数字滤波器的基本结构

合集下载

数字滤波器的基本结构

数字滤波器的基本结构

群延迟
定义:群延迟是指数字滤波器在单位频率下输出信号相对于输入信号的延迟时间
影响因素:滤波器的阶数、滤波器的类型、滤波器的参数等
重要性:群延迟是衡量数字滤波器性能的重要指标之一对于信号处理、通信系统等应用具有重要 意义
测量方法:可以通过仿真或实验方法测量群延迟常用的测量方法有傅里叶变换、快速傅里叶变换 等
数字滤波器的分类
按照滤波器的 实现方式可以 分为FIR滤波器 和IIR滤波器
按照滤波器的 频率响应可以 分为低通滤波 器、高通滤波 器、带通滤波 器和带阻滤波

按照滤波器的 阶数可以分为 一阶滤波器、 二阶滤波器、 三阶滤波器等
按照滤波器的 应用领域可以 分为通信滤波 器、图像滤波 器、音频滤波
器等
数字滤波器的基本原理
数字滤波器是一 种信号处理设备 用于处理数字信 号
基本原理:通过 改变信号的频率 成分实现信号的 滤波
滤波器类型:包 括低通滤波器、 高通滤波器、带 通滤波器和带阻 滤波器等
应用领域:广泛 应用于通信、信 号处理、图像处 理等领域
03
数字滤波器的结构
IIR数字滤波器结构
结构类型:直接 型、间接型、状 态空间型
单击此处添加副标题
数字滤波器的基本结构
汇报人:
目录
01 02 03 04 05 06
添加目录项标题 数字滤波器的概述 数字滤波器的结构 数字滤波器的性能指标 数字滤波器的实现方法 数字滤波器的应用
01
添加目录项标题
02
数字滤波器的概述
数字滤波器的定义
数字滤波器是一种信号处理设备用于处理数字信号 主要功能:对输入信号进行滤波处理以消除或减弱某些频率成分 应用领域:通信、雷达、图像处理、音频处理等领域 数字滤波器可以分为低通、高通、带通、带阻等类型每种类型都有其特定的应用场合。

数字滤波器的基本结构 ppt课件

数字滤波器的基本结构  ppt课件

算子zw-11(表n) 示b0,x(n它) 表w5示(n)单 b位0x延(n)时 a。1y(n 1) a2 y(n 2)
y(n) w2 (n) w1(n)
y(n) a1 y(n 1pp)t课件a2 y(n 2) b0x(n)
6
第5章 数字滤波器的基本结构
5.2 IIR滤波器的基本结构
入的数字序列通过一定的运算后转变为另一组输出的
数字序列,因此它本身就是一台数字式的处理设备。
数字滤波器一般可用两种方法实现:1)根据描述数字滤
波器的数学模型或信号流图,用数字硬件装配成一台
专门的设备,构成专用的信号处理机;2)直接利用通用
计算机,将所需要的运算编成程序让计算机来执行,
即用软件来实现数字滤波器。
M
N
M
ak y(n k) bk x(n k)
bk x(nk1k) k 0
N
k 点 共(M+N)个延时单元
实现系统函数极点
图5-4 实现N阶差p分pt课方件 程的直接I型结构
9
第5章 数字滤波器的基本结构
二、直接Ⅱ型(典范型、正准型)结构
方框图表示法
信号流图表示法
图 5-1 基本运算的方框图表示及信号流图表示
ppt课件
5
第5章 数字滤波器的基本结构
二阶数字滤波器: y(n) a1y(n 1) a2 y(n 2) b0x(n)
源节点或 输入节点
阱节点或 输出节点
加法器

分支节点
输入支w2(路n) 的 y信(n)号值等于这一支路起点处节点信号值 乘值以,支www则354(((路认nnn))) 上为信 来 方aww1的其23w向号 代((3nn传(传,流 表n)11输有图一))输a向是条系2系yyw线((一支4数nn数(段n种路。)12为上)有,) 如a标1向箭1y,果注(图头n而出支的,1支延)方它路路向用迟a上2的代箭y支不(传n表头路标输信的2)值则传号有。用输流向动线延系的段数迟

第5章数字滤波器的基本结构

第5章数字滤波器的基本结构

1、横截型(卷积型、直接型)
差分方程:
2、级联型
将H(z)分解成实系数二阶因式的乘积形式:
级联型的特点
• 每个基本节控制一对零点,便于控制滤波器的 传输零点
• 系数比直接型多,所需的乘法运算多
3、频率抽样型
N个频率抽样H(k)恢复H(z)的内插公式:
子系统: 是梳状滤波器
在单位圆上有N个等间隔角度的零点:
5.3 FIR数字滤波器的基本结构
• FIR数字滤波器的特点: 系统函数:
有N-1个零点分布于z平面 z=0处 是N-1阶极点
1)系统的单位抽样响应 h(n)有限长,设长度为N
2)系统函数H(z)在
处收敛,有限z平面只
有零点,全部极点在 z = 0 处(因果稳定系统)
3)无输出到输入的反馈,一般为非递归型结构
• 原网络中所有支路方向倒转,并将输入x(n)和 输出y(n)相互交换,则其系统函数H(z)不改变。
例:设IIR数字滤波器差分方程为:
试用四种基本结构实现此差分方程。 解:对差分方程两边取z变换,得系统函数:
得直接Ⅰ型结构:
典范型结构:
将H(z)因式分解: 得级联型结构:
将H(z)部分分式分解: 得并联型结构:
频率响应:
子系统:
单位圆上有一个极点:
与第k个零点相抵消,使该频率 率响应等于H(k)
Hale Waihona Puke 处的频频率抽样型结构的优缺点
• 调整H(k)就可以有效地调整频响特性
• 若h(n)长度相同,则网络结构完全相同,除了 各支路增益H(k),便于标准化、模块化
• 有限字长效应可能导致零极点不能完全对消, 导致系统不稳定
对其进行傅氏变换得:

数字信号处理 第五章

数字信号处理 第五章

+ a2 z-1
数字信号处理—第五章
6
举例:二阶数字滤波器
y ( n ) a 1 y ( n 1) a 2 y ( n 2 ) b 0 x ( n )
x(n) b0 +
-1 a1 z
y(n)
+ a2 z-1
数字信号处理—第五章
7
举例:二阶数字滤波器
y ( n ) a 1 y ( n 1) a 2 y ( n 2 ) b 0 x ( n )
z z
2 2
H (z)
1 1k z 1 1k z
1 1
x(n)
H 1(z)
y (n )
H 2(z)
H k (z)
数字信号处理—第五章
22
数字信号处理—第五章
23
IIR数字滤波器的级联型结构优点
1) 每个二阶或一阶子系统单独控制零、极点。 2)级联顺序可交换,零、极点对搭配任意,因此级联 结构不唯一。有限字长对各结构的影响是不一样的, 可通过计算机仿真确定子系统的组合及排序。 3)级联各节之间要有电平的放大和缩小,以使变量值 不会太大或太小。太大可能导致运算溢出;太小可 能导致信噪比太小。 4)级联系统也属于最少延时单元实现,需要最少的存 储器,但乘法次数明显比直接型要多。 4)级联结构中后面的网络输出不会再流到前面,运算 误差积累比直接型小。

数字信号处理—第五章
4
基本单元(数字滤波器结构)有两种表 示方法
数字信号处理—第五章
5
举例:二阶数字滤波器
y ( n ) a 1 y ( n 1) a 2 y ( n 2 ) b 0 x ( n )
x(n) b0 +

数字滤波器的基本结构ya

数字滤波器的基本结构ya

三、转置定理 如果将原网络中所有支路方向加以倒转,且将输入 和输出交换其系统函数仍不改变。
x(n)
a1
bb Z1 0 1
a2
b Z1 2
y(n)
bM1
a Z1
N1 bM
aN
Z1
(原网络)
y(n)
b0
b a1
Z1
1
a2
b Z1 2
bM1
x(n)
aN1
aN
b Z1 M
Z1
(转置后的网络)
5.3 FIR滤波器的基本结构
x(n) h(n) y(n)
y(n) x(n) h(n)
进行傅氏变换得:
Y (e j) X (e j) H (e j)
这种关系可用差分方程、单位冲激响应及系统函数进行描述。
X (e j )
0
H (e j )
0
Y(e j )
0
H(ejω)为矩形窗时 的情形
ωc
πω
ωc
πω
ω
πω
二、数字滤波器的系统函数与差分方程
a)输入节点或源节点x,(n) b)输出节点或阱 节点y(,n)
所处的节点; 所处的节点;
c)分支节点,一个输入,一个或一个以上输 出的节点;将值分配到每一支路;
d)相加器(节点)或和点,有两个或两个以 上输入的节点。
支路不标传输系数时,就认为其传输系数为1;
任何一节点值等于所有输入支路的信号之和。
y(n) a1 y(n 1) a2 y(n 2) b0 x(n)
x(n) b0
y(n)
b0x(n) a2 y(n 2)
Z 1
a1
a1y(n 1) Z 1
y(n 1)

数字滤波器的基本结构

数字滤波器的基本结构
N 1
1 2 cos( 2 )z 1 z 2
N 1

实系数频率取样型结构流图
x[k] zN
1/N y[k]
1
z1
1
2 cos( 2 ) z1
N
1
z1 2 cos( 2 )
N
优点:1. H[m]零点较多时,实现较为简单。
2. 可以构成滤波器组,实现信号的频谱分析。
k 0
x[k]
z 1
z 1
z 1
1
1
1
z 1
z 1
1 z 1
z 1 1
h[0]
h[1]
h[2]
y[k]
h[ M 3] h[ M 1]
2
2
相同系数的共用乘法器,只需(M+1) /2个乘法器
三、 FIR 数字滤波器的级联型结构
将H(z)分解为若干个实系数一阶二阶因子相乘
第5章 数字滤波器的基本结构
IIR数字滤波器的基本结构 FIR数字滤波器的基本结构 格型结构
IIR数字滤波器的基本结构
直接型结构 级联型结构 并联型结构
一、IIR数字滤波器的直接型结构
Y (z)
M
bi z i
H2(z) W (z)
H(z)
i0 N
1 a j z j
第 p-1阶
e bp2 [k ]
e1f [k]
e0f [k]
第1阶
e1b [k ]
e0b [k ]
cp
c p1
c p2
c1
图中的方框是如下基本格型单元
c0 y[k]
e
f p
[k
]
e

第6章 数字滤波器的基本结构

第6章 数字滤波器的基本结构

由于滤波器的系数应为实数 ; 将分子、 将分子、分母中的共轭复根因子合并为二阶实系 数因子,得到: 数因子,得到:
H ( z) = K ⋅
返回到本节向导
(1 − pm z ) ∏ (1 +β m z −1 +β2 m z −2 ) ∏ 1
−1 m =1 N1
M1
M2
∏ (1 − ck z −1 ) ∏ (1 +α1k z −1 +α2k z −2 )
返回到本节向导
6.2.2
直接型结构
5 2 3 + z −1 + z −2 3 3 H ( z) = 1 1 1 1 + z −1 + z −2 − z −3 6 3 6
例6.2-2 已知 3 阶IIR数字滤 6.2IIR数字滤 波器的系统函数; 波器的系统函数;
求:直接Ⅰ型、直接Ⅱ型和转置直接Ⅱ型结构; 直接Ⅰ 直接Ⅱ型和转置直接Ⅱ型结构;
表明:滤波器可以由若干一阶和二阶子系统级联 表明: 组成, 组成,从而构成滤波器的级联型结构 ; 将分子、分母中一阶因子(即实零、极点因子) 将分子、分母中一阶因子(即实零、极点因子) 两两合并为实系数二阶因子,得到: 两两合并为实系数二阶因子,得到:
H ( z) = K
返回到本节向导

k =1
N0
返回到本节向导
6.2.2 例 6.2-2 6.2-
直接型结构
返回到本节向导
6.2.2
直接型结构
直接型结构的优点:简单、直观 直接型结构的优点:简单、
缺点: 缺点: 系数 bm 和 ak 对滤波器性能的控制关系不
直接,调整困难; 直接,调整困难; 极点分布对系数变化的灵敏度高, 零、极点分布对系数变化的灵敏度高, 对有限字长效应敏感, 对有限字长效应敏感,易引起不稳定现 象和较大的误差; 象和较大的误差; 滤波器的阶次越高,上述问题就越明显; 滤波器的阶次越高,上述问题就越明显; 产生上述缺点的原因: 产生上述缺点的原因: 不明显; 不明显; 的改变会影响所有零点或极点的分布; 且 bm、ak 的改变会影响所有零点或极点的分布;

IIR数字滤波器的基本结构

IIR数字滤波器的基本结构

k 1 N2
1 ak zk
(1 ck z1)
(1
d
k
z
1
)(1
d
* k
z
1
)
k 1
k 1
k 1
A为常数
M M1 2M2
pk 和ck 分别为实数零、极点
N N1 2N2
qk
,
qk*和d
k
,
d
*分别为复共轭零、极点
k
将共轭成正确复数组合成二阶多项式,系数即为实数。
为采用相同构造旳子网络,也将两个实零点/极点组合成二 阶多项式
H (z) A
k
1 1k z1 2k z2 1 1k z1 2k z2
A
k
Hk (z)
当M
N时,共有
N 2
1

当零点为奇数时:
有一种 2k 0
当极点为奇数时:
有一种 2k 0
H (z) A
k
1 1k z1 2k z2 1 1k z1 2k z2
A
k
Hk (z)
当M=N时,二阶因子配对方式有
N 1
N 1
H (z) G0
2 k 1
1
0k 1k
1k z1 z1 2k
z
2
G0
2
Hk (z)
k 1
并联型旳特点:经过调整系Biblioteka 1k,2k可单独调整一对极点位置,
但不能单独调整零点位置
各并联基本节旳误差相互不影响,故运算误差 最小
可同步对输入信号进行运算,故运算速度最高
解:对差分方程两边取z变换,得系统函数:
H
z
84 1 5
z z

第三章数字滤波器的基本结构

第三章数字滤波器的基本结构

k
k
k
k 1
k 1
18
其中,pk为实零点,ck为实极点;qk,qk*表 示复共轭零点,dk ,dk*表示复共轭极点, M=M1+2M2,N=N1+2N2
再将一阶共轭因子展开,构成实系数二阶 因子,单实根因子看作二阶因子的一个特例, 则得
M1
(1
pk
z
) 1 M2
(1
1k
z
1
2
k
z
2
)
H (z)
A
k 1
结构,如图3-5示。
13
A(z)
B(z)
x(n) x'(n) b0 y(n)
a z1 z1 1
a 2 z1 z1
a
z1
N 1
aN z1
图(a)
b1 b2
bM 1
bM
A(z) B(z)
x(n)
b0 y(n)
a1
z1 b1
a z1 b2
2

bM 1 接
b aN1 z1 M II
a z1 N

图(b)
图3-5 IIR数字滤波器的直接II型结构
N
M
y(n) ak y(n k) bk x(n k)
k 1
k 0
其系统函数为
M
H (z)
Y (z) X (z)
bk z k
k0 N 1 ak zk
B(z) A(z)
k 1
10
式中,
B z
M

bk z
k
k 0
可知,
Az
1
M
1 ak zk
k 1
B实(z现) 了系统的零点;

第5章_数字滤波器的基本结构

第5章_数字滤波器的基本结构

1.系统函数因式分解
一个N阶系统函数可用它的零、极点来表示。
M M
i 1 H (z) i0 A N N i 1 1 a z ( 1 d z i ) i i 1 i 1
bz
i
i
( 1Cz
i
1
)
将系统函数进行进一步分解,使分子、分母中 每个因式的次数不高于2,这样可以使各项系数都 是实数。
0 H ( z ) i H ( z ) H ( z ) H ( z ) H ( z ) 1 2 2 1 N i 1 a iz i 1
M
i b z i
M
其中: H 1 ( z )

i0
bi z i 1
N
H 2(z)
1

i 1
a i z i
x(n) z-1 z-1 z-1 z-1
b0 b1 b2 b M+1 bM 第一部分 对调 a1 a2 a N-1 aN
y(n) z-1 z-1 z-1 z-1
x(n) a1 a2 对调 a N-1 aN z-1 z-1 z-1 z
b0 z-1 b1 z-1 b2
y(n)
z-1 b M+1 bM
-1 z -1
第二部分
由于对调后前后两路都有一条内容完全相同的 延时链,可以合并为一条即可。
§5.3 无限长脉冲响应基本网络结构
主要特点:
①系统的单位冲激响应h(n)是无限长的(n→∞); ②系统函数H(z)在有限z平面上(0<|z|<∞)有极点存在。 ③结构上存在着输出到输入的反馈,即结构是递归的。 ④因果稳定的IIR滤波器其全部极点一定在单位园内。 同一种系统函数H(z)可以由多种不同结构,它的基本 结构有:直接型、级联型、并联型

数字滤波器的基本结构

数字滤波器的基本结构
28
数字网络的信号流图表示
① 通路:沿同一方向传输的连通支路 ② 环路:闭合的通路 ③ 环路增益 : 环路中所有支路增益之积 ④ 前向通路 :从输入节点到输出节点通过 任何节点仅一次的通路 ⑤ 前向通路增益:前向通路中所有支路增 益之积
29
二阶数字滤波器的例子: y(n) a1y(n 1) a2 y(n 2) b0x(n)
级联型 I I R 数字滤波器
并联型
直接Ⅰ型 直接Ⅱ型
转置型
34
N
M
y(n) ak y(n k) bm x(n m)
k 1
m0
x(n)
b0
y(n)
Z 1
b1 x(n 1)
Z 1
x(n 2)
b2
Z 1 a1
y(n 1)
Z 1
a2
y(n 2)
Z 1 bM
x(n M )
Z 1
aN 1
y(n N 1)
M2
(1 pm z1) (1 qm z1)(1 qm z1)
A
m1 N1
m1 N2
(1 ck z1) (1 dk z1)(1 dkz1)
k 1
k 1
44
将共轭因子组合成实系数的二阶因子,两 个一阶构成一个二阶有:
M1
M2
(1 pm z1) (1 1m z1 2m z2 )
H (z)
A
M
bm zm
H(z)
m0 N
1 ak zk
k 1
式中 N N1 2N2
N1
Ak
k 1 1 ck z1
N2 k 1
Bk (1 gk z1)
(1
d
k
z
1

fir数字滤波器的基本结构

fir数字滤波器的基本结构

fir数字滤波器的基本结构FIR数字滤波器的基本结构FIR(Finite Impulse Response)数字滤波器是一种常见的数字信号处理工具,用于对离散时间信号进行滤波处理。

它的基本结构可以分为直接型和间接型两种。

一、直接型FIR数字滤波器结构直接型FIR数字滤波器是一种简单直观的结构,其基本形式为串联的延时单元和加法器。

下面将详细介绍直接型FIR数字滤波器的基本结构。

1. 延时单元延时单元是直接型FIR数字滤波器的核心组成部分,用于实现信号的延时操作。

它将输入信号依次延时一个采样周期,延时单元的个数取决于滤波器的阶数。

每个延时单元的输出为其输入信号的一个采样周期前的值。

2. 加法器加法器是直接型FIR数字滤波器的另一个重要组成部分,用于将延时单元的输出进行加权求和。

加法器的输入为延时单元的输出,加法器根据预先设定的权值对其进行加权,并将加权求和的结果作为滤波器的输出。

3. 系数寄存器系数寄存器用于存储滤波器的权值系数,每个延时单元对应一个权值系数。

这些系数可以通过设计滤波器时确定,也可以通过调整来改变滤波器的频率响应。

二、间接型FIR数字滤波器结构间接型FIR数字滤波器是一种更加灵活的结构,它可以通过级联和并联来实现各种滤波器的结构。

下面将介绍两种常见的间接型FIR 数字滤波器结构。

1. 级联结构级联结构是指将多个FIR滤波器串联起来,形成一个更复杂的滤波器。

每个FIR滤波器可以有不同的阶数和截止频率,通过级联它们可以实现更高阶、更陡峭的滤波器。

2. 并联结构并联结构是指将多个FIR滤波器并联起来,形成一个更复杂的滤波器。

每个FIR滤波器可以有不同的阶数和截止频率,通过并联它们可以实现不同频率范围的滤波效果。

三、FIR数字滤波器的应用FIR数字滤波器在数字信号处理中有广泛的应用,例如音频处理、图像处理、通信系统等。

它能够实现对信号的去噪、信号增强、频率选择等功能,具有较好的滤波性能和实时性。

第四章-数字滤波器的基本结构

第四章-数字滤波器的基本结构
第四章 数字滤波器的基本结构(3)
1
4.3 有限长单位冲激响应(FIR)滤波器 的基本结构
FIR滤波器的特点: (1) 系统的单位冲激响应h(n)是有限长的,即只在有限个
n值处不为0; (2) 系统函数H(z)在|z|>0处收敛,在|z|>0处只有零点,对
于因果系统,全部极点均位于z=0处; (3) 结构上主要采用非递归结构,即没有输出到输入的
z1 z1 z1
h(N-1) h(N-2) h(N-3) h(N-4)
x(n) 直接转置型
图17
z 1 y(n)
h(1) h(0)
4
4.3 有限长单位冲激响应(FIR)滤波器 的基本结构
二、级联型
将H(z)分解为二阶因式的乘积形式,称之为级联型结构
N
2
N 1
H (z) (0k 1k z1 2k z2 ) h(n) zn
(4-7)式说明h(n)对(N-1)/2是偶对称或奇对称的。
下面从上式出发推导线性相位FIR滤波器结构
设 h(n)=h(N-n-1), N取偶数
8
4.3 有限长单位冲激响应(FIR)滤波器 的基本结构
N 1
N 1 2
N
H (z) h(n) zn h(n) zn h(n) zn
n0
N 1
H (z) h(n) zn
n0
N 11 2
h(n)
zn
h(
N
1)
N 1
z2
N 1
h(n) zn
n0
2
n N 11
2
令 m=N-1-n,得
H
(z)
N 11 2
h(n)
zn
h(

数字滤波器的基本结构

数字滤波器的基本结构

图5-11 并联结构的一阶、二阶基本节结构
.
19
第5章 数字滤波器的基本结构
图5-12 三阶IIR滤波器的并联型结构
.
20
第5章 数字滤波器的基本结构
2.并联型结构的特点
并联型结构也可以用调整 1k ,2k 的办法单独调整 一对极点的位置,但对于零点的调整却不如级联型方 便,它不能单独调整零点的位置,而且当滤波器的阶 数较高时,部分分式展开比较麻烦。在运算误差方面, 由于各基本网络间的误差互不影响,没有误差积累, 因此比直接型和级联型误差稍小一点。当要求有准确 的传输零点时,采用级联型最合适。
k 1
M NN=一N阶1+2系N统2
当M<N时, Gk z k 0
二阶系统 共轭复数
延时加 权单元
k 0
M N
当M=N时,
Gk zk G0
k 0 .
(4-6)
17
第5章 数字滤波器的基本结构
以M=N时为例进行研究,将共轭复根部分,成对地 合并为二阶实系数的部分分式,此时H(z)可表示为
H (z) G 0k N 1 11 A c k kz 1k N 2 11 1 0 k kz 1 1 kz 2 1 kz 2
调整系数 1k , 2k 就能单独调整滤波器的第k对零点,对其
他零极点并无影响;同样,调整系数 1k ,2k 也只单独调整了 第k对极点,而不影响其它零极点。因此,与直接型结构相
比,级联型结构便于准确地实现滤波器零、极点,因而便
于调整滤波器的频率响应性能。
.
16
第5章 数字滤波器的基本结构
四、并联型结构(※)
H(z)(1zN)N 1N k 0 11H W (N kk)z1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数字信号处理 2 差分方程
第四章 数字滤波器的基本结构
M
H z
Y z X z
bk z k
k0
N
1 ak zk
k 1
Z 1
M
N
yn bk xn k ak yn k
k0
k 1
北京理工大学珠海学院信息学院
数字信号处理
第四章 数字滤波器的基本结构
3 滤波器的功能与实现
滤波就是对输入序列x(n)进行一定的运算操作, 从而得到输出序列 y(n)
当输入、输出是离散信号,滤波器的冲激响应是单位抽样响应 h(n)时,这样的滤波器称作数字滤波器。
北京理工大学珠海学院信息学院
数字信号处理
第四章 数字滤波器的基本结构
二 数字滤波器的系统函数与差分方程
1 系统函数
X z
H z
Y z
M
H z
Y z X z
bk z k
k0
N
1 ak zk
k 1
北京理工大学珠海学院信息学院
利用通用计算机编程,即软件实现; 数字信号处理器(DSP)即专用硬件实现
北京理工大学珠海学院信息学院
三 数字滤波器的结构表示法1ຫໍສະໝຸດ xnz 12a
xn
3
x1 n
x2 n
1 方框图法
xn 1 axn
x1n x2n
数字信号处理
第四章 数字滤波器的基本结构
yn a1 yn 1 a2 yn 2 b0 xn
第四章 数字滤波器的基本结构
yn a1 yn 1 a2 yn 2 b0 xn
b0
xn
b0 xn
yn
z 1
a1
a1 yn 1
a2 yn 2
a2
yn 1
z 1
yn 2
北京理工大学珠海学院信息学院
数字信号处理
第四章 数字滤波器的基本结构
x(n) 6
b0 1
2
yn
7
a1 yn 1 a2 yn 2
M1
M2
1 pi z 1
1 qi z 1 1 qi z 1
A
i 1 N1
i 1 N2
1 ci z1
1 di z1
1
d
i
z
1
i 1
i 1
pi—实零点, ci—实极点; qi ,qi*—复共轭零点, di ,di*—复共轭极点
北京理工大学珠海学院信息学院
数字信号处理
北京理工大学珠海学院信息学院
数字信号处理
第四章 数字滤波器的基本结构
x(n)所处的节点
y(n)所处的节点 一个输入,一个或一个以上输出的节点 将值分配到每一支路 有两个或两个以上输入的节点
北京理工大学珠海学院信息学院
数字信号处理
第四章 数字滤波器的基本结构
北京理工大学珠海学院信息学院
数字信号处理
编辑课件
数字信号处理
第四章 数字滤波器的基本结构
一 数字滤波器的概念
指对输入信号起滤波作用的装置; 能让一部分频率分量通过而拒绝其它频率分量;
对频率进行修正的系统都称为“滤波器”
北京理工大学珠海学院信息学院
数字信号处理 xn
第四章 数字滤波器的基本结构
hn
yn
yn xn hn F
Y e j X e j H e j
北京理工大学珠海学院信息学院
数字信号处理 1 直接I型
第四章 数字滤波器的基本结构
M
H z
Y z X z
bi z i
i0
N
1 ai zi
i 1
M
N
yn bi xn i ai yn i
i0
i 1
北京理工大学珠海学院信息学院
数字信号处理
第四章 数字滤波器的基本结构
Bz
xn
b0
z 1
M
yn bi x'n i i0
N
X 'z X 'z ai zi X z i 1
X z
X z
N
1 ai zi
i 1
M
Y z X 'z bi zi i0
Hz
Y z X z
M
bi z i
i0 N 1 ai zi i 1
北京理工大学珠海学院信息学院
数字信号处理
第四章 数字滤波器的基本结构
i0
第二个网络实现极点
Az
N
即实现 yn 加权延时: ai yn i
i 1
共需N+M个存储延时单元
北京理工大学珠海学院信息学院
2 直接II型
Az
xn
a1 a2
x' n
z 1 z 1 z 1 z 1
aN 1 aN
z 1 z 1
Bz
b0 yn
b1 b2 bM 1 bM
xn
a1 a2
aN 1 aN
b0 z 1 b1 z 1 b2
bM 1 z 1 bM z 1
yn
数字信号处理
第四章 数字滤波器的基本结构
第一个网络实现极点
Az
N
即实现 yn 加权延时: ai yn i
i 1
第二个网络实现零点
Az
N
即实现 xn 加权延时: bi xn i
i0
北京理工大学珠海学院信息学院
数字信号处理
第四章 数字滤波器的基本结构
N
xn ai x'n i xn i 1
节省存储单元(软件实现) 节省存储器(硬件实现)
系数ai, bi对滤波器的性能控制作用不明显 零极点对于系数的变化过于灵敏不稳定
北京理工大学珠海学院信息学院
数字信号处理 3 级联型
第四章 数字滤波器的基本结构
先将系统函数按零、极点进行因式分解
M
bi z i
H z
i0 N
1 ai zi
i 1
第四章 数字滤波器的基本结构
再将共轭因子展开,构成实系数二阶因子
M1
M2
1 pi z 1
1 1i z1 2i z2
H z A i1 N1
i 1 N2
xn 1
b1
z 1
xn 2
b2
xn M 1
bM 1
z 1
xn M
bM
Az
yn
a1
z 1
yn 1
a2
z 1
yn 2
a N 1
yn N 1
aN
z 1 yn N
北京理工大学珠海学院信息学院
数字信号处理
第四章 数字滤波器的基本结构
第一个网络实现零点
Bz
M
即实现 xn 加权延时: bi xn i
5
a2 yn 2
a1
a1 yn 1
a2
Z 1
3 yn 1
Z 1
yn 2
4
和点:1,5 分点:2,3,4 源点:6 阱点:7
北京理工大学珠海学院信息学院
数字信号处理
第四章 数字滤波器的基本结构
一 IIR滤波器的特点
0 Z
北京理工大学珠海学院信息学院
数字信号处理 二 基本结构
第四章 数字滤波器的基本结构
b0
xn
b0 xn
yn
z 1
a1
a1 yn 2
a2 yn 2
a2
yn 1
z 1
yn 2
北京理工大学珠海学院信息学院
2 信号流图法
是一种有向图,它用带箭头的线段来代表一条支路 箭头的方向代表信号传输的方向。
1
Z 1
2
a
3
数字信号处理
第四章 数字滤波器的基本结构
沿同一方向传输的连通支路 闭合通路 环路中所有支路增益之积 从输入节点到输出节点通过任何节点仅一次的通路 前向通路中所有支路增益之积
相关文档
最新文档