+b,把A、B的坐标代入得:122122k bk b⎧+⎪⎪⎨⎪+⎪⎩==,解得:k=-1,b=52,∴直线AB的解析式是y=-x+52,当y=0时,x=52,即P(52,0),【点睛】本题考查了三角形的三边关系定理和用待定系数法求一次函数的解析式的应用,解此题的关键是确定P 点的位置,题目比较好,但有一定的难度.2.D解析:D 【解析】 【分析】由科学记数法知90.000000007710-=⨯; 【详解】解:90.000000007710-=⨯; 故选:D . 【点睛】本题考查科学记数法;熟练掌握科学记数法10n a ⨯中a 与n 的意义是解题的关键.3.D解析:D 【解析】 【分析】先通过加权平均数求出x 的值,再根据众数的定义就可以求解. 【详解】解:根据题意得:70+80×3+90x+100=85(1+3+x+1), x=3∴该组数据的众数是80分或90分. 故选D . 【点睛】本题考查了加权平均数的计算和列方程解决问题的能力,解题的关键是利用加权平均数列出方程.通过列方程求出x 是解答问题的关键.4.B解析:B 【解析】【分析】根据菱形的性质逐项进行判断即可得答案. 【详解】菱形的四条边相等,菱形是轴对称图形,也是中心对称图形, 菱形对角线垂直但不一定相等, 故选B .【点睛】本题考查了菱形的性质,解题的关键是熟练掌握菱形的性质.5.B解析:B【分析】根据平均数的定义进行求解即可得.【详解】根据折线图可知该球员4节的得分分别为:12、4、10、6,所以该球员平均每节得分=1241064+++=8,故选B.【点睛】本题考查了折线统计图、平均数的定义等知识,解题的关键是理解题意,掌握平均数的求解方法.6.C解析:C【解析】【分析】按照题中所述,进行实际操作,答案就会很直观地呈现.【详解】解:将图形按三次对折的方式展开,依次为:.故选:C.【点睛】本题主要考查学生的动手能力及空间想象能力,对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.7.C解析:C【解析】【分析】根据同底数幂的乘法运算可判断A;根据同底数幂的除法运算可判断B;根据合并同类项可判断选项C;根据分式的乘方可判断选项D.【详解】A、原式=a3,不符合题意;B、原式=a4,不符合题意;C、原式=-a2b,符合题意;D、原式=-278a,不符合题意,故选C.【点睛】此题考查了分式的乘除法,合并同类项,以及同底数幂的乘除法,熟练掌握运算法则是解本题的关键.8.C解析:C【解析】分析:延长GH交AD于点P,先证△APH≌△FGH得AP=GF=1,GH=PH=12PG,再利用勾股定理求得PG=2,从而得出答案.详解:如图,延长GH交AD于点P,∵四边形ABCD和四边形CEFG都是矩形,∴∠ADC=∠ADG=∠CGF=90°,AD=BC=2、GF=CE=1,∴AD∥GF,∴∠GFH=∠PAH,又∵H是AF的中点,∴AH=FH,在△APH和△FGH中,∵PAH GFH AH FHAHP FHG∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△APH≌△FGH(ASA),∴AP=GF=1,GH=PH=12 PG,∴PD=AD﹣AP=1,∵CG=2、CD=1,∴DG=1,则GH=12PG=12×22PD DG+22,故选:C.点睛:本题主要考查矩形的性质,解题的关键是掌握全等三角形的判定与性质、矩形的性质、勾股定理等知识点.9.C解析:C【解析】分析:连接OB 和AC 交于点D ,根据菱形及直角三角形的性质先求出AC 的长及∠AOC 的度数,然后求出菱形ABCO 及扇形AOC 的面积,则由S 菱形ABCO ﹣S 扇形AOC 可得答案. 详解:连接OB 和AC 交于点D ,如图所示:∵圆的半径为2, ∴OB=OA=OC=2, 又四边形OABC 是菱形, ∴OB ⊥AC ,OD=12OB=1, 在Rt △COD 中利用勾股定理可知:22213-=,3∵sin ∠COD=32CD OC =, ∴∠COD=60°,∠AOC=2∠COD=120°, ∴S 菱形ABCO =12B×AC=12×2×33 S 扇形AOC =2120243603ππ⨯⨯=,则图中阴影部分面积为S 菱形ABCO ﹣S 扇形AOC =4233π- 故选C .点睛:本题考查扇形面积的计算及菱形的性质,解题关键是熟练掌握菱形的面积=12a•b (a 、b 是两条对角线的长度);扇形的面积=2360n r π,有一定的难度.10.A解析:A 【解析】 【分析】先化成一般式后,在求根的判别式,即可确定根的状况. 【详解】解:原方程可化为:2240x x --=,1a \=,2b =-,4c =-,2(2)41(4)200∴∆=--⨯⨯-=>, ∴方程由两个不相等的实数根.故选:A.【点睛】本题运用了根的判别式的知识点,把方程转化为一般式是解决问题的关键.11.C解析:C【解析】【分析】首先根据矩形的特点,可以得到S△ADC=S△ABC,S△AMP=S△AEP,S△PFC=S△PCN,最终得到S矩形EBNP= S矩形MPFD ,即可得S△PEB=S△PFD,从而得到阴影的面积.【详解】作PM⊥AD于M,交BC于N.则有四边形AEPM,四边形DFPM,四边形CFPN,四边形BEPN都是矩形,∴S△ADC=S△ABC,S△AMP=S△AEP,S△PFC=S△PCN∴S矩形EBNP= S矩形MPFD ,又∵S△PBE=12S矩形EBNP,S△PFD=12S矩形MPFD,∴S△DFP=S△PBE=12×2×8=8,∴S阴=8+8=16,故选C.【点睛】本题考查矩形的性质、三角形的面积等知识,解题的关键是证明S△PEB=S△PFD.12.C解析:C【解析】【分析】【详解】解:根据题意易证BE=DE,设ED=x,则AE=8﹣x,在△ABE中根据勾股定理得到关于线段AB、AE、BE的方程x2=42+(8﹣x)2,解方程得x=5,即ED=5故选C.【点睛】本题考查翻折变换(折叠问题);勾股定理;方程思想.二、填空题13.4【解析】【分析】大量重复试验下摸球的频率可以估计摸球的概率据此求解【详解】观察表格发现随着摸球次数的增多频率逐渐稳定在04附近故摸到白球的频率估计值为04;故答案为:04【点睛】本题考查了利用频率解析:4【解析】【分析】大量重复试验下摸球的频率可以估计摸球的概率,据此求解.【详解】观察表格发现随着摸球次数的增多频率逐渐稳定在0.4附近,故摸到白球的频率估计值为0.4;故答案为:0.4.【点睛】本题考查了利用频率估计概率的知识,解题的关键是了解大量重复试验中某个事件发生的频率能估计概率.14.110°【解析】∵a∥b∴∠3=∠1=70°∵∠2+∠3=180°∴∠2=110°解析:110°【解析】∵a∥b,∴∠3=∠1=70°,∵∠2+∠3=180°,∴∠2=110°15.30【解析】【分析】由图象可以V甲=9030=3m/sV追=90120-30=1m/s 故V乙=1+3=4m/s由此可求得乙走完全程所用的时间为:12004=300s则可以求得此时乙与甲的距离即可求出解析:30【解析】【分析】由图象可以V甲==3m/s,V追==1m/s,故V乙=1+3=4m/s,由此可求得乙走完全程所用的时间为:=300s,则可以求得此时乙与甲的距离,即可求出最后与甲相遇的时间.【详解】由图象可得V甲==3m/s,V追==1m/s,∴V乙=1+3=4m/s,∴乙走完全程所用的时间为:=300s,此时甲所走的路程为:(300+30)×3=990m.此时甲乙相距:1200﹣990=210m则最后相遇的时间为:=30s故答案为:30【点睛】此题主要考查一次函数图象的应用,利用函数图象解决行程问题.此时就要求掌握函数图象中数据表示的含义.16.【解析】试题分析:要求PE+PC的最小值PEPC不能直接求可考虑通过作辅助线转化PEPC的值从而找出其最小值求解试题解析:如图连接AE∵点C关于BD的对称点为点A∴PE+PC=PE+AP根据两点之间解析:5.【解析】试题分析:要求PE+PC的最小值,PE,PC不能直接求,可考虑通过作辅助线转化PE,PC 的值,从而找出其最小值求解.试题解析:如图,连接AE,∵点C关于BD的对称点为点A,∴PE+PC=PE+AP,根据两点之间线段最短可得AE就是AP+PE的最小值,∵正方形ABCD的边长为2,E是BC边的中点,∴BE=1,∴22+125考点:1.轴对称-最短路线问题;2.正方形的性质.17.2【解析】分析:分式方程的增根是分式方程转化为整式方程的根且使分式方程的分母为0的未知数的值详解:分式方程可化为:x-5=-m由分母可知分式方程的增根是3当x=3时3-5=-m解得m=2故答案为:2解析:2【解析】分析:分式方程的增根是分式方程转化为整式方程的根,且使分式方程的分母为0的未知数的值.详解:分式方程可化为:x-5=-m,由分母可知,分式方程的增根是3,当x=3时,3-5=-m,解得m=2,故答案为:2.点睛:本题考查了分式方程的增根.增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.18.20【解析】【分析】根据图象横坐标的变化问题可解【详解】由图象可知x=4时点R到达Px=9时点R到Q点则PN=4QP=5∴矩形MNPQ的面积是20【点睛】本题为动点问题的函数图象探究题考查了动点到达解析:20【解析】【分析】根据图象横坐标的变化,问题可解.【详解】由图象可知,x=4时,点R到达P,x=9时,点R到Q点,则PN=4,QP=5∴矩形MNPQ的面积是20.【点睛】本题为动点问题的函数图象探究题,考查了动点到达临界点前后图象趋势的趋势变化.解答时,要注意数形结合.19.【解析】【分析】利用非负数的性质结合绝对值与二次根式的性质即可求出ab的值进而即可得出答案【详解】∵+|b﹣1|=0又∵∴a﹣b=0且b﹣1=0解得:a=b=1∴a+1=2故答案为2【点睛】本题主要解析:【解析】【分析】利用非负数的性质结合绝对值与二次根式的性质即可求出a,b的值,进而即可得出答案.【详解】b﹣1|=0,b-≥,≥,|1|0∴a﹣b=0且b﹣1=0,解得:a=b=1,∴a+1=2.故答案为2.【点睛】本题主要考查了非负数的性质以及绝对值与二次根式的性质,根据几个非负数的和为0,那么每个非负数都为0得到关于a、b的方程是解题的关键.20.5【解析】【分析】连接CC1根据M是ACA1C1的中点AC=A1C1得出CM=A1M=C1M=AC=5再根据∠A1=∠A1CM=30°得出∠CMC1=60°△MCC1为等边三角形从而证出CC1=CM解析:5【解析】【分析】连接CC1,根据M是AC、A1C1的中点,AC=A1C1,得出CM=A1M=C1M=12AC=5,再根据∠A1=∠A1CM=30°,得出∠CMC1=60°,△MCC1为等边三角形,从而证出CC1=CM,即可得出答案.【详解】解:如图,连接CC1,∵两块三角板重叠在一起,较长直角边的中点为M,∴M是AC、A1C1的中点,AC=A1C1,∴CM=A1M=C1M=12AC=5,∴∠A1=∠A1CM=30°,∴∠CMC1=60°,∴△CMC1为等边三角形,∴CC1=CM=5,∴CC1长为5.故答案为5.考点:等边三角形的判定与性质.三、解答题21.2x .【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】去分母得:x2-2x+2=x2-x,解得:x=2,检验:当x=2时,方程左右两边相等,所以x=2是原方程的解.【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.22.(1)证明见解析(2)﹣2π;(3)3【解析】【分析】(1)连结OD,如图1,由已知得到∠BAD=∠CAD,得到»»BD CD=,再由垂径定理得OD⊥BC,由于BC∥EF,则OD⊥DF,于是可得结论;(2)连结OB,OD交BC于P,作BH⊥DF于H,如图1,先证明△OBD为等边三角形得到∠ODB=60°,OB=BD=BDF=∠DBP=30°,在Rt△DBP中得到,PB=3,在Rt△DEP中利用勾股定理可算出PE=2,由于OP⊥BC,则BP=CP=3,得到CE=1,由△BDE∽△ACE,得到AE的长,再证明△ABE∽△AFD,可得DF=12,最后利用S阴影部分=S△BDF﹣S弓形BD=S△BDF﹣(S扇形BOD﹣S△BOD)进行计算;(3)连结CD,如图2,由43ABAC=可设AB=4x,AC=3x,设BF=y,由»»BD CD=得到CD=BD=△BFD∽△CDA,得到xy=4,再由△FDB∽△FAD,得到16﹣4y=xy,则16﹣4y=4,然后解方程即可得到BF=3.【详解】(1)连结OD,如图1,∵AD平分∠BAC交⊙O于D,∴∠BAD=∠CAD,∴»»BD CD=,∴OD⊥BC,∵BC∥EF,∴OD⊥DF,∴DF为⊙O的切线;(2)连结OB,连结OD交BC于P,作BH⊥DF于H,如图1,∵∠BAC=60°,AD平分∠BAC,∴∠BAD=30°,∴∠BOD=2∠BAD=60°,∴△OBD为等边三角形,∴∠ODB=60°,OB=BD=∴∠BDF=30°,∵BC∥DF,∴∠DBP=30°,在Rt△DBP中,PD=12,在Rt△DEP中,∵,,∴=2,∵OP⊥BC,∴BP=CP=3,∴CE=3﹣2=1,易证得△BDE∽△ACE,∴AE:BE=CE:DE,即AE:5=1,∴,∵BE∥DF,∴△ABE∽△AFD,∴BE AEDF AD=,即5DF=,解得DF=12,在Rt△BDH中,BH=12S阴影部分=S△BDF﹣S弓形BD=S△BDF﹣(S扇形BOD﹣S△BOD)=2216023604π⨯⨯+⨯=2π;(3)连结CD,如图2,由43ABAC=可设AB=4x,AC=3x,设BF=y,∵»»BD CD=,∴CD=BD=23,∵∠F=∠ABC=∠ADC,∵∠FDB=∠DBC=∠DAC,∴△BFD∽△CDA,∴BD BFAC CD=,即23323yx=,∴xy=4,∵∠FDB=∠DBC=∠DAC=∠FAD,而∠DFB=∠AFD,∴△FDB∽△FAD,∴DF BFAF DF=,即848y yy x y-=+-,整理得16﹣4y=xy,∴16﹣4y=4,解得y=3,即BF的长为3.考点:1.圆的综合题;2.相似三角形的判定与性质;3.切线的判定与性质;4.综合题;5.压轴题.23.(1)y=﹣14x2+32x+4;(2)△ABC是直角三角形.理由见解析;(3)点N的坐标分别为(﹣8,0)、(8﹣45,0)、(3,0)、(8+45,0).(4)当△AMN面积最大时,N点坐标为(3,0).【解析】【分析】(1)由点A、C的坐标利用待定系数法即可求出二次函数的解析式;(2)令二次函数解析式中y=0,求出点B的坐标,再由两点间的距离公式求出线段AB、AC、BC的长度,由三者满足AB2+AC2=BC2即可得出△ABC为直角三角形;(3)分别以A、C两点为圆心,AC长为半径画弧,与x轴交于三个点,由AC的垂直平分线与x轴交于一点,即可求得点N的坐标;(4)设点N的坐标为(n,0)(-2<n<8),通过分割图形法求面积,再根据相似三角形面积间的关系以及三角形的面积公式即可得出S△AMN关于n的二次函数关系式,根据二次函数的性质即可解决最值问题.【详解】(1)∵二次函数y=ax2+x+c的图象与y轴交于点A(0,4),与x轴交于点B、C,点C坐标为(8,0),∴,解得.∴抛物线表达式:y=﹣x2+x+4;(2)△ABC是直角三角形.令y=0,则﹣x2+x+4=0,解得x1=8,x2=﹣2,∴点B的坐标为(﹣2,0),由已知可得,在Rt△ABO中AB2=BO2+AO2=22+42=20,在Rt△AOC中AC2=AO2+CO2=42+82=80,又∵BC=OB+OC=2+8=10,∴在△ABC中AB2+AC2=20+80=102=BC2∴△ABC是直角三角形.(3)∵A(0,4),C(8,0),∴AC==4,①以A为圆心,以AC长为半径作圆,交x轴于N,此时N的坐标为(﹣8,0),②以C为圆心,以AC长为半径作圆,交x轴于N,此时N的坐标为(8﹣4,0)或(8+4,0)③作AC的垂直平分线,交x轴于N,此时N的坐标为(3,0),综上,若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,点N的坐标分别为(﹣8,0)、(8﹣4,0)、(3,0)、(8+4,0).(4)如图,设点N的坐标为(n,0),则BN=n+2,过M点作MD⊥x轴于点D,∴MD∥OA,∴△BMD∽△BAO,∴=,∵MN∥AC∴=,∴=,∵OA=4,BC=10,BN=n+2∴MD=(n+2),∵S △AMN =S △ABN ﹣S △BMN =BN•OA﹣BN•MD =(n+2)×4﹣×(n+2)2=﹣(n ﹣3)2+5,当n=3时,△AMN 面积最大是5,∴N 点坐标为(3,0).∴当△AMN 面积最大时,N 点坐标为(3,0).【点睛】本题考查了二次函数的综合问题,熟练掌握二次函数的知识点是本题解题的关键.24.(1)隧道打通后从A 到B 的总路程是(434)公里;(2)隧道打通后与打通前相比,从A 地到B 地的路程约缩短2.73公里.【解析】【分析】(1)过点C 作CD ⊥AB 于点D ,利用锐角三角函数的定义求出CD 及AD 的长,进而可得出结论.(2)由坡度可以得出A ∠的度数,从而得出AC 的长,根据AC CB AB +-即可得出缩短的距离.【详解】(1)作CD AB ⊥于点D ,在Rt BCD ∆中,∵45CBA ∠=︒,42BC =,∴4CD BD ==.在Rt ACD ∆中, ∵3CD i AD==, ∴343AD CD == ∴()434AB =公里.答:隧道打通后从A 到B 的总路程是()434公里.(2)在Rt ACD ∆中, ∵1:3CD i AD ==, ∴30A ∠=︒,∴2248AC CD ==⨯=,∴842AC CB +=+.∵434AB =+,∴842434 2.73AC CB AB +-=+--≈(公里).答:隧道打通后与打通前相比,从A 地到B 地的路程约缩短2.73公里.【点睛】本题考查的是解直角三角形的应用-坡度问题,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,需要熟记坡度和锐角三角函数的定义.25.-1<x≤1【解析】【分析】分别解两个不等式,然后根据数轴或“都大取大,都小取小,大小小大取中间,大大小小无解了”求解不等式组.【详解】解:341{5122x x x x ≥--->①② 解不等式①可得x≤1,解不等式②可得x >-1在数轴上表示解集为:所以不等式组的解集为:-1<x≤1.【点睛】本题考查了解不等式组,熟练掌握计算法则是解题关键.。

2019-2020年中考数学模拟试卷含答案解析

2019-2020年中考数学模拟试卷含答案解析

2019-2020年中考数学模拟试卷含答案解析2019-2020年中考数学模拟试卷含答案解析一、选择题(每小题3分,共计30分)1.若a=-2,则|a|的值是(2)。

2.下列运算正确的是(D):(ab2)2=a2b4.3.下列图形中,既是轴对称图形又是中心对称图形的是(D)。

4.如图所示的几何体是由7个小正方体组合而成的立体图形,则它的俯视图是(C)。

5.n是非零常数,两点如图,正比例函数y=mx与反比例函数y=n/x的图象交于A、B两点。

若点A的坐标为(1,2),则点B的坐标是(B):(-2,-1)。

6.如图,河提横断面迎水坡AB的斜坡坡度i=1:3是指破面的铅直高度BC与水平宽度AC的比,若堤高BC=5m,则坡面AB的长度是(D):10m。

7.如图,在△ABC中,点D,E,F分别在边AB,AC,BC上,若DE∥BC,EF∥AB,则下面所列比例式中正确的是(C):___。

8.丽威办公用品工厂要生产280个书桌,计划用14天完成任务,当生产任务完成到一半时,发现以后只有每天比原来多生产21个书桌,才能恰好用14天完成任务。

设原来平均每天生产x个书桌,下面所列方程正确的是(A):(280/2-x*7)/(x+21)=7.9.如图,将△ABC绕点A逆时针旋转80°后得到△AB′C′(点B的对应点是点B′,点C的对应点是点C′),连接BB′,若∠B′BC=20°,则∠BB′C′的大小是(D):76°。

10.___和___在操场的同一条笔直的跑道上进行500米匀速跑步训练,他们从同一地点出发,先到达终点的人原地休息,已知___先出发2秒,在跑步的过程中,___和___的距离y (米)与小亮出发的时间t(秒)之间的函数关系如图所示,下列四种说法:①小明的速度是4米/秒;②___发100秒时到达了终点;③___出发125秒时到达了终点;④___发20秒时,___在小明前方10米。

2019-2020中考数学模拟试卷含答案

2019-2020中考数学模拟试卷含答案

2019-2020 中考数学模拟试卷含答案一、选择题1.如图 A, B, C 是上的三个点,若,则等于()A.50°B. 80°C. 100 °D. 130 °2.如图是由 5 个同样大小的正方体搭成的几何体,则它的俯视图是()A.B.C.D.3.在下边的四个几何体中,左视图与主视图不同样的几何体是()A.B.C.D.4.以下命题正确的选项是()A.有一个角是直角的平行四边形是矩形B.四条边相等的四边形是矩形C.有一组邻边相等的平行四边形是矩形D.对角线相等的四边形是矩形5.如图,在菱形ABCD 中, E 是 AC 的中点, EF∥ CB ,交 AB 于点 F,假如 EF=3 ,那么菱形 ABCD 的周长为()A.24B.18C.12D.96.如图 ,菱形 ABCD 的两条对角线订交于O,若 AC=6,BD=4, 则菱形 ABCD 的周长是 ()A. 24B. 16C.4 13D.2 37.如图,由 5 个完好同样的小正方体组合成一个立体图形,它的左视图是()A.B.C.D.8.将两个大小完好同样的杯子(如图甲)叠放在一同(如图乙),则图乙中实物的俯视图是().A.B.C.D.9.如图, AB ∥ CD , AE 均分∠ CAB 交 CD 于点 E,若∠ C=70°,则∠ AED 度数为 ( )A. 110°B. 125°C. 135°D. 140°10.以下各式化简后的结果为 32的是()A.6B.12C.18D.3611.察看以下图形中点的个数,若按其规律再画下去,能够获取第9 个图形中全部点的个数为()A. 61B. 72C. 73D. 8612.某商品的标价为200 元, 8 折销售仍赚40 元,则商品进价为()元.A.140B. 120C.160D.100二、填空题13.当直线y22k x k3经过第二、三、四象限时,则k 的取值范围是_____.14.如图:在△ABC 中, AB=13 , BC=12 ,点 D, E 分别是 AB , BC 的中点,连结DE,CD,假如DE=2.5ACD的周长是 _____.,那么△15.对于 x 的一元二次方程(a+ 1)x 2- 2x+3= 0 有实数根,则整数 a 的最大值是 _____.16.已知一组数据6x,33 5 1的众数是3和5,则这组数据的中位数是 _____.,,,,17.当m____________ 时,解分式方程x5mx 会出现增根.x3318.对于有理数 a、 b,定义一种新运算,规定a☆ b= a2﹣ |b|,则 2☆(﹣ 3)= _____.19.已知 a b b 10 ,则 a 1 __.20.计算:x2x1(11) =________.2x x1三、解答题21.现代互联网技术的宽泛应用,催生了快递行业的高速发展.小明计划给朋友快递一部分物件,经认识有甲、乙两家快递企业比较适合.甲企业表示:快递物件不超出 1 千克的,按每千克22 元收费;超出 1 千克,超出的部分按每千克15 元收费.乙企业表示:按每千克16 元收费,另加包装费 3 元.设小明快递物件x 千克.(1) 请分别写出甲、乙两家快递企业快递该物件的花费y(元)与x(千克)之间的函数关系式;(2)小明选择哪家快递企业更省钱?22.今年 5 月份,我市某中学睁开争做“五好小公民”征文竞赛活动,赛后随机抽取了部分参赛学生的成绩,按得分区分为A, B, C, D 四个等级,并绘制了以下不完好的频数散布表和扇形统计图:等级成绩( s)频数(人数)A90< s≤1004B80< s≤90xC70< s≤8016D s≤706依据以上信息,解答以下问题:(1)表中的x=;(2)扇形统计图中 m=, n=, C 等级对应的扇形的圆心角为度;(3)该校准备从上述获取 A 等级的四名学生中选用两人做为学校“五好小公民”志愿者,已知这四人中有两名男生(用a1, a2表示)和两名女生(用b1, b2表示),请用列表或画树状图的方法求恰巧选用的是a1和 b1的概率.23.如图,在平面直角坐标系中,小正方形格子的边长为1,Rt△ ABC 三个极点都在格点上,请解答以下问题:(1)写出 A , C 两点的坐标;(2)画出△ ABC 对于原点 O 的中心对称图形△ A 1B 1C1;C 旋转至C2经(3) 画出△ ABC 绕原点 O 顺时针旋转90°后获取的△ A 2B2C2,并直接写出点过的路径长.24.计算:1 a b a 2b(2a b)2; 2 11m 24m 4.m 1m2m25.甲、乙两家绿化保养企业各自推出了校园绿化保养服务的收费方案.y(元)与绿化面积x(平方米)是一次函数关系,如图所甲企业方案:每个月的保养花费示.5500元;绿化面积超出1000乙企业方案:绿化面积不超出1000 平方米时,每个月收取花费5500 元的基础上,超出部分每平方米收取 4 元.平方米时,每个月在收取(1)求以下图的 y 与 x 的函数分析式:(不要求写出定义域);(2)假如某学校当前的绿化面积是1200 平方米,试经过计算说明:选择哪家企业的服务,每个月的绿化保养花费较少.【参照答案】 *** 试卷办理标志,请不要删除一、选择题1.D分析: D【分析】试题剖析:依据圆周的度数为360°,可知优弧AC的度数为360°-100 °=260°,而后依据同弧所对的圆周角等于它所对的圆心角的一半,可求得∠B=130°.应选 D考点:圆周角定理2.B分析: B【分析】【剖析】依据从上面看获取的图形是俯视图,可得答案.【详解】从上面看第一列是一个小正方形,第二列是一个小正方形,第三列是两个小正方形,应选: B.【点睛】本题考察了简单几何体的三视图,从上面看上面看获取的图形是俯视图.3.B分析: B【分析】【剖析】由几何体的三视图知识可知,主视图、左视图是分别从物体正面、左面看所获取的图形,仔细察看即可求解.【详解】A、正方体的左视图与主视图都是正方形,故 A 选项不合题意;B、长方体的左视图与主视图都是矩形,可是矩形的长宽不同样,故 B 选项与题意符合;C、球的左视图与主视图都是圆,故C选项不合题意;D、圆锥左视图与主视图都是等腰三角形,故D选项不合题意;应选 B.【点睛】本题主要考察了几何题的三视图,解题重点是能正确画出几何体的三视图.4.A分析: A【分析】【剖析】运用矩形的判断定理,即可迅速确立答案.【详解】解: A. 有一个角为直角的平行四边形是矩形知足判断条件; B 四条边都相等的四边形是菱形,故 B 错误; C 有一组邻边相等的平行四边形是菱形,故 C 错误 ;对角线相等且相互均分的四边形是矩形,则 D 错误;所以答案为 A.【点睛】本题考察了矩形的判断,矩形的判断方法有: 1.有三个角是直角的四边形是矩形; 2.对角线相互均分且相等的四边形是矩形; 3.有一个角为直角的平行四边形是矩形; 4.对角线相等的平行四边形是矩形.5.A分析: A【分析】【剖析】易得BC 长为 EF 长的 2 倍,那么菱形ABCD 的周长 =4BC 问题得解.【详解】∵ E 是 AC 中点,∵E F∥BC,交 AB 于点 F,∴EF 是△ABC 的中位线,∴BC=2EF=2× 3=6 ,∴菱形 ABCD 的周长是 4×6=24,应选 A.【点睛】本题考察了三角形中位线的性质及菱形的周长公式,娴熟掌握有关知识是解题的重点 .6.C分析: C【分析】【剖析】ABCD O, AC=6 , BD=4 ,即可得AC ⊥BD ,求得OA OB 的长,而后利用勾股定理,求得AB的长,既而求得答案.【详解】∵四边形 ABCD 是菱形, AC=6 , BD=4 ,∴AC ⊥BD ,OA=1AC=3 ,2OB=1BD=2 ,2AB=BC=CD=AD,∴在 Rt△AOB 中, AB=22+32 = 13,∴菱形的周长为413.应选 C.7.B分析: B【分析】试题剖析:从左面看易得第一层有 2 个正方形,第二层最左侧有一个正方形.应选B.考点:简单组合体的三视图.8.C分析: C【分析】从上面看,看到两个圆形,应选 C.9.B分析: B【分析】【剖析】由 AB ∥ CD ,依据两直线平行,同旁内角互补可得∠CAB=110°,再由角均分线的定义可得∠CAE=55°,最后依据三角形外角的性质即可求得答案.【详解】∵AB ∥CD,∴∠ BAC+ ∠ C=180°,∵∠ C=70°,∴∠ CAB=180° -70 °=110°,又∵ AE 均分∠ BAC ,∴∠ CAE=55°,∴∠ AED= ∠ C+∠CAE=125°,应选 B.【点睛】本题考察了平行线的性质,角均分线的定义,三角形外角的性质,娴熟掌握有关知识是解题的重点 .10.C分析: CA、 6 不可以化;B、12 =23,故;C、18=32,故正确;D、36=6,故;故 C.点睛:本主要考二次根式,熟掌握二次根式的性是解的关.11.C分析: C【分析】【剖析】第 n 个形中有a n个点( n 正整数),察形,依据各形中点的个数的化可得“a2出化律n + n+1( n 正整数)”,再代入 n= 9即可求出.n=【解】第 n 个形中有 a n个点( n 正整数),察形,可知: a123= 5=1×2+1+2,a = 10= 2×2+1+2+3, a= 16= 3×2+1+2+3+4,⋯ ,∴a n= 2n+1+2+3+ ⋯+( n+1)= n2+ n+1 (n 正整数),∴a9=×92+ ×9+1 = 73.故 C.【点睛】本考了律型:形的化,依据各形中点的个数的化找出化律“a n=n2+ n+1( n 正整数)”是解的关.12.B分析: B【分析】【剖析】商品价x 元,售价每件0.8 ×200 元,由利 =售价 -价成立方程求出其解即可.【解】解:商品的价x 元,售价每件0.8 ×200 元,由意得二、填空题13.【分析】【剖析】依据一次函数时图象经过第二三四象限可得即可求解;【详解】经过第二三四象限∴∴∴故答案为:【点睛】本题考察一次函数图象与系数的关系;掌握一次函数与对函数图象的影响是解题的重点分析: 1 k 3 .【分析】依据一次函数y kx b ,k0 ,b0 时图象经过第二、三、四象限,可得 2 2k0 ,k 3 0 ,即可求解;【详解】y 2 2k x k 3经过第二、三、四象限,∴ 22k 0 , k 30 ,∴ k1,k 3,∴1 k 3 ,故答案为: 1 k 3 .【点睛】本题考察一次函数图象与系数的关系;掌握一次函数y kx b ,k与b对函数图象的影响是解题的重点.14.18【分析】【剖析】依据三角形中位线定理获取AC=2DE=5AC∥DE依据勾股定理的逆定理获取∠ ACB=90°依据线段垂直均分线的性质获取DC=BD依据三角形的周长公式计算即可【详解】∵ DE分别是 A分析: 18【分析】【剖析】依据三角形中位线定理获取AC=2DE=5 , AC ∥DE,依据勾股定理的逆定理获取∠ACB=90°,依据线段垂直均分线的性质获取DC=BD ,依据三角形的周长公式计算即可.【详解】∵D ,E 分别是 AB , BC 的中点,∴AC=2DE=5 , AC ∥ DE,AC 2+BC 2=52+12 2=169,AB 2=13 2=169,∴AC 2+BC 2=AB 2,∴∠ ACB=90°,∵AC ∥DE,∴∠ DEB=90°,又∵ E 是 BC 的中点,∴直线 DE 是线段 BC 的垂直均分线,∴DC=BD ,∴△ ACD 的周长 =AC+AD+CD=AC+AD+BD=AC+AB=18,故答案为 18.【点睛】本题考察的是三角形中位线定理、线段垂直均分线的判断和性质,掌握三角形的中位线平行于第三边,而且等于第三边的一半是解题的重点.15.-2【分析】【剖析】若一元二次方程有实数根则根的鉴别式△=b2- 4ac≥0成立对于 a 的不等式求出 a 的取值范围还要注意二次项系数不为 0【详解】∵对于 x 的一元二次方程 (a +1)x2 -2x+ 3= 0 有实数根分析:-2【分析】【剖析】若一元二次方程有实数根,则根的鉴别式△=b2-4ac≥0,成立对于 a 的不等式,求出a 的取值范围.还要注意二次项系数不为0.【详解】∵对于 x 的一元二次方程(a+ 1)x2- 2x+ 3= 0 有实数根,∴△ =4-4 ( a+1)×3≥0,且 a+1≠0,解得 a≤- 2,且 a≠-1,3则 a 的最大整数值是 -2.故答案为: -2.【点睛】本题考察了根的鉴别式,一元二次方程ax2 +bx+c=0 ( a≠0)的根与△=b2 -4ac 有以下关系:①当△> 0 时,方程有两个不相等的实数根;②当△=0 时,方程有两个相等的实数根;③当△< 0 时,方程无实数根.上面的结论反过来也成立.也考察了一元二次方程的定义.16.4【分析】【剖析】先依据众数的定义求出 x=5 再依据中位数的定义进行求解即可得【详解】∵数据 6x3351 的众数是 3 和 5∴x=5 则这组数据为 133556∴这组数据的中位数为 =4 故答案为: 4【点睛】本题主分析: 4【分析】【剖析】先依据众数的定义求出x=5,再依据中位数的定义进行求解即可得.【详解】∵数据6,x, 3, 3, 5, 1 的众数是3 和 5,∴x=5 ,则这组数据为1、 3、 3、 5、 5、 6,35∴这组数据的中位数为=4,2故答案为: 4.【点睛】本题主要考察众数和中位数,娴熟掌握众数和中位数的定义以及求解方法是解题的重点 .17.2【分析】剖析:分式方程的增根是分式方程转变成整式方程的根且使分式方程的分母为 0的未知数的值详解:分式方程可化为:x-5=-m由分母可知分式方程的增根是3当x=3时 3-5=-m解得 m=2故答案为: 2分析: 2【分析】剖析:分式方程的增根是分式方程转变成整式方程的根,且使分式方程的分母为0 的未知数的值.详解:分式方程可化为:x-5=-m ,由分母可知,分式方程的增根是3,当 x=3 时, 3-5=-m ,解得 m=2,故答案为: 2.点睛:本题考察了分式方程的增根.增根问题可按以下步骤进行:①让最简公分母为 0 确立增根;②化分式方程为整式方程;③把增根代入整式方程即可求得有关字母的值.18.1【分析】解: 2☆(﹣ 3)=22﹣| ﹣3|=4 ﹣3=1 故答案为 1 点睛:本题考察有理数的混淆运算掌握规定的运算方法是解决问题的重点分析: 1【分析】解: 2☆(﹣ 3) =2 2﹣ |﹣3|=4 ﹣3=1.故答案为1.点睛:本题考察有理数的混淆运算,掌握规定的运算方法是解决问题的重点.19.【分析】【剖析】利用非负数的性质联合绝对值与二次根式的性质即可求出 ab 的值从而即可得出答案【详解】∵ +|b ﹣ 1|=0 又∵∴ a﹣ b=0 且 b﹣1=0 解得: a=b=1∴a+1=2 故答案为 2【点睛】本题主要分析:【分析】【剖析】利用非负数的性质联合绝对值与二次根式的性质即可求出a,b 的值,从而即可得出答案.【详解】∵ a b +|b﹣1|=0,又∵ a b 0 , | b 1|0 ,∴a﹣ b=0 且 b﹣ 1=0 ,解得: a=b=1,∴a+1=2.故答案为2.【点睛】本题主要考察了非负数的性质以及绝对值与二次根式的性质,依据几个非负数的和为0,那么每个非负数都为0 获取对于a、 b 的方程是解题的重点.20.【分析】【剖析】先对括号内分式的通分并将括号外的分式的分母利用完全平方公式变形获取÷;接下来利用分式的除法法例将除法运算转变成乘法运算而后约分即可获取化简后的结果【详解】原式=÷=·=故答案为【点睛1分析:x 1【分析】【剖析】先对括号内分式的通分,并将括号外的分式的分母利用完好平方公式变形获取xx 1 1 2÷x;接下来利用分式的除法法例将除法运算转变成乘法运算,而后约分即x 11可获取化简后的结果 .【详解】原式 =xx 1 1 1 2÷1xxxx 1=2 ·x 1x=1.x 11故答案为.x 1【点睛】本题考察了公式的混淆运算,解题的重点是娴熟的掌握分式的混淆运算法例.三、解答题21. 答案看法析【分析】试题剖析:( 1)依据 “甲企业的花费 =起步价 +高出重量 ×续重单价 ”可得出 y 甲对于 x 的函数关系式,依据 “乙企业的花费 =快件重量 ×单价 +包装花费 ”即可得出 y 乙对于 x 的函数关系式;(2)分 0< x ≤1和 x >1 两种状况议论,分别令 y 甲< y 乙 、 y 甲 =y 乙 和方程或不等式即可得出结论.试题分析:( 1)由题意知:y 甲 > y 乙 ,解对于x 的当 0< x ≤1时, y 甲=22x ;当 1< x 时, y 甲 =22+15( x ﹣ 1) =15x+7.y 乙=16x+3;∴ y 甲22x? ( 0 x 1) =16x3 ;{7?(x , y 乙15x 1)(2)① 当 0 < x ≤1时,令 y 甲 < y 乙 ,即 22x < 16x+3,解得: 0< x < 1;2令 y 甲=y 乙,即 22x=16x+3,解得: x= 1;2令 y 甲> y 乙 ,即 22x > 16x+3,解得:1<x ≤1.2②x> 1 时,令 y 甲 < y 乙 ,即 15x+7< 16x+3,解得: x > 4;令 y 甲=y 乙,即 15x+7=16x+3,解得: x=4;令 y 甲> y 乙 ,即 15x+7> 16x+3,解得: 0<x < 4.综上可知:当1< x<4时,选乙快递企业省钱;当x=4 或x= 1时,选甲、乙两家快递公22司快递费同样多;当0< x<1或 x> 4 时,选甲快递企业省钱.2考点:一次函数的应用;分段函数;方案型.22.( 1) 14;( 2)10、 40、144;( 3)恰巧选用的是a1和 b1的概率为1.6【分析】【剖析】( 1)依据 D 组人数及其所占百分比可得总人数,用总人数减去其余三组人数即可得出x 的值;(2)用A、 C 人数分别除以总人数求得 A 、 C 的百分比即可得m、 n 的值,再用360°乘以C 等级百分比可得其度数;(3)第一依据题意列出表格,而后由表格求得全部等可能的结果与恰巧选用的是a1和b1的状况,再利用概率公式即可求得答案.【详解】( 1)∵被检查的学生总人数为∴x=40 ﹣( 4+16+6 )=14 ,故答案为14;6÷15%=40 人,(2)∵ m%=4×100%=10%,n%=16×10%=40%,4040∴m=10 、 n=40 ,C 等级对应的扇形的圆心角为360 °×40%=144°,故答案为10、 40、 144;(3)列表以下:a1a2b1b21a2, a1b1, a1b2, a1a2a1 a2b1 a2b2 a2a,,,1a1, b1a2, b1b2, b1b2a1, b2a2, b2b1, b2b由表可知共有12种等可能结果,此中恰巧选用的是a1和 b1的有 2 种结果,∴恰巧选用的是21a1和 b1的概率为.126【点睛】本题考察的是条形统计图和扇形统计图的综合运用,列表法或树状图法求概率,读懂统计图,从不同的统计图中获取必需的信息是解决问题的重点.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反应部分占整体的百分比大小;概率=所讨状况数与总状况数之比.23. (1)A点坐标为(﹣ 4, 1),C 点坐标为(﹣ 1, 1); (2)看法析;(3)10π.2【分析】【剖析】(1)利用第二象限点的坐标特色写出A , C 两点的坐标;(2)利用对于原点对称的点的坐标特色写出A 1、 B 1、C1的坐标,而后描点即可;(3)利用网格特色和旋转的性质画出点A 、B 、 C 的对应点 A 2、 B2、 C2,而后描点获取△A 2B2C2,再利用弧长公式计算点 C 旋转至 C2经过的路径长.【详解】解: (1)A 点坐标为 (﹣ 4, 1),C 点坐标为 (﹣ 1, 1);(2)如图,△A 1B 1C1为所作;(3)如图,△A 2B 2C2为所作,OC=1232= 10,点 C旋转至 C2经过的路径长=9010 = 10 π.1802【点睛】本题考察了作图﹣旋转变换:依据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此能够经过作相等的角,在角的边上截取相等的线段的方法,找到对应点,按序连结得出旋转后的图形.也考察了弧长公式.13a25ab 3b2;( 2)m24.().m 2【分析】【剖析】1依据多项式乘多项式、完好平方公式睁开,而后再归并同类项即可;2括号内先通分进行分式的减法运算,而后再进行分式的除法运算即可.【详解】1a b a2b(2a b)2= a22ab ab2b24a24ab b23a25ab3b 2;(2) 11m24m 4 m 1m 2mm 2 m m 1=m 1 (m 2) 2m.m 2【点睛】本题考察了整式的混淆运算、分式的混淆运算,娴熟掌握它们的运算法例是解题的重点.25.( 1) y=5x+400.( 2)乙 .【分析】试题剖析:( 1)利用待定系数法即可解决问题;(2)绿化面积是1200 平方米时,求出两家的花费即可判断;b 400k5试题分析:( 1)设 y=kx+b ,则有,解得,100k b 900b400∴y=5x+400 .(2)绿化面积是1200 平方米时,甲企业的花费为6400 元,乙企业的花费为5500+4 ×200=6300 元,∵6300 < 6400∴选择乙企业的服务,每个月的绿化保养花费较少.。

2019-2020数学中考模拟试题含答案

2019-2020数学中考模拟试题含答案

2019-2020数学中考模拟试题含答案一、选择题1.如图,在平面直角坐标中,正方形ABCD 与正方形BEFG 是以原点O 为位似中心的位似图形,且相似比为13,点A ,B ,E 在x 轴上,若正方形BEFG 的边长为12,则C 点坐标为( )A .(6,4)B .(6,2)C .(4,4)D .(8,4)2.预计到2025年,中国5G 用户将超过460 000 000,将460 000 000用科学计数法表示为( ) A .94.610⨯B .74610⨯C .84.610⨯D .90.4610⨯3.一元二次方程(1)(1)23x x x +-=+的根的情况是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .只有一个实数根D .没有实数根4.有31位学生参加学校举行的“最强大脑”智力游戏比赛,比赛结束后根据每个学生的最后得分计算出中位数、平均数、众数和方差,如果去掉一个最高分和一个最低分,则一定不发生变化的是( ) A .中位数B .平均数C .众数D .方差5.如图,直线l 1∥l 2,将一直角三角尺按如图所示放置,使得直角顶点在直线l 1上,两直角边分别与直线l 1、l 2相交形成锐角∠1、∠2且∠1=25°,则∠2的度数为( )A .25°B .75°C .65°D .55°6.如图,是一个几何体的表面展开图,则该几何体是( )A .三棱柱B .四棱锥C .长方体D .正方体7.若关于x 的一元二次方程()2110k x x -++=有两个实数根,则k 的取值范围是()A.54k≤B.54k>C.514k k≠<且D.514k k≤≠且8.下列计算正确的是()A.a2•a=a2B.a6÷a2=a3C.a2b﹣2ba2=﹣a2b D.(﹣32a)3=﹣398a9.如图,是由四个相同的小正方体组成的立体图形,它的左视图是()A.B.C.D.10.如图,⊙C过原点,且与两坐标轴分别交于点A、点B,点A的坐标为(0,3),M 是第三象限内»OB上一点,∠BMO=120°,则⊙C的半径长为()A.6 B.5 C.3 D.3211.某服装加工厂加工校服960套的订单,原计划每天做48套.正好按时完成.后因学校要求提前5天交货,为按时完成订单,设每天就多做x套,则x应满足的方程为()A.96096054848x-=+B.96096054848x+=+C.960960548x-=D.96096054848x-=+12.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打()A.6折B.7折C.8折D.9折二、填空题13.如图,在菱形ABCD中,AB=5,AC=8,则菱形的面积是.14.当直线()223y k x k =-+-经过第二、三、四象限时,则k 的取值范围是_____.15.若a b =2,则222a b a ab--的值为________.16.如图所示,过正五边形ABCDE 的顶点B 作一条射线与其内角EAB ∠的角平分线相交于点P ,且60ABP ∠=︒,则APB ∠=_____度.17.已知圆锥的底面圆半径为3cm ,高为4cm ,则圆锥的侧面积是________cm 2. 18.若关于x 的一元二次方程kx 2+2(k+1)x+k -1=0有两个实数根,则k 的取值范围是 19.在Rt△ABC 中,∠C=90°,AC=6,BC=8,点E 是BC 边上的动点,连接AE ,过点E 作AE 的垂线交AB 边于点F ,则AF 的最小值为_______ 20.分解因式:2x 2﹣18=_____.三、解答题21.在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m ),绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:(Ⅰ)图1中a 的值为 ;(Ⅱ)求统计的这组初赛成绩数据的平均数、众数和中位数;(Ⅲ)根据这组初赛成绩,由高到低确定9人进入复赛,请直接写出初赛成绩为1.65m 的运动员能否进入复赛.22.先化简,再求值: 233212-),322x x x x x x (其中+-+÷=++23.某烘焙店生产的蛋糕礼盒分为六个档次,第一档次(即最低档次)的产品每天生产76件,每件利润10元,调查表明:生产提高一个档次的蛋糕产品,该产品每件利润增加2元 (1)若生产第五档次的蛋糕,该档次蛋糕每件利润为多少元?(2)由于生产工序不同,蛋糕产品每提高一个档次,一天产量会减少4件.若生产的某档次产品一天的总利润为1024元,该烘焙店生产的是第几档次的产品?24.计算:()()()21a b a 2b (2a b)-+--;()221m 4m 421m 1m m -+⎛⎫-÷ ⎪--⎝⎭. 25.距离中考体育考试时间越来越近,某校想了解初三年级1500名学生跳绳情况,从中随机抽查了20名男生和20名女生的跳绳成绩,收集到了以下数据:男生:192、166,189,186,184,182,178,177,174,170,188,168,205,165,158,150,188,172,180,188女生:186,198,162,192,188,186,185,184,180,180,186,193,178,175,172,166,155,183,187,184. 根据统计数据制作了如下统计表:两组数据的极差、平均数、中位数、众数如表所示:(1)请将上面两个表格补充完整:a =____,b =_____,c =_____;(2)请根据抽样调查的数据估计该校初三年级学生中考跳绳成绩能得满分(185个及以上)的同学大约能有多少人?(3)体育组的江老师看了表格数据后认为初三年级的女生跳绳成绩比男生好,请你结合统计数据,写出支持江老师观点的理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】直接利用位似图形的性质结合相似比得出AD 的长,进而得出△OAD ∽△OBG ,进而得出AO的长,即可得出答案.【详解】∵正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为13,∴13 ADBG=,∵BG=12,∴AD=BC=4,∵AD∥BG,∴△OAD∽△OBG,∴13 OA OB=∴0A1 4OA3= +解得:OA=2,∴OB=6,∴C点坐标为:(6,4),故选A.【点睛】此题主要考查了位似变换以及相似三角形的判定与性质,正确得出AO的长是解题关键.2.C解析:C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【详解】460 000 000=4.6×108.故选C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.A解析:A【解析】【分析】先化成一般式后,在求根的判别式,即可确定根的状况.【详解】解:原方程可化为:2240x x --=,1a \=,2b =-,4c =-,2(2)41(4)200∴∆=--⨯⨯-=>, ∴方程由两个不相等的实数根.故选:A . 【点睛】本题运用了根的判别式的知识点,把方程转化为一般式是解决问题的关键.4.A解析:A 【解析】 【分析】根据中位数的定义:位于中间位置或中间两数的平均数可以得到去掉一个最高分和一个最低分不影响中位数. 【详解】去掉一个最高分和一个最低分对中位数没有影响,故选A . 【点睛】考查了统计量的选择,解题的关键是了解中位数的定义.5.C解析:C 【解析】 【分析】依据∠1=25°,∠BAC =90°,即可得到∠3=65°,再根据平行线的性质,即可得到∠2=∠3=65°. 【详解】如图,∵∠1=25°,∠BAC =90°, ∴∠3=180°-90°-25°=65°, ∵l 1∥l 2, ∴∠2=∠3=65°,故选C . 【点睛】本题考查的是平行线的性质,运用两直线平行,同位角相等是解答此题的关键.6.A解析:A【解析】 【分析】本题可以根据三棱柱展开图的三类情况分析解答 【详解】三棱柱的展开图大致可分为三类:1.一个三角在中间,每边上一个长方体,另一个在某长方形另一端.2.三个长方形并排,上下各一个三角形.3.中间一个三角形,其中两条边上有长方形,这两个长方形某一个的另一端有三角形,在这三角形的一条(只有一条,否则拼不上)边有剩下的那个长方形.此题目中图形符合第2种情况 故本题答案应为:A 【点睛】熟练掌握几何体的展开图是解决本题的关键,有时也可以采用排除法.7.D解析:D 【解析】 【分析】运用根的判别式和一元二次方程的定义,组成不等式组即可解答 【详解】解:∵关于x 的一元二次方程(k ﹣1)x 2+x +1=0有两个实数根, ∴210=1-41)10k k -⎧⎨∆⨯-⨯≥⎩≠( ,解得:k ≤54且k ≠1. 故选:D . 【点睛】此题考查根的判别式和一元二次方程的定义,掌握根的情况与判别式的关系是解题关键8.C解析:C 【解析】 【分析】根据同底数幂的乘法运算可判断A ;根据同底数幂的除法运算可判断B ;根据合并同类项可判断选项C ;根据分式的乘方可判断选项D. 【详解】A 、原式=a 3,不符合题意;B 、原式=a 4,不符合题意;C 、原式=-a 2b ,符合题意;D 、原式=-278a,不符合题意, 故选C . 【点睛】此题考查了分式的乘除法,合并同类项,以及同底数幂的乘除法,熟练掌握运算法则是解本题的关键.9.A解析:A 【解析】 【分析】 【详解】从左面看,这个立体图形有两层,且底层有两个小正方形,第二层的左边有一个小正方形. 故选A .10.C解析:C 【解析】 【分析】先根据圆内接四边形的性质求出∠OAB 的度数,由圆周角定理可知∠AOB=90°,故可得出∠ABO 的度数,根据直角三角形的性质即可得出AB 的长,进而得出结论. 【详解】解:∵四边形ABMO 是圆内接四边形,∠BMO=120°, ∴∠BAO=60°, ∵∠AOB=90°, ∴AB 是⊙C 的直径,∴∠ABO=90°-∠BAO=90°-60°=30°, ∵点A 的坐标为(0,3), ∴OA=3, ∴AB=2OA=6,∴⊙C 的半径长=3,故选:C 【点睛】本题考查的是圆内接四边形的性质、圆周角定理及直角三角形的性质,熟知圆内接四边形对角互补的性质是解答此题的关键.11.D解析:D 【解析】解:原来所用的时间为:96048,实际所用的时间为:96048x +,所列方程为:96096054848x -=+.故选D . 点睛:本题考查了由实际问题抽象出分式方程,关键是时间作为等量关系,根据每天多做x 套,结果提前5天加工完成,可列出方程求解.12.B解析:B 【解析】 【详解】设可打x 折,则有1200×10x-800≥800×5%, 解得x≥7. 即最多打7折. 故选B . 【点睛】本题考查的是一元一次不等式的应用,解此类题目时注意利润和折数,计算折数时注意要除以10.解答本题的关键是读懂题意,求出打折之后的利润,根据利润率不低于5%,列不等式求解.二、填空题13.【解析】【分析】连接BD 交AC 于点O 由勾股定理可得BO=3根据菱形的性质求出BD 再计算面积【详解】连接BD 交AC 于点O 根据菱形的性质可得AC ⊥BDAO=C O=4由勾股定理可得BO=3所以BD=6即可解析:【解析】 【分析】连接BD ,交AC 于点O ,由勾股定理可得BO=3,根据菱形的性质求出BD ,再计算面积. 【详解】连接BD ,交AC 于点O ,根据菱形的性质可得AC ⊥BD ,AO=CO=4, 由勾股定理可得BO=3, 所以BD=6, 即可得菱形的面积是12×6×8=24.考点:菱形的性质;勾股定理.14.【解析】【分析】根据一次函数时图象经过第二三四象限可得即可求解;【详解】经过第二三四象限∴∴∴故答案为:【点睛】本题考查一次函数图象与系数的关系;掌握一次函数与对函数图象的影响是解题的关键解析:13k <<. 【解析】 【分析】根据一次函数y kx b =+,k 0<,0b <时图象经过第二、三、四象限,可得220k -<,30k -<,即可求解;【详解】()223y k x k =-+-经过第二、三、四象限,∴220k -<,30k -<, ∴1k >,3k <, ∴13k <<, 故答案为:13k <<. 【点睛】本题考查一次函数图象与系数的关系;掌握一次函数y kx b =+,k 与b 对函数图象的影响是解题的关键.15.【解析】分析:先根据题意得出a=2b 再由分式的基本性质把原式进行化简把a=2b 代入进行计算即可详解:∵=2∴a=2b 原式==当a=2b 时原式==故答案为点睛:本题考查的是分式的化简求值熟知分式的基本 解析:32【解析】分析:先根据题意得出a =2b ,再由分式的基本性质把原式进行化简,把a =2b 代入进行计算即可. 详解:∵ab=2,∴a =2b , 原式=()()()a b a b a a b +--=a ba+ 当a =2b 时,原式=22b b b +=32. 故答案为32. 点睛:本题考查的是分式的化简求值,熟知分式的基本性质是解答此题的关键.16.66【解析】【分析】首先根据正五边形的性质得到度然后根据角平分线的定义得到度再利用三角形内角和定理得到的度数【详解】解:∵五边形为正五边形∴度∵是的角平分线∴度∵∴故答案为:66【点睛】本题考查了多解析:66 【解析】 【分析】首先根据正五边形的性质得到108EAB ∠=度,然后根据角平分线的定义得到54PAB ∠=度,再利用三角形内角和定理得到APB ∠的度数. 【详解】解:∵五边形ABCDE 为正五边形,∴108EAB ∠=度,∵AP 是EAB ∠的角平分线,∴54PAB ∠=度,∵60ABP ∠=︒,∴180605466APB ∠=︒-︒-︒=︒.故答案为:66.【点睛】本题考查了多边形内角与外角,题目中还用到了角平分线的定义及三角形内角和定理. 17.15π【解析】【分析】设圆锥母线长为l 根据勾股定理求出母线长再根据圆锥侧面积公式即可得出答案【详解】设圆锥母线长为l∵r=3h=4∴母线l=∴S 侧=×2πr×5=×2π×3×5=15π故答案为15π解析:15π【解析】【分析】设圆锥母线长为l ,根据勾股定理求出母线长,再根据圆锥侧面积公式即可得出答案.【详解】设圆锥母线长为l ,∵r=3,h=4,∴母线l=225r h +=,∴S 侧=12×2πr×5=12×2π×3×5=15π, 故答案为15π. 【点睛】本题考查了圆锥的侧面积,熟知圆锥的母线长、底面半径、圆锥的高以及圆锥的侧面积公式是解题的关键.18.k≥-13且k≠0【解析】试题解析:∵a=kb=2(k+1)c=k-1∴△=4(k+1)2-4×k×(k-1)=3k+1≥0解得:k≥-13∵原方程是一元二次方程∴k≠0考点:根的判别式解析:k≥,且k≠0【解析】试题解析:∵a=k ,b=2(k+1),c=k-1,∴△=4(k+1)2-4×k×(k-1)=3k+1≥0,解得:k≥-,∵原方程是一元二次方程,∴k ≠0.考点:根的判别式. 19.【解析】试题分析:如图设AF 的中点为D 那么DA=DE=DF 所以AF 的最小值取决于DE 的最小值如图当DE ⊥BC 时DE 最小设DA=DE=m 此时DB=m 由AB=DA+DB得m+m=10解得m=此时AF=2解析:15 2【解析】试题分析:如图,设AF的中点为D,那么DA=DE=DF.所以AF的最小值取决于DE的最小值.如图,当DE⊥BC时,DE最小,设DA=DE=m,此时DB=53m,由AB=DA+DB,得m+53m=10,解得m=154,此时AF=2m=152.故答案为15 2.20.2(x+3)(x﹣3)【解析】【分析】原式提取2再利用平方差公式分解即可【详解】原式=2(x2﹣9)=2(x+3)(x﹣3)故答案为:2(x+3)(x﹣3)【点睛】此题考查了提公因式法与公式法的综合解析:2(x+3)(x﹣3)【解析】【分析】原式提取2,再利用平方差公式分解即可.【详解】原式=2(x2﹣9)=2(x+3)(x﹣3),故答案为:2(x+3)(x﹣3)【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.三、解答题21.(1) 25 ; (2) 这组初赛成绩数据的平均数是1.61.;众数是1.65;中位数是1.60;(3)初赛成绩为1.65 m 的运动员能进入复赛.【解析】【分析】【详解】试题分析:(1)、用整体1减去其它所占的百分比,即可求出a 的值;(2)、根据平均数、众数和中位数的定义分别进行解答即可;(3)、根据中位数的意义可直接判断出能否进入复赛.试题解析:(1)、根据题意得:1﹣20%﹣10%﹣15%﹣30%=25%; 则a 的值是25;(2)、观察条形统计图得: 1.502 1.554 1.605 1.656 1.70324563x ⨯+⨯+⨯+⨯+⨯=++++=1.61; ∵在这组数据中,1.65出现了6次,出现的次数最多, ∴这组数据的众数是1.65; 将这组数据从小到大排列为,其中处于中间的两个数都是1.60, 则这组数据的中位数是1.60.(3)、能; ∵共有20个人,中位数是第10、11个数的平均数,∴根据中位数可以判断出能否进入前9名;∵1.65m >1.60m , ∴能进入复赛考点:(1)、众数;(2)、扇形统计图;(3)、条形统计图;(4)、加权平均数;(5)、中位数 22.11;12x -- 【解析】【分析】根据分式的运算顺序及运算法则化简所给的分式,化为最简后再代入求值即可.【详解】原式=()23x 3x 22-)x 2x 1++⨯+-( ,()()22433221x x x x x +--+=⨯+-,()()21221x x x x -+=⨯+-,11x =-, 当x=3时,原式=113-=12- 【点睛】 本题主要考查了分式的化简求值,利用分式的运算顺序及运算法则把分式化为最简是解题的关键.23.(1该档次蛋糕每件利润为18元;(2)该烘焙店生产的是四档次的产品.【解析】【分析】(1)依题意可求出产品质量在第五档次的每件的利润.(2)设烘焙店生产的是第x 档次的产品,根据单件利润×销售数量=总利润,即可得出关于x 的一元二次方程,解之即可得出结论.【详解】(1)10+2×(5-1)=18(元).答:该档次蛋糕每件利润为18元.(2)设烘焙店生产的是第x 档次的产品,根据题意得:[10+2(x -1)]×[76-4(x -1)]=1024, 整理得:x 2﹣16x +48=0,解得:x 1=4,x 2=12(不合题意,舍去).答:该烘焙店生产的是四档次的产品.【点睛】本题考查了一元二次方程的应用,解题的关键是:(1)根据数量关系,列式计算;(2)根据单件利润×销售数量=总利润,列出关于x 的一元二次方程.24.(1)223a 5ab 3b -+-;(2)m m 2-. 【解析】【分析】 ()1根据多项式乘多项式、完全平方公式展开,然后再合并同类项即可;()2括号内先通分进行分式的减法运算,然后再进行分式的除法运算即可.【详解】()()()21a b a 2b (2a b)-+--=2222a 2ab ab 2b 4a 4ab b +---+-223a 5ab 3b =-+-; (2)221m 4m 41m 1m m -+⎛⎫-÷ ⎪--⎝⎭=()2m m 1m 2m 1(m 2)--⋅-- m m 2=-. 【点睛】 本题考查了整式的混合运算、分式的混合运算,熟练掌握它们的运算法则是解题的关键.25.(1)a =6,b =179,c =188;(2)600;(3)详见解析.【解析】【分析】(1)依据中位数以及众数的定义即可将上面两个表格补充完整;(2)依据样本中能得满分(185个及以上)的同学所占的比例,即可估计该校初三年级学生中考跳绳成绩能得满分的人数;(3)依据两组数据的极差和平均数的大小,即可得到结论.【详解】(1)满足185≤x<190的数据有:186,188,186,185,186,187.∴a=6,20名男生的跳绳成绩排序后最中间的两个数据为178和180,∴b=(178+180)=179,20名男生的跳绳成绩中出现次数最多的数据为188,∴c=188,故答案为:6;179;188;(2)∵20名男生和20名女生的跳绳成绩中,185个及以上的有16个,∴该校初三年级学生中考跳绳成绩能得满分(185个及以上)的同学大约能有1500×=600(人);(3)理由:初三年级的女生跳绳成绩的极差较小,而平均数较大.【点睛】本题考查了用样本估计总体,中位数,众数,正确的理解题意是解题的关键.一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.。

2019-2020数学中考模拟试卷(及答案)

2019-2020数学中考模拟试卷(及答案)

2019-2020数学中考模拟试卷(及答案)一、选择题1.已知反比例函数 y =的图象如图所示,则二次函数 y =a x 2-2x 和一次函数 y =bx+a 在同一平面直角坐标系中的图象可能是( )A .B .C .D . 2.在某校“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的( )A .众数B .方差C .平均数D .中位数 3.将直线23y x =-向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为( )A .24y x =-B .24y x =+C .22y x =+D .22y x =- 4.函数3x y +=中自变量x 的取值范围是( ) A .x ≥-3 B .x ≥-3且1x ≠ C .1x ≠ D .3x ≠-且1x ≠5.某排球队6名场上队员的身高(单位:cm )是:180,184,188,190,192,194.现用一名身高为186cm 的队员换下场上身高为192cm 的队员,与换人前相比,场上队员的身高( )A .平均数变小,方差变小B .平均数变小,方差变大C .平均数变大,方差变小D .平均数变大,方差变大6.如图中的几何体是由一个圆柱和个长方体组成的,该几何体的俯视图是( )A .B .C .D .7.如图,已知////AB CD EF ,那么下列结论正确的是( )A .AD BC DF CE =B .BC DF CE AD = C .CD BC EF BE = D .CD AD EF AF = 8.如图,P 为平行四边形ABCD 的边AD 上的一点,E ,F 分别为PB ,PC 的中点,△PEF ,△PDC ,△PAB 的面积分别为S ,1S ,2S .若S=3,则12S S +的值为( )A .24B .12C .6D .3 9.若关于x 的一元二次方程kx 2﹣4x +3=0有实数根,则k 的非负整数值是( ) A .1B .0,1C .1,2D .1,2,3 10.二次函数2y ax bx c =++的图象如图所示,则一次函数24y bx b ac =+-与反比例函数a b c y x++=在同一坐标系内的图象大致为( )A .B .C .D .11.在全民健身环城越野赛中,甲乙两选手的行程y (千米)随时间(时)变化的图象(全程)如图所示.有下列说法:①起跑后1小时内,甲在乙的前面;②第1小时两人都跑了10千米;③甲比乙先到达终点;④两人都跑了20千米.其中正确的说法有( )A.1 个B.2 个C.3 个D.4个12.如图,点P是矩形ABCD的对角线AC上一点,过点P作EF∥BC,分别交AB,CD于E、F,连接PB、PD.若AE=2,PF=8.则图中阴影部分的面积为()A.10B.12C.16D.18二、填空题13.如图,∠MON=30°,点A1,A2,A3,…在射线ON上,点B1,B2,B3,…在射线OM上,△A1B1A2,△A2B2A3,△A3B3A4…均为等边三角形.若OA1=1,则△A n B n A n+1的边长为______.14.如图,在四边形ABCD中,∠B=∠D=90°,AB=3, BC=2,tanA=43,则CD=_____.15.如图,添加一个条件:,使△ADE∽△ACB,(写出一个即可)16.如图,⊙O的半径为6cm,直线AB是⊙O的切线,切点为点B,弦BC∥AO,若∠A=30°,则劣弧»BC的长为 cm.17.甲、乙两人在1200米长的直线道路上跑步,甲、乙两人同起点、同方向出发,并分别以不同的速度匀速前进,已知,甲出发30秒后,乙出发,乙到终点后立即返回,并以原来的速度前进,最后与甲相遇,此时跑步结束.如图,y(米)表示甲、乙两人之间的距离,x(秒)表示甲出发的时间,图中折线及数据表示整个跑步过程中y与x函数关系,那么,乙到达终点后_____秒与甲相遇.18.“复兴号”是我国具有完全自主知识产权、达到世界先进水平的动车组列车.“复兴号”的速度比原来列车的速度每小时快40千米,提速后从北京到上海运行时间缩短了30分钟,已知从北京到上海全程约1320千米,求“复兴号”的速度.设“复兴号”的速度为x千米/时,依题意,可列方程为_____.19.当m=____________时,解分式方程533x mx x-=--会出现增根.20.对于有理数a、b,定义一种新运算,规定a☆b=a2﹣|b|,则2☆(﹣3)=_____.三、解答题21.光明中学全体学生900人参加社会实践活动,从中随机抽取50人的社会实践活动成绩制成如图所示的条形统计图,结合图中所给信息解答下列问题:()1填写下表:中位数众数随机抽取的50人的社会实践活动成绩(单位:分)()2估计光明中学全体学生社会实践活动成绩的总分.22.如图,点B 、C 、D 都在⊙O 上,过点C 作AC ∥BD 交OB 延长线于点A ,连接CD ,且∠CDB=∠OBD=30°,DB=63cm .(1)求证:AC 是⊙O 的切线;(2)求由弦CD 、BD 与弧BC 所围成的阴影部分的面积.(结果保留π)23.先化简,再求值:(2)(2)(4)a a a a +-+-,其中14a =. 24.先化简,再求值: 233212-),322x x x x x x (其中+-+÷=++ 25.如图1,在直角坐标系中,一次函数的图象l 与y 轴交于点A (0 , 2),与一次函数y =x ﹣3的图象l 交于点E (m ,﹣5).(1)m=__________;(2)直线l 与x 轴交于点B ,直线l 与y 轴交于点C ,求四边形OBEC 的面积; (3)如图2,已知矩形MNPQ ,PQ =2,NP =1,M (a ,1),矩形MNPQ 的边PQ 在x 轴上平移,若矩形MNPQ 与直线l 或l 有交点,直接写出a 的取值范围_____________________________【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】先根据抛物线y=ax2-2x过原点排除A,再由反比例函数图象确定ab的符号,再由a、b的符号和抛物线对称轴确定抛物线与直线y=bx+a的位置关系,进而得解.【详解】∵当x=0时,y=ax2-2x=0,即抛物线y=ax2-2x经过原点,故A错误;∵反比例函数y=的图象在第一、三象限,∴ab>0,即a、b同号,当a<0时,抛物线y=ax2-2x的对称轴x=<0,对称轴在y轴左边,故D错误;当a>0时,b>0,直线y=bx+a经过第一、二、三象限,故B错误;C正确.故选C.【点睛】本题主要考查了一次函数、反比例函数、二次函数的图象与性质,根据函数图象与系数的关系进行判断是解题的关键,同时考查了数形结合的思想.2.D解析:D【解析】【分析】根据中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数)的意义,9人成绩的中位数是第5名的成绩.参赛选手要想知道自己是否能进入前5名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【详解】由于总共有9个人,且他们的分数互不相同,第5的成绩是中位数,要判断是否进入前5名,故应知道中位数的多少.故本题选:D.【点睛】本题考查了统计量的选择,熟练掌握众数,方差,平均数,中位数的概念是解题的关键. 3.A解析:A【解析】【分析】直接根据“上加下减”、“左加右减”的原则进行解答即可.【详解】由“左加右减”的原则可知,将直线y=2x-3向右平移2个单位后所得函数解析式为y=2(x-2)-3=2x-7,由“上加下减”原则可知,将直线y=2x-7向上平移3个单位后所得函数解析式为y=2x-7+3=2x-4,故选A.【点睛】本题考查了一次函数的平移,熟知函数图象平移的法则是解答此题的关键.4.B解析:B【解析】分析:本题主要考查自变量的取值范围,函数关系中主要有二次根式和分式两部分.根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,就可以求解.≥0,∴x+3≥0,∴x ≥-3,∵x-1≠0,∴x ≠1,∴自变量x 的取值范围是:x≥-3且x≠1.故选B .5.A解析:A【解析】分析:根据平均数的计算公式进行计算即可,根据方差公式先分别计算出甲和乙的方差,再根据方差的意义即可得出答案.详解:换人前6名队员身高的平均数为x =1801841881901921946+++++=188, 方差为S 2=()()()()()()22222211801881841881881881901881921881941886⎡⎤-+-+-+-+-+-⎣⎦=683; 换人后6名队员身高的平均数为x =1801841881901861946+++++=187, 方差为S 2=()()()()()()22222211801871841871881871901871861871941876⎡⎤-+-+-+-+-+-⎣⎦=59 3∵188>187,683>593,∴平均数变小,方差变小,故选:A.点睛:本题考查了平均数与方差的定义:一般地设n个数据,x1,x2,…x n的平均数为x,则方差S2=1n[(x1-x)2+(x2-x)2+…+(x n-x)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.6.D解析:D【解析】【分析】根据从上边看得到的图形是俯视图,可得答案.【详解】解:从上边看是一个圆形,圆形内部是一个虚线的正方形.故选:D.【点睛】本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.7.A解析:A【解析】【分析】已知AB∥CD∥EF,根据平行线分线段成比例定理,对各项进行分析即可.【详解】∵AB∥CD∥EF,∴AD BC DF CE.故选A.【点睛】本题考查平行线分线段成比例定理,找准对应关系,避免错选其他答案.8.B解析:B【解析】【分析】【详解】过P作PQ∥DC交BC于点Q,由DC∥AB,得到PQ∥AB,∴四边形PQCD与四边形APQB都为平行四边形,∴△PDC ≌△CQP ,△ABP ≌△QPB ,∴S △PDC =S △CQP ,S △ABP =S △QPB ,∵EF 为△PCB 的中位线,∴EF ∥BC ,EF=12BC , ∴△PEF ∽△PBC ,且相似比为1:2,∴S △PEF :S △PBC =1:4,S △PEF =3,∴S △PBC =S △CQP +S △QPB =S △PDC +S △ABP =12S S +=12.故选B .9.A解析:A【解析】【分析】【详解】由题意得,根的判别式为△=(-4)2-4×3k , 由方程有实数根,得(-4)2-4×3k≥0,解得k≤43, 由于一元二次方程的二次项系数不为零,所以k≠0, 所以k 的取值范围为k≤43且k≠0, 即k 的非负整数值为1,故选A .10.D解析:D【解析】【分析】根据二次函数图象开口向上得到a>0,再根据对称轴确定出b ,根据二次函数图形与x 轴的交点个数,判断24b ac -的符号,根据图象发现当x=1时y=a+b+c<0,然后确定出一次函数图象与反比例函数图象的情况,即可得解.【详解】∵二次函数图象开口方向向上,∴a >0,∵对称轴为直线02b x a=->, ∴b <0, 二次函数图形与x 轴有两个交点,则24b ac ->0,∵当x =1时y =a +b +c <0,∴24y bx b ac =+-的图象经过第二四象限,且与y 轴的正半轴相交, 反比例函数a b c y x++=图象在第二、四象限, 只有D 选项图象符合.故选:D.【点睛】 考查反比例函数的图象,一次函数的图象,二次函数的图象,掌握函数图象与系数的关系是解题的关键.11.C解析:C【解析】【分析】【详解】解:①由纵坐标看出,起跑后1小时内,甲在乙的前面,故①正确;②由横纵坐标看出,第一小时两人都跑了10千米,故②正确;③由横纵坐标看出,乙比甲先到达终点,故③错误;④由纵坐标看出,甲乙二人都跑了20千米,故④正确;故选C .12.C解析:C【解析】【分析】首先根据矩形的特点,可以得到S △ADC =S △ABC ,S △AMP =S △AEP ,S △PFC =S △PCN ,最终得到S 矩形EBNP = S 矩形MPFD ,即可得S △PEB =S △PFD ,从而得到阴影的面积.【详解】作PM ⊥AD 于M ,交BC 于N .则有四边形AEPM ,四边形DFPM ,四边形CFPN ,四边形BEPN 都是矩形, ∴S △ADC =S △ABC ,S △AMP =S △AEP ,S △PFC =S △PCN∴S 矩形EBNP = S 矩形MPFD ,又∵S△PBE=12S矩形EBNP,S△PFD=12S矩形MPFD,∴S△DFP=S△PBE=12×2×8=8,∴S阴=8+8=16,故选C.【点睛】本题考查矩形的性质、三角形的面积等知识,解题的关键是证明S△PEB=S△PFD.二、填空题13.2n-1【解析】【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3以及A2B2=2B1A2得出A3B3=4B1A2=4A4B4=8B1A2=8A5B5=16B1A2…进而得解析:2n-1【解析】【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及A2B2=2B1A2,得出A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2…进而得出答案.【详解】∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°-120°-30°=30°,又∵∠3=60°,∴∠5=180°-60°-30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=1,∴A2B1=1,∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A2B2=2B1A2,B3A3=2B2A3,∴A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2=16,以此类推:△A n B n A n+1的边长为 2n-1.故答案是:2n-1.【点睛】此题主要考查了等边三角形的性质以及等腰三角形的性质,根据已知得出A3B3=4B1A2,A4B4=8B1A2,A5B5=16B1A2进而发现规律是解题关键.14.【解析】【分析】延长AD和BC交于点E在直角△ABE中利用三角函数求得BE的长则EC的长即可求得然后在直角△CDE中利用三角函数的定义求解【详解】如图延长ADBC相交于点E∵∠B=90°∴∴BE=∴解析:6 5【解析】【分析】延长AD和BC交于点E,在直角△ABE中利用三角函数求得BE的长,则EC的长即可求得,然后在直角△CDE中利用三角函数的定义求解.【详解】如图,延长AD、BC相交于点E,∵∠B=90°,∴4 tan3BEAAB==,∴BE=44 3AB⋅=,∴CE=BE-BC=2,225AB BE+=,∴3 sin5ABEAE==,又∵∠CDE=∠CDA=90°,∴在Rt△CDE中,sinCDECE =,∴CD=36sin255 CE E⋅=⨯=.15.∠ADE=∠ACB(答案不唯一)【解析】【分析】【详解】相似三角形的判定有三种方法:①三边法:三组对应边的比相等的两个三角形相似;②两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似;解析:∠ADE=∠ACB(答案不唯一)【解析】【分析】【详解】相似三角形的判定有三种方法:①三边法:三组对应边的比相等的两个三角形相似;②两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似;③两角法:有两组角对应相等的两个三角形相似.由此可得出可添加的条件:由题意得,∠A=∠A(公共角),则添加:∠ADE=∠ACB或∠AED=∠ABC,利用两角法可判定△ADE∽△ACB;添加:AD AEAC AB=,利用两边及其夹角法可判定△ADE∽△ACB.16.【解析】根据切线的性质可得出OB⊥AB从而求出∠BOA的度数利用弦BC∥AO及OB=OC可得出∠BOC的度数代入弧长公式即可得出∵直线AB是⊙O的切线∴OB⊥AB(切线的性质)又∵∠A=30°∴∠B解析:2π.【解析】根据切线的性质可得出OB⊥AB,从而求出∠BOA的度数,利用弦BC∥AO,及OB=OC可得出∠BOC的度数,代入弧长公式即可得出∵直线AB是⊙O的切线,∴OB⊥AB(切线的性质).又∵∠A=30°,∴∠BOA=60°(直角三角形两锐角互余).∵弦BC∥AO,∴∠CBO=∠BOA=60°(两直线平行,内错角相等).又∵OB=OC,∴△OBC是等边三角形(等边三角形的判定).∴∠BOC=60°(等边三角形的每个内角等于60°).又∵⊙O的半径为6cm,∴劣弧»BC的长=606=2180ππ⋅⋅(cm).17.30【解析】【分析】由图象可以V甲=9030=3m/sV追=90120-30=1m/s 故V乙=1+3=4m/s由此可求得乙走完全程所用的时间为:12004=300s则可以求得此时乙与甲的距离即可求出解析:30【解析】【分析】由图象可以V甲==3m/s,V追==1m/s,故V乙=1+3=4m/s,由此可求得乙走完全程所用的时间为:=300s,则可以求得此时乙与甲的距离,即可求出最后与甲相遇的时间.【详解】由图象可得V甲==3m/s,V追==1m/s,∴V乙=1+3=4m/s,∴乙走完全程所用的时间为:=300s,此时甲所走的路程为:(300+30)×3=990m.此时甲乙相距:1200﹣990=210m则最后相遇的时间为:=30s故答案为:30【点睛】此题主要考查一次函数图象的应用,利用函数图象解决行程问题.此时就要求掌握函数图象中数据表示的含义.18.【解析】【分析】设复兴号的速度为x千米/时则原来列车的速度为(x-40)千米/时根据提速后从北京到上海运行时间缩短了30分钟列出方程即可【详解】设复兴号的速度为x千米/时则原来列车的速度为(x﹣40解析:13201320304060x x-=-.【解析】【分析】设“复兴号”的速度为x千米/时,则原来列车的速度为(x-40)千米/时,根据提速后从北京到上海运行时间缩短了30分钟列出方程即可.【详解】设“复兴号”的速度为x千米/时,则原来列车的速度为(x﹣40)千米/时,根据题意得:13201320304060x x-=-.故答案为:13201320304060x x-=-.【点睛】本题主要考查由实际问题抽象出分式方程,解题的关键是理解题意,找到题目蕴含的相等关系.19.2【解析】分析:分式方程的增根是分式方程转化为整式方程的根且使分式方程的分母为0的未知数的值详解:分式方程可化为:x-5=-m由分母可知分式方程的增根是3当x=3时3-5=-m解得m=2故答案为:2解析:2【解析】分析:分式方程的增根是分式方程转化为整式方程的根,且使分式方程的分母为0的未知数的值.详解:分式方程可化为:x-5=-m ,由分母可知,分式方程的增根是3,当x=3时,3-5=-m ,解得m=2,故答案为:2.点睛:本题考查了分式方程的增根.增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.20.1【解析】解:2☆(﹣3)=22﹣|﹣3|=4﹣3=1故答案为1点睛:此题考查有理数的混合运算掌握规定的运算方法是解决问题的关键解析:1【解析】解:2☆(﹣3)=22﹣|﹣3|=4﹣3=1.故答案为1.点睛:此题考查有理数的混合运算,掌握规定的运算方法是解决问题的关键.三、解答题21.()14,4;()2 3150分.【解析】【分析】()1根据抽取的人数可以确定中位数的位置,从而确定中位数,小长方形最高的小组的分数为该组数据的众数;()2算出抽取的50名学生的平均分乘以全校的总人数即可得到光明中学全体学生社会实践活动成绩的总分.【详解】解:()1由题意,将50人的成绩从小到大排序后,第25和第26个的平均数就是中位数,∵2+9+13=24∴第25和第26个成绩都是4,故本组数据的中位数为4∵成绩在4分的同学人数最多∴本组数据的众数是4故填表如下:2随机抽取的50人的社会实践活动成绩的平均数是:1229313414512x 3.5(50⨯+⨯+⨯+⨯+⨯==分).估计光明中学全体学生社会实践活动成绩的总分是:3.59003150(⨯=分).【点睛】考查了条形统计图的知识,题目相对比较简单,解题的关键是正确的识图,并从图形中整理出有关的解题的信息.22.(1)证明见解析;(2)6πcm 2.【解析】【分析】连接BC ,OD ,OC ,设OC 与BD 交于点M .(1)求出∠COB 的度数,求出∠A 的度数,根据三角形的内角和定理求出∠OCA 的度数,根据切线的判定推出即可; (2)证明△CDM ≌△OBM ,从而得到S 阴影=S 扇形BOC .【详解】如图,连接BC ,OD ,OC ,设OC 与BD 交于点M .(1)根据圆周角定理得:∠COB=2∠CDB=2×30°=60°,∵AC ∥BD ,∴∠A=∠OBD=30°,∴∠OCA=180°﹣30°﹣60°=90°,即OC ⊥AC ,∵OC 为半径,∴AC 是⊙O 的切线;(2)由(1)知,AC 为⊙O 的切线,∴OC ⊥AC .∵AC ∥BD ,∴OC ⊥BD .由垂径定理可知,MD=MB=12. 在Rt △OBM 中, ∠COB=60°,OB=cos302MB ︒==6.在△CDM 与△OBM 中3090CDM OBM MD MBCMD OMB ︒︒⎧∠=∠=⎪=⎨⎪∠=∠=⎩, ∴△CDM ≌△OBM (ASA ),∴S △CDM =S △OBM∴阴影部分的面积S 阴影=S 扇形BOC =2606360π⋅=6π(cm 2).考点:1.切线的判定;2.扇形面积的计算.23.44a -,3-.【解析】试题分析:根据平方差公式和单项式乘以多项式可以对原式化简,然后将a=14代入化简后的式子,即可解答本题. 试题解析:原式=2244a a a -+-=44a -; 当a=14时,原式=1444⨯-=14-=3-. 考点:整式的混合运算—化简求值.24.11;12x -- 【解析】【分析】根据分式的运算顺序及运算法则化简所给的分式,化为最简后再代入求值即可.【详解】原式=()23x 3x 22-)x 2x 1++⨯+-( ,()()22433221x x x x x +--+=⨯+-, ()()21221x x x x -+=⨯+-,11x =-, 当x=3时,原式=113-=12- 【点睛】 本题主要考查了分式的化简求值,利用分式的运算顺序及运算法则把分式化为最简是解题的关键.25.(1)-2;(2);(3)≤a≤或3≤a≤6.【解析】【分析】(1)根据点E在一次函数图象上,可求出m的值;(2)利用待定系数法即可求出直线l1的函数解析式,得出点B、C的坐标,利用S四边形OBEC=S△OBE+S△OCE即可得解;(3)分别求出矩形MNPQ在平移过程中,当点Q在l1上、点N在l1上、点Q在l2上、点N在l2上时a的值,即可得解.【详解】解:(1)∵点E(m,−5)在一次函数y=x−3图象上,∴m−3=−5,∴m=−2;(2)设直线l1的表达式为y=kx+b(k≠0),∵直线l1过点A(0,2)和E(−2,−5),∴,解得,∴直线l1的表达式为y=x+2,当y=x+2=0时,x=∴B点坐标为(,0),C点坐标为(0,−3),∴S四边形OBEC=S△OBE+S△OCE=××5+×2×3=;(3)当矩形MNPQ的顶点Q在l1上时,a的值为;矩形MNPQ向右平移,当点N在l1上时,x+2=1,解得x=,即点N(,1),∴a的值为+2=;矩形MNPQ继续向右平移,当点Q在l2上时,a的值为3,矩形MNPQ继续向右平移,当点N在l2上时,x−3=1,解得x=4,即点N(4,1),∴a的值为4+2=6,综上所述,当≤a≤或3≤a≤6时,矩形MNPQ与直线l1或l2有交点.【点睛】本题主要考查求一次函数解析式,两条直线相交、图形的平移等知识的综合应用,在解决第(3)小题时,只要求出各临界点时a的值,就可以得到a的取值范围.。

2019-2020中考数学模拟试卷(含答案)

2019-2020中考数学模拟试卷(含答案)

2019-2020中考数学模拟试卷(含答案)一、选择题1.“厉行勤俭节约,反对铺张浪费”势在必行,最新统计数据显示,中国每年浪费食物总量折合粮食大约是230000000人一年的口粮,将230000000用科学记数法表示为( ) A .2.3×109 B .0.23×109 C .2.3×108 D .23×1072.已知一个正多边形的内角是140°,则这个正多边形的边数是( ) A .9 B .8C .7D .63.如图,菱形ABCD 的一边中点M 到对角线交点O 的距离为5cm ,则菱形ABCD 的周长为( )A .5cmB .10cmC .20cmD .40cm4.下列命题中,其中正确命题的个数为( )个.①方差是衡量一组数据波动大小的统计量;②影响超市进货决策的主要统计量是众数;③折线统计图反映一组数据的变化趋势;④水中捞月是必然事件. A .1B .2C .3D .45.-2的相反数是( ) A .2B .12C .-12D .不存在6.肥皂泡的泡壁厚度大约是0.0007mm ,0.0007用科学记数法表示为( ) A .0.7×10﹣3 B .7×10﹣3 C .7×10﹣4 D .7×10﹣5 7.已知平面内不同的两点A (a +2,4)和B (3,2a +2)到x 轴的距离相等,则a 的值为( ) A .﹣3B .﹣5C .1或﹣3D .1或﹣58.若点P 1(x 1,y 1),P 2(x 2,y 2)在反比例函数ky x=(k >0)的图象上,且x 1=﹣x 2,则( ) A .y 1<y 2B .y 1=y 2C .y 1>y 2D .y 1=﹣y 29.方程21(2)304m x mx --+=有两个实数根,则m 的取值范围( ) A .52m >B .52m ≤且2m ≠ C .3m ≥ D .3m ≤且2m ≠10.将一块直角三角板ABC 按如图方式放置,其中∠ABC =30°,A 、B 两点分别落在直线m 、n 上,∠1=20°,添加下列哪一个条件可使直线m ∥n( )A.∠2=20°B.∠2=30°C.∠2=45°D.∠2=50°11.如图中的几何体是由一个圆柱和个长方体组成的,该几何体的俯视图是( )A.B.C.D.12.如图,在矩形ABCD中,BC=6,CD=3,将△BCD沿对角线BD翻折,点C落在点C1处,BC1交AD于点E,则线段DE的长为()A.3B.154C.5D.152二、填空题13.如果a是不为1的有理数,我们把11a-称为a的差倒数如:2的差倒数是1112=--,-1的差倒数是111(1)2=--,已知14a=,2a是1a的差倒数,3a是2a的差倒数,4a是3a的差倒数,…,依此类推,则2019a=___________.14.如图:已知AB=10,点C、D在线段AB上且AC=DB=2; P是线段CD上的动点,分别以AP、PB为边在线段AB的同侧作等边△AEP和等边△PFB,连结EF,设EF的中点为G;当点P从点C运动到点D时,则点G移动路径的长是________.15.如图所示,图①是一个三角形,分别连接三边中点得图②,再分别连接图②中的小三角形三边中点,得图③……按此方法继续下去.在第n个图形中有______个三角形(用含n的式子表示)16.农科院新培育出A、B两种新麦种,为了了解它们的发芽情况,在推广前做了五次发芽实验,每次随机各自取相同种子数,在相同的培育环境中分别实验,实验情况记录如下:种子数量10020050010002000出芽种子数961654919841965A发芽率0.960.830.980.980.98出芽种子数961924869771946B发芽率0.960.960.970.980.97下面有三个推断:①当实验种子数量为100时,两种种子的发芽率均为0.96,所以他们发芽的概率一样;②随着实验种子数量的增加,A种子出芽率在0.98附近摆动,显示出一定的稳定性,可以估计A种子出芽的概率是0.98;③在同样的地质环境下播种,A种子的出芽率可能会高于B种子.其中合理的是__________(只填序号).17.“复兴号”是我国具有完全自主知识产权、达到世界先进水平的动车组列车.“复兴号”的速度比原来列车的速度每小时快40千米,提速后从北京到上海运行时间缩短了30分钟,已知从北京到上海全程约1320千米,求“复兴号”的速度.设“复兴号”的速度为x千米/时,依题意,可列方程为_____.18.已知(a-4)(a-2)=3,则(a-4)2+(a-2)2的值为__________.19.分解因式:2x2﹣18=_____.20.如图,在四边形ABCD中,E、F分别是AB、AD的中点,若EF=4,BC=10,CD=6,则tanC=________.三、解答题21.2x=600答:甲公司有600人,乙公司有500人.点睛:本题考查了分式方程的应用,关键是分析题意找出等量关系,通过设未知数并根据等量关系列出方程.22.垃圾分类有利于对垃圾进行分流处理,能有效提高垃圾的资源价值和经济价值,力争物尽其用,为了了解同学们对垃圾分类相关知识的掌握情况,增强同学们的环保意识,某校对本校甲、乙两班各60名学生进行了垃极分类相关知识的测试,并分别随机抽取了15份成绩,整理分析过程如下,请补充完整(收集数据)甲班15名学生测试成绩统计如下:(满分100分)68,72,89,85,82,85,74,92,80,85,78,85,69,76,80乙班15名学生测试成绩统计如下:(满分100分)86,89,83,76,73,78,67,80,80,79,80,84,82,80,83(整理数据)按如下分数段整理、描述这两组样本数据在表中,a=,b=.(分析数据)(1)两组样本数据的平均数、众数、中位数、方差如下表所示:在表中:x=,y=.(2)若规定得分在80分及以上(含80分)为合格,请估计乙班60名学生中垃圾分类相关知识合格的学生有人(3)你认为哪个班的学生掌握垃圾分类相关知识的情况较好,说明理由.23.如图1,△ABC内接于⊙O,∠BAC的平分线交⊙O于点D,交BC于点E(BE>EC),且D作DF∥BC,交AB的延长线于点F.(1)求证:DF为⊙O的切线;(2)若∠BAC=60°,,求图中阴影部分的面积;(3)若43ABAC,DF+BF=8,如图2,求BF的长.24.安顺市某商贸公司以每千克40元的价格购进一种干果,计划以每千克60元的价格销售,为了让顾客得到更大的实惠,现决定降价销售,已知这种干果销售量y (千克)与每千克降价x (元)(020)x <<之间满足一次函数关系,其图象如图所示:(1)求y 与x 之间的函数关系式;(2)商贸公司要想获利2090元,则这种干果每千克应降价多少元?25.将平行四边形纸片ABCD 按如图方式折叠,使点C 与A 重合,点D 落到D '处,折痕为EF .(1)求证:ABE AD F 'V V ≌;(2)连结CF ,判断四边形AECF 是什么特殊四边形?证明你的结论.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C【解析】230000000= 2.3×108 ,故选C.2.A解析:A【解析】分析:根据多边形的内角和公式计算即可.详解:.答:这个正多边形的边数是9.故选A.点睛:本题考查了多边形,熟练掌握多边形的内角和公式是解答本题的关键.3.D解析:D【解析】【分析】根据菱形的性质得出AB=BC=CD=AD,AO=OC,根据三角形的中位线求出BC,即可得出答案.【详解】∵四边形ABCD是菱形,∴AB=BC=CD=AD,AO=OC,∵AM=BM,∴BC=2MO=2×5cm=10cm,即AB=BC=CD=AD=10cm,即菱形ABCD的周长为40cm,故选D.【点睛】本题考查了菱形的性质和三角形的中位线定理,能根据菱形的性质得出AO=OC是解此题的关键.4.C解析:C【解析】【分析】利用方差的意义,众数的定义、折线图及随机事件分别判断后即可确定正确的选项.【详解】①方差是衡量一组数据波动大小的统计量,正确,是真命题;②影响超市进货决策的主要统计量是众数,正确,是真命题;③折线统计图反映一组数据的变化趋势,正确,是真命题;④水中捞月是随机事件,故错误,是假命题,真命题有3个,故选C.【点睛】本题考查了命题与定理的知识,解题的关键是了解方差的意义,众数的定义、折线图及随机事件等知识,难度不大.5.A解析:A 【解析】试题分析:根据只有符号不同的两数互为相反数,可知-2的相反数为2. 故选:A.点睛:此题考查了相反数的意义,解题关键是明确相反数的概念,只有符号不同的两数互为相反数,可直接求解.6.C解析:C 【解析】 【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】 解:0.0007=7×10﹣4 故选C . 【点睛】本题考查科学计数法,难度不大.7.A解析:A 【解析】分析:根据点A (a +2,4)和B (3,2a +2)到x 轴的距离相等,得到4=|2a +2|,即可解答.详解:∵点A (a +2,4)和B (3,2a +2)到x 轴的距离相等, ∴4=|2a +2|,a +2≠3, 解得:a =−3, 故选A .点睛:考查点的坐标的相关知识;用到的知识点为:到x 轴和y 轴的距离相等的点的横纵坐标相等或互为相反数.8.D解析:D 【解析】 由题意得:1212k ky y x x ==-=- ,故选D. 9.B【解析】 【分析】根据一元二次方程的定义、二次根式有意义的条件和判别式的意义得到20m -≠,30m -≥,(()214204m ∆=--⨯≥,然后解不等式组即可.【详解】 解:根据题意得20m -≠, 30m -≥,(()214204m ∆=--⨯≥,解得m ≤52且m ≠2. 故选B . 10.D解析:D 【解析】 【分析】根据平行线的性质即可得到∠2=∠ABC+∠1,即可得出结论. 【详解】 ∵直线EF ∥GH ,∴∠2=∠ABC+∠1=30°+20°=50°, 故选D . 【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.11.D解析:D 【解析】 【分析】根据从上边看得到的图形是俯视图,可得答案. 【详解】解:从上边看是一个圆形,圆形内部是一个虚线的正方形. 故选:D . 【点睛】本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.12.C解析:C 【解析】【详解】解:根据题意易证BE=DE ,设ED=x ,则AE=8﹣x ,在△ABE 中根据勾股定理得到关于线段AB 、AE 、BE 的方程x 2=42+(8﹣x )2, 解方程得x=5,即ED=5 故选C . 【点睛】本题考查翻折变换(折叠问题);勾股定理;方程思想.二、填空题13.【解析】【分析】利用规定的运算方法分别算得a1a2a3a4…找出运算结果的循环规律利用规律解决问题【详解】∵a1=4a2=a3=a4=…数列以4−三个数依次不断循环∵2019÷3=673∴a2019解析:34. 【解析】 【分析】利用规定的运算方法,分别算得a 1,a 2,a 3,a 4…找出运算结果的循环规律,利用规律解决问题. 【详解】 ∵a 1=4 a 2=11111143a ==---, a 3=211311413a ⎛⎫ ⎪⎝=⎭=---, a 4=31143114a ==--, …数列以4,−1334,三个数依次不断循环,∵2019÷3=673, ∴a 2019=a 3=34, 故答案为:34. 【点睛】此题考查规律型:数字的变化类,倒数,解题关键在于掌握运算法则找到规律.14.3【解析】【分析】分别延长AEBF 交于点H 易证四边形EPFH 为平行四边形得出G 为PH 中点则G 的运行轨迹为三角形HCD 的中位线MN 再求出CD 的长运用中位线的性质求出MN 的长度即可【详解】如图分别延长A解析:3 【解析】 【分析】分别延长AE 、BF 交于点H ,易证四边形EPFH 为平行四边形,得出G 为PH 中点,则G 的运行轨迹为三角形HCD 的中位线MN .再求出CD 的长,运用中位线的性质求出MN 的长度即可. 【详解】如图,分别延长AE 、BF 交于点H . ∵∠A=∠FPB=60°, ∴AH ∥PF , ∵∠B=∠EPA=60°, ∴BH ∥PE ,∴四边形EPFH 为平行四边形, ∴EF 与HP 互相平分. ∵G 为EF 的中点,∴G 也正好为PH 中点,即在P 的运动过程中,G 始终为PH 的中点,所以G 的运行轨迹为三角形HCD 的中位线MN . ∵CD=10-2-2=6,∴MN=3,即G 的移动路径长为3.故答案为:3. 【点睛】本题考查了等腰三角形及中位线的性质,以及动点问题,是中考的热点.15.【解析】【分析】分别数出图①图②图③中的三角形的个数可以发现:第几个图形中三角形的个数就是4与几的乘积减去3如图③中三角形的个数为9=4×3-3按照这个规律即可求出第n 各图形中有多少三角形【详解】分 解析:()43n -【解析】 【分析】分别数出图①、图②、图③中的三角形的个数,可以发现:第几个图形中三角形的个数就是4与几的乘积减去3.如图③中三角形的个数为9=4×3-3.按照这个规律即可求出第n各图形中有多少三角形.【详解】分别数出图①、图②、图③中的三角形的个数,图①中三角形的个数为1=4×1-3;图②中三角形的个数为5=4×2-3;图③中三角形的个数为9=4×3-3;…可以发现,第几个图形中三角形的个数就是4与几的乘积减去3.按照这个规律,如果设图形的个数为n,那么其中三角形的个数为4n-3.故答案为4n-3.【点睛】此题主要考查学生对图形变化类这个知识点的理解和掌握,解答此类题目的关键是根据题目中给出的图形,数据等条件,通过认真思考,归纳总结出规律,此类题目难度一般偏大,属于难题.16.②③【解析】分析:根据随机事件发生的频率与概率的关系进行分析解答即可详解:(1)由表中的数据可知当实验种子数量为100时两种种子的发芽率虽然都是96但结合后续实验数据可知此时的发芽率并不稳定故不能确解析:②③【解析】分析:根据随机事件发生的“频率”与“概率”的关系进行分析解答即可.详解:(1)由表中的数据可知,当实验种子数量为100时,两种种子的发芽率虽然都是96%,但结合后续实验数据可知,此时的发芽率并不稳定,故不能确定两种种子发芽的概率就是96%,所以①中的说法不合理;(2)由表中数据可知,随着实验次数的增加,A种种子发芽的频率逐渐稳定在98%左右,故可以估计A种种子发芽的概率是98%,所以②中的说法是合理的;(3)由表中数据可知,随着实验次数的增加,A种种子发芽的频率逐渐稳定在98%左右,而B种种子发芽的频率稳定在97%左右,故可以估计在相同条件下,A种种子发芽率大于B种种子发芽率,所以③中的说法是合理的.故答案为:②③.点睛:理解“随机事件发生的频率与概率之间的关系”是正确解答本题的关键. 17.【解析】【分析】设复兴号的速度为x千米/时则原来列车的速度为(x-40)千米/时根据提速后从北京到上海运行时间缩短了30分钟列出方程即可【详解】设复兴号的速度为x千米/时则原来列车的速度为(x﹣40解析:13201320304060x x-=-.【解析】【分析】设“复兴号”的速度为x千米/时,则原来列车的速度为(x-40)千米/时,根据提速后从北京到上海运行时间缩短了30分钟列出方程即可.【详解】设“复兴号”的速度为x千米/时,则原来列车的速度为(x﹣40)千米/时,根据题意得:13201320304060x x-=-.故答案为:13201320304060x x-=-.【点睛】本题主要考查由实际问题抽象出分式方程,解题的关键是理解题意,找到题目蕴含的相等关系.18.10【解析】【分析】试题分析:把(a﹣4)和(a﹣2)看成一个整体利用完全平方公式求解【详解】(a﹣4)2+(a﹣2)2=(a﹣4)2+(a﹣2)2-2(a ﹣4)(a﹣2)+2(a﹣4)(a﹣2)=解析:10【解析】【分析】试题分析:把(a﹣4)和(a﹣2)看成一个整体,利用完全平方公式求解.【详解】(a﹣4)2+(a﹣2)2=(a﹣4)2+(a﹣2)2-2(a﹣4)(a﹣2)+2(a﹣4)(a﹣2)=[(a﹣4)-(a﹣2)]2+2(a﹣4)(a﹣2)=(-2)2+2×3=10故答案为10【点睛】本题考查了完全平方公式:(a±b)2=a2±2ab+b2求解,整体思想的运用使运算更加简便.19.2(x+3)(x﹣3)【解析】【分析】原式提取2再利用平方差公式分解即可【详解】原式=2(x2﹣9)=2(x+3)(x﹣3)故答案为:2(x+3)(x﹣3)【点睛】此题考查了提公因式法与公式法的综合解析:2(x+3)(x﹣3)【解析】【分析】原式提取2,再利用平方差公式分解即可.【详解】原式=2(x2﹣9)=2(x+3)(x﹣3),故答案为:2(x+3)(x﹣3)【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.20.【解析】【分析】连接BD 根据中位线的性质得出EFBD 且EF=BD 进而根据勾股定理的逆定理得到△BDC 是直角三角形求解即可【详解】连接BD 分别是ABAD 的中点EFBD 且EF=BD 又△BDC 是直角三角形 解析:43 【解析】 【分析】连接BD ,根据中位线的性质得出EF //BD ,且EF=12BD ,进而根据勾股定理的逆定理得到△BDC 是直角三角形,求解即可.【详解】连接BD ,E F Q 分别是AB 、AD 的中点∴EF //BD ,且EF=12BD 4EF =Q8BD ∴=又Q 8106BD BC CD ===,,∴△BDC 是直角三角形,且=90BDC ∠︒∴tanC=BD DC =86=43. 故答案为:43.三、解答题21.无22.【整理数据】:7,4;【分析数据】(1)85,80;(2)40;(3)乙班的学生掌握垃圾分类相关知识的整体水平较好,见解析.【解析】【分析】由收集的数据即可得;(1)根据众数和中位数的定义求解可得;(2)用总人数乘以乙班样本中合格人数所占比例可得;(3)甲、乙两班的方差判定即可.【详解】解:乙班75.5~80.5分数段的学生数为7,80.5~85.5分数段的学生数为4,故a=7,b=4,故答案为:7,4;(1)68,72,89,85,82,85,74,92,80,85,78,85,69,76,80,众数是x=85,67,73,76,78,79,80,80,80,80,82,83,83,84,86,89,中位数是y=80,故答案为:85,80;(2)60×1015=40(人),即合格的学生有40人,故答案为:40;(3)乙班的学生掌握垃圾分类相关知识的整体水平较好,∵甲班的方差>乙班的方差,∴乙班的学生掌握垃圾分类相关知识的整体水平较好.【点睛】本题考查了频数分布直方图,众数,中位数,正确的理解题意是解题的关键.23.(1)证明见解析(2)﹣2π;(3)3【解析】【分析】(1)连结OD,如图1,由已知得到∠BAD=∠CAD,得到»»BD CD=,再由垂径定理得OD⊥BC,由于BC∥EF,则OD⊥DF,于是可得结论;(2)连结OB,OD交BC于P,作BH⊥DF于H,如图1,先证明△OBD为等边三角形得到∠ODB=60°,OB=BD=BDF=∠DBP=30°,在Rt△DBP中得到,PB=3,在Rt△DEP中利用勾股定理可算出PE=2,由于OP⊥BC,则BP=CP=3,得到CE=1,由△BDE∽△ACE,得到AE的长,再证明△ABE∽△AFD,可得DF=12,最后利用S阴影部分=S△BDF﹣S弓形BD=S△BDF﹣(S扇形BOD﹣S△BOD)进行计算;(3)连结CD,如图2,由43ABAC=可设AB=4x,AC=3x,设BF=y,由»»BD CD=得到CD=BD=△BFD∽△CDA,得到xy=4,再由△FDB∽△FAD,得到16﹣4y=xy,则16﹣4y=4,然后解方程即可得到BF=3.【详解】(1)连结OD,如图1,∵AD平分∠BAC交⊙O于D,∴∠BAD=∠CAD,∴»»BD CD=,∴OD⊥BC,∵BC∥EF,∴OD⊥DF,∴DF为⊙O的切线;(2)连结OB,连结OD交BC于P,作BH⊥DF于H,如图1,∵∠BAC=60°,AD平分∠BAC,∴∠BAD=30°,∴∠BOD=2∠BAD=60°,∴△OBD为等边三角形,∴∠ODB=60°,OB=BD=23,∴∠BDF=30°,∵BC∥DF,∴∠DBP=30°,在Rt△DBP中,PD=12BD=3,PB=3PD=3,在Rt△DEP中,∵PD=3,DE=7,∴PE=22(7)(3)-=2,∵OP⊥BC,∴BP=CP=3,∴CE=3﹣2=1,易证得△BDE∽△ACE,∴AE:BE=CE:DE,即AE:5=1:7,∴AE=577,∵BE∥DF,∴△ABE∽△AFD,∴BE AEDF AD=,即5757125DF=,解得DF=12,在Rt△BDH中,BH=12BD=3,∴S阴影部分=S△BDF﹣S弓形BD=S△BDF﹣(S扇形BOD﹣S△BOD)=22160(23)3123(23)2π⨯⨯-+⨯=932π-;(3)连结CD,如图2,由43ABAC=可设AB=4x,AC=3x,设BF=y,∵»»BD CD=,∴CD=BD=23,∵∠F=∠ABC=∠ADC,∵∠FDB=∠DBC=∠DAC,∴△BFD∽△CDA,∴BD BFAC CD=,即2323=,∴xy=4,∵∠FDB=∠DBC=∠DAC=∠FAD,而∠DFB=∠AFD,∴△FDB∽△FAD,∴DF BFAF DF=,即848y yy x y-=+-,整理得16﹣4y=xy,∴16﹣4y=4,解得y=3,即BF的长为3.考点:1.圆的综合题;2.相似三角形的判定与性质;3.切线的判定与性质;4.综合题;5.压轴题.24.(1)10100y x =+;(2)商贸公司要想获利2090元,则这种干果每千克应降价9元.【解析】【分析】(1)根据图象可得:当2x =,120y =,当4x =,140y =;再用待定系数法求解即可;(2)根据这种干果每千克的利润×销售量=2090列出方程,解方程即可.【详解】解:(1)设一次函数解析式为:y kx b =+,根据图象可知:当2x =,120y =;当4x =,140y =;∴21204140k b k b +=⎧⎨+=⎩,解得:10100k b =⎧⎨=⎩, ∴y 与x 之间的函数关系式为10100y x =+;(2)由题意得:(6040)(10100)2090x x --+=,整理得:21090x x -+=,解得:11x =.29x =,∵让顾客得到更大的实惠,∴9x =.答:商贸公司要想获利2090元,这种干果每千克应降价9元.【点睛】本题考查了一元二次方程的应用和一次函数的应用,读懂图象信息、熟练掌握待定系数法、正确列出一元二次方程是解题的关键.25.(1)证明见解析;(2)四边形AECF 是菱形.证明见解析.【解析】【分析】(1)根据平行四边形的性质及折叠的性质我们可以得到∠B=∠D′,AB=AD′,∠1=∠3,从而利用ASA 判定△ABE ≌△AD′F ;(2)四边形AECF 是菱形,我们可以运用菱形的判定,有一组邻边相等的平行四边形是菱形来进行验证.【详解】解:(1)由折叠可知:∠D=∠D′,CD=AD′,∠C=∠D′AE .∵四边形ABCD 是平行四边形,∴∠B=∠D ,AB=CD ,∠C=∠BAD .∴∠B=∠D′,AB=AD′,∠D′AE=∠BAD ,即∠1+∠2=∠2+∠3.∴∠1=∠3.在△ABE 和△AD′F 中∵{13D BAB AD ∠'=∠='∠=∠∴△ABE ≌△AD′F (ASA ).(2)四边形AECF 是菱形.证明:由折叠可知:AE=EC ,∠4=∠5. ∵四边形ABCD 是平行四边形, ∴AD ∥BC .∴∠5=∠6.∴∠4=∠6.∴AF=AE .∵AE=EC ,∴AF=EC .又∵AF ∥EC ,∴四边形AECF 是平行四边形. 又∵AF=AE ,∴平行四边形AECF 是菱形.考点:1.全等三角形的判定;2.菱形的判定.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020年中考数学冲刺预测试模拟卷及答案本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷10小题,共30分,第Ⅱ卷90分,共120分.考试时间120分钟.第Ⅰ卷(选择题 共30分)一、选择题(每小题3分,共30分)1、下列各式中正确的是 ( )A 、242-=-B 、()33325= C 、1)1-21)(2(=+ D 、x x x 842÷=2、如果圆柱的母线长为5cm ,底面半径为2cm ,那么这个圆柱的侧面积是 ( ) A 、102cm B 、102πcm C 、202cm D 、202πcm3、10名学生的平均成绩是x ,如果另外5名学生每人得84分,那么整个组的平均成绩是( ) A 、284+x B 、542010+x C 、158410+x D 、1542010+ 4、为了判断甲、乙两个小组学生英语口语测验成绩哪一组比较整齐,通常需要知道两组成绩的( )A 、平均数B 、方差C 、众数D 、频率分布5、某游客为爬上3千米高的山顶看日出,先用1小时爬了2千米,休息0.5小时后,用1小时爬上山顶。

游客爬山所用时间t 与山高h 间的函数关系用图形表示是 ( )A B C D6、如图,已知四边形ABCD 是⊙O 的内接四边形,且AB=CD=5,AC=7,BE=3,下列命题错误的是( ) A 、△AED ∽△BEC B 、∠AEB=90ºC 、∠BDA=45ºD 、图中全等的三角形共有2对 7、一个等腰梯形的高恰好等于这个梯形的中位线,若分别以这个 梯形的上底和下底为直径作圆,则这两个圆的位置关系是 ( )A 、相离B 、相交C 、外切D 、内切8、已知一元二次方程2x 2-3x -6=0有两个实数根x 1、x 2,直线l 经过点A (x 1+x 2,0)、B (0,x 1·x 2),则直线l 的解析式为 ( ) A 、y=2x -3 B 、y= 2x +3C 、y= -2x -3D 、y= -2x +39、将图形(1)按顺时针方向旋转900后的图形是 ( )图形(1) A C D10、在一列数1,2,3,4,…,1000中,数字“0”出现的次数一共是 ( ) A 、182 B 、189 C 、192 D 、194第Ⅱ卷(非选择题 共90分)二、填空题(每小题3分,共18分)11.随着中国综合国力的提升,近年来全球学习汉语的人数不断增加.据报道,2005年海外学 习汉语的学生人数已达38 200 000人),用科学记数法表示为 人(保留3个有效数字).12.从两副拿掉大、小王的扑克牌中,各抽取一张,两张牌都是红桃的概率是 . 13.要在一个矩形纸片上画出半径分别是4cm 和1cm 的两个外切圆,该矩形纸片面积的最小值... 是 .14.右图是由9个等边三角形拼成的六边形,若已知中间的小等边三角形 的边长是a ,则六边形的周长是 .15.党的十六大提出全面建设小康社会,加快推进社会主义现代化,力争国民生产总值到2020年比2000年翻两番。

在本世纪的头二十年(2001年~2020年),要实现这一目标,以十年为单位计算,设每个十年的国民生产总值的增长率都是x ,那么x 满足的方程为 ; 16.如图,沿倾斜角为30º的山坡植树,要求相邻两棵树间的水平 距离AC 为m 2,那么相邻两棵树的斜坡距离AB 约为_________m ; (结果精确到0.1m ,) (可能用到的数据:3≈1.732, 2≈1.414);三、解答题(72分)17、(6分)计算20)31()14.3(31331----+⨯÷-π;18、(7分)化简求值:a a a a a a a ÷--++--22121222,其中12+=a ; 19、(8分)解不等式组,并把其解集在数轴上表示出来:33213(1)8x x x x -⎧+≥⎪⎨⎪--<-⎩20、(8分)某同学在A 、B 两家超市发现他看中的随身听的单价相同,书包单价也相同,随身听和书包单价之和是452元,且随身听的单价比书包单价的4倍少8元。

(1)求该同学看中的随身听和书包单价各是多少元?(2)某一天该同学上街,恰好赶上商家促销,超市A 所有商品打八折销售,超市B 全场购物满100元返购物券30元销售(不足100元不返券,购物券全场通用),但他只带了400元钱,如果他只在一家超市购买看中的这两样物品,你能说明他可以选择哪一家购买吗?若两家都可以选择,在哪一家购买更省钱? 21、(8分)如图,已知△ABC ,∠ACB=90º,AC=BC ,点E 、 F 在AB 上,∠ECF=45º,(1)求证:△ACF ∽△BEC (5分)(2)设△ABC 的面积为S ,求证:AF ·BE=2S (3)22、(8分)如图所示:一次函数b kx y +=的图象与反比例函数xmy =的图象交于A 、B 两点, ⑴ 利用图中的条件,求一次函数与反比例函数的解析式;(2)根据图象写出使一次函数的值大于反比例函数的值的x 的取值范围;23、(9分)某风景区对5个旅游景点的门票价格进行了调整,据统计,调价前后各景点的游客人数基本不(1)该风景区称调整前后这5个景点门票的平均收费不变,平均日总收入持平。

问风景区是怎样计算的?(2)另一方面,游客认为调整收费后风景区的平均日总收入相对于调价前,实际上增加了约9.4%。

问游客是怎样计算的?(3)你认为风景区和游客哪一个的说法较能反映整体实际?24、(9分)某单位欲从内部招聘管理人员一名,对甲、乙、丙三名候选人进行了笔试和面试两项测试,三人的测试成绩如下表所示:根据录用程序,组织200名职工对三人利用投票推荐的方式进行民主评议,三人得票率(没有弃权票,x每位职工只能推荐1人)如上图所示,每得一票记作1分. (l )请算出三人的民主评议得分;(2)如果根据三项测试的平均成绩确定录用人选,那么谁将被录用(精确到0.01)?(3)根据实际需要,单位将笔试、面试、民主评议三项测试得分按4:3:3的比例确定个人成绩,那么谁将被录用?25、(9分)在平面直角坐标系中,已知矩形ABCD 中,边2AB =,边1AD =,且AB 、AD 分别在x 轴、y 轴的正半轴上,点A 与坐标原点重合.将矩形折叠,使点A 落在边DC 上,设点A '是点A 落在边DC 上的对应点.(1)当矩形ABCD 沿直线12y x b =-+折叠时(如图1),求点A '的坐标和b 的值;(2)当矩形ABCD 沿直线y kx b =+折叠时,①求点A '的坐标(用k 表示);求出k 和b 之间的关系式; ②如果我们把折痕所在的直线与矩形的位置分 为如图2、3、4所示的三种情形,请你分别写出每种情形时k 的取值范围.(将答案直接填在每种情形下的横线上)k 的取值范围是; k 的取值范围是 ;k 的取值范围是 ;参考答案(图1)一、 1、C ;提示:1)1-21)(2(=+正确 2、D ;提示:圆柱侧面展开图图是矩形,面积为2π×2×5=20π 3、B ;提示:(10名学生的总分+5与学生总分)÷5=542010+x 4、B ;提示:方差是刻划数据波动大小的特征的量 5、D ;提示:观察图象知D 正确 6、B ;提示:根据已知条件 无法推出∠AEB=90º 7、C ;提示:高等于上下底和的一半,等于两圆半径之和 8、A ;提示:x 1+x 2=3/2,x 1x 2=-3 9、D ;提示:注意到按顺时针旋转90010、C ;提示:根据计数法知194个 二、11、3.82×10712、提示:52135213+=11613、72cm 2;提示:矩形的长为9,宽为8,9×8=72 14、3oa ;提示:设比边长为a 的小三角形的边长为x,则2x=x+2a ,∴x=2a ,于是可依次求出各三角形的边长 15、4)1(2=+x 16、约为3.2;提示:AB =︒30cos 2三、17、原式271891271)3(131313121-=-+-=--+⨯⨯-=-- 6分解答:18、原式 4分当12+=a 时,原式7分19、解:解不等式33,2x x -+≥得x ≥3; 2分 解不等式 1-3 (x-1) < 8-x ,得x >-2. 4分 所以,原不等式组的解集是-2 < x ≤3. 5分 在数轴上表示为20、解:(1)解法一:设书包的单价为x 元,则随身听的单价为()48x -元 根据题意,得48452x x -+= 2分 解这个方程,得 x =92484928360x -=⨯-= 3分 答:该同学看中的随身听单价为360元,书包单价为92元。

4分解法二:设书包的单价为x 元,随身听的单价为y 元根据题意,得x y y x +==-⎧⎨⎩45248……1分 ;解这个方程组,得x y ==⎧⎨⎩92360答:该同学看中的随身听单价为360元,书包单价为92元。

(2)在超市A 购买随身听与书包各一件需花费现金: 45280%3616⨯=.(元) 6分 因为3616400.<,所以可以选择超市A 购买。

在超市B 可先花费现金360元购买随身听,再利用得到的90元返券,加上2元现金购买书包,总计共花费现金: 3602362+=(元) 7分 因为362400<,所以也可以选择在超市B 购买。

因为3623616>.,所以在超市A 购买更省钱。

8分 21、证明:(1) ∵ AC=BC , ∴ ∠A = ∠B 1分 ∵ ∠ACB=90º, ∴ ∠A = ∠B = 45 0, ∵ ∠ECF= 45º, ∴ ∠ECF = ∠B = 45º, 2分 ∴ ∠ECF +∠1 = ∠B +∠1∵ ∠BCE = ∠ECF +∠1,∠2 = ∠B +∠1;∴ ∠BCE = ∠2, 3分 ∵ ∠A = ∠B ,AC=BC ,∴ △ACF ∽△BEC 。

4分 (2)∵△ACF ∽△BEC∴ AC = BE ,BC = AF , 5分∴△ABC 的面积:S =21AC ·BC = 21BE ·AF 7分 ∴AF ·BE=2S. 8分 22、解:(1)∵反比例函数xmy =过A (2-,1)点, ∴21-=m,∴2-=m 2∵反比例函数xy 2-=过B(1,n )∴212-=-=n 3分∵一次函数b kx y +=过A (2-,1)、B (1,2-)∴⎩⎨⎧+=-+-=b k b k 221 ⎩⎨⎧-=-=⇒11b k 5分∴所求一次函数与反比例函数的解析式为:1--=x y xy 2-= 6分 (2)2-<x 或10<<x . 8分 23、(1)风景区是这样计算的:调整前的平均价格:()元1652520151010=++++ 1分设整后的平均价格:()元16530251555=++++ 2分∵调整前后的平均价格不变,平均日人数不变∴平均日总收入持平 3分(2)游客是这样计算的:原平均日总收入:10×1+10×1+15×2+20×3+25×2=160(千元) 4分现平均日总收入:5×1+5×1+15×2+25×3+30×2=175(千元) 6分∴平均日总收入增加了:%.49160160175≈- 7分(3)游客的说法较能反映整体实际。

相关文档
最新文档