《等腰三角形》同步练习及答案1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《等腰三角形》同步练习
一、选择题:(本题共8小题,每小题3分,共24分.下列各题都有代号为A ,B ,C ,D 的四个结论供选择,其中只有一个结论是正确的)
1.在△ABC 中,AB =AC ,∠A=36度,BD 平分∠ABC 交AC 于D ,则图中共有等腰三角形的个数是( )
A .1
B .2
C .3
D .4 2.下列说法中,正确的有 ( )
①等腰三角形的两腰相等;②等腰三角形的两底角相等;③等腰三角形底边上的中线与底边上的高相等;④等腰三角形是轴对称图形. A .1个 B .2个 C.3个 D .4个
3.如果△ABC 的∠A ,∠B 的外角平分线分别平行于BC ,AC ,则△ABC 是 ( ) A .等边三角形 D .等腰三角形 C. 直角三角形 D .等腰直角三角形 4.如图,把一张对边平行的纸条如图折叠,重合部分是 ( )
E
D C B
A
(第4题) (第6题)
A. 等边三角形 B .等腰三角形 C. 直角三角形 D .无法确定
5.已知∠AOB =30°,点P 在∠AOB 的内部.P'与P 关于OB 对称,P"与P 关于OA 对称,则O ,P'P"三点所构成的三角形是 ( )
A. 直角三角形 B .钝角三角形 C. 等腰三角形 D .等边三角形 6.如图2,在△ABC 中,∠C =90°,DE 垂直平分AB 于E ,交AC 于D ,AD =2BC ,则∠A 等于( )
A .15°
B .25°
C . 30°
D . 35°
7.在平面直角坐标系xOy 中,已知A(2,-2),在y 轴确定点P ,使△AOP 为等腰三角形,则符合条件的点有 ( )
A .2个 D .3个 C .4个 D .5个
8.如图,在下列三角形中,若AB=AC ,则能被一条直线分成两个小等腰三角形的是( )
(1)
36︒
C B
A
(2)
45︒
C
B
A
(3)
90︒
C B
A
108︒
(4)
C
B
A
A .(1)(2)(3)
B .(1)(2)(4) C. (2)(3)(4) D .(1)(3)(4)
二、填空题:(本题共8小题,每小题3分,共24分.把最后结果填在题中横线上) 9.已知等腰三角形的两边长是1cm 和2cm ,则这个等腰三角形的周长为_______cm . 10.三角形三内角的度数之比为1∶2∶3,最大边的长是8cm ,则最小边的长是_______cm .
11.如图,∠A =15°,AB =BC=CD=DE =EF ,则∠GEF=_______.
G
F
E
D
C
B
A
E D C
B
A
(第11题) (第13题)
12.等腰三角形的底边长为6cm ,一腰上的中线把这个三角形的周长分为两部分,这两部分之差是3cm ,那么这个等腰三角形的腰长是_______.
13.如图,已知在△ABC 中,BC =8,AB 的中垂线交BC 于D ,AC 的中垂线交BC 于E ,则△ADE 的周长等于_______.
14.已知:如图,△ABC 是等边三角形,BD 是中线,延长BC 到E ,使CE=CD ,不添辅助线,请你写出三个正确结论(1)______________;(2)______________;(3)______________.
E
D
C B
A
(第14题) (第15题)
15。正三角形给人以“稳如泰山”的美感,它具有独特的对称性,请你用不同的分割方法,把下图中的两个正三角形分别分割成四个等腰三角形.(标出必要角度)
16.如图,上午8时,一条船从A 处出发,以15海里/时的速度向正北航行,10时到达B 处,从A 、B 望灯塔C ,测得∠NAC =42°,∠NBC=84°,则从B 处到灯塔C 的距离_______.
北
N C
B
A
三、解答题:(本题共5小题,17~20题,每小题10分,21题12分,共52分) 17。如图,DE 是△ABC 的边AB 的垂直平分线,分别交AB 、BC 于D ,E ,AE 平分∠BAC ,若∠B=30°,求∠C 的度数.
30
E
D
C
B
A
18.如图,点D 、E 在△ADC 的边BC 上,AD=AE ,BD =EC ,求证:AB=AC .
E D
C
B A
19.如图,AB =AE ,∠ABC=∠AED ,BC=ED ,点F 是CD 的中点, (1)求证:AF 垂直于CD .
(2)在你连接BE 后,还能得出什么新的结论?请写出三个.(不要求证明)
F E
D
C B
A
20.如图,公路MN 和公路PQ 在点P 处交汇,且∠QPN =30°,点A 处有一所中学,AP =160米,假设拖拉机行驶时,周围100米以内会受到噪声的影响,那么拖拉机在公路MN 上沿PN 方向行驶时,学校是否会受影响?请说明理由.
P
N
M
A
21.已知:如图,△ABC 为正三角形,D 是BC 延长线上一点,连结AD ,以AD 为边作等边三角形ADE ,连结CE ,用你学过的知识探索AC 、CD 、CE 三条线段的长度有何关系?试写出探求过程.
E
D
C
B
A