传热学第三章稳态导热
传热学讲义——第三章
第三章 非稳态导热(unsteady state conduction)物体的温度随时间而变化的导热过程称非稳态导热。
0≠τ∂∂t,任何非稳态导热过程必然伴随着加热或冷却过程。
根据物体内温度随时间而变化的特征不同,非稳态导热过程可分为两类:(1)周期性导热(periodic unsteady conduction ):物体的温度按照一定的周期发生变化; 如建筑物的外墙和屋顶温度的变化。
(2)瞬态导热(transient conduction):物体的温度随时间不断升高或降低,在经历相当长时间后,物体的温度逐渐趋于周围介质的温度,最终达到热平衡。
分析非稳态导热的任务:找出温度分布和热流密度随时间和空间的变化规律。
第一节 非稳态导热的基本概念一、瞬态导热过程采暖房屋外墙墙内温度变化过程。
采暖设备开始供热前:墙内温度场是稳态、不变的。
采暖设备开始供热:室内空气温度很快升高并稳定;墙壁内温度逐渐升高;越靠近内墙升温越快;经历一段时间后墙内温度趋于稳定、新的温度分布形成。
墙外表面与墙内表面热流密度变化过程 采暖设备开始供热前:二者相等、稳定不变。
采暖设备开始供热:刚开始供热时,由于室内空气温度很快升高并稳定,内墙温度的升高相对慢些,内墙表面热流密度最大;随着内墙温度的升高,内墙表面热流密度逐渐减小;随着外墙表面的缓慢升高,外墙表面热流密度逐渐增大;最终二者相等。
上述非稳态导热过程,存在着右侧面参与换热与不参与换热的两个不同阶段。
(1)第一阶段(右侧面不参与换热)是过程开始的一段时间,特点是:物体中的一部分温度已经发生变化,而另一部分仍维持初始状态时的温度分布(未受到界面温度变化的影响),温度分布显现出部分为非稳态导热规律控制区和部分为初始温度区的混合分布,物体内各处温度随时间的变化率是不一样的,即:在此阶段物体温度分布受t分布的影响较大,此阶段称非正规状况阶段或初始阶段(initialregime)。
(2)第二阶段(右侧面参与换热)当右侧面参与换热以后,物体中的温度分布不受t影响,主要取决于边界条件及物性。
《传热学》第三章 非稳态热传导
解的唯一性定理 数学上可以证明,如果某一函数t(x,y,z,τ)满足 方程(3-1a)(3-1b)以及一定的初始和边界条 件,则此函数就是这一特定导热问题的唯一解。 本章所介绍的各种分析法都被认为是满足特定问题 的唯一解。
3.1.3 第三类边界条件下Bi数对平板中 温度分布的影响
Bi =
δ λ δh = 1h λ
1)毕渥数的定义:
δ λ δh Bi = = 1h λ
毕渥数属特征数(准则数)。 2)Bi 物理意义: 固体内部单位导热面积上的导 热热阻与单位表面积上的换热热阻之比。Bi的大小 反映了物体在非稳态条件下内部温度场的分布规 律。 3)特征数(准则数):表征某一物理现象或过 程特征的无量纲数。 4)特征长度:是指特征数定义式中的几何尺 度。 毕渥数
∂t Φ = ∂τ ρ c
⋅
φ可视为广义热源,而且热交换的边界不是计算边 界(零维无任何边界) 界面上交换的热量应折算成整个物体的体积热源, 即: − ΦV = Ah(t − t )
∞
物体被冷却,∴φ应为负值
dt ρ cV = − Ah(t − t∞ ) dτ
适用于本问题的导 热微分方程式
方法二
温度分布主要 受初始温度分 布控制 温度分布主要 取决于边界条 件及物性
非正规状况阶段(起始阶段)、正规状况阶段、新的稳态
二类非稳态导热的区别:瞬态导热存在着有区别的 两个不同阶段,而周期性导热不存在。
5 热量变化
Φ1--板左侧导入的热流量 Φ2--板右侧导出的热流量
各阶段热流量的特征: 非正规状况阶段:Φ1急剧减小,Φ2保持不变; 正规状况阶段: Φ1逐渐减小,Φ2逐渐增大。
11-2 传热学第三章-导热四学时-3非稳态导热
物体的温度随时间的推移逐渐趋近于恒定的值。
下面用实例介绍这两类非稳态导热的特点。
§3-1 非稳态导热的基本概念
(1)周期性非稳态导热过程简介
室内墙 面温度
墙内各 处温度 最高值
★ 夏季室外空气温度以一天 24小时为周期变化;
★ 室外墙面温度也以24小时为 周期变化,但比室外空气温 度变化滞后一个相位、振幅 有所减小;
(
t n
)w
h(tw
t
f
)
★ 解的唯一性定理:
本章所介绍的各种分析法都被认为是满足特定问题的唯一解。
§3-1 非稳态导热的基本概念
5.第三类边界条件下Bi数对平板中温度分布的影响
在第三类边界条件下,确定非稳态导热物体中的温度变化特征 与边界条件参数的关系。
t
已知:平板厚2δ、平板导热系数λ、
初温t0,将其突然置于温度为
第三章 非稳态导热
2
§3-1 非稳态导热的基本概念
2.非稳态导热的分类及其特点
非稳态导热分为周期性和非周期性(瞬态导热)两大类。
周期性非稳态导热:物体温度按一定的周期发生变化;
非周期性非稳态导热(非稳态 稳态):
物体的温度随时间不断地升高(加热过程)或降低(冷却过 程);在经历相当长时间后,物体温度逐渐趋近于周围介质温
(3)求解方法:分析解法、近似分析法、数值解法。
分析解法: 分离变量法、积分变换、拉普拉斯变换; 近似分析法: 集中参数法、积分法; 数值解法: 有限差分法、蒙特卡洛法、有限元法、
分子动力学模拟。
§3-1 非稳态导热的基本概念
4.导热微分方程解的唯一性定律
非稳态导热问题的求解实质:在规定的初始条件及边界条 件下求解导热微分方程式。
传热学稳态导热
单位长度管道上旳总热阻:
Rl
1
h1d1
1
21
ln
d2 d1
1
2ins
ln
dx d2
1
h2d x
dx
ln d d 1
x 2
h2dx
16
外径增大使导热热阻增长而换热热阻减小,总热阻到 达极小值时旳热绝缘层外径为临界热绝缘直径dc
若d2< dc ,当dx在d2与d3范围内时,管道向外旳散
热量比无绝缘层时更大,d x d3 ql
解:设两层保温层直径分别为d2、d3和d4,则 d3/d2=2,d4/d3=3/2。
将导热系数大旳放在里面:
qL
t1 t2
1 ln d3 1 ln d4
1
t ln 2+
1
ln 3
3t ;
0.11969
22 d2 23 d3 2 23
23 2
20
将导热系数大旳包在外面:
qL
t1 t 2 1 ln 2 1
tw t(x)
导热微分方程:
d 2t 0
1
tw
dx 2
2
o
x
3
两个边界均为第一类边界条件
x 0,
x ,
t tw1 t tw2
直接积分,得通解:
dt dx
c1
t c1x c2
代入边界条件得平壁内温度分布:
t
tw2 tw1
x
tw1
(线性分布)
4
热流量
Φ A dt A tw1 tw2 tw1 tw2 tw1 tw2
线要比外壁面陡。
tw1 r1
tw2
r2
13
热流量
传热学-稳态导热例题
专题二 稳态热传导
【解】
专题二 稳态热传导
【名校真题解析】29 (北京科技大学2012) 【计算题】考察一管长6m, 内、外径分别为7.4cm、
8.0cm,导热系数为14W/(m·℃)的压缩空气管道。管的外表 面由总功率为300W的电阻带均匀加热,外包绝热层,通过 绝热层的散热损失为15%。管内空气的平均温度为−10℃ , 管道内表面的对流换热系数为30 W/(m2·℃)。试:
专题二 稳态热传导
温度场分布:
r=r2 处有最高温度:
t2
tf
q h
t2
150 ℃ 1.05105 3 500
q 2 (t1 t2 ) 2
t1
q 2 2
t2
186.30C
燃料层控制方程: 料层边界条件:
燃料层温度分布:
t
Φ
21
1
2
2
x2
t1
燃料层最高温度:
t0
t1
1 22
21
196.8℃
【计算题】一长为L的长圆柱内热源为 ,常物性,导 热系数为λ,左端面和侧面都绝热,右端与流体接触,温 度为tf,表面传热系数为 h,求
①写出微分方程和边界条件 ②温度分布 ③最大温度tmax
【解】 控制方程:
边界条件:
第一次积分:
第二次积分:
x L,
tL
Φ 2λ
L2
c2
tf
L ; h
c2 =t f
L h
Φ 2λ
L2
温度分布: 当x=0时,取得最大温度:
专题二 稳态热传导
【名校真题解析】 25(北京科技大学2011) 【计算题】考察一功率为800W的家用电熨斗
传热学第3章-非稳态导热分析解法
传热学第3章-⾮稳态导热分析解法第三章⾮稳态导热分析解法1、重点内容:①⾮稳态导热的基本概念及特点;②集总参数法的基本原理及应⽤;③⼀维及⼆维⾮稳态导热问题。
2、掌握内容:①确定瞬时温度场的⽅法;②确定在⼀时间间隔内物体所传导热量的计算⽅法。
3、了解内容:⽆限⼤物体⾮稳态导热的基本特点。
许多⼯程问题需要确定:物体内部温度场随时间的变化,或确定其内部温度达某⼀极限值所需的时间。
如:机器启动、变动⼯况时,急剧的温度变化会使部件因热应⼒⽽破坏。
因此,应确定其内部的瞬时温度场。
钢制⼯件的热处理是⼀个典型的⾮稳态导热过程,掌握⼯件中温度变化的速率是控制⼯件热处理质量的重要因素;⾦属在加热炉内加热时,要确定它在炉内停留的时间,以保证达到规定的中⼼温度。
§3—1 ⾮稳态导热的基本概念⼀、⾮稳态导热1、定义:物体的温度随时间⽽变化的导热过程称⾮稳态导热。
2、分类:根据物体内温度随时间⽽变化的特征不同分:1)物体的温度随时间的推移逐渐趋于恒定值,即:const t =↑τ2)物体的温度随时间⽽作周期性变化1)物体的温度随时间⽽趋于恒定值如图3-1所⽰,设⼀平壁,初值温度t 0,令其左侧的表⾯温度突然升⾼到1t 并保持不变,⽽右侧仍与温度为0t 的空⽓接触,试分析物体的温度场的变化过程。
⾸先,物体与⾼温表⾯靠近部分的温度很快上升,⽽其余部分仍保持原来的t 0 。
如图中曲线HBD ,随时间的推移,由于物体导热温度变化波及范围扩⼤,到某⼀时间后,右侧表⾯温度也逐渐升⾼,如图中曲线HCD 、HE 、HF 。
最后,当时间达到⼀定值后,温度分布保持恒定,如图中曲线HG (若λ=const ,则HG 是直线)。
由此可见,上述⾮稳态导热过程中,存在着右侧⾯参与换热与不参与换热的两个不同阶段。
(1)第⼀阶段(右侧⾯不参与换热)温度分布显现出部分为⾮稳态导热规律控制区和部分为初始温度区的混合分布,即:在此阶段物体温度分布受t 分布的影响较⼤,此阶段称⾮正规状况阶段。
传热学中的名词解释
传热学中的名词解释1 .稳态导热 : 发生在稳态温度场内的导热过程称为稳态导热。
(或:物体中的温度分布不随时间而变化的导热称为稳态导热。
)2 .稳态温度场: 温度场内各点的温度不随时间变化。
(或温度场不随时间变化。
)3 .热对流 : 依靠流体各部分之间的宏观运行,把热量由一处带到另一处的热传递现测温度均为肋基温度的理想散热量之比。
象4 .传热过程: 热量由固体壁面一侧的热流体通过固体壁面传递给另一侧冷流体的过程5 .肋壁总效率: 肋侧表面总的实际散热量与肋壁21. 换热器的效能(有效度):换热器的实际传热量与最大可能传热量之比。
或22. 大容器沸腾:高于液体饱和温度的热壁面沉浸在具有自由表面的液体中所发生的沸腾。
23. 准稳态导热:物体内各点温升速度不变的导热过程。
24. 黑体:吸收率等于 1 的物体。
25. 复合换热:对流换热与辐射换热同时存在的综合热传递过程。
一、名词解释1.热流量:单位时间内所传递的热量2.热流密度:单位传热面上的热流量3.导热:当物体内有温度差或两个不同温度的物体接触时,在物体各部分之间不发生相对位移的情况下,物质微粒(分子、原子或自由电子)的热运动传递了热量,这种现象被称为热传导,简称导热。
4.对流传热:流体流过固体壁时的热传递过程,就是热对流和导热联合用的热量传递过程,称为表面对流传热,简称对流传热。
5.辐射传热:物体不断向周围空间发出热辐射能,并被周围物体吸收。
同时,物体也不断接收周围物体辐射给它的热能。
这样,物体发出和接收过程的综合结果产生了物体间通过热辐射而进行的热量传递,称为表面辐射传热,简称辐射传热。
6.总传热过程:热量从温度较高的流体经过固体壁传递给另一侧温度较低流体的过程,称为总传热过程,简称传热过程。
7.对流传热系数:单位时间内单位传热面当流体温度与壁面温度差为1K是的对流传热量,单位为W/(m2·K)。
对流传热系数表示对流传热能力的大小。
8.辐射传热系数:单位时间内单位传热面当流体温度与壁面温度差为1K是的辐射传热量,单位为W/(m2·K)。
传热学-第3章-稳态导热的计算与分析
15
3.1.3 第一类边界条件下变物性、无内热源的平壁
d dt 0
dx dx
0 1 bt
分离变量积分并利用边界条件,得到平壁内的温度分布:
0
t
b 2
t2
m
tw2
tw1
x
0
t
w1
b 2
t 2 w1
式中:
m
0
1
tw1
tw2 2
b
为平壁平均温度下的导热系数
16
3.1.3 第一类边界条件下变物性、无内热源的平壁
0
t
b 2
t2
m
tw2 tw1
x
0
t
w1
b 2
t 2w1
这表明,当材料的导热系数随温度呈线性规律变化时,
平壁内的温度分布是二次曲线方程,该二次曲线的凹凸性
主要由温度系数b的正负决定。
利用傅里叶定律分析表明:
——b>0时,温度分布曲线的开口向下;
——b<0时曲线开口向上
17
3.1.3 第一类边界条件下变物性、无内热源的平壁
需要用平壁算术平均温度下的导热系数λm代替
19
3.1.3 第一类边界条件下变物性、无内热源的平壁 ❖ 由于热流密度为常数,仍可采用对傅立叶定律分离变量
积分的分析方法得到平壁内的温度分布 ❖ 作为练习,请大家自行推导
20
3.1.4 第三类边界条件下的常物性、无内热源的平壁
❖ 当平壁左、右两侧面分别与温度为tf1和tf2(tf1>tf2) 的流体进行对流传热时,平壁两侧均处于第三类 边界条件
态 稳态的特征:物体内各位置处的温度不随时间变化,可
以去掉方程中的非稳态项
传热学第三章稳态导热
传热学第三章稳态导热
11
根据热阻串联的叠加原则,通过三 层壁的热流密度计算式为:
q
tw1 tw4
1 2 3
1 2 3
W/m2
、
qA
1
tw1 tw4
2 3
W
1A 2A 3A
2021/2/12
传热学第三章稳态导热
12
由
q
t
可得各层接触面上的温度分别为 :
tw2
、tw1
q1 1
℃
tw3
பைடு நூலகம்
tw4
W/m2
可见,通过平壁稳态导热的热流密度 取决于导热系数、壁厚及两侧面的温差。
稳态下平壁内与热流相垂直的各截面 上的热流密度为常量。
2021/2/12
传热学第三章稳态导热
6
通过整个平壁的热流量为:
AqAt
W
当λ=λ0(1+bt) 时,在温差(t1-t2 ) 下的导热量仍可用常物性导热计算式来 计算,只需用平均温度t=(t1+t2)/2 下的平 均导热系数计算即可。
rλ
rh2
传热学第三章稳态导热
返回 15
第二节 通过圆筒壁的导热
一、第一类边界条件下的圆筒壁导热 二、第三类边界条件下的圆筒壁导热 三、临界热绝缘直径
2021/2/12
传热学第三章稳态导热
16
一、第一类边界条件下的圆筒壁导热
1.单层圆筒壁
已知:长圆筒壁 r1、r2、 l ;
λ=const
r=r1 ,t=tw1; r=r2 ,t=tw2 求: (1) Φ=?
第三章 稳态导热
§3-1 通过平壁的导热 §3-2 通过圆筒壁的导热 §3-3 通过球壁的导热 §3-4 接触热阻 §3-5 通过肋片的导热
传热学第三章
第三章 稳态导热
第一节 一维稳态导热
※简化假设: (1)导热体为几何形状简单、均质各向同性材料; (2)常物性、无内热源、壁面温度均匀一致; (3)一维稳态导热。 ※一维稳态导热计算公式的导出途径: (1)
导热微分方程 边界条件 Fourier定律 边界条件 Fourier定律 边界条件
①温度分布 t t ( x)或 t t (r ) 和q ② ③R 和r 若定积分,则可以不求解温度场而直接求得
( e) (f )
( g)
r r 1 , t t w1 r r2 , t t w2
同样的计算公式:
求解上述方程,经过整理可以得出和第一种求解方法 温度分布①、热流量或线热流量②、热阻③。
第三章 稳态导热
第一节 一维稳态导热
(3)对傅里叶定律表达式分离变量,并进行定积分:
tw 2 dr dt t w1 2l r
t w1 t w3 q 解:本题为多层平壁的导热问题,应有 1 2
把所有的已知数据代入,有
1
2
1300 30 0.02 t w1 t w3 1 ) 0.35 0.238 m 2 ( ) 2 ( 1830 1.3 q 1
第三章 稳态导热
流量Φ为常量,但热流密度 q
※工程计算中,一般采用热流量或线热流量。 线热流量:是指单位长度圆筒壁的导热热流量,即
却是变量。
l l
第三章 稳态导热
第一节 一维稳态导热
将温度分布代入傅里叶定律,可求出其热流量或线热流量为:
dt dt 2l (t w1 t w2 ) 2l (t w1 t w2 ) A (2rl ) r d dr dr ln 2 ln 2 r1 d1 l 2 (t w1 t w 2 ) 2 (t w1 t w 2 ) r2 d2 l ln ln r1 d1
第三章传热学
3.稳态导热3.1 知识结构1.一维导热问题(平壁、圆桶壁、球壁)分析解(导热公式、热阻形式);2.温度分布与导热系数和热流的关系;3.变导热系数及变截面问题的解题方法及其对温度分布的影响;4.伸展体导热的微元段分析(一维假设条件、微分方程及系数m的组成);5.三种细长杆(无限高、有限高端部散热、有限高端部绝热)的边界条件、分析解、散热量计算公式,工程计算中的简化方法;6.系数m对温度分布的影响⇒杆内热应力的影响;7.肋片与肋效率(定义、肋效率的影响因素、等截面直肋的肋效率公式);8.接触热阻及其治理方法;9.具有内热源的导热及多维导热。
3.2 重点内容剖析3.2.1 典型稳态导热问题分析解稳态导热问题的主要特征是物体中各点温度不随时间发生变化,只是空间坐标的函数,热流也具有同样性质。
温度在空间坐标上的分布决定导热问题的维数,同样的问题选择不同的坐标系会有不同的维数,维数越多问题越复杂,所以应对具体问题具体分析,从主要因数着手,忽略次要因数,进行适当简化。
一.无限大平壁的分析解(如图3-1)厚度方向传递,亦即温度只在厚度方向变化,→一维导热问题)1.问题(1)均质、单层无限大平壁(一维常物性)(2)无内热源稳态导热(3)平壁两面保持均匀而一定的温度,且t w1>t w2(4)求解平壁内的温度分布t(x)和通过平壁的热流密度。
2.描述问题的数学表达式:微分方程(一维稳态)02222==∂∂dx td x t (3-1) 定解条件:(稳态——无初始条件) 边界条件(第一类):21,,0w w t t x t t x ====δ (3-2)3. 求解对(3-1)两次积分得通解 :21c x c t += (3-3) (3-2)代入(3-3)得待定常数 δ12112,w w w t t c t c -== (3-4)(3-4)代入(3-3)得温度分布(直线) X xt t t t t x t t t w w w w w w =Θ⇒=--+-=δδ121112或(3-5)(无量纲温度与无量纲尺度相等)热流密度: δλδλλ2112w w w w t t t t dx dtq -=--=-= (3-6) (虽然上式就是绪论中的平壁导热公式,但已从感性上升到了理性)二. 多层平壁的导热问题工程中的传热壁面常常是由多层平壁组成的,如表层要考虑外观、防腐、抗老化、防水等因素,内层要考虑耐温、与所接触的介质相容等因素,整个壁面还要考虑强度、能耗、制造成本等问题。
3传热学-一维稳态导热
L
1 + h 1 ⋅ 2 π r1
∑
n
i =1
3 通过空心球壁的导热
Heat conduction through a spherical shell
第一类边界条件
Constant surface temperature
热导率λ=C, 圆筒内径r1, 外径r2, 无内热源
•微分方程
Heat equation
• 热流密度
Heat flux
t w1 − t w 2 dt 1 q = −λ =λ ⋅ 2 = f (r ) dr 1 / r1 − 1 / r2 r t w1 − t w 2 1 1 1 − 4πλ r1 r2
• 热流量
Heat rate Φ = − λ A dt = dr
• 热流量
Heat rate
材料热导率随温度而变
λ= λ0(1+bt) •微分方程
Heat equation
d dx t t
dt λ =0 dx = t w1 = tw2
• 边界条件
Boundary condition
x=0 x =δ
• 温度分布
Temperature distribution
t A − tB Rc = q
7 延伸体的导热
Heat conduction from extended surfaces
Fin configurations
延伸体的种类
Straight Fins of uniform cross section
7.1 等截面直肋
假设(Assumptions)
r = r1
r = r1 → r 2
传热学基础(第二版)第三章教学课件 稳态导热讲义
图中肋片高度为H,肋片厚
度为,肋片宽度为b,肋片
b
根部(肋基)的温度为t0,
Φc
环境温度为t,环境与肋片 之间的换热系数为h。肋片 δ 0 Φx Φ x+dx
x
的横截面积为Af及截面周边
dx
长度为U。导热系数和换热
系数均为常数。
H
24/40
由于肋片的作用是为了
增大传热,故肋片材料
b
的导热性能都比较好,
1、通过单层圆筒壁的导热
导热微分方程:
d r dt 0 r r1,t t1
dr dr
r r2 ,t t2
t1
r1 t2
积分上面的微分方程两次得r
到其通解为 : t c1nr c2
r2
得出圆筒壁的温度分布为:
n r
t t1
r1
t 2 t1 n r2
13/40
r1
圆筒壁内的温度分布是 一条对数曲线。
截面积Af=4.65cm2,周长U=12.2cm,导热系数
=22W/ (m℃)。燃气有效温度Tge=1140K,叶根 温度Tr=755K,燃气对叶片的总换热系数h=390W/ (m2℃)。假定叶片端面绝热,求叶片的温度分
布和通过叶根的热流。解:
m hU 68.2,
Af
由=o
chmH x
chmH
6150.0295W / m
2 r1 50 15
17/40
再由圆筒壁的温度分布
r
n
t t1
r1
t2 t1 n r2
r1
代入已知数据有
t 40 nr n0.015
20
n 25
15
18/40
《传热学》第3章-非稳态导热
特殊多维非稳态导热的简易求解方法
在第一类边界条件(初始温度均匀)或第三类边界条件(表面 传热系数h为常数)下的二维或三维的非稳态导热问题,在数学 上已经证明,它们的无量纲过余温度的解等于构成这些物体的 两个或三个物体在同样边界条件下一维非稳态导热问题解的连 乘。
特殊多维非稳态导热的简易求解方法
对于无限长方柱 θ (x, y,τ ) = θ (x,τ ) ⋅ θ (y,τ )
该问题的解可以由3块相应的无限大平板的 解得出。最低温度发生在钢锭的中心,即3 筷无限大平板中心截面的交点上,最高温度 发生在钢锭的顶角,即3块大平板表面的公 共点上。
4
例题3 θ
m/B则θi x0钢==锭hλδ(1θ中=m心3/ 4θ温840×0度).05x.2⋅5(θ=
2.14
m/θ 0
)
y
⋅ (θ
无限大平板的非稳态导热
当Fo ≥ 0.2时,可取
θ (x,τ )
θ0
=
β1
2 sin β1 + sin β1 cos β1
cos
β
1
x δ
e − β12 ⋅Fo
只与Bi、x/δ有关, 与时间无关
lnθ
=
−mτ
+ lnθ 0
β1
2sin β1 + sinτ β1 cos β1
cos
= 0.36
短圆柱的中心温度为
查图3-6得 θ
再讨论直径为
m2R/θ=600=0m0m.8的无θ限m长/ θ圆0柱=:0.13
×
0.8
=
0.104
Bi = hR = 232 × 0.3 = 1.72 λ 40.5
tm = 0.104θ0 + t∞ 查附=2图0.11得04θ×m(3/θ00−=103.0103) +1300
《传热学》2版 辅导资料 思考题参考答案
回答:导热系数等于常数的一维导热方程是(3-1-15),于是温度梯度可以写作(dt/dr) =c/r。可见,温度梯度与径向坐标成反比,即半径小的圆筒壁内侧的温度梯度一定大于外侧的温度梯度。所以附图(b)是正确的。
回答:非稳态导热问题遵循两个基本规律,一个是能量守恒定律,一个是傅里叶定律。在对物体内的任意微元体积做热平衡分析时,切记傅里叶定律中的热流密度和温度梯度均代表瞬时值,傅里叶定律的规律仍成立。
3.应用傅里叶定律时有哪些限制?
回答:限制条件是:(1)纯导热物体(非纯导热物体以当量或表观导热系数描述之);(2)各向同性(各向异性物体须在导热主轴坐标系中运用傅里叶定律);(3)非超短时间、超大热流密度或超低温度的导热问题。
3.凸状轴呈对称图形,如果侧面绝热且导热系数为常数,其一维稳态温度分布呈什么?
回答:在一维、稳态、无内热源且常物性条件下,热流量为常数,即A(x)dt/dx=常数。这表明导热的截面积A与温度梯度成反比。只有在等截面情况下,温度梯度才是常量。
回答:导热系数随温度变化时,函数关系一般是写作=0(1+b t)的形式。但是一般来说0却并不代表0℃时该材料的导热系数。参见附图,这是因为0实际上是该式适用温度区间内近似线性关系的延长线与纵轴的交点。它一般不会正好与=f(t)曲线在0℃时的数值相等。
写为=0+bt时,0未变,而b相当于原式中的0b。
8.已知某个确定的热流场q=f(x, y),能否由此唯一地确定物体的温度场?或者还需要补充什么条件?反过来,从温度场能否唯一地确定热流场?
回答:导热问题中若全部边界条件都是第二类(包括绝热),将无法唯一地得到温度场的确定解。而对给定的温度场,却可以根据傅里叶定律唯一地确定热流场。因为一个物体若均匀地提升相同温度,其热流场将不会发生任何改变。即一个热流场可以对应无穷多个温度场。所以,导热问题必须至少具有一个温度参考点,才能唯一地确定其解。
各章节重点(传热)
1.辐射换热的概念;
2.热辐射基本定律;
3.平均角系数;
4.任意放置的两黑体的辐射换热;
5.任意放置的两灰体表面间的辐射换热;
6.网络图;
7.多面构成封闭系流时的辐射换热。
第八章传热过程和换热器(4学时)
本单元重点是研究传热过程各种基本换热的组合(复合换热)及传热规律,另外介绍换热器的结构,平均误差的计算以及换热器的基本热工计算。
1.边界层的概念;
2.相似理论的基本知识;
3.相似准则;
4.流体在管内作强迫对流的换热;
5.流体横向掠过单管和管束的换热; 6.自然对 Nhomakorabea换热;
7.凝结换热和沸腾换热。
第七章辐射换热(8学时)
本单元重点是热辐射的基本理论,尤其是克希荷夫定律,讲清该定律的适用范围(具有灰体性质的实际物体)注意比较灰体与黑体的区别与联系。能够利用国徽的基本理论计算黑体间的辐射换热,能够利用辐射网络法计算辐射换热。注意平均角系数的概念,相对面积概念的提出,从而解决了多个表面构成封闭系统的辐射换热。
1.非稳态导热的基本概念;
2.无限大平壁的瞬态导热;
3.半无限大物体的瞬态导热;
4.其他形状物体的瞬态导热;
5.周期性非稳态导热。
第五章导热问题数值解法基础(4学时)
本单元重点阐述区域和时间的离散化,进而叙述泰勒级数法和热平衡法建立节点离散方程式(内节点和边界节点),并以二维稳态导热和一维瞬态导热为例叙述了求解节点离散方程组的基本方法。
1.基本概念;
2.傅立叶定律;
3.导热系数;
4.导热微分方程式;
5.导热微分方程的单值性条件。
第三章稳态导热(4学时)
名师讲义【中国石油大学】传热学第3章-稳态导热的计算与分析
3.1 通过平壁的一维稳态导热
平壁的长度和宽度都远大于其厚度,因而平板两 侧保持均匀边界条件的稳态导热就可以归纳为一维稳态 导热问题。 平板可分为单层壁,多层壁和复合壁等类型 。
a.单层壁导热
b.多层壁导热
c. 复合壁导热
1、单层平壁的导热 a 几何条件:单层平板; b 物理条件:、c、 已知; 无内热源
2 2 2 2
tw2
d 2t b dt dx 2 0 bt dx
2
0
x
当b>0时,曲线上凸; 当b<0时,曲线下凹; 当b=0时,为直线 。
3.2 通过圆筒壁和球壁的一维稳态导热
1、单层圆筒壁的稳态导热
稳态导热 t
0
1 t 1 t t ( r ) 2 ( ) ( ) 0 柱坐标系: r r r r z z
第三章 稳态导热的计算与分析
§3-1 通过平壁的一维稳态导热 §3-2 通过圆筒壁和球壁的一维 稳态导热 §3-3 通过肋片的稳态导热 §3-4 多维稳态导热问题
本节将针对一维、稳态、常物性、无内热源
情况,考察平板和圆柱内的导热。
直角坐标系:
t t t t c ( ) ( ) ( ) Φ x x y y z z
t2 t1
t2
(t1 t2 )
x1
x2
dx A( x)
当随温度呈线性分布时,即=0+at,则
t1 t2 0 a 2
实际上,不论 如何变化,只要能计算出
平均导热系数,就可以利用前面讲过的所
有定导热系数公式,只是需要将 换成平
均温度下的平均导热系数m。
传热学-第三章
无量纲数
当Bi→∞时,⇒rλ>>rh ;因此,可以忽略对流换热热阻 当Bi→0 时,⇒rλ<<rh;因此,可以忽略导热热阻
(4) 无量纲数的简要介绍 基本思想:当所研究的问题非常复杂,涉及到的参数很 多,为了减少问题所涉及的参数,将一些参数组合起来, 使之能表征一类物理现象,或物理过程的主要特征,并且 没有量纲。 因此,这样的无量纲数又被称为特征数,或者准则 数,比如,毕渥数又称毕渥准则。以后会陆续遇到许多类 似的准则数。特征数涉及到的几何尺度称为特征长度,一 般用符号 l 表示。 对于一个特征数,应该掌握其定义式+物理意义,以 及定义式中各个参数的含义。
着重讨论瞬态非稳态导热
3. 温度分布:
4. 两个不同的阶段
非正规状况阶段 (不规则情况阶段) 正规状况阶段 (正常情况阶段) 温度分布主要受初始温度 分布控制 温度分布主要取决于边界 条件及物性
非稳态导热过程总会经历:非稳态导热非正规状况阶段 (起始阶段)、正规状况阶段、新的稳态
5. 热量变化
可以采用集总参数法。时间常数为
13110 × 0.138 × 1000 × 0.953 × 10 −3 = = 148 τc = hA 11.63
ρcV
s
⎛ hA ⎞ 11.63 × 5 × 60 θ ⎛ ⎞ = exp⎜ − ⎟ ⎜ ρcV ⋅ τ ⎟ = exp⎜ − ⎟ −3 θ0 ⎝ 13110 × 0.138 × 1000 × 0.953 × 10 ⎠ ⎝ ⎠ = exp(− 2.02 ) = 0.133
5. 集总参数法的应用条件
对于平板、圆柱及圆球,如果Bi满足如下条件,则 物体中各点过余温度的差别小于5%
Bi v =
对厚为2δ的 无限大平板 对半径为R的 无限长圆柱 对半径为R的 球
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
t t w1 (t w1
r ln r1 t w2 ) r2 ln r1
圆筒壁内温度分布呈对数曲线 同样λ=λ0(1+bt)时,用平均热导率即可
1
热阻网络单元
tw1
r2 ln R 2l r1
tw2
19
2013-9-10
第三章 稳态导热
工程上常用通过单位长度圆筒壁(l=1m) 的热流量,称为线热流量。
r=r1,t=tw1; r=r4 , t=tw4 求: Φ=? tw2=?
2013-9-10
tw3=?
第三章 稳态导热 21
热路图:
Φ tw1
R 1 1 2 1 l ln d2 d1
tw2
R 2 d3 ln 2 2 l d 2 1
tw3
R 3 1
tw4
d4 ln 2 3 l d3
。
【例3-6】
2013-9-10
2 x dc h2
第三章 稳态导热
返回
31
第三节 通过球壁的导热
一、球壁的导热
二、圆球型导热仪的工作原理
2013-9-10
第三章 稳态导热
32
一、球壁的导热 内外半径分别为r1、 r2的空心单层球壁。无内 热源、导热系数λ为常数。 球壁内外侧分别维持均 匀的温度tw1、tw2,且tw1 > tw2。
tw1 tw 4 d3 d2 d4 1 1 1 ln ln ln 2 1 l d 1 2 2 l d 2 2 3. l d 3
t w 2 t w1
d2 ln( ) 2 1 l d1
t w3 t w4
2013-9-10
d4 ln( ) 2 3 l d3
。
热路图:
Φ tf1
tw
1
tw
2
tf2
Rh 1
1 d 1 lh1
2013-9-10
1 d2 1 Rh 2 R ln d 2 lh2 2 l d 1
第三章 稳态导热 24
tf1 tf 2 1 1 d2 1 ln h1d1l 2 l d1 h2d 2l
t w1 t f 1 h1d 1 l
tw4
rλ2
第三章 稳态导热
11
根据热阻串联的叠加原则,通过三
层壁的热流密度计算式为:
q tw1 tw 4
1 2 3 1 2 3
、
W/m2
qA
3 1 2 1 A 2 A 3 A
第三章 稳态导热
t w 1 t w4
W
2013-9-10
2013-9-10 第三章 稳态导热 17
注意:对圆筒壁,由于导热面积沿径 向变化,故稳态下通过整个圆筒壁的导热量 Φ保持常量,而热流密度q稳态下也是随半 径r变化的(q是r的函数)。 dt 由傅立叶定律: 2rl 边界条件: r2 1 tw2 r1 2l r dr tw1 dt
各层接触面的温度计算式为:
t w(i 1) t w i
i q i
多层平壁的每一层内温度分布均呈直线, 但由于各层的材料不同,其热导率不同,温度 变化率也不相同,所以整个多层平壁内的温度 分布为一条折线。 【例3-1】 【例3-2】
2013-9-10 第三章 稳态导热 14
二、第三类边界条件下的平壁导热
12
可得各层接触面上的温度分别为 :
由
q
t
tw2
1 tw1 q 1
、
℃
t w 3 t w4
2013-9-10
3 q 3
℃
第三章 稳态导热
13
依此类推,对n层平壁的导热:
q t w 1 t w(n1)
i i 1 i
n
i 1,3,n 2,
求:(1)温度分布t=f(x)=? (2)导热量Φ=?
2013-9-10 第三章 稳态导热
0
x
根据几何条件和边界条件建立坐标系
4
导热微分方程为: 边界条件为:
d 2t 0 2 dx x 0 , t w1 t
x , tw2 t
积分两次得其通解为: t C1 x C2
将边界条件代入得平壁内的温度分布为:
2013-9-10 第三章 稳态导热
r
单层球壁的导热
33
该问题可看作无内热源常物性、第一 类边界条件下的径向一维稳态导热问题 在稳态下通过球壁内任一球面的热流量Φ 相等,可直接用傅立叶定律求解。
dt 4r dr r r1 t tw1
2
r r2
t tw2
tw1 tw 2 1 1 1 ( ) 4 r1 r2
由图:
q t f1 t f2
tf1
t
n 1 1 i h1 i 1 i h2
tw1
h2 tw2
h1
tf2
tw1
1 tf1 q h1
tw2 t f 2
q rλ
1 q h2
0
tf2
x
tf1 rh1
tw1
tw2 rh2
【例3-3】
2013-9-10 第三章 稳态导热
2013-9-10 第三章 稳态导热 2
第一节 通过平壁的导热
一、第一类边界条件下的平壁导热
二、第三类边界条件下的平壁导热
2013-9-10
第三章 稳态导热
3
一、第一类边界条件下的平壁导热 1. 单层平壁 t 设一厚为δ、表面积为A 的大平壁,无内热源、热导率 tw1 为常量,平壁两侧表面分别维 tw2 持均匀的温度tw1和 tw2 ,且 tw1>tw2。
返回
15
第二节 通过圆筒壁的导热 一、第一类边界条件下的圆筒壁导热
二、第三类边界条件下的圆筒壁导热
三、临界热绝缘直径
2013-9-10
第三章 稳态导热
16
一、第一类边界条件下的圆筒壁导热 1.单层圆筒壁 已知:长圆筒壁 r1、r2、 l ; λ=const r=r1 ,t=tw1; r=r2 ,t=tw2 求: (1) Φ=? (2) t=f(r) =? 该导热问题采用r、θ圆柱坐标时可视为无 内热源、常物性、恒壁温边界条件的径向一维 稳态导热问题。
临界热绝缘直径分析
x
λ
。
x
2013-9-10
第三章 稳态导热
30
临界热绝缘直径dc :在一定的保温材料 和换热条件下,使总热阻最小(散热量最大) 时的保温层外径。 由保温层总热阻Rt对dx的一阶导数为 零可求得临界热绝缘直径:
dR 1 1 2 0 dd x 2x d x d x h2
t tw1
t w1 t w 2
xபைடு நூலகம்
℃
常物性无内热源大平壁内的温度分布 规律为沿x方向线性变化
2013-9-10 第三章 稳态导热 5
根据傅里叶定律可得通过平壁的热流
密度:
dt t q dx
W/m2
可见,通过平壁稳态导热的热流密度 取决于导热系数、壁厚及两侧面的温差。 稳态下平壁内与热流相垂直的各截面 上的热流密度为常量。
t w1 t w 2 t w1 t w 2 l 1 r2 1 d2 ln ln 2 r1 2 d1
长度为 1的圆筒壁 的导热热阻
2013-9-10 第三章 稳态导热 20
2.多层圆筒壁 如图以三层为例
已知:长圆筒l 、r1、r2、r3、
r4,层与层间接触良好,
λ1、λ2、λ3均为常量
2013-9-10 第三章 稳态导热 9
2.多层平壁
如图:一个三层平壁。各层 厚度分别为δ1、δ2、δ3;相应的 各层导热系数分别为λ1、λ2、λ3, 且均为常量 。多层壁两侧表面 分别保持均匀恒定的壁温tw1、 tw4,且tw1>tw4;设层与层之间接 触良好,彼此接触的两表面温 度相同,分别为tw2、tw3。
第三章 稳态导热
§3-1 通过平壁的导热 §3-2 通过圆筒壁的导热 §3-3 通过球壁的导热 §3-4 接触热阻 §3-5 通过肋片的导热
2013-9-10
第三章 稳态导热
1
基本要求
1.了解确定物体温度场及其导热量的 方法。 2. 能熟练进行平壁、圆筒壁常物性一 维稳态导热问题的分析计算。 3. 掌握等截面直肋导热的简化算法。 了解肋片的作用和减小套管式温度计测量误 差的措施。 4. 了解接触热阻对实际导热过程的影 响。
t w2 t f 2
h2d 2 l
对于n层圆筒壁的导热,其热流量计算式为:
Φ tf1 tf2
n d i 1 1 1 1 ln h1 πd 1 l i 1 2πi l di h2 πd n 1 l
2013-9-10
第三章 稳态导热
25
以圆筒壁外侧面积为基准的传热方程 式: KA2 ( t f 1 t f 2 ) Kd 2 l ( t f 1 t f 2 )
q
tw1
r
tw2
tw1
R
A
tw2
(a)对单位面积而言
(b)对总面积而言
由图可得:
q tw1 tw 2
tw1 tw 2
A
2013-9-10
第三章 稳态导热
8
由上式可见:
(1)温差是传热的动力,其它条件相同
时,温差越大热流密度或热流量越大。 (2)热阻是传热的阻力,在相同的温差 下,热阻越大热流量越小。 (3)当热流量一定时,温差与热阻成正 比。
与Φ 的热阻计算式比较可得以圆筒壁 外侧面积为基准的传热系数: