数学的转化思想方法
关于小学数学教学中转化思想的运用
关于小学数学教学中转化思想的运用小学数学教学中的转化思想是指教师通过对学生的知识、思维能力及兴趣爱好等进行分析,针对性地设计教学活动,从而帮助学生将抽象的概念、原理转化为实际应用的技能和解决问题的能力。
其中,运用转化思想的重点在于如何把抽象的数学知识转化为学生能够理解和应用的实际问题,从而激发学生的学习兴趣和能力。
一、生活化陈述法运用在小学数学教学中,教师可以运用生活化陈述法来帮助学生理解数学知识。
生活化陈述法是指教师将数学概念和原理引入到学生熟知的生活中去,从而达到简化抽象概念的目的。
例如,在讲解平均数时,老师可以先通过介绍同学们身高的平均数来引入概念,然后再进行大量的习题训练。
这样,概念就被生动地呈现给学生,他们也更积极地学习。
二、创设情景运用在小学数学教学中,教师可以通过创设情景来让学生感受到数学运用的实际意义。
例如,在讲解几何图形的面积或体积时,可以通过实地测量小区的草坪或花坛的面积或体积,让学生亲身体验通过数学公式计算所得的结果。
这样,学生不仅可以理解数学的实际应用,也会对数学产生浓厚的兴趣。
三、启发式教学运用启发式教学是通过对问题本身的观察、探究以及发散性思考,来引导学生主动探索、发现、分析、解决问题的方法。
在小学数学教学中,教师可以设计具有启发性的教学任务,通过让学生自主思考和自主解决问题,来理解数学知识和技能的运用。
例如,在讲解小学数学加减法时,可以出一道类似于“乘法比加减法难五倍”的问题让学生探究解决方法,通过这个问题,让学生发现乘法与加减法的内在联系,从而更好地掌握学科知识。
四、课堂互动运用在小学数学教学中,教师不仅是一个传授知识的角色,而且还是一个引导者、辅导员和评价者。
因此,教师可以通过课堂互动方式,以学生为中心,使学生主动探究,让教学变得更加生动、自然,达到最佳教学效果。
例如,在讲解数轴上的正负数概念时,可以参考学生在生活中对于加减法和温度变化的实际经历,让学生互相交流和讨论,达到探究的目的。
化归与转化的数学思想解题举例
化归与转化的数学思想解题举例在数学问题中,化归与转化是一种常用的解题思路。
它们可以帮助我们将原问题转化为一个简化的形式,从而更容易得到解答。
本文将通过几个具体的例子来说明化归与转化在数学问题中的应用。
一、化归化归是将一个复杂的问题转化为一个更简单的等价问题的过程。
它通常是通过引入新变量或假设,将原问题转化为一个更易于处理的形式。
例子1:求解一元二次方程的解对于一元二次方程ax^2 + bx + c = 0,如果a不等于0,我们可以通过化归的方法求解其根。
首先,我们可以将方程中的未知数x改写为y = x + p,其中p是一个常数。
这样,我们将原来的方程转化为了ay^2 + dy + e = 0(其中d 和e是和p相关的常数)。
接下来,我们可以通过求解新方程来得到原方程的解。
由于新方程中的y是一个平移的变量,我们可以通过平方完成对y的消除。
最后,我们将得到一个新的一次方程: Cy + F = 0(C和F是和p 相关的常数)。
求解这个一次方程,我们就可以得到原方程的解。
通过化归,我们将原本复杂的问题转化为了一个简单的一次方程的求解问题,从而更容易得到解答。
二、转化转化是将一个问题转换为一个具有相同解的等价问题的思想。
它可以通过改变问题的表述方式或者引入新的概念来实现。
例子2:求解无穷几何级数的和对于一个无穷几何级数a + ar + ar^2 + ar^3 + ...(其中| r | < 1),我们可以使用转化的思想来求它的和。
首先,我们可以将级数的和S表示为S = a + ar + ar^2 + ar^3 + ...,这是一个无穷级数。
接下来,我们将级数的每一项都乘以公比r,得到rS = ar + ar^2 + ar^3 + ar^4 + ...,这是另一个等价的无穷级数。
然后,我们将这两个等式相减,得到(S - rS) = a,进一步化简得到S = a / (1 - r)。
通过这样的转化,我们得到了无穷几何级数的和的数学表达式,简化了求解过程。
转化的思想方法在小学数学课堂中的有效应用
转化的思想方法在小学数学课堂中的有效应用数学是一门抽象而又具体的学科,对于小学生来说,数学课可能是他们最头疼的一节课。
要想让小学生在数学学习中取得更好的成绩,教师需要不断探索有效的教学方法。
转化的思想方法,即通过转化问题的方式来帮助学生理解和解决数学问题,是一种值得在小学数学课堂中应用的方法。
一、转化的思想方法的基本概念转化的思想方法是指在解决问题时,通过转化问题的方式来帮助学生理解和解决数学问题。
转化的思想方法包括数学模型的构建、数学知识的运用以及问题的转化和解决等步骤。
通过这种方法,学生可以更加直观地理解数学知识,提高解决问题的能力。
二、转化的思想方法在小学数学课堂中的有效应用1. 引导学生构建数学模型在小学数学课堂中,教师可以通过引导学生构建数学模型的方式,来帮助他们理解和解决数学问题。
在解决实际问题时,教师可以通过引导学生将问题抽象成数学模型,然后再对模型进行分析和求解。
通过这种方式,学生可以更加直观地理解问题的本质,从而更好地解决问题。
三、转化的思想方法在小学数学课堂中的意义和价值1. 帮助学生理解数学知识通过转化的思想方法,学生可以更加直观地理解数学知识,从而更好地掌握和运用数学知识。
这有助于提高学生的数学学习兴趣,激发他们对数学的好奇心和探索欲望。
2. 培养学生解决问题的能力通过转化的思想方法,学生可以更加灵活地运用数学知识,从而更好地解决问题。
这有助于培养学生的解决问题的能力,提高他们的问题解决能力和创新意识。
四、小学数学课堂中转化的思想方法的应用策略1. 注重问题的实际意义在小学数学课堂中应用转化的思想方法时,教师应该注重问题的实际意义,引导学生将数学知识与实际问题相结合,从而更好地理解和应用数学知识。
2. 引导学生积极参与在小学数学课堂中应用转化的思想方法时,教师应该引导学生积极参与,鼓励他们根据自己的理解和体会来转化和解决问题,从而更好地培养他们的数学思维和解决问题的能力。
数学思想之转化与化归总结
数学思想之转化与化归总结在数学中,转化与化归是一种常用的思想方法。
通过转化问题的表达形式或者化简问题的复杂度,我们可以更容易地理解和解决数学问题。
转化与化归涉及到问题的等价转化、代数化简、几何转化、枚举化归等多个方面。
下面将从这几个方面对转化与化归进行总结。
首先,等价转化是一种常见的数学思想之一。
它意味着将一个问题转化为与之等价的另一个问题,以求得更容易解决的问题。
等价转化包括将问题的形式转化为更简单或者更具有可操作性的形式,或者将问题与已知的问题进行对应。
一个经典的例子是将一个复杂的代数方程转化为一个简单的一次方程或者二次方程,从而解决原方程。
在某些情况下,等价转化也可以是不可逆的,这意味着我们只能从简单的问题得到复杂的问题,但是这种转化仍然能够帮助我们更好地理解问题的本质和特点。
其次,代数化简是转化与化归的另一个重要方面。
代数化简是指通过运用代数运算的性质和规则,将一个复杂的代数表达式或者方程化简为更简单的形式。
代数化简的方法包括合并同类项、因式分解、配方法、三角函数的恒等变换等。
代数化简不仅可以减少问题的复杂度,还可以揭示问题的规律和特点,从而更好地解决数学问题。
几何转化是将几何问题转化为代数问题或者相反,通过几何图形的变换和变形,我们可以使得问题的解决更加直观和简单。
几何转化常常涉及到使用待定系数法、相似三角形的性质、勾股定理等几何知识,从而求得问题的解。
几何转化不仅能够帮助我们更好地理解和解决几何问题,还能够提高我们的思维能力和几何直观。
最后,枚举化归是一种将一个复杂的问题化归为若干个简单的情况,通过对每个简单情况的分析和解决,来解决原问题的方法。
枚举化归可以通过列举具体的例子,或者考虑特殊情况来进行。
枚举化归的优点是能够将一个复杂的问题简化为多个简单的情况,从而更好地理解和解决问题。
然而,枚举化归的缺点是可能需要计算大量的情况,耗费时间和精力。
综上所述,转化与化归是数学中一种重要的思想方法。
数学中的转化思想及应用
数学中的转化思想及应用八一班 李有艺数学对于我们的生活尤为重要,也可以说,我们的生活中处处存在数学。
当然,在许多的数学范例中,都离不开转化思想的应用。
数学解题的本质就是转化,因此我们要熟练,掌握转化的思想。
一、整体转化思想1、在某些数学问题中,已知一个代数式的值,求另一个公式的是值。
但我们根本无法求出待求式中各个未知量的值。
此时,我们可以将代数是看做一个整体,并求上,这个整体的值,然后根据题意做出调整。
例1;若(m ²+n ²)²-2(m ²+n ²)-3=0求m ²+n ²解:设m ²+n ²=0则a ²-2a-3=0解得a 1=3a 2=-1∴m ²+n ²=3或-1∵m ²+n ²≥0∴m ²+n ²=32.在一种数学问题中,往往不只一种解题方法和思路,但我们大多数人想出来的却是比较复杂的发法,其实仔细去多想一想简单的方法随之而有业。
例2;在Rt △ABC 中,∠ABC=90°斜边ABC 的周长为△ABC 的面积。
求出三角形面积,需利用公式S=21底×高,所以我们可以求出底和高的值,但我们可以求出底和高的积,也可以求出面积 解Rt △ACBCD ∴CD=21∴AB=2∵设由题可得此时,大多数人会去解方程,而我们仔细看一看,在这个方程组中,有两个数的平方和,还有两个数的平方,由此,我们确定解法,利用完全平方公式。
①²-②得(x+y )²-(x ²+y ²)=2∴2xy=2∴xy=1∴S △BCA=21 xy=21题中所求xy 即为底和高的积,这样我们可以避免解二元二次方程的麻烦和其中可能出现的错误。
二,位置转化思想求证线段之间的关系,大多数人选择‘割补法”即在短线段上补,长线段上截,需要做出相应的辅助线。
关于小学数学教学中转化思想的运用
关于小学数学教学中转化思想的运用转化思想在小学数学教学中是非常重要的,它帮助学生将抽象的数学概念转化为具体的事物或情境,使学习更加有趣和实际。
下面将介绍一些在小学数学教学中运用转化思想的方法和效果。
一、用具体的事物或情境帮助理解抽象的概念在教授数学中的抽象概念时,可以通过使用具体事物或情境来帮助学生理解。
在教授几何中的形状时,可以使用各种不同的实物来让学生观察和感受。
使用各种不同的图形卡片,让学生比较它们之间的差异和共同点,以及它们在日常生活中的应用。
这样可以让学生更好地理解抽象的概念,并将其转化为具体的形状。
二、利用视觉化工具辅助教学视觉化工具在小学数学教学中是非常有用的。
通过使用各种视觉化工具,如图片、图表、图形等,可以帮助学生更好地理解数学概念,以及将其转化为具体的情境。
在教授分数的概念时,可以使用图片或图表来表示分数的大小和比较。
这样可以让学生更加直观地理解分数,并将其转化为具体的情境。
三、通过游戏和活动激发学生的兴趣和积极性在小学数学教学中,使用游戏和活动是非常有效的一种方法,可以帮助学生更好地理解和应用数学概念。
通过游戏和活动,可以让学生参与体验数学的乐趣和实际用途。
在教授加减法时,可以设计一些趣味的游戏和活动,如数学接龙、数学竞赛等,让学生通过互动和竞争的方式来学习和应用数学概念。
这样可以激发学生的兴趣和积极性,提高他们的学习效果。
四、启发学生思维,培养他们的问题解决能力转化思想在小学数学教学中还可以帮助学生培养问题解决能力。
通过引导学生思考和提问,可以激发他们的思维,让他们主动思考并尝试解决问题。
在解决数学问题时,可以提出一些启发性的问题,引导学生主动思考和发现解决问题的方法。
这样可以提高学生的问题解决能力,并培养他们的创新思维和解决实际问题的能力。
转化思想在小学数学教学中的运用是非常重要的,它可以帮助学生更好地理解抽象的数学概念,并将其转化为具体的事物或情境。
通过使用具体的事物或情境、视觉化工具、游戏和活动以及启发性问题,可以提高学生的学习兴趣和积极性,并培养他们的问题解决能力。
关于小学数学教学中转化思想的运用
关于小学数学教学中转化思想的运用转化思想是指将抽象或难以理解的概念和知识转化成易于理解和运用的实际内容或图像形式。
在小学数学教学中,转化思想的应用可以帮助学生更好地掌握数学知识,提高数学解题能力。
一、利用具体的实物或图像进行转化例如,在学习数学中的“分数”这个概念时,可以通过切割馅饼、糖果等实物来形象化分数的概念,使学生更好地理解分数的含义和大小关系,进而提高计算分数的能力。
又如,在学习平面图形的认识和分类时,利用图形观察器、手工制作模型等方式,让学生亲身感受各种平面图形的特征和区别,并通过图形比较、分类等操作,进一步加深对平面图形概念的理解。
二、利用比喻和类比进行转化比如,在教学中的“旋转对称”的概念,可以引导学生通过比喻的方式来理解这个概念,例如:将一张纸切成若干形状相同的图形,然后取其中某一个图形旋转180度后,发现这个图形和原来的图形完全相同,这就是旋转对称。
类比的方式也可以帮助学生更好地掌握数学知识。
例如,在教学中的“等差数列”概念,可以启发学生类比一下排队的情形,排队的人数就像等差数列中的项数,排队的间隔就像等差数列中的公差,通过这样的类比,学生可以更加深入地领会等差数列的特点和规律。
三、利用实例让学生自主发掘在教学中,教师可以引导学生通过给出实际问题或生活中的场景,使学生自己去发掘和理解问题背后的数学概念和规律。
例如,在学习“百分数”的应用过程中,教师可以设置一些生活场景的实际问题,如:在超市购买商品时的打折优惠,参加活动时的抽奖几率等等,引导学生自己去计算、分析,发现其中的百分数规律和应用方法,最终达到自主理解和掌握的目的。
总之,转化思想的应用在小学数学教学中扮演着重要的角色,它可以帮助学生更好地理解和掌握数学知识,提高数学解题能力,同时也丰富了教学方法和教育手段,增强了学生的学习兴趣和参与度。
2023年新高考数学大一轮复习专题八思想方法第4讲转化与化归思想(含答案)
新高考数学大一轮复习专题:第4讲 转化与化归思想 思想概述 转化与化归思想方法适用于在研究、解决数学问题时,思维受阻或试图寻求简单方法或从一种情形转化到另一种情形,也就是转化到另一种情形使问题得到解决,这种转化是解决问题的有效策略,同时也是获取成功的思维方式.方法一 特殊与一般的转化一般问题特殊化,使问题处理变得直接、简单,也可以通过一般问题的特殊情形找到一般思路;特殊问题一般化,可以使我们从宏观整体的高度把握问题的一般规律,从而达到成批处理问题的效果;对于某些选择题、填空题,可以把题中变化的量用特殊值代替,得到问题答案.例1 (1)(2020·青岛模拟)“蒙日圆”涉及几何学中的一个著名定理,该定理的内容为:椭圆上两条互相垂直的切线的交点必在一个与椭圆同心的圆上,该圆称为原椭圆的蒙日圆,若椭圆C :x 2a +1+y 2a =1(a >0)的离心率为12,则椭圆C 的蒙日圆的方程为( ) A .x 2+y 2=9B .x 2+y 2=7 C .x 2+y 2=5D .x 2+y 2=4 答案 B 解析 因为椭圆C :x 2a +1+y 2a =1(a >0)的离心率为12, 所以1a +1=12,解得a =3, 所以椭圆C 的方程为x 24+y 23=1, 所以椭圆的上顶点A (0,3),右顶点B (2,0),所以经过A ,B 两点的切线方程分别为y =3,x =2,所以两条切线的交点坐标为(2,3),又过A ,B 的切线互相垂直,由题意知交点必在一个与椭圆C 同心的圆上,可得圆的半径r =22+32=7,所以椭圆C 的蒙日圆方程为x 2+y 2=7.(2)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a ,b ,c 成等差数列,则cos A +cos C 1+cos A cos C等于( )A.45B.15C.35D.25 思路分析 求cos A +cos C 1+cos A cos C→考虑正三角形ABC 的情况 答案 A 解析 令a =b =c ,则△ABC 为等边三角形,且cos A =cos C =12,代入所求式子,得cos A +cos C 1+cos A cos C=12+121+12×12=45. 一般问题特殊化,使问题处理变得直接、简单,特殊问题一般化,可以使我们从宏观整体的高度把握问题的一般规律,从而达到成批处理问题的效果.方法二 命题的等价转化将题目已知条件或结论进行转化,使深奥的问题浅显化、繁杂的问题简单化,让题目得以解决.一般包括数与形的转化、正与反的转化、常量与变量的转化、图形形体及位置的转化.例2 (1)由命题“存在x 0∈R ,使01ex --m ≤0”是假命题,得m 的取值范围是(-∞,a ),则实数a 的值是( )A .(-∞,1)B .(-∞,2)C .1D .2 思路分析 命题:存在x 0∈R ,使01ex --m ≤0是假命题→任意x ∈R ,e |x -1|-m >0是真命题→m <e |x -1|恒成立→求m 的范围→求a答案 C解析 由命题“存在x 0∈R ,使01ex --m ≤0”是假命题,可知它的否定形式“任意x ∈R ,e |x -1|-m >0”是真命题,可得m 的取值范围是(-∞,1),而(-∞,a )与(-∞,1)为同一区间,故a =1.(2)若对于任意t ∈[1,2],函数g (x )=x 3+⎝ ⎛⎭⎪⎫m 2+2x 2-2x 在区间(t,3)上总不为单调函数,则实数m 的取值范围是________.思路分析 g x 在t ,3上总不为单调函数→先看g x 在t ,3上单调的条件→补集法求m 的取值范围答案 ⎝ ⎛⎭⎪⎫-373,-5 解析 g ′(x )=3x 2+(m +4)x -2,若g (x )在区间(t,3)上为单调函数,则①g ′(x )≥0在(t,3)上恒成立,或②g ′(x )≤0在(t,3)上恒成立.由①得3x 2+(m +4)x -2≥0,即m +4≥2x -3x 在x ∈(t,3)上恒成立, 所以m +4≥2t-3t 恒成立,则m +4≥-1, 即m ≥-5;由②得m +4≤2x-3x 在x ∈(t,3)上恒成立, 则m +4≤23-9,即m ≤-373. 所以使函数g (x )在区间(t,3)上总不为单调函数的m 的取值范围为-373<m <-5. 根据命题的等价性对题目条件进行明晰化是解题常见思路;对复杂问题可采用正难则反策略,也称为“补集法”;含两个变量的问题可以变换主元.方法三 函数、方程、不等式之间的转化函数与方程、不等式紧密联系,通过研究函数y =f (x )的图象性质可以确定方程f (x )=0,不等式f (x )>0和f (x )<0的解集.例3 (2020·全国Ⅱ)若2x -2y <3-x -3-y ,则( )A .ln(y -x +1)>0B .ln(y -x +1)<0C .ln|x -y |>0D .ln|x -y |<0 答案 A解析 ∵2x -2y <3-x -3-y ,∴2x -3-x <2y -3-y. ∵y =2x -3-x =2x -⎝ ⎛⎭⎪⎫13x 在R 上单调递增, ∴x <y ,∴y -x +1>1,∴ln(y -x +1)>ln1=0.例4 已知函数f (x )=eln x ,g (x )=1ef (x )-(x +1).(e =2.718……) (1)求函数g (x )的极大值;(2)求证:1+12+13+ (1)>ln(n +1)(n ∈N *). 思路分析 g x 的极值→ln x <x -1→赋值叠加证明结论(1)解 ∵g (x )=1e f (x )-(x +1)=ln x -(x +1), ∴g ′(x )=1x-1(x >0). 令g ′(x )>0,解得0<x <1;令g ′(x )<0,解得x >1.∴函数g (x )在(0,1)上单调递增,在(1,+∞)上单调递减,∴g (x )极大值=g (1)=-2.(2)证明 由(1)知x =1是函数g (x )的极大值点,也是最大值点,∴g (x )≤g (1)=-2,即ln x -(x +1)≤-2⇒ln x ≤x -1(当且仅当x =1时等号成立),令t =x -1,得t ≥ln(t +1)(t >-1).取t =1n(n ∈N *)时, 则1n >ln ⎝ ⎛⎭⎪⎫1+1n =ln ⎝ ⎛⎭⎪⎫n +1n , ∴1>ln2,12>ln 32,13>ln 43,…,1n >ln ⎝ ⎛⎭⎪⎫n +1n , ∴叠加得1+12+13+…+1n >ln ⎝ ⎛⎭⎪⎫2×32×43×…×n +1n =ln(n +1).即1+12+13+ (1)>ln(n +1)(n ∈N *). 借助函数、方程、不等式进行转化与化归可以将问题化繁为简,一般可将不等关系转化为最值值域问题,从而求出参变量的范围.。
小学数学转化思想应用列举
小学数学转化思想应用列举南通市通州区实验小学周春国转化思想,作为数学学习最基本的思想方法,主要表现为数学知识的某一形式向另一形式转变,具体表现为化新为旧、化繁为简、化曲为直、化数为形等等。
学生面对的各种数学问题,可以简单地分为两类:一类是直接应用已有知识便可顺利解答的问题;另一种是陌生的知识、或者不能直接应用已有知识解答的问题,需要综合地应用已有知识或创造性地解决的问题。
如知道一个长方形的长和宽,求它的面积,只要知道长方形面积公式的人,都可以计算出来,这是第一类问题;如果不知道平行四边形的面积公式,通过割补平移变换把平行四边形转化为长方形,推导出它的面积公式,再计算面积,这是第二类问题。
对于广大小学生来说,他们在学习数学的过程中所遇到的很多问题都可以归为第二类问题,并且要不断地把第二类问题转化为第一类问题。
解决问题的过程,从某种意义上来说就是不断地转化求解的过程,因此,转化思想在实行学习过程中应用非常广泛。
下面,我将一一列举小学数学教学过程中转化思想的运用案例。
一、数与代数1、转化思想在认识数的意义时的应用。
认识一类新的数时,我们往往会运用转化的思想,将其转化为可视化的图形。
如,认识整数时,我们就用上了小棒,用1根小棒来表示“一”,用10棒小捆成一捆来表示“十”等等。
再如,认识负数时,我们就运用到数轴来帮助学生直观地比较负数与0以及正数的大小关系。
这里都运用到“化抽象为直观”的思想。
2、转化思想在异分母分数加、减法中的应用。
异分母分数加减法是在学生学习了同分母分数加减法的基础上进行的。
学生在计算是,首先要将异分母分数转化成同分母分数,然后才能进行加减运算。
这里的转化体现的是“化异为同”的思想。
3、转化思想在小数乘、除法中的应用在学习小数乘、除法之前,学生已经掌握了整数乘、除法的知识,学习这部分知识的的一个主要思想就是将小数乘、除法这个新的知识转化成已经学过的整数成熟乘除法的旧知识。
如:在计算0.8×0.03时,我们就将其先看成整数乘法8×3,算出乘积是24后,再看原来两个因数中共有三位小数,就从24的末位起数出3位点上小数点,于是得到0.8×0.03=0.024。
浅谈转化思想方法在高等数学中的运用
浅谈转化思想方法在高等数学中的运用高等数学作为数学的一个重要分支,是学生必须要掌握的知识之一。
由于其抽象性和复杂性,很多学生对于高等数学感到困惑和难以理解。
为了解决这个问题,教师需要灵活运用转化思想的方法,来帮助学生更好地理解和掌握高等数学的知识。
转化思想的方法,即通过转变问题的形式、角度或方法,使问题更易于理解和解决。
这种思维方法可以帮助学生打破传统的思维定式,从不同的角度去思考问题,提高问题解决的效率和质量。
转化思想的方法可以应用于数学问题的形式转换。
高等数学中的问题类型多种多样,有求极限、求导数、求积分等等。
如果学生只固守一种解题思路,可能会陷入僵化的思维中。
教师可以通过引导学生将问题进行形式转换,来帮助学生更好地理解和解决问题。
对于一个求极限的问题,如果学生难以通过直接计算得到结果,可以试着将问题进行等价的转化,通过换元、展开等操作,将问题转化为更容易处理的形式,进而解决问题。
转化思想的方法可以应用于数学问题的角度转换。
高等数学中的知识点之间存在着内在的联系和相互作用,这就要求学生能够灵活地从不同的角度去思考问题。
教师可以通过设计合适的问题,引导学生从不同的角度和视角去解决问题,提高学生的问题解决能力。
在解一个函数的最值问题时,学生可以从图像的角度去思考,通过观察函数的图像来判断最值点的位置和性质;也可以从导数的角度去思考,通过求导数并解方程的方法来找到最值点。
转化思想的方法可以应用于数学问题的方法转换。
高等数学中有很多不同的解题方法和技巧,教师可以引导学生学习和掌握这些方法,并帮助学生在不同的问题中灵活运用。
在求函数的导数时,有求导公式、隐函数导数、复合函数导数等不同的方法,学生可以根据具体的问题和情况选择合适的方法进行求解。
转化思想的方法在高等数学中具有重要的作用。
教师可以通过引导学生进行形式、角度和方法的转化,帮助学生更好地理解和掌握高等数学的知识。
学生也应该培养和提高自己的转化思维能力,灵活运用不同的思维方法来解决数学问题。
数学学科的六种思想是什么
数学学科的六种思想是什么
1、转化思想:是一种重要的数学思想方法,所谓转化思想,就是把所要解决的问题转化为另一个较易解决的问题或已经解决的问题,具体地说,就是说把“新知识”转化为“旧知识”,把“未知”转化为“已知”,把“复杂”转化为“简单”,把“陌生”转化为“熟悉”,最终获得解原题的一种手段或方法,如在进行分式的加减运算时常将异分母分式转化同分母分式来加减,将分式除法运算转化为分式乘法运算;解分式方程时常将分式方程转化为整式方程来解决。
2、建模思想:就是运用数学知识解决实际问题。
首先要经过观察、分析、把实际问题转化为数学问题,在列分式方程解应用题时,应先从实际问题中找出等量关系,即建立数学模型,然后根据数学模型来列分式方程,从而达到解决实际问题的目的。
3、分类讨论的思想:具体地说,就是把包含多种可能情况的问题,按某一标准分成若干类,然后对每一类分别进行解决,从而达到解决整个问题的步的,分类的一般原则是:标准统一、不重不漏。
4、方程思想:就是把所要解决的问题通过设未知数列方程(组)的方法使问题得以解决或更容易解决。
5、数形结合思想:就是把图形与数量关系有机地结合起来,使数学问题更直观,更容易解决。
6、从一般到特殊的思想:先探索平行四边形,再探索矩形、菱形、正方形这些特殊平行四边形,先一般后特殊,在共性中寻找特性,是探索知识的主要方法。
数学思想中的转化思想
转化数学思想
一、什么是转化思想?
人们在面对数学问题,如果直接应用已有 知识不能或不易解决该问题时,往往会将 需要解决的问题不断转化形式,把它归结 为能够解决或比较容易解决的问题,最终 使原问题得到解决。这种思想方法称为转 化(化归)思想。
二、转化所要遵循的原则
(1)数学化原则 (2)熟悉化原则 (3)简单化原则 (4)直观化原则
读后思考与分享: 转化思想的培养方法
2、尝试运用,加深理解
例如:学生学习了长方形和三角形面积后,我在教学《平行四边形 面积》时,请同学拿出准备好的学具自己探求如何求平行四边形的 面积?由于学生头脑中已经有了“转化”意识,通过动手操作,运 用剪、割、移、补等方法,很快把平行四边形转化成已经学过的图 形,方法如下: 方法一:从一条边的一个顶点向对边作高,分成一个三角形与一个 梯形,并拼成一个长方形; 方法二:画一条对角线,把它分成两个相等的三角形; 方法三:选择一组对边,从顶点分别向对边作高,分成一个长方形 和两个三角形; 方法四:在一条边上作高,沿着高把它分成两个梯形,并拼成一个 长方形
读后思考与分享: 转化思想的培养方法
1、抓住契机,适时渗透
例如:“除数是小数除法”是渗透转化思想的极好教材,教学中只 要将除数是小数转化为整数,问题就迎刃而解。但将除数是小数转 化为整数必须以商不变性质为基础,因此教学时先复习商不变性质。 教学设计如下: (1)计算并思考各式之间有什么规律,运用了什么性质 32÷4=( );320÷40=( );3200÷400=( ); (2)在括号里填上合适的数,除数必须是整数,商不变 3.2÷0.4=( )÷( );3.6÷0.006=( )÷( ); 4.2÷0.7=( )÷( );8÷1.5=( )÷( )
数学思想方法有哪七种
数学思想方法有哪七种
1、数形结合:是数学中最重要的,也是最基本的思想方法之一,是解决许多数学问题的有效思想。
“数缺形时少直观,形无数时难入微”是我国著名数学家华罗庚教授的名言,是对数形结合的作用进行了高度的概括。
2、转化思想:在整个初中数学中,转化(化归)思想一直贯穿其中。
转化思想是把一个未知(待解决)的问题化为已解决的或易于解决的问题来解决,如化繁为简、化难为易,化未知为已知,化高次为低次等,它是解决问题的一种最基本的思想,它是数学基本思想方法之一。
3、分类思想:有理数的分类、整式的分类、实数的分类、角的分类,三角形的分类、四边形的分类、点与圆的位置关系、直线与圆的位置关系,圆与圆的位置关系等都是通过分类讨论的。
4、整体思想
从问题的整体性质出发,突出对问题的整体结构的分析和改造,发现问题的整体结构特征,善于用“集成”的眼光,把某些式子或图形看成一个整体,把握它们之间的关联,进行有目的的、有意识的整体处理。
5、类比思想
把两个(或两类)不同的数学对象进行比较,如果发现它们在某
些方面有相同或类似之处,那么就推断它们在其他方面也可能有相同或类似之处。
6、配方法
将一个式子设法构成平方式,然后再进行所需要的转化。
当在求二次函数最值问题、解决实际问题最省钱、盈利最大化等问题时,经常要用到此方法。
7、待定系数法法
当我们所研究的数学式子具有某种特定形式时,要确定它,只要求出式子中待定的字母的值就可以了,为此,需要把已知的条件代入到这个待定的式子中,往往会得到含待定字母的方程或者方程组,然后解这个方程或者方程组就可以使问题得到解决。
最有用的17个数学思维方法
最有用的17个数学思维方法最有用的17个数学“思想方法”比做1千道题更实用数学基础打得好,对孩子的研究有较大帮助。
但是数学的研究比较抽象,小学生在研究过程中会碰到一些“拦路虎”,掌握一些方法,这些就都不怕了。
1.对应思想方法对应是人们对两个集合因素之间的联系的一种思想方法,小学数学一般是一一对应的直观图表,并以此孕伏函数思想。
如直线上的点(数轴)与表示具体的数是一一对应。
2.假设思想方法假设是先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确答案的一种思想方法。
假设思想是一种有意义的想象思维,掌握之后可以使要解决的问题更形象、具体,从而丰富解题思路。
3.比较思想方法比较思想是数学中常见的思想方法之一,也是促进学生思维发展的手段。
在教学分数应用题中,教师要善于引导学生比较题中已知和未知数量变化前后的情况,可以帮助学生较快地找到解题途径。
4.符号化思想方法用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学内容,这就是符号思想。
如数学中各种数量关系,量的变化及量与量之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式表达大量的信息。
如定律、公式、等。
5.类比思想方法类比思想是指依据两类数学对象的相似性,有可能将已知的一类数学对象的性质迁移到另一类数学对象上去的思想。
如加法交换律和乘法交换律、长方形的面积公式、平行四边形面积公式和三角形面积公式。
类比思想不仅使数学知识容易理解,而且使公式的记忆变得顺水推舟般自然和简洁。
6.转化思想方法转化思想是由一种形式变换成另一种形式的思想方法,而其本身的大小是不变的。
如多少的等积变换、解方程的同解变换、公式的变形等,在计算中也经常使用到甲÷乙=甲×1/乙。
7.分类思想方法分类思想方法不是数学独有的方法,数学的分类思想方法体现对数学对象的分类及其分类的标准。
如自然数的分类,若按能否被2整除分奇数和偶数;按约数的个数分质数和合数。
有理数中的转化思想总结
有理数中的转化思想总结有理数是数学中的一个重要概念,它包括所有的整数、正分数、负分数以及零。
而其中的转化思想则是指将一个有理数转化为另一个等价的有理数,常用的转化思想包括化简、约分、通分、负数的转化等等。
下面我将详细讨论有理数中的转化思想,总结写1000字。
首先,化简是有理数转化思想中常用的方法之一。
化简是指将一个有理数表示成最简形式,即分子与分母互质,不能再约分为止。
比如,将4/8化简为1/2,将12/16化简为3/4等。
化简有助于简化运算,得出更加直观、易于处理的结果。
其次,约分也是有理数转化思想中常用的方法。
约分是指将一个有理数中的分子和分母同时除以它们的最大公因数,得到一个相等但更简单的有理数。
比如,将16/24约分为2/3,将45/60约分为3/4等。
约分的目的是得到分子与分母简单的比值,方便进行计算和比较大小。
通分是将两个有理数的分母调整为相同的方法。
通分的思想是利用最小公倍数将两个数的分母调整为相同,从而使它们能够进行加减运算。
比如,将1/4和3/8通分为2/8和3/8,再进行加法运算得到5/8。
通分的目的是将不同分母的有理数转化为等值但分母相同的有理数,便于进行运算、比较和排序。
负数的转化也是有理数转化思想中的一个重要方面。
负数的转化是指将一个有理数的符号由正转为负,或由负转为正的操作。
例如,将5转化为-5,将-3转化为3等。
负数的转化可以改变有理数的正负关系,方便进行运算和领会数轴上的加减运算规律。
此外,有理数的转化思想还包括不同表达方式之间的转换。
有理数可以通过分数、小数、百分数等方式进行表达。
将有理数在不同表达方式之间相互转化的思想,有助于增强对有理数的理解和运用。
比如,将1/2转化为0.5,将0.25转化为25%等。
这种转化思想有助于数学学习者熟悉不同表达方式的特点,提高解题的灵活性和效率。
除了上述的转化思想,还有一些其他的思想也与有理数转化密切相关。
比如,正负数的转化,即将一个有理数的符号由正转为负,或由负转为正的操作。
初中数学中的转化思想
初中数学中的转化思想初中数学中的转化思想是指在解题过程中,将问题通过转化和改写的方式,转变为更简单或更易解决的形式。
转化思想是数学思维的重要组成部分,也是解题的关键方法之一。
下面将介绍一些常见的转化思想。
1. 数字的转化数字的转化指的是通过对数值进行适当的转化,使得问题更易解决。
常见的数字转化方法有:- 合并数字:将相邻的数字合并为一个数字,简化计算过程。
- 分解数字:将大的数字分解为几个较小的数字,便于计算或进行推理。
- 转化比例:将一个比例转化为等价的比例,便于解决问题。
2. 图形的转化图形的转化是指通过对图形进行转化,从而简化问题的解决。
常见的图形转化方法有:- 平移图形:将图形在平面上移动,使得问题更易理解。
- 旋转图形:将图形绕着一个点旋转,便于观察和解决问题。
- 放缩图形:将图形按照一定的比例进行放大或缩小,简化计算过程。
3. 方程的转化方程的转化是指通过对方程进行适当的转化,使得问题更易解决。
常见的方程转化方法有:- 合并同类项:将方程中的同类项合并,简化方程的形式。
- 移项变号:将方程中的项移到等号的另一侧,并改变其符号,使得方程更易求解。
- 求解代数方程:将复杂的代数方程转化为一元方程,便于求解。
4. 问题的转化问题的转化是指将原问题转化为与之等价但更易解决的问题。
常见的问题转化方法有:- 幼儿化问题:将复杂的问题转化为更简单的问题,便于理解和解决。
- 类比问题:将原问题与已知的类似问题进行比较,寻找相似之处,从而求解。
- 反证法:通过反证来解决问题,假设问题的反面是正确的,进而推导出矛盾,从而得出结论。
转化思想在初中数学中起着重要的作用,可以帮助学生更好地理解和解决问题。
通过掌握转化思想,学生可以在数学学习中培养出创新的思维方式,提高解决问题的能力。
在小学数学教学中培养学生转化思想的方法
在小学数学教学中培养学生转化思想的方法
1.在数学课堂上重视解决问题的过程。
教师能经常性地对学生提出有挑战性的数学问题,让学生思考,解决问题,思路要清晰,有条理,让学生能更好的理解转化的思想。
2.多样化的练习。
教师可以引导学生在教材中完成多种计算题,但同时也要让学生尝试利用比较法和变换思想等方法解题,让学生在解题中逐步转化为更抽象的思考模式。
3.分组探究和合作学习。
让学生将教材中同样的题型进行分组,共同探究,帮助彼此,由此发现规律,熟悉转化的思维模式。
4.创设试验性环境。
让学生体验转化思维的过程,让数学成为一种实践的体验。
如用抭拇指的游戏来让学生在实验中发现数学思维的转化,让学生更加有行动力,也有助学生发现规律。
关于小学数学教学中转化思想的运用
关于小学数学教学中转化思想的运用转化思想是指将所学的数学知识转化应用于实际问题中的思维方式。
在小学数学教学中,转化思想的运用非常重要,它可以帮助学生建立数学概念与思维的联系,提高数学学习的兴趣和能力。
本文将从理论和实践两个方面来探讨小学数学教学中转化思想的运用。
一、理论基础1.转化思想的含义“转化”一词的字面意思是指将事物或知识进行改变、转变或转换。
在数学教学中,转化思想是将抽象的数学知识转化为具体的问题,从而帮助学生理解和应用数学知识。
2.转化思想的作用转化思想在小学数学教学中起到了非常重要的作用。
它可以帮助学生理解抽象概念,提高学生的数学思维能力,培养学生的实际问题解决能力。
3.转化思想的运用方法转化思想的运用方法主要包括抽象与具体化、推理与解决问题、变换与应用等。
通过这些方法,可以将抽象的数学知识转化为具体的问题,并通过推理和变换的方法解决问题。
二、实践案例1.数字与运算转化思想的运用在小学数学教学中,数字与运算是最基本和最核心的内容。
通过转化思想的运用,可以帮助学生更好地理解数字和运算。
在教授加减乘除的过程中,可以通过实际问题的引入,将抽象的计算转化为具体的问题。
通过让学生计算购物时的实际问题,学生不仅可以巩固和运用加减乘除的运算,还能够明确购物时的概念和计算过程。
这样一来,学生对数学知识的理解和应用能力就会得到提高。
2.几何转化思想的运用几何是小学数学教学中的另一个重要内容。
通过几何的学习和实践,学生可以培养空间想象能力和逻辑思维能力。
转化思想在小学数学教学中的运用非常重要。
通过转化思想的运用,可以帮助学生更好地理解和应用数学知识,提高数学学习的兴趣和能力。
在数学教学中,教师应该充分运用转化思想,将抽象的数学知识转化为具体的问题,通过实际问题的解决来帮助学生建立数学概念与思维的联系。
教师还应该注重培养学生的实际问题解决能力,通过推理、变换和应用等方法来培养学生的数学思维能力。
只有这样,才能够真正提高小学生的数学学习质量和能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学的转化思想方法数学的转化思想方法导语:数学是研究事物的空间形式和数量关系的,初中最重要的数量关系是等量关系,其次是不等量关系。
以下是店铺为大家整理分享的数学的转化思想方法,欢迎阅读参考。
数学的转化思想方法特殊与一般的数学思想:对于在一般情况下难以求解的问题,可运用特殊化思想,通过取特殊值、特殊图形等,找到解题的规律和方法,进而推广到一般,从而使问题顺利求解。
常见情形为:用字母表示数;特殊值的应用;特殊图形的应用;用特殊化方法探求结论;用一般规律解题等。
整体的数学思想:所谓整体思想,就是当我们遇到问题时,不着眼于问题的各个部分,而是有意识地放大考虑问题的视角,将所需要解决的问题看作一个整体,通过研究问题的整体形式、整体结构、整体与局部的内在联系来解决问题的思想。
用整体思想解题时,是把一些彼此独立,但实质上又相互紧密联系的量作为整体来处理,一定要善于把握求值或求解的问题的内在结构、数与形之间的内在结构,要敏锐地洞察问题的本质,有时也不要放弃直觉的作用,把注意力和着眼点放在问题的整体上。
常见的情形为:整体代入;整式约简;整体求和与求积;整体换元与设元;整体变形与补形;整体改造与合并;整体构造与操作等。
分类讨论的数学思想:也称分情况讨论,当一个数学问题在一定的题设下,其结论并不唯一时,我们就需要对这一问题进行必要的分类。
将一个数学问题根据题设分为有限的若干种情况,在每一种情况中分别求解,最后再将各种情况下得到的答案进行归纳综合。
分类讨论是根据问题的不同情况分类求解,它体现了化整为零和积零为整的思想与归类整理的方法。
运用分类讨论思想解题的关键是如何正确的进行分类,即确定分类的标准。
分类讨论的原则是:(1)完全性原则,就是说分类后各子类别涵盖的范围之和,应当是原被分对象所涵盖的范围,即分类不能遗漏;(2)互斥性原则,就是说分类后各子类别涵盖的范围之间,彼此互相独立,不应重叠或部分重叠,即分类不能重复;(3)统一性原则,就是说在同一次分类中,只能按所确定的一个标准进行分类,即分类标准统一。
分类的方法是:明确讨论的对象,确定对象的全体,确立分类标准,正确进行分类,逐步进行讨论,获取阶段性结果,归纳小结,综合得出结论。
常见的情形为:由字母系数引起的讨论;由绝对值引起的讨论;由点、线的运动变化引起的讨论;由图形引起的讨论;由边、点的不确定引起的讨论;存在特殊情形而引起的讨论;应用问题中的分类讨论等。
转化的数学思想:将未知解法或难以解决的问题,通过观察、分析、联想、类比等思维过程,选择恰当的方法进行变换,化归为在已知知识范围内已经解决或容易解决的问题。
解题的过程实际就是转化的过程。
常见的情形为:高次转化为低次、多元转化为一元、式子转化为方程、次元转化为主元、正面转化为反面、分散转化为集中、未知转化为已知、动转化为静、部分转化为整体、还有一般与特殊、数与形、相等与不等之间的相互转化。
数形结合的数学思想:数与形是数学教学研究对象的两个侧面,把数量关系和空间形式结合起来去分析问题、解决问题,就是数形结合思想。
数、式能反映图形的`准确性,图形能增强数、式的直观性,“数形结合”可以调动和促进学生形象思维和抽象思维的协调发展,沟通数学知识之间的联系,从复杂的数量关系中凸显最本质的特征。
数形结合是研究数学问题的有效途径和重要策略,它体现了数学的和谐美、统一美。
华罗庚先生曾用“数缺形时少直觉,形少数时难入微”作高度的概括。
常见的情形为:利用数轴、函数的图象和性质、几何模型、方程与不等式以及数式特征可以将代数问题转化为集合问题;利用代数计算、几何图形特征可以将几何问题转化为代数问题;利用三角知识解决几何问题;利用统计图表让统计数据更形象更直观等。
函数与方程的思想:函数的思想就是利用运动与变化的观点、集合与对应的思想,去分析和研究数学中的等量关系,建立和构造函数关系,再运用函数的图象和性质去分析问题,达到转化问题的目的,从而使问题获得解决。
方程的思想就是从问题的数量关系入手,运用数学语言将问题中的条件转化为数学模型——方程或方程组,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使问题获得解决。
函数与方程的思想实际是就是一种模型化的思想。
常见的情形为:数字问题、面积问题、几何问题方程化;应用函数思想解方程问题、不等问题、几何问题、实际问题;利用方程作判断;构建方程模型探求实际问题;应用函数设计方案和探求面积等。
常用数学方法如:配方法、消元法、换元法、待定系数法、构造法、主元法、面积法、类比法、参数法、降次法、图表法、估算法、分析法、综合法、拼凑法、割补法、反证法、倒数法、同一法等。
数学的转化思想方法初中数学中蕴含的数学思想很多,其中最主要的数学思想方法包括转化思想、数形结合思想、分类讨论思想、函数与方程思想等.(1)转化思想.转化思想就是人们将需要解决的问题,通过演绎、归纳等转化手段,归结为另一种相对容易解决或已经有解决方法的问题,从而使原来的问题得到解决.转化思想体现在数学解题过程中就是将未知的、陌生的、复杂的问题通过演绎和归纳转化为已知的、熟悉的、简单的问题.初中数学中诸如化繁为简、化难为易、化未知为已知等均是转化思想的具体体现.具体而言,代数式中加法与减法的转化,乘法与除法的转化,用换元法解方程,在几何中添加辅助线,将四边形的问题转化为三角形的问题,将一些角转化为圆周角并利用圆的知识解决问题等等都体现了转化思想.在初中数学中,转化思想运用的最为广泛.(2)数形结合思想.数学是研究现实世界空间形式和数量关系的科学,因而,在某种程度上可以说数学研究是围绕着数与形展开的.初中数学中的“数”就是代数式、方程、函数、不等式等符号表达式,初中数学中的“形”就是图形、图象、曲线等形象表达式.数形结合思想的实质是将抽象的数学语言(“数”)与直观的图象(“形“)结合起来,数形结合思想的关键就是抓住“数”与“形”之间本质上的联系,以“形”直观地表达“数”,以“数”精确地研究“形”,实现代数与几何之间的相互转化.数形结合思想包括“以形助数”和“以数辅形”两个方面,它可以使代数问题几何化,几何问题代数化.“数无形时不直观,形无数时难入微.”数形结合是研究数学、解决数学问题的重要思想,在初中数学中有着广泛应用.譬如,在初中数学中,通过数轴将数与点对应,通过直角坐标系将函数与图象对应均体现了数形结合思想的应用.再比如,用数形结合的思想相反数、绝对值等概念,学习有理数大小比较的法则,研究函数的性质等,从形象思维过渡到抽象思维,从而显著降低了学习难度.(3)分类讨论思想.分类讨论思想就是根据数学对象本质属性的共同点和差异点,将数学对象区分为不同的种类.分类是以比较为基础的,它有助于揭示数学对象之间的内在联系与规律,有助于学生总结归纳数学知识、解决数学问题.譬如,初中数学从整体上看分为代数、几何、概率统计等几大版块,并分别采用不同方法进行研究,就是分类思想的体现.具体而言,实数的分类,方程的分类、三角形的分类、函数的分类、统计量的分类等等,都是分类思想的具体体现.分类思想在初中数学中有大量运用,从初中数学内容的组织与展开到数学概念的界定与划分再到数学问题的分析与解决都大量运用着分类思想.(4)函数与方程思想.函数与方程思想就是用函数的观点和方法分析问题、解决问题.函数思想是客观世界中事物运动变化、相互联系、相互制约的普遍规律在数学中的具体反映.函数与方程思想的本质是变量之间的对应,即用变化的观点和函数的形式将所研究的数量关系表示出来,然后用函数的性质进行研究,从而使问题获得解决.如果函数的形式用解析式的方式表示,那么就可以将函数解析式看作方程,并通过解方程和对方程的研究使问题得到解决,这就是方程思想.譬如初中数学中大量涉及一次函数、反比例函数、二次函数等内容的数学问题都要用到函数与方程思想来解决.由于函数思想与方程思想的内容和形式相一致,因而往往将其并称为函数与方程思想,并将二者结合学习与运用。
除上述几种主要的数学思想之外,初中数学中还有集合思想、对应思想、符号化思想、公理化思想等.初中数学主要包括如下基本的数学方法:(1)几种重要的科学思维方法:比较与分类、观察与尝试、分析与综合、概括与抽象、特殊与一般、归纳与类比等;(2)几种重要的推理方法:完全归纳法、综合法、分析法、反证法、演绎法等;(3)几种常用的求解方法:待定系数法、数学建模法、配方法、消元法、换元法、构造法、坐标法、参数法等.1、配方法所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。
通过配方解决数学问题的方法叫配方法。
其中,用的最多的是配成完全平方式。
配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。
2、因式分解法因式分解,就是把一个多项式化成几个整式乘积的形式。
因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。
因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。
3、换元法换元法是数学中一个非常重要而且应用十分广泛的解题方法。
我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。
4、判别式法与韦达定理一元二次方程ax2+bx+c=0(a、b、c属于R,a≠0)根的判别,△=b2—4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。
韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的。
【数学的转化思想方法】。