第三章热力学第二定律思考题

合集下载

第三章思考题及解答

第三章思考题及解答

第三章思考题及解答1. 理想气体等温膨胀过程中△U = 0, 故有Q = -W , 即膨胀过程中系统所吸收的热全部变成了功,这是否违反了热力学第二定律?为什么?答:不违反热力学第二定律。

热力学第二定律的前提是“不发生其他变化”,应该理解为“系统和环境都完全复原”。

也就是说热力学第二定律是产生在系统“工作了一个循环”这样的前提之下的结论。

2.理想气体等温膨胀过程21ΔlnV S nR V =,因为V 2>V 1,所以ΔS >0。

但是根据熵增原理,可逆过程0S ∆=,这两个结论是否矛盾?为什么?答:不矛盾。

恒温过程只能用克劳修斯不等式判断过程是否可逆,只有绝热过程或隔离系统中发生的变化才能用熵增原理判断过程是否可逆。

3.理想气体自由膨胀过程△T = 0,Q = 0,因此△S =QT= 0, 此结论对吗? 答: 不对。

因该过程为不可逆过程, 所以△S 不能由过程的热温商求算,而应通过设计可逆途径求算。

4.在恒定压力下,用酒精灯加热某物质,使其温度由T 1上升至T 2,此间,没有物质的相变化,则此过程的熵变为21,m d ΔT p T nC T S T=⎰,对吗?如果此间物质发生了相变化,过程熵变应该怎样计算?答:正确。

如果有相变化,设计可逆过程进行计算。

根据题目给出的相变温度不同,将有不同形式的计算公式。

5.“所有能发生过程一定是不可逆的,所以不可逆过程也一定是能发生过程。

”这种说法是否正确?为什么?答:正确。

因为这是热力学第二定律的结论。

6.“自然界存在着温度降低但是熵值增加的过程。

”的结论是否正确?为什么?举例说明。

(绝热不可逆膨胀)。

答:正确。

熵值不仅与温度一个变量有关,还与其它状态性质有关。

如与体积、压力有关。

如双变量系统,S = f (T,V )或S = f (T,p )系统经历某变化后,熵值的改变取决于这些变量的综合效应。

一个典型的例子是绝热不可逆膨胀7.“不可逆过程的熵不能减小”对吗?为什么?答:不正确。

第三章思考题

第三章思考题

第三章 热力学第二定律思考题1.理想气体绝热向真空膨胀,则: ( )(A) ΔS = 0,W = 0(B) ΔH = 0,ΔU = 0(C) ΔG = 0,ΔH = 0(D) ΔU = 0,ΔG = 02.熵变∆S 是:(1) 不可逆过程热温商之和(2) 可逆过程热温商之和(3) 与过程无关的状态函数(4) 与过程有关的状态函数以上正确的是: ( )(A) 1,2 (B) 2,3(C) 2 (D) 43.理想气体在等温条件下反抗恒定外压膨胀,该变化过程中体系的熵变及环境的熵变应为: ( )∆S 体∆S 环 (A) >0,=0 (B ) ∆S 体∆S 环∆S 体<0,∆S 环=0(C) >0,<0 (D ) ∆S 体∆S 环∆S 体<0,∆S 环>04.下列四种表述:(1) 等温等压下的可逆相变过程中,体系的熵变ΔS =ΔH 相变/T 相变 (2) 体系经历一自发过程总有 d S > 0(3) 自发过程的方向就是混乱度增加的方向(4) 在绝热可逆过程中,体系的熵变为零两者都不正确者为: ( )(A) (1),(2) (B) (3),(4)(C) (2),(3) (D) (1),(4)5. 求任一不可逆绝热过程的熵变ΔS 时,可以通过以下哪个途径求得? ( )(A) 始终态相同的可逆绝热过程(B) 始终态相同的可逆恒温过程(C) 始终态相同的可逆非绝热过程(D) (B) 和 (C) 均可6. 理想气体经可逆与不可逆两种绝热过程:( )(A) 可以从同一始态出发达到同一终态(B) 从同一始态出发,不可能达到同一终态(C) 不能断定 (A)、(B) 中哪一种正确(D) 可以达到同一终态,视绝热膨胀还是绝热压缩而定7. 对于孤立体系中发生的实际过程,下列各式中不正确的是:( )(A) W = 0 (B) Q = 0(C) ΔS > 0 (D) ΔH = 08. 理想气体从状态 I 经自由膨胀到状态 II,可用哪个热力学判据来判断该过程的自发性?( )(A) ΔH(B) ΔG(C) ΔS (D) ΔU9.对实际气体的节流膨胀过程,有( )(A) ΔH = 0 (B) ΔS = 0(C) ΔG = 0 (D) ΔU = 010.H2和O2在绝热钢瓶中生成水的过程:( )(A) ΔH = 0 (B) ΔU = 0(C) ΔS = 0 (D) ΔG = 011.选择正确答案,将其标号字母填入括号内。

物理化学课后答案第三章热力学第二定律

物理化学课后答案第三章热力学第二定律

物理化学课后答案第三章热⼒学第⼆定律第三章热⼒学第⼆定律3.1卡诺热机在的⾼温热源和的低温热源间⼯作。

求(1)热机效率;(2)当向环境作功时,系统从⾼温热源吸收的热及向低温热源放出的热。

解:卡诺热机的效率为根据定义3.5⾼温热源温度,低温热源。

今有120 kJ的热直接从⾼温热源传给低温热源,龟此过程的。

解:将热源看作⽆限⼤,因此,传热过程对热源来说是可逆过程3.6不同的热机中作于的⾼温热源及的低温热源之间。

求下列三种情况下,当热机从⾼温热源吸热时,两热源的总熵变。

(1)可逆热机效率。

(2)不可逆热机效率。

(3)不可逆热机效率。

解:设热机向低温热源放热,根据热机效率的定义因此,上⾯三种过程的总熵变分别为。

3.7已知⽔的⽐定压热容。

今有1 kg,10 ?C的⽔经下列三种不同过程加热成100 ?C的⽔,求过程的。

(1)系统与100 ?C的热源接触。

(2)系统先与55 ?C的热源接触⾄热平衡,再与100 ?C的热源接触。

(3)系统先与40 ?C,70 ?C的热源接触⾄热平衡,再与100 ?C的热源接触。

解:熵为状态函数,在三种情况下系统的熵变相同在过程中系统所得到的热为热源所放出的热,因此3.8已知氮(N2, g)的摩尔定压热容与温度的函数关系为将始态为300 K,100 kPa下1 mol的N2(g)臵于1000 K的热源中,求下列过程(1)经恒压过程;(2)经恒容过程达到平衡态时的。

解:在恒压的情况下在恒容情况下,将氮(N2, g)看作理想⽓体将代替上⾯各式中的,即可求得所需各量3.9始态为,的某双原⼦理想⽓体1 mol,经下列不同途径变化到,的末态。

求各步骤及途径的。

(1)恒温可逆膨胀;(2)先恒容冷却⾄使压⼒降⾄100 kPa,再恒压加热⾄;(3)先绝热可逆膨胀到使压⼒降⾄100 kPa,再恒压加热⾄。

解:(1)对理想⽓体恒温可逆膨胀, U = 0,因此(2)先计算恒容冷却⾄使压⼒降⾄100 kPa,系统的温度T:(3)同理,先绝热可逆膨胀到使压⼒降⾄100 kPa时系统的温度T: 根据理想⽓体绝热过程状态⽅程,各热⼒学量计算如下2.12 2 mol双原⼦理想⽓体从始态300 K,50 dm3,先恒容加热⾄400 K,再恒压加热⾄体积增⼤到100 dm3,求整个过程的。

热力学第二定律复习题及解答

热力学第二定律复习题及解答

第三章 热力学第二定律一、思考题1. 自发过程一定是不可逆的,所以不可逆过程一定是自发的。

这说法对吗?答: 前半句是对的,后半句却错了。

因为不可逆过程不一定是自发的,如不可逆压缩过程。

2. 空调、冰箱不是可以把热从低温热源吸出、放给高温热源吗,这是否与第二定律矛盾呢?答: 不矛盾。

Claususe 说的是“不可能把热从低温物体传到高温物体,而不引起其他变化”。

而冷冻机系列,环境作了电功,却得到了热。

热变为功是个不可逆过程,所以环境发生了变化。

3. 能否说系统达平衡时熵值最大,Gibbs 自由能最小?答:不能一概而论,这样说要有前提,即:绝热系统或隔离系统达平衡时,熵值最大。

等温、等压、不作非膨胀功,系统达平衡时,Gibbs 自由能最小。

4. 某系统从始态出发,经一个绝热不可逆过程到达终态。

为了计算熵值,能否设计一个绝热可逆过程来计算?答:不可能。

若从同一始态出发,绝热可逆和绝热不可逆两个过程的终态绝不会相同。

反之,若有相同的终态,两个过程绝不会有相同的始态,所以只有设计除绝热以外的其他可逆过程,才能有相同的始、终态。

5. 对处于绝热瓶中的气体进行不可逆压缩,过程的熵变一定大于零,这种说法对吗? 答: 说法正确。

根据Claususe 不等式TQS d d ≥,绝热钢瓶发生不可逆压缩过程,则0d >S 。

6. 相变过程的熵变可以用公式H ST∆∆=来计算,这种说法对吗?答:说法不正确,只有在等温等压的可逆相变且非体积功等于零的条件,相变过程的熵变可以用公式THS ∆=∆来计算。

7. 是否,m p C 恒大于 ,m V C ?答:对气体和绝大部分物质是如此。

但有例外,4摄氏度时的水,它的,m p C 等于,m V C 。

8. 将压力为101.3 kPa ,温度为268.2 K 的过冷液体苯,凝固成同温、同压的固体苯。

已知苯的凝固点温度为278.7 K ,如何设计可逆过程?答:可以将苯等压可逆变温到苯的凝固点278.7 K :9. 下列过程中,Q ,W ,ΔU ,ΔH ,ΔS ,ΔG 和ΔA 的数值哪些为零?哪些的绝对值相等?(1)理想气体真空膨胀; (2)实际气体绝热可逆膨胀; (3)水在冰点结成冰;(4)理想气体等温可逆膨胀;(5)H 2(g )和O 2(g )在绝热钢瓶中生成水;(6)等温等压且不做非膨胀功的条件下,下列化学反应达到平衡:H 2(g )+ Cl 2(g )(g )答: (1)0Q WU H ==∆=∆=(2)0, R Q S U W =∆=∆= (3)e 0, , P G H Q A W ∆=∆=∆= (4)e 0, =, U H Q W G A ∆=∆=-∆=∆ (5)e = 0V U Q W ∆==(6)0=W,H U Q ∆=∆=,0=∆=∆G A10. 298 K 时,一个箱子的一边是1 mol N 2 (100 kPa),另一边是2 mol N 2 (200 kPa ),中间用隔板分开。

清华大学《工程热力学》(第2版)1-4章思考题参考答案

清华大学《工程热力学》(第2版)1-4章思考题参考答案

第一章思考题参考答案1.进行任何热力分析是否都要选取热力系统?答:是。

热力分析首先应明确研究对象,根据所研究的问题人为地划定一个或多个任意几何面所围成的空间,目的是确定空间内物质的总和。

2.引入热力平衡态解决了热力分析中的什么问题?答:若系统处于热力平衡状态,对于整个系统就可以用一组统一的并具有确定数值的状态参数来描述其状态,使得热力分析大为简化。

3.平衡态与稳定态的联系与差别。

不受外界影响的系统稳定态是否是平衡态?答:平衡态和稳定态具有相同的外在表现,即系统状态参数不随时间变化;两者的差别在于平衡态的本质是不平衡势差为零,而稳定态允许不平衡势差的存在,如稳定导热。

可见,平衡必稳定;反之,稳定未必平衡。

根据平衡态的定义,不受外界影响的系统,其稳定态就是平衡态。

在不受外界影响(重力场除外)的条件下,如果系统的状态参数不随时间变化,则该系统所处的状态称为平衡状态。

4.表压力或真空度为什么不能当作工质的压力?工质的压力不变化,测量它的压力表或真空表的读数是否会变化?答:由于表压力和真空度都是相对压力,而只有绝对压力才是工质的压力。

表压力p与真空度v p与绝对压力的关系为:gb g p p p =+ b vp p p =-其中bp 为测量当地的大气压力。

工质的压力不变化,相当于绝对压力不变化,但随着各地的纬度、高度和气候条件的不同,测量当地的大气压值也会不同。

根据上面两个关系式可以看出,虽然绝对压力不变化,但由于测量地点的大气压值不同,当地测量的压力表或真空表的读数也会不同。

5.准静态过程如何处理“平衡状态”又有“状态变化”的矛盾? 答:准静态过程是指系统状态改变的不平衡势差无限小,以致于该系统在任意时刻均无限接近于某个平衡态。

准静态过程允许系统状态发生变化,但是要求状态变化的每一步,系统都要处在平衡状态。

6.准静态过程的概念为什么不能完全表达可逆过程的概念? 答:可逆过程的充分必要条件为:1、过程进行中,系统内部以及系统与外界之间不存在不平衡势差,或过程应为准静态的;2、过程中不存在耗散效应。

物理化学课后答案热力学第二定律

物理化学课后答案热力学第二定律

第三章 热力学第二定律复习题1指出下列公式的适用范围; 1min ln BB BS Rnx ∆=-∑;212222111lnln ln ln P v p T V T S nR C nR C p T V T ∆=+=+; 3dU TdS pdV =-; 4G Vdp ∆=⎰5,,S A G ∆∆∆作为判据时必须满足的条件;解 1封闭体系平衡态,理想气体的等温混合,混合前后每种气体单独存在时的压力都相等,且等于混合后气体的总压力;2非等温过程中熵的变化过程,对一定量的理想气体由状态AP 1、V 1、T 1改变到状态AP 2、V 2、T 2时,可由两种可逆过程的加和而求得;3均相单组分或组成一定的多组分封闭体系,非体积功为0的任何过程;或组成可变的多相多组分封闭体系,非体积功为0的可逆过程;4非体积功为0,组成不变的均相封闭体系的等温过程; 5S ∆:封闭体系的绝热过程,可判定过程的可逆与否; 隔离体系,可判定过程的自发与平衡;A ∆:封闭体系非体积功为0的等温等容过程,可判断过程的平衡与否; G ∆:封闭体系非体积功为0的等温等压过程,可判断过程的平衡与否;2判断下列说法是否正确,并说明原因;1不可逆过程一定是自发的,而自发过程一定是不可逆的; 2凡熵增加过程都是自发过程; 3不可逆过程的熵永不减少;4系统达平衡时,熵值最大,Gibbs 自由能最小;5当某系统的热力学能和体积恒定时,S ∆<0的过程不可能发生;6某系统从始态经过一个绝热不可逆过程到达终态,先在要在相同的始、终态之间设计一个绝热可逆过程;7在一个绝热系统中,发生了一个不可逆过程,系统从状态1变到了状态2,不论用什么方法,系统再也回不到原来状态了;8理想气体的等温膨胀过程,0U ∆=,系统所吸的热全部变成了功,这与Kelvin 的说法不符; 9冷冻机可以从低温热源吸热放给高温热源,这与Clausius 的说法不符; 10p C 恒大于V C ;答1不正确,因为不可逆过程不一定是自发的例如 可逆压缩就不是自发过程,但自发过程一定是不可逆的;2不正确,因为熵增加过程不一定是自发过程,但自发过程都是熵增加的过程;所以必须在隔离体系中凡熵增加过程都是自发过程;3不正确,因为不可逆过程不一定是自发的,而自发过程的熵永不减少;所以必须在隔离体系中;不可逆过程的熵永不减少4不正确;绝热体系或隔离体系达平衡时熵最大,等温等压不作非体积功的条件下,体系达平衡时Gibbs 自由能最小;5不正确,因为只有当系统的U 和V 恒定非体积功为0时,S ∆<0和S ∆=0的过程不可能发生; 6不正确,根据熵增加原理,绝热不可逆过程的S ∆>0,而绝热可逆过程的S ∆=0,从同一始态出发经历一个绝热不可逆过程的熵值和经历一个绝热可逆过程的熵值永不相等,不可能达到同一终态;7正确,在绝热系统中,发生了一个不可逆过程,从状态1变到了状态2,S ∆>0,S 2>S 1,仍然在绝热系统中,从状态2出发,无论经历什么过程,体系的熵值有增无减,所以永远回不到原来状态了;8不正确,Kelvin 的说法是不可能从单一的热源取出热使之变为功而不留下其它变化;关键是不留下其它变化,理想气体的等温膨胀时热全部变成了功,,体积增大了,环境的体积缩小的,留下了变化,故原来的说法不违反Kelvin 的说法;9不正确,Clausius 的说法是不可能把热从低温热源传到高温热源而不引起其它变化;冷冻机可以从低温热源吸热放给高温热源时环境失去了功,得到了热引起了变化,故原来的说法不违反Clausius 的说法; 10不正确,211p V P T T VV V C C V T V P αακκ∂∂⎛⎫⎛⎫-===- ⎪ ⎪∂∂⎝⎭⎝⎭,,因为P V T ∂⎛⎫ ⎪∂⎝⎭>0,TV P ∂⎛⎫⎪∂⎝⎭<0,即α>0,κ>0,则p V C C ->0,p C 恒大于V C ;但有例外,如对277.15K 的水,PV T ∂⎛⎫⎪∂⎝⎭=0,此时p V C C =;3指出下列各过程中,,,,,,Q W U H S A ∆∆∆∆和G ∆等热力学函数的变量哪些为零,哪些绝对值相等1理想气体真空膨胀; 2理想气体等温可逆膨胀; 3理想气体绝热节流膨胀; 4实际气体绝热可逆膨胀; 5实际气体绝热节流膨胀;62()H g 和2()O g 在绝热钢瓶中发生反应生成水; 72()H g 和2()Cl g 在绝热钢瓶中发生反应生成()HCl g ; 822(,373,101)(,373,101)H O l k kPa H O g k kPa ;9在等温、等压、不作非膨胀功的条件下,下列反应达到平衡2233()()2()H g N g NH g +10绝热、恒压、不作非膨胀功的条件下,发生了一个化学反应; 解10Q W U H ==∆=∆=20R U H Q W G A ∆=∆==∆=∆,,,0S ∆= 30U H Q W ∆=∆=== 40Q S U Q W W =∆=∆=+=, 50V Q U H =∆=∆=60W A G Q =∆=∆== U H ∆=∆ 70W A G Q =∆=∆== U H ∆=∆ 800R G A W U ∆=∆=-∆=∆H =,,; 90G ∆= ;10p 0H Q ∆== U W ∆=4将不可逆过程设计为可逆过程; 1理想气体从压力为p 1向真空膨胀为p 2;2将两块温度分别为T 1,T 2的铁块T 1>T 2相接触,最后终态温度为T 3水真空蒸发为同温、同压的气,设水在该温度时的饱和蒸气压为p , 22(,303,100)(,303,100)H O l K kPa H O g K kPa →4理想气体从111,,p V T 经不可逆过程到达222,,p V T ,可设计几条可逆路线,画出示意图;答1设计等温可逆膨胀2在T 1和T 2之间设置无数个温差为dT 的热源,使铁块T 1和T 1-dT,T 1-2dT,…的无数热源接触,无限缓慢地达到终态温度T,使铁块T 2和T 2-dT,T 2-2dT,…的热源接触,无限缓慢地达到终态温度T;3可以设计两条可逆途径:一是等压可逆,另一条是等温可逆;H 2O (l,303K,P S ) H 2S )H 2O (l,,)H 2H 2O ()H 2逆降温4可设计下列四条途径,从111,,p V T 变化到222,,p V T ; a 等容可逆升压到状态A 后再等温可逆膨胀终态Ⅱ; b 等压可逆膨胀到状态B 后再等温可逆膨胀到终态Ⅱ; c 等温可逆膨胀到状态C 后再等压可逆膨胀到终态Ⅱ; d 等温可逆膨胀到状态D 后再等容可逆升压到终态Ⅱ;5判断下列恒温、恒压过程中,熵值的变化,是大于零,小于零还是等于零,为什么 1将食盐放入水中;2HClg 溶于水中生成盐酸溶液; 343()()()NH Cl s NH g HCl g →+; 42221()()()2H g Og H O l +→;5333221(,)1(,)2(,)dm N g dm Ar g dm N Ar g +→+; 6333221(,)1(,)1(,)dm N g dm Ar g dm N Ar g +→+; 73332221(,)1(,)2(,)dm N g dm N g dm N g +→; 83332221(,)1(,)1(,)dm N g dm N g dm N g +→;解1S ∆<0,因为将食盐放入水中为放热过程,Q <0,QS Tδ∆=,所以S ∆<0;2S ∆<0,同理,HClg 溶于水中Q <0,S ∆<0;3S ∆>0,因为该过程为吸热反应,Q >0,S ∆>0;或因为混乱度增加; 4S ∆<0,因为该过程为放热反应,Q <0,S ∆<0;或因为混乱度减小; 5S ∆>0,根据min ln 2ln 2BB BS Rnx R ∆=-=∑>0,或因为混乱度增加;6S ∆=0,根据min ln 0BB BS Rnx ∆=-=∑;7S ∆=0,根据min ln 0BB BS Rnx ∆=-=∑;8S ∆<0,根据min ln 2ln 2BB BS Rnx R ∆=-=-∑<061在298K 和100kPa 时,反应2221()()()2H O l H g O g →+的r m G ∆>0,说明该反应不能自发进行;但在实验室内常用电解水的方法制备氢气,这两者有无矛盾 2请将Carnot 循环分别表达在以如下坐标表示的图上:,,,,T p T S S V U S T H -----解 1r m G ∆>0的判据是在等温等压非体积功为0的条件下,所以在298K 和100kPa 时,反应2221()()()2H O l H g O g →+的r m G ∆>0,说明该反应在等温等压非体积功为0的条件下不能自发进行;而在实验室内常用电解水的方法制备氢气,是在电功对体系作功,所以并不矛盾; 21234习题01有5mol某双原子理想气体,已知其RCmV5.2,=,从始态400K,200kPa,经绝热可逆压缩至400kPa后,再真空膨胀至200kPa,求整个过程的Q,W,△U,△H和△S.解第一步绝热可逆压缩Q1=0 △S1=04.15.25.2,,,,=+=+==RRRCRCCCrmVmVmVmP根据绝热过程方程CTP rr=-1得KkPakPaKPPTTrr6.4874002004004.14.1112112=⎪⎭⎫⎝⎛=⎪⎪⎭⎫⎝⎛=--111,21()5 2.58.314(487.6400)9.1 V mU W nC T T mol J K mol K K kJ--∆==-=⨯⨯⋅⋅-=111,21()5 3.58.314(487.6400)12.75 P mH nC T T mol J K mol K K kJ--∆=-=⨯⨯⋅⋅-=第二步等温向真空膨胀W2=0 △U2=△H2=0 Q2=0111221400ln58.314ln28.8200p kPaS nR mol J K mol J Kp kPa---∆==⨯⋅⋅=⋅所以整个过程的Q=0,W=9.1kJ,△U=9.1kJ,△H=12.75kJ,△S=28.8J•K-12有5molHeg可看作理想气体, 已知其RCmV5.1,=,从始态273K,100kPa,变到终态298K,1000kPa,计算该过程的熵变.解根据理想气体从状态p1,V1,T1到终态p2,V2,T2的熵变公式:1221lnlnTTCppnRSp+=∆得:111110029858.314ln5 2.58.314ln1000273kPa K S mol J K mol mol J K molkPa K----∆=⨯⋅⋅+⨯⨯⋅⋅186.615J K-=-⋅03在绝热容器中,将0.10kg、283K的水与0.20kg、313K的水混合,求混合过程的熵变;设水的平均比热为4.184kJ•K-1•kg-1.解设混合后的平衡温度为T,则 0.10kg 、283K 的水吸热为Q 1=C P T-T 1=4.184kJ•K -1•kg -1×0.10kg×T-283K 0.20kg 、313K 的水放热为Q 2=C P T 1-T=4.184kJ•K -1•kg -1×0.20kg×313K-T 平衡时Q 1=Q 2得 T=303K111113030.1(4.184)ln 28.57283TP T C KS dT kg kJ K kg J K T K ---∆==⨯⋅⋅⨯=⋅⎰111123030.2(4.184)ln127.17313T P T C KS dT kg kJ K kg J K T K---∆==⨯⋅⋅⨯=-⋅⎰△S=△S 1+△S 2=1.40J •K -104在298K 的等温情况下,在一个中间有导热隔板分开的盒子中,一边放0.2molO 2g,压力为20kPa,另一边放0.8molN 2g,压力为80kPa,抽去隔板使两种气体混合,试求1混合后盒子中的压力;2混合过程的Q,W,△U,△S 和△G ;3如果假设在等温情况下,使混合后的气体再可逆地回到始态,计算该过程的Q 和W 的值;解1混合前O 2g 和N 2g 的体积V 相等,混合后是1mol 气体占全部容积的体积2V;21130.28.31429824.77620O nRT mol J K mol KV dm P kPa--⨯⋅⋅⨯===11318.3142985024.7762nRT mol J K mol K p kPa V dm --⨯⋅⋅⨯===⨯2由于是等温过程 △U=0O 2g 和N 2g 都相当于在等温下从V 膨胀到2V2ln 2.02ln2.02R V VR S O ==∆ 2ln 8.02ln 8.02R VVR S N ==∆221ln 2 5.76O N S S S R J K -∆=∆+∆===⋅J RT p p nRT Vdp G 17192ln ln12-=-===∆⎰ 3因为△U′=0,Qr=-Wr=T △S′所以 Qr=-Wr=T △S′=298K×-5.76J•K -1=-1.716J05有一绝热箱子,中间用绝热隔板把箱子的容积一分为二,一边放1mol 300K,100kPa 的单原子理想气体Arg,另一边放2mol 400K,200kPa 的双原子理想气体N 2g,如果把绝热隔板抽去,让两种气体混合达平衡,求混合过程的熵变;解起初Arg 和N 2g 的体积分别为R p nRT V Ar 3==, R pnRTV N 42== 当混合时对于1molArg 相当于从300K,100kPa 膨胀到T,P,V=7R对于2molN 2g 相当于从400K,200kPa 膨胀到T,P,V=7R 而整个体系的 W=0 Q V =△U=0所以02=∆+∆N Ar U U即 0))(())((22,1,2=-+-T T N C n T T Ar C n m V N m V Ar0)400(252)300(231=-⨯+-⨯K T R mol K T R mol得 T=362.5K⎰+=∆T T m V Ar TnC V VnR S 1,1ln111173362.518.314ln8.314ln32300R Kmol J mol K J mol K R K----=⨯⋅⋅+⨯⋅⋅ =9.4J⎰+=∆T T m V N TnC V VnR S 22,2ln111175362.528.314ln8.314ln42400R Kmol J mol K J mol K R K----=⨯⋅⋅+⨯⋅⋅ =7.26JJ S S S N Ar 66.162=∆+∆=∆06有2mol 理想气体,从始态300K,20dm 3,经下列不同过程等温膨胀至50dm 3,计算各过程的Q,W,△U,△H 和△S;1可逆膨胀; 2真空膨胀;3对抗恒外压100kPa 膨胀;解由于是理想气体的等温过程,所以△U=△H=01可逆膨胀31123150ln 28.314300ln20V dm W nRT mol J K mol K V dm --=-=-⨯⋅⋅⨯⨯ =-4570.8J Q=-W=4570.8J14570.815.24300Q J S J K T K-∆==⋅ 2真空膨胀; W=Q=0S 是状态函数所以△S 的值同1 3对抗恒外压100kPa 膨胀;W=-PV 2-V 1=-100kPa50dm 3-20dm 3=-3.0kJ Q=-W=3.0kJS 是状态函数所以△S 的值同107有1mol 甲苯CH 3C 6H 5l 在其沸点383K 时蒸发为气,计算该过程的Q,W,△U,△H,△S,△A 和△G.已知在该温度下甲苯的汽化热为362kJ•kg -1.解在沸点时蒸发为可逆相变,所以 △G=0 △H=Q=362kJ•kg -1×1mol×0.092kg•mol -1=33.304kJ W =-p V g -V l = -p V g =-nRT=-1mol×8.341J•K -1•mol -1×383K=-3184.26J=-3.184kJ△U=△H-△PV=△H-P △V=△H+W=33.304kJ-3.184kJ=30.12kJ △S=Q/T=33.304kJ/383K=86.96J•K -1 △A=△U-T △S=△U-Q=W=-3.184kJ08在一个绝热容器中,装有298K 的H 2Ol1.0kg,现投入0.15kg 冰H 2Os,计算该过程的熵变.已知H 2Os 的熔化焓为333.4J•g -1. H 2Ol 的平均比热容为4.184J•K -1•g -1.解设计过程如下:1.0kg H 2Ol 放出的热为: Q 放=1.0×103×4.184×298-T0.15kgH 2Os 吸收的热为:Q 吸=0.15×103×4.184×T-273+0.15×103×333.4 根据Q 放=Q 吸 得 T=284.35K321S S S S ∆+∆+∆=∆dT TC T HdT TC K K p KKp ⎰⎰+∆+=35.28427335.284298 27335.284ln184.41015.02731015.04.33329835.284ln 184.4100.1333⨯⨯+⨯⨯+⨯⨯= =12.57J•K -109实验室中有一个大恒温槽的温度为400K,室温为300K,因恒温槽绝热不良而有4.0kJ 的热传给了室内的空气,用计算说明这一过程是否可逆.解该过程是体系放热Q,环境吸热-Q 的过程 △S 体系=Q/T 体系=-4.0kJ/400K=-10J •K -1 △S 环境=-Q/T 环境=4.0kJ/300K=13.33J •K -1△S 隔离=△S 体系+△S 环境=-10J •K -1+13.33J •K -1=3.33J •K -1>0 所以该过程为不可逆过程.10有1mol 过冷水,从始态263K,101kPa 变成同温、同压的冰,求该过程的熵变;并用计算说明这一过程的可逆性.已知水和冰在该温度范围内的平均摩尔定压热容分别为:11,2(,)75.3P m C H O l J K mol --=⋅⋅,11,2(,)37.7P m C H O s J K mol --=⋅⋅;在273K, 101kPa时水的摩尔凝固热为60012(,) 5.90fus m H H O s kJ mol -∆=-⋅;解设计如下过程263K 101kPa H 2O(l)22H 1311121,1273ln175.3ln 2.81263P m T K S nC mol J K mol J K T K---∆==⨯⋅⋅=⋅ 1121( 5.90)21.61273fus mn H mol kJ mol S J K T K--∆⨯-⋅∆===-⋅11123,1263ln137.7ln 1.41273P m T K S nC mol J K mol J K T K---∆==⨯⋅⋅=-⋅ △S=△S 1+△S 2+△S 3=-20.21J•K -1111molN 2g 可作理想气体,从始态298K,100kPa,经如下两个等温过程,分别到达终态压力为600kPa,分别求过程的Q,W,△U,△H,△A,△G,△S,和△S iso .1等温可逆压缩; 2等外压为600kPa 时压缩;解由于都是理想气体的等温过程,所以△U=△H=0 1等温可逆压缩1112100ln18.314298ln 4.439600p kPa W nRT mol J K mol K kJ p kPa--=-=-⨯⋅⋅⨯⨯= Q=-W=-4.439kJ△S =Q/T =-4439J/298K=-14.90J•K -1 △A =△U -T △S =-Q =W =4.439kJ △G =△H -T △S =-Q =W =4.439kJ △S 环境=-Q /T =14.90J•K -1 △S iso =△S 体系+△S 环境=0 2等外压为600kPa 时压缩 W=-P 2V 2-V 1=-nRT1-P 2/P 1=-1mol×8.314J•K -1•mol -1×298K×1-600kPa/100kPa =12.39kJ Q=-W=-12.39kJ△A,△G,△S 都是状态函数的变化,所以值与1相同 △S 环境=-Q /T=12.39kJ/298K=41.58J•K△S iso =△S 体系+△S 环境=-14.90J•K -1+41.58J•K=26.28J•K12将1molO 2g 从298K,100kPa 的始态,绝热可逆压缩到600kPa,试求该过程Q,W,△U,△H,△A,△G,△S,和△S iso .设O 2g为理想气体,已知O 2g的R C m p 5.3,=,112(,)205.14m S O g J K mol θ--=⋅⋅;解由于是绝热可逆压缩 Q=0 △S 体系=04.15.35.3,,,,=-=-==RR RRC C C C r m p m p mV m P根据绝热过程方程C T Pr r=-1得K kPa kPa K P P T T rr 2.4996001002984.14.1112112=⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=--11,21()1 2.58.314(499.2298) 4.182V m U W nC T T mol J K mol K K kJ--∆==-=⨯⨯⋅⋅-=11,21()1 3.58.314(499.2298) 5.855P m H nC T T mol J K mol K K kJ --∆=-=⨯⨯⋅⋅-=△A =△U - S △T =4182J-205.14J•K -1•mol -1×1mol×499.2K-298K =-37.092kJ △G =△H - S △T =5855J-205.14J•K -1•mol -1×1mol×499.2K-298K=-35.42kJ △S 环境=-Q /T =0 △S iso =△S 体系+△S 环境=013将1mol 双原子理想气体从始态298K,100kPa,绝热可逆压缩到体积为5dm 3,试求终态的温度、压力和过程的Q,W,△U,△H,和△S;解对于双原子理想气体R C m V 5.2,=R C m p 5.3,=4.15.25.3,,===RRC C r mV m P 而 11311118.31429824.78100nRT mol J K mol KV dm P kPa --⨯⋅⋅⨯===根据 C pV r=得:kPa dm dm kPa VV p p r12.940578.241004.1332112=⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=322211940.125565.3818.314p V kPa dm T K nR mol J K mol --⨯===⨯⋅⋅因为是绝热可逆,所以Q=0 △S=011,21()1 2.58.314(565.38298) 5.557V m U W nC T T mol J K mol K K kJ--∆==-=⨯⨯⋅⋅-=11,21()1 3.58.314(565.38298)7.78P m H nC T T mol J K mol K K kJ --∆=-=⨯⨯⋅⋅-=14将1mol 苯C 6H 6l 在正常沸点353K 和101.3kPa 压力下,向真空蒸发为同温、同压的蒸气,已知在该条件下,苯的摩尔汽化焓为130.77vap m H kJ mol -∆=⋅,设气体为理想气体;试求1该过程的Q 和W ;2苯的摩尔汽化熵m vap S ∆和摩尔汽化Gibbs 自由能m vap G ∆; 3环境的熵变△S 环;4根据计算结果,判断上述过程的可逆性; 解1向真空蒸发 W=0Q=△U而△U 为状态函数的变化所以当等温等压时相变时:W′=-nRT=-1mol×8.314J•K -1•mol -1×353K=-2.935kJ Q=△H=130.77vap m H kJ mol -∆=⋅ △U=Q+W=30.77kJ-2.935kJ=27.835kJ 所以Q=27.835kJ 211130.7787.167353vap mvap m H kJ mol S J K mol T K---∆⋅∆===⋅⋅0=∆m vap G G 是状态函数,所以△G 与可逆相变时相同 3△S 环境=-Q /T =-27.835kJ/353K=-78.85J•K -14△S iso =△S 体系+△S 环境=87.167J•K -1-78.85J•K -1=8.317J•K -1 即 △S iso >0 可见是不可逆过程.15某一化学反应,在298K 和大气压力下进行,当反应进度为1mol 时,放热40.0kJ,如果使反应通过可逆电池来完成,反应程度相同,则吸热4.0kJ;1计算反应进度为1mol 时的熵变m r S ∆;2当反应不通过可逆电池完成时,求环境的熵变和隔离系统的总熵变,从隔离系统的总熵变值说明了什么问题;3计算系统可能做的最大功的值;解1111400013.42298R r m Q J mol S J K mol T K---⋅∆===⋅⋅211140000134.2298P Q J mol S J K mol T K----⋅∆===⋅⋅环境△S iso =△S 体系+△S 环境=13.4J•K -1•mol -1+134.2J•K -1•mol -1=147.6 J•K -1•mol -1 即 △S iso >0 可见是不可逆过程.3J J J S T G W f 44000)400040000()(max ,=---=∆-∆H -=∆-=16 1mol 单原子理想气体从始态273K,100kPa,分别经下列可逆变化到达各自的终态,试计算各过程的Q,W,△U,△H,△S,△A 和△G;已知该气体在273K,100kPa 的摩尔熵11100m S J K mol --=⋅⋅;1恒温下压力加倍; 2恒压下体积加倍; 3恒容下压力加倍;4绝热可逆膨胀至压力减少一半;5绝热不可逆反抗50kPa 恒外压膨胀至平衡; 解1恒温下压力加倍即等温可逆△U=△H=01112100ln18.314273ln 1.573200p kPa W nRT mol J K mol K kJ p kPa--=-=-⨯⋅⋅⨯⨯= Q=-W=-1.573kJ△S=Q/T=-1.573kJ/273K=-5.76J•K -1 △A =△U -T △S =-Q =W =1.573kJ △G =△H -T △S =-Q =W =1.573kJ 2恒压下体积加倍T 2=2T 1 W=-PV 2-V 1=-P 1V 1=-nRT =-1mol×8.314J•K -1•mol -1×273K =-2.27kJ11,21()1 1.58.314273 3.4V m U nC T T mol J K mol K kJ--∆=-=⨯⨯⋅⋅⨯=11,21()1 2.58.314273 5.67P m H nC T T mol J K mol K kJ --∆=-=⨯⨯⋅⋅⨯= Q=△U-W=3.4kJ+2.27kJ=5.67kJ12ln5.2ln T T R T d C S p ==∆⎰ 1111 2.58.314ln 214.4mol J K mol J K---=⨯⨯⋅⋅⨯=⋅S 2=△S+S 1=14.4J•K -1+100J•K -1=114.4J•K -1 △A =△U -△TS =△U -T 2S 2-T 1S 1=3.4×103J-2×273K×114.4J•K -1-273K×100J•K -1 =-31.76kJ△G =△H -△TS =△H -T 2S 2-T 1S 1=5.67×103J-2×273K×114.4J•K -1-273K×100J•K -1 =-29.49kJ3恒容下压力加倍 T 2=2T 1W=011,21()1 1.58.314273 3.4V m U nC T T mol J K mol K kJ --∆=-=⨯⨯⋅⋅⨯=11,21()1 2.58.314273 5.67P m H nC T T mol J K mol K kJ --∆=-=⨯⨯⋅⋅⨯=Q=△U=3.4kJ12ln5.1ln T T R T d C S V ==∆⎰ 1111 1.58.314ln 28.67mol J K mol J K---=⨯⨯⋅⋅⨯=⋅S 2=△S+S 1=8.67J•K -1+100J•K -1=108.67J•K -1 △A =△U -△TS =△U -T 2S 2-T 1S 1=3.4×103J-2×273K×108.67J•K -1-273K×100J•K -1 =-28.63kJ△G =△H -△TS =△H -T 2S 2-T 1S 1=5.67×103J-2×273K×108.67J•K -1-273K×100J•K -1 =-26.36kJ4绝热可逆膨胀至压力减少一半;Q=0 △S=067.15.15.2,,===RRC C r mV m P 根据绝热过程方程C T Pr r=-1得K kPa kPa K P P T T rr 9.2065010027367.167.1112112=⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=--)(12,T T nC W U m V -==∆111 1.58.314(206.9273)824.58mol J K mol K K J --=⨯⨯⋅⋅-=-)(12,T T nC H m P -=∆111 2.58.314(206.9273)1374.3mol J K mol K K J --=⨯⨯⋅⋅-=- △A =△U -S △T=-824.58J-100J•K -1•mol -1×1mol×206.9K-273K =-5.787kJ △G =△H -S △T=-1374.3J-100J•K -1•mol -1×1mol×206.9K-273K =-5.33kJ5绝热不可逆反抗50kPa 恒外压膨胀至平衡;Q=0)()(12122T T C V V P W V -=--= 即: )()(1211222T T C P nRT P nRT P V -=-- 代入数据得:T 2=218.4K所以 1121()1 1.58.314(218.4273)V W U C T T mol J K mol K K --=∆=-=⨯⨯⋅⋅⨯- =-680.92J)(12,T T nC H m P -=∆111 2.58.314(218.4273)mol J K mol K K --=⨯⨯⋅⋅-=-1.135kJ⎪⎪⎭⎫⎝⎛+=+=∆122112,21ln 25ln ln lnT T p p nR T TnC p p nR S m p111005218.418.314ln ln502273kPa Kmol J K mol kPa K --⎛⎫=⨯⋅⋅+ ⎪⎝⎭=1.125J•K -1S 2=△S+S 1=1.125J•K -1+100J•K -1=101.125J•K -1 △A =△U -△TS =△U -T 2S 2-T 1S 1=-680.92J-218.4K×101.125J•K -1-273K×100J•K -1 =4.533kJ△G =△H -△TS =△H -T 2S 2-T 1S 1=-1135J-218.4K×101.125J•K -1-273K×100J•K -1 =-26.36kJ =4.08kJ17将1molH 2Og 从373K,100kPa 下,小心等温压缩,在没有灰尘等凝聚中心存在时,得到了373K,200kPa 的介稳水蒸气,但不久介稳水蒸气全变成了液态水,即H 2Og,373K,200kPa→H 2Ol,373K,200kPa求该过程的△H,△G 和△S;已知在该条件下水的摩尔汽化焓为146.02kJ mol -⋅,水的密度为1000kg•m -3.设气体为理想气体,液体体积受压力的影响可忽略不计;解设计可逆过程如下:H 2O(g)H 2O(l)H 2O(g)H 2O(l)373K,200kPa373K,200kPa(2)121lnp p nRT G =∆ =1mol×8.314J•K -1•mol -1×373Kln0.5 =-2.15kJ02=∆G)(12321p p nMVdp G p p -==∆⎰ρ=1mol×0.018kg•mol -1/1000kg•m -3200kPa-100kPa=1.8J△G=△G 1+△G 2+△G 3=-2148.2J11(46.02)46.02r m n mol kJ molkJ θ-∆H =∆H =⨯-⋅=- 146020(2148.2)117.6373G J J S J K T K-∆H -∆---∆===-⋅ 18用合适的判据证明:1在373K 和200kPa 压力下,H 2Ol 比H 2Og 更稳定; 2在263K 和100kPa 压力下,H 2Os 比H 2Ol 更稳定; 解1设计等温可逆过程如下1001200kPal kPaG V dp ∆=⎰20G ∆=等温等压无非体积功的可逆相变过程2003100kPag kPaG V dp ∆=⎰所以 ()20020013100100kPakPag l g kPakPaG G G V V dp V dp ∆=∆+∆=-≈⎰⎰若水蒸气可看作理想气体,则ln 20G RT ∆≈所以,在373K 和200kPa 压力下,H 2Ol 比H 2Og 更稳定; 2设100kPa 压力下设计如下可逆过程如下1mol,H 2O(s),263K21mol,H 2S 1ΔS 2S 3123S S S S ∆=∆+∆+∆,,273273()lnln 263273263fus m p m p mn K KnC nC K K K∆H =++冰(水)>0所以自发变化总是朝熵增加的方向进行,H 2Os 比H 2Ol 更稳定;19在298K 和100kPa 压力下,已知C 金刚石和C 石墨的摩尔熵、摩尔燃烧焓和密度分别为:试求:1在298K 及100kPa 下,C 石墨→C 金刚石的θm trs G ∆; 2在298K 及100kPa 时,哪个晶体更为稳定3增加压力能否使不稳定晶体向稳定晶体转化 如有可能,至少要加多大压力,才能实现这种转化解 1根据△G=△H-T △S),298(),298()298(金刚石石墨K H K H K H m c m c m r θθθ∆-∆=∆=-393.51kJ•mol -1--395.40kJ•mol -1 =1.89kJ•mol -1),298(),298()298(石墨金刚石K S K S K S m m m r -=∆θ=2.45J•K -1•mol -1-5.71J•K -1•mol -1 =-3.26J•K -1•mol -11111.89298( 3.26)trs m r m r m G H T S kJ mol K J K mol θθθ---∆=∆-∆=⋅-⨯-⋅⋅=2.862kJ•mol -12因为298K,100kPa 下,θm trs G ∆>0,说明此反应在该条件下不能自发向右进行,亦即石墨比较稳定.3设298K 下压力为p 2时石墨恰能变成金刚石dp V V p K G p K G p p m m m r m r )(),298(),298(2,2⎰-+∆=∆θθθθ石墨金刚石),298(2p K G m r θ∆>0,解上式得:p 2>1.52×109Pa即需要加压至1.52×109Pa 时,才能在298K 时,使石墨转化为金刚石.20某实际气体的状态方程为p RT pV m α+=,式中α为常数;设有1mol 该气体,在温度为T 的等温条件下,由p 1可逆地变到p 2;试写出:Q,W,△U,△H,△S,△A 及△G 的计算表达式;解:2112ln ln p p RT V V RT dV V RTpdV W m -=---=--=-=⎰⎰ααα因为 p T p T V U V T -⎪⎭⎫ ⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂ 而 α-=⎪⎭⎫ ⎝⎛∂∂m V V R T p 所以 0=--=⎪⎭⎫⎝⎛∂∂p V R TV U mT α 即该气体的等温过程 △U=0 Q=-W=21lnp p RT α=-=⎪⎭⎫⎝⎛∂∂-=⎪⎭⎫ ⎝⎛∂∂P R TV T V T V P H P T )(12p p dp H -==∆⎰ααP R T V P S PT -=⎪⎭⎫ ⎝⎛∂∂-=⎪⎭⎫ ⎝⎛∂∂12ln p p R dp p RS -=-=∆⎰12lnp p RT S T S T U A =∆-=∆-∆=∆ 1212ln)(p p RT p p S T H G +-=∆-∆=∆α 21在标准压力和298K 时,计算如下反应的)298(K G m r θ∆,从所得数据值判断反应的可能性;1 CH 4g+1/2O 2g →CH 3OHl2 C 石墨+2H 2g+ 1/2O 2g→CH 3OHl 所需数据自己从热力学数据表上查阅;解所查热力学数据如下:1155.115)72.50(27.166)298(-•-=---=∆mol kJ K G m r θ可见θm trs G ∆<0,说明此反应在该条件下能自发向右进行.21(298)166.27r m G K kJ mol θ-∆=-⋅可见θm trs G ∆<0,说明此反应在该条件下能自发向右进行.22计算下述催化加氢反应,在298K 和标准压力下的熵变;C 2 H 2 g + 2H 2 g → C 2 H 6 g已知C 2 H 2 g,H 2 g,C 2 H 6 g 在298K 和标准压力下的标准摩尔熵分别为:200.8J•K -1•mol -1,,130.6J•K -1•mol -1,,229.5J•K -1•mol -1,.解 ),(2),(),(),298(22262g H S g H C S g H C S p K S m m m m r θθθθθ--=∆=229.5J•K -1•mol -1-200.8J•K -1•mol -1-2×130.6J•K -1•mol -1, =-232.5J•K -1•mol -1 23若令膨胀系数P T V V ⎪⎭⎫ ⎝⎛∂∂=1α,压缩系数TpV V ⎪⎪⎭⎫⎝⎛∂∂-=1κ;试证明: κα2VT C C V P =-证明根据V P C C 和的定义,及H=U+P VV p P V p V P T U T V p T U T U T H C C ⎪⎭⎫ ⎝⎛∂∂-⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂-⎪⎭⎫ ⎝⎛∂∂=-由dV V U dT T U dU TV ⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂= 在恒压下对T 求偏导得: pT V p T V V U T U T U ⎪⎭⎫ ⎝⎛∂∂⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂ p T V P T V p V U C C ⎪⎭⎫ ⎝⎛∂∂⎭⎬⎫⎩⎨⎧+⎪⎭⎫ ⎝⎛∂∂=- 1又因为 pdV TdS dU -=在恒温下对V 求偏导得: p V S T V U TT -⎪⎭⎫ ⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂ 2 TT T V p p S V S ⎪⎭⎫ ⎝⎛∂∂⎪⎪⎭⎫ ⎝⎛∂∂=⎪⎭⎫⎝⎛∂∂ 将麦克斯韦关系式p TT V p S ⎪⎭⎫ ⎝⎛∂∂-=⎪⎪⎭⎫⎝⎛∂∂代入上式Tp T V p T V V S ⎪⎭⎫ ⎝⎛∂∂⎪⎭⎫ ⎝⎛∂∂-=⎪⎭⎫ ⎝⎛∂∂ 3将3代入2得: p V p T V T V U Tp T-⎪⎭⎫ ⎝⎛∂∂⎪⎭⎫ ⎝⎛∂∂-=⎪⎭⎫ ⎝⎛∂∂ 4将4代入1得: Tp V P V p T V T C C ⎪⎭⎫ ⎝⎛∂∂⎪⎭⎫ ⎝⎛∂∂-=-2再将P T V V ⎪⎭⎫ ⎝⎛∂∂=1α, TpV V ⎪⎪⎭⎫⎝⎛∂∂-=1κ代入得: κα2VT C C V P =-24对van der Waals 实际气体,试证明: 2VV U T α=⎪⎭⎫ ⎝⎛∂∂证明: van der Waals 实际气体的状态方程式为()RT b V V a p m m =-⎪⎪⎭⎫ ⎝⎛+2 b V R T p mV -=⎪⎭⎫⎝⎛∂∂ 22m m m m m VT V V b V RT b V RT p b V R Tp T p T V U αα=+---=--=-⎪⎭⎫⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂ 25对理想气体,试证明:nR S U p H V U VS S -=⎪⎭⎫ ⎝⎛∂∂⎪⎪⎭⎫ ⎝⎛∂∂⎪⎭⎫ ⎝⎛∂∂ 证明 pdV TdS dU -=则 T S U V=⎪⎭⎫ ⎝⎛∂∂ p V U S-=⎪⎭⎫⎝⎛∂∂ 又 Vdp TdS dH +=则 Vp H S=⎪⎪⎭⎫ ⎝⎛∂∂ 那么 nRT pV S U p H V U VSS -=-=⎪⎭⎫⎝⎛∂∂⎪⎪⎭⎫ ⎝⎛∂∂⎪⎭⎫ ⎝⎛∂∂ 26在600K,100kPa 压力下,生石膏的脱水反应为42422()()2()CaSO H O s CaSO s H O g ⋅→+试计算:该反应进度为1mol 时的Q,W,△Um,△Hm,△Sm,△Am 及△Gm;已知各物质在298K,100kPa 的热力学数据为:解W=-P △V=-PV 水=-2RT=-2×8.314J•K -1•mol -1×600K=-9.98kJ 在298K,100kPa 时:1(298)241.822(1432.68)(2021.12)104.8r m H K kJ mol θ-∆=-⨯+---=⋅11(298)188.832106.70193.97290.39r m S K J mol K θ--∆=⨯+-=⋅⋅11,33.58299.60186.2019.44r p m C J mol K --∆=⨯+-=-⋅⋅dT C K H K H m T T r m r m r ⎰∆+∆=∆21)298()600(θθ=104.8kJ•mol -1+-19.44J•K -1•mol -1600K-298K =98.93kJ•mol -T d C K S K S m T T r m r m r ln )298()600(21⎰∆+∆=∆θθ=290.39J•K -1•mol -1+-19.44J•K -1•mol -1ln KK298600 =276.79J•K -1•mol -1△Um=△Hm+W=98.93kJ•mol --9.98kJ•mol -=88.95kJ•mol - Q=△U-W=98.93kJ•mol -△Am=△U-T △S=88.95kJ•mol -1-600K×276.79J•K -1•mol -1=-77.124kJ•mol -1△Gm=△H-T △S=98.93kJ•mol -1-600K×276.79J•K -1•mol -1=-67.14kJ•mol -127将1mol 固体碘I 2s 从298K,100kPa 的始态,转变成457K,100kPa 的I 2g,计算在457K 时I 2g 的标准摩尔熵和过程的熵变;已知I 2s 在298K,100kPa 时的标准摩尔熵112(,,298)116.14m S I s K J K mol --=⋅⋅,熔点为387K,标准摩尔熔化焓12(,)15.66fus m H I s kJ mol -∆=⋅;设在298-378K 的温度区间内,固体与液体碘的摩尔比定压热容分别为11,2(,)54.68P m C I s J K mol --=⋅⋅,11,2(,)79.59P m C I g J K mol --=⋅⋅,碘在沸点457K 时的摩尔汽化焓为12(,)25.52vap m H I l kJ mol -∆=⋅;解设计可逆过程如下:I 22(g)100kPa△S=△S 1+△S 2+△S 3+△S 4=vapm vap KKp fusmfus KKP T T d l C T H T d s C H ∆++∆+⎰⎰ln )(ln )(457387387298θ=4571052.25387457ln 68.543871066.15298387ln 68.5433⨯+⨯+⨯+⨯=123.82J•K -1•mol -1又因为 ),(),(22s I S g I S S m m -=∆123.82J•K -1•mol -1=),(2g I S m -116.14 J•K -1•mol -1得: ),(2g I S m =239.96J•K -1•mol -128保持压力为标准压力,计算丙酮蒸气在1000K 时的标准摩尔熵值;已知在298K 时丙酮蒸气的标准摩尔熵值11(298)294.9m S K J K mol θ--=⋅⋅在273-1500K 的温度区间内,丙酮蒸气的定压摩尔热容m P C ,与温度的关系式为:36211,[22.47201.810(/)63.510(/)]P m C T K T K J K mol ----=+⨯-⨯⋅⋅解:由于dT T C S P⎰=故 TC dS P=即⎰⎰=2121T T PS S dT TC S d T T T d C K S K S m K Kr m m ln )298()1000(1000298⎰∆+=θθ=434.8J•K -1•mol -1。

物理化学第二版课后思考题答案

物理化学第二版课后思考题答案

第一章气体1.如何使一个尚未破裂而被打瘪的乒乓球恢复原状?采用了什么原理?答:将打瘪的乒乓球浸泡在热水中,使球的壁变软,球中空气受热膨胀,可使其恢复球状。

采用的是气体热胀冷缩的原理。

2.在两个密封、绝热、体积相等的容器中,装有压力相等的某种理想气体。

试问,这两容器中气体的温度是否相等?答:不一定相等。

根据理想气体状态方程,若物质的量相同,则温度才会相等。

3.两个容积相同的玻璃球内充满氮气,两球中间用一根玻管相通,管中间有一汞滴将两边的气体分开。

当左边球的温度为273K,右边球的温度为 293K时,汞滴处在中间达成平衡。

试问: (1) 若将左边球的温度升高 10K,中间汞滴向哪边移动? (2) 若将两个球的温度同时都升高 10K,中间汞滴向哪边移动?答:(1)左边球的温度升高,气体体积膨胀,推动汞滴向右边移动。

(2)两个球的温度同时都升高10K,汞滴仍向右边移动。

因为左边球的起始温度低,升高 10K所占的比例比右边的大,283/273大于 303/293,所以膨胀的体积(或保持体积不变时增加的压力)左边的比右边的大。

4.在大气压力下,将沸腾的开水迅速倒入保温瓶中,达保温瓶容积的0.7左右,迅速盖上软木塞,防止保温瓶漏气,并迅速放开手。

请估计会发生什么现象?答:软木塞会崩出。

这是因为保温瓶中的剩余气体被热水加热后膨胀,当与迅速蒸发的水汽的压力加在一起,大于外面压力时,就会使软木塞崩出。

如果软木塞盖得太紧,甚至会使保温瓶爆炸。

防止的方法是,在灌开水时不要灌得太快,且要将保温瓶灌满。

5.当某个纯的物质的气、液两相处于平衡时,不断升高平衡温度,这时处于平衡状态的气-液两相的摩尔体积将如何变化?答:升高平衡温度,纯物质的饱和蒸汽压也升高。

但由于液体的可压缩性较小,热膨胀仍占主要地位,所以液体的摩尔体积会随着温度的升高而升高。

而蒸汽易被压缩,当饱和蒸汽压变大时,气体的摩尔体积会变小。

随着平衡温度的不断升高,气体与液体的摩尔体积逐渐接近。

第三章 热力学第二定律思考题

第三章 热力学第二定律思考题

第三章 热力学第二定律思考题1、100kPa 时,某气相反应在400K 的热效应和800K 的热效应相等,两种条件下反应的标准摩尔反应熵的关系为( )。

2、恒压下,纯物质当温度升高时其吉布斯函数将( )。

(不变、增大、减小、不确定)3、理想气体与温度为T 的大热源接触作恒温膨胀,吸热Q ,所做的功是变到相同终态的最大功的20%,则系统的熵变为( )。

4、下列各过程中ΔU 、ΔH 、ΔS 、ΔA 、ΔG 何者为零?真实气体的卡诺循环过程( );理想气体可逆绝热膨胀 ( );273.15K ,101.325kPa 条件下,水变为冰( ); 绝热恒容没有非体积功条件下发生的化学变化( ) ; 实际气体的节流膨胀 ( );隔离系统中的实际发生的任意过程 ( );理想气体恒温恒压混合( )。

5、水的饱和蒸汽压与温度的关系可以写为:㏑(p /kPa) =A -4883.8K/T ,则A = ( ) 。

水的摩尔蒸发焓△vap H m= ( ) kJ.mol -1。

6、斜方硫转变为单斜硫的△H m 为正,在101.325kPa 下,平衡温度为115℃,在100×101.325kPa 下平衡温度为120℃,问晶形密度大的是哪一种?( )7、单原子理想气体的C V ,m =1.5R ,当温度由T 1变到T 2时,恒压过程系统的熵变与恒容过程系统的熵变之比Δp S ∶ΔV S 是( )。

8、在恒温恒压不做非体积功的情况下,下列哪个过程肯定能自发进行?( )①ΔH >0 ,ΔS >0 ②ΔH >0 ,ΔS <0③ΔH <0 ,ΔS <0 ④ΔH <0 ,ΔS >09、下列公式正确的有( )①C p m =n 1V H T ∂⎛⎫ ⎪∂⎝⎭ ②C V m =n 1p U T ∂⎛⎫ ⎪∂⎝⎭ ③C V m =n 1 VU T ∂⎛⎫ ⎪∂⎝⎭④ C p m =n T pS T ∂⎛⎫ ⎪∂⎝⎭ ⑤C p m =n T V S T ∂⎛⎫ ⎪∂⎝⎭ ⑥ C V m = n T V S T ∂⎛⎫ ⎪∂⎝⎭ 10、对1 mol 范德华气体单纯pVT 变化:TS V ∂⎛⎫= ⎪∂⎝⎭( ) ①b V R m - ② mV R ③ 0 ④ –b V R m - 11、在T -p 与S –H 坐标中,绘出理想气体卡诺循环的示意图;标出每一过程的始态、终态,循环方向以箭头表示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 1.在封闭系统中发生的( )过程,ΔS=0 (a)可 逆 (b)不可逆(c)循环 (d)任意 • 2.在隔离系统中发生的( )过程,ΔS=0 (a)可 逆 (b)不可逆(c)循环 (d)任意 • 3.任意不可逆循环过程的热温商之和 (>,<,= )0 • 4.任意不可逆循环过程的ΔS (>,<,= )0 • 5.不可逆过程的热温商 (>,<,= ) 可逆过程的热温商。
热力学第二定律,熵
• 6.系统在确定的状态,以• 下状态函数的数值能否 得知: • U: 不知道 • H : 不知道 • S : 可以知道 • 7.理想气体等温膨胀 (压缩)过程,求ΔS 的公式是
V2 p1 S nR ln nR ln V1 p2
r Sm B Sm B
热力学第二定律,熵
• 1.熵的定义式是 。 • 5.用隔热材料将密闭容 • 2.不可逆热温商δ Qir/T(>,<,=) 器包裹起来,发生了放 δ Qr/T 热反应 • 3.在(封闭系统,隔离系统) H2(g)+0.5O2(g)=H2O(g), 填>0,<0或=0: 中熵只增不减。 • 4.当封闭系统发生了不可逆的 • Δ T( ) 循环过程,封闭系统的熵 • Q( ) (增大,减小,不变),封 • W( ) 闭系统的熵与封闭系统的环 • Δ U( ) 境的熵之和(增大,减小, • Δ S( ) 不变)。
应用对象 应用条件 适用过程
单纯 pVT变化,相变化, 化学变化和相变化过 化学变化等所有过程 程
5.用隔热材料将密闭容 器包裹起来,发生了放 热反应 H2(g)+0.5O2(g)=H2O(g), 填>0,<0或=0: Δ S( + )
热力学第二定律,熵
• 6.系统在确定的状态,以• 下状态函数的数值能否 得知: • U • • H • S 7.理想气体等温膨胀 (压缩)过程,求ΔS 的公式是 。 8.化学反应过程,求 ΔrSm ө (298K)的公 式是 。
热力学第二定律,熵
• 1.熵的定义式是 dS = δQr/T • • 2.不可逆热温商δ Qir/T< δ Qr/T • 3.在(封闭系统,隔离系统) 中熵只增不减。 • • 4.当封闭系统发生了不可逆的 循环过程,封闭系统的熵(增 大,减小,不变),封闭系统 的熵与封闭系统的环境的熵之 和(增大,减小,不变)。
6
吉布斯函数G 比较熵判据和吉布斯判据的差别
熵判据(熵增加原理): 吉布斯判据: 自发过程系统的S增大 自发过程系较熵判据和吉布斯判据的差别
熵判据(熵增加原理): 吉布斯判据: 自发过程系统的S增大 自发过程系统的G减 小 孤立系统, 封闭系统 或封闭系统的绝热过程 无条件 恒温,恒压, 不做其它功

B
8.化学反应过程,求 ΔrSm ө (298K)的公 式是


吉布斯函数G
• 1. G的定义式是 ; • 2.等温等压 W’=0的化学反应方
向的判断依据是:
– 当 – 当 – 当 时,逆向进行; 时,正向进行; 时,达到平衡态。
• 3.理想气体等温膨胀(压缩) 过程,求ΔG的公式 是 。
• 4.化学反应过程,求 ΔrGmө (298K)的公 式是 . • 5.求任意温度时 ΔrGmө (T)的公式 是 . • 6. ΔrGmө (T)可以 近似判断在 温 度 压力下化学反 应的方向。
相关文档
最新文档