2016年金山区初三数学一模卷
2016年上海市初三数学一模试卷18题汇总解析
2016年上海市初三一模数学考试18题解析2016.03一. 普陀区18. 已知(3,2)A 是平面直角坐标中的一点,点B 是x 轴负半轴上一动点,联结AB , 并以AB 为边在x 轴上方作矩形ABCD ,且满足:1:2BC AB =,设点C 的横坐标是a , 如果用含a 的代数式表示点D 的坐标,那么点D 的坐标是 ;【解析】根据题意,可以得出△1CC B ∽△1BA A , ∴11:1:2:BC AB BC AA ==,∴11BC =, ∵1(,0)C a ,∴(1,0)B a +,∴12A B a =-, ∴122aC C -=,∴6(2,)2aD -二. 浦东新区18. 在△ABC 中,5AB =,4AC =,3BC =,D 是边AB 上的一点,E 是边AC 上 的一点(D 、E 均与端点不重合),如果△CDE 与△ABC 相似,那么CE = ;【解析】 如左图,D 为AB 中点, 2.5CD =,2CE =;如中图,D 为AB 中点, 2.5CD =,:4:5CD CE =,∴258CE =;如右图,CD AB ⊥,125CD =,∴3625CE =;三. 奉贤区18. 如图,已知平行四边形ABCD 中,AB =6AD =,1cot 2B =,将边AB 绕 点A 旋转,使得点B 落在平行四边形ABCD 的边上,其对应点为B '(点B '不与点B 重合),那么sin CAB '∠= ;【解析】根据已知条件,2BE EB B C ''===,4AE =,∴sin sin 2CAB ACE ''∠=∠=;作B F AC '⊥,∴B F '=,AB '=∴sin10CAB '∠==;四. 长宁区/金山区18. 如图,ABCD 为正方形,E 为BC 上一点,将正方形折叠,使A 点与E 点重合, 折痕为MN ,如果1tan 3AEN ∠=,10DC CE +=,那么△ANE 的面积为 ;【解析】 1tan tan 3BE AEN NAE AB ∠=∠==,∴可解得 2BE =,4EC =,直角三角形NBE 中使用勾股定理,222(6)2AN AN -+=,解得103AN =,∴103ANE S = ;五. 闵行区18. 将一副三角尺如图摆放,其中在Rt △ABC 中,90ACB ∠=︒,60B ∠=︒,在 Rt △EDF 中,90EDF ∠=︒,45E ∠=︒,点D 为边AB 的中点,DE 交AC 于点P ,DF 经过点C ,将△EDF 绕点D 顺时针方向旋转角α(060α︒<<︒)后得到△E DF '',DE '交AC 于点M ,DF '交BC 于点N ,那么PMCN的值为 ;【解析】 取特殊情况30α︒=,如右图所示,∴30PDM ︒∠=,∵60DPM ︒∠=,∴90PMD ︒∠=,∴3PM PM CN MD ==;六. 松江区18. 已知在△ABC 中,90C ∠=︒,3BC =,4AC =,点D 是AB 边上一点,将△ABC 沿着直线CD 翻折,点A 落在直线AB 上的点A '处,则sin A CD '∠= ; 【解析】 根据已知条件,CD AB ⊥,AD A D '=,∴△ACD ≌△A CD ',∴sin sin A CD ACD '∠=∠=4sin 5ABC ∠=;七. 徐汇区18. 如图,在Rt △ABC 中,90BAC ∠=︒,3AB =,3cos 5B =,将△ABC 绕着点 A 旋转得△ADE ,点B 的对应点D 落在边BC 上,联结CE ,那么CE 的长是 ;【解析】作AF EC ⊥,∵3AB AD ==,4AC AE ==,BAD CAE ∠=∠,∴△BAD ∽△CAE ,∴3cos cos 5CF B ACF CA =∠==,即125CF =,∴245CE =;八. 虹口区18. 如图,在矩形ABCD 中,6AB =,10AD =,点E 是边BC 的中点,联结AE , 若将△ABE 沿AE 翻折,点B 落在点F 处,联结FC ,则cos ECF ∠= ;【解析】作EM FC ⊥,∵5EF EC ==,∴FEM CEM ∠=∠,∵AEB AEF ∠=∠,∴90AEB MEC ︒∠+∠=,即AEB MCE ∠=∠,∴cos cos 61ECF AEB ∠=∠=;九. 崇明县18. 如图,等边△ABC 中,D 是边BC 上的一点,且:1:3BD DC =,把△ABC 折 叠,使点A 落在边BC 上的点D 处,那么AMAN的值为 ; 【解析】设1BD =,∴3CD =,4AB AC ==,∵60MDN A ︒∠=∠=,∴120MDB NDC ︒∠+∠=, ∵120MDB BMD ︒∠+∠=,∴BMD NDC ∠=∠, ∵B C ∠=∠,∴△BMD ∽△CDN , ∴MD BM DB DN CD NC ==,即4134AM AM AN AN -==- 解得57AM AN =;18. 如图,在梯形ABCD 中,AD ∥BC ,45B ∠=︒,点E 是AB 的中点,DE DC =,90EDC ∠=︒,若2AB =,则AD 的长是 ;【解析】延长DE 、CB 交于点F ,根据条件可知△AED ≌△BEF ,45F FEB ︒∠+∠=,45F FCE ︒∠+∠=,∴FEB FCE ∠=∠,可知△FEB ∽△FCE ,∴FB FEBE EC=,即1AD EDEC ==,∴2AD =;十一. 宝山区18. 如图,抛物线223y x x =--交x 轴于(1,0)A -、(3,0)B ,交y 轴于(0,3)C -,M 是抛物线的顶点,现将抛物线沿平行于y 轴的方向向上平移三个单位,则曲线CMB 在平移 过程中扫过的面积为 (面积单位);【解析】曲线CMB 扫过区域如中图所示,经割补后与右图OCEB 面积相同,面积为9;十二. 静安区/青浦区18. 将平行四边形ABCD (如图)绕点A 旋转后,点D 落在边AB 上的点D ',点C 落 到C ',且点C '、B 、C 在一直线上,如果13AB =,3AD =,那么A ∠的余弦值为 ; 【解析】连结BC ',∵BD C D AB DAB ''''∠=∠=∠C D BC ''=∠=∠,∴13D C BC DC AB '''====,∵3AD AD '==,∴10D B '=,作C E D B ''⊥, ∴5D E EB '==,∴cos cos 513A EBC '∠==18. 如图,已知将△ABC 沿角平分线BE 所在直线翻折,点A 恰好落在边BC 的中点M 处,且AM BE =,那么EBC ∠的正切值为 ;【解析】设AM 、BE 相交于D 点,AM BE ⊥,取BE 中点F ,联结FM ,∴FM ∥AC , ∴AEF MEF EFM ∠=∠=∠,∴ME MF =, ∴DE DF =,∴2BF DM EF DF ===, ∴22tan 33DM DF EBC DB DF ∠===十四. 闸北区18. 如图,将一张矩形纸片ABCD 沿着过点A 的折痕翻折,使点B 落在边AD 上的点F ,折痕交BC 于点E ,将折叠后的纸片再次沿着另一条过点A 的折痕翻折,点E 恰好与点D 重合,此时折痕交DC 于点G ,则:CG GD 的值为 ;【解析】第一次翻折后,可知AB AF =,∴ABEF 为正方形, ∴45AEB ︒∠=,第二次翻折后,可知90ADG AEG ︒∠=∠=,且DG GE =,∴45GEC ︒∠=,sin 452CG CGGD GE ︒===;十五. 嘉定区18. 在梯形ABCD 中,AD ∥BC ,90ABC ∠=︒,AB CB =,4tan 3C ∠=(如图), 点E 在边CD 上运动,联结BE ,如果EC EB =,那么DECD的值是 ;【解析】作DG BC ⊥,4tan 3DG C GC ∠==,设3CG =, 4DG =,∴4AB CB ==,1BG =;作EF BC ⊥,∵EC EB =,∴2BF CF ==,∴1GF =, ∴13DE GF CD CG ==。
2016届九年级中考一模数学试题(扫描版)
学校:班级:教师: 科目:得分:2015-2016年初三数学一模参考答案题号 1 2 3 4 5 6 7 8 9 10 答案B D C C D C A A B B题号11 12 13答案2)1(-ab 5 33712132=+++xxxx题号14 15 16答案所填写的理由需支持你填写的结论. 如:③,理由是:只有③的自变量取值范围不是全体实数预估理由需包含统计图提供的信息,且支撑预估的数据. 如:6.53 ,理由是:最近三年下降趋势平稳四条边都相等的四边形是菱形;菱形的对边平行(本题答案不唯一)三、解答题(本题共72分,第17~26题,每小题5分,第27题7分,第28题7分,第29题8分)17.解:原式316431=-⨯++-……………………4分43=-.………………………5分解不等式①,得10≤x.………………………2分解不等式②,得7>x.………………………3分∴原不等式组的解集为107≤<x.………………………4分∴原不等式组的所有整数解为8,9,10.………………………5分19.解:原式4312222-++-+-=xxxxx………………………3分32-+=xx.………………………4分∵250x x+-=,∴52=+xx.∴原式=532-=..………………………5分20.证明:∵ 90BAC ∠=︒,∴ 90BAD DAC ∠+∠=︒. ∵ AD BC ⊥, ∴ 90ADC ∠=︒.∴ 90DAC C ∠+∠=︒.∴ BAD C ∠=∠. ………………………2分 ∵ DE 为AC 边上的中线, ∴ DE EC =.∴ EDC C ∠=∠. .………………………4分 ∴ BAD EDC ∠=∠. ………………………5分21.解:设小博每消耗1千卡能量需要行走x 步.………………………1分由题意,得xx 90001012000=+ . ………………………3分 解得 30=x . ………………………4分 经检验,30=x 是原方程的解,且符合题意.答:小博每消耗1千卡能量需要步行30步. ………………………5分22.(1) 证明:∵ 四边形ABCD 为矩形,∴ AC BD =,AB ∥DC .∵ AC ∥BE ,∴ 四边形ABEC 为平行四边形. ………………………2分 ∴ AC BE =.∴ BD BE =. ………………………3分 (2) 解:过点O 作OF ⊥CD 于点F .∵ 四边形ABCD 为矩形, ∴ 90BCD ∠=︒. ∵ 10BE BD ==, ∴ 6CD CE ==. 同理,可得132CF DF CD ===. ∴9EF =. ………………………4分 在Rt △BCE 中,由勾股定理可得8BC =. ∵ OB=OD ,∴ OF 为△BCD 的中位线. ∴ 142OF BC ==. ∴在Rt △OEF 中,4tan 9OF OED EF ∠==. ………………………5分A23. 解:(1)∵(6,)P m 在直线y x =-上,∴6m =-. ………………………1分∵(6,6)P -在双曲线k y x =上, ∴6(6)6k =⨯-=-. ………………………2分图1 图2(2) ∵y x =-向上平移b (0b >)个单位长度后,与x 轴,y 轴分别交于A ,B ,∴(,0),(0,)A b B b . ………………………3分作QH ⊥x 轴于H ,可得△HAQ ∽△OAB .如图1,当点Q 在AB 的延长线上时,∵2BQ AB =,∴3===ABAQ OA HA OB HQ . ∵OA OB b ==, ∴3HQ b =,2HO b =.∴Q 的坐标为(2,3)b b -.由点Q 在双曲线6y x=-上, 可得1b =. ………………………4分 如图2,当点Q 在AB 的反向延长线上时,同理可得,Q 的坐标为(2,)b b -.由点Q 在双曲线6y x=-上,可得3b =综上所述,1b =或b = ………………………5分24. (1) 证明:如图,连接OD . ………………………1分∵BC 为⊙O 的切线,∴90CBO ∠=︒.∵AO 平分BAD ∠,∴12∠=∠.∵OA OB OD ==,∴1=4=2=5∠∠∠∠.∴BOC DOC ∠=∠.∴△BOC ≌△DOC .∴90CBO CDO ∠=∠=︒.∴CD 为⊙O 的切线. ……………2分(2) ∵AE DE =,∴AE DE =.∴34∠=∠. ………………………3分∵124∠=∠=∠,∴123∠=∠=∠.∵BE 为⊙O 的直径,∴90BAE ∠=︒.∴123430∠=∠=∠=∠=︒.………………………4分∴90AFE ∠=︒ .在Rt △AFE 中,∵3AE =,︒=∠303,∴AF = ………………………5分25. (1) 45;………………………2分(2) 21;………………………3分(3) 2.4(120%) 2.88⨯+=.2015年中国内地动画电影市场票房收入前5名的票房成绩统计表………………………5分或2015年中国内地动画电影市场票房收入前5名的票房成绩统计图………………………5分m=-;………………………1分26. (2) ①60n=;………………………2分②11(3)正确标出点B的位置,画出函数图象. …………………5分27. 解:(1)224=-+-y mx mx m2(21)4=-+-m x x2=--.m x(1)4-.………………………2分∴点A的坐标为(1,4)(2)①由(1)得,抛物线的对称轴为x=1.∵抛物线与x轴交于B,C两点(点B在点C左侧),BC=4,∴ 点B 的坐标为 (1,0)-,点C 的坐标为 (3,0).………………………3分∴ 240m m m ++-=.∴ 1m =.∴ 抛物线的解析式为223y x x =--.……4分② 由①可得点D 的坐标为 (0,3)-.当直线过点A ,D 时,解得1k =-.………5分当直线过点A ,C 时,解得2k =. ………6分结合函数的图象可知,k 的取值范围为10k -≤<或02k <≤. …………7分28. 解:(1) ①补全图形,如图1所示. ………………………1分图1②BC 和CG 的数量关系:BC CG =,位置关系:BC CG ⊥.…………………2分证明: 如图1.∵︒=∠=90,BAC AC AB ,∴︒=∠=∠45ACB B ,︒=∠+∠9021.∵射线BA 、CF 的延长线相交于点G ,∴︒=∠=∠90BAC CAG .∵四边形ADEF 为正方形,∴︒=∠+∠=∠9032DAF ,AF AD =.∴31∠=∠.∴△ABD ≌△ACF .…………………3分∴︒=∠=∠45ACF B .∴45B G ∠=∠=︒,90BCG ∠=︒.∴BC CG =,BC CG ⊥.…………………4分(2) 10GE =.…………………5分思路如下: a . 由G 为CF 中点画出图形,如图2所示. b . 与②同理,可得BD=CF ,BC CG =,BC CG ⊥;c . 由2=AB ,G 为CF 中点,可得2====CD FG CG BC ;d . 过点A 作AM BD ⊥于M ,过点E 作EN FG ⊥于N ,可证△AMD ≌△FNE ,可得1AM FN ==,NE 为FG 的垂直平分线,FE EG =;e . 在Rt △AMD 中,1AM =,3MD =,可得10AD =,即10GE FE AD ===. ……7分29.解:(1)①点M ,点T 关于⊙O 的限距点不存在;点N 关于⊙O 的限距点存在,坐标为(1,0).………………………2分②∵点D 的坐标为(2,0),⊙O 半径为1,DE ,DF 分别切⊙O 于点E ,点F ,∴切点坐标为13()22,,13()22,-.……………3分 如图所示,不妨设点E 的坐标为13()2,,点F 的坐标为13()2,-,EO ,FO 的延长线分别交⊙O 于点'E ,'F ,则13'()2E --,,13'()2F -,. 设点P 关于⊙O 的限距点的横坐标为x .Ⅰ.当点P 在线段EF 上时,直线PO 与''E F 的交点'P 满足2'1≤≤PP ,故点P 关于⊙O 的限距点存在,其横坐标x 满足112x -≤≤-.………5分 Ⅱ.当点P 在线段DE ,DF (不包括端点)上时,直线PO 与⊙O 的交点'P 满足1'0<<PP 或2'3PP <<,故点P 关于⊙O 的限距点不存在.Ⅲ.当点P 与点D 重合时,直线PO 与⊙O 的交点'(1,0)P 满足1'=PP ,故点P 关于⊙O的限距点存在,其横坐标x =1.综上所述,点P关于⊙O的限距点的横坐标x的范围为112x-≤≤-或x=1.……………………6分(2)问题1:9.………………8分问题2:0 < r < 16.………………7分节日热闹:盛况空前普天同庆欢聚一堂人声鼎沸人山人海欢呼雀跃欢声雷动熙熙攘攘载歌载舞成语中的反义词:藕断丝连转危为安左顾右盼阴差阳错争先恐后冬暖夏凉大同小异轻重缓急天南地北舍本逐末红旗招展火树银花灯火辉煌张灯结彩锣鼓喧天金鼓齐鸣看:盯瞧瞅瞟瞥望睹观赏窥顾盼端详注视鸟瞰浏览张望阅览欣赏观赏月光:皎洁的月光明亮的月光清冽的月光清幽的月光朦胧的月光柔和的月光惨淡的月光凄冷的月光月光如水月光如雪月光如银希望:期望盼望渴望奢望指望中国:中华华夏九州四海神州大地长城内外大江南北读书和学习:如饥似渴学而不厌学无止境学以致用博览群书博学多才学海无涯得表扬:得意扬扬洋洋得意神采飞扬心花怒放乐不可支喜上眉梢春风得意眉开眼笑受批评:心灰意冷垂头丧气郁郁寡欢心灰意懒一蹶不振建筑:金碧辉煌玲珑剔透古色古香庄严肃穆庭院幽深巍然耸立绿瓦红墙描龙绣凤气势磅礴栩俯瞰窥视探望远眺审视环顾扫视瞻仰左顾右盼瞻前顾后袖手旁观先睹为快望眼欲穿东张西望屏息凝视目不转睛比喻手法成语:星罗棋布鳞次栉比玉洁冰清蚕食鲸吞狐朋狗友狼吞虎咽锦衣玉食打比方成语:如醉如梦如泣如诉如火如荼如饥似渴如兄似弟如胶似漆如花似锦如狼似虎死:去世逝世长眠安息千古永别永诀与世长辞遇难牺牲捐躯殉职夭折圆寂羽化驾崩朋友:伙伴同伴旅伴伴侣战友密友故友好友挚友新朋好友良师益友梅花:腊梅墨梅素梅冰肌玉骨疏影横斜暗香浮动清香远溢幽香沁人小溪:波纹粼粼清澈见底终年潺潺柳树:垂柳青青婀娜多姿依依多情万千气象:晚霞朝晖红霞满天霞光万道闲云迷雾云雾缭绕星光灿烂晓风残月月凉如水月色朦胧花儿好看:绚丽烂漫妖艳素雅争奇斗艳鲜艳夺目花蕾满枝琼花玉叶色彩斑斓花团锦簇灿如云锦花儿好闻:芬芳幽香芳香浓郁清香四溢香气袭人沁人心脾清香袅袅香气扑鼻香飘十里日子:丰衣足食太平昌盛日出而作日入而息守望相助走兽:四肢轻快互相追逐连蹦带跳小巧玲珑乖巧驯良扬蹄飞奔腾空跃起庞然大物生龙活虎威风凛凛月淡风清月明星稀皓月当空栩如生造型逼真琼楼玉宇布局合理亭台楼阁历史悠久中西合璧龙腾虎跃。
2016上海市各区县初三一模数学试题及答案
2016上海长宁区初三数学一模试题(满分150分) 2016.1.6 一、选择题。
(本题共6个小题,每题4分,共24分)1、如果两个三角形的相似比是1:2,那么他们的面积比是( ). A.1:2 B.1:4 C.1:2 D.2:12、如图,在△ABC 中,∠ADE=∠B ,DE:BC=2:3,则下列结论正确的是( ). A.AD:AB=2:3 B.AE:AC=2:5 C.AD:DB=2:3 D.CE:AE=3:23、在Rt △ABC 中,∠C=90°,AB=2,AC=1,则sinB 的值是( ). A.22 B.23 C.21 D.2 4、在△ABC 中,若cosA=22,tanB=3,则这个三角形一定是( ). A.直角三角形 B.等腰三角形 C.钝角三角形 D.锐角三角形 5、已知⊙O 1的半径r 为3cm ,⊙O2的半径R 为4cm ,两圆的圆心距O O 21为1cm ,则这两个圆的位置关系的( ).A.相交B.内含C.内切D.外切6二次函数1)2(2-+=x y 的图像可以由二次函数2x y =的图像平移得到,下列平移正确的是( ).A.先向左平移2个单位,再向上平移1个单位B.先向左平移2个单位,再向下平移1个单位C.先向右平移2个单位,再向上平移1个单位D.先向右平移2个单位,再向下平移1个单位 二、填空题。
(本大题共12小题,每题4分,满分48分) 7、已知抛物线12+=x y 的顶点坐标是( ).8、已知抛物线32++=bx x y 的对称轴为直线x=1,则实数b 的值为( ) 9、已知二次函数bx ax y +=2,阅读下面表格信息,由此可知y 与x 的函数关系式是( ).10、已知二次函数2)3(-=x y 图像上的两点A (3,a )和B (x ,b ),则a 和b 的大小关系是a ( )b.11、圆是轴对称图形,它的对称轴是( ).12、已知⊙O 的弦AB=8cm ,弦心距OC=3cm ,那么该圆的半径是( )cm.13、如图,AB 是⊙O 的直径,弦CD 垂直AB ,已知AC=1,BC=22,那么sin ∠ACD 的值是( ).14、王小勇操纵一辆遥控汽车从A 处沿北偏西60°方向走10m 到B 处,再从B 处向正南方走20m 到C 处,此时遥控汽车离A 处( )m.15、已知△ABC 中,AD 是中线,G 是重心,设m AD =,那么用m 表示AG =( ). 16、如图,已知AB ⊥BD ,ED ⊥BD ,C 是线段BD 的中点,且AC ⊥CE ,ED=1,BD=4,那么AB=( ).17、如果把两条邻边中较短边与较长边的比值为215-的矩形称作黄金矩形。
2016学年长宁、金山区初三数学一模试卷
2016学年长宁、金山区调研测试九年级数学2017.1(满分150分,考试时间100分钟)考生注意:1 .本试卷含三个大题,共25题,答题时,考生务必按答题要求在答题纸规定位置上作答,在草稿纸、 本试卷上大题一律无效。
2 .除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写生证明或计算的主要步 骤。
一、选择题(本大题共6题,每题4分,满分24分)1.在平面直角坐标系中,抛物线 y X 1 22的顶点坐标是( B. (1, 2) C. (2,-1) D. (2, 1)C 90 , AB 5, BC 4 3B. 一C. 一353.如图,下列能判断BC// ED 的条件是(ED ADA. ----- -----BC AB AD AEC. 1——1 1——1AB AC4.已知「O 与 O 的半径分别是2和6,若.O 与n O 相交,那么圆心距OO 的取值范围是( 12121 2 A. 2<OO <41 2D.4<OO <101 25 .已知非零向量a 与b,那么下列说法正确的是( )A.如果a| b L 那么a b ;B.如果ab ,那么a // b C.如果a//b,那么算|b ;D.如果ab,那么3 -b |6 .已知等腰三角形的腰长为 6cm,底边长为4cm,以等腰三角形的顶角的顶点为圆心 5cm 为半径画圆,那么该圆耳底边的位置关系反()---一A.相离B.相切C.相交D.不能确定二、填空题(本大题共12题,每题4分,满分48分) 7 .如果3x 4y x 0 ,那么—= yA. (-1, 2) 2.在ABC 中,3A.一44,那么 A 的正弦值是(4D.一5)ED AEB. ---- -----BC AC AD ACB.2<OO <61 2C.4<OO <81 28.已知二次函数y x22x 1,那么该二次函数的图像的对称轴是.9.已知抛物线y 3x2 x c与y轴的交点坐标是(0,-3),那么c=.11 .设是锐角,如果tan 2 ,那么cot12 .在直角坐标平面中,将抛物线 y 2x 2先向上平移1个单位,再向右平移1个单位,那么平移后的抛物线解析式是.13 .已知厂A 的半径是2,如果8是「A外一点,那么线段 AB 长度的取值范围是 那么GE =.15.如图,在地面上离旗杆 BC 底部18米的A 处,用测角仪测得旗杆顶端 C 的仰角为30° ,已知测角仪三、解答题(本大题共7题,满分78分)1 10.已知抛物线y 2x 23x 经过点(-2, m ),那么m =LL _______ I ____ _ LL _ ___ .一14.如图,点G 是ABC 的重心,联结AG 并延长交BC 于点D ,GE// AB 交 BC 与 E ,若 AB 6,AD 的高度为1.5米, 那么旗杆BC 的高度为 米.Oi第15题图 第16题图16 .如图,门O 与口 O1 :•相交于A 、B 两点,2弦AB 的长为.17 .如图,在梯形ABCD 中,上,如果 SAOD:SABE =1:3,18 .如图,在ABC 中, CO2门O 与口 O 的半径分别是1和J3 1 2叩2=2,那么两圆公共AD//BC, AC 与BD 交于O 点,DO : BO 1: 2 ,点E 在CB 的延长线那么BC : BE = 90 , AC 8,沿DE 翻折,使得点A 落在点A '处,当A 'EBC 6, D 是AB 的中点,点E 在边AC 上,将ADE AC 时,A 'B =.第14题图|1.rGB E DA第17题图1 cos60 cot 303 tan45 sin24519 .(本题满分10分)计算:sin 30 tan3020.(本题满分10分,第(1)小题满分4分,第(2)小题满分6分)如图,在ABC中,D是AB中点,联结CD.(1)若AB 10且ACD B,求AC的长.(2)过D点作BC的平行线交AC于点E ,设DE a, DC b ,请用向量a、b表示AC和AB (直接写生结果)B C第20题图21.(本题满分10分,第(1)小题满分5分,第(2)小题满分5分)1 如图,ABC中,CD AB于点D, . D经过点B,与BC交于点E ,与AB交与点F .已知tan A —2 cot ABC 3, AD 8.4求(1) D的半径;(2)CE的长.B第21题图22.(本题满分10分,第(1)小题满分5分,第(2)小题满分5分)如图,拦水坝的横断面为梯形ABCD , AB II CD ,坝顶宽DC为6米,坝高DG为2米,迎水坡BC的坡角为30° ,坝底宽AB为(8+2出)米.(1)求背水坡AD的坡度;(2)为了加固拦水坝,需将水坝加高2米,并保持坝顶宽度不变,迎水坡和背水坡的坡度也不变,求加高后坝底HB的宽度.23 .(本题满分12分,第(1)小题满分6分,第(2)小题满分6分)如图,已知正方形ABCD,点E 在CB 的延长线上,联结AE 、DE , DE 与边AB 交于点F , 且与AE 交于点G.(1)求证:GF=BF .(2)在BC 边上取点M ,使得BM BE ,联结AM 交DE 于点O .求证:FO ED OD24 .(本题满分12分,第(1)小题满分4分,第(2)小题满分4分,第(3)小题满分4分)在平面直角坐标系中,抛物线 y x 2 2bx c 与X 轴交于点A 、B (点A 在点B 的右侧),且与y 轴正半轴交于点C ,已知A (2, 0)(1)当B (-4, 0)时,求抛物线的解析式;(2) O 为坐标原点,抛物线的顶点为 P,当tan OAP 3时,求此抛物线的解析式;1(3) O 为坐标原点,以A为圆心O A长为半径回「A,以C 为圆心,一OC 长为半径画圆门 C ,当 A2与「C 外切时,求此抛物线的解析式.10yFG II BEEF第22题图第23题图----- 1----- J ------ 1 ----- 1----- 1------ 1—O 1 2 3 4 5 6 x-5 -4 -3 -2 -1-1 -2 -3第24题图25.(本题满分14分,第(1)小题满分4分,第(2)小题满分4分,第(3)小题满分6分)已知ABC , AB AC 5, BC 8, PDQ的顶点D在BC边上,DP交AB边于点E , DQ交AB边于点O且交CA的延长线于点F (点F与点A不重合),设PDQ B , BD 3.(1)求证:BDEs CFD ;(2)设BE x, OA y,求y关于x的函数关系式,并写由定义域;(3)当AOF是等腰三角形时,求BE的长.20 (1) 5 <2⑵AC 2a 2b , AB 4a 2b参考答案:1-6: BDCCDA47、3 8、直线 X 19、-310、4 12、y 2 x 12 113、AB 2 14、219、2第25题图第25题备用图16、17、2: 118、7石或92111、2 15、6 /3 1.521 (1)22 (1)23、略24 (1)25 (1) 1:1 (2)x22x10 4 -37米8(2)y x22xy 75_25x o(2) 24 5x8⑶122 2y x2=x3112(3)3■或石5。
2016年上海市各区县中考数学一模压轴题图文解析第24、25题
2016年上海市各区县中考数学一模压轴题图文解析目录第一部分第24、25题图文解析2016年上海市崇明县中考数学一模第24、25题/ 22016年上海市奉贤区中考数学一模第24、25题/ 52016年上海市虹口区中考数学一模第24、25题/ 82016年上海市黄浦区中考数学一模第24、25题/ 112016年上海市嘉定区中考数学一模第24、25题/ 142016年上海市静安区青浦区中考数学一模第24、25题/ 172016年上海市闵行区中考数学一模第24、25题/ 202016年上海市浦东新区中考数学一模第24、25题/ 242016年上海市普陀区中考数学一模第24、25题/ 282016年上海市松江区中考数学一模第24、25题/ 312016年上海市徐汇区中考数学一模第24、25题/ 342016年上海市杨浦区中考数学一模第24、25题/ 382016年上海市闸北区中考数学一模第24、25题/ 412016年上海市长宁区金山区中考数学一模第24、25题/ 452016年上海市宝山区中考数学一模第25、26题/ 48如图1,在直角坐标系中,一条抛物线与x轴交于A、B两点,与y轴交于点C,其中B(3, 0),C(0, 4),点A在x轴的负半轴上,OC=4OA.(1)求这条抛物线的解析式,并求出它的顶点坐标;(2)联结AC、BC,点P是x轴正半轴上的一个动点,过点P作PM//BC交射线AC于M,联结CP,若△CPM的面积为2,则请求出点P的坐标.图1动感体验请打开几何画板文件名“16崇明一模24”,拖动点P在x轴的正半轴上运动,可以体验到,有两个时刻,△CPM的面积为2.满分解答(1)由C(0, 4),OC=4OA,得OA=1,A(-1, 0).设抛物线的解析式为y=a(x+1)(x-3),代入点C(0, 4),得4=-3a.解得43a=-.所以244(1)(3)(23)33y x x x x=-+-=---2416(1)33x=--+.顶点坐标为16 (1)3,.(2)如图2,设P(m, 0),那么AP=m+1.所以S△CP A=12AP CO⋅=1(1)42m+⨯=2m+2.由PM//BC,得CM BPCA BA=.又因为CPMCPAS CMS CA=△△,所以S△CPM =(22)BPmBA+.①如图2,当点P在AB上时,BP=3-m.解方程3(22)4mm-+=2,得m=1.此时P(1, 0).②如图3,当点P在AB的延长线上时,BP=m-3.解方程3(22)4mm-+=2,得1m=±P(1+.图2 图3如图1,已知矩形ABCD 中,AB =6,BC =8,点E 是BC 边上一点(不与B 、C 重合),过点E 作EF ⊥AE 交AC 、CD 于点M 、F ,过点B 作BG ⊥AC ,垂足为G ,BG 交AE 于点H .(1)求证:△ABH ∽△ECM ; (2)设BE =x ,EHEM=y ,求y 关于x 的函数解析式,并写出定义域; (3)当△BHE 为等腰三角形时,求BE 的长.图1 备用图动感体验请打开几何画板文件名“16崇明一模25”,拖动点E 在BC 上运动,可以体验到,有三个时刻,△BHE 可以成为为等腰三角形.满分解答(1)如图2,因为∠1和∠2都是∠BAC 的余角,所以∠1=∠2. 又因为∠BAH 和∠CEM 都是∠AEB 的余角,所以∠BAH =∠CEM . 所以△ABH ∽△ECM .图2 图3(2)如图3,延长BG 交AD 于N .在Rt △ABC 中,AB =6,BC =8,所以AC =10. 在Rt △ABN 中,AB =6,所以AN =AB tan ∠1=34AB =92,BN =152. 如图2,由AD //BC ,得92AH AN EH BE x ==. 由△ABH ∽△ECM ,得68AH AB EM EC x ==-. 所以y =EHEM=AH AH EM EH ÷=6982x x ÷-=12729x x -. 定义域是0<x <8.(3)如图2,由AD//BC,得92NH ANBH BE x==.所以292BN xBH x+=.所以215292xBHx=⨯+=1529xx+.在△BHE中,BE=x,cos∠HBE=35,1529xBHx=+.分三种情况讨论等腰三角形BHE:①如图4,当BE=BH时,解方程1529xxx=+,得x=3.②如图5,当HB=HE时,1cos2BE BH B=⋅∠.解方程11532295xxx=⨯+,得92x=.③如图6,当EB=EH时,1cos2BH BE B=⋅∠.解方程11532295xxx⨯=+,得74x=.图4 图5 图6如图1,二次函数y=x2+bx+c的图像经过原点和点A(2, 0),直线AB与抛物线交于点B,且∠BAO=45°.(1)求二次函数的解析式及顶点C的坐标;(2)在直线AB上是否存在点D,使得△BCD为直角三角形,若存在,求出点D的坐标;若不存在,请说明理由.图1动感体验请打开几何画板文件名“16奉贤一模24”,可以体验到,以BC为直径的圆恰好经过点A,直角三角形BCD存在两种情况.满分解答(1)因为抛物线y=x2+bx+c与x轴交于O、A(2, 0)两点,所以y=x(x-2)=(x-1)2-1.顶点C的坐标为(1,-1).(2)如图2,作BH⊥x轴于H.设B(x, x2-2x).由于∠BAH=45°,所以BH=AH.解方程x2-2x=2-x,得x=-1,或x=2.所以点B的坐标为(-1, 3).图2①∠BDC=90°.如图3,由A(2, 0)、C(1,-1),可得∠CAO=45°.因此∠BAC=90°.所以当点D与点A(2, 0)重合时,△BCD是直角三角形.②∠BCD=90°.由A(2, 0)、B(-1, 3),可得直线AB的解析式为y=-x+2.【解法一】如图4,过点C作BC的垂线与直线AB交于点D.设D(m,-m+2 ).由BD2=BC2+CD2,得(m+1)2+(-m-1)2=22+42+(m-1)2+(-m+3)2.解得73m=.此时点D的坐标为71(,)33-.【解法二】构造△BMC∽△CND,由BM CNMC ND=,得4123mm-=-+.解得73m=.图2 图3 图4如图1,在Rt △ABC 中,∠ACB =90°,AB =5,BC =3,点D 是斜边AB 上任意一点,联结DC ,过点C 作CE ⊥CD ,联结DE ,使得∠EDC =∠A ,联结BE .(1)求证:AC ·BE =BC ·AD ;(2)设AD =x ,四边形BDCE 的面积为S ,求S 与x 之间的函数关系式,并写出定义域;(3)当S △BDE =14S △ABC 时,求tan ∠BCE 的值.图1 备用图动感体验请打开几何画板文件名“16奉贤一模25”,拖动点E 在AD 边上运动,可以体验到,△ABC 与△DEC 保持相似,△ACD 与△BCE 保持相似,△BDE 是直角三角形.满分解答(1)如图2,在Rt △BAC 和Rt △EDC 中,由tan ∠A =tan ∠EDC ,得BC ECAC DC=. 如图3,已知∠ACB =∠DCE =90°,所以∠1=∠2. 所以△ACD ∽△BCE .所以AC BCAD BE=.因此AC ·BE =BC ·AD .图2 图3(2)在Rt △ABC 中,AB =5,BC =3,所以AC =4.所以S △ABC =6.如图3,由于△ABC 与△ADC 是同高三角形,所以S △ADC ∶S △ABC =AD ∶AB =x ∶5. 所以S △ADC =65x .所以S △BDC =665x -. 由△ADC ∽△BEC ,得S △ADC ∶S △BEC =AC 2∶BC 2=16∶9.所以S △BEC =916S △ADC =96165x ⨯=2740x . 所以S =S 四边形BDCE =S △BDC +S △BEC =6276540x x -+=21640x -+.定义域是0<x <5.(3)如图3,由△ACD ∽△BCE ,得AC BCAD BE=,∠A =∠CBE . 由43x BE =,得BE =34x . 由∠A =∠CBE ,∠A 与∠ABC 互余,得∠ABE =90°(如图4).所以S △BDE =1133(5)(5)2248BD BE x x x x ⋅=-⨯=--. 当S △BDE =14S △ABC =13642⨯=时,解方程33(5)82x x --=,得x =1,或x =4.图4 图5 图6作DH ⊥AC 于H .①如图5,当x =AD =1时,在Rt △ADH 中,DH =35AD =35,AH =45AD =45. 在Rt △CDH 中,CH =AC -AH =416455-=,所以tan ∠HCD =DHCH =316.②如图6,当x =AD =4时,在Rt △ADH 中,DH =35AD =125,AH =45AD =165.在Rt △CDH 中,CH =AC -AH =164455-=,所以tan ∠HCD =DHCH=3. 综合①、②,当S △BDE =14S △ABC 时, tan ∠BCE 的值为316或3.如图1,在平面直角坐标系中,抛物线y =ax 2+bx +3与x 轴分别交于点A (2, 0)、点B (点B 在点A 的右侧),与y 轴交于点C ,tan ∠CBA =12. (1)求该抛物线的表达式;(2)设该抛物线的顶点为D ,求四边形ACBD 的面积; (3)设抛物线上的点E 在第一象限,△BCE 是以BC 为一条直角边的直角三角形,请直接写出点E 的坐标.图1动感体验请打开几何画板文件名“16虹口一模24”,可以体验到,以BC 为直角边的直角三角形BCE 有2个.满分解答(1)由y =ax 2+bx +3,得C (0, 3),OC =3. 由tan ∠CBA =OC OB =12,得OB =6,B (6, 0). 将A (2, 0)、B (6, 0)分别代入y =ax 2+bx +3,得4230,36630.a b a b ++=⎧⎨++=⎩解得14a =,b =-2.所以221123(4)144y x x x =-+=--. (2)如图2,顶点D 的坐标为(4,-1).S 四边形ACBD =S △ABC +S △ABD =1123+2122⨯⨯⨯⨯=4.(3)如图3,点E 的坐标为(10, 8)或(16, 35).思路如下:设E 21(,23)4x x x -+. 当∠CBE =90°时,过点E 作EF ⊥x 轴于F ,那么2EF BOBF CO==.所以EF =2BF . 解方程21232(4)4x x x -+=-,得x =10,或x =4.此时E (10, 8). 当∠BCE =90°时,EF =2CF . 解方程21224x x x -=,得x =16,或x =0.此时E (16, 35).图2 图3如图1,在平行四边形ABCD 中,E 为BC 的中点,F 为线段AE 上一点,联结BF 并延长交边AD 于点G ,过点G 作AE 的平行线,交射线DC 于点H .设AD EFx AB AF==. (1)当x =1时,求AG ∶AB 的值; (2)设GDHEBAS S △△=y ,求y 关于x 的函数关系式,并写出x 的取值范围; (3)当DH =3HC 时,求x 的值.图1 备用图动感体验请打开几何画板文件名“16虹口一模25”,拖动点B 可以改变平行四边形的邻边比,可以体验到,当菱形ABCD 时,G 是AD 的中点,△GDH 与△EBA 保持相似.还可以体验到,DH =3HC 存在两种情况.满分解答(1)如图2,当x =1时,AD =AB ,F 是AE 的中点. 因为AD //CB ,所以AG =BE =12BC =12AD =12AB . 所以AG ∶AB =1∶2.(2)如图3,已知AD EF x AB AF ==,设AB =m ,那么AD =xm ,BE =12xm . 由AD //BC ,得BE EFx AG AF ==.所以12BE AG m x ==.所以DG =12xm m -.图2 图3 图4 如图4,延长AE 交DC 的延长线于M . 因为GH //AE ,所以△GDH ∽△ADM . 因为DM //AB ,所以△EBA ∽△ADM . 所以△GDH ∽△EBA .所以y =GDH EBA S S △△=2()DG BE =2211()()22xm m xm -÷=22(21)x x -. (3)如图5,因为GH //AM ,所以11()2122DH DG xm m m x HM GA ==-÷=-. 因为DM //AB ,E 是BC 的中点,所以MC =AB =DC . DH =3HC 存在两种情况:如图5,当H 在DC 上时,35DH HM =.解方程3215x -=,得45x =. 如图6,当H 在DC 的延长线上时,3DH HM =.解方程213x -=,得45x =.图5 图6如图1,在平面直角坐标系中,抛物线y =ax 2-3ax +c 与x 轴交于A (-1, 0)、B 两点(点A 在点B 左侧),与y 轴交于点C (0, 2).(1)求抛物线的对称轴及点B 的坐标; (2)求证:∠CAO =∠BCO ;(3)点D 是射线BC 上一点(不与B 、C 重合),联结OD ,过点B 作BE ⊥OD ,垂足为△BOD 外一点E ,若△BDE 与△ABC 相似,求点D 的坐标.图1动感体验请打开几何画板文件名“16黄浦一模24”,拖动点D 在射线BC 上运动,可以体验到,当点E 在△BOD 外时,有两个时刻,Rt △BDE 的两条直角边的比为1∶2.满分解答(1)由y =ax 2-3ax +c ,得抛物线的对称轴为直线32x =. 因此点A (-1, 0)关于直线32x =的对称点B 的坐标为(4, 0). (2)如图2,因为tan ∠CAO =2CO AO =,tan ∠BCO =2BOCO=,所以∠CAO =∠BCO .(3)由B (4, 0)、C (0, 2),得直线BC 的解析式为122y x =-+.设D 1(,2)2x x -+.以∠ABC (∠OBC )为分类标准,分两种情况讨论:①如图3,当∠OBC =∠DBE 时,由于∠OBC 与∠OCB 互余,∠DBE 与∠ODC 互余,所以∠OCB =∠ODC .此时OD =OC =2.根据OD 2=4,列方程221+(2)42x x -+=.解得x =0,或85x =.此时D 86(,)55. ②如图4,当∠OBC =∠EDB 时,OD =OB =4. 根据OD 2=16,列方程221+(2)162x x -+=.解得x =4,或125x =-.此时D 1216(,)55-.图2 图3 图4如图1,已知直线l1//l2,点A是l1上的点,B、C是l2上的点,AC⊥BC,∠ABC=60°,AB=4,O是AB的中点,D是CB的延长线上的点,将△DOC沿直线CO翻折,点D与点D′重合.(1)如图1,当点D落在直线l1上时,求DB的长;(2)延长DO交直线l1于点E,直线OD′分别交直线l1、l2于点M、N.①如图2,当点E在线段AM上时,设AE=x,DN=y,求y关于x的解析式及定义域;②若△DON AE的长.图1 图2动感体验请打开几何画板文件名“16黄浦一模25”,拖动点D在CB的延长线上运动,可以体验到,CD′与AB保持平行,△BON与△BDO保持相似.还可以体验到,有两个时刻DN=3.满分解答(1)如图3,在Rt△ABC中,∠ABC=60°,AB=4,O是AB的中点,所以△OBC是边长为2的等边三角形.又因为△DOC与△D′OC关于CO对称,所以∠BCD′=120°,CD′=CD.所以AB//D′C.当点D′ 落在直线l1上时,AD′//BC.所以四边形ABCD′是平行四边形.所以CD′=BA=4.此时BD=CD-CB=CD′-CB=4-2=2.图3(2)①如图4,由于AE//BD,O是AB的中点,所以AE=BD=x.因为AB//D′C,所以∠AOM=∠2.又因为∠AOM=∠BON,∠2=∠1,所以∠BON=∠1.又因为∠OBN=∠DBO,所以△BON∽△BDO.所以BO BDBN BO=.因此22xx y=+.于是得到24xyx-=.定义域是0<x≤2.②在△DON中,DN当S△DON DN=3.有两种情形:情形1,如图4,当D在BN上时,DN=24xyx-==3,解得x=1,或x=-4.此时AE=1.情形2,如图5,当D在BN的延长线上时,由BO BDBN BO=,得22xx y=-.于是得到24xyx-=.当DN=24xyx-==3时,解得x=4,或x=-1.此时AE=4.图4 图5如图1,在平面直角坐标系中,抛物线212y x bx c =++经过点A (4, 0)、点C (0,-4),点B 与点A 关于这条抛物线的对称轴对称.(1)用配方法求这条抛物线的顶点坐标; (2)联结AC 、BC ,求∠ACB 的正弦值;(3)点P 是这条抛物线上的一个动点,设点P 的横坐标为m (m >0),过点P 作y 轴的垂线PQ ,垂足为Q ,如果∠QPO =∠BCO ,求m 的值.图1动感体验请打开几何画板文件名“16嘉定一模24”,可以体验到,QO ∶QP =OB ∶OC .满分解答(1)将A (4, 0)、C (0,-4)分别代入212y x bx c =++,得840,4.b c c ++=⎧⎨=-⎩解得b =-1,c =-4.所以2142y x x =--=1(2)(4)2x x +-=219(1)22x --. 点B 的坐标是(-2, 0),顶点坐标是9(1,)2-.(2)由A (4, 0)、B (-2, 0)、C (0,-4),得AC =BC =AB =6,CO =4. 作BH ⊥AC 于H .由S △ABC =12AB CO ⋅=12AC BH ⋅.得AB CO BH AC ⋅==因此sin ∠ACB =BH BC .(3)点P 的坐标可以表示为21(,4)2m m m --. 由tan ∠QPO =tan ∠BCO ,得12QO OB QP OC ==. 所以QP =2QO .解方程212(4)2m m m =--,得m =图2所以点P 的横坐标m .如图1,已知△ABC 中,∠ABC =90°,tan ∠BAC =12.点D 在AC 边的延长线上,且DB 2=DC ·DA .(1)求DCCA的值; (2)如果点E 在线段BC 的延长线上,联结AE ,过点B 作AC 的垂线,交AC 于点F ,交AE 于点G .①如图2,当CE =3BC 时,求BFFG的值; ②如图3,当CE =BC 时,求BCDBEGS S △△的值.图1动感体验请打开几何画板文件名“16嘉定一模25”,拖动点E 运动,可以体验到,当CE =3BC 时,BD //AE ,BG 是直角三角形ABE 斜边上的中线.当CE =BC 时,△ABF ≌△BEH ,AF =2EH =4CF .满分解答(1)如图1,由DB 2=DC ·DA ,得DB DADC DB=. 又因为∠D 是公共角,所以△DBC ∽△DAB .所以DB BC CDDA AB BD==. 又因为tan ∠BAC =BC AB =12,所以12CD BD =,12BD DA =.所以14CD DA =.所以13DCCA=. (2)①如图4,由△DBC ∽△DAB ,得∠1=∠2. 当BF ⊥CA 时,∠1=∠3,所以∠2=∠3.因为13DC CA =,当CE =3BC 时,得DC BCCA CE =.所以BD //AE . 所以13BD EA =,∠2=∠E .所以∠3=∠E .所以GB =GE .于是可得G B 是Rt △ABE 斜边上的中线.所以23BD GA =.所以23BF BD FG GA ==.②如图5,作EH⊥BG,垂足为H.当CE=BC时,CF是△BEH的中位线,BF=FH.设CF=m.由tan∠1=tan∠3=12,得BF=2m,AF=4m.所以FH=2m,EH=2m,DC=1533CA m=.因此422FG AF mHG EH m===.所以2433FG FH m==.所以103BG m=.于是5121321102323BCDBEGm mDC BFSS BG EH m m⨯⋅===⋅⨯△△.图4 图5如图1,直线121+=x y 与x 轴、y 轴分别相交于点A 、B ,二次函数的图像与y 轴相交于点C ,与直线121+=x y 相交于点A 、D ,CD //x 轴,∠CDA =∠OCA . (1)求点C 的坐标;(2)求这个二次函数的解析式.图1动感体验请打开几何画板文件名“16静安青浦一模24”,可以体验到,△AOB 与△COA 相似.满分解答(1)由121+=x y ,得A (-2, 0),B (0, 1).所以OA =2,OB =1. 由于CD //x 轴,所以∠CDA =∠1.又已知∠CDA =∠OCA ,所以∠1=∠OCA . 由tan ∠1=tan ∠OCA ,得OB OAOA OC=. 所以122OC=. 解得OC =4.所以C (0, 4).(2)因为CD //x 轴,所以y D =y C =4. 图2 解方程1142x +=,得x =6.所以D (6, 4). 所以抛物线的对称轴为直线x =3.因此点A (-2, 0)关于直线x =3的对称点为(8, 0). 设抛物线的解析式为y =a (x +2)(x -8).代入点C (0, 4),得4=-16a . 解得14a =-.所以2113(2)(8)4442y x x x x =-+-=-++.如图1,在梯形ABCD 中,AD //BC ,AC =BC =10,cos ∠ACB =45,点E 在对角线AC 上,且CE =AD ,BE 的延长线与射线AD 、射线CD 分别相交于点F 、G .设AD =x ,△AEF 的面积为y .(1)求证:∠DCA =∠EBC ;(2)当点G 在线段CD 上时,求y 关于x 的函数解析式,并写出它的定义域; (3)如果△DFG 是直角三角形,求△AEF 的面积.图1动感体验请打开几何画板文件名“16静安青浦一模25”,拖动点D 运动,可以体验到,直角三角形DFG 存在两种情况.满分解答(1)如图2,因为AD //BC ,所以∠DAC =∠ECB .又因为AC =CB ,AD =CE ,所以△ADC ≌△CEB .所以∠DCA =∠EBC . (2)如图3,作EH ⊥BC 于H . 在Rt △EHC 中,CE =x ,cos ∠ECB =45,所以CH =45x ,EH =35x . 所以S △CEB =12BC EH ⋅=131025x ⨯⨯=3x . 因为AD //BC ,所以△AEF ∽△CEB .所以2()AEF CEB S AE S CE=△△. 所以22103(10)()3AEF x x y S x x x--==⨯=△.定义域是0<x≤5. 定义域中x=5的几何意义如图4,D 、F 重合,根据AD AECB CE=,列方程1010x xx-=.图2 图3 图4(3)①如图5,如果∠FGD=90°,那么在Rt△BCG和Rt△BEH中,tan∠GBC=335104504xGC HE xGB HB x x ===--.由(1)得∠ACD=∠CBE.由cos∠ACD=cos∠CBE,得GC GBCE BC=.所以10GC CE xGB BC==.因此350410x xx=-.解得x=5.此时S△AEF=23(10)15xyx-==.②如图6,如果∠FDG=90°,那么在Rt△ADC中,AD=AC cos∠CAD=4105⨯=8.此时S△AEF=23(10)32xyx-==.图5 图6例 2016年上海市闵行区中考一模第24题如图1,在平面直角坐标系中,二次函数y =x 2+bx +c 的图像与x 轴交于A 、B 两点,点B 的坐标为(3, 0),与y 轴交于点C (0,-3),点P 是直线BC 下方的抛物线上的任意一点.(1)求这个二次函数的解析式;(2)联结PO ,PC ,并将△POC 沿y 轴对折,得到四边形POP ′C ,如果四边形POP ′C 为菱形,求点P 的坐标;(3)如果点P 在运动过程中,使得以P 、C 、B 为顶点的三角形与△AOC 相似,请求出此时点P 的坐标.图1动感体验请打开几何画板文件名“16闵行一模24”,拖动点P 在直线BC 下方的抛物线上运动,可以体验到,当四边形POP ′C 为菱形时,PP ′垂直平分OC .还可以体验到,当点P 与抛物线的顶点重合时,或者点P 落在以BC 为直径的圆上时,△PCB 是直角三角形.满分解答(1)将B (3, 0)、C (0,-3)分别代入y =x 2+bx +c ,得930,3.b c c ++=⎧⎨=-⎩.解得b =-2,c =-3.所以二次函数的解析式为y =x 2-2x -3.(2)如图2,如果四边形POP ′C 为菱形,那么PP ′垂直平分OC ,所以y P =32-.解方程23232x x --=-,得22x =.所以点P 的坐标为23()22-.图2 图3 图4(3)由y =x 2-2x -3=(x +1)(x -3)=(x -1)2-4,得A (-1, 0),顶点M (1,-4). 在Rt △AOC 中,OA ∶OC =1∶3.分两种情况讨论△PCB 与△AOC 相似:①如图3,作MN⊥y轴于N.由B(3, 0)、C(0,-3),M(1,-4),可得∠BOC=∠MCN=45°,所以∠BCM=90°.又因为CM∶CB=1∶3,所以当点P与点M(1,-4)重合时,△PCB∽△AOC.②如图4,当∠BPC=90°时,构造△AEP∽△PFB,那么CE PF EP FB=.设P(x, x2-2x-3),那么22(3)(23)3(23)x x xx x x-----=---.化简,得1(2)1xx--=+.解得x=.此时点P的横坐标为x=.而2(23)32CB NB x xxCP MP x x---===-++是个无理数,所以当∠BPC=90°时,△PCB与△AOC不相似.例 2016年上海市闵行区中考一模第25题如图1,在直角梯形ABCD 中,AB //CD ,∠ABC =90°,对角线AC 、BD 交于点G ,已知AB =BC =3,tan ∠BDC =12,点E 是射线BC 上任意一点,过点B 作BF ⊥DE ,垂足为F ,交射线AC 于点M ,交射线DC 于点H .(1)当点F 是线段BH 的中点时,求线段CH 的长;(2)当点E 在线段BC 上时(点E 不与B 、C 重合),设BE =x ,CM =y ,求y 关于x 的函数解析式,并指出x 的取值范围;(3)联结GF ,如果线段GF 与直角梯形ABCD 中的一条边(AD 除外)垂直时,求x 的值.图1 备用图动感体验请打开几何画板文件名“16闵行一模25”,拖动点E 在射线BC 上运动,可以体验到,点G 是BD 的一个三等分点,CH 始终都有CE 的一半.还可以体验到,GF 可以与BC 垂直,也可以与DC 垂直.满分解答(1)在Rt △BCD 中,BC =3,tan ∠BDC =BC DC =12,所以DC =6,DB =.如图2,当点F 是线段BH 的中点时,DF 垂直平分BH ,所以DH =DB =.此时CH =DB -DC =6.图2 图3(2)如图3,因为∠CBH 与∠CDE 都是∠BHD 的余角,所以∠CBH =∠CDE . 由tan ∠CBH =tan ∠CDE ,得CH CE CB CD =,即336CH x-=. 又因为CH //AB ,所以CH MC AB MA =,即3CH =.因此36x -=.整理,得)3x y x -=+.x 的取值范围是0<x <3. (3)如图4,不论点E 在BC 上,还是在BC 的延长线上,都有12BG AB GD DC ==, 12CH CE =. ①如图5,如果GF ⊥BC 于P ,那么AB //GF //DH .所以13BP PF BG BC CH BD ===.所以BP =1,111(3)366PF CH CE x ===-. 由PF //DC ,得PF PE DC CE =,即12(3)(3)363x x x---=-. 整理,得242450x x -+=.解得21x =±21BE =- ②如图6,如果GF ⊥DC 于Q ,那么GF //BE . 所以23QF DQ DG CE DC DB ===.所以DQ =4,2(3)3QF x =-. 由QF //BC ,得QF QH BC CH =,即21(3)2(3)3213(3)2x x x ---=-. 整理,得223450x x --=.解得x =34BE +=.图4 图5 图6如图1,抛物线y =ax 2+2ax +c (a >0)与x 轴交于A (-3,0)、B 两点(A 在B 的左侧),与y 轴交于点C (0,-3),抛物线的顶点为M .(1)求a 、c 的值; (2)求tan ∠MAC 的值;(3)若点P 是线段AC 上的一个动点,联结OP .问:是否存在点P ,使得以点O 、C 、P 为顶点的三角形与△ABC 相似?若存在,求出点P 的坐标;若不存在,请说明理由.图1动感体验请打开几何画板文件名“16浦东一模24”,拖动点P 在线段AC 上运动,可以体验到,△COP 与△ABC 相似存在两种情况.满分解答(1)将A (-3,0)、C (0,-3)分别代入y =ax 2+2ax +c ,得960,3.a a c c -+=⎧⎨=-⎩解得a =1,c =-3.(2)由y =x 2+2x -3=(x +1)2-4,得顶点M 的坐标为(-1,-4). 如图2,作MN ⊥y 轴于N .由A (-3,0)、C (0,-3)、M (-1,-4),可得OA =OC =3,NC =NM =1.所以∠ACO =∠MCN =45°,AC =MC . 所以∠ACM =90°.因此tan ∠MAC =MC AC=13. (3)由y =x 2+2x -3=(x +3)(x -1),得B (1, 0).所以AB =4.如图3,在△COP 与△ABC 中,∠OCP =∠BAC =45°,分两种情况讨论它们相似:当CP ABCO AC =时,3CP =CP =P 的坐标为(-2,-1).当CP AC CO AB =时,3CP =CP =.此时点P 的坐标为93(,)44--.图2 图3如图1,在边长为6的正方形ABCD 中,点E 为AD 边上的一个动点(与A 、D 不重合),∠EBM =45°,BE 交对角线AC 于点F ,BM 交对角线于点G ,交CD 于点M .(1)如图1,联结BD ,求证:△DEB ∽△CGB ,并写出DECG的值; (2)如图2,联结EG ,设AE =x ,EG =y ,求y 关于x 的函数解析式,并写出函数的定义域;(3)当M 为边DC 的三等分点时,求S △EGF 的面积.图1 图2动感体验请打开几何画板文件名“16浦东一模25”,拖动点E 在AD 边上运动,可以体验到, △EBD 与△GBC 保持相似,△EBG 保持等腰直角三角形.满分解答(1)如图3,因为∠EBM =∠DBC =45°,所以∠1=∠2. 又因为∠EDB =∠GCB =45°,所以△DEB ∽△CGB .因此DE DBCG CB==图3 图4(2)如图3,由△DEB ∽△CGB ,得EB DBGB CB=. 又因为∠EBM =∠DBC =45°,所以△EBG ∽△DBC (如图4). 所以△EBG 是等腰直角三角形.如图4,在Rt △ABE 中,AB =6,AE =x ,所以BE所以y =EG =2BE . 定义域是0<x <6.(3)如图5,由于S △EGB =12EG 2=2364x +,EGF EGB S EF S EB =△△, 所以2364EGFEF x S EB +=⨯△. 由(1)知,DE,所以 x =AE =AD -DE=6.①如图6,当13CM CD =时,13CG CM AG AB ==.所以1144CG CA ==⨯此时x =AE=6-=3.所以3162EF AE BF CB ===.所以13EF EB =.所以2364EGF EF x S EB +=⨯△=2133634+⨯=154. ②如图7,当23CM CD =时,23CG CM AG AB ==.所以2255CG CA ==⨯=此时x =AE=6-=65.所以61655EF AE BF CB ==÷=.所以16EF EB =.所以2364EGFEF x S EB +=⨯△=26()361564+⨯=3925.图5 图6 图7第(2)题也可以这样证明等腰直角三角形EBG : 如图8,作GH ⊥EB 于H ,那么△GBH 是等腰直角三角形.一方面2GB CB EB DB ==,另一方面cos 452HB GB =︒=,所以GB HBEB GB=. 于是可得△EBG ∽△GBH .所以△EBG 是等腰直角三角形. 如图9,第(2)题也可以构造Rt △EGN 来求斜边EG =y : 在Rt △AEN 中,AE =x ,所以AN =ENx . 又因为CG)x -,所以GN =AC -AN -CG=所以y=EG.如图10,第(2)题如果构造Rt△EGQ和Rt△CGP,也可以求斜边EG=y:由于CG)x-,所以CP=GP=1(6)2x-=132x-.所以GQ=PD=16(3)2x--=132x+,EQ=16(3)2x x---=132x-.所以y=EG.图8 图9 图10如图1,已知二次函数273y ax x c =-+的图像经过A (0, 8)、B (6, 2)、C (9, m )三点,延长AC 交x 轴于点D .(1)求这个二次函数的解析式及m 的值; (2)求∠ADO 的余切值;(3)过点B 的直线分别与y 轴的正半轴、x 轴、线段AD 交于点P (点A 的上方)、M 、Q ,使以点P 、A 、Q 为顶点的三角形与△MDQ 相似,求此时点P的坐标. 图1动感体验请打开几何画板文件名“16普陀一模24”,拖动点Q 在线段AD 上运动,可以体验到,△APQ 与△MDQ 相似只存在一种情况.满分解答(1)将A (0, 8)、B (6, 2)分别代入273y ax x c =-+,得8,3614 2.c a c =⎧⎨-+=⎩ 解得29a =,c =8.所以二次函数的解析式为227893y x x =-+. 所以227(9)818218593m f x x ==-+=-+=.(2)由A (0, 8)、C (9, 5),可得直线AC 的解析式为183y x =-+.所以D (24, 0).因此cot ∠ADO =OD OA =248=3.(3)如图2,如果△APQ 与△MDQ 相似,由于∠AQP =∠MQD ,∠P AQ 与∠DMQ 是钝角,因此只存在一种情况,△APQ ∽△MDQ .因此∠APQ =∠D .作BN ⊥y 轴于N ,那么∠BPN =∠D .因此cot ∠BPN =cot ∠D =3.所以PN =3BN =18.此时点P 的坐标为(0, 20).图2如图1,已知锐角∠MBN 的正切值等于3,△PBD 中,∠BDP =90°,点D 在∠MBN 的边BN 上,点P 在∠MBN 内,PD =3,BD =9.直线l 经过点P ,并绕点P 旋转,交射线BM 于点A ,交射线DN 于点C ,设CAx CP=. (1)求x =2时,点A 到BN 的距离;(2)设△ABC 的面积为y ,求y 关于x 的函数解析式,并写出函数的定义域; (3)当△ABC 因l 的旋转成为等腰三角形时,求x 的值.图1 备用图动感体验请打开几何画板文件名“16普陀一模25”,拖动点C 运动,可以体验到,AH 与BH 的比值=tan ∠B =3为定值,AH 与PD 的比值=CA ∶CP =x .满分解答(1)如图2,作AH ⊥BC 于H ,那么PD //AH . 因此2AH CAx PD CP===. 所以AH =2PD =6,即点A 到BN 的距离为6.图2 图3(2)如图3,由AH CAx PD CP ==,得AH =xPD =3x . 又因为tan ∠MBN =AHBH =3,所以BH =x .设BC =m .由CH CA x CD CP ==,得9m xx m -=-.整理,得81xm x =-.所以y =S △ABC =12BC AH ⋅=18321xx x ⨯⨯-=2121x x -. 定义域是0<x ≤9.x =9的几何意义是点C 与点H 重合,此时CA =27,CP =3.(3)在△ABC 中,BA ,cos ∠ABC BC =81x x -.①如图4,当BA =BC 81x x =-,得1x = ②如图5,当AB =AC 时,BC =2BH .解方程821xx x =-,得x =5.③如图6,当CA =CB 时,由cos ∠ABC ,得12AB =.解方程1821x x =-,得135x =.图4 图5 图6如图1,已知抛物线y =ax 2+bx -3与x 轴交于A 、B 两点,与y 轴交于点C ,O 是坐标原点,已知点B 的坐标是(3, 0),tan ∠OAC =3.(1)求该抛物线的函数表达式;(2)点P 在x 轴上方的抛物线上,且∠P AB =∠CAB ,求点P 的坐标;(3)点D 是y 轴上的一动点,若以D 、C 、B 为顶点的三角形与△ABC 相似,求出符合条件的点D 的坐标.图1动感体验请打开几何画板文件名“16松江一模24”,拖动点D 在y 轴正半轴上运动,可以体验到,△BCD 与△ABC 相似存在两种情况.满分解答(1)由y =ax 2+bx -3,得C (0,-3),OC =3. 由tan ∠OAC =3,得OA =1,A (-1, 0).因为抛物线与x 轴交于A (-1, 0)、B (3, 0)两点,设y =a (x +1)(x -3). 代入点C (0,-3),得a =1.所以y =(x +1)(x -3)=x 2-2x -3. (2)如图2,作PH ⊥x 轴于H .设P (x , (x +1)(x -3)). 由tan ∠P AB =tan ∠CAB ,得3PH CO AH AO ==.所以(1)(3)31x x x +-=+. 解得x =6.所以点P 的坐标为(6, 21).(3)由A (-1, 0)、B (3, 0)、C (0,-3),得BA =4,BC =ABC =∠BCO =45°. 当点D 在点C 上方时,∠ABC =∠BCD =45°.分两种情况讨论△BCD 与△ABC 相似: 如图3,当CD BACB BC=时,CD =BA =4.此时D (0, 1).如图4,当CD BCCB BA =4=92CD =.此时D 3(0,)2.图2 图3 图4已知等腰梯形ABCD 中,AD //BC ,∠B =∠BCD =45°,AD =3,BC =9,点P 是对角线AC 上的一个动点,且∠APE =∠B ,PE 分别交射线AD 和射线CD 于点E 和点G .(1)如图1,当点E 、D 重合时,求AP 的长;(2)如图2,当点E 在AD 的延长线上时,设AP =x ,DE =y ,求y 关于x 的函数解析式,并写出它的定义域;(3)当线段DG 时,求AE 的长.图1 图2动感体验请打开几何画板文件名“16松江一模25”,拖动点P 在AC 上运动,可以体验到,DGDE 也存在两种情况.满分解答(1)如图3,作AM ⊥BC ,DN ⊥BC ,垂足分别为M 、N ,那么MN =AD =3.在Rt △ABM 中,BM =3,∠B =45°,所以AM =3,AB =在Rt △AMC 中,AM =3,MC =6,所以CA = 如图4,由AD //BC ,得∠1=∠2.又因为∠APE =∠B ,当E 、D 重合时,△APD ∽△CBA .所以AP CBAD CA =.因此3AP =AP =5. (2)如图5,设(1)中E 、D 重合时点P 的对应点为F . 因为∠AFD =∠APE =45°,所以FD //PE .所以AF AD AP AE =33y=+.因此33y x =-.定义域是5<x ≤.图3 图4 图5(3)如图6,因为CA =AF =,所以FC =.由DF //PE ,得13FP DG FC DC ===.所以FP =.由DF //PE ,9552AD AF DE FP ==÷=.所以2293DE AD ==. ①如图6,当P 在AF 的延长线上时,233AE AD DE =+=. ②如图7,当P 在AF 上时,123AE AD DE =-=.图6 图7例 2016年上海市徐汇区中考一模第24题如图1,在Rt △AOB 中,∠AOB =90°,已知点A (-1,-1),点B 在第二象限,OB=抛物线235y x bx c =++经过点A 和B . (1)求点B 的坐标; (2)求抛物线235y x bx c =++的对称轴; (3)如果该抛物线的对称轴分别和边AO 、BO 的延长线交于点C 、D ,设点E 在直线AB 上,当△BOE 和△BCD 相似时,直接写出点E 的坐标.图1动感体验请打开几何画板文件名“16徐汇一模24”,拖动点E 在射线BA 上运动,可以体验到,△BOE 和△BCD 相似存在两种情况.满分解答(1)由A (-1,-1),得OA 与x 轴负半轴的夹角为45°.又因为∠AOB =90°,所以OB 与x 轴负半轴的夹角也为45°. 当OB=B 到x 轴、y 轴的距离都为2. 所以点B 的坐标为(-2,2).(2)将A (-1,-1)、B (-2,2)分别代入235y x bx c =++,得31,5122 2.5b c b c ⎧-+=-⎪⎪⎨⎪-+=⎪⎩解得65b =-,145c =-.所以23614555y x x =--.抛物线的对称轴是直线x =1.(3)如图2,由A (-1,-1)、B (-2,2)、C (1, 1)、D (1,-1),以及∠AOB =90°,可得BO 垂直平分AC ,BO=,BA =BCBD=如图3,过点A 、E 作y 轴的平行线,过点B 作y 轴的垂线,构造Rt △ABM 和Rt △EBN ,那么BA BM MA BE BN NE==. 设点E 的坐标为(x , y )1322x y==+-.图2 图3当点E 在射线BA 上时,∠EBO =∠DBC .分两种情况讨论相似:①当BE BCBO BD ==BE =1322x y==+-.解得x =43-,y =0.所以E 4(,0)3-(如图4).②当BE BDBO BC ==BE =1322x y==+-.解得x =45-,y =85-.所以E 48(,)55--(如图5).图4 图5例 2016年上海市徐汇区中考一模第25题如图1,四边形ABCD 中,∠C =60°,AB =AD =5,CB =CD =8,点P 、Q 分别是边AD 、BC 上的动点,AQ 与BP 交于点E ,且∠BEQ =90°-12∠BAD .设A 、P 两点间的距离为x .(1)求∠BEQ 的正切值; (2)设AEPE=y ,求y 关于x 的函数解析式及定义域; (3)当△AEP 是等腰三角形时,求B 、Q 两点间的距离.图1动感体验请打开几何画板文件名“16徐汇一模25”,拖动点P 在AD 边上运动,可以体验到, ∠AEP =∠BEQ =∠ABH =∠ADH ,△ABF ∽△BEF ∽△BDP ,△AEP ∽△ADF .满分解答(1)如图2,联结BD 、AC 交于点H .因为AB =AD ,CB =CD ,所以A 、C 在BD 的垂直平分线上. 所以AC 垂直平分BD .因此∠BAH =12∠BAD . 因为∠BEQ =90°-12∠BAD , 所以∠BEQ =90°-∠BAH =∠ABH .在Rt △ABH 中,AB =5,BH =4,所以AH =3. 所以tan ∠BEQ =tan ∠ABH =34. 图2 (2)如图3,由于∠BEQ =∠ABH ,∠BEQ =∠AEP ,∠ABH =∠ADH , 所以∠AEP =∠BEQ =∠ABH =∠ADH .图3 图4 图5如图3,因为∠BF A 是公共角,所以△BEF ∽△ABF . 如图4,因为∠DBP 是公共角,所以△BEF ∽△BDP .所以△ABF ∽△BDP .所以AB BD BF DP =.因此585BF x=-. 所以5(5)8BF x =-.所以518(5)(539)88FD BD BF x x =-=--=+.如图5,因为∠DAF 是公共角,所以△AEP ∽△ADF . 所以5401539(539)8AE AD y PE FD x x ====++.定义域是0≤x ≤5. (3)分三种情况讨论等腰△AEP :①当EP =EA 时,由于△AEP ∽△ADF ,所以DF =DA =5(如图6). 此时BF =3,HF =1. 作QM ⊥BD 于M .在Rt △BMQ 中,∠QBM =60°,设BQ =m ,那么12BM m =,QM =. 在Rt △FMQ 中,132FM m =-,tan ∠MFQ =tan ∠HF A =3,所以QM =3FM .13(3)2m =-,得BQ =m=9- ②如图7,当AE =AP 时,E 与B 重合,P 与D 重合,此时Q 与B 重合,BQ =0. ③不存在PE =P A 的情况,因为∠P AE >∠P AH >∠AEP .图6 图7如图1,在平面直角坐标系中,抛物线212y x bx c =-++与x 轴交于A 、B 两点,与y轴交于点C ,直线y =x +4经过A 、C 两点.(1)求抛物线的表达式;(2)如果点P 、Q 在抛物线上(点P 在对称轴左边),且PQ //AO ,PQ =2AO ,求点P 、Q 的坐标;(3)动点M 在直线y =x +4上,且△ABC 与△COM相似,求点M 的坐标. 图1动感体验请打开几何画板文件名“16杨浦一模24”,拖动点M 在射线CA 上运动,可以体验到,△ABC 与△COM 相似存在两种情况.满分解答(1)由y =x +4,得A (-4, 0),C (0, 4). 将A (-4, 0)、C (0, 4)分别代入212y x bx c =-++,得840,4.b c c --+=⎧⎨=⎩ 解得b =-1,c =4.所以抛物线的表达式为2142y x x =--+. (2)如图2,因为PQ //AO ,所以P 、Q 关于抛物线的对称轴对称. 因为抛物线的对称轴是直线x =-1,PQ =2AO =8,所以x P =-5,x Q =3.当x =3时,2142y x x =--+=72-.所以P 7(5,)2--,Q 7(3,)2-. (3)由2114(4)(2)22y x x x x =--+=-+-,得B (2, 0).由A (-4, 0)、B (2, 0)、C (0, 4),得AB =6,AC =,CO =4.当点M 在射线CA 上时,由于∠MCO =∠BAC =45°,所以分两种情况讨论相似:①当CM ABCO AC =时,4CM =CM =M (-3, 1)(如图3).②当CM AC CO AB =时,46CM =CM =M 84(,)33-(如图4).图2 图3 图4如图1,已知菱形ABCD的边长为5,对角线AC的长为6,点E为边AB上的动点,点F在射线AD上,且∠ECF=∠B,直线CF交直线AB于点M.(1)求∠B的余弦值;(2)当点E与点A重合时,试画出符合题意的图,并求BM的长;(3)当点M在AB的延长线上时,设BE=x,BM=y,求y关于x的函数解析式,并写出定义域.图1 备用图动感体验请打开几何画板文件名“16杨浦一模25”,拖动点E在AB上慢慢运动,可以体验到,∠1=∠2=∠3,△MCE与△MBC保持相似.满分解答(1)如图2,作AN⊥BC于N,联结BD交AC于O,那么BO垂直平分AC.在Rt△ABO中,AB=5,AO=3,所以BO=4.因为S菱形ABCD=12AC BD⋅=BC AN⋅,所以64=5AN⨯⨯.解得AN=245.在Rt△ABN中,AB=5,AN=245,所以BN=75.因此cos∠B=BNAB=725.(2)如图3,当点E与点A重合时,由于∠ECF=∠B,∠FEC=∠1,所以△ECF∽△ABC.所以EF ACEC AB=,即665EF=.解得365EF=.由BC//AF,得AM AFBM BC=,即53625BMBM+=.解得12511BM=.图2 图3(3)如图4,因为∠ECF =∠ABC ,根据等角的邻补角相等,得∠MCE =∠MBC . 如图5,因为∠M 是公共角,所以△MCE ∽△MBC . 所以MC MBME MC=.因此22()MC MB ME y x y xy y =⋅=+=+. 作MH ⊥BC ,垂足为H .在Rt △MBH 中,MB =y ,cos ∠MBH =725,所以BH =725y ,MH =2425y .在Rt △MCH 中,根据勾股定理,得MC 2=MH 2+CH 2.因此222247()(5)2525xy y y y +=++. 整理,得125514y x =-.定义域是145<x ≤5.定义域中x =145的几何意义如图6所示,此时D 、F 重合,AB //CF .由CF =CE ,CF =CB ,得CE =CB . 所以1cos 2BE BC B =⋅.解得BE =72525⨯⨯=145.图4 图5 图6例 2016年上海市闸北区中考一模第24题如图1,在平面直角坐标系中,已知抛物线与x 轴交于点A (-1,0)和点B ,与y 轴交于点C (0, 2),对称轴为直线x =1,对称轴交x 轴于点E .(1)求该抛物线的表达式,并写出顶点D 的坐标;(2)设点F 在抛物线上,如果四边形AEFD 是梯形,求点F 的坐标;(3)联结BD ,设点P 在线段BD 上,若△EBP 与△ABD 相似,求点P 的坐标.图1动感体验请打开几何画板文件名“16闸北一模24”,梯形AEFD 只存在一种情况.拖动点P 在BD 边上运动,可以体验到,△EBP 与△ABD 相似存在两种情况.满分解答(1)点A (-1,0)关于直线x =1的对称点B 的坐标为(3, 0).设抛物线的解析式为y =a (x +1)(x -3),代入点C (0, 2),得2=-3a . 解得23a =-.所以2222428(1)(3)2(1)33333y x x x x x =-+-=-++=--+. 顶点D 的坐标为8(1,)3. (2)过△ADE 的三个顶点分别画对边的平行线,只有经过点E 的直线与抛物线有另外的交点,在第一象限内的交点就是梯形AEFD 的顶点F .设F 224(,2)33x x x -++. 作FH ⊥x 轴于H ,那么∠FEH =∠DAE . 由tan ∠FEH =tan ∠DAE ,得43FH DE EH AE ==.所以43FH EH =.解方程22442(1)333x x x -++=-,得x =F .图2 图3 图4。
2016上海市各区县初三一模数学试题及答案
2016上海长宁区初三数学一模试题(满分150分) 2016.1.6 一、选择题。
(本题共6个小题,每题4分,共24分)1、如果两个三角形的相似比是1:2,那么他们的面积比是( ). A.1:2 B.1:4 C.1:2 D.2:12、如图,在△ABC 中,∠ADE=∠B ,DE:BC=2:3,则下列结论正确的是( ). A.AD:AB=2:3 B.AE:AC=2:5 C.AD:DB=2:3 D.CE:AE=3:23、在Rt △ABC 中,∠C=90°,AB=2,AC=1,则sinB 的值是( ). A.22 B.23 C.21 D.2 4、在△ABC 中,若cosA=22,tanB=3,则这个三角形一定是( ). A.直角三角形 B.等腰三角形 C.钝角三角形 D.锐角三角形 5、已知⊙O 1的半径r 为3cm ,⊙O2的半径R 为4cm ,两圆的圆心距O O 21为1cm ,则这两个圆的位置关系的( ).A.相交B.内含C.内切D.外切6二次函数1)2(2-+=x y 的图像可以由二次函数2x y =的图像平移得到,下列平移正确的是( ).A.先向左平移2个单位,再向上平移1个单位B.先向左平移2个单位,再向下平移1个单位C.先向右平移2个单位,再向上平移1个单位D.先向右平移2个单位,再向下平移1个单位 二、填空题。
(本大题共12小题,每题4分,满分48分) 7、已知抛物线12+=x y 的顶点坐标是( ).8、已知抛物线32++=bx x y 的对称轴为直线x=1,则实数b 的值为( ) 9、已知二次函数bx ax y +=2,阅读下面表格信息,由此可知y 和x 的函数关系式是( ).10、已知二次函数2)3(-=x y 图像上的两点A (3,a )和B (x ,b ),则a 和b 的大小关系是a ( )b.11、圆是轴对称图形,它的对称轴是( ).12、已知⊙O 的弦AB=8cm ,弦心距OC=3cm ,那么该圆的半径是( )cm.13、如图,AB 是⊙O 的直径,弦CD 垂直AB ,已知AC=1,BC=22,那么sin ∠ACD 的值是( ).14、王小勇操纵一辆遥控汽车从A 处沿北偏西60°方向走10m 到B 处,再从B 处向正南方走20m 到C 处,此时遥控汽车离A 处( )m.15、已知△ABC 中,AD 是中线,G 是重心,设m AD =,那么用m 表示AG =( ). 16、如图,已知AB ⊥BD ,ED ⊥BD ,C 是线段BD 的中点,且AC ⊥CE ,ED=1,BD=4,那么AB=( ).17、如果把两条邻边中较短边和较长边的比值为215-的矩形称作黄金矩形。
2016年上海各区数学一模18题汇编(含解析)(1)
2016年上海各区县一模数学第18题汇编(含分析)例2016年上海市崇明县中考一模第18题如图I.等边•二角形中,。
是8r边上的一点,E BD : DC= 1 :3.把AdBr折都使点d落在6C边上的点D处,那么_ 的佗为如图2,因为/A/Z>C=/B+/l=6(r +/1, NA/DC=/A/PN+/2=6(r +/2, 所以Nl = /2.又因为NE = NC=6(r ,所以△MBD S ADCN.由3 DM 413/向周长TB + BD所以 --- = -------------- = ----------ND △ZXW的周长JC+DC如图3,设等边三角形ABC的边长为4, "1BD :。
「=1 :3时,—=—AM ND 4 + 3 7图图例 2016年上海市奉贤区中考一模第18题如图1.已知平行四边形,45。
[)中,.48:2/,,3=6.8由='.将边绕点」旋*)转,使得点B 落在平行四边形ABCD 的边上,其对应点为F (点£不与点S 瓯合),那么 sin ZC-fB r = .如图2.在Rtzk/HE 中,由T5=2,7, covB- 1 .可得2E=3 .正=4.在RlA/fCE 中,由.dE=4. CE=BC-BE=6-2-4.可得/C= 4应.乙4CE75 .①如图3,当点用在灰:,边上时,B 任=BE=2.在等腰直角—.用形中,B fC=2.所以8H=CH=J 三. 管1△ABH R'H= JI, AH=AC-CH = 372 .所以-虫?'=26.此时向“用=型=£=巫. AB' 2V5 10②如图4.当点?在HD 边上时,ZCJ5r=45 .此时sin/CH3=^. ?图12016年上海市虹口区中考一模第18题如图1,在矩形JBCD中,.48=6,初=10,点E是SC的中点,联结HE.若将&4的沿HE翻折,点8落在点广处,联结FC.贝iJco$NECF= __________ .B E图I如图2.由EB=EC=EF.可知N3尸C=90 .又因为.在戊直平分BF.所以NRO£=90° .所以如O/JE所以NECF=N8E4.在R【ZLd%?I。
2016上海市各区县初三一模数学试题及答案
2016上海长宁区初三数学一模试题一、 (满分150分) 选择题。
(本题共6个小题,每题4分,共24分)1、如果两个三角形的相似比是1:2,那么他们的面积比是( ). :2 :4 :2 :12、如图,在△ABC 中,∠ADE=∠B ,DE:BC=2:3,则下列结论正确的是( ). A.AD:AB=2:3 :AC=2:5 :DB=2:3 :AE=3:23、在Rt △ABC 中,∠C=90°,AB=2,AC=1,则sinB 的值是( ). A.22 B.23 C.21 4、在△ABC 中,若cosA=22,tanB=3,则这个三角形一定是( ). A.直角三角形 B.等腰三角形 C.钝角三角形 D.锐角三角形 5、已知⊙O 1的半径r 为3cm ,⊙O2的半径R 为4cm ,两圆的圆心距O O 21为1cm ,则这两个圆的位置关系的( ).A.相交B.内含C.内切D.外切6二次函数1)2(2-+=x y 的图像可以由二次函数2x y =的图像平移得到,下列平移正确的是( ).A.先向左平移2个单位,再向上平移1个单位B.先向左平移2个单位,再向下平移1个单位C.先向右平移2个单位,再向上平移1个单位D.先向右平移2个单位,再向下平移1个单位 二、填空题。
(本大题共12小题,每题4分,满分48分) 7、已知抛物线12+=x y 的顶点坐标是( ).8、已知抛物线32++=bx x y 的对称轴为直线x=1,则实数b 的值为( ) 9、已知二次函数bx ax y +=2,阅读下面表格信息,由此可知y 与x 的函数关系式是( ).10、已知二次函数2)3(-=x y 图像上的两点A (3,a )和B (x ,b ),则a 和b 的大小关系是a ( )b.11、圆是轴对称图形,它的对称轴是( ).12、已知⊙O 的弦AB=8cm ,弦心距OC=3cm ,那么该圆的半径是( )cm.13、如图,AB 是⊙O 的直径,弦CD 垂直AB ,已知AC=1,BC=22,那么sin ∠ACD 的值是( ).14、王小勇操纵一辆遥控汽车从A 处沿北偏西60°方向走10m 到B 处,再从B 处向正南方走20m 到C 处,此时遥控汽车离A 处( )m.15、已知△ABC 中,AD 是中线,G 是重心,设m AD =,那么用m 表示AG =( ). 16、如图,已知AB ⊥BD ,ED ⊥BD ,C 是线段BD 的中点,且AC ⊥CE ,ED=1,BD=4,那么AB=( ).17、如果把两条邻边中较短边与较长边的比值为215-的矩形称作黄金矩形。
2016届九年级中考一模数学试题(扫描版)三
学校:班级:教师: 科目:得分:2015-2016年初三数学一模参考答案题号 1 2 3 4 5 6 7 8 9 10 答案B D C C D C A A B B题号11 12 13答案2)1(-ab 5 33712132=+++xxxx题号14 15 16答案所填写的理由需支持你填写的结论. 如:③,理由是:只有③的自变量取值范围不是全体实数预估理由需包含统计图提供的信息,且支撑预估的数据. 如:6.53 ,理由是:最近三年下降趋势平稳四条边都相等的四边形是菱形;菱形的对边平行(本题答案不唯一)三、解答题(本题共72分,第17~26题,每小题5分,第27题7分,第28题7分,第29题8分)17.解:原式316431=-⨯++-……………………4分43=-.………………………5分解不等式①,得10≤x.………………………2分解不等式②,得7>x.………………………3分∴原不等式组的解集为107≤<x.………………………4分∴原不等式组的所有整数解为8,9,10.………………………5分19.解:原式4312222-++-+-=xxxxx………………………3分32-+=xx.………………………4分∵250x x+-=,∴52=+xx.∴原式=532-=..………………………5分20.证明:∵ 90BAC ∠=︒,∴ 90BAD DAC ∠+∠=︒. ∵ AD BC ⊥, ∴ 90ADC ∠=︒.∴ 90DAC C ∠+∠=︒.∴ BAD C ∠=∠. ………………………2分 ∵ DE 为AC 边上的中线, ∴ DE EC =.∴ EDC C ∠=∠. .………………………4分 ∴ BAD EDC ∠=∠. ………………………5分21.解:设小博每消耗1千卡能量需要行走x 步.………………………1分由题意,得xx 90001012000=+ . ………………………3分 解得 30=x . ………………………4分 经检验,30=x 是原方程的解,且符合题意.答:小博每消耗1千卡能量需要步行30步. ………………………5分22.(1) 证明:∵ 四边形ABCD 为矩形,∴ AC BD =,AB ∥DC .∵ AC ∥BE ,∴ 四边形ABEC 为平行四边形. ………………………2分 ∴ AC BE =.∴ BD BE =. ………………………3分 (2) 解:过点O 作OF ⊥CD 于点F .∵ 四边形ABCD 为矩形, ∴ 90BCD ∠=︒. ∵ 10BE BD ==, ∴ 6CD CE ==. 同理,可得132CF DF CD ===. ∴9EF =. ………………………4分 在Rt △BCE 中,由勾股定理可得8BC =. ∵ OB=OD ,∴ OF 为△BCD 的中位线. ∴ 142OF BC ==. ∴在Rt △OEF 中,4tan 9OF OED EF ∠==. ………………………5分A23. 解:(1)∵(6,)P m 在直线y x =-上,∴6m =-. ………………………1分∵(6,6)P -在双曲线k y x =上, ∴6(6)6k =⨯-=-. ………………………2分图1 图2(2) ∵y x =-向上平移b (0b >)个单位长度后,与x 轴,y 轴分别交于A ,B ,∴(,0),(0,)A b B b . ………………………3分作QH ⊥x 轴于H ,可得△HAQ ∽△OAB .如图1,当点Q 在AB 的延长线上时,∵2BQ AB =,∴3===ABAQ OA HA OB HQ . ∵OA OB b ==, ∴3HQ b =,2HO b =.∴Q 的坐标为(2,3)b b -.由点Q 在双曲线6y x=-上, 可得1b =. ………………………4分 如图2,当点Q 在AB 的反向延长线上时,同理可得,Q 的坐标为(2,)b b -.由点Q 在双曲线6y x=-上,可得3b =综上所述,1b =或3b =. ………………………5分24. (1) 证明:如图,连接OD . ………………………1分∵BC 为⊙O 的切线,∴90CBO ∠=︒.∵AO 平分BAD ∠,∴12∠=∠.∵OA OB OD ==,∴1=4=2=5∠∠∠∠.∴BOC DOC ∠=∠.∴△BOC ≌△DOC .∴90CBO CDO ∠=∠=︒.∴CD 为⊙O 的切线. ……………2分(2) ∵AE DE =,∴AE DE =.∴34∠=∠. ………………………3分∵124∠=∠=∠,∴123∠=∠=∠.∵BE 为⊙O 的直径,∴90BAE ∠=︒.∴123430∠=∠=∠=∠=︒.………………………4分∴90AFE ∠=︒ .在Rt △AFE 中,∵3AE =,︒=∠303,∴332AF =. ………………………5分25. (1) 45;………………………2分(2) 21;………………………3分(3) 2.4(120%) 2.88⨯+=.2015年中国内地动画电影市场票房收入前5名的票房成绩统计表电影票房(亿元) 大圣归来9.55 哆啦A 梦之伴我同行5.3 超能陆战队5.26 小黄人大眼萌4.36 熊出没22.88 ………………………5分或2015年中国内地动画电影市场票房收入前5名的票房成绩统计图………………………5分m=-;………………………1分26. (2) ①60n=;………………………2分②11(3)正确标出点B的位置,画出函数图象. …………………5分27. 解:(1)224=-+-y mx mx m2(21)4=-+-m x x2=--.m x(1)4-.………………………2分∴点A的坐标为(1,4)(2)①由(1)得,抛物线的对称轴为x=1.∵抛物线与x轴交于B,C两点(点B在点C左侧),BC=4,∴ 点B 的坐标为 (1,0)-,点C 的坐标为 (3,0).………………………3分∴ 240m m m ++-=.∴ 1m =.∴ 抛物线的解析式为223y x x =--.……4分② 由①可得点D 的坐标为 (0,3)-.当直线过点A ,D 时,解得1k =-.………5分当直线过点A ,C 时,解得2k =. ………6分结合函数的图象可知,k 的取值范围为10k -≤<或02k <≤. …………7分28. 解:(1) ①补全图形,如图1所示. ………………………1分图1②BC 和CG 的数量关系:BC CG =,位置关系:BC CG ⊥.…………………2分证明: 如图1.∵︒=∠=90,BAC AC AB ,∴︒=∠=∠45ACB B ,︒=∠+∠9021.∵射线BA 、CF 的延长线相交于点G ,∴︒=∠=∠90BAC CAG .∵四边形ADEF 为正方形,∴︒=∠+∠=∠9032DAF ,AF AD =.∴31∠=∠.∴△ABD ≌△ACF .…………………3分∴︒=∠=∠45ACF B .∴45B G ∠=∠=︒,90BCG ∠=︒.∴BC CG =,BC CG ⊥.…………………4分(2) 10GE =.…………………5分思路如下:a . 由G 为CF 中点画出图形,如图2所示.b . 与②同理,可得BD=CF ,BC CG =,BC CG ⊥;c . 由2=AB ,G 为CF 中点,可得2====CD FG CG BC ;d . 过点A 作AM BD ⊥于M ,过点E 作EN FG ⊥于N ,可证△AMD ≌△FNE ,可得1AM FN ==,NE 为FG 的垂直平分线,FE EG =;e . 在Rt △AMD 中,1AM =,3MD =,可得10AD =,即10GE FE AD ===. ……7分29.解:(1)①点M ,点T 关于⊙O 的限距点不存在;点N 关于⊙O 的限距点存在,坐标为(1,0).………………………2分②∵点D 的坐标为(2,0),⊙O 半径为1,DE ,DF 分别切⊙O 于点E ,点F ,∴切点坐标为13()22,,13()22,-.……………3分 如图所示,不妨设点E 的坐标为13()2,,点F 的坐标为13()2,-,EO ,FO 的延长线分别交⊙O 于点'E ,'F ,则13'()2E --,,13'()2F -,. 设点P 关于⊙O 的限距点的横坐标为x .Ⅰ.当点P 在线段EF 上时,直线PO 与''E F 的交点'P 满足2'1≤≤PP ,故点P 关于⊙O 的限距点存在,其横坐标x 满足112x -≤≤-.………5分 Ⅱ.当点P 在线段DE ,DF (不包括端点)上时,直线PO 与⊙O 的交点'P 满足1'0<<PP 或2'3PP <<,故点P 关于⊙O 的限距点不存在.Ⅲ.当点P 与点D 重合时,直线PO 与⊙O 的交点'(1,0)P 满足1'=PP ,故点P 关于⊙O 的限距点存在,其横坐标x =1.综上所述,点P关于⊙O的限距点的横坐标x的范围为112x-≤≤-或x=1.……………………6分(2)问题1:9.………………8分问题2:0 < r < 16.………………7分1、《巩乃斯的马》:a、有的疯狂地向前奔跑,像一队尖兵,要去踏住那闪电;有的来回奔跑,俨然像临危不惧、收拾残局的大将;小马跟着母马,认真而紧张地跑,不再顽皮、撒欢,一下子变得老练了许多。
上海市各区县中考数学一模压轴题图文解析第2425题
2016年上海市各区县中考数学一模压轴题图文解析目录第一部分第24、25题图文解析2016年上海市崇明县中考数学一模第24、25题/ 22016年上海市奉贤区中考数学一模第24、25题/ 52016年上海市虹口区中考数学一模第24、25题/ 82016年上海市黄浦区中考数学一模第24、25题/ 112016年上海市嘉定区中考数学一模第24、25题/ 142016年上海市静安区青浦区中考数学一模第24、25题/ 172016年上海市闵行区中考数学一模第24、25题/ 202016年上海市浦东新区中考数学一模第24、25题/ 242016年上海市普陀区中考数学一模第24、25题/ 282016年上海市松江区中考数学一模第24、25题/ 312016年上海市徐汇区中考数学一模第24、25题/ 342016年上海市杨浦区中考数学一模第24、25题/ 382016年上海市闸北区中考数学一模第24、25题/ 412016年上海市长宁区金山区中考数学一模第24、25题/ 452016年上海市宝山区中考数学一模第25、26题/ 48如图1,在直角坐标系中,一条抛物线与x轴交于A、B两点,与y轴交于点C,其中B(3, 0),C(0, 4),点A在x轴的负半轴上,OC=4OA.(1)求这条抛物线的解析式,并求出它的顶点坐标;(2)联结AC、BC,点P是x轴正半轴上的一个动点,过点P作PM//BC交射线AC于M,联结CP,若△CPM的面积为2,则请求出点P的坐标.图1动感体验请打开几何画板文件名“16崇明一模24”,拖动点P在x轴的正半轴上运动,可以体验到,有两个时刻,△CPM的面积为2.满分解答(1)由C(0, 4),OC=4OA,得OA=1,A(-1, 0).设抛物线的解析式为y=a(x+1)(x-3),代入点C(0, 4),得4=-3a.解得43a=-.所以244(1)(3)(23)33y x x x x=-+-=---2416(1)33x=--+.顶点坐标为16(1)3,.(2)如图2,设P(m, 0),那么AP=m+1.所以S△CP A=12AP CO⋅=1(1)42m+⨯=2m+2.由PM//BC,得CM BPCA BA=.又因为CPMCPAS CMS CA=△△,所以S△CPM =(22)BPmBA+.①如图2,当点P在AB上时,BP=3-m.解方程3(22)4mm-+=2,得m=1.此时P(1, 0).②如图3,当点P在AB的延长线上时,BP=m-3.解方程3(22)4mm-+=2,得122m=±.此时P(122,0)+.图2 图3如图1,已知矩形ABCD中,AB=6,BC=8,点E是BC边上一点(不与B、C重合),过点E作EF⊥AE交AC、CD于点M、F,过点B作BG⊥AC,垂足为G,BG交AE于点H.(1)求证:△ABH∽△ECM;(2)设BE=x,EHEM=y,求y关于x的函数解析式,并写出定义域;(3)当△BHE为等腰三角形时,求BE的长.图1 备用图动感体验请打开几何画板文件名“16崇明一模25”,拖动点E在BC上运动,可以体验到,有三个时刻,△BHE可以成为为等腰三角形.满分解答(1)如图2,因为∠1和∠2都是∠BAC的余角,所以∠1=∠2.又因为∠BAH和∠CEM都是∠AEB的余角,所以∠BAH=∠CEM.所以△ABH∽△ECM.图2 图3(2)如图3,延长BG交AD于N.在Rt△ABC中,AB=6,BC=8,所以AC=10.在Rt△ABN中,AB=6,所以AN=AB tan∠1=34AB=92,BN=152.如图2,由AD//BC,得92 AH ANEH BE x==.由△ABH∽△ECM,得68AH ABEM EC x==-.所以y=EHEM=AH AHEM EH÷=6982x x÷-=12729xx-.定义域是0<x<8.(3)如图2,由AD//BC,得92NH ANBH BE x==.所以292BN xBH x+=.所以215292xBHx=⨯+=1529xx+.在△BHE中,BE=x,cos∠HBE=35,1529xBHx=+.分三种情况讨论等腰三角形BHE:①如图4,当BE=BH时,解方程1529xxx=+,得x=3.②如图5,当HB=HE时,1cos2BE BH B=⋅∠.解方程11532295xxx=⨯+,得92x=.③如图6,当EB=EH时,1cos2BH BE B=⋅∠.解方程11532295xxx⨯=+,得74x=.图4 图5 图6如图1,二次函数y=x2+bx+c的图像经过原点和点A(2, 0),直线AB与抛物线交于点B,且∠BAO=45°.(1)求二次函数的解析式及顶点C的坐标;(2)在直线AB上是否存在点D,使得△BCD为直角三角形,若存在,求出点D的坐标;若不存在,请说明理由.图1动感体验请打开几何画板文件名“16奉贤一模24”,可以体验到,以BC为直径的圆恰好经过点A,直角三角形BCD存在两种情况.满分解答(1)因为抛物线y=x2+bx+c与x轴交于O、A(2, 0)两点,所以y=x(x-2)=(x-1)2-1.顶点C的坐标为(1,-1).(2)如图2,作BH⊥x轴于H.设B(x, x2-2x).由于∠BAH=45°,所以BH=AH.解方程x2-2x=2-x,得x=-1,或x=2.所以点B的坐标为(-1, 3).图2①∠BDC=90°.如图3,由A(2, 0)、C(1,-1),可得∠CAO=45°.因此∠BAC=90°.所以当点D与点A(2, 0)重合时,△BCD是直角三角形.②∠BCD=90°.由A(2, 0)、B(-1, 3),可得直线AB的解析式为y=-x+2.【解法一】如图4,过点C作BC的垂线与直线AB交于点D.设D(m,-m+2 ).由BD2=BC2+CD2,得(m+1)2+(-m-1)2=22+42+(m-1)2+(-m+3)2.解得73m=.此时点D的坐标为71(,)33-.【解法二】构造△BMC∽△CND,由BM CNMC ND=,得4123mm-=-+.解得73m=.图2 图3 图4如图1,在Rt△ABC中,∠ACB=90°,AB=5,BC=3,点D是斜边AB上任意一点,联结DC,过点C作CE⊥CD,联结DE,使得∠EDC=∠A,联结BE.(1)求证:AC·BE=BC·AD;(2)设AD=x,四边形BDCE的面积为S,求S与x之间的函数关系式,并写出定义域;(3)当S△BDE=14S△ABC时,求tan∠BCE的值.图1 备用图动感体验请打开几何画板文件名“16奉贤一模25”,拖动点E在AD边上运动,可以体验到,△ABC 与△DEC保持相似,△ACD与△BCE保持相似,△BDE是直角三角形.满分解答(1)如图2,在Rt△BAC和Rt△EDC中,由tan∠A=tan∠EDC,得BC EC AC DC=.如图3,已知∠ACB=∠DCE=90°,所以∠1=∠2.所以△ACD∽△BCE.所以AC BCAD BE=.因此AC·BE=BC·AD.图2 图3(2)在Rt△ABC中,AB=5,BC=3,所以AC=4.所以S△ABC=6.如图3,由于△ABC与△ADC是同高三角形,所以S△ADC∶S△ABC=AD∶AB=x∶5.所以S△ADC=65x.所以S△BDC=665x-.由△ADC∽△BEC,得S△ADC∶S△BEC=AC2∶BC2=16∶9.所以S△BEC=916S△ADC=96165x⨯=2740x.所以S=S四边形BDCE=S△BDC+S△BEC=6276540x x-+=21640x-+.定义域是0<x<5.(3)如图3,由△ACD∽△BCE,得AC BCAD BE=,∠A=∠CBE.由43x BE=,得BE=34x.由∠A=∠CBE,∠A与∠ABC互余,得∠ABE=90°(如图4).所以S△BDE=1133(5)(5) 2248BD BE x x x x⋅=-⨯=--.当S△BDE=14S△ABC=13642⨯=时,解方程33(5)82x x--=,得x=1,或x=4.图4 图5 图6 作DH⊥AC于H.①如图5,当x=AD=1时,在Rt△ADH中,DH=35AD=35,AH=45AD=45.在Rt△CDH中,CH=AC-AH=416455-=,所以tan∠HCD=DHCH=316.②如图6,当x=AD=4时,在Rt△ADH中,DH=35AD=125,AH=45AD=165.在Rt△CDH中,CH=AC-AH=164455-=,所以tan∠HCD=DHCH=3.综合①、②,当S△BDE=14S△ABC时,tan∠BCE的值为316或3.如图1,在平面直角坐标系中,抛物线y =ax 2+bx +3与x 轴分别交于点A (2, 0)、点B (点B 在点A 的右侧),与y 轴交于点C ,tan ∠CBA =12. (1)求该抛物线的表达式; (2)设该抛物线的顶点为D ,求四边形ACBD 的面积;(3)设抛物线上的点E 在第一象限,△BCE 是以BC 为一条直角边的直角三角形,请直接写出点E 的坐标.图1 动感体验请打开几何画板文件名“16虹口一模24”,可以体验到,以BC 为直角边的直角三角形BCE 有2个.满分解答(1)由y =ax 2+bx +3,得C (0, 3),OC =3.由tan ∠CBA =OC OB =12,得OB =6,B (6, 0). 将A (2, 0)、B (6, 0)分别代入y =ax 2+bx +3,得4230,36630.a b a b ++=⎧⎨++=⎩ 解得14a =,b =-2.所以221123(4)144y x x x =-+=--. (2)如图2,顶点D 的坐标为(4,-1). S 四边形ACBD =S △ABC +S △ABD =1123+2122⨯⨯⨯⨯=4.(3)如图3,点E 的坐标为(10, 8)或(16, 35).思路如下:设E 21(,23)4x x x -+. 当∠CBE =90°时,过点E 作EF ⊥x 轴于F ,那么2EF BO BF CO ==.所以EF =2BF . 解方程21232(4)4x x x -+=-,得x =10,或x =4.此时E (10, 8). 当∠BCE =90°时,EF =2CF . 解方程21224x x x -=,得x =16,或x =0.此时E (16, 35).图2 图3如图1,在平行四边形ABCD 中,E 为BC 的中点,F 为线段AE 上一点,联结BF 并延长交边AD 于点G ,过点G 作AE 的平行线,交射线DC 于点H.设AD EF x AB AF ==. (1)当x=1时,求AG ∶AB 的值;(2)设GDH EBAS S △△=y ,求y 关于x 的函数关系式,并写出x 的取值范围; (3)当DH =3HC 时,求x 的值.图1 备用图动感体验请打开几何画板文件名“16虹口一模25”,拖动点B 可以改变平行四边形的邻边比,可以体验到,当菱形ABCD 时,G 是AD 的中点,△GDH 与△EBA 保持相似.还可以体验到,DH =3HC 存在两种情况.满分解答(1)如图2,当x =1时,AD =AB ,F 是AE 的中点.因为AD //CB ,所以AG =BE =12BC =12AD =12AB . 所以AG ∶AB =1∶2. (2)如图3,已知AD EF x AB AF ==,设AB =m ,那么AD =xm ,BE =12xm . 由AD //BC ,得BE EF x AG AF==. 所以12BE AG m x ==.所以DG =12xm m -.图2 图3 图4如图4,延长AE 交DC 的延长线于M .因为GH //AE ,所以△GDH ∽△ADM .因为DM //AB ,所以△EBA ∽△ADM .所以△GDH ∽△EBA .所以y =GDH EBA S S △△=2()DG BE=2211()()22xm m xm -÷=22(21)x x -. (3)如图5,因为GH //AM ,所以11()2122DH DG xm m m x HM GA ==-÷=-. 因为DM //AB ,E 是BC 的中点,所以MC =AB =DC . DH =3HC 存在两种情况:如图5,当H 在DC 上时,35DH HM =.解方程3215x -=,得45x =. 如图6,当H 在DC 的延长线上时,3DH HM =.解方程213x -=,得45x =.图5 图6如图1,在平面直角坐标系中,抛物线y =ax 2-3ax +c 与x 轴交于A (-1, 0)、B 两点(点A 在点B 左侧),与y 轴交于点C (0, 2).(1)求抛物线的对称轴及点B 的坐标; (2)求证:∠CAO =∠BCO ;(3)点D 是射线BC 上一点(不与B 、C 重合),联结OD ,过点B 作BE ⊥OD ,垂足为△BOD 外一点E ,若△BDE 与△ABC 相似,求点D 的坐标.图1动感体验请打开几何画板文件名“16黄浦一模24”,拖动点D 在射线BC 上运动,可以体验到,当点E 在△BOD 外时,有两个时刻,Rt △BDE 的两条直角边的比为1∶2.满分解答(1)由y =ax 2-3ax +c ,得抛物线的对称轴为直线32x =. 因此点A (-1, 0)关于直线32x =的对称点B 的坐标为(4, 0). (2)如图2,因为tan ∠CAO =2CO AO =,tan ∠BCO =2BOCO=,所以∠CAO =∠BCO .(3)由B (4, 0)、C (0, 2),得直线BC 的解析式为122y x =-+.设D 1(,2)2x x -+.以∠ABC (∠OBC )为分类标准,分两种情况讨论:①如图3,当∠OBC =∠DBE 时,由于∠OBC 与∠OCB 互余,∠DBE 与∠ODC 互余,所以∠OCB =∠ODC .此时OD =OC =2.根据OD 2=4,列方程221+(2)42x x -+=.解得x =0,或85x =.此时D 86(,)55. ②如图4,当∠OBC =∠EDB 时,OD =OB =4. 根据OD 2=16,列方程221+(2)162x x -+=.解得x =4,或125x =-.此时D 1216(,)55-.图2 图3 图4如图1,已知直线l1//l2,点A是l1上的点,B、C是l2上的点,AC⊥BC,∠ABC=60°,AB=4,O是AB的中点,D是CB的延长线上的点,将△DOC沿直线CO翻折,点D与点D′重合.(1)如图1,当点D落在直线l1上时,求DB的长;(2)延长DO交直线l1于点E,直线OD′分别交直线l1、l2于点M、N.①如图2,当点E在线段AM上时,设AE=x,DN=y,求y关于x的解析式及定义域;②若△DON的面积为332,求AE的长.图1 图2动感体验请打开几何画板文件名“16黄浦一模25”,拖动点D在CB的延长线上运动,可以体验到,CD′与AB保持平行,△BON与△BDO保持相似.还可以体验到,有两个时刻DN=3.满分解答(1)如图3,在Rt△ABC中,∠ABC=60°,AB=4,O是AB的中点,所以△OBC是边长为2的等边三角形.又因为△DOC与△D′OC关于CO对称,所以∠BCD′=120°,CD′=CD.所以AB//D′C.当点D′ 落在直线l1上时,AD′//BC.所以四边形ABCD′是平行四边形.所以CD′=BA=4.此时BD=CD-CB=CD′-CB=4-2=2.图3(2)①如图4,由于AE//BD,O是AB的中点,所以AE=BD=x.因为AB//D′C,所以∠AOM=∠2.又因为∠AOM=∠BON,∠2=∠1,所以∠BON=∠1.又因为∠OBN=∠DBO,所以△BON∽△BDO.所以BO BDBN BO=.因此22xx y=+.于是得到24xyx-=.定义域是0<x≤2.②在△DON中,DN边上的高为3.当S△DON=332时,DN=3.有两种情形:情形1,如图4,当D在BN上时,DN=24xyx-==3,解得x=1,或x=-4.此时AE=1.情形2,如图5,当D在BN的延长线上时,由BO BDBN BO=,得22xx y=-.于是得到24xyx-=.当DN=24xyx-==3时,解得x=4,或x=-1.此时AE=4.图4 图5如图1,在平面直角坐标系中,抛物线212y x bx c =++经过点A (4, 0)、点C (0,-4),点B 与点A 关于这条抛物线的对称轴对称.(1)用配方法求这条抛物线的顶点坐标; (2)联结AC 、BC ,求∠ACB 的正弦值;(3)点P 是这条抛物线上的一个动点,设点P 的横坐标为m (m >0),过点P 作y 轴的垂线PQ ,垂足为Q ,如果∠QPO =∠BCO ,求m 的值.图1动感体验请打开几何画板文件名“16嘉定一模24”,可以体验到,QO ∶QP =OB ∶OC .满分解答(1)将A (4, 0)、C (0,-4)分别代入212y x bx c =++,得840,4.b c c ++=⎧⎨=-⎩解得b =-1,c =-4.所以2142y x x =--=1(2)(4)2x x +-=219(1)22x --. 点B 的坐标是(-2, 0),顶点坐标是9(1,)2-.(2)由A (4, 0)、B (-2, 0)、C (0,-4),得AC =42,BC =25,AB =6,CO =4. 作BH ⊥AC 于H . 由S △ABC =12AB CO ⋅=12AC BH ⋅.得AB CO BH AC ⋅==42=32. 因此sin ∠ACB =BH BC =3225=310.(3)点P 的坐标可以表示为21(,4)2m m m --. 由tan ∠QPO =tan ∠BCO ,得12QO OB QP OC ==. 所以QP =2QO .解方程212(4)2m m m =--,得341m ±=. 图2 所以点P 的横坐标m =341+.如图1,已知△ABC中,∠ABC=90°,tan∠BAC=1 2.点D在AC边的延长线上,且DB2=DC·DA.(1)求DCCA的值;(2)如果点E在线段BC的延长线上,联结AE,过点B作AC的垂线,交AC于点F,交AE于点G.①如图2,当CE=3BC时,求BFFG的值;②如图3,当CE=BC时,求BCDBEGSS△△的值.图1动感体验请打开几何画板文件名“16嘉定一模25”,拖动点E运动,可以体验到,当CE=3BC 时,BD//AE,BG是直角三角形ABE斜边上的中线.当CE=BC时,△ABF≌△BEH,AF =2EH=4CF.满分解答(1)如图1,由DB2=DC·DA,得DB DADC DB=.又因为∠D是公共角,所以△DBC∽△DAB.所以DB BC CDDA AB BD==.又因为tan∠BAC=BCAB=12,所以12CD BD=,12BD DA=.所以14CD DA=.所以13DCCA=.(2)①如图4,由△DBC∽△DAB,得∠1=∠2.当BF⊥CA时,∠1=∠3,所以∠2=∠3.因为13DCCA=,当CE=3BC时,得DC BCCA CE=.所以BD//AE.所以13BDEA=,∠2=∠E.所以∠3=∠E.所以GB=GE.于是可得G B是Rt△ABE斜边上的中线.所以23BDGA=.所以23BF BDFG GA==.②如图5,作EH⊥BG,垂足为H.当CE=BC时,CF是△BEH的中位线,BF=FH.设CF=m.由tan∠1=tan∠3=12,得BF=2m,AF=4m.所以FH=2m,EH=2m,DC=1533CA m=.因此422FG AF mHG EH m===.所以2433FG FH m==.所以103BG m=.于是5121321102323BCDBEGm mDC BFSS BG EH m m⨯⋅===⋅⨯△△.图4 图5如图1,直线121+=x y 与x 轴、y 轴分别相交于点A 、B ,二次函数的图像与y 轴相交于点C ,与直线121+=x y 相交于点A 、D ,CD //x 轴,∠CDA =∠OCA . (1)求点C 的坐标;(2)求这个二次函数的解析式.图1动感体验请打开几何画板文件名“16静安青浦一模24”,可以体验到,△AOB 与△COA 相似.满分解答(1)由121+=x y ,得A (-2, 0),B (0, 1).所以OA =2,OB =1. 由于CD //x 轴,所以∠CDA =∠1.又已知∠CDA =∠OCA ,所以∠1=∠OCA . 由tan ∠1=tan ∠OCA ,得OB OAOA OC=. 所以122OC=. 解得OC =4.所以C (0, 4).(2)因为CD //x 轴,所以y D =y C =4. 图2 解方程1142x +=,得x =6.所以D (6, 4). 所以抛物线的对称轴为直线x =3.因此点A (-2, 0)关于直线x =3的对称点为(8, 0). 设抛物线的解析式为y =a (x +2)(x -8).代入点C (0, 4),得4=-16a . 解得14a =-.所以2113(2)(8)4442y x x x x =-+-=-++.如图1,在梯形ABCD 中,AD //BC ,AC =BC =10,cos ∠ACB=45,点E 在对角线AC 上,且CE =AD ,BE 的延长线与射线AD 、射线CD 分别相交于点F 、G .设AD =x ,△AEF 的面积为y .(1)求证:∠DCA =∠EBC ;(2)当点G 在线段CD 上时,求y 关于x 的函数解析式,并写出它的定义域; (3)如果△DFG 是直角三角形,求△AEF 的面积.图1动感体验请打开几何画板文件名“16静安青浦一模25”,拖动点D 运动,可以体验到,直角三角形DFG 存在两种情况.满分解答(1)如图2,因为AD //BC ,所以∠DAC =∠ECB .又因为AC =CB ,AD =CE ,所以△ADC ≌△CEB .所以∠DCA =∠EBC . (2)如图3,作EH ⊥BC 于H . 在Rt △EHC 中,CE =x ,cos ∠ECB =45,所以CH =45x ,EH =35x . 所以S △CEB =12BC EH ⋅=131025x ⨯⨯=3x . 因为AD //BC ,所以△AEF ∽△CEB .所以2()AEF CEB S AE S CE=△△. 所以22103(10)()3AEF x x y S x x x--==⨯=△.定义域是0<x ≤555-. 定义域中x =555-的几何意义如图4,D 、F 重合,根据AD AECB CE=,列方程1010x xx-=.图2 图3 图4(3)①如图5,如果∠FGD=90°,那么在Rt△BCG和Rt△BEH中,tan∠GBC=335104504xGC HE x GB HBx x===--.由(1)得∠ACD=∠CBE.由cos∠ACD=cos∠CBE,得GC GBCE BC=.所以10GC CE xGB BC==.因此350410x xx=-.解得x=5.此时S△AEF=23(10)15xyx-==.②如图6,如果∠FDG=90°,那么在Rt△ADC中,AD=AC cos∠CAD=4105⨯=8.此时S△AEF=23(10)32xyx-==.图5 图6例 2016年上海市闵行区中考一模第24题如图1,在平面直角坐标系中,二次函数y=x2+bx+c的图像与x轴交于A、B两点,点B的坐标为(3, 0),与y轴交于点C(0,-3),点P是直线BC下方的抛物线上的任意一点.(1)求这个二次函数的解析式;(2)联结PO,PC,并将△POC沿y轴对折,得到四边形POP′C,如果四边形POP′C 为菱形,求点P的坐标;(3)如果点P在运动过程中,使得以P、C、B为顶点的三角形与△AOC相似,请求出此时点P的坐标.图1动感体验请打开几何画板文件名“16闵行一模24”,拖动点P在直线BC下方的抛物线上运动,可以体验到,当四边形POP′C为菱形时,PP′垂直平分OC.还可以体验到,当点P与抛物线的顶点重合时,或者点P落在以BC为直径的圆上时,△PCB是直角三角形.满分解答(1)将B(3, 0)、C(0,-3)分别代入y=x2+bx+c,得930,3.b cc++=⎧⎨=-⎩.解得b=-2,c=-3.所以二次函数的解析式为y=x2-2x-3.(2)如图2,如果四边形POP′C为菱形,那么PP′垂直平分OC,所以y P=32 -.解方程23 232x x--=-,得2102x±=.所以点P的坐标为2103(,)22+-.图2 图3 图4 (3)由y=x2-2x-3=(x+1)(x-3)=(x-1)2-4,得A(-1, 0),顶点M(1,-4).在Rt△AOC中,OA∶OC=1∶3.分两种情况讨论△PCB与△AOC相似:①如图3,作MN⊥y轴于N.由B(3, 0)、C(0,-3),M(1,-4),可得∠BOC=∠MCN=45°,所以∠BCM=90°.又因为CM∶CB=1∶3,所以当点P与点M(1,-4)重合时,△PCB∽△AOC.②如图4,当∠BPC=90°时,构造△AEP∽△PFB,那么CE PF EP FB=.设P(x, x2-2x-3),那么22(3)(23)3(23)x x xx x x-----=---.化简,得1(2)1xx--=+.解得x=.此时点P的横坐标为x=.而2(23)32CB NB x xxCP MP x x---===-++是个无理数,所以当∠BPC=90°时,△PCB与△AOC不相似.例 2016年上海市闵行区中考一模第25题如图1,在直角梯形ABCD中,AB//CD,∠ABC=90°,对角线AC、BD交于点G,已知AB=BC=3,tan∠BDC=12,点E是射线BC上任意一点,过点B作BF⊥DE,垂足为F,交射线AC于点M,交射线DC于点H.(1)当点F是线段BH的中点时,求线段CH的长;(2)当点E在线段BC上时(点E不与B、C重合),设BE=x,CM=y,求y关于x 的函数解析式,并指出x的取值范围;(3)联结GF,如果线段GF与直角梯形ABCD中的一条边(AD除外)垂直时,求x 的值.图1 备用图动感体验请打开几何画板文件名“16闵行一模25”,拖动点E在射线BC上运动,可以体验到,点G是BD的一个三等分点,CH始终都有CE的一半.还可以体验到,GF可以与BC垂直,也可以与DC垂直.满分解答(1)在Rt△BCD中,BC=3,tan∠BDC=BCDC=12,所以DC=6,DB=35.如图2,当点F是线段BH的中点时,DF垂直平分BH,所以DH=DB=35.此时CH=DB-DC=356.图2 图3(2)如图3,因为∠CBH与∠CDE都是∠BHD的余角,所以∠CBH=∠CDE.由tan∠CBH=tan∠CDE,得CH CECB CD=,即336CH x-=.又因为CH//AB,所以CH MCAB MA=,即332CHy=+.因此3632xy-=+.整理,得32(3)3xyx-=+.x的取值范围是0<x<3.(3)如图4,不论点E在BC上,还是在BC的延长线上,都有12BG ABGD DC==,12CH CE=.①如图5,如果GF⊥BC于P,那么AB//GF//DH.所以13BP PF BGBC CH BD===.所以BP=1,111(3)366PF CH CE x===-.由PF//DC,得PF PEDC CE=,即12(3)(3)363xxx---=-.整理,得242450x x-+=.解得21611x=±.此时21611BE=-.②如图6,如果GF⊥DC于Q,那么GF//BE.所以23QF DQ DGCE DC DB===.所以DQ=4,2(3)3QF x=-.由QF//BC,得QF QHBC CH=,即21(3)2(3)3213(3)2x xx---=-.整理,得223450x x--=.解得3341x±=.此时3341BE+=.图4 图5 图6如图1,抛物线y=ax2+2ax+c(a>0)与x轴交于A(-3,0)、B两点(A在B的左侧),与y轴交于点C(0,-3),抛物线的顶点为M.(1)求a、c的值;(2)求tan∠MAC的值;(3)若点P是线段AC上的一个动点,联结OP.问:是否存在点P,使得以点O、C、P为顶点的三角形与△ABC相似?若存在,求出点P的坐标;若不存在,请说明理由.图1动感体验请打开几何画板文件名“16浦东一模24”,拖动点P在线段AC上运动,可以体验到,△COP与△ABC相似存在两种情况.满分解答(1)将A(-3,0)、C(0,-3)分别代入y=ax2+2ax+c,得960,3.a a cc-+=⎧⎨=-⎩解得a=1,c=-3.(2)由y=x2+2x-3=(x+1)2-4,得顶点M的坐标为(-1,-4).如图2,作MN⊥y轴于N.由A(-3,0)、C(0,-3)、M(-1,-4),可得OA=OC=3,NC=NM=1.所以∠ACO=∠MCN=45°,AC=32,MC=2.所以∠ACM=90°.因此tan∠MAC=MCAC=13.(3)由y=x2+2x-3=(x+3)(x-1),得B(1, 0).所以AB=4.如图3,在△COP与△ABC中,∠OCP=∠BAC=45°,分两种情况讨论它们相似:当CP ABCO AC=时,332CP=.解得22CP=.此时点P的坐标为(-2,-1).当CP ACCO AB=时,323CP=.解得924CP=.此时点P的坐标为93(,)44--.图2 图3如图1,在边长为6的正方形ABCD 中,点E 为AD 边上的一个动点(与A 、D 不重合),∠EBM =45°,BE 交对角线AC 于点F ,BM 交对角线于点G ,交CD 于点M .(1)如图1,联结BD ,求证:△DEB ∽△CGB ,并写出DE CG 的值; (2)如图2,联结EG ,设AE =x ,EG =y ,求y 关于x 的函数解析式,并写出函数的定义域;(3)当M 为边DC 的三等分点时,求S △EGF 的面积.图1 图2动感体验请打开几何画板文件名“16浦东一模25”,拖动点E 在AD 边上运动,可以体验到, △EBD 与△GBC 保持相似,△EBG 保持等腰直角三角形. 满分解答(1)如图3,因为∠EBM =∠DBC =45°,所以∠1=∠2.又因为∠EDB =∠GCB =45°,所以△DEB ∽△CGB . 因此2DE DB CG CB==.图3 图4(2)如图3,由△DEB ∽△CGB ,得EB DB GB CB=. 又因为∠EBM =∠DBC =45°,所以△EBG ∽△DBC (如图4).所以△EBG 是等腰直角三角形.如图4,在Rt △ABE 中,AB =6,AE =x ,所以BE 236x +所以y =EG =22BE 22362x +2272x +. 定义域是0<x <6.(3)如图5,由于S △EGB =12EG 2=2364x +,EGF EGB S EF S EB =△△, 所以2364EGF EF x S EB +=⨯△. 由(1)知,DE=2CG ,所以 x =AE =AD -DE =62CG -.①如图6,当13CM CD =时,13CG CM AG AB ==. 所以113622442CG CA ==⨯=. 此时x =AE =62CG -=3.所以3162EF AE BF CB ===.所以13EF EB =. 所以2364EGF EF x S EB +=⨯△=2133634+⨯=154. ②如图7,当23CM CD =时,23CG CM AG AB ==. 所以2212622555CG CA ==⨯=. 此时x =AE =62CG -=65.所以61655EF AE BF CB ==÷=.所以16EF EB =. 所以2364EGF EF x S EB +=⨯△=26()361564+⨯=3925.图5 图6 图7第(2)题也可以这样证明等腰直角三角形EBG :如图8,作GH ⊥EB 于H ,那么△GBH 是等腰直角三角形.一方面22GB CB EB DB ==,另一方面2cos 452HB GB =︒=,所以GB HB EB GB=. 于是可得△EBG ∽△GBH .所以△EBG 是等腰直角三角形.如图9,第(2)题也可以构造Rt △EGN 来求斜边EG =y :在Rt △AEN 中,AE =x ,所以AN =EN 2x . 又因为CG 22)x -,所以GN =AC -AN -CG =32所以y =EG =22EN GN +=222()(32)2x +=2272x +. 如图10,第(2)题如果构造Rt △EGQ 和Rt △CGP ,也可以求斜边EG =y :由于CG =2DE =2(6)x -,所以CP =GP =2CG =1(6)2x -=132x -. 所以GQ =PD =16(3)2x --=132x +,EQ =16(3)2x x ---=132x -. 所以y =EG =22GQ EQ +=2211(3)(3)22x x ++-=2272x +.图8 图9 图10如图1,已知二次函数273y ax x c =-+的图像经过A (0, 8)、B (6, 2)、C (9, m )三点,延长AC 交x 轴于点D .(1)求这个二次函数的解析式及m 的值;(2)求∠ADO 的余切值;(3)过点B 的直线分别与y 轴的正半轴、x 轴、线段AD 交于点P (点A 的上方)、M 、Q ,使以点P 、A 、Q 为顶点的三角形与△MDQ 相似,求此时点P的坐标. 图1 动感体验请打开几何画板文件名“16普陀一模24”,拖动点Q 在线段AD 上运动,可以体验到,△APQ 与△MDQ 相似只存在一种情况.满分解答(1)将A (0, 8)、B (6, 2)分别代入273y ax x c =-+,得8,3614 2.c a c =⎧⎨-+=⎩ 解得29a =,c =8.所以二次函数的解析式为227893y x x =-+. 所以227(9)818218593m f x x ==-+=-+=. (2)由A (0, 8)、C (9, 5),可得直线AC 的解析式为183y x =-+.所以D (24, 0). 因此cot ∠ADO =OD OA =248=3. (3)如图2,如果△APQ 与△MDQ 相似,由于∠AQP =∠MQD ,∠P AQ 与∠DMQ 是钝角,因此只存在一种情况,△APQ ∽△MDQ .因此∠APQ =∠D .作BN ⊥y 轴于N ,那么∠BPN =∠D .因此cot ∠BPN =cot ∠D =3.所以PN =3BN =18.此时点P 的坐标为(0, 20).图2如图1,已知锐角∠MBN 的正切值等于3,△PBD 中,∠BDP =90°,点D 在∠MBN 的边BN 上,点P 在∠MBN 内,PD =3,BD =9.直线l 经过点P ,并绕点P 旋转,交射线BM 于点A ,交射线DN 于点C ,设CA x CP=. (1)求x =2时,点A 到BN 的距离;(2)设△ABC 的面积为y ,求y 关于x 的函数解析式,并写出函数的定义域;(3)当△ABC 因l 的旋转成为等腰三角形时,求x 的值.图1 备用图动感体验请打开几何画板文件名“16普陀一模25”,拖动点C 运动,可以体验到,AH 与BH 的比值=tan ∠B =3为定值,AH 与PD 的比值=CA ∶CP =x .满分解答 (1)如图2,作AH ⊥BC 于H ,那么PD //AH . 因此2AH CA x PD CP ===. 所以AH =2PD =6,即点A 到BN 的距离为6.图2 图3(2)如图3,由AH CA x PD CP==,得AH =xPD =3x . 又因为tan ∠MBN =AH BH=3,所以BH =x . 设BC =m .由CH CA x CD CP ==,得9m x x m -=-. 整理,得81x m x =-. 所以y =S △ABC =12BC AH ⋅=18321x x x ⨯⨯-=2121x x -. 定义域是0<x ≤9.x =9的几何意义是点C 与点H 重合,此时CA =27,CP =3.(3)在△ABC中,BA=10x,cos∠ABC=10,BC=81xx-.①如图4,当BA=BC时,解方程8101xxx=-,得41105x=+.②如图5,当AB=AC时,BC=2BH.解方程821xxx=-,得x=5.③如图6,当CA=CB时,由cos∠ABC=10,得1102AB BC=.解方程11081021xxx⨯=⨯-,得135x=.图4 图5 图6如图1,已知抛物线y =ax 2+bx -3与x 轴交于A 、B 两点,与y 轴交于点C ,O 是坐标原点,已知点B 的坐标是(3, 0),tan ∠OAC =3.(1)求该抛物线的函数表达式;(2)点P 在x 轴上方的抛物线上,且∠P AB =∠CAB ,求点P 的坐标;(3)点D 是y 轴上的一动点,若以D 、C 、B 为顶点的三角形与△ABC 相似,求出符合条件的点D 的坐标.图1动感体验请打开几何画板文件名“16松江一模24”,拖动点D 在y 轴正半轴上运动,可以体验到,△BCD 与△ABC 相似存在两种情况.满分解答(1)由y =ax 2+bx -3,得C (0,-3),OC =3. 由tan ∠OAC =3,得OA =1,A (-1, 0).因为抛物线与x 轴交于A (-1, 0)、B (3, 0)两点,设y =a (x +1)(x -3). 代入点C (0,-3),得a =1.所以y =(x +1)(x -3)=x 2-2x -3. (2)如图2,作PH ⊥x 轴于H .设P (x , (x +1)(x -3)). 由tan ∠P AB =tan ∠CAB ,得3PH CO AH AO ==.所以(1)(3)31x x x +-=+. 解得x =6.所以点P 的坐标为(6, 21).(3)由A (-1, 0)、B (3, 0)、C (0,-3),得BA =4,BC =32,∠ABC =∠BCO =45°. 当点D 在点C 上方时,∠ABC =∠BCD =45°.分两种情况讨论△BCD 与△ABC 相似: 如图3,当CD BACB BC=时,CD =BA =4.此时D (0, 1). 如图4,当CD BC CB BA =时,32432=.解得92CD =.此时D 3(0,)2.图2 图3 图4已知等腰梯形ABCD中,AD//BC,∠B=∠BCD=45°,AD=3,BC=9,点P是对角线AC上的一个动点,且∠APE=∠B,PE分别交射线AD和射线CD于点E和点G.(1)如图1,当点E、D重合时,求AP的长;(2)如图2,当点E在AD的延长线上时,设AP=x,DE=y,求y关于x的函数解析式,并写出它的定义域;(3)当线段DG=2时,求AE的长.图1 图2动感体验请打开几何画板文件名“16松江一模25”,拖动点P在AC上运动,可以体验到,DG=2存在两种情况,对应的DE也存在两种情况.满分解答(1)如图3,作AM⊥BC,DN⊥BC,垂足分别为M、N,那么MN=AD=3.在Rt△ABM中,BM=3,∠B=45°,所以AM=3,AB=32.在Rt△AMC中,AM=3,MC=6,所以CA=35.如图4,由AD//BC,得∠1=∠2.又因为∠APE=∠B,当E、D重合时,△APD∽△CBA.所以AP CBAD CA=.因此335AP=.解得此时AP=95.(2)如图5,设(1)中E、D重合时点P的对应点为F.因为∠AFD=∠APE=45°,所以FD//PE.所以AF ADAP AE=,即95353x y=+.因此53y x=-.定义域是95<x≤35.图3 图4 图5(3)如图6,因为35CA =,95AF =,所以65FC =. 由DF //PE ,得21332FP DG FC DC ===.所以25FP =. 由DF //PE ,95259552AD AF DE FP ==÷=.所以2293DE AD ==. ①如图6,当P 在AF 的延长线上时,233AE AD DE =+=. ②如图7,当P 在AF 上时,123AE AD DE =-=.图6 图7例 2016年上海市徐汇区中考一模第24题如图1,在Rt △AOB 中,∠AOB =90°,已知点A (-1,-1),点B 在第二象限,OB =22,抛物线235y x bx c =++经过点A 和B . (1)求点B 的坐标; (2)求抛物线235y x bx c =++的对称轴; (3)如果该抛物线的对称轴分别和边AO 、BO 的延长线交于点C 、D ,设点E 在直线AB 上,当△BOE 和△BCD 相似时,直接写出点E 的坐标.图1动感体验请打开几何画板文件名“16徐汇一模24”,拖动点E 在射线BA 上运动,可以体验到,△BOE 和△BCD 相似存在两种情况.满分解答(1)由A (-1,-1),得OA 与x 轴负半轴的夹角为45°.又因为∠AOB =90°,所以OB 与x 轴负半轴的夹角也为45°. 当OB =22B 到x 轴、y 轴的距离都为2. 所以点B 的坐标为(-2,2).(2)将A (-1,-1)、B (-2,2)分别代入235y x bx c =++,得31,5122 2.5b c b c ⎧-+=-⎪⎪⎨⎪-+=⎪⎩解得65b =-,145c =-.所以23614555y x x =--.抛物线的对称轴是直线x =1.(3)如图2,由A (-1,-1)、B (-2,2)、C (1, 1)、D (1,-1),以及∠AOB =90°,可得BO 垂直平分AC ,BO =2,BA =BC 10BD =32如图3,过点A 、E 作y 轴的平行线,过点B 作y 轴的垂线,构造Rt △ABM 和Rt △EBN ,那么BA BM MA BE BN NE==. 设点E 的坐标为(x , y )101322x y==+-.图2 图3当点E在射线BA上时,∠EBO=∠DBC.分两种情况讨论相似:①当BE BCBO BD=时,102232=.解得2103BE=.此时1013222103x y==+-.解得x=43-,y=0.所以E4(,0)3-(如图4).②当BE BDBO BC=时,322210=.解得6105BE=.此时1013622105x y==+-.解得x=45-,y=85-.所以E48(,)55--(如图5).图4 图5例 2016年上海市徐汇区中考一模第25题如图1,四边形ABCD中,∠C=60°,AB=AD=5,CB=CD=8,点P、Q分别是边AD、BC上的动点,AQ与BP交于点E,且∠BEQ=90°-12∠BAD.设A、P两点间的距离为x.(1)求∠BEQ的正切值;(2)设AEPE=y,求y关于x的函数解析式及定义域;(3)当△AEP是等腰三角形时,求B、Q两点间的距离.图1动感体验请打开几何画板文件名“16徐汇一模25”,拖动点P在AD边上运动,可以体验到,∠AEP=∠BEQ=∠ABH=∠ADH,△ABF∽△BEF∽△BDP,△AEP∽△ADF.满分解答(1)如图2,联结BD、AC交于点H.因为AB=AD,CB=CD,所以A、C在BD的垂直平分线上.所以AC垂直平分BD.因此∠BAH=12∠BAD.因为∠BEQ=90°-12∠BAD,所以∠BEQ=90°-∠BAH=∠ABH.在Rt△ABH中,AB=5,BH=4,所以AH=3.所以tan∠BEQ=tan∠ABH=34.图2(2)如图3,由于∠BEQ=∠ABH,∠BEQ=∠AEP,∠ABH=∠ADH,所以∠AEP=∠BEQ=∠ABH=∠ADH.图3 图4 图5如图3,因为∠BF A是公共角,所以△BEF∽△ABF.如图4,因为∠DBP是公共角,所以△BEF∽△BDP.所以△ABF∽△BDP.所以AB BDBF DP=.因此585BF x=-.所以5(5)8BF x=-.所以518(5)(539)88FD BD BF x x=-=--=+.如图5,因为∠DAF是公共角,所以△AEP∽△ADF.所以5401539(539)8AE ADyPE FD xx====++.定义域是0≤x≤5.(3)分三种情况讨论等腰△AEP:①当EP=EA时,由于△AEP∽△ADF,所以DF=DA=5(如图6).此时BF=3,HF=1.作QM⊥BD于M.在Rt△BMQ中,∠QBM=60°,设BQ=m,那么12BM m=,3QM m=.在Rt△FMQ中,132FM m=-,tan∠MFQ=tan∠HF A=3,所以QM=3FM.解方程313(3)2m m=-,得BQ=m=933-.②如图7,当AE=AP时,E与B重合,P与D重合,此时Q与B重合,BQ=0.③不存在PE=P A的情况,因为∠P AE>∠P AH>∠AEP.图6 图7如图1,在平面直角坐标系中,抛物线212y x bx c =-++与x 轴交于A 、B 两点,与y 轴交于点C ,直线y =x +4经过A 、C 两点.(1)求抛物线的表达式;(2)如果点P 、Q 在抛物线上(点P 在对称轴左边),且PQ //AO ,PQ =2AO ,求点P 、Q 的坐标;(3)动点M 在直线y =x +4上,且△ABC 与△COM相似,求点M 的坐标. 图1动感体验请打开几何画板文件名“16杨浦一模24”,拖动点M 在射线CA 上运动,可以体验到,△ABC 与△COM 相似存在两种情况.满分解答(1)由y =x +4,得A (-4, 0),C (0, 4). 将A (-4, 0)、C (0, 4)分别代入212y x bx c =-++,得840,4.b c c --+=⎧⎨=⎩ 解得b =-1,c =4.所以抛物线的表达式为2142y x x =--+. (2)如图2,因为PQ //AO ,所以P 、Q 关于抛物线的对称轴对称. 因为抛物线的对称轴是直线x =-1,PQ =2AO =8,所以x P =-5,x Q =3.当x =3时,2142y x x =--+=72-.所以P 7(5,)2--,Q 7(3,)2-. (3)由2114(4)(2)22y x x x x =--+=-+-,得B (2, 0).由A (-4, 0)、B (2, 0)、C (0, 4),得AB =6,AC =42,CO =4.当点M 在射线CA 上时,由于∠MCO =∠BAC =45°,所以分两种情况讨论相似: ①当CM AB CO AC =时,442CM =.解得32CM =.此时M (-3, 1)(如图3). ②当CM AC CO AB =时,4246CM =.解得823CM =.此时M 84(,)33-(如图4).图2 图3 图4如图1,已知菱形ABCD的边长为5,对角线AC的长为6,点E为边AB上的动点,点F在射线AD上,且∠ECF=∠B,直线CF交直线AB于点M.(1)求∠B的余弦值;(2)当点E与点A重合时,试画出符合题意的图,并求BM的长;(3)当点M在AB的延长线上时,设BE=x,BM=y,求y关于x的函数解析式,并写出定义域.图1 备用图动感体验请打开几何画板文件名“16杨浦一模25”,拖动点E在AB上慢慢运动,可以体验到,∠1=∠2=∠3,△MCE与△MBC保持相似.满分解答(1)如图2,作AN⊥BC于N,联结BD交AC于O,那么BO垂直平分AC.在Rt△ABO中,AB=5,AO=3,所以BO=4.因为S菱形ABCD=12AC BD⋅=BC AN⋅,所以64=5AN⨯⨯.解得AN=245.在Rt△ABN中,AB=5,AN=245,所以BN=75.因此cos∠B=BNAB=725.(2)如图3,当点E与点A重合时,由于∠ECF=∠B,∠FEC=∠1,所以△ECF∽△ABC.所以EF ACEC AB=,即665EF=.解得365EF=.由BC//AF,得AM AFBM BC=,即53625BMBM+=.解得12511BM=.图2 图3(3)如图4,因为∠ECF =∠ABC ,根据等角的邻补角相等,得∠MCE =∠MBC . 如图5,因为∠M 是公共角,所以△MCE ∽△MBC . 所以MC MBME MC=.因此22()MC MB ME y x y xy y =⋅=+=+. 作MH ⊥BC ,垂足为H .在Rt △MBH 中,MB =y ,cos ∠MBH =725,所以BH =725y ,MH =2425y . 在Rt △MCH 中,根据勾股定理,得MC 2=MH 2+CH 2.因此222247()(5)2525xy y y y +=++. 整理,得125514y x =-.定义域是145<x ≤5.定义域中x =145的几何意义如图6所示,此时D 、F 重合,AB //CF .由CF =CE ,CF =CB ,得CE =CB . 所以1cos 2BE BC B =⋅.解得BE =72525⨯⨯=145.图4 图5 图6例 2016年上海市闸北区中考一模第24题如图1,在平面直角坐标系中,已知抛物线与x 轴交于点A (-1,0)和点B ,与y 轴交于点C (0, 2),对称轴为直线x =1,对称轴交x 轴于点E .(1)求该抛物线的表达式,并写出顶点D 的坐标;(2)设点F 在抛物线上,如果四边形AEFD 是梯形,求点F 的坐标;(3)联结BD ,设点P 在线段BD 上,若△EBP 与△ABD 相似,求点P 的坐标.图1动感体验请打开几何画板文件名“16闸北一模24”,梯形AEFD 只存在一种情况.拖动点P 在BD 边上运动,可以体验到,△EBP 与△ABD 相似存在两种情况.满分解答(1)点A (-1,0)关于直线x =1的对称点B 的坐标为(3, 0).设抛物线的解析式为y =a (x +1)(x -3),代入点C (0, 2),得2=-3a . 解得23a =-.所以2222428(1)(3)2(1)33333y x x x x x =-+-=-++=--+. 顶点D 的坐标为8(1,)3. (2)过△ADE 的三个顶点分别画对边的平行线,只有经过点E 的直线与抛物线有另外的交点,在第一象限内的交点就是梯形AEFD 的顶点F .设F 224(,2)33x x x -++. 作FH ⊥x 轴于H ,那么∠FEH =∠DAE . 由tan ∠FEH =tan ∠DAE ,得43FH DE EH AE ==.所以43FH EH =. 解方程22442(1)333x x x -++=-,得5x =±.所以F 454(5,)-.图2 图3 图4。
上海各区初三数学一模卷
上海各区初三数学一模卷Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT2016学年上海市杨浦区初三一模数学试卷一. 选择题(本大题共6题,每题4分,共24分) 1. 如果延长线段AB 到C ,使得12BC AB =,那么:AC AB 等于( ) A. 2:1 B. 2:3 C. 3:1 D. 3:22. 在高为100米的楼顶测得地面上某目标的俯角为α,那么楼底到该目标的水平距离是( )A. 100tan αB. 100cot αC. 100sin αD. 100cos α3. 将抛物线22(1)3y x =-+向右平移2个单位后所得抛物线的表达式为( ) A. 22(1)5y x =-+ B. 22(1)1y x =-+ C. 22(1)3y x =++ D. 22(3)3y x =-+4. 在二次函数2y ax bx c =++中,如果0a >,0b <,0c >,那么它的图像一定不经过( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限 5. 下列命题不一定成立的是( )A. 斜边与一条直角边对应成比例的两个直角三角形相似B. 两个等腰直角三角形相似C. 两边对应成比例且有一个角相等的两个三角形相似D. 各有一个角等于100°的两个等腰三角形相似6. 在△ABC 和△DEF 中,40A ︒∠=,60D ︒∠=,80E ︒∠=,AB FDAC FE=,那么B ∠的度数是( )A. 40︒B. 60︒C. 80︒D. 100︒ 二. 填空题(本大题共12题,每题4分,共48分) 7. 线段3cm 和4cm 的比例中项是 cm 8. 抛物线22(4)y x =+的顶点坐标是9. 函数2y ax =(0)a >中,当0x <时,y 随x 的增大而10. 如果抛物线2y ax bx c =++(0)a ≠过点(1,2)-和(4,2),那么它的对称轴是 11. 如图,△ABC 中,点D 、E 、F 分别在边AB 、AC 、BC 上,且DE ∥BC ,EF ∥AB ,:1:3DE BC =,那么:EF AB 的值为12. 如图,在梯形ABCD 中,AD ∥BC ,AC 与BD 相交于点O ,如果2BC AD =,那么:ADC ABC S S ∆∆的值为13. 如果两个相似三角形的面积之比是9:25,其中小三角形一边上的中线长是12cm ,那么大三角形中与之相对应的中线长是 cm 14. 如果3a b c +=,2a b c -=,那么a = (用b 表示) 15. 已知α为锐角,tan 2cos30α︒=,那么α= 度16. 如图是一斜坡的横截面,某人沿着斜坡从P 处出发,走了13米到达M 处,此时在铅垂方向上上升了5米,那么该斜坡的坡度是1:i =17. 用“描点法”画二次函数2y ax bx c =++(0)a ≠的图像时,列出了如下表格:那么该二次函数在0x =时,y =18. 如图,△ABC 中,5AB AC ==,6BC =,BD AC ⊥于点D ,将△BCD 绕点B 逆时针旋转,旋转角的大小与CBA ∠相等,如果点C 、D 旋转后分别落在点E 、F 的位置,那么EFD ∠的正切值是 三. 解答题(本大题共7题,共10+10+10+10+12+12+14=78分) 19. 如图,已知△ABC 中,点F 在边AB 上,且25AF AB =,过A 作AG ∥BC交CF 的延长线于点G ;(1)设AB a =,AC b =,试用向量a 和b 表示向量AG ; (2)在图中求作向量AG 与AB 的和向量;(不要求写作法,但要指出所作图中表示结论的向量)20. 已知抛物线2y x bx c =-++经过点(1,0)B -和点(2,3)C ;(1)求此抛物线的表达式;(2)如果此抛物线上下平移后过点(2,1)--,试确定平移的方向和平移的距离.21. 已知:如图,梯形ABCD 中,AD ∥BC ,ABD C ∠=∠,4AD =,9BC =,锐角DBC ∠的正弦值为23;(1)求对角线BD 的长;(2)求梯形ABCD 的面积.22. 如图,某客轮以每小时10海里的速度向正东方向航行,到A 处时向位于南偏西30°方向且相距12海里的B 处的货轮发出送货请求,货轮接到请求后即刻沿着北偏东某一方向以每小时14海里的速度出发,在C 处恰好与客轮相逢,试求货轮从出发到与客轮相逢所用的时间.23. 已知,如图,在△ABC 中,点D 、G 分别在边AB 、BC 上,ACD B ∠=∠,AG 与CD 相交于点F ; (1)求证:2AC AD AB =⋅;(2)若AD DFAC CG=,求证:2CG DF BG =⋅;24. 在直角坐标系xOy 中,抛物线2443y ax ax a =-++(0)a <的顶点为D ,它的对称轴与x 轴交点为M ; (1)求点D 、点M 的坐标;(2)如果该抛物线与y 轴的交点为A ,点P 在抛物线上,且AM ∥DP ,2AM DP =,求a 的值;25. 在Rt △ABC 中,90ACB ︒∠=,2AC BC ==,点P 为边BC 上的一动点(不与点B 、C 重合),点P 关于直线AC 、AB 的对称点分别为M 、N ,联结MN 交边AB 于点F ,交边AC 于点E ;(1)如图,当点P 为边BC 的中点时,求M ∠的正切值;(2)联结FP ,设CP x =,MPF S y ∆=,求y 关于x 的函数关系式,并写出定义域;(3)联结AM ,当点P 在边BC 上运动时,△AEF 与△ABM 是否一定相似若是,请证明;若不是,试求出当△AEF 与△ABM 相似时CP 的长;参考答案一. 选择题1. D2. B3. D4. C5. C6. B 二. 填空题7. (4,0)- 9. 减小 10.32x =11. 23 12. 1213. 20 14. 45b15. 60 16. 2.4 17. 3 18. 12三. 解答题19.(1)2233AG a b =-;(2)略;20.(1)223y x x =-++;(2)向上平移4个单位; 21.(1)6BD =;(2)26; 22.2t =;23.(1)略;(2)略;24.(1)(2,3)D 、(2,0)M ;(2)32a =-或12a =-;25.(1)13;(2)344x x y -=(02)x <<;(3)相似;2016学年第一学期徐汇区学习能力诊断卷及答案初三数学 试卷(时间100分钟 满分150分)一.选择题(本大题共6题,每题4分,满分24分) 1.如果y x 32=,那么下列各式中正确的是( )(A )32=y x ; (B )3=-y x x ; (C )35=+y y x ; (D )52=+y x x . 2.如果一斜坡的坡比是4.2:1,那么该斜坡坡角的余弦值是( ) (A )512; (B )125; (C )135; (D )1312. 3.如果将某一抛物线向右平移2个单位,再向上平移2个单位后所得新抛物线的表达式是2)1(2-=x y ,那么原抛物线的表达式是( )(A )2)3(22--=x y ; (B )2)3(22+-=x y ; (C )2)1(22-+=x y ; (D )2)1(22++=x y .4.在ABC ∆中,点E D 、分别在边AC AB 、上,联结DE ,那么下列条件中不能判断ADE ∆和ABC ∆相似的是( ) (A )BC DE //; (B )B AED ∠=∠;(C )ACABAD AE =; (D ) BCACDE AE =. 5.一飞机从距离地面3000米的高空测得一地面监测点的俯角是︒60,那么此时飞机与监测点的距离是( )(A )6000米; (B )31000米; (C )32000米; (D )33000米.6.已知二次函数3422-+-=x x y ,如果y 随x 的增大而减小,那么x 的取值范围是( ) (A )1≥x ;(B )0≥x ; (C )1-≥x ; (D )2-≥x .二.填空题(本大题共12题,每题4分,满分48分)7.已知线段9=a ,4=c ,如果线段b 是c a 、的比例中项,那么=b _____.8.点C 是线段AB 延长线上的点,已知AB a =,B =b,那么=AC ____.9.如图1,EF CD AB ////,如果2=AC ,5.5=AE ,3=DF ,那么=BD ____.10.如果两个相似三角形的对应中线比是2:3,那么它们的周长比是_____. 11.如果点P 是线段AB 的黄金分割点)(BP AP >,那么请你写出一个关于线段、、BP AP AB 之间的数量关系的等式,你的结论是:____(答案不唯一).12.在ABC Rt ∆中,︒=∠90ACB ,AB CD ⊥,垂足为D ,如果4=CD ,3=BD ,那么A ∠的正弦值是______.13.正方形ABCD 的边长为3,点E 在边CD 的延长线上,联结BE 交边AD 于F ,如果1=DE ,那么=AF ______.14.已知抛物线ax ax y 42-=与x 轴交于点B A 、,顶点C 的纵坐标是2-,那么=a ______.15.如图2,矩形ABCD 的四个顶点正好落在四条平行线上,并且从上到下每两条平行线间的距离都是1,如果4:3:=BC AB ,那么AB 的长是______.16.在梯形ABCD 中,BC AD //,BD AC 、相交于O ,如果ACD BOC ∆∆、的面积分别是9和4,那么梯形ABCD 的面积是______.17.在ABC Rt ∆中,︒=∠90ABC ,5=AC ,3=BC ,CD 是ACB ∠的平分线,将ABC ∆ 沿直线CD 翻折,点A 落在点E 处,那么AE 的长是______. 18.如图3,在□ABCD 中,3:2:=BC AB ,点F E 、分别在边BC CD 、上,点E 是边CD 的中点,BF CF 2=,︒=∠120A ,过点A 分别作DF AQ BE AP ⊥⊥、,垂足分别为Q P 、,那么AQAP的值是______.三.(本大题共7题,第19—22题每题10分;第23、24题每题12分;第25题14分;满分78分)19.计算:130cos 45tan 45cot 30cot 60sin 2-︒︒+︒-︒-︒.20.(本题共2小题,每题5分,满分10分)将抛物线442+-=x x y 沿y 轴向下平移9个单位,所得新抛物线与x 轴正半轴交于点B ,与y 轴交于点C ,顶点为D .求:(1)点D C B 、、坐标;(2)BCD ∆的面积.21.(本题共2小题,每题5分,满分10分)如图4,已知梯形ABCD 中,BC AD //,4=AB ,3=AD ,AC AB ⊥,AC 平分DCB ∠,过点D 作AB DE //,分别交BC AC 、于E F 、,设AB a =,=b.求:(1)向量DC (用向量a 、b 表示);(2)B tan 的值.图F A BCDE 图ABCDA B C D EF图1图AB CD EF22.(本题共2小题,第(1)小题4分,第(2)小题6分,满分10分)如图5,一艘海轮位于小岛C 的南偏东︒60方向、距离小岛120海里的A 处,该海轮从A 处沿正北方向航行一段距离后,到达位于小岛C 北偏东︒45方向的B 处.(1)求该海轮从A 处到B 处的航行过程中与小岛C 之间的最短距离(结果保留根号); (2) 如果该海轮以每小时20海里的速度从B 处沿BC 方向行驶,求它从B 处到达小岛C 的航行时间(结果精确到小时).(参考数据:41.12≈,73.13≈).23.(本题共2小题,第(1)小题4分,第(2)小题8分,满分12分)如图6,已知ABC ∆中,点D 在边BC 上,B DAB ∠=∠,点E 在边AC 上,满足CE AD CD AE ⋅=⋅. (1)求证:AB DE //;(2)如果点F 是DE 延长线上一点,且BD 是DF 和AB 的比例中项,联结AF .求证:AF DF =.图6AD E24.(本题共3小题,每题4分,满分12分)如图7,已知抛物线32++-=bx x y 与x 轴交于点A 和点B (点A 在点B 的左侧),与y 轴交于点C ,且OC OB =,点D 是抛物线的顶点,直线AC 和BD 交于点E .(1)求点D 的坐标;(2)联结BC CD 、,求DBC ∠的余切值;(3)设点M 在线段CA 延长线上,如果EBM ∆和ABC ∆相似,求点M 的坐标.25.(本题满分14分)如图8,已知ABC ∆中,3==AC AB ,2=BC ,点D 是边AB 上的动点,过点D 作BC DE //,交边AC 于点E ,点Q 是线段DE 上的点,且DQ QE 2=,联结BQ 并延长,交边AC 于点P .设x BD =,y AP =.(1)求y 关于x 的函数解析式及定义域; (2)当PEQ ∆是等腰三角形时,求BD 的长;(3)联结CQ ,当CQB ∠和CBD ∠互补时,求x 的值.2016学年第一学期徐汇区学习能力诊断卷及答案初三数学 试卷BA C备用图图8Q PDBACE(时间100分钟 满分150分)考生注意∶1.本试卷含三个大题,共25题;答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一.选择题(本大题共6题,每题4分,满分24分) 【下列各题的四个选项中,有且只有一个选项是正确的】 1.如果y x 32=,那么下列各式中正确的是( B ) (A )32=y x ; (B )3=-y x x ; (C )35=+y y x ; (D )52=+y x x . 2.如果一斜坡的坡比是4.2:1,那么该斜坡坡角的余弦值是( D ) (A )512; (B )125; (C )135; (D )1312. 3.如果将某一抛物线向右平移2个单位,再向上平移2个单位后所得新抛物线的表达式是2)1(2-=x y ,那么原抛物线的表达式是( C )(A )2)3(22--=x y ; (B )2)3(22+-=x y ; (C )2)1(22-+=x y ; (D )2)1(22++=x y .4.在ABC ∆中,点E D 、分别在边AC AB 、上,联结DE ,那么下列条件中不能判断ADE ∆和ABC ∆相似的是( D ) (A )BC DE //; (B )B AED ∠=∠;(C )ACABAD AE =; (D ) BCAC DE AE =.5.一飞机从距离地面3000米的高空测得一地面监测点的俯角是︒60,那么此时飞机与监测点的距离是( C )(A )6000米; (B )31000米; (C )32000米; (D )33000米.6.已知二次函数3422-+-=x x y ,如果y 随x 的增大而减小,那么x 的取值范围是( A ) (A )1≥x ; (B )0≥x ; (C )1-≥x ; (D )2-≥x .二.填空题(本大题共12题,每题4分,满分48分)7.已知线段9=a ,4=c ,如果线段b 是c a 、的比例中项,那么=b __6___.8.点C 是线段AB 延长线上的点,已知AB a =,B C =b,那么=AC __b a-__.9.如图1,EF CD AB ////,如果2=AC ,5.5=AE ,3=DF ,那么=BD __712__. 10.如果两个相似三角形的对应中线比是2:3,那么它们的周长比是__2:3___.11.如果点P 是线段AB 的黄金分割点)(BP AP >,那么请你写出一个关于线段、、BP AP AB 之间的数量关系的等式,你的结论是:__ AB BP AP ⋅=2__(答案不唯一).12.在ABC Rt ∆中,︒=∠90ACB ,AB CD ⊥,垂足为D ,如果4=CD ,3=BD ,那么A ∠的正弦值是___53___.13.正方形ABCD 的边长为3,点E 在边CD 的延长线上,联结BE 交边AD 于F ,如果1=DE ,那么=AF ___49___.14.已知抛物线ax ax y 42-=与x 轴交于点B A 、,顶点C 的纵坐标是2-,那么=a ___21___. 15.如图2,矩形ABCD 的四个顶点正好落在四条平行线上,并且从上到下每两条平行线间的距离都是1,如果4:3:=BC AB ,那么AB 的长是___473___. 16.在梯形ABCD 中,BC AD //,BD AC 、相交于O ,如果ACD BOC ∆∆、的面积分别是9和4,那么梯形ABCD 的面积是___16___.17.在ABC Rt ∆中,︒=∠90ABC ,5=AC ,3=BC ,CD 是ACB ∠的平分线,将ABC ∆ 沿直线CD 翻折,点A 落在点E 处,那么AE 的长是___52___. 18.如图3,在□ABCD 中,3:2:=BC AB ,点F E 、分别在边BC CD 、上,点E 是边CD 的中点,BF CF 2=,︒=∠120A ,过点A 分别作DF AQ BE AP ⊥⊥、,垂足分别为Q P 、,那么AQAP的值是___13392___.三.(本大题共7题,第19—22题每题10分;第23、24题每题12分;第25题14分; 满分78分)图FA B C DE图ABCDA B C D EF图119.(本题满分10分)解:原式123113232-+--⨯=232133-++-=332--= 20.(本题共2小题,每题5分,满分10分)解:(1)由题意,得新抛物线的解析式为542--=x x y ,∴可得)5,0(-C 、)9,2(-D ;令0=y ,得0542=--x x ,解得11-=x 、52=x ;∴点B 坐标是)0,5(.(2)过点D 作y DA ⊥轴,垂足为A . ∴ADC BOC AOBD BCD S S S S ∆∆∆--=梯形552142219)52(21⨯⨯-⨯⨯-⨯+⨯=15=. 21.(本题共2小题,每题5分,满分10分)解:(1)∵BC AD //∴ACB DAC ∠=∠;又AC 平分DCB ∠∴ACB DCA ∠=∠;∴DCA DAC ∠=∠;∴DC AD =;∵AB DE //,AC AB ⊥,可得AC DE ⊥;∴CF AF =;∴CE BE =.∵BC AD //,AB DE //,∴四边形ABED 是平行四边形;∴AB DE =;∴=DE a AB =,=b 2121=;∴b a21+=.(2)∵ACB DCF ∠=∠,︒=∠=∠90BAC DFC ;∴DFC ∆∽BAC ∆;∴21==CA CF BC DC ;又3==AD CD ,解得6=BC ;在BAC Rt ∆中,︒=∠90BAC ,∴52462222=-=-=AB BC AC ;∴25452tan ===AB AC B . 22.(本题共2小题,第(1)小题4分,第(2)小题6分,满分10分) 解:(1)过点C 作AB CD ⊥,垂足为D .由题意,得︒=∠30ACD ;在ACD Rt ∆中,︒=∠90ADC ,∴ACCDACD =∠cos ; ∴3602312030cos =⨯=︒⋅=AC CD (海里). (2)在BCD Rt ∆中,︒=∠90BDC ,︒=∠45DCA ,∴BCCDBCD =∠cos ; ∴4.14644.2606602236045cos =⨯≈==︒=CD BC (海里);∴3.732.7204.146≈=÷(小时).答:该海轮从A 处到B 处的航行过程中与小岛C 之间的最短距离是360海里;它从B 处到达小岛C 的航行时间约为3.7小时.23.(本题共2小题,第(1)小题4分,第(2)小题8分,满分12分) 23.证明:(1)∵CE AD CD AE ⋅=⋅,∴CDADCE AE =;∵B DAB ∠=∠,∴BD AD =;∴CDBDCE AE =;∴AB DE //. (2)∵BD 是DF 和AB 的比例中项,∴AB DF BD ⋅=2;又BD AD =,∴AB DF AD ⋅=2;∴ADABDF AD =; ∵AB DE //,∴BAD ADF ∠=∠;∴ADF ∆∽DBA ∆;∴1==BDADDF AF ;∴AF DF =.24.(本题共3小题,每题4分,满分12分)解:(1)∵抛物线32++-=bx x y 与y 轴交于点C ,∴)3,0(C ;又抛物线32++-=bx x y 与x 轴交于点A 和点B (点A 在点B 的左侧),∵OC OB =;∴)0,3(B ;∴0339=++-b ,解得2=b ;∴322++-=x x y ;∴)4,1(D .(2)∵OC OB =,∴︒=∠=∠45OBC OCB ; ∵)3,0(C ,)4,1(D ,∴︒=∠45DCy ;∴︒=︒⨯-︒=∠90452180DCB ;∴3223cot ===∠DC BC DBC . (3)由322++-=x x y ,可得)0,1(-A .在AOC ∆和BCD ∆中,3==CDBCAO CO , ︒=∠=∠90DCB AOC ,∴AOC ∆∽BCD ∆,∴CBD ACO ∠=∠; 又CBD E OCB ACO ACB ∠+∠=∠+∠=∠,∴︒=∠=∠45OCB E ; 当EBM ∆和ABC ∆相似时,已可知CBA E ∠=∠;又点M 在线段CA 延长线上,EBA ACB ∠=∠,∴可得ACB EMB ∠=∠; ∴23==BC MB ;由题意,得直线AC 的表达式为33+=x y ;设)33,(+x x M .∴18)33()3(22=++-x x ,解得561-=x ,02=x (舍去);∴点M 的坐标是)53,56(--.25.(本题满分14分)解:(1)过点D 作AC DF //.交BP 于点F .∴21==QE DQ PE DF ;又BC DE //,∴1==ABACBD EC ; ∴x BD EC ==;y x PE --=3;∵AC DF //,∴AB BD AP DF =;即323x y y x =--,∴3239+-=x xy ;定义域为:30<<x .(2)∵BC DE //,∴PEQ ∆∽PBC ∆;Q PD BACEF∴当PEQ ∆是等腰三角形时,PBC ∆也是等腰三角形;︒1当BC PB =时,ABC ∆∽PBC ∆;∴AC CP BC ⋅=2; 即)3(34y -=,解得35=y ,∴353239=+-x x ,解得1912==x BD ; ︒2当2==BC PC 时,1==y AP ;∴13239=+-x x ,56==x BD ; ︒3当PB PC =时,点P 与点A 重合,不合题意.(3)∵BC DE //,∴︒=∠+∠180CBD BDQ ;又CQB ∠和CBD ∠互补,∴︒=∠+∠180CBD CQB ;∴BDQ CQB ∠=∠;∵CE BD =, ∴四边形BCED 是等腰梯形;∴CED BDE ∠=∠;∴CED CQB ∠=∠;又CED ECQ CQB DQB ∠+∠=∠+∠,∴ECQ DQB ∠=∠;∴BDQ∆∽QEC ∆;∴EC DQ QE BD =:即222x DQ =,∴2x DQ =,23xDE =; ∵BC DE //,∴AB ADBC DE =;即33223x x -=; 解得 7324254-=x .2016学年上海市长宁区、金山区初三一模数学试卷(满分150分,考试时间100分钟)一、选择题(本大题共6题,每题4分,满分24分)1.在平面直角坐标系中,抛物线()212y x =--+的顶点坐标是( ) A. (-1,2) B. (1,2) C. (2,-1) D. (2,1) 2.在ABC ∆中,90C ∠=︒,5AB =,4BC =,那么A ∠的正弦值是( )A. 34B.43C. 35D. 453.如图,下列能判断BC ED ∥的条件是( ) A. ED AD BC AB = B. ED AEBC AC =C.AD AE AB AC = D. AD ACAB AE=4.已知1O 与2O 的半径分别是2和6,若1O 与2O 相交,那么圆心距12O O 的取值范围是( )A. 2<12O O <4 <12O O <6 C. 4<12O O <8 D. 4<12O O <10 5.已知非零向量a 与b ,那么下列说法正确的是( )A. 如果a b =,那么a b =;B. 如果a b =-,那么a b ∥C. 如果a b ∥,那么a b =;D. 如果a b =-,那么a b =6.已知等腰三角形的腰长为6cm ,底边长为4cm ,以等腰三角形的顶角的顶点为圆心5cm 为半径画圆,那么该圆与底边的位置关系是( ) A. 相离 B. 相切 C. 相交 D.不能确定二、填空题(本大题共12题,每题4分,满分48分) 7. 如果()340x y x =≠,那么xy=__________. 8. 已知二次函数221y x x =-+,那么该二次函数的图像的对称轴是__________. 9. 已知抛物线23y x x c =++于y 轴的交点坐标是(0,-3),那么c =__________.10. 已知抛物线2132y x x =--经过点(-2,m ),那么m =___________.11. 设α是锐角,如果tan 2α=,那么cot α=___________.第3题图DEABC12. 在直角坐标平面中,将抛物线22y x =先向上平移1个单位,再向右平移1个单位,那么平移后的抛物线解析式是__________. 13. 已知A 的半径是2,如果B 是A 外一点,那么线段AB 长度的取值范围是__________.14. 如图,点G 是ABC ∆的重心,联结AG 并延长交BC 于点D ,GE AB ∥交BC 与E ,若6AB =,那么GE =___________.15. 如图,在地面上离旗杆BC 底部18米的A 处,用测角仪测得旗杆顶端C 的仰角为30°,已知测角仪AD 的高度为米,那么旗杆BC 的高度为_________米.OBA第17题图第16题图第15题图第14题图GEDC DCAACD EB16. 如图,1O 与2O 相交于A B 、两点,1O 与2O 的半径分别是112O O =2,那么两圆公共弦AB 的长为___________.17. 如图,在梯形ABCD 中,AD BC ∥,AC 与BD 交于O 点,:1:2DO BO =,点E 在CB 的延长线上,如果:=1:3AOD ABE S S ∆∆,那么:BC BE =_________. 18. 如图,在ABC ∆中,90C ∠=︒,8AC =,6BC =,D 是AB 的中点,点E 在边AC 上,将ADE ∆沿DE 翻折,使得点A 落在点'A 处,当'A E AC ⊥时,'A B =___________.BAC第18题图三、解答题(本大题共7题,满分78分)19 . (本题满分10分)计算:21tan 45sin 30tan 30cos60cot 303sin 45︒︒⋅︒-︒⋅︒+︒20.(本题满分10分,第(1)小题满分4分,第(2)小题满分6分) 如图,在ABC ∆中,D 是AB 中点,联结CD . (1)若10AB =且ACD B ∠=∠,求AC 的长.(2)过D 点作BC 的平行线交AC 于点E ,设DE a =,DC b =,请用向量a 、b 表示AC 和AB (直接写出结果)BA第20题图D21.(本题满分10分,第(1)小题满分5分,第(2)小题满分5分) 如图,ABC ∆中,CD AB ⊥于点D ,D 经过点B ,与BC 交于点E ,与AB 交与点F .已知1tan 2A =,3cot 4ABC ∠=,8AD =.求(1)D 的半径;(2)CE的长.第21题图B22.(本题满分10分,第(1)小题满分5分,第(2)小题满分5分) 如图,拦水坝的横断面为梯形ABCD ,AB CD ∥,坝顶宽DC 为6米,坝高DG 为2米,迎水坡BC 的坡角为30°,坝底宽AB 为()米. (1)求背水坡AD 的坡度;(2)为了加固拦水坝,需将水坝加高2米,并保持坝顶宽度不变,迎水坡和背水坡的坡度也不变,求加高后坝底HB 的宽度.H G N M D FEBA C第22题图23.(本题满分12分,第(1)小题满分6分,第(2)小题满分6分) 如图,已知正方形ABCD ,点E 在CB 的延长线上,联结AE 、DE ,DE 与边AB 交于点F ,FG BE ∥且与AE 交于点G. (1)求证:=GF BF .(2)在BC 边上取点M ,使得BM BE =,联结AM 交DE 于点O .求证:FO ED OD EF ⋅=⋅24.(本题满分12分,第(1)小题满分4分,第(2)小题满分4分,第(3)小题满分4分)在平面直角坐标系中,抛物线22y x bx c =-++与x 轴交于点A 、B (点A 在点B 的右侧),且与y 轴正半轴交于点C ,已知A (2,0) (1)当B (-4,0)时,求抛物线的解析式;(2)O 为坐标原点,抛物线的顶点为P ,当tan 3OAP ∠=时,求此抛物线的解析式;(3)O 为坐标原点,以A 为圆心OA 长为半径画A ,以C 为圆心,12OC 长为半径画圆C ,当A 与C 外切时,求此抛物线的解析式.DBGEFCA第23题图第24题图25.(本题满分14分,第(1)小题满分4分,第(2)小题满分4分,第(3)小题满分6分)已知ABC ∆,5AB AC ==,8BC =,PDQ ∠的顶点D 在BC 边上,DP 交AB 边于点E ,DQ 交AB 边于点O 且交CA 的延长线于点F (点F 与点A 不重合),设PDQ B ∠=∠,3BD =. (1)求证:BDE CFD ∆∆∽;(2)设BE x =,OA y =,求y 关于x 的函数关系式,并写出定义域; (3)当AOF∆是等腰三角形时,求BE 的长.D 第25题备用图OQPD FE第25题图B C A2017年崇明县初三数学一模试卷一、选择题:1.如果)均不为,(0y x 3y 5x =,那么y x :的值是( );35.A ;53.B 83.C 85.D2.在ABC R △t 中,,13,1290∠==°=BC AC A ,那么B tan 的值是( )125.A 512.B 1312.C 135.D 3.抛物线23x y =向上平移2个单位长度后所得新抛物线的顶点坐标为( ))0,2-.(A )-2,0.(B )0,2.(C )2,0.(D4.设),2(),,1(),y -2(321y C y B A ,是抛物线a )1x (y 2++=上的三点,那么321y y y ,,的大小关系为( )321y y y .>>A 231y y B.y >> 123y y y .>>C 213y y y .>>D5.如图,给出下列条件:①;ACD B ∠∠=②;∠∠ACB ADC =③BC AB CD AC =④,2AB AD AC •=其中不能判定ACD ABC ~△△的条件为( )①.A ②.B ③.C ④.D6.如图,圆O 过点C B 、,圆心O 在等腰直角三角形ABC 内部,,6,190∠==°=BC OA BAC ,那么圆O 的半径为( )13.A 132.B 23.C 32.D二、填空题7.如果)b -a 2(3b a =+,用a 表示b ,那么b =8.如果两个相似三角形的对应高之比为21:,那么他们的对应中线的比为9.已知线段AB 的长度为4,C 是线段AB 的黄金分割点,且CB CA >那么CA 的长度为 ___10.如图,,∥∥FC BE AD 他们依次交直线21l l 、于点C B A 、、和点,、、F E D 如果2,7.53AB DF BC ==,那么DE 的长为11.如图,为了估计河的宽度,在河的对岸选定一个目标点P,在近岸取点Q 和S,使点P、Q、S在一条直线上,且直线PS与河垂直,在过点S且与直线PS垂直的直线a上选择适当的点T,PT与过点Q且与PS垂直的直线b的交点为R.如果QS=60m,ST=120m,QR=80m,那么PQ为m.12.如果两圆的半径分别为2cm和6cm,圆心距为3cm,那么两圆的位置关系是;13.如果一个圆的内接正六边形的周长为36,那么这个圆的半径为;14.如果一条抛物线的顶点坐标为(2,1)-,并过点(0,3),那么这条抛物线的解析式为;15.如图,在平地上种植树时,要求株距(相邻两树间的水平距离)为4m.如果在坡度为1:2的山坡上种植树,也要求株距为4m,那么相邻两树间的坡面距离为 m.16.如图,6个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点,已知菱形的一个角(O∠的值∠)为60,A,B,C都在格点上,那么tan ABC是;17.如图,O 的半径是4,ABC ∆是O 的内接三角形,过圆心O 分别作AB ,BC ,AC 的垂线,垂足为E ,F ,G ,连接EF ,如果1OG =,那么EF为 ;18.如图,已知 ABC ∆中,45ABC ∠=,AH BC ⊥于点H ,点D 在AH 上,且DH CH =,联结BD ,将BHD 绕点H 旋转,得到EHF ∆(点B 、D 分别与点E 、F 对应),联结AE ,当点F 落在AC 上时,(F 不与C 重合)如果4BC =,tan 3C =,那么AE 的长为 ;三、解答题(本大题共7题,满分78分)19.(本题满分10分)计算: 2sin 30cot 602sin 453tan 60⋅+-20.(本题10分,第一小题6分,第二小题4分)如图,在ABC △中,点D 、E 分别在边AB 、AC 上,如果DE BC ∥,12AD BD =,DA a =,DC b =. (1)请用a 、b 来表示DE ;(2)在原图中求作向量DE 在a 、b 方向上的分向量.(不要求写作法,但要指出所作图中表示结论的向量)21. (本题满分10分)如图,小东在教学楼距地面9米高的窗口C 处,测得正前方旗杆顶部A 点的仰角为︒37 旗杆底部B 的俯角为︒45,升旗时,国旗上端悬挂在距地面25.2米处,若国旗随国歌声冉冉升起,并在国歌播放45秒结束时到达旗杆顶端,则国旗应以多少米/秒的速度匀速上升(参考数据:60.037sin ≈︒,80.037cos ≈︒,75.037tan ≈︒)22. (本题满分10分)如图,矩形EFGD 的边EF 在ABC ∆的边BC 上,顶点D 、G 分别在边AB 、AC 上,且EF DE 2=,ABC ∆中,边BC 的长度为cm 12,高AH 为cm 8 ,求矩形DEFG 的面积.23. (本题满分12分,其中每小题各6分)如图,在Rt ABC 中,︒=∠90ACB ,AB CD ⊥,M 是CD 边上一点,BM DH ⊥于点H ,DH 的延长线交AC 的延长线于点E .求证:(1)AED ∆∽CBM ∆;(2)CD AC CM AE ⋅=⋅.24.(本题满分12分,其中每小题各4分)在平面直角坐标系中,抛物线235y x bx c =-++与y 轴交于点)3,0(A ,与x 轴的正半轴交于点)0,5(B ,点D 在线段OB 上,且1=OD ,联结AD 、将线段AD 绕着点D 顺时针旋转︒90.得到线段DE ,过点E 作直线x l ⊥轴,垂足为H ,交抛物线于点F .(1)求这条抛物线的解析式;(2)联结DF ,求EDF ∠cot 的值;(3)点G 在直线l 上,且︒=∠45EDG ,求点G 的坐标.25. (本题满分14分,其中第(1)小题4分,第(2)小题4分,第(3)小题4分)在ABC ∆中,︒=∠90ACB ,23cot =A ,26=AC ,以BC 为斜边向右侧作等腰直角EBC ∆,P 是BE 延长线上一点,联结PC ,以PC 为直角边向下方作等腰直角PCD ∆,CD 交线段BE 于点F ,联结BD .(1)求证:BCCE CD PC =; (2)若x PE =,BDP ∆的面积为y ,求y 关于x 的函数解析式,并写出定义域;(3)当BDF ∆为等腰三角形时,求PE 的长.参考答案6..A7.53a 8.1:2 9.252 12.内含14.()221y x =-- . 15.253153105 19.56 20(1).2133DE a b =+ (2)略 米/秒 平方厘米23.略 24.(1)2312355y x x =-++ (2)2 (3)(4,6)或34,2⎛⎫- ⎪⎝⎭ 25.(1)略(2)24(04)2x x y x +=<≤ (3)4或42017年上海市宝山区初三数学一模试卷一、选择题:(本大题共6题,每题4分,满分24分)1.已知∠A=30°,下列判断正确的是( )A.sinA=B.cosA=C.tanA=D.cotA=2.如果C是线段AB的黄金分割点C,并且AC>CB,AB=1,那么AC的长度为()A.B.C.D.3.二次函数y=x2+2x+3的定义域为()A.x>0 B.x为一切实数C.y>2 D.y为一切实数4.已知非零向量、之间满足=﹣3,下列判断正确的是()A.的模为3 B.与的模之比为﹣3:1C.与平行且方向相同D.与平行且方向相反5.如果从甲船看乙船,乙船在甲船的北偏东30°方向,那么从乙船看甲船,甲船在乙船的()A.南偏西30°方向B.南偏西60°方向C.南偏东30°方向D.南偏东60°方向6.二次函数y=a(x+m)2+n的图象如图,则一次函数y=mx+n的图象经过()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限二、填空题:(本大题共12小题,每题4分,满分48分)7.已知2a=3b,则=.8.如果两个相似三角形的相似比为1:4,那么它们的面积比为.9.如图,D为△ABC的边AB上一点,如果∠ACD=∠ABC时,那么图中是AD和AB的比例中项.第9题图第10题图第12题图10.如图,△ABC中∠C=90°,若CD⊥AB于D,且BD=4,AD=9,则tanA=.11.计算:2(+3)﹣5=.12.如图,G为△ABC的重心,如果AB=AC=13,BC=10,那么AG的长为.13.二次函数y=5(x﹣4)2+3向左平移二个单位长度,再向下平移一个单位长度,得到的函数解析式是.14.如果点A(1,2)和点B(3,2)都在抛物线y=ax2+bx+c的图象上,那么抛物线y=ax2+bx+c的对称轴是直线.15.已知A(2,y1)、B(3,y2)是抛物线y=﹣(x﹣1)2+的图象上两点,则y1y2.(填不等号)16.如果在一个斜坡上每向上前进13米,水平高度就升高了5米,则该斜坡的坡度i=.17.数学小组在活动中继承了学兄学姐们的研究成果,将能够确定形如y=ax2+bx+c的抛物线的形状、大小、开口方向、位置等特征的系数a、b、c称为该抛物线的特征数,记作:特征数{a、b、c},(请你求)在研究活动中被记作特征数为{1、﹣4、3}的抛物线的顶点坐标为.18.如图,D为直角△ABC的斜边AB上一点,DE⊥AB交AC于E,如果△AED沿DE翻折,A恰好与B重合,联结CD交BE于F,如果AC═8,tanA═,那么CF:DF═.三、解答题:(本大题共7小题,满分78分)19.计算:﹣cos30°+0.20.如图,在△ABC中,点D、E分别在边AB、AC上,如果DE∥BC,且DE=BC.(1)如果AC=6,求CE的长;(2)设=, =,求向量(用向量、表示).21.如图,AB、CD分别表示两幢相距36米的大楼,高兴同学站在CD大楼的P处窗口观察AB大楼的底部B点的俯角为45°,观察AB大楼的顶部A点的仰角为30°,求大楼AB的高.22.直线l:y=﹣x+6交y轴于点A,与x轴交于点B,过A、B两点的抛物线m与x轴的另一个交点为C,(C在B的左边),如果BC=5,求抛物线m 的解析式,并根据函数图象指出当m的函数值大于0的函数值时x的取值范围.23.如图,点E是正方形ABCD的对角线AC上的一个动点(不与A、C重合),作EF⊥AC交边BC于点F,联结AF、BE交于点G.(1)求证:△CAF∽△CBE;(2)若AE:EC=2:1,求tan∠BEF的值.24.如图,二次函数y=ax2﹣x+2(a≠0)的图象与x轴交于A、B两点,与y 轴交于点C,已知点A(﹣4,0).(1)求抛物线与直线AC的函数解析式;(2)若点D(m,n)是抛物线在第二象限的部分上的一动点,四边形OCDA 的面积为S,求S关于m的函数关系;(3)若点E为抛物线上任意一点,点F为x轴上任意一点,当以A、C、E、F 为顶点的四边形是平行四边形时,请直接写出满足条件的所有点E的坐标.25.如图(1)所示,E为矩形ABCD的边AD上一点,动点P、Q同时从点B 出发,点P以1cm/秒的速度沿折线BE﹣ED﹣DC运动到点C时停止,点Q以2cm/秒的速度沿BC运动到点C时停止.设P、Q同时出发t秒时,△BPQ的面积为ycm2.已知y与t的函数关系图象如图(2)(其中曲线OG为抛物线的一部分,其余各部分均为线段).(1)试根据图(2)求0<t≤5时,△BPQ的面积y关于t的函数解析式;(2)求出线段BC、BE、ED的长度;(3)当t为多少秒时,以B、P、Q为顶点的三角形和△ABE相似;(4)如图(3)过E作EF⊥BC于F,△BEF绕点B按顺时针方向旋转一定角度,如果△BEF中E、F的对应点H、I恰好和射线BE、CD的交点G在一条直线,求此时C、I两点之间的距离.2017年上海市宝山区中考数学一模试卷参考答案与试题解析一、选择题:(本大题共6题,每题4分,满分24分)1.已知∠A=30°,下列判断正确的是()A.sinA=B.cosA=C.tanA=D.cotA=故选:A.2.如果C是线段AB的黄金分割点C,并且AC>CB,AB=1,那么AC的长度为()A.B.C.D.故选:C.3.二次函数y=x2+2x+3的定义域为()A.x>0 B.x为一切实数C.y>2 D.y为一切实数故选B4.已知非零向量、之间满足=﹣3,下列判断正确的是()A.的模为3 B.与的模之比为﹣3:1C.与平行且方向相同D.与平行且方向相反故选:D.5.如果从甲船看乙船,乙船在甲船的北偏东30°方向,那么从乙船看甲船,甲船在乙船的()A.南偏西30°方向B.南偏西60°方向C.南偏东30°方向D.南偏东60°方向故选:A.6.二次函数y=a(x+m)2+n的图象如图,则一次函数y=mx+n的图象经过()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限故选C.二、填空题:(本大题共12小题,每题4分,满分48分)7.已知2a=3b,则=.8.如果两个相似三角形的相似比为1:4,那么它们的面积比为1:16.9.如图,D为△ABC的边AB上一点,如果∠ACD=∠ABC时,那么图中AC是AD和AB的比例中项.10.如图,△ABC中∠C=90°,若CD⊥AB于D,且BD=4,AD=9,则tanA=.11.计算:2(+3)﹣5=2+.12.如图,G为△ABC的重心,如果AB=AC=13,BC=10,那么AG的长为8.13.二次函数y=5(x﹣4)2+3向左平移二个单位长度,再向下平移一个单位长度,得到的函数解析式是y=5(x﹣2)2+2.14.如果点A(1,2)和点B(3,2)都在抛物线y=ax2+bx+c的图象上,那么抛物线y=ax2+bx+c的对称轴是直线x=2.15.已知A(2,y1)、B(3,y2)是抛物线y=﹣(x﹣1)2+的图象上两点,则y1>y2.(填不等号)16.如果在一个斜坡上每向上前进13米,水平高度就升高了5米,则该斜坡的坡度i=1:.17.数学小组在活动中继承了学兄学姐们的研究成果,将能够确定形如y=ax2+bx+c的抛物线的形状、大小、开口方向、位置等特征的系数a、b、c称为该抛物线的特征数,记作:特征数{a、b、c},(请你求)在研究活动中被记作特征数为{1、﹣4、3}的抛物线的顶点坐标为(2,﹣1).。
2015-2016年上海九年级数学一模汇总包含答案
2015-2016学年第一学期徐汇区学习能力诊断卷数学一、选择题1. 下列两个图形一定相似的是( )A.两个菱形;B.两个矩形;C.两个正方形;D.两个等腰梯形.2. 如图1,如果AB ∥CD ∥EF ,那么下列结论正确的是( )A.;B.;C.;D.. 3. 将抛物线向右平移2个单位,再向上平移2个单位后所得的抛物线的表达式是()A.;B.;C.;D.4. 点G 是△ABC 的重心,如果AB=AC=5,BC=8,那么AG 的长是()A.1;B.2;C.3;D.4.5. 如果从甲船看乙船,乙船在甲船的北偏东30°方向,那么从乙船看甲船,甲船在乙船的()A.南偏西30°方向;B.南偏西60°方向;C.南偏东30°方向;D.南偏东60°方向.6. 如图2,梯形ABCD 中,AD ∥BC ,∠DAC =90°,AB=AC ,点E 是边AB 上一点,∠ECD =45°,那么下列结论错误的是( )A.∠AED=∠ECB ;B. ∠ADE=∠ACE ;C.BE=AD ;D.BC=CE. 一、 填空题7. 计算:=______________;8. 如果,那么=__________;9. 已知二次函数,如果y 随x 的增大而增大,那么x 的取值范围是_________;10. 如果两个相似三角形的面积比是4:9,那么它们对应高的比是_____________;11. 如图3所示,一皮带轮的坡比是1:2.4,如果将货物从地面用皮带轮送到离地10米高的平台,那么该货物经过的路程是_______米; 12. 已知点M (1,4)在抛物线上,如果点N 和点M 关于该抛物线的对称轴对称,那么点N 的坐标是__________;图2 图3B13. 点D 在△ABC 的边AB 上,AC=3,AB =4,∠ACD=∠B ,那么AD 的长是__________;14. 如图4,在平行四边形ABCD 中,AB=6,AD =4,∠BAD 的平分线AE 分别交BD 、CD 于F 、E ,那么=________; 15. 如图5,在△ABC 中,AH ⊥BC 于H ,正方形DEFG 内接于△ABC ,点D 、E 分别在边AB 、AC 上,点G 、F 在边BC 上,如果BC=20,正方形DEFG 的面积为25,那么AH 的长是________;16. 如图6,在Rt △ABC 中,∠ACB=90°,CD ⊥AB ,垂足为D ,tan ∠ACD =,AB=5,那么CD 的长是_________;17. 如图7,在梯形ABCD 中,AD ∥BC ,BC=2AD ,点E 是CD 的中点,AC 与BE 交于点F ,那么△ABF 和△CEF的面积比是___________;18. 如图8,在Rt △ABC 中,∠BAC=90°,AB=3,cosB=,将△ABC 绕着点A 旋转得△ADE ,点B 的对应点D落在边BC 上,联结CE ,那么CE 的长是________.二、 解答题19. 计算:4sin45°-2tan30°cos30°+20. 抛物线经过点(2,1).(1) 求抛物线的顶点坐标;(2) 将抛物线沿y 轴向下平移后,所得新抛物线与x 轴交于A 、B 两点,如果AB =2,求新抛物线的表达式。
09-16年上海金山区数学一模考点汇编及试卷
C、 k1 0 , k2 1
D、 k1 0 , k2 1
(第 3 题图)
4.从 2,3,4,5,6 中任取一个数,是合数的概率是………………(
)
A、 1 5
B、 2 5
C、 3 5
D、 4 5
5.已知两圆的半径分别为 2 和 4,圆心距为 6,那么这两圆的位置关系为……( )
A、外离
B、相交
1
2x
y
1
21.(本题满分 10 分)某学校为了了解该学校初一年级学生双休日上网的情况,随机调
查了该学校初一年级的 25 名学生,得到了上周双休日上网时间的一组样本数据,其频
数分布直方图如图所示:
(1)请补全频数分布直方图;
(2)这组样本数据的中位数是
小时,众数是
小时,平均数是
小
时;
(3)初一年级的小明同学上周双休日上
5
圆与圆的位置关系
角、弧、弦的关系.菁
6 相似三角形的判定与性质
二次函数图象与几何变换
7 黄金分割.
二次函数的性质.
8 相似三角形的性质.
二次函数的性质
二次函数图象上点的坐标特征;二次函数
9
待定系数法求二次函数解析式.
的定义.
10 二次函数的性质.菁
二次函数图象上点的坐标特征
11 二次函数图象与几何变换
次函数的解析式是
.
(第 11 题图)
12.若一 个分式只含 有字母 x ,且当 x =2 时,分 式的值为 2,那么 这个分式可 以
是
.(写出一个即可)
13.将二次函数 y 2(x 1)2 3 的图像向右平移 3 个单位,那么平移后的二次函数的顶
点坐标是
2016上海市各区县初三一模数学精彩试题及问题详解
2016上海长宁区初三数学一模试题(满分150分) 2016.1.6 一、选择题。
(本题共6个小题,每题4分,共24分)1、如果两个三角形的相似比是1:2,那么他们的面积比是( ). A.1:2 B.1:4 C.1:2 D.2:12、如图,在△ABC 中,∠ADE=∠B ,DE:BC=2:3,则下列结论正确的是( ). A.AD:AB=2:3 B.AE:AC=2:5 C.AD:DB=2:3 D.CE:AE=3:23、在Rt △ABC 中,∠C=90°,AB=2,AC=1,则sinB 的值是( ).A.22 B.23 C.21 D.2 4、在△ABC 中,若cosA=22,tanB=3,则这个三角形一定是( ). A.直角三角形 B.等腰三角形 C.钝角三角形 D.锐角三角形 5、已知⊙O 1的半径r 为3cm ,⊙O2的半径R 为4cm ,两圆的圆心距O O 21为1cm ,则这两个圆的位置关系的( ).A.相交B.内含C.内切D.外切6二次函数1)2(2-+=x y 的图像可以由二次函数2x y =的图像平移得到,下列平移正确的是( ).A.先向左平移2个单位,再向上平移1个单位B.先向左平移2个单位,再向下平移1个单位C.先向右平移2个单位,再向上平移1个单位D.先向右平移2个单位,再向下平移1个单位 二、填空题。
(本大题共12小题,每题4分,满分48分) 7、已知抛物线12+=x y 的顶点坐标是( ).8、已知抛物线32++=bx x y 的对称轴为直线x=1,则实数b 的值为( )9、已知二次函数bx ax y +=2,阅读下面表格信息,由此可知y 与x 的函数关系式是( ).10、已知二次函数2)3(-=x y 图像上的两点A (3,a )和B (x ,b ),则a 和b 的大小关系是a ( )b.11、圆是轴对称图形,它的对称轴是( ).12、已知⊙O 的弦AB=8cm ,弦心距OC=3cm ,那么该圆的半径是( )cm.13、如图,AB 是⊙O 的直径,弦CD 垂直AB ,已知AC=1,BC=22,那么sin ∠ACD 的值是( ).14、王小勇操纵一辆遥控汽车从A 处沿北偏西60°方向走10m 到B 处,再从B 处向正南方走20m 到C 处,此时遥控汽车离A 处( )m.15、已知△ABC 中,AD 是中线,G 是重心,设m AD =,那么用m 表示AG =( ). 16、如图,已知AB ⊥BD ,ED ⊥BD ,C 是线段BD 的中点,且AC ⊥CE ,ED=1,BD=4,那么AB=( ).17、如果把两条邻边中较短边与较长边的比值为215-的矩形称作黄金矩形。
上海各区初三数学一模卷
2016学年上海市杨浦区初三一模数学试卷一. 选择题(本大题共6题,每题4分,共24分)1. 如果延长线段AB 到C ,使得12BC AB =,那么:AC AB 等于( ) A. 2:1 B. 2:3 C. 3:1 D. 3:22. 在高为100米的楼顶测得地面上某目标的俯角为α,那么楼底到该目标的水平距离是( )A. 100tan αB. 100cot αC. 100sin αD. 100cos α3. 将抛物线22(1)3y x =-+向右平移2个单位后所得抛物线的表达式为( )A. 22(1)5y x =-+B. 22(1)1y x =-+C. 22(1)3y x =++D. 22(3)3y x =-+4. 在二次函数2y ax bx c =++中,如果0a >,0b <,0c >,那么它的图像一定不经过( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限5. 下列命题不一定成立的是( )A. 斜边与一条直角边对应成比例的两个直角三角形相似B. 两个等腰直角三角形相似C. 两边对应成比例且有一个角相等的两个三角形相似D. 各有一个角等于100°的两个等腰三角形相似6. 在△ABC 和△DEF 中,40A ︒∠=,60D ︒∠=,80E ︒∠=,AB FD AC FE=,那么B ∠的度数是( )A. 40︒B. 60︒C. 80︒D. 100︒二. 填空题(本大题共12题,每题4分,共48分)7. 线段3cm 和4cm 的比例中项是 cm8. 抛物线22(4)y x =+的顶点坐标是9. 函数2y ax =(0)a >中,当0x <时,y 随x 的增大而10. 如果抛物线2y ax bx c =++(0)a ≠过点(1,2)-和(4,2),那么它的对称轴是11. 如图,△ABC 中,点D 、E 、F 分别在边AB 、AC 、BC 上,且DE ∥BC ,EF ∥AB ,:1:3DE BC =,那么:EF AB 的值为12. 如图,在梯形ABCD 中,AD ∥BC ,AC 与BD 相交于点O ,如果2BC AD =,那么:ADC ABC S S ∆∆的值为13. 如果两个相似三角形的面积之比是9:25,其中小三角形一边上的中线长是12cm ,那么大三角形中与之相对应的中线长是 cm14. 如果3a b c +=,2a b c -=,那么a = (用b 表示)15. 已知α为锐角,tan 2cos30α︒=,那么α= 度16. 如图是一斜坡的横截面,某人沿着斜坡从P 处出发,走了13米到达M 处,此时在铅垂方向上上升了5米,那么该斜坡的坡度是1:i =17. 用“描点法”画二次函数2y ax bx c =++(0)a ≠的图像时,列出了如下表格:那么该二次函数在0x =时,y =18. 如图,△ABC 中,5AB AC ==,6BC =,BD AC ⊥于点D ,将△BCD 绕点B 逆时针旋转,旋转角的大小与CBA ∠相等,如果点C 、D 旋转后分别落在点E 、F 的位置,那么EFD ∠的正切值是三. 解答题(本大题共7题,共10+10+10+10+12+12+14=78分)19. 如图,已知△ABC 中,点F 在边AB 上,且25AF AB =,过A 作AG ∥BC 交CF 的延长线于点G ;(1)设AB a =,AC b =,试用向量a 和b 表示向量AG ;(2)在图中求作向量AG 与AB 的和向量;(不要求写作法,但要指出所作图中表示结论的向量)20. 已知抛物线2y x bx c =-++经过点(1,0)B -和点(2,3)C ;(1)求此抛物线的表达式;(2)如果此抛物线上下平移后过点(2,1)--,试确定平移的方向和平移的距离.21. 已知:如图,梯形ABCD 中,AD ∥BC ,ABD C ∠=∠,4AD =,9BC =,锐角DBC∠的正弦值为23;(1)求对角线BD 的长;(2)求梯形ABCD 的面积. 22. 如图,某客轮以每小时10海里的速度向正东方向航行,到A 处时向位于南偏西30°方向且相距12海里的B 处的货轮发出送货请求,货轮接到请求后即刻沿着北偏东某一方向以每小时14海里的速度出发,在C 处恰好与客轮相逢,试求货轮从出发到与客轮相逢所用的时间.23. 已知,如图,在△ABC 中,点D 、G 分别在边AB 、BC 上,ACD B ∠=∠,AG 与CD相交于点F ;(1)求证:2AC AD AB =⋅;(2)若AD DF AC CG=,求证:2CG DF BG =⋅; 24. 在直角坐标系xOy 中,抛物线2443y ax ax a =-++(0)a <的顶点为D ,它的对称轴与x轴交点为M ;(1)求点D 、点M 的坐标;(2)如果该抛物线与y 轴的交点为A ,点P 在抛物线上,且AM ∥DP ,2AM DP =,求a的值;25. 在Rt △ABC 中,90ACB ︒∠=,2AC BC ==,点P 为边BC 上的一动点(不与点B 、C 重合),点P 关于直线AC 、AB 的对称点分别为M 、N ,联结MN 交边AB 于点F ,交边AC 于点E ;(1)如图,当点P 为边BC 的中点时,求M ∠的正切值;(2)联结FP ,设CP x =,MPF S y ∆=,求y 关于x 的函数关系式,并写出定义域;(3)联结AM ,当点P 在边BC 上运动时,△AEF 与△ABM 是否一定相似?若是,请证明;若不是,试求出当△AEF 与△ABM 相似时CP 的长;参考答案一. 选择题1. D2. B3. D4. C5. C6. B二. 填空题7. (4,0)- 9. 减小 10.32x = 11. 23 12. 1213. 20 14. 45b 15. 60 16. 2.4 17. 3 18. 12三. 解答题19.(1)2233AG a b =-;(2)略; 20.(1)223y x x =-++;(2)向上平移4个单位;21.(1)6BD =;(2)26;22.2t =;23.(1)略;(2)略;24.(1)(2,3)D 、(2,0)M ;(2)32a =-或12a =-; 25.(1)13;(2)344x x y -=(02)x <<;(3)相似;2016学年第一学期徐汇区学习能力诊断卷及答案初三数学 试卷(时间100分钟 满分150分)一.选择题(本大题共6题,每题4分,满分24分)1.如果y x 32=,那么下列各式中正确的是( )(A )32=y x ; (B )3=-y x x ; (C )35=+y y x ; (D )52=+y x x . 2.如果一斜坡的坡比是4.2:1,那么该斜坡坡角的余弦值是( )(A )512; (B )125; (C )135; (D )1312. 3.如果将某一抛物线向右平移2个单位,再向上平移2个单位后所得新抛物线的表达式是2)1(2-=x y ,那么原抛物线的表达式是( )(A )2)3(22--=x y ; (B )2)3(22+-=x y ;(C )2)1(22-+=x y ; (D )2)1(22++=x y .4.在A B C ∆中,点E D 、分别在边AC AB 、上,联结DE ,那么下列条件中不能判断ADE ∆和ABC ∆相似的是( )(A )BC DE //; (B )B AED ∠=∠;(C )AC AB AD AE =; (D ) BCAC DE AE =. 5.一飞机从距离地面3000米的高空测得一地面监测点的俯角是︒60,那么此时飞机与监测点的距离是( )(A )6000米; (B )31000米; (C )32000米; (D )33000米.6.已知二次函数3422-+-=x x y ,如果y 随x 的增大而减小,那么x 的取值范围是( )(A )1≥x ; (B )0≥x ; (C )1-≥x ; (D )2-≥x .二.填空题(本大题共12题,每题4分,满分48分)7.已知线段9=a ,4=c ,如果线段b 是c a 、的比例中项,那么=b _____.8.点C 是线段AB 延长线上的点,已知AB a =,B =b ,那么=____.9.如图1,EF CD AB ////,如果2=AC ,5.5=AE ,3=DF ,那么=BD ____.10.如果两个相似三角形的对应中线比是2:3,那么它们的周长比是_____.11.如果点P 是线段AB 的黄金分割点)(BP AP >,那么请你写出一个关于线段、、BP APAB 之间的数量关系的等式,你的结论是:____(答案不唯一).12.在ABC Rt ∆中,︒=∠90ACB ,AB CD ⊥,垂足为D ,如果4=CD ,3=BD ,那么A ∠的正弦值是______.13.正方形ABCD 的边长为3,点E 在边CD 的延长线上,联结BE 交边AD 于F ,如果1=DE ,那么=AF ______.14.已知抛物线ax ax y 42-=与x 轴交于点B A 、,顶点C 的纵坐标是2-,那么=a ______.15.如图2,矩形ABCD 的四个顶点正好落在四条平行线上,并且从上到下每两条平行线间的距离都是1,如果4:3:=BC AB ,那么AB 的长是______.16.在梯形ABCD 中,BC AD //,BD AC 、相交于O ,如果ACD BOC ∆∆、的面积分别是9和4,那么梯形ABCD 的面积是______.17.在ABC Rt ∆中,︒=∠90ABC ,5=AC ,3=BC ,CD 是ACB ∠的平分线,将ABC ∆ 沿直线CD 翻折,点A 落在点E 处,那么AE 的长是______.18.如图3,在□ABCD 中,3:2:=BC AB ,点F E 、分别在边BC CD 、上,点E 是边CD 的中点,BF CF 2=,︒=∠120A ,过点A 分别作DF AQ BE AP ⊥⊥、,垂足分别为Q P 、,那么AQAP 的值是______. 三.(本大题共7题,第19—22题每题10分;第23、24题每题12分;第25题14分;满分78分)19.计算:130cos 45tan 45cot 30cot 60sin 2-︒︒+︒-︒-︒. 20.(本题共2小题,每题5分,满分10分)将抛物线442+-=x x y 沿y 轴向下平移9个单位,所得新抛物线与x 轴正半轴交于点B ,与y 轴交于点C ,顶点为D .求:(1)点D C B 、、坐标;(2)BCD ∆的面积. 21.(本题共2小题,每题5分,满分10分)如图4,已知梯形ABCD 中,BC AD //,4=AB ,3=AD ,AC AB ⊥,AC 平分DCB ∠,过点D 作AB DE //,分别交BC AC 、于E F 、,设AB a =,=b .求:(1)向量(用向量a 、b 表示);(2)B tan 的值.22.(本题共2小题,第(1)小题4分,第(2)小题6分,满分10分)如图5,一艘海轮位于小岛C 的南偏东︒60方向、距离小岛120海里的A处,该海轮从A 处沿正北方向航行一段距离后,到达位于小岛C 北偏东︒45方向的B 处. (1)求该海轮从A 处到B 处的航行过程中与小岛C 之间的最短距离(结果保留根号);(2) 如果该海轮以每小时20海里的速度从B 处沿BC 方向行驶,求它从B 处到达小岛C 的航行时间(结果精确到0.1小时).(参考数据:41.12≈,73.13≈). 23.(本题共2小题,第(1)小题4分,第(2)小题8分,满分12图F A B C D E 图2 A B C D A BCD EF图1 图4 A B C D E F如图6,已知ABC ∆中,点D 在边BC 上,B DAB ∠=∠,点E 在边AC 上,满足 CE AD CD AE ⋅=⋅.(1)求证:AB DE //;(2)如果点F 是DE 延长线上一点,且BD 是DF 和AB 的比例中项,联结AF .求证:AF DF =.24.(本题共3小题,每题4分,满分12分) 如图7,已知抛物线32++-=bx x y 与x 轴交于点A 和点B (点A 在点B 的左侧),与y 轴交于点C ,且OC OB =,点D 是抛物线的顶点,直线AC 和BD 交于点E .(1)求点D 的坐标;(2)联结BC CD 、,求DBC ∠的余切值; (3)设点M 在线段CA 延长线上,如果EBM ∆和ABC ∆相似,求点M 的坐标.25.(本题满分14分)如图8,已知ABC ∆中,3==AC AB ,2=BC ,点D D 作BC DE //,交边AC 于点E ,点Q 是线段DE 上的DQ QE 2=,联结BQ 并延长,交边AC 于点P .设x BD =y AP =. (1)求y 关于x 的函数解析式及定义域;(2)当PEQ ∆是等腰三角形时,求BD 的长;(3)联结CQ ,当CQB ∠和CBD ∠互补时,求x 的值.BA C 备用图 图8 QPD B A CE图6 AB C E2016学年第一学期徐汇区学习能力诊断卷及答案初三数学 试卷 2017.1(时间100分钟 满分150分)考生注意∶1.本试卷含三个大题,共25题;答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一.选择题(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的】1.如果y x 32=,那么下列各式中正确的是( B )(A )32=y x ; (B )3=-y x x ; (C )35=+y y x ; (D )52=+y x x . 2.如果一斜坡的坡比是4.2:1,那么该斜坡坡角的余弦值是( D )(A )512; (B )125; (C )135; (D )1312. 3.如果将某一抛物线向右平移2个单位,再向上平移2个单位后所得新抛物线的表达式是 2)1(2-=x y ,那么原抛物线的表达式是( C )(A )2)3(22--=x y ; (B )2)3(22+-=x y ;(C )2)1(22-+=x y ; (D )2)1(22++=x y .4.在A B C ∆中,点E D 、分别在边AC AB 、上,联结DE ,那么下列条件中不能判断ADE ∆和ABC ∆相似的是( D )(A )BC DE //; (B )B AED ∠=∠;(C )AC AB AD AE =; (D ) BCAC DE AE =. 5.一飞机从距离地面3000米的高空测得一地面监测点的俯角是︒60,那么此时飞机与监测点的距离是( C )(A )6000米; (B )31000米; (C )32000米; (D )33000米.6.已知二次函数3422-+-=x x y ,如果y 随x 的增大而减小,那么x 的取值范围是( A )(A )1≥x ; (B )0≥x ; (C )1-≥x ; (D )2-≥x .二.填空题(本大题共12题,每题4分,满分48分)7.已知线段9=a ,4=c ,如果线段b 是c a 、的比例中项,那么=b __6___.8.点C 是线段AB 延长线上的点,已知AB a =,B =b ,那么=__b a -__.9.如图1,EF CD AB ////,如果2=AC ,5.5=AE ,3=DF ,那么=BD __712__. 10.如果两个相似三角形的对应中线比是2:3,那么它们的周长比是__2:3___.11.如果点P 是线段AB 的黄金分割点)(BP AP >,那么请你写出一个关于线段、、BP APAB 之间的数量关系的等式,你的结论是:__ AB BP AP ⋅=2__(答案不唯一).12.在ABC Rt ∆中,︒=∠90ACB ,AB CD ⊥,垂足为D ,如果4=CD ,3=BD ,那么A ∠的正弦值是___53___. 13.正方形ABCD 的边长为3,点E 在边CD 的延长线上,联结BE 交边AD 于F ,如果1=DE ,那么=AF ___49___. 14.已知抛物线ax ax y 42-=与x 轴交于点B A 、,顶点C 的纵坐标是2-,那么=a ___21___. 15.如图2,矩形ABCD 的四个顶点正好落在四条平行线上,并且从上到下每两条平行线间的距离都是1,如果4:3:=BC AB ,那么AB 的长是___473___. 16.在梯形ABCD 中,BC AD //,BD AC 、相交于O ,如果ACD BOC ∆∆、的面积分别是9和4,那么梯形ABCD 的面积是___16___.17.在ABC Rt ∆中,︒=∠90ABC ,5=AC ,3=BC ,CD 是ACB ∠的平分线,将ABC ∆ 沿直线CD 翻折,点A 落在点E 处,那么AE 的长是___52___.18.如图3,在□ABCD 中,3:2:=BC AB ,点F E 、分别在边BC CD 、上,点E 是边CD 的中点,BF CF 2=,︒=∠120A ,过点A 分别作DF AQ BE AP ⊥⊥、,垂足分别为Q P 、,那么AQAP 的值是___13392___. 三.(本大题共7题,第19—22题每题10分;第23、24题每题12分;第25题14分; 满分78分)19.(本题满分10分)解:原式123113232-+--⨯=232133-++-=332--= 20.(本题共2小题,每题5分,满分10分)解:(1)由题意,得新抛物线的解析式为542--=x x y ,∴可得)5,0(-C 、)9,2(-D ;令0=y ,得0542=--x x ,解得11-=x 、52=x ;∴点B 坐标是)0,5(.(2)过点D 作y DA ⊥轴,垂足为A .图F A B C D E 图2 A BC D A BC D E F 图1∴ADC BOC AOBD BCD S S S S ∆∆∆--=梯形552142219)52(21⨯⨯-⨯⨯-⨯+⨯=15=. 21.(本题共2小题,每题5分,满分10分) 解:(1)∵BC AD //∴ACB DAC ∠=∠;又AC 平分DCB ∠∴ACB DCA ∠=∠;∴DCA DAC ∠=∠;∴DC AD =;∵AB DE //,AC AB ⊥,可得AC DE ⊥;∴CF AF =;∴CE BE =. ∵BC AD //,AB DE //,∴四边形ABED 是平行四边形;∴AB DE =; ∴=DE a AB =,=EC b BC 2121=;∴b a DC 21+=. (2)∵ACB DCF ∠=∠,︒=∠=∠90BAC DFC ;∴DFC ∆∽BAC ∆;∴21==CA CF BC DC ;又3==AD CD ,解得6=BC ; 在BAC Rt ∆中,︒=∠90BAC ,∴52462222=-=-=AB BC AC ; ∴25452tan ===AB AC B . 22.(本题共2小题,第(1)小题4分,第(2)小题6分,满分10分) 解:(1)过点C 作AB CD ⊥,垂足为D .由题意,得︒=∠30ACD ;在ACD Rt ∆中,︒=∠90ADC ,∴ACCD ACD =∠cos ; ∴3602312030cos =⨯=︒⋅=AC CD (海里). (2)在BCD Rt ∆中,︒=∠90BDC ,︒=∠45DCA ,∴BC CD BCD =∠cos ; ∴4.14644.2606602236045cos =⨯≈==︒=CD BC (海里); ∴3.732.7204.146≈=÷(小时).答:该海轮从A 处到B 处的航行过程中与小岛C 之间的最短距离是360海里;它从B 处到达小岛C 的航行时间约为3.7小时.23.(本题共2小题,第(1)小题4分,第(2)小题8分,满分12分)23.证明:(1)∵CE AD CD AE ⋅=⋅,∴CDAD CE AE =;∵B DAB ∠=∠,∴BD AD =; ∴CDBD CE AE =;∴AB DE //. (2)∵BD 是DF 和AB 的比例中项,∴AB DF BD ⋅=2;又BD AD =,∴AB DF AD ⋅=2;∴ADAB DF AD =; ∵AB DE //,∴BAD ADF ∠=∠;∴ADF ∆∽DBA ∆;∴1==BD AD DF AF ;∴AF DF =.24.(本题共3小题,每题4分,满分12分)解:(1)∵抛物线32++-=bx x y 与y 轴交于点C ,∴)3,0(C ;又抛物线32++-=bx x y 与x 轴交于点A 和点B (点A 在点B 的左侧),∵OC OB =;∴)0,3(B ;∴0339=++-b ,解得2=b ;∴322++-=x x y ;∴)4,1(D .(2)∵OC OB =,∴︒=∠=∠45OBC OCB ; ∵)3,0(C ,)4,1(D ,∴︒=∠45DCy ;∴︒=︒⨯-︒=∠90452180DCB ;∴3223cot ===∠DC BC DBC . (3)由322++-=x x y ,可得)0,1(-A .在AOC ∆和BCD ∆中,3==CDBC AO CO , ︒=∠=∠90DCB AOC ,∴AOC ∆∽BCD ∆,∴CBD ACO ∠=∠;又CBD E OCB ACO ACB ∠+∠=∠+∠=∠,∴︒=∠=∠45OCB E ;当EBM ∆和ABC ∆相似时,已可知CBA E ∠=∠;又点M 在线段CA 延长线上,EBA ACB ∠=∠,∴可得ACB EMB ∠=∠; ∴23==BC MB ;由题意,得直线AC 的表达式为33+=x y ;设)33,(+x x M .∴18)33()3(22=++-x x ,解得561-=x ,02=x (舍去);∴点M 的坐标是)53,56(--. 25.(本题满分14分)解:(1)过点D 作AC DF //.交BP 于点F . ∴21==QE DQ PE DF ;又BC DE //,∴1==AB AC BD EC ; ∴x BD EC ==;y x PE --=3; ∵AC DF //,∴AB BD AP DF =;即323x y y x =--,∴3239+-=x x y ;定义域为:30<<x .(2)∵BC DE //,∴PEQ ∆∽PBC ∆;∴当PEQ ∆是等腰三角形时,PBC ∆也是等腰三角形;︒1当BC PB =时,ABC ∆∽PBC ∆;∴AC CP BC ⋅=2;即)3(34y -=,解得35=y ,∴353239=+-x x ,解得1912==x BD ; ︒2当2==BC PC 时,1==y AP ;∴13239=+-x x ,56==x BD ; Q PD BA CE F︒3当PB PC =时,点P 与点A 重合,不合题意.(3)∵BC DE //,∴︒=∠+∠180CBD BDQ ;又CQB ∠和CBD ∠互补,∴︒=∠+∠180CBD CQB ;∴BDQ CQB ∠=∠;∵CE BD =,∴四边形BCED 是等腰梯形;∴CED BDE ∠=∠;∴CED CQB ∠=∠;又CED ECQ CQB DQB ∠+∠=∠+∠,∴ECQ DQB ∠=∠;∴BDQ ∆∽QEC ∆;∴EC DQ QE BD =:即222x DQ =,∴2x DQ =,23x DE =; ∵BC DE //,∴AB AD BC DE =;即33223x x -=; 解得 7324254-=x . 2016学年上海市长宁区、金山区初三一模数学试卷(满分150分,考试时间100分钟)一、选择题(本大题共6题,每题4分,满分24分)1.在平面直角坐标系中,抛物线()212y x =--+的顶点坐标是( )A. (-1,2)B. (1,2)C. (2,-1)D. (2,1)2.在ABC ∆中,90C ∠=︒,5AB =,4BC =,那么A ∠的正弦值是( ) A. 34 B.43 C. 35 D. 45 3.如图,下列能判断BC ED ∥的条件是( ) A. ED AD BC AB = B. ED AE BC AC = C. AD AE AB AC = D. AD AC AB AE= 4.已知1O 与2O 的半径分别是2和6,若1O 与2O 相交,那么圆心距12O O 的取值范围是( )A. 2<12O O <4B.2<12O O <6C. 4<12O O <8D. 4<12O O <105.已知非零向量a 与b ,那么下列说法正确的是( )A. 如果a b =,那么a b =;B. 如果a b =-,那么a b ∥第3题图D E ABCC. 如果a b ∥,那么a b =;D. 如果a b =-,那么a b =6.已知等腰三角形的腰长为6cm ,底边长为4cm ,以等腰三角形的顶角的顶点为圆心5cm 为半径画圆,那么该圆与底边的位置关系是( )A. 相离B. 相切C. 相交D.不能确定二、填空题(本大题共12题,每题4分,满分48分)7. 如果()340x y x =≠,那么x y=__________. 8. 已知二次函数221y x x =-+,那么该二次函数的图像的对称轴是__________.9. 已知抛物线23y x x c =++于y 轴的交点坐标是(0,-3),那么c =__________.10. 已知抛物线2132y x x =--经过点(-2,m ),那么m =___________. 11. 设α是锐角,如果tan 2α=,那么cot α=___________.12. 在直角坐标平面中,将抛物线22y x =先向上平移1个单位,再向右平移1个单位,那么平移后的抛物线解析式是__________. 13. 已知A 的半径是2,如果B 是A 外一点,那么线段AB 长度的取值范围是__________. 14. 如图,点G 是ABC ∆的重心,联结AG 并延长交BC 于点D ,GE AB ∥交BC 与E ,若6AB =,那么GE =___________.15. 如图,在地面上离旗杆BC 底部18米的A 处,用测角仪测得旗杆顶端C 的仰角为30°,已知测角仪AD 的高度为1.5米,那么旗杆BC 的高度为_________米.16. 如图,1O 与2O 相交于A B 、两点,1O 与2O 的半径分别是1,12O O =2,那么两圆公共弦AB 的长为___________.17. 如图,在梯形ABCD 中,AD BC ∥,AC 与BD 交于O 点,:1:2DO BO =,点E 在CB 的延长线上,如果:=1:3AOD ABE S S ∆∆,那么:BC BE =_________.18. 如图,在ABC ∆中,90C ∠=︒,8AC =,6BC =,D 是AB 的中点,点E 在边AC 上,将ADE ∆沿DE 翻折,使得点A 落在点'A 处,当'A E AC ⊥时,'A B =___________.三、解答题(本大题共7题,满分78分) 19 . (本题满分10分)计算:21tan 45sin 30tan 30cos60cot 303sin 45︒︒⋅︒-︒⋅︒+︒20.(本题满分10分,第(1)小题满分4分,第(2)小题满分6分)如图,在ABC ∆中,D 是AB 中点,联结CD .(1)若10AB =且ACD B ∠=∠,求AC 的长.(2)过D 点作BC 的平行线交AC 于点E ,设DE a =,DC b =,请用向量a 、b 表示AC 和AB (直接写出结果)21.(本题满分10分,第(1)小题满分5分,第(2)小题满分5分)如图,ABC ∆中,CD AB ⊥于点D ,D 经过点B ,与BC 交于点E ,与AB 交与点F .已知1tan 2A =,3cot 4ABC ∠=,8AD =.求(1)D 的半径;(2)CE 的长. 22.(本题满分10分,第(1)小题满分5分,第(2)小题满分5分)如图,拦水坝的横断面为梯形ABCD ,AB CD ∥,坝顶宽DC 为6米,坝高DG 为2米,迎水坡BC 的坡角为30°,坝底宽AB 为(.(1)求背水坡AD 的坡度;(2)为了加固拦水坝,需将水坝加高2米,并保持坝顶宽度不变,迎水坡和背水坡的坡度也不变,求加高后坝底HB 的宽度.23.(本题满分12分,第(1)小题满分6分,第(2)小题满分6分)如图,已知正方形ABCD ,点E 在CB 的延长线上,联结AE 、DE ,DE 与边AB 交于点F ,FG BE ∥且与AE 交于点G.(1)求证:=GF BF .(2)在BC 边上取点M ,使得BM BE =,联结AM 交DE 于点O .求证:FO ED OD EF ⋅=⋅24.(本题满分12分,第(1)小题满分4分,第(2)小题满分4分,第(3)小题满分4分)在平面直角坐标系中,抛物线22y x bx c =-++与x 轴交于点A 、B (点A 在点B 的右侧),且与y 轴正半轴交于点C ,已知A (2,0)(1)当B (-4,0)时,求抛物线的解析式;(2)O 为坐标原点,抛物线的顶点为P ,当tan 3OAP ∠=时,求此抛物线的解析式;(3)O 为坐标原点,以A 为圆心OA 长为半径画A ,以C 为圆心,12OC 长为半径画圆C ,当A 与C 外切时,求此抛物线的解析式.25.(本题满分14分,第(1)小题满分4分,第(2)小题满分4分,第(3)小题满分6分)已知ABC ∆,5AB AC ==,8BC =,PDQ ∠的顶点D 在BC 边上,DP 交AB 边于点E ,DQ 交AB 边于点O 且交CA 的延长线于点F (点F 与点A 不重合),设PDQ B ∠=∠,3BD =.(1)求证:BDE CFD ∆∆∽;(2)设BE x =,OA y =,求y 关于x 的函数关系式,并写出定义域;(3)当AOF ∆是等腰三角形时,求BE 的长.2017年崇明县初三数学一模试卷一、选择题:1.如果)均不为,(0y x 3y 5x =,那么y x :的值是( )2.在ABC R △t 中,,13,1290∠==°=BC AC A ,那么B tan 的值是( )3.抛物线23x y =向上平移2个单位长度后所得新抛物线的顶点坐标为( )4.设),2(),,1(),y -2(321y C y B A ,是抛物线a )1x (y 2++=上的三点,那么321y y y ,,的大小关系为( )5.如图,给出下列条件:①;ACD B ∠∠=②;∠∠ACB ADC =③BC AB CD AC =④,2AB AD AC •=其中不能判定ACD ABC ~△△的条件为( )6.如图,圆O 过点C B 、,圆心O 在等腰直角三角形ABC 内部,,6,190∠==°=BC OA BAC ,那么圆O 的半径为( )二、填空题 7.如果)b -a 2(3b a =+,用a 表示b ,那么b =8.如果两个相似三角形的对应高之比为21:,那么他们的对应中线的比为9.已知线段AB 的长度为4,C 是线段AB 的黄金分割点,且CB CA >那么CA 的长度为 ___10.如图,,∥∥FC BE AD 他们依次交直线21l l 、于点C B A 、、和点,、、F E D 如果2,7.53AB DF BC ==,那么DE 的长为11.如图,为了估计河的宽度,在河的对岸选定一个目标点P ,在近岸取点Q 和S ,使点P 、Q 、S 在一条直线上,且直线PS 与河垂直,在过点S 且与直线PS 垂直的直线a 上选择适当的点T ,PT 与过点Q 且与PS 垂直的直线b 的交点为R .如果QS =60m ,ST =120m ,QR =80m ,那么PQ 为 m .12.如果两圆的半径分别为2cm 和6cm ,圆心距为3cm ,那么两圆的位置关系是 ;13.如果一个圆的内接正六边形的周长为36,那么这个圆的半径为 ;14.如果一条抛物线的顶点坐标为(2,1)-,并过点(0,3),那么这条抛物线的解析式为 ;15.如图,在平地上种植树时,要求株距(相邻两树间的水平距离)为4m .如果在坡度为1:2的山坡上种植树,也要求株距为4m ,那么相邻两树间的坡面距离为 m.16.如图,6个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点,已知菱形的一个角(O ∠)为60,A ,B ,C 都在格点上,那么tan ABC ∠的值是 ;17.如图,O 的半径是4,ABC ∆是O 的内接三角形,过圆心O 分别作AB ,BC ,AC 的垂线,垂足为E ,F ,G ,连接EF ,如果1OG =,那么EF 为 ;18.如图,已知 ABC ∆中,45ABC ∠=,AH BC ⊥于点H ,点D 在AH 上,且DH CH =,联结BD ,将BHD 绕点H 旋转,得到EHF ∆(点B 、D 分别与点E 、F 对应),联结AE ,当点F 落在AC 上时,(F 不与C 重合)如果4BC =,tan 3C =,那么AE 的长为 ;三、解答题(本大题共7题,满分78分)19.(本题满分10分)计算: 2sin 30cot 602sin 45⋅+20.(本题10分,第一小题6分,第二小题4分) 如图,在ABC △中,点D 、E 分别在边AB 、AC 上,如果DE BC ∥,12AD BD =,DA a =,DC b =. (1)请用a 、b 来表示DE ; (2)在原图中求作向量DE 在a 、b 方向上的分向量.(不要求写作法,但要指出所作图中表示结论的向量)21. (本题满分10分)如图,小东在教学楼距地面9米高的窗口C 处,测得正前方旗杆顶部A 点的仰角为︒37 旗杆底部B 的俯角为︒45,升旗时,国旗上端悬挂在距地面25.2米处,若国旗随国歌声冉冉升起,并在国歌播放45秒结束时到达旗杆顶端,则国旗应以多少米/秒的速度匀速上升?(参考数据:60.037sin ≈︒,80.037cos ≈︒,75.037tan ≈︒)22. (本题满分10分)如图,矩形EFGD 的边EF 在ABC ∆的边BC 上,顶点D 、G 分别在边AB 、AC 上,且EF DE 2=,ABC ∆中,边BC 的长度为cm 12,高AH 为cm 8 ,求矩形DEFG 的面积. 23. (本题满分12分,其中每小题各6分)如图,在Rt ABC 中,︒=∠90ACB ,AB CD ⊥,M 是CD 边上一点,BM DH ⊥于点H ,DH 的延长线交AC 的延长线于点E .求证:(1)AED ∆∽CBM ∆;(2)CD AC CM AE ⋅=⋅.24.(本题满分12分,其中每小题各4分)在平面直角坐标系中,抛物线235y x bx c =-++与y 轴交于点)3,0(A ,与x 轴的正半轴交于点)0,5(B ,点D 在线段OB 上,且1=OD ,联结AD 、将线段AD 绕着点D 顺时针旋转︒90.得到线段DE ,过点E 作直线x l ⊥轴,垂足为H ,交抛物线于点F .(1)求这条抛物线的解析式;(2)联结DF ,求EDF ∠cot 的值;(3)点G 在直线l 上,且︒=∠45EDG ,求点G 的坐标.25. (本题满分14分,其中第(1)小题4分,第(2)小题4分,第(3)小题4分) 在ABC ∆中,︒=∠90ACB ,23cot =A ,26=AC ,以BC 为斜边向右侧作等腰直角EBC ∆,P 是BE 延长线上一点,联结PC ,以PC 为直角边向下方作等腰直角PCD ∆,CD 交线段BE 于点F,联结BD .(1)求证:BC CE CD PC =; (2)若x PE =,BDP ∆的面积为y ,求y 关于x 的函数解析式,并写出定义域;(3)当BDF ∆为等腰三角形时,求PE 的长.参考答案1.B2.B3.D4.C5.C6..A7.53a 8.1:2 9.2 10.3 11.120 12.内含 13.614.()221y x =-- .15.19.56 20(1).2133DE a b =+23.略 24.(1)2312355y x x =-++ (2)2 (3)(4,6)或34,2⎛⎫- ⎪⎝⎭ 25.(1)略(2)24(04)2x x y x +=<≤ (3)4或4 2017年上海市宝山区初三数学一模试卷一、选择题:(本大题共6题,每题4分,满分24分)1.已知∠A=30°,下列判断正确的是( )A .sinA=B .cosA=C .tanA=D .cotA=2.如果C 是线段AB 的黄金分割点C ,并且AC >CB ,AB=1,那么AC 的长度为( )A .B .C .D .3.二次函数y=x 2+2x+3的定义域为( )A .x >0B .x 为一切实数C .y >2D .y 为一切实数4.已知非零向量、之间满足=﹣3,下列判断正确的是( )A .的模为3B .与的模之比为﹣3:1C .与平行且方向相同D .与平行且方向相反5.如果从甲船看乙船,乙船在甲船的北偏东30°方向,那么从乙船看甲船,甲船在乙船的( )A .南偏西30°方向B .南偏西60°方向C .南偏东30°方向D .南偏东60°方向6.二次函数y=a (x+m )2+n 的图象如图,则一次函数y=mx+n 的图象经过( )A .第一、二、三象限B .第一、二、四象限C .第二、三、四象限D .第一、三、四象限二、填空题:(本大题共12小题,每题4分,满分48分)7.已知2a=3b ,则= .8.如果两个相似三角形的相似比为1:4,那么它们的面积比为 .9.如图,D 为△ABC 的边AB 上一点,如果∠ACD=∠ABC 时,那么图中 是AD 和AB 的比例中项.第9题图 第10题图 第12题图10.如图,△ABC 中∠C=90°,若CD ⊥AB 于D ,且BD=4,AD=9,则tanA= .11.计算:2(+3)﹣5= .12.如图,G 为△ABC 的重心,如果AB=AC=13,BC=10,那么AG 的长为 .13.二次函数y=5(x ﹣4)2+3向左平移二个单位长度,再向下平移一个单位长度,得到的函数解析式是 .14.如果点A (1,2)和点B (3,2)都在抛物线y=ax 2+bx+c 的图象上,那么抛物线y=ax 2+bx+c 的对称轴是直线 .15.已知A (2,y 1)、B (3,y 2)是抛物线y=﹣(x ﹣1)2+的图象上两点,则y 1 y 2.(填不等号) 16.如果在一个斜坡上每向上前进13米,水平高度就升高了5米,则该斜坡的坡度i= .17.数学小组在活动中继承了学兄学姐们的研究成果,将能够确定形如y=ax 2+bx+c 的抛物线的形状、大小、开口方向、位置等特征的系数a 、b 、c 称为该抛物线的特征数,记作:特征数{a 、b 、c},(请你求)在研究活动中被记作特征数为{1、﹣4、3}的抛物线的顶点坐标为 .18.如图,D 为直角△ABC 的斜边AB 上一点,DE ⊥AB 交AC 于E ,如果△AED 沿DE 翻折,A恰好与B 重合,联结CD 交BE 于F ,如果AC ═8,tanA ═,那么CF :DF ═ .三、解答题:(本大题共7小题,满分78分)19.计算:﹣cos30°+0.20.如图,在△ABC 中,点D 、E 分别在边AB 、AC 上,如果DE ∥BC ,且DE=BC .(1)如果AC=6,求CE 的长;(2)设=, =,求向量(用向量、表示).21.如图,AB 、CD 分别表示两幢相距36米的大楼,高兴同学站在CD 大楼的P 处窗口观察AB 大楼的底部B 点的俯角为45°,观察AB 大楼的顶部A 点的仰角为30°,求大楼AB 的高.22.直线l :y=﹣x+6交y 轴于点A ,与x 轴交于点B ,过A 、B 两点的抛物线m 与x 轴的另一个交点为C ,(C 在B 的左边),如果BC=5,求抛物线m 的解析式,并根据函数图象指出当m 的函数值大于0的函数值时x 的取值范围.23.如图,点E 是正方形ABCD 的对角线AC 上的一个动点(不与A 、C 重合),作EF ⊥AC 交边BC 于点F ,联结AF 、BE 交于点G .(1)求证:△CAF ∽△CBE ;(2)若AE :EC=2:1,求tan ∠BEF 的值.24.如图,二次函数y=ax 2﹣x+2(a ≠0)的图象与x 轴交于A 、B 两点,与y 轴交于点C ,已知点A(﹣4,0).(1)求抛物线与直线AC的函数解析式;(2)若点D(m,n)是抛物线在第二象限的部分上的一动点,四边形OCDA的面积为S,求S关于m的函数关系;(3)若点E为抛物线上任意一点,点F为x轴上任意一点,当以A、C、E、F为顶点的四边形是平行四边形时,请直接写出满足条件的所有点E的坐标.25.如图(1)所示,E为矩形ABCD的边AD上一点,动点P、Q同时从点B出发,点P以1cm/秒的速度沿折线BE﹣ED﹣DC运动到点C时停止,点Q以2cm/秒的速度沿BC运动到点C时停止.设P、Q同时出发t秒时,△BPQ的面积为ycm2.已知y与t的函数关系图象如图(2)(其中曲线OG为抛物线的一部分,其余各部分均为线段).(1)试根据图(2)求0<t≤5时,△BPQ的面积y关于t的函数解析式;(2)求出线段BC、BE、ED的长度;(3)当t为多少秒时,以B、P、Q为顶点的三角形和△ABE相似;(4)如图(3)过E作EF⊥BC于F,△BEF绕点B按顺时针方向旋转一定角度,如果△BEF 中E、F的对应点H、I恰好和射线BE、CD的交点G在一条直线,求此时C、I两点之间的距离.2017年上海市宝山区中考数学一模试卷参考答案与试题解析一、选择题:(本大题共6题,每题4分,满分24分)1.已知∠A=30°,下列判断正确的是()A.sinA= B.cosA= C.tanA= D.cotA=故选:A.2.如果C是线段AB的黄金分割点C,并且AC>CB,AB=1,那么AC的长度为()A.B.C.D.故选:C.3.二次函数y=x2+2x+3的定义域为()A.x>0 B.x为一切实数C.y>2 D.y为一切实数故选B4.已知非零向量、之间满足=﹣3,下列判断正确的是()A.的模为3 B.与的模之比为﹣3:1C.与平行且方向相同D.与平行且方向相反故选:D.5.如果从甲船看乙船,乙船在甲船的北偏东30°方向,那么从乙船看甲船,甲船在乙船的( )A .南偏西30°方向B .南偏西60°方向C .南偏东30°方向D .南偏东60°方向故选:A .6.二次函数y=a (x+m )2+n 的图象如图,则一次函数y=mx+n 的图象经过( )A .第一、二、三象限B .第一、二、四象限C .第二、三、四象限D .第一、三、四象限故选C .二、填空题:(本大题共12小题,每题4分,满分48分)7.已知2a=3b ,则= . 8.如果两个相似三角形的相似比为1:4,那么它们的面积比为 1:16 .9.如图,D 为△ABC 的边AB 上一点,如果∠ACD=∠ABC 时,那么图中 AC 是AD 和AB 的比例中项.10.如图,△ABC 中∠C=90°,若CD ⊥AB 于D ,且BD=4,AD=9,则tanA= .11.计算:2(+3)﹣5= 2+ .12.如图,G 为△ABC 的重心,如果AB=AC=13,BC=10,那么AG 的长为 8 .13.二次函数y=5(x ﹣4)2+3向左平移二个单位长度,再向下平移一个单位长度,得到的函数解析式是 y=5(x ﹣2)2+2 .14.如果点A (1,2)和点B (3,2)都在抛物线y=ax 2+bx+c 的图象上,那么抛物线y=ax 2+bx+c 的对称轴是直线 x=2 .15.已知A (2,y 1)、B (3,y 2)是抛物线y=﹣(x ﹣1)2+的图象上两点,则y 1 > y 2.(填不等号) 16.如果在一个斜坡上每向上前进13米,水平高度就升高了5米,则该斜坡的坡度i= 1:2.4 .17.数学小组在活动中继承了学兄学姐们的研究成果,将能够确定形如y=ax 2+bx+c 的抛物线的形状、大小、开口方向、位置等特征的系数a 、b 、c 称为该抛物线的特征数,记作:特征数{a 、b 、c},(请你求)在研究活动中被记作特征数为{1、﹣4、3}的抛物线的顶点坐标为 (2,﹣1) .18.如图,D 为直角△ABC 的斜边AB 上一点,DE ⊥AB 交AC 于E ,如果△AED 沿DE 翻折,A恰好与B 重合,联结CD 交BE 于F ,如果AC ═8,tanA ═,那么CF :DF ═ 6:5 .解:∵DE ⊥AB ,tanA ═,∴DE=AD ,∵Rt △ABC 中,AC ═8,tanA ═,。
2016年中考第一次模拟考试数学试卷(含部分答案)
∴四边形EBFD是平行四边形.…………………4分(其它方法参照给分.)
(2)GF∥EH,AE∥FC.…………………………9分
24解:(1)证明:如图①,连接OC,则OC⊥EF,且OC=OA,…………1分
∴∠OCA=∠OAC.
∵AD⊥EF,
∴OC∥AD.
∴∠OCA=∠CAD,
∴∠CAD=∠OAC.…………3分
AD∥BC,∠ABC=∠ADC.………………1分
∵BE平分∠ABC,
∴∠ABE=∠EBC=∠ABC.
∵DF平分∠ADC,
∴∠ADF=∠CDF=∠ADC.
∵∠ABC=∠ADC.
∴∠ABE=∠EBC=∠ADF=∠CDF.………2分
∵AD∥BC,
∴∠AEB=∠EBC.
∴∠AEB=∠ADF.
∴EB∥DF.………………………………………3分
即∠CAD=∠BAC.…………4分
(2)与∠CAD相等的角是∠BAG.…………5分
证明如下:如图②,连接BG.
∵四边形ACGB是⊙O的内接四边形,
∴∠ABG+∠ACG=180°.…………6分
∵D,C,G共线,
∴∠ACD+∠ACG=180°.∴∠AC Nhomakorabea=∠ABG.
∵AB是⊙O的直径,
∴∠BAG+∠ABG=90°
画树状图得:
……………………………………4分
∵共有9种等可能的结果,小明顺利通关的只有1种情况,
∴小明顺利通关的概率为:.………………………………………………………6分
(3)∵如果在第一题使用“求助”小明顺利通关的概率为:;如果在第二题使用“求助”小明顺利通关的概率为:.
∴建议小明在第一题使用“求助”.………………9分
2016年上海市各区县中考数学一模压轴题图文解析18题
答案
10 2 或 .思路如下: 10 2
1 ,可得BE=2,AE =4. 2
如图2,在 Rt△ABE 中,由AB= 2 5 ,cotB=
在Rt△ACE中,由AE=4, CE=BC-BE=6 -2=4,可得AC= 4 2 ,∠ACE=45°. ①如图 3,当点 B′在 BC 边上时,B′E =BE=2. 在等腰直角三角形 B′CH 中,B′C= 2,所以 B′H=CH = 2 . 在 Rt△ AB′H,B′H= 2 ,AH=AC- CH= 3 2 ,所以 AB′= 2 5 . 此时 sin∠CAB′=
5 7
DM △MBD的周长 AB BD . ND △DCN的周长 AC DC
如图3, 设等边三角形 ABC的边长为4 , 当BD∶DC=1∶3 时,
AM DM 4 1 5 . AN ND 4 3 7源自图2图32例
2016 年上海市奉贤区中考一模第 18 题
如图 1,已知平行四边形 ABCD 中,AB= 2 5 ,AD=6,cotB=
B'H 2 10 . AB ' 2 5 10
②如图 4,当点 B′在 AD 边上时,∠ CAB′=45°.此时 sin∠ CAB′=
2 . 2
图2
图3
图4
3
本讲义由《挑战中考数学压轴题》的作者马学斌老师制作
例
2016 年上海市虹口区中考一模第 18 题
如图 1,在矩形 ABCD 中,AB=6,AD=10,点 E 是 BC 的中点,联结 AE,若将△ABE
答案
2 .思路如下: 2 2 . 2 2 . 2
在Rt△AEM中,AE=1,∠EAM=45°,所以EM=AM=
由△EMD≌△DNC,得MD= NC=2EM= 2 .所以AD=
2016上海十七区初三中考数学一模试卷汇总(WORD)
初三一轮数学检测卷(2016奉贤一模)一. 选择题1. 用一个4倍放大镜照△,下列说法错误的是()A.△放大后,是原来的4倍;B.△放大后,边是原来的4倍;C. △放大后,周长是原来的4倍;D.△放大后,面积是原来的16倍;2. 抛物线的对称轴是()A.直线;B. 直线;C. 直线;D. 直线;3. 抛物线与轴的交点个数是()A.0个;B. 1个;C. 2个;D. 3个;4. 在△中,点、分别是边、上的点,且有,,那么的值为()A. 3;B. 6;C. 9;D. 12;5. 已知△中,,,,那么下列说法正确的是()A. ;B. ;C. ;D. ;6. 下列关于圆的说法,正确的是()A. 相等的圆心角所对的弦相等;B. 过圆心且平分弦的直线一定垂直于该弦;C. 经过半径的端点且垂直于该半径的直线是圆的切线;D. 相交两圆的连心线一定垂直且平分公共弦;二. 填空题7. 已知,那么;8. 二次函数的顶点坐标为;9. 一条斜坡长4米,高度为2米,那么这条斜坡坡比;10. 如果抛物线的开口向下,那么的取值范围是;11. 从观测点观察到楼顶的仰角为,那么从楼顶观察观测点的俯角为;12. 在以为坐标原点的直角坐标平面内有一点,如果与轴正半轴的夹角为,那么角的余弦值为;13. 如图△中,平分,∥,若,,那么;14. 线段长,点在线段上,满足,则的长为;15. 的半径,的半径,若此两圆有且仅有一个交点,那么这两圆的圆心距;16. 已知抛物线,经过点和点,那么;17. 如图,△中,,,点在边上,,且有,那么的长是;18. 如图,已知平行四边形中,,,,将边绕点旋转,使得点落在平行四边形的边上,其对应点为(点不与点重合),那么;三. 解答题19. 计算:;20. 如图,已知∥∥,,;(1);(用来表示)(2)求作向量在、方向上的分向量;(不要求写作法,但要指出所表示向量)21. 为方便市民通行,某广场计划对坡角为,坡长为米的斜坡进行改造,在斜坡中点处挖去部分坡体(阴影表示),修建一个平行于水平线的平台和一条新的斜坡;(1)若修建的斜坡的坡角为,则平台的长约为多少米?(2)在距离坡角点米远的处是商场主楼,小明在点测得主楼顶部的仰角为,那么主楼高约为多少米?(结果取整数,参考数据:,,,)22. 如图,在中,为直径,点为的中点,直径交弦于,,;(1)求半径的值;(2)点在直径上,联结,当时,求的长;23. 已知在梯形中,∥,,;(1)求证:△∽△;(2)联结,若,求证:;24. 如图,二次函数图像经过原点和点,直线与抛物线交于点,且;(1)求二次函数解析式及其顶点的坐标;(2)在直线上是否存在点,使得△为直角三角形,若存在,求出点的坐标,若不存在,说明理由;25. 已知如图,△中,,,,点是斜边上任意一点,联结,过点作,联结,使得,联结;(1)求证:;(2)设,四边形的面积为,求与之间的函数关系式,并写出定义域;(3)当时,求的值;初三一轮数学检测卷(2016奉贤一模)参考答案一. 选择题1. A2. C3. C4. B5. B6. D二. 填空题7. 8. 9. 10.11. 12. 13. 14.15. 或 16. 17. 18. 或三. 解答题19. ;20.(1);(2)略;21.(1);(2);22.(1);(2);23. 略;24.(1),;(2)或;25.(1)略;(2);(3)或;初三一轮数学检测卷(2016浦东一模)一. 选择题1. 如果两个相似三角形对应边之比是,那么它们的对应边上的中线之比是()A.;B. ;C. ;D. ;2. 在△中,,若,,则的值为()A.;B. ;C. ;D. ;3. 如图,点、分别在、上,以下能推得∥的条件是()A.;B. ;C.;D. ;4. 已知二次函数的图像如图所示,那么、、的符号为()A. ,,;B. ,,;C. ,,;D. ,,;5. 如图,△中,,于点,下列结论中错误的是()A. ;B. ;C. ;D. ;6. 下列命题是真命题的是()A. 有一个角相等的两个等腰三角形相似;B. 两边对应成比例且有一个角相等的两个三角形相似;C. 四个内角都对应相等的两个四边形相似;D. 斜边和一条直角边对应成比例的两个直角三角形相似;二. 填空题7. 已知,那么;8. 计算:;9. 上海与杭州的实际距离约千米,在比例尺为的地图上,上海与杭州的图上距离约厘米;10. 某滑雪运动员沿着坡比为的斜坡向下滑行了100米,则运动员下降的垂直高度为米;11. 将抛物线向下平移2个单位,得到新抛物线的函数解析式是;12. 二次函数的图像如图所示,对称轴为直线,若此抛物线与轴的一个交点为,则抛物线与轴的另一个交点坐标是;13. 如图,已知是△的中线,点是△的重心,,那么用向量表示向量为;14. 如图,△中,,,是△的边上的点,且,那么的长是;15. 如图,直线∥∥,如果,,,那么线段的长是;16. 如图是小明在建筑物上用激光仪测量另一建筑物高度的示意图,在地面点处水平放置一平面镜,一束激光从点射出经平面镜上的点反射后刚好射到建筑物的顶端处;已知,,且测得米,米,米,、、在一条直线上,那么建筑物的高度是米;17. 若抛物线与轴交于点、,与轴交于点,则称△为“抛物三角形”;特别地,当时,称△为“正抛物三角形”;当时,称△为“倒抛物三角形”;那么,当△为“倒抛物三角形”时,、应分别满足条件;18. 在△中,,,,是边上的一点,是边上的一点(、均与端点不重合),如果△与△相似,那么;三. 解答题19. 计算:;20. 二次函数的变量与变量的部分对应值如下表:(1)求此二次函数的解析式;(2)写出抛物线顶点坐标和对称轴;21. 如图,梯形中,∥,点是边的中点,联结并延长交的延长线于点,交于点;(1)若,,求线段的长;(2)求证:;22. 如图,为一条东西方向的笔直公路,一辆小汽车在这段限速为80千米/小时的公路上由西向东匀速行驶,依次经过点、、,是一个观测点,,60米,,,测得该车从点行驶到点所用时间为1秒;(1)求、两点间的距离;(2)试说明该车是否超过限速;23. 如图,在△中,是边的中点,交于点,,交于点;(1)求证:△∽△;(2)求证:;24. 如图,抛物线与轴交于、两点(在的左侧),与轴交于点,抛物线的顶点为;(1)求、的值;(2)求的值;(3)若点是线段上一个动点,联结;问是否存在点,使得以点、、为顶点的三角形与△相似?若存在,求出点坐标;若不存在,请说明理由;25. 如图,在边长为6的正方形中,点为边上的一个动点(与点、不重合),,交对角线于点,交对角线于点,交于点;(1)如图1,联结,求证:△∽△,并写出的值;(2)联结,如图2,设,,求关于的函数解析式,并写出定义域;(3)当为边的三等分点时,求的面积;初三一轮数学检测卷(2016浦东一模)参考答案一. 选择题1. B2. C3. C4. A5. B6. D二. 填空题7. 8. 9. 10.11. 12. 13. 14.15. 16. 17. 18. 或或三. 解答题19. ;20.(1);(2)对称轴,顶点坐标;21.(1);(2)略;22.(1);(2)不超速;23. 略;24.(1),;(2);(3),;25.(1);(2);(3)或;普陀区2015-2016年度第一学期初三质量调研一、选择题:(本大题共6题,每题4分,满分24分)1、如图1,相交于点,下列条件中,能推得的条件是()2、在中,点分别是边的中点,,如果的面积等于3,那么的面积等于()B、C、D、3、如图2.在中,,是斜边AB上的高,下列线段的比值不等于的值是()4、如图同号,那么二次函数的大致图像是()5、下列命题中,正确的是()A、圆心角相等,所对的弦的弦心距相等B、三点确定一个圆C、平分弦的直径垂直于弦,并且平分弦所对的弧D、弦的垂直平分线必经过圆心6、已知在平行四边形中,点分别是边的中点,如果,,那么向量关于的分解式是()二、填空(12*4=48)7.如果,那么=_______.8.计算:_________.9._________.10.已知点P把线段AB分割成AP和PB(AP>PB)两段,如果AP是AB和PB的比例中项,那么AP:BP的值为_____.11.在函数①,②,③,④中,关于的二次函数是_____.(填写序号)12.二次函数的图像有最_________点.(填:“高”或“低”)13.如果抛物线的顶点坐标为,那么的值等于_________.14.如图3,点G为的重心,DE经过点G,如果DE的长是4,那么CF的长是______.15.如图4,半圆形纸片的半径长是1cm,用如图所示的方法将纸片对折,使对折后半圆的中点M与圆心O重合,那么折痕CD的长是_________cm.16.已知在中,,点P、Q分别在边AB、AC上,AC=4,BC=AQ=3,如果与相似,那么AP的长等于_________.17.某货站用传送带传送货物,为了提高传送过程的安全性,工人师傅将原来坡角为的传送带AB,调整为坡度为的新传送带AC(如图5所示),已知原传送带AB的长是米,那么新传送带AC的长是_______米.18.已知是平面直角坐标系中的一点,点B是轴负半轴上一动点,联结AB,并以AB 为边在轴上方作矩形ABCD,且满足,设点C的横坐标是,如果用含的代数式表示点D的坐标,那么点D的坐标是_________.三,填空题:(本大题共7题,满分78分)19、(本题满分10分)已知:如图6,在梯形中,,,点M是边BC的中点,(1)填空:(结果用表示)(2)直接在图中画出向量(不要写作法,但要指出图中表示结论的向量)20、(本题满分10分)将抛物线先向上平移2个单位,再向左平移个单位,所得抛物线经过(—1,4),求新抛物线的解析式及新抛物线与y轴交点的坐标。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年金山区数学一模
(试卷含答案)
一、选择题:(本大题共6小题,每题4分,满分24分)单选
1.如果两个相似三角形的相似比是1:2,那么它们的面积比是( )
A. 1:2 B . 1:4 C. 1: D. 2:1
2.如图,在△ABC 中,∠ADE=
∠B ,DE:BC=2:3
,则下列正确的结论是(
A. AD:AB=2:3;
B. AE:AC=2:5;
C. AD:DB=2:3;
D. CE:AE=3:2.
3.在Rt
△ABC 中,∠C=90°,AB=2,AC=1,则sinB 的值是( ) C. D. 2.
4.在△ABC 中,若tanB= ,则这个三角形一定是( ) A. 直角三角形; B. C. 钝角三角形; D. 锐角三角形.
5.已知⊙O 1的半径r 为3cm ,⊙O 2的半径R 为4cm,两圆的圆心距O 1O 2为1cm ,则这两圆的位置关系是( )
A. 相交;
B. 内含;
C. 内切;
D.外切.
6.二次函数y=(x+2)2-1的图像可以由二次函数y=x 2的图像平移而得到,下列平移正确的是( )
A. 先向左平移2个单位,再向上平移1个单位;
B. 先向左平移2个单位,再向下平移1个单位;
C. 先向右平移2个单位,再向上平移1个单位;
D. 先向右平移2个单位,再向下平移1个单位;
二、填空题:(本大题共12小题,每题4分,满分48分) 7.已知抛物线y=x 2+1的顶点坐标是 .
8.已知抛物线y=x 2+bx+3的对称轴为直线x=1,则实数b 的值为 .
9. 已知二次函数y=x 2+bx ,阅读右侧表格信息: 由此可知y 与x 之间的函数关系式是 .
10.已知二次函数y=(x-3)2图像上的两点A (3,a ),B (x ,b ),则a 和b 的大小关系是a b (填>、≥、<或≤).
11.圆是轴对称图形,它的对称轴是 .
12.已知⊙O 的弦AB=8cm ,弦心距OC=3cm ,那么该圆的半径为 cm.
13.如图,AB 是⊙O 的直径,弦CD ⊥AB ,已知AC=1,BC= ,
那么sin ∠ACD 的值是 .
14.王小勇操纵一辆遥控汽车从A 处沿北偏西60°方向走10m 到B 处,
再从B 处向正南方向走20m 到C 处,此时遥控汽车离A 处 m.
2
12223C B
A
16.如图,已知AB ⊥BD ,ED ⊥BD ,C 是线段BD 的中点, 且AC ⊥CE ,ED=1,BD=4,那么AB= .
17.如果把两条邻边中较短边与较长边的比值为
的矩形称
作黄金矩形.现将长度为20cm 的铁丝折成一个黄金矩形,这个
黄金较短的边长是 cm.
18.如图,ABCD 为正方形,E 为BC 上一点,将正方形折叠, 使A 点与E 点重合,折痕为MN ,如果tan ∠AEN= ,
DC+CE=10,那么△ANE 的面积为 .
三、解答题:(本大题共7题,第19-22题,每题10分; 第23、24题每题12分;25题
14分;满分78分)
19.如图,在正方形网格中,每一个小正方形的边长都是1,已知向量 和 的起点、终点都是小
正方形的顶点. 如果,
求作 并写出
的模(不必写出作法,只要指明所求向量).
20.计算:tan 2 30°-(cos75°-cot10°)0+2cos60°-2tan45° 13a b c c c=3a -1
3
b
21.已知△ABC 中,∠CAB=60°,P 为△ABC 内一点且∠APB=∠APC=120° 求证:AP 2=BP ·CP
22.如图,点C 在⊙O 的直径BA 的延长线上,AB=2AC ,CD 切⊙O 于点D ,联结CD 、OD. (1)求∠C 的正切值;
(2)若⊙O 的半径r=2,求BD 的长度.
B
C
B
23.靠校园一侧围墙的体育看台侧面,如图阴影部分所示,看台的二级台阶高度相等,宽度相同.现要用钢管做护栏扶手ACG及三根与水平地面PQ垂直的护栏支架CD、EF和GH(底端D、F、H分别在每级台阶的中点处),已知看台高为1.2米,护栏支架CD=GH=0.8米,∠DCG=66.5°.
(参考数据:sin66.5°≈0.92,cos66.5°≈0.40,tan66.5°≈2.30)
(1)点D与点H的高度差是米.
(2)试求制作护栏扶手和护栏支架的钢管总长度l,即AC+CG+CD+EF+GH的长度.(结果精确到0.1米)
24.如图,直角坐标平面内的梯形OABC,OA在x轴上,OC在y轴上,
OA//BC,点E在对角线OB
上,点D在OC上,直线DE与x轴交于点F,已知OE=2EB,CB=3,OA=6,BA= ,OD=5. (1)求经过A、B、C三点的抛物线解析式;
(2)求证:△ODE∽△OBC;
(3)在y轴上找一点G,使得△OFG∽△ODE,直接写出G点的坐标.
35
25.如图,平行四边形ABCD 中,AB=5,BC=10,sin ∠B= ,E 为BC 边上的一个动点(不与B 、C
重
合),过E 作直线AB 的垂线,垂足为F. FE 与DC 的延长线相交于点G ,联结DE ,DF. (1)当△ABE 恰为直角三角形时,求BF:CG 的值;
(2)当点E 在线段BC 上运动时,△BEF 和△CEG 的周长之和是否是常数,请说明理由; (3)设BE=x ,△DEF 的面积为y ,试求出y 关于x 的函数关系式,并写出定义域.
你们好,我是上海中考公众号的小编,需要找历年其他科目的中考、一模、二模试卷的童鞋可以关注上海中考公众号给我留言,我会发给你们;对上海中考升学那些什么四校八大推优、自荐、自主招生、历年招生录取数据、填志愿等等等等这些闹不清楚的中考政策,有不懂的同学可以给我留言,一一给你掰扯清楚。
我平时整理的一些关于中考升学的文章都会发在公众号上,希望对你们有所帮助。
上海中考
微信号:shzhongkao1
专注于上海中考升学政策、名校招生信息解读,分享一模、二模、自招真题解析,为家长、学生送上第一手中考小道消息。
45
B
B。