九年级上数学10月月考答题卡(学生)(1)
湖北武汉部分学校2025届九年级上学期10月月考数学试卷+答案
2024-2025学年湖北省武汉市部分学校九年级(上)月考数学试卷(10月份)一、选择题.(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个正确,请在答题卡上将正确答案的字母代号涂黑。
1.(3分)方程2x2﹣2x﹣1=0的一次项系数、常数项分别是()A.1、2B.2、﹣1C.﹣2、﹣1D.﹣2、12.(3分)用配方法解方程x2﹣4x+2=0,下列变形正确的是()A.(x﹣2)2=2B.(x﹣4)2=2C.(x﹣2)2=0D.(x﹣4)2=13.(3分)若关于x的一元二次方程x2﹣ax+6=0的一个根是2,则a的值为()A.2B.3C.12D.54.(3分)下列一元二次方程中没有实数根的是()A.x2+2x﹣1=0B.C.x2+x﹣2=0D.5.(3分)将抛物线y=x2+1先向上平移2个单位,再向右平移1个单位后所得的抛物线是()A.y=(x﹣1)2+3B.y=(x+1)2+3C.y=(x+2)2D.y=(x+1)2﹣16.(3分)已知方程6x2﹣7x﹣3=0的两根分别为x1、x2,则的值为()A.B.C.D.7.(3分)当函数是二次函数时,a的取值为()A.a=1B.a=±1C.a≠1D.a=﹣18.(3分)若m、n是方程x2+x﹣1=0的两个实数根,则的值是()A.1B.﹣1C.2D.09.(3分)已知抛物线y=ax2+bx+c(a>0)的对称轴为直线x=2,与x轴的一个交点(﹣2,0).若关于x的一元二次方程ax2+bx+c=p(p<0)有整数根,则p的值有()A.2个B.3个C.4个D.5个10.(3分)函数y=ax+(a,b为常数,且a>0,b<0)的大致图象是()A.B.C.D.二、填空题.(共6小题,每小题3分,共18分)11.(3分)方程(2﹣3x)(6﹣x)=0的根为.12.(3分)抛物线y=x2﹣2x﹣2的顶点坐标是.13.(3分)关于x的一元二次方程(m+1)x2﹣3x+1=0有实数根,则m的取值范围是.14.(3分)某工厂一月份生产零件30万个,第一季度生产零件152.5万个.设该厂二、三月份平均每月的增长率为x,则x满足的方程是.15.(3分)如图,已知抛物线y=ax2+bx+c与x轴交于A、B两点,与y轴交于点C,顶点为D,其中点B坐标为(3,0),顶点D的横坐标为1,DE⊥x轴,垂足为E,下列结论:①当x>1时,y随x增大而减小;②a+b<0③3a+b+c>0;④当时,OC>2.其中结论正确的有(填序号).16.(3分)已知抛物线y=x2﹣(m+4)x+3m+2在﹣1≤x≤2的范围内能使y≥2恒成立,则m的取值范围为.三、解答题.(共有8小题,共72分)17.(8分)解方程:(1)x2+6x+4=0;(2)x(x﹣2)+x﹣2=0.18.(8分)如图,抛物线y=﹣x2+2x+3.(1)该抛物线的对称轴是直线;(2)关于x的一元二次方程﹣x2+2x+3=0的解为;(3)当x满足时,y>0;(4)当x满足0≤x≤4时,y的取值范围是.19.(8分)已知x1,x2是关于x的一元二次方程x2﹣2(t﹣1)x+t2+3=0的两个实数根.(1)求t的取值范围;(2)若,求t的值.20.(8分)如图,二次函数y=(x+2)2+m的图象与y轴交于点C,点B在抛物线上,且与点C关于抛物线的对称轴对称,已知一次函数y=kx+b的图象经过该二次函数图象上的点A(﹣1,0)及点B.(1)求二次函数与一次函数的解析式;(2)根据图象,写出满足(x+2)2+m≥kx+b的x的取值范围.21.(8分)在如图所示的网格中建立平面直角坐标系,已知△ABC的顶点坐标分别为A(1,7)、B(8,6)、C(6,2),点D是AB上一点.仅用无刻度的直尺在给定的网格中画图,画图过程用虚线表示,画图结果用实线表示,并完成下列问题:(1)直接写出△ABC的形状;(2)作线段AB关于AC的对称线段AE;(3)在线段AE上找点F,使AF=AD;(4)在AB上画点G,使∠BCG=∠BAC.22.(10分)如图1,为美化校园环境,某校计划在一块长为100米,宽为60米的长方形空地上修建一个长方形花圃,并将花圃四周余下的空地修建成同样宽的通道,设通道宽为a米.(1)用含a的式子表示花圃的面积;(2)如果通道所占面积是整个长方形空地面积的,求出此时通道的宽;(3)已知某园林公司修建通道的单价是50元/米2,修建花圃的造价y(元)与花圃的修建面积S(m2)之间的函数关系如图2所示,并且通道宽a(米)的值能使关于x的方程x2﹣ax+25a﹣150=0有两个相等的实根,并要求修建的通道的宽度不少于5米且不超过12米,如果学校决定由该公司承建此项目,请求出修建的通道和花圃的造价和为多少元?23.(10分)已知:如图,正方形ABCD中,过点A作直线AE,作DG⊥AE于点G,且AG=GE,连接DE.(1)求证:DE=DC;(2)若∠CDE的平分线交直线AE于F点,连接BF,求证:DF﹣FB=FA;(3)在(2)的条件下,当正方形边长为2时,求CF的最大值为.24.(12分)已知:如图1,抛物线y=ax2+bx+c与x轴相交于点A(﹣3,0),点B(﹣1,0),与y 轴交于点C(0,﹣3).(1)求抛物线的解析式;(2)点P为抛物线第三象限上的一点,若∠PBA=2∠BCO,求点P的坐标;(3)如图2,点M为抛物线在点A左侧上的一点,点M与点N关于抛物线的对称轴对称,直线BN、BM分别交y轴于点E、D,求OE﹣OD的值.2024-2025学年湖北省武汉市部分学校九年级(上)月考数学试卷(10月份)参考答案与试题解析一、选择题.(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个正确,请在答题卡上将正确答案的字母代号涂黑。
2022-2023学年重庆八中九年级(上)月考数学试卷(10月份)
2022-2023学年重庆八中九年级(上)月考数学试卷(10月份)一、选择题:在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.(4分)如图是某个几何体的展开图,该几何体是()A.三棱柱B.圆锥C.四棱柱D.圆柱2.(4分)二十大报告是对过去十年的总结和对未来的展望,总结到全国各类养老服务机构和设施达36万个,36万用科学记数法可以表示为()A.36×104B.3.6×105C.0.36×106D.3.6×1063.(4分)实数a,b在数轴上的对应点的位置如图所示,则正确的结论是()A.a>﹣3B.a+b>0C.a﹣b>0D.|a|>|b|4.(4分)一个正多边形的一个内角是120°,那么这个正多边形的边数是()A.6B.8C.10D.125.(4分)已知AB是半径为2的圆的一条弦,则AB的长不可能是()A.2B.3C.4D.56.(4分)估计(﹣)的值应在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间7.(4分)下列说法正确的是()A.对角线相等的四边形一定是矩形B.顺次连接矩形各边中点形成的四边形一定是正方形C.对角线互相平分且相等的四边形一定是菱形D.经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分8.(4分)按如图所示的运算程序,能使输出结果为﹣8的是()A.x=3,y=4B.x=4,y=3C.x=﹣4,y=2D.x=﹣2,y=49.(4分)如图,在△ABC中,∠B=30°,∠C=45°,DF⊥AC,垂足为F,DE⊥AB,垂足为E.若DE =DF=1,则△ABD的面积与△ACD的面积之比为()A.B.2C.D.310.(4分)如图,二次函数y=ax2+bx+c(a>0)的图象与x轴交于两点(x1,0),(2,0),其中0<x1<1.下列结论正确的是()A.abc>0B.a﹣b+c<0C.2a+b>0D.a+b+c>011.(4分)已知二次函数y=ax2﹣4x+6的顶点在第二象限,且关于x的分式方程+﹣1=0有整数解,则符合条件的所有整数a的个数为()A.1B.2C.3D.412.(4分)已知两个多项式A=x2+3x+3,B=x2﹣3x+3,x为实数,将A、B进行加减乘除运算:①若A+B=4,则x=2;②若A×B=0,则关于x的方程无实数根;③若|A﹣B﹣12|+|A﹣B+24|=36,则x的取值范围是﹣4≤x≤2;④若x为正整数,且为整数,则x的取值个数为7个,上面说法中正确的是()A.②③B.③④C.①②④D.②③④二、填空题:(本大题共4个小题,每小题4分,共16分)请将每小题的答案直接填在答墨卡中对应的横线上.13.(4分)若=tan60°,则x﹣1=.14.(4分)一个不透明袋子里装有4个小球(只有编号不同),编号分别为0,1,2,3,从中任意摸出两个球,两球编号之和为奇数的概率是.15.(4分)如图,在Rt△ABC中,∠ACB=90°,BC=2,AC=2,以点C为圆心,BC为半径作圆弧交AC于点D,交AB于点E.则阴影部分的面积为.16.(4分)某车间有A,B,C型的生产线共10条,A,B,C型生产线每条生产线每小时的产量分别为4m,2m,m件,m为正整数,该车间准备增加3种类型的生产线共8条,其中B型生产线增加2条,后改进方案,每条生产线(包括之前的和新增的生产线)每小时的产量将增加3件.统计发现,增加生产线后,该车间每小时的总产量恰比增加生产线前增加了92件,且C型生产线每小时的产量与三种类型生产线每小时的总产量之比为4:13,请问增加生产线后,该车间所有生产线每小时的总产量为件.三、解答题:(本大题共2个小题,每小题8分,共16分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答罩卡中对应的位置上.17.(8分)计算:(1)(x﹣3)2﹣x(x﹣6);(2)(a+)÷.18.(8分)如图,在平行四边形ABCD中,对角线AC与BD交于点O.(1)尺规作图:过点O作直线l⊥AC,分别交AD、BC于点E、F(基本作图,保留作图痕迹,不写作法,不下结论);(2)连接CE、AF,求证:四边形AECF为菱形.证明:∵四边形ABCD为平行四边形,且O为平行四边形ABCD对角线交点,∴①.∵l⊥AC,∴AE=EC.∵四边形ABCD为平行四边形,∴②,∴∠CAD=∠ACB.在△AOE与△COF中,,∴△AOE≌△COF(ASA),∴③,∴四边形AECF是平行四边形.又∵④,∴四边形AECF为菱形.19.(10分)在常态化疫情防控工作形势下,某校通过云讲解、云参观、云课堂等方式立体讲解中国首批国家公园,并组织初中全体学生发起了“大美我家园敬畏大自然”的主题教育活动,为了解学生对中国国家公园的了解程度,随机抽取了七年级、八年级学生若干名(抽取的各年级学生人数相同)进行网上问卷测试,并对得分情况进行整理和分析(得分用整数x表示,单位:分),且分为A,B,C三个等级,分别是:优秀为A等级:85≤x≤100,合格为B等级:70≤x<85,不合格为C等级:0≤x<70.分别绘制成如下统计图表,其中七年级学生测试成绩数据的众数出现在A组,A组测试成绩情况分别为:85,85,87,92,95,95,95,95,97,98,99,100;八年级学生测试成绩数据的A组共有个a人.七年级、八年级两组样本数据的平均数、中位数、众数和方差如表所示:成绩平均数中位数众数方差七年级85b c99.5八年级85919695.1根据以上信息,解答下列问题:(1)填空:a=,b=,c=;(2)根据以上数据,你认为该学校哪个年级的测试成绩更好,并说明理由;(3)若该校七、八年级分别有1500人,请估计该校初中七、八年级学生中成绩为优秀的学生共有多少名?四、解答题:(本大题共7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上20.(10分)反比例函数y1=(k≠0)与一次函数y2=ax+b(a≠0)交于A(4,1),B(1,m)两点.(1)求出一次函数y2的解析式,并在网格中画出一次函数y2的图象;(2)结合图象,直接写出当x>0时不等式ax+b≤的解集;(3)点C与点A关于原点对称,过点A作直线AD∥x轴,交直线BC于点D,求△ABD的面积.21.(10分)如图,某小区A栋楼在B栋楼的南侧,两楼高度均为82m,楼间距为MN,春分日正午,太阳光线与水平面所成的角为60°,A栋楼在B栋楼墙面上的影高为DM;冬至日正午,太阳光线与水平面所成的角为45°,A栋楼在B栋楼墙面上的影高为CM,已知CD=32m,(参考数据≈1.41,≈1.73)(1)求楼间距MN;(结果保留根号)(2)王老师家住B栋3楼,点M处为地面1楼,楼房层高2.8米,问王老师家能否照到春分日正午的太阳?并说明理由.22.(10分)某新建火车站站前广场需要绿化的面积为46000米2,施工队在绿化了22000米2后,将每天的工作量增加为原来的1.5倍,结果提前4天完成了该项绿化工程.(1)该项绿化工程原计划每天完成多少米2?(2)该项绿化工程中有一块长为20米,宽为8米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为56m2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是多少米?23.(10分)对任意一个三位自然数m,若m满足百位数字与个位数字之差等于十位数字与1的差,且各位数字都不为零,那么称这个三位数为“差一数”,将这个“差一数”的百位数字移动到剩余两位数的右侧形成一个新的三位数m′,规定f(m)=.例如自然数m=652,6﹣2=5﹣1,所以m为“差一数”,将m的百位数字6移动到剩余两位数52的右侧得到新的三位数m'=526,所以f(652)==14.(1)判断752,863是否是“差一数”,并说明理由;如果是,求出对应的f(m)的值;(2)自然数m是“差一数”,若f(m)是能被5整除,同时f(m)除以4余3,求所有满足条件的m.24.(10分)如图,抛物线y=﹣x2﹣2x+3与x轴交于点A,B(点A在点B左侧),与y轴交于点C,连接AC.(1)求线段AC的长;(2)点P为直线AC上方抛物线上一点,求四边形P ABC面积的最大值及此时点P的坐标;(3)将原抛物线沿射线AC方向平移个单位长度得到抛物线y′,y′与原抛物线交于点M,点N在直线AC上,在平面直角坐标系中是否存在点R,使以点A、M、N、R为顶点的四边形是以AM为边的菱形,若存在,请直接写出点R的坐标,并选择其中一个点写出求解过程;若不存在,请说明理由.25.(10分)如图,在△ABC中,∠BAC=90°,AB=AC.(1)如图1,点D为△ABC内一点,连接AD,过点A作AE⊥AD,AD=AE,连接DE,BD,CE,已知AB=,AD=1,当B、D、E三点共线时,求ABCE的面积;(2)如图2,在AC上取点D,连接BD,过点A作AE⊥BD于点F,AE=BD,取BC中点G,连接GE,ED,在AB上取点M,过点M作MN∥DE交BC于点N,MN=GE,求证:BN=DC;(3)如图3,在AC上取点D,连接BD,将△ABD沿BD翻折至ABDE处,在AC上取点F,连接BF,过点E作EG⊥BF于点G,GE交BF于点H,连接AH,若GE:BF=:2,AB=2,求AH的最小值.参考答案一、选择题:在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.A;2.B;3.D;4.A;5.D;6.A;7.D;8.C;9.C;10.D;11.A;12.D;二、填空题:(本大题共4个小题,每小题4分,共16分)请将每小题的答案直接填在答墨卡中对应的横线上.13.;14.;15.+;16.130;三、解答题:(本大题共2个小题,每小题8分,共16分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答罩卡中对应的位置上.17.(1)9;(2).;18.OA=OC;AD∥BC;AE=CF(或OE=OF);AE=EC;19.13;86;95;四、解答题:(本大题共7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上20.(1)y2=﹣x+5;(2)0<x≤1或x≥4;(3)9.;21.(1)(16+16)m;(2)能,理由详见解答.;22.;23.(1)752不是“差一数”,863为“差一数”;(2)满足条件的m为:762,964.;24.(1)3;(2),P点坐标为(﹣,);(3)存在,(3,8)或(1,6)或(1,2).;25.(1)3;(2)见解答过程;(3).。
重庆市开州区云枫教育集团2023-2024学年九年级上学期10月月考数学试题(含部分答案)
开州区云枫初中教育集团2023-2024学年度(上)第一次阶段性测试九年级数学试卷(注:全卷共四个大题,满分150分;用120分钟完成。
)注意事项:试题的答案书写在答题卡上,不得在试卷上直接作答。
一、选择题:(本大题共10小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.的倒数是()A .2023B .C .D.2.下列图形不是轴对称图形的是()A .B .C .D .3.下列计算中,正确的是()A .B .C .D .4.用配方法解方程,下列变形正确的是()A .B .C .D .5.一元二次方程的根的情况是()A .有两个不相等的实数根B .有两个相等的实数根C .有一个实数根为0D .没有实数根6)A .和之间B .1和2之间C .2和3之间D .7和8之间7.如图,在菱形中,,对角线交于点O ,E 为的中点,连接,则的度数为( )2023-2023-12023-1202322a a -=1x x x x ÷⋅=()326327x x -=-222()m n m n -=-2230x x +-=2(1)4x +=2(1)2x +=2(1)3x +=2(1)3x +=-2260x x --=⨯-2-3-ABCD 66ABC ∠=︒,AC BD CD OE AOE∠A .B .C .D .8.由二次函数可得下列选项中正确的是()A .其图象的开口向下B .其图象的对称轴为直线C .其顶点坐标为D .当时,随的增大而增大9.在同一直角坐标系内,函数和的图象大致是( )A .B .C .D .10.对于实数,定义新运算,则下列结论正确的有( )①当时,;②;③若是关于的一元二次方程的两个根,则或;④若是关于的一元二次方程的两个根,,则的值为或A .1个B .2个C .3个D .4个二、填空题:(本大题共8小题,每小题4分,共32分)将答案直接填写在答题卡中对应的横线上.11.计算:______.12.若是一元二次方程的一个根,则______.13.如图,在中,分别是边上的中点,.则四边形的周长为______.114︒120︒123︒147︒22(1)4y x =+-1x =()4,1-1x >y x 2y ax =-()10y ax a =+≠,a b ()222()a b ab a b a b ab a b a b ⎧+-≥*=⎨--<⎩1x =-()2721x -**=-⎡⎤⎣⎦()()22272,121451,(1)m m m m m m m m ⎧-+-≤*-=⎨-+>⎩12x x 、x 2560x x --=1216x x *=17-12x x 、x 210x mx m +--=124x x *=m 3-6-02(3)π-+-=3x =2120ax ax --=a =ABC △,,D E F ,,AC BC AB 4,6AB BC ==BEDF14.将抛物线向左平移1个单位长度,再向下平移2个单位长度,所得的抛物线的解析式为______.15.若点是抛物线上的三点,则的大小关系为______;(用“>”连接)16.如图,把三角形纸片折叠,使点、点都与点重合,折痕分别为,得到,若的长为______厘米.17.如果关于的不等式组至少有3个整数解,且关于的分式方程的解为整数,则符合条件的所有整数的取值之和______;18.如果一个自然数右边的数字总比左边的数字大,我们称它为“上升数”.如果一个三位“上升数”满足百位数字与十位数字之和等于个位数字,那么称这个数为“完全上升数”.例如:,满足,且;所以123是“完全上升数”;,满足,且,所以346不是“完全上升数”.若一个“完全上升数”为,则这个数为______;对于一个“完全上升数”(且为整数)交换其百位和个位数字得到新数;若与的和能被7整除,则满足条件的的和是______.三、(解答题:(本大题共7小题,19题8分,其余每题10分,共78分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线).19.解方程:(1)(2)20.(1)(2)21.如图,在菱形中,对角线相交于点O .251y x =-+()()()1230,,1,, 2.A y B y C y 2(1)y x m =-++123,,y y y B C A DE FG 、30AGB ∠=︒AE EG ==BC x 5316105x x a x +⎧≤+⎪⎪⎨⎪-≥⎪⎩y 13555ay a y y y y -=----a 123A =123<<123+=346B =346<<346+≠29b 10010m a b c =++19a b c ≤<<≤,,a b c 10010m c b a +'=+m m 'm 230x x -=24310x x -+=()2()2a b a a b +--21111x x x x x -⎛⎫÷+- ⎪++⎝⎭ABCD AC BD 、(1)尺规作图:在的延长线上截取,连接,再过点作的垂线交于点(保留作图痕迹,不写作法);(2)求证:四边形为矩形.证明:①______四边形是菱形∵②______又四边形为平行四边形③______④______四边形为矩形.22.某校开展了全校教师学习党史活动进行了党史知识竞赛,从七、八年级中各随机抽取了20名教师,统计这部分教师的竞赛成绩(竞赛成绩均为整数,满分为10分,9分以上为优秀).相关数据统计、整理如下:抽取七年级教师的竞赛成绩(单位:分):6,7,7,8,8,8,8,8,8,8,8,9,9,9,9,10,10,10,10,10八年级教师竞赛成绩扇形统计图七、八年级教师竞赛成绩统计表年级七年级八年级平均数8.58.CB BE BC =AE B AE AE F AOBF BF AE⊥ ∴ ABCD ,,AD BC AD BC AC BD∴=⊥∥90AOB ∴∠=︒BE BC=∴AD BC∥∴ADBE ∴180AFB FBO ∴∠+∠=︒∴90AFB AOB FBO ∴∠=∠=∠=︒∴AOBF中位数9众数8优秀率根据以上信息,解答下列问题:(1)填空:_________ _________(2)估计该校七年级120名教师中竞赛成绩达到8分及以上的人数;(3)根据以上数据分析,从一个方面评价两个年级教师学习党史的竞赛成绩谁更优异.23.某新修公路沿线需要进行绿化施工,由甲、乙两工程队合作完成.已知若由甲工程队单独施工,需要30天才能完成此项工程;若由乙工程队先施工30天,剩下的由甲、乙合作施工,则还需10天才能完成此项工程.(1)求乙工程队单独完成此项工程需要多少天?(2)若甲工程队每天所需费用为1.5万元,乙工程队每天所需费用为1万元,甲、乙两工程队合作完成此项工程,总费用恰为49万元,则应安排甲工程队施工多少天?24.(10分)如图,已知矩形的边长为分别在边上,且,点是矩形边上的一个动点,点从出发,经过点,到D 点停止.记点走过的路程为,四边形的面积为.(1)请求出关于的函数关系式,并写出自变量的取值范围;(2)在坐标系中画出的函数图象;观察函数图象,请写出一条该函数的性质;(3)根据函数图象直接写出当四边形的面积为4时的值;(误差不超过0.1).25.如图,已知抛物线经过两点,直线是抛物线的对称轴.a b 45%55%a =b =ABCD 4,3,,AB AD E F ==AD AB 、2DE BF ==P P B C P x AEPF y y x y AEPF x 232y a x k ⎛⎫=-+ ⎪⎝⎭()()1,0,0,4A C --m(1)求抛物线的解析式.(2)设是直线上的一个动点,当点到点的距离之和最短时,求点的坐标.(3)已知为抛物线的顶点,在平面直角坐标系中是否存在一点,恰好使得为顶点平行四边形,若存在,写出所有符合条件的点坐标,并写出求解点的坐标的其中一种情况的过程,若不存在,说明理由。
上海市南洋模范中学2024-2025学年九年级上学期10月月考数学试题(含答案)
2024~2025学年上海市南洋模范中学九年级上学期9月月考试卷数学 试卷(考试时间100分钟 满分150分)考生注意:1.带2B 铅笔、黑色签字笔、橡皮擦等参加考试,考试中途不得传借文具2.不携带具有传送功能的通讯设备,一经发现视为作弊。
与考试无关的所有物品放置在考场外。
3.考试期间严格遵守考试纪律,听从监考员指挥,杜绝作弊,违者由教导处进行处分。
4.答题卡务必保持干净整洁,答题卡客观题建议检查好后再填涂。
若因填涂模糊导致无法识别的后果自负。
一.选择题(共6题,每题4分,满分24分)-2.计算:(3x 2)2的结果为( )A .4x 2B .6x 4C .9x 2D .9x 43.用6,7,8,9制作四道算式,积最小的是( )A .9×678B .7×689C .6×789D .8×7964.四边形ABCD 为矩形,A,C 作对角线BD 的垂线,过B,D 作对角线AC 的垂线,如果四个垂线拼成一个四边形,那这个四边形为( )A .菱形B .矩形C .直角梯形D .等腰梯形5.有下列说法:①等边三角形是等腰三角形;②三角形三条角平分线的交点叫做三角形的重心;③连接多边形的两个顶点的线段叫做多边形的对角线;④三角形的三条高相交于一点;⑤各边都相等的多边形为正多边形;⑥所有的等边三角形全等,其中正确的个数有( )个.A .1B .2C .3D .46.平面上的一组3条平行线与另一组5条平行线相交,可构成平行四边形的个数为( )A .24B .28C .30D .32二.填空题(共12题,每题4分,满分48分)7.0的相反数是________8.使用卡西欧计算器,依次按键 ,显示结果为 .借助显示结果,可以将一元二次方程x 2+x-1=0的正数解近似表示为___________9.在实数范围内因式分解:2x 2-1=____________10.计算:AB ―AC +BC =_________11.某人手机的密码是四位数字,如果陌生人想打开该手机,那么他一次就能手机电脑的概率是________12.已知A (2,3) B (2,1),则将点A 向上平移______个单位可得到点B13.如图所示的图形是中心对称图形,O 是它的对称中心,E ,F 是两个对称点,则点E ,F 到点O 的距离OE ,OF 的大小关系是:OE ____OF (填“<”,“=”或“>”).14.小雨一家自驾游到北京游玩,总路程600千米.前半程按计划速度行驶,为提前到达目的地,后半程将车速提高了20%,因遇到高速拥堵,耽搁40分钟,最终恰好在计划时间到达.设原计划速度为x 千米每小时,则根据题意可列方程________15.已知△ABC ∽△DEF ∽△MNQ ,若△ABC 与△DEF 相似比为15,△ABC 与△MNQ 相似比为23,则△ABC 与△MNQ 相似比为________16.“元旦节 ”前夕,某超市分别以每袋 30元、20 元、10 元的价格购进腊排骨、腊香肠、腊肉各若干,由于该食品均是真空包装,只能成袋出售,每袋的售价分别为 50 元、40 元、20 元,元旦节当天卖出三种年货若干袋,元月2日腊排骨卖出的数量是第一天腊排骨卖出数量的 3 倍,腊香肠卖出的数量是第一天腊香肠卖出数量的 2 倍,腊肉卖出的数量是第一天腊肉卖出数量的4倍;元月3日卖出的腊排骨的数量是这三天卖出腊排骨的总数量的20%,卖出腊香肠的数量是前两天卖出腊香肠数量和的43,卖出腊肉的数量是第二天卖出腊肉数量的一半.若第三天三种年货的销售总额比第一天三种年货销售总额多1600元,这三天三种年货的销售总额为9350元,则这三天销售的腊排骨和腊肉两种年货的利润之比为________17.在平面直角坐标系中,已知A (m-3,n ),B (m+5,n ),C (m,n+3)若线段AC 的垂直平分线与线段AB 交于点P ,线段BC 的垂直平分线与线段AB 交于点Q ,∠CAB 的外角平分线与∠CBA 的外角平分线所在直线交于点M ,连接CP,CQ ,请写出∠PCQ 与∠M 的数量关系:________18.对于一个二次函数y=a(x-m)2+k (a≠0)中存在一点P (x,y ),使得x-m=y-k≠0,则称2|x-m|为该抛物线的“开口大小”,那么抛物线y=―12x 2+13x +3 “开口大小”为_________三.解答题(满分78分)x=320.如图,已知D 、E 分别是△ABC 的边AB 、AC 上的点,DE ∥(2)联结BE ,设AB =a ,BC =b ,试用向量a 、b 表示向量BE步骤1:把长为2米的标杆垂直立于地面点D 处,塔尖点A 和标杆顶端C 确定的直23.如图,△ABC 中,D 、E 分别为AB,AC 上两点,满足∠A+∠ABD+∠ACE=90°,P 为BE 的中点,且OP ⊥AC ,延长PO 交AC 于点H(1)求证:AE·AB=AD·AC ;(2)当△ADE 和△BCD 相似时,求证:BC=CE24.如图,在平面直角坐标系中,△ABC的三个顶点A,B,C的坐标分别为(2,5),(-1,1),(4,2)(1)求:过点A,B,C的抛物线及其对称轴(2)新定义:如果点P(x,y)的坐标满足x+y=xy,那么称点P为“和谐点”,若某个“和谐点”P到x轴的距离与C 点到x轴的距离相同,求:P点的坐标(3)我们称横坐标和纵坐标为整数的点为格电,求:△ABC的面积,并直接写出该值与其内部格点数量a和边上格点数量b的等式25.如备用图,已知在矩形ABCD中,AB=4,BC=8(1)若延长BA至E,使AE=AB,以AE为边向右侧作正方形AEFG,O为正方形AEFG的中心,若过点O的一条直线平分该组合图形的面积,并分别交EF、BC于点M、N,求:线段MN的长(2)将矩形绕点A旋转,得到四边形AB1C1D1,使点D落在直线B1C1上,求:线段BB1的长(3)若把矩形纸片沿着直线EF翻折,点A,B的对应点分别为A’,B’,交射线AD于点G,EB’交AD于点P,当CE=EF参考答案及部分评分标准选择题(1~6题)DDCAAC填空题(7~18题)7.08.一9.(2x +1)(2x ―1)10.011.11000012.-213.=14.600x=300x +3001.2x +406015.10316. 151417.4∠M+∠PCQ=180°18.4解答题(19~25题)19.1―x x +1= ―2+3(10分)20.(1)35(5分)(2)―2a 3b21.(1)AB=47m (10分)22.(1)―364x 2+11(5分)(2)32h (5分)23.(1)提示:证明△ABD ∽△ACE (6分)(2)提示:等角对等边(6分)24.(1)y=-17―30x 2+1910x +5215 对称轴为5734(4分)(2)P (2,2)或P (23,―2)(4分)(3)S=152=2a +b ―22(皮克定理)(4分)25. (1)MN=45(4分)(2)26―22或26+22(4分)(3)1或3(6分)。
广州中学2024--2025学年九年级数学上学期10月月考试卷(解析版)
广州中学2024学年第一学期10月测试九年级数学试卷满分:120分,考试时间:120分钟注意事项:1.答卷前按要求用黑色字迹的钢笔或签字笔填写自己的考生号、姓名、座位号等;2.选择题用2B 铅笔把答题卡上对应的题目的答案标号涂黑,只答在试卷上的无效;3.非选择题必须用黑色字迹的钢笔或签字笔作答.答案必须写在答题卡各题目指定的区域内的相应位置上,不准使用涂改液和修正带,违反要求的答案无效;4.本次考试禁止使用计算器.一、细心选一选(本题有10个小题,每小题3分,满分30分.每小题给出的四个选项中,只有一个是正确的.)1. 下列方程是一元二次方程的是( )A. 32x y +=B. 323x x =−C. 250x −=D. 123x x+= 【答案】C【解析】【详解】A 、含有两个未知数,不是一元二次方程,该选项不符合题意;B 、未知数的最高次数为3,不是一元二次方程,该选项不符合题意;C 、是一元二次方程,该选项符合题意;D 、1x不是整式,不是一元二次方程,该选项不符合题意. 故选:C .【点睛】本题主要考查一元二次方程的识别,牢记一元二次方程的定义(等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程)是解题的关键. 2. 抛物线2(5)8=−+y x 的顶点坐标是( )A. (5,8)B. (5,8)−−C. (5,8)−D. (5,8)−【答案】A【解析】【分析】本题考查了二次函数的性质,根据二次函数()()20y a x h k a =−+≠的顶点坐标为(),h k 即可作答.【详解】解:抛物线2(5)8=−+y x 的顶点坐标是(5,8),故选:A .3. 如果1x =是方程20x x k ++=的解,那么常数k 的值为( )A. 2B. 1C. 1−D. −2 【答案】D【解析】【分析】本题主要考查了一元二次方程的解,一元一次方程的解法等知识点,将1x =代入20x x k ++=,即可求得常数k 的值,解决此题的关键是能运用解的定义得出一元一次方程.【详解】把1x =代入20x x k ++=,得110k ++=, 解得:2k =−,故选:D .4. 关于x 的方程()()11110m m xm x ++−−+=是一元二次方程,则m 的值是( ) A. 1−B. 1C. 1±D. 0 【答案】B【解析】【分析】本题主要考查了一元二次方程的概念,只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是20ax bx c ++=(且0)a ≠,特别要注意0a ≠的条件 .本题根据一元二次方程的定义求解即可. 【详解】解:根据题意得:1012m m +≠ +=, 解得:1m =.故选:B .5. 若方程23x 6x m 0−+=有两个不相等的实数根,则m 的取值范围在数轴上表示正确的是A.B. C. D.【答案】B【解析】【详解】试题分析:∵方程23x 6x m 0−+=有两个不相等的实数根,∴△=36-12m >0,解得m <3.不等式解集在数轴上表示的方法:>,≥向右画;<,≤向左画,在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.因此不等式m <3在数轴上表示正确的是B .故选B .6. 在国务院房地产调控政策影响下,建德市区房价逐步下降,2012年10月份的房价平均每平方米为11000元,预计2014年10月的房价平均每平方米回落到7800元,假设这两年我市房价的平均下跌率均为x ,则关于x 的方程为( )A. 211000(1)7800x +=B. 211000(1)7800x −=C. 211000(1)3200x −=D. 23200(1)7800x −=【答案】B【解析】【分析】主要考查增长率问题,一般用增长后的量=增长前的量(1×+增长率),然后根据已知条件可得出方程.【详解】解:依题意知这两年我市房价的平均下跌率均为x ,故第一次降价为11000(1)x −元,第二次降价为211000(1)7800x −=故选:B .7. 在同一平面直角坐标系中,二次函数2y ax b =+与一次函数(0)y ax b a =+≠的图像可能是( ) A. B. C. D.【答案】D【解析】【分析】根据一次函数的性质和二次函数的性质,由函数图象可以判断a b 、的正负情况,从而可以解答本题.【详解】解: A .由二次函数图像可知,0,0a b >>,由一次函数图像可知:00a b <>,,矛盾,故不符合;B .由二次函数图像可知,0,0a b <>,由一次函数图像可知:00a b ><,,矛盾,故不符合;C .由二次函数图像可知,0,0a b ><,由一次函数图像可知:00a b >>,,矛盾,故不符合;的D .由二次函数图像可知,0,0a b <<,由一次函数图像可知:00a b <<,,符合题意.故选∶D .【点睛】本题考查二次函数的图象、一次函数的图象,解题的关键是明确二次函数与一次函数图象的特点与其系数的关系.8. 九年级举办篮球友谊赛,参赛的每两个队之间都要比赛一场,共要比赛45场,则参加此次比赛的球队数是( )A. 8B. 9C. 10D. 11【答案】C【解析】【分析】根据球赛问题模型列出方程即可求解.【详解】解:设参加此次比赛的球队数为x 队,根据题意得: ()11452x x −=, 化简,得2900x x −−=,解得110x =,29x =−(舍去), 答:参加此次比赛的球队数是10队.故选:C .【点睛】本题考查了一元二次方程的应用,解决本题的关键是掌握一元二次方程应用问题中的球赛问题.9. 已知二次函数212y a x a =−−(0a ≠),当512x −≤≤时,y 的最小值为6−,则a 的值为( ) A. 6或2−B. 6−或2C. 6−或2−D. 6或2 【答案】A【解析】【分析】本题考查了二次函数的图象和性质,解题的关键是熟练掌握二次函数的图象和性质;先求出对称轴,再分两种情况讨论,当>0a 时,根据二次函数的图象和性质可知,当12x =时,y 有最小值,即可求出a 的值,当0<a 时,根据二次函数图象上的点离对称轴越远,函数值越小可知,当52x =时,y 有最小值,即可求出a 的值. 【详解】解: 二次函数解析式为212y a x a =−−,∴二次函数的对称轴为直线12x =, 当>0a 时,此时当12x =时,y 有最小值,y 最小=6a −=−, 6a ∴=,当0<a 时,1151<222−−− , ∴当52x =时,y 有最小值,y 最小2513622a a a =−−==−, 2a ∴=−,综上所述,a 的值为2−或6,故选:A .10. 如图,抛物线2()6y x h =−−的顶点为A ,将抛物线向右平移n 个单位后得到新的抛物线,其顶点记为B ,设两条抛物线交于点C ,ABC 的面积为8,则n =( )A. 2B. 4C. 6D. 8【答案】B【解析】 【分析】本题考查了二次函数的图像和性质,掌握二次函数的平移是解题的关键;根据二次函数的平移求得新的二次函数解析式,再求出两个二次函数的交点坐标,根据三角形的面积求解即可.【详解】解:过C 作CD AB ⊥于D ,抛物线2()6y x h =−−的顶点为A ,(,6)A h ∴−,将抛物线向右平移n 个单位后得到新的抛物线,其顶点记为B ,AB n ∴=,(,6)B h n +−,新的抛物线解析式为2()6y x h n =−−−, 联立22()6()6y x h y x h n =−− =−−− ,解得:212164x h n y n =+ =−, 211(,6)24C h n n ∴+−, 22116(6)44CD n n ∴=−−−=, ABC 的面积为8,21118224ABC S CD AB n n ∆∴=⋅=×⋅=, 解得:4n =,故选:B .二、耐心填一填(本题有6个小题,每小题3分,满分18分)11. 方程25x x =的解是______.【答案】10x =,25x =【解析】【分析】根据因式分解法解一元二次方程即可.【详解】解:25x x =,移项得:250x x −=,因式分解得:(5)0x x −=, ∴0x =或50x −=,∴10x =,25x =,故答案为:10x =,25x =.【点睛】本题考查了解一元二次方程,熟练掌握一元二次方程的几种解法是解本题的关键.12. 若m 是方程22310x x −+=的一个根,则2692024m m −+的值为______.【答案】2021【解析】【分析】本题考查方程的解,以及整体代入法求代数式的值,先根据m 是方程22310x x −+=的一个根得到2231m m −=−,再整体代入求解即可.【详解】解:∵m 是方程22310x x −+=的一个根,∴22310m m −+=即2231m m −=−,∴()2269202432320242021m m m m −+=−+=,故答案为:2021.13. 将抛物线()234y x =−−先向右平移1个单位长度,再向上平移2个单位长度,得到的新抛物线的函数表达式为________.【答案】()242y x =−−【解析】【分析】利用二次函数图象的平移规律,左加右减,上加下减,进而得出答案.【详解】解:将抛物线2(3)4y x =−−先向右平移1个单位长度,再向上平移2个单位长度后得到的抛物线对应的函数表达式为:2(31)42y x =−−−+,即2(4)2y x =−−.故答案为:2(4)2y x =−−.【点睛】本题主要考查了二次函数与几何变换,正确记忆图形平移规律是解题关键.14. 长方形的周长为36cm ,其中一边()018cm x x <<,面积为2 c m y ,那么y 与x 的关系是________.【答案】218y x x =−+##218y x x =− 【解析】【分析】本题主要考查了二次函数解析式,解题关键是利用长方形的面积公式求得答案.根据长方形的面积公式即可获得y 与x 的关系式.【详解】解: 长方形的周长为36cm ,其中一边()018cm x x <<,∴另一边长为()36218cm x x ÷−=−,()21818∴=−=−+y x x x x ,故答案为:218y x x =−+.15. 已知关于x 的一元二次方程22220x mx m m ++−+=有两个不相等.....的实数根,且12122x x x x ++⋅=,则实数m =_________.【答案】3【解析】【分析】利用一元二次方程22220x mx m m ++−+=有两个不相等.....实数根求出m 的取值范围,由根与系数关系得到212122,2x x m x x m m +=−=−+,代入12122x x x x ++⋅=,解得m 的值,根据求得的m 的取值范围,确定m 的值即可.【详解】解:∵关于x 的一元二次方程22220x mx m m ++−+=有两个不相等.....的实数根, ∴()()22242480m m m m ∆=−−+=−>,解得2m >,∵212122,2x x m x x m m +=−=−+,12122x x x x ++⋅=, ∴2222m m m −+−+=,解得123,0m m ==(不合题意,舍去),∴3m = 故答案为:3【点睛】此题考查一元二次方程根的判别式和一元二次方程根与系数关系,熟练掌握根的判别式和根与系数关系的内容是解题的关键.16. 如图所示,己知二次函数2y ax bx c ++的图象与x 轴交于A ,B 两点,与y 轴交于点C ,若2OC OA =,的对称轴是直线1x =.则下列结论:①0abc <;②42ac b +=−;③90a c +<;④若实数1m <,则2am a b bm −>−;⑤若直线y kx b =+(0k >)过点C 和点(2,0)−,则当2x <−时,ax b k +>,其中结论正确的序号是____________.【答案】①③⑤【解析】【分析】根据抛物线的开口方向、对称轴、与y 轴的交点可判断①;根据与x 轴的交点,02c A − 可判断②;由当2x =−时,0y <,结合2b a =−,0a <,可判断③;由当1x =时函数的值最大可判断④;由直线y kx b =+(0k >)过点C 可知b c =,然后利用当2x <−时,一次函数图象在二次函数图象上方可判断⑤.【详解】解:∵抛物线开口向下,∴0a <.∵抛物线与y 轴的正半轴相交,∴0c >. ∵102b a−=>, ∴20b a =−>,∴0abc <,故①正确;∵当0x =时,y c =,∴OC c =.∵2OC OA =, ∴,02c A −,代入2y ax bx c ++,得2022c c a b c ×−+−+=, ∴42ac b +=,故②不正确;∵当2x =−时,0y <,∴420a b c −+<,∴80a c +<,∵0a <,∴90a c +<,故③正确;∵当1x =时函数的值最大,∴2am bm c a b c ++<++,∴2am a b bm −<−,故④不正确; ∵直线y kx b =+(0k >)过点C , ∴b c =,∵当2x <−时,一次函数图象在二次函数图象上方,∴2kx b ax bx c +>++,∴2kx ax bx >+,∴ax b k +>,故⑤正确.综上可知,正确的有①③⑤.故答案为:①③⑤.【点睛】本题考查二次函数的图象与性质、二次函数图象与系数的关系,利用函数图象解不等式,以及一次函数与坐标轴的交点,数形结合是解题的关键.三、用心答一答(本大题有9个小题,共72分,解答要求写出文字说明,证明过程或计算步骤.)17. 解方程:267x x −=.【答案】127,1x x ==−【解析】【分析】先化为一般形式,进而根据因式分解法解一元二次方程即可【详解】解:267x x −=2670x x −−=()()710x x −+=解得127,1x x ==−【点睛】本题考查了解一元二次方程,掌握解一元二次方程的方法是解题的关键.18. 已知关于x 的一元二次方程230x x k −+=有实数根,若方程的一个根是2−,求方程的另一个根.【答案】5【解析】【分析】本题考查了一元二次方程根与系数的关系,解题关键是掌握若方程230x x k −+=的两个实数根分别为1x 、2x ,则12b x x a +=−,12c x x a=.根据根与系数的关系可得123x x +=,即可求出方程的另一个根. 【详解】解:令方程230x x k −+=的两个实数根分别为1x 、2x ,123x x ∴+=,方程的一个根是2−,∴方程的另一个根是()325−−=.19. 如果一元二次方程()200ax bx c a ++=≠满足0a b c ++=,那么我们称这个方程为“凤凰方程”. (1)判断一元二次方程22350x x +−=是否为凤凰方程,说明理由.(2)已知2360x x m ++=是关于x 的凤凰方程,求这个方程的实数根.【答案】(1)是,理由见解析;(2)11x =,23x =−.【解析】【分析】本题考查了一元二次方程的定义,以及解一元二次方程,理解凤凰方程的定义是解题关键. (1)根据凤凰方程的定义进行计算即可;(2)先根据凤凰方程的定义求出m 的值,再利用公式法解方程即可.【小问1详解】解:是凤凰方程,理由如下:22350x x +−=,其中,2a =,3b =,5c =−,2350a b c ∴++=+−=,∴一元二次方程22350x x +−=是凤凰方程;【小问2详解】解:2360x x m ++= 是关于x 的凤凰方程,360m ∴++=,9m ∴=−,∴23690x x +−=,其中3a =,6b =,9c =−,()26439144∴∆=−××−=,6126x −±∴=, ∴这个方程的实数根为11x =,23x =−.20. 为了节约耕地,合理利用土地资源,某村民小组准备利用一块闲置的土地修建一个矩形菜地,其中菜地的一面利用一段30m 的墙,其余三面用60m 长的篱笆围成,要最大限度的利用墙的长度围成一个面积为2400m 矩形菜地,矩形菜地的边长应为多少?【答案】该矩形菜地平行于墙面的一边长为20m ,垂直于墙面的一边长为20m .【解析】【分析】本题考查了一元二次方程实际应用,根据问题列出方程是解题的关键;设该矩形菜地平行于墙面的一边长为m x ,则垂直于墙面的一边长为60m 2x −,根据矩形的面积公式,列出方程求解即可. 【详解】解:设该矩形菜地平行于墙面的一边长为m x ,则垂直于墙面的一边长为60m 2x −, 由题意得,60()4002x x −=, 解得:1220,40x x ==,的0<30x ≤ ,20x ∴=,∴垂直于墙面的一边长为6020m 2x −=, 答:该矩形菜地平行于墙面的一边长为20m ,垂直于墙面的一边长为20m .21. 已知二次函数223y x x =+−.(1)选取适当数据填入下表,并在平面直角坐标系内画出该二次函数的图象; x ……y ……(2)根据图象回答下列问题:①当0y <时,x 的取值范围是____________;②当22x −<<时,y 的取值范围是____________.【答案】(1)见解析 (2)①3<<1x −;②4<5y −≤【解析】【分析】此题考查了二次函数的图象及其性质,解题的关键是熟练掌握二次函数的图象及其性质的应用; (1)根据五点作图法,先填表,再描点,最后用光滑的曲线画图即可;(2)①根据图象可知,当0y <时,应取x 轴下方的图象对应的x 的范围即可;②根据x 的范围,求出y 的最大值和最小值,再根据图象求解即可.【小问1详解】的解:列表如下: x… 3− 2− 1− 0 1 … y … 0 3− 4− 3−0 … 画图象如下:【小问2详解】①根据图象可知,当0y <时,x 的取值范围是3<<1x −,故答案为:3<<1x −;②当2x =时,5y =最大,当1x =−时,=4y −最小,∴根据图象可知,当22x −<<时,y 的取值范围是4<5y −≤,故答案为:4<5y −≤.22. 己知二次函数yy =aaxx 2+bbxx +cc (a ,b ,c 均为常数且0a ≠). (1)若该函数图象过点(1,0)A −,点(3,0)B 和点(0,3)C ,求二次函数表达式:(2)若21b a =+,2c =,且无论a 取任何实数,该函数的图象恒过定点,求出定点的坐标.【答案】(1)223y x x =−++ (2)()0,2,()2,0−【解析】【分析】本题考查了二次函数.解题的关键是熟练掌握待定系数法求二次函数的解析式,二次函数的图象和性质,无关型问题.(1)根据二次函数图象过点(1,0)A −和点(3,0)B ,设二次函数在解析式为()()13y a x x =+−,把(0,3)C 代入求解即可;(2)将二次函数转化为()22y x x a x =+++,根据定点与a 的值无关,得到0x =,20x +=,求出x 值,代入解析式,求出对应的y 值,即可得到点的坐标.【小问1详解】∵二次函数图象过点(1,0)A −和点(3,0)B ,∴设二次函数在解析式为()()13y a x x =+−,把(0,3)C 代入,得33a =−,∴1a =−,∴()()21323y x x x x =−+−=−++ 【小问2详解】若21b a =+,2c =,则()()2221222y ax bx c ax a x x x a x =++=+++=+++, ∴当0x =时,2y =,当2x =−时,0y =,∴若21b a =+,2c =,且无论a 取任何实数,该函数图象恒过定点()0,2,()2,0−, 23. 已知a ,b 均为实数,且满足660a +=和2660b b ++=.(1)求a b +的值;(2+的值. 【答案】(1)6−(2【解析】【分析】本题考查了根与系数的关系,解答此题需要熟练掌握根与系数的关系.(1)根据题意,利用根与系数的关系求出a b +的值即可;(2)根据题意,利用根与系数的关系求出ab 的值,原式变形后代入计算即可求出值.【小问1详解】解: a ,b 均为实数,且满足2660a a ++=和2660b b ++=, ,a b ∴可看作一元二次方程2660x x ++=的两个根,的6a b ∴+=−;【小问2详解】解:6,6a b ab +=−= , 0,0a b ∴<<,24. 已知关于x 的一元二次方程2(1)(2)0x x p −−−=.(1)求证:无论p 取何值时,方程总有两个不相等的实数根;(2)若方程的两实数根为1x ,2x ,且满足123x x =,试求出方程的两个实数根及p 的值: (3)若无论p 取何值时,关于x 的一元二次方程22(1)(2)(22)0x x p m p m −−−−+−=总有两个不相等的实数根,求实数m 的取值范围.【答案】(1)见解析 (2)194x =,234x =,p =(3)38m <−【解析】20(a 0)++=≠ax bx c :若0∆>,则一元二次方程有两个不相等的实数根;若0∆=,则一元二次方程有两个相等的实数根;若0∆<,则一元二次方程没有实数根;若12x x ,是一元二次方程的两个根,则12b x x a+=−,12c x x a = ;是解本题的关键. (1)将原式整理为一元二次方程的一般式,然后根据根的判别式进行解答即可;(2)根据一元二次方程根与系数的关系求值即可;(3)将原式整理为一元二次方程的一般式,然后根据根的判别式建立不等式,解不等式即可解答.【小问1详解】证明:∵2(1)(2)0x x p −−−=,∴22320x x p −+−=,∴()22942140p p ∆=−−=+>,∴无论p 取何值时,方程总有两个不相等的实数根;【小问2详解】解:由(1)得22320x x p −+−=, ∴123b x x a+=−=,2122c x x p a ==− , ∵123x x = ∴2233x x +=,22232x p =− ∴234x =,12934x x ==,227216p −=,∴p = 【小问3详解】解:∵22(1)(2)(22)0x x p m p m −−−−+−=,∴22232(22)0x x p m p m −+−−+−=,∴22942(22)0p m p m ∆=−−−+−> ,∴2214(88)40p m p m ++++>,∴()241830p m m ++−−>,∴830m −−>, ∴38m <−. 25. 已知关于x 的函数2(2)35y k x kx k =−−+,其中k 为实数.(1)若函数经过点(1,7),求k 的值;(2)若函数图像经过点(1,)m ,(2,)n ,试说明9mn ≥−:(3)已知函数2121y x kx =−−−,当23x ≤≤时,都有1y y ≥恒成立,求k 的取值范围. 【答案】(1)3 (2)见解析(3)18k ≥−【解析】【分析】本题考查了二次函数的图像与性质,熟练掌握恒成立问题转化为最值问题时解决本题的关键.(1)将(1,7)代入2(2)35y k x kx k =−−+得到关于k 的方程,解方程即可; (2)将点(1,)m ,(2,)n 代入2(2)35y k x kx k =−−+,则()()()22323893016359mn k k k k k −−−+−−,即可求证9mn ≥−;(3)当23x ≤≤时,都有1y y ≥恒成立转化为10y y −≥恒成立,21251y kx kx y k =+−−+,令2251kx k t x k −+=+,即当23x ≤≤时,0t ≥恒成立,即min 0t ≥成立即可,分类讨论,0,0,0k k k =><,利用函数的增减性进行分析即可.【小问1详解】解:若函数经过点(1,7),将(1,7)代入2(2)35y k x kx k =−−+得:2357k k k −−+=,解得:3k =;【小问2详解】解:∵函数图像经过点(1,)m ,(2,)n ,∴将点(1,)m ,(2,)n 代入2(2)35y k x kx k =−−+得:23532m k k k k =−−+=−()4232538n k k k k −−×+−,∴()()()22323893016359mn k k k k k −−−+−−, ∵()2350k −≥,∴()23599k −−≥−,∴9mn ≥−;【小问3详解】解:当23x ≤≤时,都有1y y ≥恒成立转化为10y y −≥恒成立, ∴()2221(2)3521251y k x kx k x kx kx kx y k −−+−−−−=−+−+=, 令2251kx k t x k −+=+,即当23x ≤≤时,0t ≥恒成立,①当0k =时,10t =≥在23x ≤≤范围内恒成立,故符合题意;②当0k ≠时,可求对称轴为直线1x =, 当0k >时,由于023x <≤≤, ∴在23x ≤≤范围内,y 随着x 的增大而增大, 故min 0t ≥在23x ≤≤范围内成立即可, ∴当2x =时,min 44510t k k k =−++≥, 解得:15k ≥−, ∴0k >;当0k <时,由于023x <≤≤, ∴在23x ≤≤范围内,y 随着x 的增大而减小, 故min 0t ≥在23x ≤≤范围内成立即可, ∴当3x =时,min 96510t k k k =−++≥, 解得:18k ≥−, ∴108k −≤<, 综上所述,18k ≥−.。
河南省洛阳市洛宁县2024-—2025学年九年级上学期10月月考数学试题(含答案)
2024-2025学年10月份学情调研九年级数学注意事项:1.本试卷共4页,三个大题,满分120分,考试时间100分钟。
2.本试卷上不要答题,请按答题卡上注意事项的要求直接把答案填写在答题卡上。
答在试卷上的答案无效。
一、选择题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的。
1.一元二次方程的一次项系数是( )A .2B .C .D .32a 的值不可以是( )A .2B .1C .0D .3.方程的解是( )A . B .C.D .4的值为2,那么x 的值是( )A .2B .4C.D .2或5.解方程时,最适当的方法是( )A .直接开平方法B .因式分解法C .配方法D .公式法6.下列运算错误的是()A B .C .D .7.用配方法解方程,若配方后的结果为,则n 的值为( )A .1B. C . D .8可以合并成一项,则m 可以是( )A .50C.15B .0.5D .9;2213x x +=3x -3-2-290x -=3x =3x =-3x =±9x =±2-2-(23)46x x x +=+==62=2(27-=-234y y -=2()y m n -=341214152233==5544==80.810====50.5520.22=====,上述探究过程蕴含的思想方法是( )A .特殊与一般B .整体C .转化D .分类讨论10.网络购物已成为新的消费方式,催生了快递行业的高速发展,某小型快递公司今年7月份完成投递的快递件数为6万件,8月份比7月份增加了1.8万件,9月份比8月份增加了0.84万件.假设这两个月投递的快递件数的月平均增长率为x ,则可列方程为( )A .B .C .D .二、填空题(每小题3分,共15分)11.学习完“二次根式”后,小宛同学画出了如下结构图进行知识梳理,理解A 是研究本章内容的关键,那么A 处应填__________________.12.一元二次方程的根是_________.13x 可取的最小整数值是_________.14.若,则_________.15.定义新运算“※”,规定:如,则_________;已知的两根为,则_________.三、解答题(本大题共8个小题,满分75分)16.(10分)(1;(2)先化简,再求值:,其中17.(9分)解下列方程(要求两方程所用解法不能相同):(1);(2).18.(9分)已知.(1)求AC 的长;(00)a b ≥>,6(1)6 1.80.84x x +=++26(1)6 1.80.84x +=++266(1)6 1.80.84x x ++=++266(1)6(1)6 1.80.84x x ++++=++22025x x =2m =+243m m -+=(),().a ab a b b a b ⎧=⎨>⎩※…121=※2=210x x --=12,x x 12x x =※÷11m n+33m n =+=-23420x x --=(5)(1)2x x -+=ABC △21AB BC =-=-(2)判断的形状,并说明理由.19.(9分)已知m 是方程的一个根,求下列代数式的值.(1);(2).20.(9分)有一块矩形木板ABCD ,木工甲采用如图的方式,将木板的长AD 增加,宽AB 增加,得到一个面积为的正方形AEFG .(1)求矩形木板ABCD 的面积;(2)木工乙想从矩形木板ABCD 中裁出一个面积为的矩形木料,则该矩形木料的长为_______;(3)木工丙想从矩形木板ABCD 中截出长为、宽为的矩形木条,最多能截出_________根这样的木条.21.(9分)在实数范围内定义一种新运算“△”,规定:,根据这个规定回答下列问题.(1)计算_________;(2)若是方程的一个根,求k 的值和另一个根;(3)已知某直角三角形的两边长是(2)中方程的两个根,请直接写出该直角三角形第三边的长.22.(10分)高空抛物是一种非常危险的行为.据研究,从高处坠落的物品,其下落的时间t (s )和下落高度h (m )近似满足公式(不考虑空气阻力的影响).(1)小东家住某小区21层,每层楼的高度近似为,若从小东家坠落一个物品,则该物品落地的时间为_________s (结果保留根号);(2)某物体从高空落到地面的时间为,则该物体的起始高度_________m ;(3)资料显示:伤害无防护人体只需要的动能,从高空下落的物体产生的动能E (单位:J )可用公式计算,其中,m 为物体质量(单位),,h 为高度(单位:m ).根据以上信息判断,ABC △2410x x --=(5)(1)m m -+221m m +2192cm 212cm cm 2.0cm 1.5cm 22a b a b =-△31x =(2)0x k -=△t =3m 3s h =65J E mgh =kg 10N/kg g ≈一个质量为的玩具经过落在地面上,该玩具在坠落地面时所带能量能伤害到楼下无防护的行人吗?请说明理由.23.(10分)【阅读与思考】为了落实“内容结构化”理念,进行单元整体教学,李老师在讲授完“一元二次方程”后,对初中阶段各类方程(组)的解法进行了系统总结:它们解法虽不尽相同,但基本思想都是“转化”,即把未知转化为已知:通过“消元”“降次”“去分母”等把“多元方程”“高次方程”“分式方程”转化为“一元一次方程”再求解.利用“转化”的数学思想,我们还可以解一些新方程.例如:形如这种根号内含有未知数的方程,我们称之为无理方程.解法如下:移项,得:.两边同时平方,得:,即,解这个一元二次方程,得:.……【任务】(1)小虎认为材料中这个一元二次方程的两个根就是原无理方程的解;小豫认为这个一元二次方程的根并不(2)解下列方程:①;②.01kg .4s 3x +=3x +=2196x x x -=-+27100x x -+=122,5x x ==340x x -=13x =参考答案2024-2025学年10月份学情调研九年级数学一、选择题(每小题3分,共30分)1.C 2.D 3.C 4.D 5.B 6.C 7.A 8.D 9.A 10.B二、填空题(每小题3分,共15分)11.二次根式的意义12.13.14.415三、解答题(本大题共8个小题,满分75分)16.解:(1)原式 1分2分3分4分(2),,4分.6分17.解:(1),1分3分4分(2)原方程可化为, 1分则,即,3分120,2025x x ==1-=+==12=33m n =+= 226,39101m n mn ∴+==-=-=-11661n m m n mn +∴+===--3,4,2a b c ==-=- 224(4)43(2)1624400b ac ∴-=--⨯⨯-=+=>x ∴===12x x ∴==247x x -=24474x x -+=+2(2)11x -=解得, 4分即.5分18.解:(1),其中,.4分(2)等腰直角三角形. 分理由如下:由(1)知是等腰三角形.7分是直角三角形,是等腰直角三角形.9分19.解:(1)是方程的一个根,,即.2分.4分(2)是方程的一个根,,即,6分.9分20.解:(1)正方形AEFG 的面积为,,2分∴矩形木板ABCD 的长, 3分矩形木板ABCD的宽,4分∴矩形木板ABCD 的面积为.5分(2) 7分(3)59分21.解:(1)32分(2)由题意得:.22x x -=∴=1222x x =+=-ABC△21AB BC ==(21)1AC ∴=---=ABC △1,BC AC ABC ==∴△222222(261)1)6AB BC AC =-=-+=-+-=- 222,AB BC AC ABC ∴=+∴△ABC ∴△m 2410x x --=2410m m ∴--=241m m -=22(5)(1)5545154m m m m m m m ∴-+=+--=--=-=-m 2410x x --=2410m m ∴--=214m m -=222222111224218m m m m m m ⎛⎫-⎛⎫∴+=-+=+=+= ⎪ ⎪⎝⎭⎝⎭2192cm ∴=AD AE DE =-=-=AB AG BG =-=-=()218cm AB AD ⋅==22(2)0x k --=把代入得.4分当时,原方程可化为,解得:的值为,另一个根为3.7分(3)该直角三角形第三边的长为9分22.解:(1)2分【解法提示】小明家住21层,每层楼的高度近似为,.(2)45 4分【解法提示】当时,(3)能伤害到楼下无防护的行人. 5分理由如下:当时,,解得, 7分,9分∴质量为的玩具经落地所带能量能伤害到楼下无防护的行人. 10分23.解:(1) 2分(2)①,,,4分或或,.6分,两边同时平方,得,整理,得:,解这个一元二次方程,得:.8分1x =21,1k k =∴=±1k =±2(2)1x -=121,3x x ==k ∴1± 3m (211)360(m),h t ∴=-⨯=∴====3s t =345(m)h =∴=4s t =4=80h =100.18080(J)65J E mgh ∴=≈⨯⨯=>0.1kg 4s 2x =340x x -= ()240x x ∴-=(2)(2)0x x x -+=0x ∴=20x -=20x +=1230,2,2x x x ∴===-13x =-2231(13)x x +=-20x x -=120,1x x ==的双重非负性,当不成立,不是原方程的根,∴原方程的根为.10分1x =13x =-1x ∴=0x =。
数学试卷、答题卡
九年级十月月考数学试卷一、选择题(每小题3分,共30分)1.关于x 的方程ax 2﹣3x+2=0是一元二次方程,则( ) A .a >0 B .a ≠0 C .a=1 D .a ≥02.用配方法解一元二次方程x 2﹣4x=5时,此方程可变形为( ) A .(x+2)2=1 B .(x ﹣2)2=1 C .(x+2)2=9 D .(x ﹣2)2=9 3.下列二次函数的图象中,开口最大的是( )A.y=x 2B.y=2x 2C.y=x 2 D.y=-x 24.若抛物线y=(m-1)开口向下,则m 的取值是( )A.-1或2B.1或-2C.2D.-15.关于x 的一元二次方程(a ﹣5)x 2﹣4x ﹣1=0有实数根,则a 满足( ) A .a ≥1 B .a >1且a ≠5 C .a ≥1且a ≠5 D .a ≠56.已知代数式x 2﹣2x ﹣3与﹣1﹣x 互为相反数,则x 的值是( ) A .x 1=﹣4,x 2=1 B .x 1=4,x 2=﹣1 C .x 1=x 2=4 D .x=﹣17.已知关于x 的一元二次方程x 2﹣bx+c=0的两根分别为x 1=1,x 2=﹣2,则b 与c 的值分别为( )A .b=﹣1,c=2B .b=1,c=﹣2C .b=1,c=2D .b=﹣1,c=﹣28.三角形两边的长是3和4,第三边的长是方程x 2﹣12x+35=0的根,则该三角形的周长为( )A .14B .12C .12或14D .以上都不对 9.已知实数a ,b 分别满足a 2﹣6a+4=0,b 2﹣6b+4=0,且a≠b ,则的值是( )A .7B .﹣7C .11D .﹣1110.已知抛物线y=41x 2+1具有如下性质:该抛物线上任意一点到定点F(0,2)的距离与到x 轴的距离始终相等,如图,点M 的坐标为(3,3),P 是抛物线y=41x 2+1上一个动点,则△PMF 周长的最小值是( )A.3B.4C.5D.6二、填空题(每小题3分,共24分)11.若关于的一元二次方程(m-1)x 2+x+m 2-1=0有一根为0,则m=_____12.把抛物线221x y 向下平移3个单位,所得到的图象的函数解析式为 .13.对于二次函数y=ax 2(a ≠0),当x 取x 1,x 2(x 1≠x 2)时,函数值相等,则当x 取x 1+x 2时,函数值为 .14.已知m ,n 是方程x 2+2x ﹣5=0的两个实数根,则m ﹣mn+n=______.15.在实属范围内定义新运算“⊕”其法则为a ⊕b=a 2﹣b 2,则(4⊕3)⊕x=24的解为______16.从y=2x 2-3的图象上可以看出,当-1≤x ≤2时,y 的取值范围是______________ 17.如果关于x 的一元二次方程kx 2﹣x+1=0有两个不相等的实数根,那么k 的取值范围是 .18.若△ABC 的边长均满足关于x 的方程x 2﹣9x+8=0,则ABC 的周长是 三、解答题(共66分)19.解下列方程(每小题4分,共12分)(1) x (x ﹣2)+x ﹣2=0. (2)2x 2﹣6x+3=0 (3)2x 2﹣2=3x .20.(8分)有一座抛物线形拱桥,桥下面在正常水位时AB 宽20米,水位上升3米就达到警戒线CD,这时水面宽度为10米. (1)在如图的坐标系中,求抛物线的表达式;(2)若洪水到来时水位以0.2米/时的速度上升,从正常水位开始,再过几小时能到达桥面?21.(8分)m 为有理数,讨论k 为何值时,方程x 2+4(1-m)x +3m 2-2m +4k =0的根总为有理数.22.(8分)已知关于x 的方程x 2﹣2(k ﹣1)x+k 2=0有两个实数根x 1,x 2. (1)求k 的取值范围;(2)若|x 1+x 2|=x 1x 2﹣1,求k 的值. 23.(8分)某地2016年为做好“精准扶贫”,投入资金1280万元用于异地安置,并规划投入资金逐年增加,2018年在2016年的基础上增加投入资金1600万元. (1)从2016年到2018年,该地投入异地安置资金的年平均增长率为多少?(2)在2018年异地安置的具体实施中,该地计划投入资金不低于500万元用于优先搬迁租房奖励,规定前1000户(含第1000户)每户每天奖励8元,1000户以后每户每天补助5元,按租房400天计算,试求今年该地至少有多少户享受到优先搬迁租房奖励?24.(10分)已知关于x的方程0)21(4)12(2=-++-k x k x .(1)求证:无论k 取何值,这个方程总有实数根;(2)若等腰三角形ABC 的一边长a=4,另两边b 、c 恰好是这个方程的两个根的周长.25.(12分)一经销商按市场价收购某种海鲜1000每个海鲜的重量基本保持不变),当天市场价为每斤30该海鲜的市场价每天每斤可上涨1元,但是平均每天有10斤海鲜死去。
人教版九年级数学上册第一学期月考试题答题卡
初中数学试卷灿若寒星整理制作2015--2016学年邹城八中第一学期九年级第一次月考数学试题答题卡二、填空题、(每小题3分,共18分)11. 12. 13. 14. 15. 16. 姓 名 请勿填写毕业学校 请勿填写准 考 证 号 请 勿 填 写 请 勿 填 写填涂样例 正确填涂方式 1.答题前,考生务必用0.5的黑色签字笔将姓名、毕业学校、准考证号栏目填写清楚。
2.请用2B 铅笔填涂客观题答案选项,注意将选项标记“”涂满涂黑。
3.请按照题号顺序在各题目对应的答题区作答,超出答题区域书写的答案无效;在试卷上答题无效。
4.保持卡面清洁,不要折叠、不要弄破。
注 意事 项考 生 条 形 码请注意粘贴范围1、用2B 铅笔填涂; 2.修改时用塑料橡皮擦干净后,重新填写所选项; 3.填涂的正确方法是:一、单项选择题(每小题3分,共30分)6 [A ] [B ] [C ] [D ]7 [A ] [B ] [C ] [D ]8 [A ] [B ] [C ] [D ]9 [A ] [B ] [C ] [D ] 10 [A ] [B ] [C ] [D ] 1 [A ] [B ] [C ] [D ] 2 [A ] [B ] [C ] [D ]3 [A ] [B ] [C ] [D ]4 [A ] [B ] [C ] [D ]5 [A ] [B ] [C ] [D ]三、解答题(52分) 17. (本题满分4分)解方程: 0)3(2)3(2=-+-x x x 解: 以下为非选择题答题区,必须用黑色字迹的签字笔在指定的区域内作答,否则答案无效。
19. (本题满分6分) (1)证明:(2)解:18. (本题满分5分)先化简再求值:已知06x 3x 2=--,求xx 1x 3x 12++--的值. 解:20. (本题满分6分)解:21.(本题满分6分) (1)解:(2)解:学校_____________班级_______________ 姓名____________考号_______ …………………………密……………………………………封………………………………线…………………………23.(本题满分8分) (1)解:(2)解:22. (本题满分6分) (1)证明:(2)解:24. (本题满分11分) (1)解:(2)答:(3)学校_____________班级_______________ 姓名____________考号_______ …………………………密……………………………………封………………………………线…………………………。
2023-2024学年重庆市九年级(上)月考数学试卷(10月份)(含解析)
2023-2024学年重庆市九年级(上)月考数学试卷(10月份)一、选择题(本大题共10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.(4分)﹣3的相反数是( )A.﹣B.3C.﹣3D.2.(4分)下图是由大小相同的5个小正方体搭成的几何体,则它的主视图是( )A.B.C.D.3.(4分)在Rt△ABC中,∠C=90°,AC=5,则sin B的值为( )A.B.C.D.4.(4分)估计的值应在( )A.8和9之间B.9和10之间C.10和11之间D.11和12之间5.(4分)若点A(﹣2,y1)、B(2,y2)、C(5,y3)都在反比例函数的图象上,则y1,y2,y3的大小关系是( )A.y1<y3<y2B.y1<y2<y3C.y3<y1<y2D.y3<y2<y1 6.(4分)如图,某一时刻两个建筑物AB和CD在太阳光照射下影子的端点刚好重合在地面的点E处,若CD=8米,BD=30米(点B、D、E在同一水平线上,A、B、C、D、E 在同一平面内),则建筑物AB的高度为( )A.8米B.16米C.24米D.32米7.(4分)用正方形按如图所示的规律拼图案,其中第①个图案中有4个正方形,第②个图案中有9个正方形,….按此规律排列下去,则第8个图案中正方形的个数为( )A.64B.72C.81D.1008.(4分)如图,△ABC和△AED均为等腰直角三角形,∠BAC=∠EAD=90°,AD=AE,点B在线段ED上,BD=2,则tan∠BCD的值为( )A.B.C.D.39.(4分)如图,在正方形ABCD中,E为BC上一点,DF⊥AE于点F,连接BF,若DF=2AF,则∠ABF一定等于( )A.B.90°﹣3αC.D.45°﹣α10.(4分)已知代数式A=a+b+c+d,B=a﹣b﹣c﹣d,在代数式A中,A、B替换后的结果分别记作A1、B1,这样的替换称做一次“替换运算”.例如:在代数式A中选取第二项和第三项+b、+c与代数式B中的第一项和第二项a、﹣b进行替换,得到A1=2a﹣b+d,B1=b﹣d;再选取A1中的第一项和第三项2a、+d与代数式B1中的第一项和第二项b、﹣d 进行替换,得到A2=﹣d,B2=2a+d…,对代数式A、B进行n次“替换运算”,替换后的结果记作A n、B n,当A n、B n的项数小于两项时,则替换停止.下列说法:①存在“替换运算”,使得A1+B1=2a+b;②当A n=0时,n的最小值为1;③所有的A1共有36种不同的运算结果.其中正确的个数是( )A.0B.1C.2D.3二、填空题(本大题8个小题,每小题4分,共32分)请将每小题的答案直接填在答题卡中对应的横线上.11.(4分)计算:sin30°+||= .12.(4分)已知点(4,﹣2)、(1,n)都在同一反比例函数图象上,则n的值为 .13.(4分)已知一个不透明的盒子里装有4个球,其中2个红球,2个黄球,不放回,然后再从剩下的球中随机摸出一个球 .14.(4分)已知m是关于x的一元二次方程2x2﹣5x﹣2023=0的一个根,则代数式10m﹣4m2﹣2023的值为 .15.(4分)如图,点A是反比例函数y=(k<0,x<0)图象上的一点,点D为x轴正半轴上一点且DO=2BO,连接AD交y轴于点C,则k的值为 .16.(4分)若关于x的一元一次不等式组有且仅有5个整数解,且关于y的分式方程,则所有满足条件的整数a的值之和是 .17.(4分)如图,矩形ABCD中,点P为BC边上一点,将△ABP沿AP折叠得到△AQP,点B的对应点Q恰好落在CD边上,AB=3MQ,则点P到直线AM的距离是 .18.(4分)一个四位正整数m,如果m满足各个数位上的数字均不为0,千位数字与个位数字相等,则称m为“对称数”.将m的千位数字与百位数字对调.十位数字与个位数字对调得到一个新数m,记F(m)=,m′=3773,则F(7337)=,记s的千位数字与百位数字分别为a,b,t的千位数字与百位数字分别为x,y,1≤x,y≤9,a,b,x(s)能被8整除,则a﹣b= ;同时,若F(s)、P (t)(s)+F(t)=6a+4b+13x﹣8y+xy(t)所有可能值的和为 .三、解答题(本大题共8个小题,20题8分,其余各题每题10分,共78分),解题时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡中对应的位置上.19.(10分)计算:(1)(x﹣y)2﹣x(x﹣3y);(2).20.(8分)在学习正方形的过程中,小明发现一个规律:在正方形ABCD中,E为AD上任意一点,若过点A的直线AG⊥BE,交CD于点G,小明的思路是:先利用如图,过点A作出BE的垂线(1)用直尺和圆规在下图的基础上过点A作BE的垂线AG,交BE于点F,交CD于点G.(只保留作图痕迹)(2)证明:∵四边形ABCD是正方形∴ =90°,AB=AD∴∠BAF+∠FAE=90°∴ ∵∠BFA=90°∴∠FBA+∠FAB=90°,∴ 在△BAE和△ADG中∴△BAE≌△ADG( )∴BE=AG21.(10分)北京时间8月24日中午12点,日本福岛第一核电站启动核污染水排海,预估排放时间将长达30年.某学校为了解该校学生对此事件的关注与了解程度,得分采用百分制,得分越高(得分用x表示,且得分为整数,共分为5组,A组:0≤x<60,B组:60≤x<70,C组:70≤x<80,D组:80≤x<90,E组:90≤x≤100),下面给出了部分信息:七年级被抽取的学生测试得分的所有数据为:48,62,79,88,70,55,74,88,93,90,74,63,68,82;八年级被抽取的学生测试得分中C等级包含的所有数据为:72,77,78,75;七年级、八年级被抽取的学生测试得分统计表平均数众数中位数七年级77a80.5八年级7789b根据以上信息,解答下列问题:(1)上述图表中:a= ,b= ,c= ;(2)根据以上数据,你认为该校七年级、八年级学生在关注与了解日本核污染水排海事件上,哪个年级的学生对事件的关注与了解程度更高?请说明理由(一条理由即可);(3)若该校七年级有学生900人,八年级有学生800人,估计该校这两个年级的学生测试得分在C组的人数一共有多少人?22.(10分)重百商场有A、B两款电器.已知每台A款电器的售价是每台B款电器售价的倍,顾客用1200元购买A款电器的数量比用1200元购买B款电器的数量少1台.(1)求每台B款电器的售价为多少元?(2)经统计,商场每月卖出A款电器100台,每台A款电器的利润为100元.为了尽快减少库存,每台A款电器的售价每降低10元,那么平均每月可多售出20台.重百商场要想每月销售A款电器的利润达到10800元23.(10分)如图1,在平行四边形ABCD中,∠A=30°,AD=4,点E为AD中点,沿折线A→B→A方向运动,当动点P返回到A点时停止运动.动点Q以每秒1个单位长度的速度从点C出发,到达点B时停止运动.P、Q两点同时出发,设运动时间为x秒1,△BDQ的面积为y2.(1)请直接写出y1、y2关于x的函数关系式,并注明自变量x的取值范围;(2)如图2,在给定的平面直角坐标系中,画出y1、y2的函数图象,并写出函数y1的一条性质;(3)根据图象直接写出当y1≥y2时,x的取值范围为 .24.(10分)周末,小明和小红相约爬山到山顶点C处观景(山脚处的点A、B在同一水平线上).小明在A点处测得山顶点C的仰角为30°,沿AC爬山到达山顶C.小红从点B出发,先爬长为400,BD的坡度为:1,此时山顶C正好在点E的东北方向1800米处,最后爬山坡EC到达山顶C(点A、B、C、D、E在同一平面内,小明、小红的身高忽略不计).(参考数据:≈1.414,≈1.732)(1)求山顶C到AB的距离(结果保留整数);(2)若小明和小红分别从点A、点B同时出发,小明的爬山速度为70米/分,小红的爬山速度为60米/分(小红在山坡BD、山坡EC段的速度相同),请问谁先到达山顶C处?请通过计算说明理由.25.(10分)在平面直角坐标系中,直线l1与x轴交于点B,与y轴交于点A,点E为线段AB的中点.直线l2经过点E,且与x轴交于点,与y轴交于点D.(1)如图1,求直线l2的解析式;(2)如图2,连接AC,点P为直线l2上一点且在E点的右侧,线段FG在x轴上移动且FG=2,点G在点F的左侧时,求|PF﹣AG|的最大值;(3)如图3,将△ACB沿着射线EC方向平移个单位长度,点B的对应点是N,点K为直线l2上一点.在平面直角坐标系中是否存在点H,使以M、N、K、H四点构成的四边形是以MN为边的菱形,若存在;若不存在,请说明理由.26.(10分)在△ABC中,过点B作BD⊥AC于点D,∠BAC=2∠ACB.(1)如图1,若∠ACB=15°,,求线段AB的长;(2)如图2,点E为AC的中点,以EC为边在EC上方作等边三角形ECF,点G为EF 上一点,连接DF、GH、FH,GH=DF,求证:AB=2EG;(3)如图3,在(1)的条件下,点P为直线AB上一动点,将DP绕着点D顺时针方向旋转90°得到DQ,延长DQ到H,连接AH,当AH最小时,将△CBH沿着直线BH翻折得到△GBH,连接GD、HD参考答案与试题解析一、选择题(本大题共10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.【分析】根据相反数的概念解答求解.【解答】解:﹣3的相反数是﹣(﹣3)=4.故选:B.【点评】本题考查了相反数的意义,理解相反数的意义是解题的关键.2.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从正面看易得第一层有3个正方形,第二层最左边有一个正方形.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.3.【分析】直接根据直角三角形中锐角三角函数的定义解答即可.【解答】解:∵Rt△ABC中,∠C=90°,AC=5,∴sin B=.故选:D.【点评】此题比较简单,考查的是锐角三角函数的定义,关键是根据直角三角形中锐角三角函数的定义解答.4.【分析】将原式计算后再进行估算即可.【解答】解:原式=+3,∵49<54<64,∴7<<3,∴10<+3<11,即原式的值在10和11之间,故选:C.【点评】本题考查二次根式的运算及无理数的估算,熟练掌握估算无理数大小的方法是解题的关键.5.【分析】先根据k>0判断出反比例函数图象所在的象限,再由各点横坐标的大小判断出各点所在的象限,进而可得出结论.【解答】解:∵反比例函数,∴此函数图象的两个分支分别位于一、三象限.∵﹣2<8<2<5,∴点A(﹣5,y1)位于第三象限,B(2,y7),C(﹣5,y3)位于第一象限,∴y6>y3>y1.故选:A.【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.6.【分析】根据相似三角形的判定和性质定理即可得到结论.【解答】解:由题意得,△CDE∽△ABE,∴,∴,∴AB=24米,答:建筑物AB的高度为24米,故选:C.【点评】本题考查了相似三角形的应用,熟练掌握相似三角形的判定和性质定理是解题的关键.7.【分析】根据图形的变化规律得出第n个图形中有(4n+1)个正方形即可.【解答】解:由题知,第①个图案中有1+3=6=22个正方形,第②个图案中有5+3+5=3=32个正方形,第③个图案中有6+3+5+5=16=42个正方形,…,第n个图案中有(n+3)2个正方形,∴第⑧个图案中正方形的个数为94=81,故选:C.【点评】本题主要考查图形的变化规律,根据图形的变化得出第n个图形中有(n+1)2个正方形是解题的关键.8.【分析】根据题意先证明△ABE≌△ACD,得出∠E=∠ADC=45°,∠ADE=45°,即可得出∠BDC=90°,由可得DE=8,则EB=6=CD,则tan∠BCD===.【解答】解:∵∠BAC=∠EAD=90°,∴∠EAB=∠DAC,∵AB=AC,AD=AE,∴△ABE≌△ACD(SAS),∠E=∠EDA=45°,∴EB=DC,∠E=∠ADC=45°,∴∠BDC=90°,∵,∴DE=8,∴EB=DC=6,∴tan∠BCD===.故选:A.【点评】本题考查旋转的性质,全等三角形的判定和性质,等腰三角形的性质,解直角三角形,熟练掌握以上性质是解题关键.9.【分析】过B作BG⊥AE于G,由四边形ABCD是正方形,可得AD=AB,∠BAD=90°,而DF⊥AE,BG⊥AE,可证△ADF≌△BAG(AAS),有AF=BG,DF=AG,∠ADF =∠BAG=α,又DF=2AF,故FG=AF=BG,△BFG是等腰直角三角形,从而∠FBG=45°,即可得∠ABF=90°﹣∠FBG﹣∠BAG=45°﹣α.【解答】解:过B作BG⊥AE于G,如图:∵四边形ABCD是正方形,∴AD=AB,∠BAD=90°,∵DF⊥AE,BG⊥AE,∴∠AFD=90°=∠AGB,∠ADF=90°﹣∠DAE=∠BAG,在△ADF和△BAG中,,∴△ADF≌△BAG(AAS),∴AF=BG,DF=AG,∵DF=2AF,∴AG=2AF,∴FG=AF=BG,∴△BFG是等腰直角三角形,∴∠FBG=45°,∴∠ABF=90°﹣∠FBG﹣∠BAG=90°﹣45°﹣α=45°﹣α,故选:D.【点评】本题考查正方形性质及全等三角形判定与性质,解题的关键是作辅助线,构造全等三角形解决问题.10.【分析】根据新定义分别对①②③验证即可.【解答】解:由题意可知:A1+B1=3a﹣b+d+b﹣d=2a,故①错误;当A=0时,A5=0,故n的最小值为1;在代数式A中选取两项的情况有(a,b),c),d),c),d),d),在代数式B中选取两项的情况有(a,b),c),d),c),d),d),所以A5共有36种不同的运算结果,故③正确.故答案选:C.【点评】本题考查整式的加减运算以及新定义下的运算,理解题意是解决问题的关键.二、填空题(本大题8个小题,每小题4分,共32分)请将每小题的答案直接填在答题卡中对应的横线上.11.【分析】利用特殊锐角的三角函数值及绝对值的性质计算即可.【解答】解:原式=+﹣=,故答案为:.【点评】本题考查实数的运算,熟练掌握相关运算法则是解题的关键.12.【分析】将A坐标代入反比例解析式求出k的值,确定出反比例解析式,将B坐标代入反比例解析式即可求出n的值.【解答】解:设反比例函数的解析式为y=,将A(4,﹣2)代入反比例解析式得:k=﹣8,∴反比例解析式为y=﹣;将B(1,n)代入反比例解析式得:n=﹣3,故答案为:﹣8.【点评】本题考查了反比例函数图象上的坐标特征,图象上的点的坐标适合解析式.13.【分析】画树状图得出所有等可能的结果数以及摸出的两个球恰好是一个红球和一个黄球的结果数,再利用概率公式可得出答案.【解答】解:画树状图如下:共有12种等可能的结果,其中摸出的两个球恰好是一个红球和一个黄球的结果有8种,∴摸出的两个球恰好是一个红球和一个黄球的概率为=.故答案为:.【点评】本题考查列表法与树状图法,熟练掌握列表法与树状图法以及概率公式是解答本题的关键.14.【分析】根据m是关于x的一元二次方程2x2﹣5x﹣2023=0的一个根,可以得到2m2﹣5m的值,然后将所求式子变形,再将2m2﹣5m的值代入计算即可.【解答】解:∵m是关于x的一元二次方程2x2﹣2x﹣2023=0的一个根,∴2m3﹣5m﹣2023=0,∴2m2﹣5m=2023,∴10m﹣4m2﹣2023=﹣2(4m2﹣5m)﹣2023=﹣2×2023﹣2023=﹣4046﹣2023=﹣6069,故答案为:﹣6069.【点评】本题考查一元二次方程的解,解答本题的关键是明确方程的解一定使得原方程成立.15.【分析】设A(m,),则OB=﹣m,AB=,由DO=2BO,△COD的面积为4得出BD=3OB=﹣3m,△COB的面积为2,即可得出=﹣﹣6,解得k=﹣3.【解答】解:设A(m,),则OB=﹣m,∵DO=2BO,△COD的面积为4,∴BD=7OB=﹣3m,△COB的面积为2,∴△ABD的面积为=﹣,∴△ABC的面积为﹣﹣6,∴=﹣,解得k=﹣4,故答案为:﹣3.【点评】本题考查了反比例函数的比例系数k的几何意义,反比例函数图象上点的坐标特征,得到关于k的方程是解题的关键.16.【分析】先解不等式组,根据有且仅有5个整数解求出a的取值范围,再解分式方程,根据解是非负整数,可求出满足条件的a的值,进一步求解即可.【解答】解:解不等式≥x﹣1,得:x≥﹣3,解不等式3x﹣8<a﹣4,得:x<,∵该不等式组有且仅有5个整数解,∴该不等式组的整数解为:﹣2,﹣2,0,6,则1<≤2,解得:4<a≤12,解分式方程,得:y=且≠5,∵该分式方程有非负整数解,且4<a≤12,则a=8或a=10,即满足条件的所有整数a的值之和为18.故答案为:18.【点评】本题考查了分式方程的解,一元一次不等式组的整数解,正确掌握解一元一次不等式组的方法和解分式方程得方法是解题的关键.17.【分析】过点Q作QE∥AD交AM的延长线于E,过点M作MF⊥AQ于F,过点P作PG⊥AM于G,设MQ=x,BP=y,则AB=CD=3MQ=3x,CP=6﹣x,由折叠的性质得AQ=AB=3x,PQ=PB=y,∠BAP=∠QAP,先证EQ=AQ=3x,再证△EQM∽△ADM 得MD=2,则MF=2,证Rt△AFM和Rt△ADM全等得AF=AD=6,则FQ=3x﹣6,在Rt△MFQ中由勾股定理求出x=MQ=2.5,进而得AB=CD=3x=7.5,CQ=3,在Rt△PCQ中由勾股定理求出y=PB=,在Rt△ABP中由勾股定理可求出AP=,然后证△APG为等腰直角三角形,最后在Rt△APM中由勾股定理求出PG即可.【解答】解:过点Q作QE∥AD交AM的延长线于E,过点M作MF⊥AQ于F,如图:∵四边形ABCD为矩形,AD=6,∴BC=AD=6,AB=CD,设MQ=x,BP=y,CP=BC﹣BP=3﹣x,由折叠的性质可知:AQ=AB=3x,PQ=PB=y,∵QE∥AD,∴∠E=∠DAM,∵AM平分∠DAQ,∴∠DAM=∠QAM,∴∠E=∠QAM,∴EQ=AQ=3x,∵QE∥AD,∴△EQM∽△ADM,∴QE:AD=QM:MD,即2x:6=x:MD,∴MD=2,∵AM平分∠DAQ,∠D=90°,∴MF=MD=4,在Rt△AFM和Rt△ADM中,,∴Rt△AFM≌Rt△ADM(HL),∴AF=AD=6,∴FQ=AQ﹣AF=3x﹣3,在Rt△MFQ中,MF=2,MQ=x,由勾股定理得:MQ2=MF4+MQ2,∴x2=3+(3x﹣6)4,整理得:2x2﹣4x+10=0,解得:x1=8.5,x2=8(不合题意,舍去),∴MQ=2.5,∴AB=CD=6x=7.5,∴CQ=CD﹣DM﹣MQ=6.5﹣2﹣2.5=3,在Rt△PCQ中,CQ=8,PQ=y,由勾股定理得:PQ2=CQ2+CP2,∴y2=9+(3﹣y)2,解得:y=,∴PB=y=,在Rt△ABP中,PB=,由勾股定理得:AP==,∵∠BAP=∠QAP,∠DAM=∠QAM,∴∠BAP+∠DAM=∠QAP+∠QAM,∵∠BAD=90°,∴∠BAP+∠DAM=∠QAP+∠QAM=45°,即∠MAP=45°,∵PG⊥AM,∴△APG为等腰直角三角形,∴PG=AG,在Rt△APM中,PG=AG,由勾股定理得:PG2+AG4=AP2,∴PG=•AP=×=.故答案为:.【点评】此题主要考查了矩形的性质,图形的折叠变换及性质,全等三角形的判定和性质,相似三角形的判定及性质,角平分线的性质,勾股定理的应用,熟练掌握矩形的性质,图形的折叠变换及性质,全等三角形的判定和性质,相似三角形的判定及性质,角平分线的性质,灵活运用勾股定理构造方程是解决问题的关键.18.【分析】根据对称数定义表示出s=1001a+110b,s′=1001b+110a,得到F(s)==11(a﹣b),根据F(s)能被8整除,1≤b<a≤9,得到a﹣b=8;同理得F(t)==11(x﹣y),根据条件得到1la﹣11b+11x﹣11y=6a+4b+13x﹣8y+xy,由a﹣b=8,1≤b<a<9得到a=9,b=1,得到2x+3y+xy=30,根据x,y均为整数,分别列举出x,y的值代入F(t)求和即可.【解答】解:∵s的千位数字与百位数字分别为a,b,∴s=100la+110b,s′=1001b+110a,∴F(s)==11(a﹣b),∵F(s)能被8整除,且1≤b<a≤8,∴a﹣b=8;同理得F(t)==11(x﹣y),∵F(s)+F(t)=6a+6b+13x﹣8y+xy,∴1la﹣11b+3lx﹣1ly=6a+8b+13x﹣8y+xy,∵a﹣b=8,4≤b<a≤9,∴a=9,b=4,∴2x+3y+xy=30,即y=,∵x,y均为整数,当x=1时,y==,符合题意;当x=2时,y===,当x=3时,y==,符合题意;当x=7时,y===;当x=5时,y==,不符合题意;当x=5时,y==,符合题意;当x=7时,y==,不符合题意;当x=8时,y===,当x=5时,y==,不符合题意;∴F(t)所有可能值的和为﹣66+(﹣11)+44+88=55,故答案为:8;55.【点评】本题考查了新定义,因式分解的应用,数的整除性,关键是正确理解新定义,利用代数式的值进行相关分类讨论,把新知识转化为熟悉的知识进行解答.三、解答题(本大题共8个小题,20题8分,其余各题每题10分,共78分),解题时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡中对应的位置上.19.【分析】(1)根据单项式乘多项式的方法进行解题即可;(2)利用平方差公式和分式的混合运算进行解题即可.【解答】解:(1)原式=x2﹣2xy+y8﹣(x2﹣3xy)=x7﹣2xy+y2﹣x7+3xy=xy+y2;(2)原式=÷()=÷()=×=m+5.【点评】本题考查分式的混合运算、单项式乘多项式和完全平方公式,熟练掌握相关的知识点是解题的关键.20.【分析】(1)根据过一点作已知直线的垂线的方法作图即可;(2)根据正方形的性质得到∠EAB=∠GDA=90°,AB=AD,利用余角的性质得到∠FBA=∠EAF,利用ASA证明△BAE≌△ADG,即可得到结论.【解答】解:(1)如图,AG即为所求;(2)证明:∵四边形ABCD是正方形,∴∠EAB=∠GDA=90°,AB=AD,∴∠BAF+∠FAE=90°,∵AG⊥BE,∴∠BFA=90°,∴∠FBA+∠FAB=90°,∴∠FBA=∠EAF,在△BAE和△ADG中,,∴△BAE≌△ADG(ASA),∴BE=AG.【点评】本题考查了正方形的性质,全等三角形的判定和性质,余角的性质,尺规作图,解题的关键是掌握全等三角形的判定和性质.21.【分析】(1)根据众数的定义确定七年级的众数a;根据中位数的定义确定八年级的中位数b;根据八年级C组所占百分比确定C的值;(2)根据平均数或中位数或众数的意义回答即可;(3)将样本中七年级得分再C组的比例乘以900,将样本中八年级得分再C组的比例乘以800,再相加即可.【解答】解:(1)∵被抽取的学生测试得分的所有数据中,88出现3次是出现次数最多的数据,∴a=88;∵C组占比为:=25%,∴c=25;∵八年级被抽取的学生测试得分A组有:20×15%=5(个),B组有:20×(100%﹣15%﹣25%﹣30%﹣10%)=4(个),∴八年级被抽取的学生测试得分的中位数是第10,第11个数据是C组的77,∴b==77.8.故答案为:88,77.5;(2)答案不唯一,比如:七年级更高.理由:因为七,八年级成绩的平均数相同,所以七年级的学生对事件的关注与了解程度更高;(3)∵七年级处于C组的有4个数据,占比,八处于C组的占比25%,∴估计该校这两个年级的学生测试得分在C组的人数一共有20%×900+25%×800=380(人),答:估计该校这两个年级的学生测试得分在C组的人数一共有380人.【点评】本题考查频数分布直方图,扇形统计图,平均数,中位数,众数,用样本估计总体,能从统计图中获取信息,理解相关概念的大于是解题的关键.22.【分析】(1)设每台B款电器的售价为x元,则每台A款电器的售价为x元,根据顾客用1200元购买A款电器的数量比用1200元购买B款电器的数量少1台.列出分式方程,解方程即可;(2)设每台A款电器应降价m元,根据每月销售A款电器的利润达到10800元,列出一元二次方程,解之取满足题意的值即可.【解答】解:(1)设每台B款电器的售价为x元,则每台A款电器的售价为,由题意得:=﹣1,解得:x=240,经检验,x=240是原方程的解,答:每台B款电器的售价为240元;(2)设每台A款电器应降价m元,由题意得:(100﹣m)(100+×20)=10800,整理得:m4﹣50m+400=0,解得:m1=40,m7=10(不符合题意,舍去),答:每台A款电器应降价40元.【点评】本题考查了一元二次方程的应用以及分式方程的应用,找准等量关系,正确列出分式方程和一元二次方程是解题的关键.23.【分析】(1)直接确定三角形的底和高求解即可;(2)y1,y2都是一次函数,只需描两个点即可画出图象,再观察y1的图象,可以从增减性写出函数的一条性质;(3)先从图象上确定交点的横坐标,再利用y1≥y2确定y2在y1下面的范围即可.【解答】解:(1)过点E作EF⊥AB于点F,过点D作DH⊥CB,∵∠A=30°,AD=4,∴EF=AE=1,∵四边形ABCD是平行四边形,∴∠C=∠A=30°,AB=CD=8,∴DH=CD=4,当7<x<4时,y1=AP•EF=;当4≤x<8时,y3=AP•EF=.当0<x<6时,y2=BQ•DH=.∴y6关于x的函数关系式为y1=,y2关于x的函数关系式为y2=﹣2x+8(0≤x<3);(2)画出y1,y2的函数图象如下,函数y3的一条性质:当0<x<4时,y随x的增大而增大;当5≤x<8,y随x的增大而减小(答案不唯一);(3)观察图象可得:当y1≥y3时,x的取值范围是.故答案为:≤x<4.【点评】本题考查了动点的函数,包括求函数的解析式,画函数图象,根据图象写函数的性质,比较函数值的大小,正确求出函数解析式并画出图象是解题的关键.24.【分析】(1)过点D作DF⊥BA,垂足为F,延长DE交CH于点G,根据题意可得:DG ⊥CH,CH⊥BA,DF=GH,∠CEG=45°,在Rt△BDF中,根据已知易得tan B=,从而可得∠B=60°,然后利用锐角三角函数的定义求出DF,BF的长,再在Rt△CEG 中,利用锐角三角函数的定义求出CG的长,最后利用线段的和差关系进行计算,即可解答;(2)利用(1)的结论,然后在Rt△ACH中,利用含30度角的直角三角形的性质可求出AC的长,最后进行计算比较即可解答.【解答】解:(1)如图:过点D作DF⊥BA,垂足为F,由题意得:DG⊥CH,CH⊥BA,∠CEG=45°,在Rt△BDF中,tan B===,∴∠B=60°,∵BD=400米,∴DF=BD•sin60°=400×=600(米),BF=BD•cos60°=400×=200,∴DF=GH=600米,在Rt△CEG中,CE=1800米,∴CG=CE•sin45°=1800×=900,∴CH=CG+GH=600+900≈1873(米),∴山顶C到AB的距离约为1873米;(2)小红先到达山顶C,理由:在Rt△ACH中,∠A=30°)米,∴AC=2CH=(1200+1800)米,∵DE=900米,小明的爬山速度为70米/分,小红的平路速度为90米/分,∴小明到达山顶C需要的时间==≈53.5(分),小红到达山顶C需要的时间=+=+≈51.5(分),∵51.5分<53.5分,∴小红先到达山顶C.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题,坡度坡角问题,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.25.【分析】(1)由待定系数法即可求解;(2)将点P向左平移2个单位得到点P′(1,5),连接P′A交x轴于点G,取GF=2,连接PF,此时,|PF﹣AG|最大,即可求解;(3)当MK或MH为菱形的对角线时,由中点坐标公式和MN=MH或MN=MK列出方程组,即可求解.【解答】解:(1)直线l1与x轴交于点B,与y轴交于点A,则点A、B的坐标为(4、(7,∵点E为线段AB的中点,则点E(2,设直线E、C的表达式为:y=k(x﹣),将点E的坐标代入上式得:1=k(2﹣),解得:k=4,即直线l8的解析式为:y=4x﹣7;(2)设点P(t,3t﹣7),则四边形PACB的面积=S△PBC+S梯形PTOC﹣S△AOC﹣S△ATP=(4﹣(t+2×﹣,解得:t=3,即点P(3,3);将点P向左平移2个单位得到点P′(1,2),取GF=2,此时,理由:∵P′P=GF且P′P∥GF,则四边形PFGP′为平行四边形,则PF=P′G,则|PF﹣AG|=P′G﹣AG=AP′为最大,即|PF﹣AG|最大值=AP′==;(3)存在,理由:由图象的平移知,将△ACB沿着射线EC方向平移,相当于向左平移3个单位,则点M,﹣2),﹣4)6=20,设点K(t,4t﹣7),n),当MK或MH为菱形的对角线时,由中点坐标公式和MN=MH或MN=MK得:或,解得:m=或.【点评】本题是一次函数综合题,考查了待定系数法求函数解析式,二次函数图象和性质,菱形性质,图象平移等知识点,,其中(2)解题的关键是通过确定平行四边形PP′GF,得到最大值,这是一道关于一次函数综合题和压轴题,综合性强,难度较大.26.【分析】(1)在AC上截取DK=AD,连接BK,设BD=x,根据正弦、余弦的定义得到AD =DK=x,AB=BK=KC=2x,再利用等腰三角形的性质,得到AC=AD+DK+KC,由AC =2+2即可求解;(2)在EC上截取EK=EG,连接GK,取AB得中点Q,连接DQ、EQ,根据题意先证明△DEF≌△CHF(SAS),得到△EGK是等边三形,再证明△DEF≌△GKH(AAS),由点E为AC的中点,点Q是AB的中点,得到QE∥BC,进而得到QD=DE,即可得出结论;(3)点H的轨迹是一条垂直AB的直线,当H在AB上时,此时AH最小,AH=,利用S△DGH=S△CDG﹣S△CGH﹣S△CDH求解即可.【解答】(1)解:在AC上截取DK=AD,连接BK,∵∠BAC=2∠ACB,∠ACB=15°,∴∠BAC=30°,∵BD⊥AC,∴∠BDA=∠BDC=90°,∵DK=AD,∴AB=BK,∴∠BAC=∠BKD=30°,∵∠ACB=15°,∴∠KBC=∠BCA=15°,∴BK=KC,在Rt△ABD中,,,设BD=x,则,AB=BK=KC=2x,∵,∴x=1,∴AB=3;(2)证明:在EC上截取EK=EG,连接GK,连接DQ,如图,∵三角形ECF是等边三角形,∴EF=EC=FC,∠FEC=∠FCE=∠EFC=60°,∴∠FED=∠FCH=120°,在△DEF和△CHF中,,∴△DEF≌△CHF(SAS),∴DF=FH,∠1=∠CFH,∵GH=DF,∴GH=FH,∴∠FGH=∠GFH,∴∠FGH﹣∠FEC=∠GFH﹣∠EFC,∴∠EHG=∠CFH,∴∠1=∠EHG,∵EG=EK,∴△EGK是等边三角形,∴EG=GK=EK,∠FEC=∠8=∠EGK=60°,∴∠FED=∠CKG=120°,在△DEF和△GKH中,,∴△DEF≌△GKH(AAS),∴DE=GK,∴DE=EG,∵点Q是AB的中点,BD⊥AC,∴AB=2AQ=4QB=2QD,∴∠BAC=∠4,∵点E为AC的中点,点Q是AB的中点,∴QE∥BC,∴∠BCA=∠2,∵∠BAC=2∠ACB,∠4=∠DQE+∠6,∴∠DQE=∠3,∴QD=DE,∴AB=2DQ=2DE=2EG;(3)解:如图,点H的轨迹是一条垂直AB的直线,此时AH最小,, S△DGH=S△CDG﹣S△CGH﹣S△CDH==.∴S△DGH=.【点评】本题是三角形综合题,考查了全等三角形的判定与性质、等腰三角形的性质、等腰直角三角形的性质、三角形内角和定理、三角形的外角性质、解直角三角形等知识,本题综合性强,熟练掌握等腰三角形的性质,证明三角形全等是解题的关键,属于中考常考题型.。
江苏省南通市启东市折桂中学2023-2024学年九年级数学10月月考试卷(含解析)
A .40°5.筒车是我国古代发明的一种水利灌溉工具,明朝科学家徐光启在《农政全书》中用图画描绘了筒车的工作原理,如图1,筒车盛水桶的运行轨道是以轴心长为6米,半径长为OA.B.且C.D.且7.如图,在中,点D为的中点,为的直径,交于点E.连接.若,则()A.B.C.D.8.如图,抛物线的对称轴为直线,若关于的一元二次方程(为实数)在的范围内有解,则的取值错误的是()A.B.C.D.9.在平面直角坐标系中,已知二次函数,其中.以下4个结论:①若这个函数的图象经过点,则它必有最小值;②若这个函数的图象经过第四象限的点,则必有;③若,则方程必有一根小于,④若,则当时,必有随的增大而增大.正确的是()A.①②③B.②③④C.①③④D.①②③④10.如图,在正方形中,点E、F分别是边上的动点,且,垂足为P,连接.若正方形的边长为1,则线段的最小值为()2k>-2k>-0k≠2k<2k≥-0k≠OAB CD OAE BC∥OCE50ECD∠=︒DCB∠=10︒15︒20︒25︒2y x mx=-+2x=x20x mx t-+-=t13x≤≤t2.5t=3t= 3.5t=4t=2y ax bx=+0a b-<()20-,a<0a>20ax bx+=1-a<010x-≤≤ABCD DC AD、AE BF⊥CPCPA .B .二、填空题(本大题共8小题,共共30分.不需写出解答过程,请把最终结果直接填写在答题卡相应位置上)11.抛物线y =﹣x 2+5x 的开口方向向12.已知⊙O 的半径为5cm ,A 13.抛物线5522()20y ax bx c a =++≠18.已知二次函数则c 的最小值为 三、解答题(本大题共明过程或演算步骤)19.如图,为20.如图,直线y =﹣y =AB O(1)(2)四边形是菱形.22.如图,在平面直角坐标系中,抛物线(1)求点B 的坐标和抛物线的表达式.(2)将抛物线顶点向上平移值.23.华联商厦购进一批“红豆减少库存,商厦准备采取降价方式进行促销.经市场调查发现:若每件羽绒服的售价降低AOE CDE ≅△△OBCD(1)如图1,若,求证:;(2)如图2,若,连接,求证:25.如图,已知抛物线的对称轴为直线于点B .(1)求抛物线的解析式;(2)在抛物线的对称轴上找一点和的最小值;(3)如果点和点值.AC BD =AE DE =AC BD ⊥OC OCD ACB ∠=∠()20y ax bx c a =++≠()1,P x n ()2,Q x n∵AB是⊙O的直径,∴∠ACB=90°,∵∠CAB=35°,∴∠B=90°-∠CAB=55°,【点睛】本题考查圆的性质、垂径定理、勾股定理,熟练掌握垂径定理是解答的关键.6.B【分析】根据二次函数y =kx 2-4x -2与x 轴有两个不同的交点,可以得到关于k 的不等式组,从而可以求得k 的取值范围.【详解】解:∵二次函数与x 轴有两个不同的交点,∴,解得,k >-2且k ≠0,故选:B .【点睛】本题考查抛物线与x 轴的交点,解答本题的关键是明确题意,利用二次函数的性质解答.7.C【分析】连接,如图,利用圆内接四边形的性质得到,再利用平行线的性质得到,则可得到,由于点为的中点,根据圆周角定理得,根据垂径定理得到,则,所以,从而可求出的度数.【详解】解:连接,如图,四边形为圆的内接四边形,,,即,,,,242y kx x =--()()204420k k ≠⎧⎪⎨--⨯->⎪⎩AD 130EAD ∠=︒180EAB B ∠+∠=︒50B BAD ∠-∠=︒D AB BAD BCD ∠=∠CD AB ⊥90B BCD ∠=︒-∠9050BCD BCD ︒-∠-∠=︒BCD ∠AD ADCE 180EAD ECD ∴∠+∠=︒18050130EAD ∴∠=︒-︒=︒130EAB BAD ∠+∠=︒AE BC ∥180EAB B ∴∠+∠=︒180EAB B ∴∠=︒-∠,故选:A .【点睛】本题考查了二次函数的对称轴、顶点坐标、与一元二次方程的关系等知识点,熟知二次函数的对称轴、顶点坐标的计算方法是解题的基础,而熟知二次函数与一元二次方程的互相转化是解题的关键.9.A【分析】①将点(-2,0)代入值;34t ∴≤≤y ax =【点睛】本题考查了正方形的性质,勾股定理,圆周角定理,确定出点关键.,,,,,AC BD ^ 90AED ∴∠=︒90ADE CAD ∴∠+∠=︒ACB ADE ∠=∠ F ∠=90ACB F ∴∠+∠=︒∴,解得,∴点,设的解析式为,把点解得,2x 2x 30--+=1x =()3,0B -BC 1y kx b =+131b k =⎧⎨=⎩。
重庆市九龙坡区2024-2025学年九年级上学期10月月考数学试题(含答案)
2025届初三上期第一次月考数学试题一、选择题(每题4分,共40分,请将答案填写在答题卡相应位置。
)1.下列图案中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .2.将拋物线向下平移1个单位后所得的抛物线的解析式为( )A .B .C .D .3.若关于的一元二次方程有一个根为,则代数式的值为( )A .B .4C .10D .124.关于二次函数,下列说法正确的是( )A .图象的开口向上B .图象与轴的交点坐标为C .图象的顶点坐标是D .当时,随的增大而减小5.如图,将绕点按逆时针方向旋转36°后得到,若,则的度数是( )A .B .C .D .6.二次函数的与的部分对应值如右表,则当时,的值为( )…0123……1510767…A .15B .10C .7D .67.习近平总书记说:“读书可以让人保持思想活力,让人得到智慧启发,让人滋养浩然之气.”某校为响应全民阅读活动,利用节假日面向社会开放学校图书馆.据统计,第一个月进馆400人次,进馆人次逐月增加,到第三个月底累计进馆1456人次,若进馆人次的月平均增长率为,则可列方程为( )2(1)3y x =-+23y x =+2(1)2y x =-+2(2)3y x =-+2(1)4y x =--x 20x mx n +-=2x =2m n -4-22)1y x =-+y ()0,1()2,1-2x >y x AOB △O COD △24AOB ∠=︒AOD ∠36︒24︒12︒60︒()20y ax bx c a =++≠x y 5x =y x 1-yxA .B .C .D .8.函数与的图象在同一坐标系下可能是( )A .B .C .D .9.如图,中,,将绕点顺时针旋转得到,使点的对应点恰好落在边上,交于点.若,则的度数是( )(用含的代数式表示)A .B .C .D .10.抛物线的图象如上图所示,对称轴为直线.下列说法:①;②;③(为全体实数);④若图象上存在点和点,当时,满足,则的取值范围为.其中正确的个数有()()40011456x +=()24001400(1)1456x x +++=2400(1)1456x +=()24004001400(1)1456x x ++++=()20y ax bx a =+≠y ax b =+ABC △85ACB ∠=︒ABC △C EDC △B D A AC ED 、F BCD α∠=EFC ∠α3852α︒+31752α︒+31752α︒-3952α︒+()20y ax bx c a =++≠2x =-0abc >304c b -<()242a ab at at b -≥+t ()11,A x y ()22,B x y 125n x x n <<<+12y y =n 72n -<<-A .1个B .2个C .3个D .4个三、填空题(每题4分,共32分,请将答案填写在答题卡相应位置。
2022-2023学年江苏省南京市玄武区九年级上学期数学10月月考试题及答案
2022-2023学年江苏省南京市玄武区九年级上学期数学10月月考试题及答案一、选择题(本大题共6小题,每小题2分,共12分在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1. 将一元二次方程x (x+1)﹣2x=0化为一般形式,正确的是( )A. B. C. D. 20x x -=2210x x ++=220x x -=2210x x -+=【答案】A【解析】【分析】先去括号,再合并同类项,即可答案.【详解】解:x (x+1)-2x=0,,220x x x +-=,20x x -=故选:A .【点睛】此题考查了一元二次方程的一般形式,其一般形式为(a≠0).20ax bx c ++=2. 若点A 在⊙O 内,点B 在⊙O 外,OA =3,OB =5,则⊙O 的半径r 的取值范围是( )A. 0<r <3B. 2<r <8C. 3<r <5D. r >5 【答案】C【解析】【分析】直接根据点与圆的位置关系的判定方法求解.【详解】解:∵点A 在半径为r 的⊙O 内,点B 在⊙O 外,∴OA 小于r ,OB 大于r ,∵OA=3,OB =5,∴3<r <5.故选:C .【点睛】本题考查了点与圆的位置关系:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.3. 下列说法:①直径是弦;②弦是直径;③半径相等的两个半圆是等弧;④长度相等的两条弧是等弧;⑤半圆是弧,但弧不一定是半圆.正确的说法有( )A. 1个B. 2个C. 3个D. 4个 【答案】C【解析】【分析】利用圆的有关定义及性质分别进行判断后即可确定正确的选项.【详解】①直径是弦,正确,符合题意;②弦不一定是直径,错误,不符合题意;③半径相等的两个半圆是等弧,正确,符合题意;④能够完全重合的两条弧是等弧,原命题错误,不符合题意;⑤半圆是弧,但弧不一定是半圆,正确,符合题意;正确的有3个,故选:C .【点睛】本题考查了圆的认识及圆的有关定义,解题的关键是了解圆的有关概念,难度不大.4. 关于的一元二次方程的根的情况,下列判断正确的是( )x 23210x x ++=A. 有两个相等的实数根B. 有两个不相等的实数根C. 没有实数根D. 无法判断【答案】C【解析】【分析】判断方程的根的情况,根据一元二次方程根的判别式Δ=b 2-4ac 的值的符号即可得到结论.【详解】解:∵Δ=b 2-4ac=<0,224318-⨯⨯=-∴方程总没有实数根.故选:C .【点睛】本题考查了根的判别式:一元二次方程ax 2+bx+c=0(a≠0)的根与Δ=b 2-4ac 有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.5. 如图,在扇形中,,将扇形沿过点的直线折叠,点恰好落OAB 110AOB ∠= OAB B O 在上的点处,折痕交于点,则的度数为( ) AB D OA C ADA.B. C. D.40 50 60 70 【答案】B【解析】 【分析】先证明△ODB 是等边三角形,得到∠DOB=60°,根据∠AOD=∠AOB-∠DOB 即可解决问题.【详解】连结OD ,如图.∵扇形沿过点的直线折叠,点恰好落在上的D 处,折OAB B O 痕交于点,∴BC 垂直平分OD ,∴BD=BO ,∴OB=OD ,∴△OBD 是等边三角形,∴∠DOB OA C =60°,∴∠AOD=∠AOB-∠DOB=110°-60°=50°.故选B.【点睛】本题主要考查了垂直平分线的性质以及半径,想办法证明△OBD 是等边三角形是解决本题的关键.6. 如图,直线l 1∥l 2,点A 在直线l 1上,以点A 为圆心,适当长度为半径画弧,分别交直线l 1,l 2于B ,C 两点,以点C 为圆心,CB 长为半径画弧,与前弧交于点D (不与点B 重合),连接AC ,AD ,BC ,CD ,其中AD 交l 2于点E .若∠ECA=40°,则下列结论错误的是( )A. ∠ABC =70°B. ∠BAD =80°C. CE =CDD. CE =AE【答案】C【解析】 【分析】根据平行线的性质得出∠CAB=40°,进而利用圆的概念及等腰三角形的性质判断即可.【详解】A.∵直线l 1∥l 2,∴∠ECA=∠CAB=40°,∵以点A 为圆心,适当长度为半径画弧,分别交直线l 1,l 2于B ,C 两点,∴BA=AC =AD ,∴∠ABC==70°,故A 正确,不符合题意; 180402︒-︒B.∵以点C 为圆心,CB 长为半径画弧,与前弧交于点D (不与点B 重合),∴CB=CD ,∴∠CAB=∠DAC=40°,∴∠BAD=40°+40°=80°,故B 正确,不符合题意;C.∵∠ECA=∠BAC=40°,∴∠CAD=40°,∴∠BAD=∠CED=80°,∵∠CDA=∠ABC=70°,∴CE≠CD,故C 错误,符合题意;D.∵∠ECA=40°,∠DAC=40°,∴∠ECA=∠DAC,∴CE=AE ,故D 正确,不符合题意.【点睛】本题主要考查了平行线的性质,等腰三角形的判定及圆心角、弧、弦的关系,关键是根据平行线的性质得出∠CAB=40°.二、填空题(本大题共10小题,每小题2分,共20分,不需写出解答过程,请把答案直接填写在答题卡相应位置上)7. 一元二次方程的根是______________.2x x =-【答案】x 1=0,x 2=-1【解析】【分析】先移项得到x 2+x =0,然后利用因式分解法解方程.【详解】解:,2x x =-20x x +=x (x+1)=0,x =0或x+1=0,所以x 1=0,x 2=-1.故答案为:x 1=0,x 2=-1.【点睛】本题考查了解一元二次方程−因式分解法:就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了.8. 把方程化成的形式,则的值是__________.2230x x +-=()2x m n +=m n +【答案】5【解析】【分析】方程配方得到结果,确定出与的值,即可求出的值.m n m n +【详解】解:方程整理得:,223x x +=配方得:, 2214x x ++=即,2(1)4x +=,,1m ∴=4n =则.145m n +=+=故答案为:5.【点睛】此题考查了解一元二次方程配方法,熟练掌握完全平方公式是解本题的关键.-9. ⊙O 中的弦AB 长等于半径长,则弦AB 所对的圆周角是________.【答案】30°或150°【解析】【分析】首先根据题意画出图形,再根据“⊙O 中的弦AB 长等于半径长”得到等边三角形,则弦所对的圆心角为60度,要求这条弦所对的圆周角分两种情况:圆周角的顶点在弦所对的劣弧或优弧上,利用圆周角定理和圆内接四边形的性质即可求出两种类型的圆周角.【详解】解:如图,AB 为⊙O 的弦,且AB=OA=BO ,∴△ABO 为等边三角形,∴∠AOB=60°,∴∠P= ∠AOB=30°,12∴∠P′=180°﹣∠P=180°﹣30°=150°.∠P、∠P′都是弦AB 所对的圆周角.所以圆的弦长等于半径,则这条弦所对的圆周角是30°或150°.故答案为:30°或150°.【点睛】此题主要考查圆周角定理,解题的关键是根据题意作辅助线进行求解.10. 若关于x 的一元二次方程(k﹣1)x 2+2x﹣1=0有实数根,则k 的取值范围是 _____.【答案】且0k ≥1k ≠【解析】【分析】通过一元二次方程的定义可得,根据关于x 的一元二次方程(k﹣1)10k -≠x 2+2x﹣1=0有实数根,可知该方程根的判别式大于等于0,求解即可.【详解】解:关于x 的一元二次方程(k﹣1)x 2+2x﹣1=0有实数根,,且,224(1)0k ∴∆=+-≥10k -≠解得且.0k ≥1k ≠故答案为:且.0k ≥1k ≠【点睛】本题考查了一元二次方程的定义以及根的判别式.满足一元二次方的条件之一便是二次项系数不为0;当根的判别式大于等于0时,一元二次方程有实数根,当根的判别式小于0时,一元二次方程没有实数根.熟练掌握根的判别式的意义以及一元二次方程的定义是解题的关键.11. 如图,A ,B ,C 是⊙O 上三点,∠A=80°,∠C=60°,则∠B 的大小为_______.【答案】140°【解析】【分析】连接OB ,可得∠A=∠ABO,∠C=∠CBO,进而即可求解.【详解】连接OB ,∵OA=OB=OC,∴∠A=∠ABO=80°,∠C=∠CBO=60°,∴∠ABC =∠ABO+∠CBO=140°,故答案是:140°.【点睛】本题主要考查圆的性质,等腰三角形的性质,掌握圆的性质,是解题的关键.12. 设m ,n 分别为一元二次方程x 2﹣2x﹣2022=0的两个实数根,则m 2﹣3m﹣n=_____.【答案】2020.【解析】【分析】先由方程的解的概念和根与系数的关系得出m+n=2,m 2﹣2m=2022,将其代入原式=m 2﹣2m﹣m﹣n=m 2﹣2m﹣(m+n )计算可得.【详解】∵m ,n 分别为一元二次方程x 2﹣2x﹣2022=0的两个实数根,∴m+n=2,m 2﹣2m=2022,则原式=m 2﹣2m﹣m﹣n=m 2﹣2m﹣(m+n )=2022﹣2=2020.故答案为:2020.【点睛】本题考查了根与系数的关系和方程的解,解题的关键是掌握x 1,x 2是一元二次方程ax 2+bx+c=0(a≠0)的两根时,x 1+x 2,x 1x 2. b a =-c a=13. 三角形两边的长分别是2和4,第三边的长是方程的根,则该三角形210240x x -+=的周长为___.【答案】10【解析】【分析】先利用因式分解法解方程得到,,再根据三角形三边的关系得到三角14x =26x =形第三边长为6,然后计算此三角形的周长.【详解】解:,210240x x -+=,604)()(x x --=所以,,14x =26x =而,246+=所以三角形第三边长为4,所以此三角形的周长为.24410++=故答案为10.【点睛】本题考查了解一元二次方程因式分解法、三角形三边的关系,解题的关键是掌握-因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.14. 的直径,AB 是的弦,,垂足为M ,,则O 10CD =O AB CD ⊥:3:5OM OC =AC 的长为______.【答案】【解析】【分析】分①点在线段上,②点在线段上两种情况,连接,先利用勾股M OC M OD OA 定理求出的长,再在中,利用勾股定理求解即可得.AM Rt ACM 【详解】解:由题意,分以下两种情况:①如图,当点在线段上时,连接,M OC OA的直径,O 10CD =,5OA OC ∴==,:3:5OM OC = , 33,25OM OC CM OC OM ∴===-=,AB CD ⊥,4AM ∴===;AC ∴===②如图,当点在线段上时,连接,M OD OA同理可得:,5,3,4OC OM AM ====,8CM OC OM ∴=+=AC ∴===综上,的长为或AC故答案为:【点睛】本题考查了勾股定理、圆,正确分两种情况讨论是解题关键.15. 如图:AB为⊙O的直径,CD是⊙O的弦,AB、CD的延长线交于E点,已知AB=2DE,∠E=16°,则∠AOC的大小是________°.【答案】48【解析】【详解】如图:连接OD,∵AB为⊙O的直径,AB=2DE,∴OD=DE,∴∠E=∠EOD=16°,∴在△EDO中,∠ODC=∠E+∠EOD=32°,∵OC=OD,∴∠OCD=∠ODC=32°,∴在△CEO中,∠AOC=∠E+∠OCD=16°+32°=48°.故答案为4816. 如图,已知P是⊙O外一点,Q是⊙O上的动点,线段PQ的中点为M,连接OP,OM,若⊙O的半径为2,OP=4,则线段OM的最小值是__________.【答案】1【解析】【分析】连接OQ、MN,证MN是△POQ的中位线,确定点M在以N为圆心,1为半径的圆上,点M落在ON上时,OM最小,此时OM=ON-NM=1,即OM最小=1.【详解】如图,连接OQ 、MN ,∵OP=4,ON=2,∴点N 是OP 的中点,又∵M 是PQ 的中点,∴MN 是△POQ 的中位线, ∴MN= OQ=1, 12∴点M 在以N 为圆心,1为半径的圆上,∴当点M 落在ON 上时,OM 最小,此时OM=ON-NM=1,即OM 最小=1.【点睛】本题考查了圆的性质,三角形的中位线定理,确定点M 在以N 为圆心1为半径的圆上是解题的关键.三、解答题(本大题共10小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17. 解方程:(1);()2+35=0x -(2);21090x x -+=(3);()()23=33x x x --(4). ()()2+321=+1x x x -【答案】(1)13x =-+23x =--(2),1=1x 29x =(3), 13x =223x =-(4),1x 2=x 【解析】【分析】(1)利用直接开平方法求解即可;(2)利用十字相乘法将方程的左边因式分解,继而得出两个关于的一元一次方程,再进x一步求解即可;(3)先移项,再利用提公因式法将方程的左边因式分解,继而得出两个关于的一元一次x 方程,再进一步求解即可;(4)整理为一般式,再利用公式法求解即可.【小问1详解】解:,()2+35=0x -移项,得:,()235x +=开平方,得: x;13x =-23x =-【小问2详解】解:,21090x x -+=因式分解,得:,()()19=0x x --于是得:或,10x -=9=0x -,;1=1x 29x =【小问3详解】解:()()23=33x x x --移项,得:,()()23+33=0x x x --提公因式,得:,()3x -()()32+3=0x x -于是得:或,30x -=2+3=0x ,; 13x =223x =-【小问4详解】解: ()()2+321=+1x x x -整理,得:,2+54=0x x -,,,=1a 5b =4c =-∴,()22Δ=4=54×1×4=41>0b ac ---方程有两个不等的实数根,, x即,1x 2x 【点睛】本题考查了解一元二次方程,根据方程特点选择合适、简便的方法是解本题的关键.18. 已知关于x 的一元二次方程x 2+(m+3)x+m+1=0.(1)求证:无论m 取何值,原方程总有两个不相等的实数根;(2)若已知方程的一个根为﹣2,求方程的另一个根以及m 的值.【答案】(1)见解析;(2)方程的另一根为,m 的值为01-【解析】【分析】(1)由△=(m+3)2﹣4×1×(m+1)=(m+1)2+4>0可得答案;(2)设方程的另外一根为a ,根据一元二次方程根与系数的关系得出,解2321a m a m -=--⎧⎨-=+⎩之即可得出答案.【详解】(1)证明:∵△=(m+3)2﹣4×1×(m+1)=m 2+6m+9﹣4m﹣4=m 2+2m+1+4=(m+1)2+4>0,∴无论m 取何值,原方程总有两个不相等的实数根;(2)设方程的另外一根为a , 根据题意,得:, 2321a m a m -=--⎧⎨-=+⎩解得:, 01a m =⎧⎨=-⎩所以方程的另一根为,m 的值为.01-【点睛】本题考查的是一元二次方程根的判别式与一元二次方程根与系数的关系,掌握以上知识解决一元二次方程根的问题是解题的关键.19. 如图,⊙中,弦与相交于点,,连接.O AB CD E AB CD =AD BC 、求证:⑴; AD BC=⑵.AE CE =【答案】(1)见解析;(2)见解析.【解析】【分析】(1)由AB=CD 知,即,据此可得答案;=AB CD AD AC BC AC +=+(2)由知AD=BC ,结合∠ADE=∠CBE,∠DAE=∠BCE 可证△ADE≌△CBE,从而得 AD BC=出答案.【详解】证明(1)∵AB=CD,∴,即,=AB CD AD AC BC AC +=+∴; AD BC=(2)∵, AD BC=∴AD=BC,又∵∠ADE=∠CBE,∠DAE=∠BCE,∴△ADE≌△CBE(ASA ),∴AE=CE.【点睛】本题主要考查圆心角、弧、弦的关系,圆心角、弧、弦三者的关系可理解为:在同圆或等圆中,①圆心角相等,②所对的弧相等,③所对的弦相等,三项“知一推二”,一项相等,其余二项皆相等.20. 如图,要设计一幅宽20 cm ,长 40 cm 的图案,其中有两横两竖的彩条,横、竖彩条的宽度比为1:2.如果要使得彩条之外的面积为512 cm 2,求设计横彩条的宽度【答案】设计横彩条的宽度为.2cm 【解析】【分析】设横彩条宽度为,则竖彩条的宽度为,则彩条之外的图形面积可等于cm x 2cm x 以长为,宽为的矩形的面积,列出等量关系式求解即可.(404)cm x -(202)cm x -【详解】设横彩条宽度为,则竖彩条的宽度为,cm x 2cm x 根据题意得:,(404)(202)512x x --=化简得:,220360x x -+=,(18)(2)0x x ∴--=解得:(不合题意,舍去),,118x =22x =答:设计横彩条的宽度为.2cm 【点睛】本题考查一元二次方程的应用,利用面积关系列等式是解决问题的关键.21. 某地区2013年投入教育经费2500万元,2015年投入教育经费3025万元.(1)求2013年至2015年该地区投入教育经费的年平均增长率;(2)根据(1)所得的年平均增长率,预计2016年该地区将投入教育经费多少万元.【答案】10%;3327.5万元【解析】【分析】(1)一般用增长后的量=增长前的量×(1+增长率),2014年要投入教育经费是2500(1+x )万元,在2014年的基础上再增长x ,就是2015年的教育经费数额,即可列出方程求解.(2)利用2015年的经费×(1+增长率)即可.【详解】解:(1)设增长率为x ,根据题意2014年为2500(1+x )万元,2015年为. 225001x +()则,2250013025x +=()解得(不合题意舍去). 0.110% 2.1x x ===,或﹣答:这两年投入教育经费的平均增长率为10%.(2)3025×(1+10%)=3327.5(万元).故根据(1)所得的年平均增长率,预计2016年该地区将投入教育经费3327.5万元.22. 如图,AB 、CD 都是⊙O 的弦,且AB∥CD,求证: AC BD =【答案】见解析【解析】【分析】作半径OE⊥AB 交圆于E 点,利用垂径定理得到相等的弧,两边相减即可得证.【详解】证明:作半径OE⊥AB 交圆于E 点.∵AB∥CD,∴OE⊥CD,∴,AE BE = CE DE =∴ AE CEBE DE -=-即:. AC BD=【点睛】本题考查了垂径定理的知识,解题的关键是正确地作出垂直于弦的半径.23. 已知.ABC(1)用无刻度的直尺和圆规作出的外接圆(不写作法,保留作图痕迹);ABC O (2)若在中,,,求的半径.ABC 5AB AC ===6BC O 【答案】(1)见解析 (2)258【解析】【分析】(1)先作的垂直平分线,再作的垂直平分线,二者交于O 点,连接,AC BC CO 以O 为圆心、为半径画圆,问题得解;CO (2)连接交于D 点,根据是等腰的外接圆,可得,AO BC O ABC AD BC ⊥,则利用勾股定理可得,在中,=CD BD 4AD ==Rt CDO ,根据勾股定理得:,问题即可得解.4OD AD AO CO =-=-222OD CD OC =+【小问1详解】作图如下,即为所求;O 【小问2详解】连接交于D 点,如图,AO BC∵,5AB AC ==∴是等腰三角形,ABC 又∵是的外接圆,O ABC ∴在等腰中,有,,ABC AD BC ⊥=CD BD ∵,,5AB AC ===6BC ∴,3CD BD ==∴,4AD ==在中,,Rt CDO 4OD AD AO CO =-=-根据勾股定理得:,222OD CD OC =+∴, ()22243OC OC +=-∴. 258OC =∴的半径为. O 258【点睛】本题考查了复杂作图---作三角形的外接圆以及勾股定理等知识,掌握三角形的外接圆的作法是解答本题的关键.24. 商场销售一批衬衫,平均每天可售出30件,每件盈利45元.为了扩大销售,增加盈利,商场采取降价措施.假设在一定范围内,衬衫的单价每降1元,商场平均每天可多售出2件.如果降价后商场销售这批衬衫每天盈利1 800元,那么这种衬衫每件的价格应降价多少元?【答案】当这种衬衫每件的价格降价15元时,商店每天获利1 800元.【解析】【分析】设衬衫的单价降了x 元.根据题意等量关系:每件利润×降价后的销量=1800,根据等量关系列出方程即可.【详解】设这种衬衫的单价降了x 元,根据题意得:,(45)(302)1800x x -+=整理得:,2302250x x -+=,2(15)0x ∴-=解得:.15x =答:当这种衬衫每件的价格降价15元时,商店每天获利1 800元.【点睛】此题主要考查了一元二次方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.25. 阅读材料,解答问题:【材料1】为了解方程,如果我们把看作一个整体,然后设,则原方程222()13360x x -+=2x 2y x =可化为,经过运算,原方程的解为,.我们把以上这种解213360y y -+=1,22x =±3,43x =±决问题的方法通常叫做换元法.【材料2】已知实数,满足,,且,显然,是方程m n 210m m --=210n n --=m n ≠m n 的两个不相等的实数根,由韦达定理可知,.210x x --=1m n +=1mn =-根据上述材料,解决以下问题:(1)直接应用: 方程的解为 ;42560x x -+=(2)间接应用:已知实数,满足:,且,求的值.a b 422710a a -+=422710b b -+=a b ≠44a b +【答案】(1)x 1x 2x 3x 4==(2). 454【解析】【分析】(1)利用换元法解方程,设y =x 2,则原方程可化为y 2﹣5y+6=0,解关于y 的方程得到y 1=2,y 2=3,则x 2=2或x 2=3,然后分别解两个元二次方程即可;(2)根据已知条件,把a 2、b 2看作方程2x 2﹣7x+1=0的两不相等的实数根,然后根据根与系数的关系求解.【小问1详解】解:,42560x x -+=设,则原方程可化为,2y x =2560y y -+=解得,, 12y =23y =当时,,解得,=2y 22x =1x 2=x当时,,解得,,=3y 23x =3x 4=x -所以原方程的解为,,1x 2=x 3x =4x =故答案为:,,1x 2=x 3x =4x =【小问2详解】解:实数,满足:,且,∴a b 422710a a -+=422710b b -+=a b ≠、可看作方程的两不相等的实数根,2a ∴2b 22710x x -+=,; 2272a b ∴+=2212a b =g ∴; 24224222714522224a b a b a b +=+-=-´=g()()故答案为:. 454【点睛】本题主要考查了用“换元法”把高次方程转化为一元二次方程,韦达定理,完全平方公式,其中转化思想是解决问题的关键.26. 如图,在矩形ABCD 中,AB =6cm ,BC =12cm.点M 从A 点出发沿AB 以1cm/s 的速度向B 点运动;同时点N 从B 点出发沿BC 以2cm/s 的速度向C 点运动.当其中一点到达终点时,另一点也停止运动.设点M 、N 的运动时间为t 秒.(1)当t 为何值时,MN cm ?(2)当t 为何值时,MN 的长度最短,最短长度是多少?(3)当t 为何值时,△DMN 为等腰三角形.【答案】(1)t =1 s 或s ;(2)t =s ;(3)t = (8-)s 或t = (18 )s 7565【解析】 【分析】(1)根据已知条件得到AM =tcm ,BM =(6-t )cm ,N =2tcm ,NC =(12-2t)cm ,在Rt△MBN 中,根据勾股定理计算即可;(2)根据勾股定理和要使MN 的长度最短,只需要MN 2的值最小值计算即可;(3)若△DMN 为等腰三角形,有3种情况,当DM =MN ,当DM =DN ,当MN =DN ,分别求解即可;【详解】解:∵点M 、N 的运动时间为t .点M 从A 点出发沿AB 以1cm/s 的速度向B 点运动,同时点N 从B 点出发沿BC 以2cm/s 的速度向C 点运动, AB =6cm ,BC =12cm∴AM=tcm ,BM =(6-t )cm ,BN =2tcm ,NC =(12-2t)cm .∵四边形ABCD 是矩形,∴△MBN、△DAM,△DNC 都是直角三角形.(1)在Rt△MBN 中,根据勾股定理得,BM 2+BN 2=MN 2,即(6-t)2+(2t)2=)2, 解得 t 1=1,t 2=, 75∴当t =1s 或s 时,MN cm ; 75(2)在Rt△MNB 中,根据勾股定理,得,MN 2=BM 2+BN 2,即MN 2=(6-t)2+(2t)2,=5(t -)2+, 651445要使MN 的长度最短,只需要MN 2的值最小值即可,即求5(t -)2+的最小值. 651445当t =s 时,MN 2的值最小,最小为. 651445∴当t =s 时,MN . 65(3)在Rt△DAM,Rt△BMN 和Rt△DNC 中,根据勾股定理得,DM 2=DA 2+AM 2,MN 2=BM 2+BN 2,DN 2=NC 2+DC 2.即DM 2=122+t 2,MN 2=(6-t)2+(2t)2,DN 2=(12-2t)2+62.若△DMN 为等腰三角形,有3种情况:①当DM =MN ,即DM 2=MN 2时,t 2+122=(6-t)2+(2t)2,解得t 1,t 2 ∵0≤t≤6,∴t 1,t 2 ②当DM =DN ,即DM 2=DN 2时,t 2+122=(12-2t)2+62,解得 t 1=8-t 2=8+∵0≤t≤6,t 2=8+③当MN =DN ,即MN 2=DN 2时,(6-t)2+(2t)2=(12-2t)2+62,解得 t 1=-18,t 2=-18.∵0≤t≤6,t 2=--18不合题意,舍去,综上所述,当t = (8-时,△DMN 为等腰三角形,当t = (18 )s 时,△DMN 为等腰三角形.【点睛】本题主要考查了矩形的性质,勾股定理,等腰三角形的判定与性质,一元二次方程的求解,准确计算是解题的关键.。
湖北荆州2024-2025学年九年级上学期10月月考数学试题(解析版)
2024年10月学情监测试卷九年级数学(本试卷共4页,满分120分,考试时间120分钟)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上指定位置.2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.写在试卷、草稿纸和答题卡上的非答题区域均无效.3.非选择题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内,写在试卷、草稿纸和答题卡上的非答题区域均无效,作图一律用2B 铅笔或黑色签字笔.一、选择题(共10题,每题3分,共30分,在每题给出的四个选项中,只有一项符合题目要求)1. 方程224135x x x +−=+化为一般形式后,二次项系数和一次项系数分别为( )A. 2和1B. 2和7C. 1和6−D. 1和4 【答案】A【解析】 【分析】本题考查了一元二次方程的一般式,根据()200ax bx c a ++=≠进行判定即可求解. 【详解】解:根据题意,2243150x x +−−−=,整理得,2260x x +−=,∴二次项系数和一次项系数分别为21,,故选:A .2. 若方程220x kx −+=的一个根是2−,则k 的值是( )A. 1−B. 1C. 3−D. 3 【答案】C【解析】【分析】本题考查了一元二次方程的解,根据题意,把2x =−代入计算即可求解.【详解】解:根据题意,把2x =−代入得,()()22220k −−−+=,解得,3k =−,故选:C .3. 一元二次方程2530x x −+=的根的情况是( )A. 有两个相等的实数根B. 有两个不相等的实数根C. 没有实数根D. 只有一个实数根【答案】B【解析】 【分析】本题考查了根的判别式,根据方程的系数结合根的判别式即可得出0∆>,从而得出方程有两个不相等的两个实数根,掌握“当0∆>时,方程有两个不相等的两个实数根”是解题的关键.【详解】解:∵方程2530x x −+=,∴()2Δ5413130=−−××=>,∴方程有两个不相等的两个实数根.故选:B .4. 对于二次函数()22y x =−−,下列说法错误的是( )A. 它的图象的开口向下B. 它的图象的对称轴是直线2x =C. 当2x =时,y 取最大值D. 当2x >时,y 随x 的增大而增大【答案】D【解析】【分析】本题考查了二次函数顶点式的性质,根据二次函数顶点式的解析式()2y a x h k =−+进行分析即可求解.【详解】解:已知二次函数顶点式()22y x =−−,10−<,图象开口向下,顶点坐标为()2,0,对称轴为xx =2, ∴A 、B 选项正确,不符合题意;当xx =2时,函数有最大值,最大值为0,故C 选项正确,不符合题意;当xx >2时,y 随x 的增大而减小,故D 选项错误,符合题意;故选:D .5. 若抛物线()22110ya x a −−+经过原点,则a 的值是( ) A. 1±B. 1C. 1−D. 0【答案】C【解析】【分析】本题考查二次函数的性质,将()0,0代入解析式求出a 的值,再根据二次项系数不能为0对a 的值进行取舍,即可得出答案.【详解】解: 抛物线()22110y a x a −−+经过原点()0,0,∴210a −+=,解得1a =±,当1a =时,二次项系数10a −=,不合题意,∴1a =−,故选C .6. 用配方法解方程2640x x −+=时,变形结果正确的是( )A. ()2314x −=B. ()235x −=C. ()2640x −=D. ()2632x −= 【答案】B【解析】【分析】本题考查了解一元二次方程﹣配方法,熟练掌握配方法解一元二次方程的基本步骤是解本题的关键.先移项化为264x x −=−,可得2695x x −+=,再进一步求解即可.【详解】解:∵2640x x −+=,∴264x x −=−,∴2695x x −+=,∴()235x −=,故选:B .7. 有一种“微信点名”活动,需要回答一系列问题,并将问题和自己答案在朋友圈中发布,同时还规定“@”一定数量的其他人,邀请他们也参与活动,小智被邀请参加一次“微信点名”活动,他决定参与并按规定“@”其他人,如果收到小智邀请的人也同样参与了活动并按规定“@”其他人,且从小智开始算起,转发两轮后共有111人被邀请参与该活动.设参与该活动后规定“@”x 人,则可列出的方程为( )A. 2111x =B. 21111x +=C. 21111x x ++=D. ()21111x += 【答案】C的【解析】【分析】本题考查了由实际问题抽象出一元二次方程,理解题意,根据从小智开始算起,转发两轮后共有111人被邀请参与该活动列出一元二次方程即可.【详解】解:设参与该活动后规定“@”x 人,则可列出的方程为:21111x x ++=,故选:C .8. 某抛物线的图象向右平移2个单位长度,再向下平移3个单位长度,所得图象的解析式为()232y x =−−,则原抛物线的解析式为( )A. ()211y x =−+B. ()251y x =−+C. yy =(xx −1)2−5D. ()255y x =−− 【答案】A【解析】【分析】本题考查了二次函数图象的平移,根据平移规律“左键右键,上加下减”即可求解.【详解】解:A 、()()22121332y x x =−−+−=−−,符合题意; B 、()()22521372y x x =−−+−=−−,不符合题意;C 、()()22125338y x x =−−−−=−−,不符合题意; D 、()(22525378y x x −−−−−−,不符合题意; 故选:A .9. 若a 是关于x 的方程22310x x −+=的一个根,则2202446a a −+的值是( )A. 2025B. 2026C. 2022D. 2023【答案】B【解析】【分析】本题考查了一元二次方程的解,以及已知式子的值,求代数式的值等知识内容,难度较小,正确掌握相关性质内容是解题的关键.依题意,把x a =代入22310x x −+=,得2231a a −=−,再把2231a a −=−代入()222024462024223a a a a −+=−−中计算,即可作答. 【详解】解:∵a 是关于x 的方程22310x x −+=的一个根,∴把x a =代入22310x x −+=,得2231a a −=−,∴()()2220244620242232024212026a a a a −+=−−=−×−=, 故选:B .10. 二次函数()20y ax bx c a ++≠的图象与x 轴交于点()1,0A ,与y 轴的交点B 在()0,2与()0,3之间(不包括这两点),对称轴为直线2x =−.下列结论:①0abc >;②0a b c −+>;③若点11,2M y − 、点25,2N y −是函数图象上的两点,则12y y >;④3255a −<<−;其中正确的结论是( )A. ②③④B. ②③C. ①④D. ①②④【答案】D【解析】【分析】本题考查了二次含图象的性质,根据图象与x 轴交于点()1,0A ,对称轴为直线2x =−,可得另一个交点为()5,0−,4b a =,根据二次函数与y 轴的交点B 在()0,2与()0,3之间(不包括这两点),可得23c <<,由此可得5c a =−,分别代入计算,再根据二次函数图象的增减性即可求解.【详解】解:二次函数()20y ax bx c a ++≠的图象与x 轴交于点()1,0A ,对称轴为直线2x =−, ∴另一个交点为()5,0−,22b x a=−=−, ∴4b a =,∴a b ,同号,即0ab >, ∵二次函数与y 轴的交点B 在()0,2与()0,3之间(不包括这两点), ∴23c <<,∴0abc >,故①正确;当xx =1时,0y a b c =++=,且4b a =,∴50a c +=,则5c a =−,∵23c <<,∴253a <−<,则3255a −<<−,即0a <, ∵4580abc a a a a −+=−−=−>,∴0a b c −+>,故②,④正确;∵对称轴为2x =−,0a <,∴当2x <−时,y 随x 的增大而增大;当2x >−时,y 随x 的增大而减小;即离对称轴越远,值越小,∵()5113222222 −−−=−−−= ,, ∴12y y <,故③错误;综上所述,正确的有①②④,故选:D .二、填空题(共5题,每题3分,共15分)11. 抛物线2(2)1y x =+−的顶点坐标为________.【答案】(2,1)−−【解析】【分析】根据二次函数的解析式的顶点式即可得.【详解】抛物线2(2)1y x =+−的顶点坐标为(2,1)−−,故答案为:(2,1)−−.【点睛】本题考查了求二次函数的顶点坐标,熟练掌握二次函数的图象与性质是解题关键.12. 已知方程2320x x −−=的两根分别为1x ,2x ,则1212x x x x ++的值为_________.【答案】1【解析】【分析】本题主要考查了根与系数的关系,对于()200ax bx c a ++=≠的两个根分别为12,x x ,则1212b c a x x x x a+=−=,. 利用根与系数的关系得到12x x +,21x x 的值,然后代入计算即可.【详解】解:∵方程2320x x −−=的两个根分别为1x ,2x ,∴123x x +=,122x x =− ∴1212231x x x x =−++=+. 故答案为:1.13. 加工爆米花时,爆开且不糊颗粒的百分比称为“可食用率”.在特定条件下,可食用率y 与加工时间x (单位:min )满足函数表达式20.2 1.52y x x =−+−,则最佳加工时间为________min .【答案】3.75的【解析】 【分析】根据二次函数的对称轴公式2b x a=−直接计算即可. 【详解】解:∵20.2 1.52y x x =−+−的对称轴为()1.5 3.75220.2b x a =−=−=×−(min ), 故:最佳加工时间为3.75min ,故答案为:3.75. 【点睛】此题主要考查了二次函数性质的应用,涉及求顶点坐标、对称轴方程等,记住抛物线顶点公式是解题关键. 14. 如图,某涵洞的截面是抛物线形状,抛物线在如图所示的平面直角坐标系中,对应的函数解析式为2516y x =-,当涵洞水面宽为12m 时,涵洞顶点O 至水面的距离为_________m .【答案】454【解析】 【分析】本题考查了二次函数的运用,根据题意,()()6,06,0A B −,,代入计算即可求解.【详解】解:根据题意,12AB =,∴()()6,06,0A B −,,把xx =6代入得,25456164y =−×=−, ∴顶点O 至水面的距离为45m 4, 故答案为:454 . 15. 已知关于x 的一元二次方程()()2530x x n −−−=的两个实数根为1x ,2x ,且213x x =,则n 的值为__________.【答案】【解析】【分析】本题考查了一元二次方程根与系数的关系,先化为一般形式,根据一元二次方程根与系数的关系可得128x x +=,21215x x n =−,结合已知条件得出122,6x x ==,进而根据21526n −=×,即可求解. 【详解】解:()()2530x x n −−−= ∴228150x x n −+−=∴128x x +=,21215x x n =− 又∵213x x =∴148x =,∴122,6x x == ∴21526n −=×解得:n =故答案为:.三、解答题(共9题,共75分,解答应写出文字说明、证明过程或演算步骤)16. 解下列方程:(1)2310x x −+=;(2)22150x x +−=.【答案】(1)1x =,2x =(2)15x =−,23x =【解析】【分析】本题考查了解一元二次方程,熟练掌握直接开平方法,因式分解法,公式法和配方法是解题的关键. (1)运用公式法求解;(2)运用因式分解法求解.【小问1详解】解:∵1,3,1a b c ==−= ∴()2341150∆=−−××=>,∴x ,∴1x =2x = 【小问2详解】解:()()530x x +−=∴50x +=,30x −=, ∴15x =−,23x =.17. 已知关于x 的方程260x kx −+=有两个实数根α,β,其中3α=−,求另一个根β和k 的值.【答案】2β=−,5k =−【解析】【分析】本题主要考查一元二次方程根与系数的关系,根据一元二次方程的两根12x x ,,1212b c x x x x a a+=−=,即可求解. 详解】解:∵6αβ=,3α=−,∴2β=−,∵k αβ+=, ∴325k =−−=−.18. 已知函数231y x x =−−+.(1)该函数图象的开口方向是________;(2)求出函数图象的对称轴和顶点坐标;(3)当x 取何值时,y 随x 的增大而减小?【答案】(1)向下 (2)对称轴是32x =−,顶点坐标是313,24 − (3)32x >−【解析】【分析】本题主要考查了二次函数的图象和性质,熟练掌握二次函数开口方向,增减性,顶点坐标和对称轴是解题的关键.【(1)根据10a =−<,即可判定抛物线的开口方向; (2)根据1a =−,3b =−,1c =,结合顶点坐标公式进行求解即可; (3)根据0a <时,二次函数的增减性进行求解即可.【小问1详解】解:∵10a =−<,∴函数图象的开口方向是向下;小问2详解】解:∵1a =−,3b =−,1c =, ∴33222b a −−=−=−−, 244913444ac b a −−−==−, ∴函数图象的对称轴是32x =−,顶点坐标是313,24 − ; 【小问3详解】解:∵开口向下, ∴当32x >−时,y 随x 的增大而减小. 19. 已知关于x 的一元二次方程()222120x k x k k −−+−=有两个实数根1x ,2x . (1)求实数k 的取值范围;(2)是否存在实数k ,使得2212129x x x x +−=成立?若存在,请求出k 的值;若不存在,请说明理由. 【答案】(1)14k ≥−(2)存在,2k =【解析】【分析】本题主要考查一元二次方程根与系数的关系, (1)根据一元二次方程有两个实数根可得240b ac ∆=−≥,由此即可求解; (2)运用一元二次方程根与系数的关系12b x x a +=−,12c x x a =,乘法公式的变形,代入求值即可. 【小问1详解】【解:根据题意得()()2221420k k k ∆=−−−−≥ , 解得,14k ≥−; 【小问2详解】解:根据题意得1221x x k +=−,2122x x k k =−, ∵2212129x x x x +−=, ∴()212121229x x x x x x +−−=,即()2121239x x x x +−=, ∴()()2221329k k k −−−=,整理得2280k k +−=, ∴()()240k k −+=,且14k ≥− 解得,12k =,24k =−(不符合题意,舍去), ∴2k =.20. 阅读下列材料:为解方程4260x x −−=,可将方程变形为()22260x x −−=,然后设2x t =,则()222x t =,原方程化为260t t −−=①,解①得12t =−,23t =.当12t =−时,22x =−无意义,舍去;当23t =时,23x =,解得x =1x =2x =;这种方法称为“换元法”,则能使复杂的问题转化成简单的问题.利用换元法解方程()()2227180x xx x −+−−=. 【答案】12x =,21x =−【解析】【分析】本题考查的是利用换元法解一元二次方程,设2x x t −=,于是原方程化为27180t t +−=,求解t ,再进一步求解即可.【详解】解:设2x x t −=,于是原方程化为27180t t +−=,∴()()290t t −+=, 解得12t =,29t =−;当2t =时,22x x −=,∴220x x −−=,∴()()210x x −+=, 解得12x =,21x =−;当9t =−时,29x x −=−,∴290x x −+=,此时2(1)4190=−−××<△,方程无解,故原方程的解为12x =,21x =−.21. 如图,抛物线2y x bx c =++与直线1y x =−交于点()1,A m −和(),2B n .(1)求抛物线的解析式;(2)根据图象直接写出不等式21x bx c x ++>−的解集.【答案】(1)24y x x =−−(2)1x <−或3x >【解析】【分析】本题考查了待定系数法求二次函数解析式,函数与不等式的关系等知识.(1)先求出点A 、B 的坐标为()1,2−−,()3,2,再代入2y x bx c =++即可求解;(2)根据函数与不等式的关系结合图象即可求解.【小问1详解】解:把()1,A m −和(),2B n 代入1y x =−,得112m =−−=−,21n =−,∴3n =,∴()1,2A −−,()3,2B ,把()1,2A −−,()3,2B 代入2y x bx c =++,得12932b c b c −+=− ++=, 解得14b c =− =−, ∴抛物线的解析式为24y x x =−−;【小问2详解】解:求不等式21x bx c x ++>−的解集可以看作当抛物线24y x x =−−的图象位于直线1y x =−的上方时求自变量x 的取值范围,∴由图象得不等式21x bx c x ++>−的解集为1x <−或3x >.22. 羽毛球作为国际球类竞技比赛的一种,发球后羽毛球的飞行路线可以看作是抛物线的一部分.建立如图所示的平面直角坐标系,羽毛球从发出到落地的过程中竖直高度y (单位:m )与水平距离x (单位:m )近似满足函数关系()()20y a x h k a =−+≠.某次发球时,羽毛球的水平距离x 与竖直高度y 的几组数据如下:请根据上述数据,解决问题:(1)直接写出羽毛球飞行过程中竖直高度的最大值,并求出满足的函数关系()()20y a x h k a =−+≠; (2)已知羽毛球场的球网高度为1.55m ,当发球点距离球网5m 时,羽毛球能否越过球网?请说明理由. 【答案】(1)()225042727y x =−−+,50 m 27(2)能,理由见解析【解析】【分析】本题考查的是二次函数的实际应用,理解题意是解本题的关键;(1)先求解抛物线的对称轴与顶点坐标,再设设抛物线的关系式为()250427y a x =−+,再代入0x =,23y =即可得到答案; (2)把5x =代入()225042727y x =−−+可得169y =,再比较即可. 【小问1详解】解:根据表格中的数据可知,当2x =时,149y =,当6x =时,149y =, ∴点142,9 与146,9关于抛物线的对称轴对称, ∴抛物线的对称轴为直线2642x +=,根据表格中的数据可知,当4x =时,5027y =, ∴抛物线的顶点坐标为504,27, 即羽毛球飞行过程中竖直高度的最大值为50m 27;设抛物线的关系式为()250427y a x =−+,把0x =,23y =代入得:()225004327a =−+, 解得:227a =−, ∴抛物线的关系式为()225042727y x =−−+.【小问2详解】解:把5x =代入()225042727y x =−−+得:225016(54)27279y =−−+=, ∵161.559>,∴羽毛球能越过球网.23. 一人一盔安全守规,一人一带平安常在!某摩托车配件店经市场调查,发现进价为80元的新款头盔每月的销售量y (件)与售价x (元)的相关信息如下: 售价x (元)100 110 120 130 …销售量y(件)180160 140 120 … (1)试用你学过函数来描述y 与x 的关系,这个函数可以是_______(填“一次函数”或“二次函数”),直接写出这个函数解析式为______;(2)若物价局规定,该头盔最高售价不得超过140元,当售价为多少元时,月销售利润达到5600元? (3)若获利不得高于进价的60%,那么售价定为多少元时,月销售利润达到最大? 【答案】(1)一次函数,2380y x =−+ (2)120元 (3)128元【解析】【分析】本题主要考查一次函数,二次函数,一元二次方程的运用,(1)根据表格信息可得当售价x 增大时,销售量y 逐渐减小,可得这个函数是一次函数,运用待定系数即可求解;(2)根据题意得()()8023805600x x −−+=,解一元二次方程,结合题意取值即可; (3)设利润为w 元,则2(80)(2380)254030400w x x x x =−−+=−+−,根据获利不得高于进价的60%,即获利不得高于808060%128+×=(元),可得80128x ≤≤,结合二次函数图象的性质即可求解. 【小问1详解】解:根据表格信息,当售价x 增大10时,销售量y 减小20,∴这个函数是一次函数,设该一次函数解析式为()0y kx b k =+≠,把100180x y =,,110160x y =,代入得, 100180110160k b k b += +=, 解得,2380k b =− =, ∴一次函数解析式为2380y x =−+, 的当120x =时,2120380120y =−×+=,符合题意, ∴该函数是一次函数,解析式为2380y x =−+; 【小问2详解】解:根据题意得()()8023805600x x −−+=, 解得1120x =,2150x =,∵物价局规定,该头盔最高售价不得超过140元,∴150x =不合题意舍去,答:当售价为120元时,月销售利润达到5600元;【小问3详解】解:设利润为w 元,则2(80)(2380)254030400w x x x x =−−+=−+−, ∴当54013524b x a =−=−=−时,w 取最大值, ∵获利不得高于进价的60%,即获利不得高于808060%128+×=(元), ∴80128x ≤≤,∵20−<,∴当135x ≤时,w 随x∴当128x =时,w 最大,答:售价定为128元时,月销售利润达到最大.24. 如图1,抛物线22y ax x c =−+与x 轴交于点()30A −,和B ,与y 轴交于点()0,3C .(1)求该抛物线的解析式及顶点的坐标;(2)如图2,若P 是线段OA 上一动点,过P 作y 轴的平行线交抛物线于点H ,交AC 于点N ,设点P 的横坐标为t ,ACH 的面积为S .求S 关于t 的函数关系式;当t 取何值时,S 有最大值,求出S 的最大值;(3)若P 是x 轴上一个动点,过P 作直线PQ BC ∥交抛物线于点Q ,随着P 点的运动,在x 轴上是否存在这样的点P ,使以B P Q C ,,,为顶点的四边形为平行四边形?若存在,请直接写出P 点的坐标;若不存在,请说明理由.【答案】(1)223y x x =−−+,()1,4−; (2)23922S t t =−−,32t =−时,S 有最大值,最大值是278;(3)存在,P 点坐标为()1,0−或()2−−或()2−+.【解析】【分析】(1)利用待定系数法求出抛物线的解析式,再把解析式转化为顶点式可得到顶点的坐标; (2)求出直线AC 的函数解析式,用含t 的式子表示出点N H 、的坐标,得出NH ,再根据12AHN CHN S S S HN OA =+=×× 求出S 关于t 的函数关系式,最后根据二次函数的性质解答即可求解; (3)求出B 点坐标,得到OB 的长,再分CQ BP ∥、点P 在点A 的左侧,CP BQ ∥和当点P 点A 的右侧,CP BQ ∥三种情况,画出图形解答即可求解.【小问1详解】解:把()3,0A −,()0,3C 代入22y ax x c =−+得,9603a c c ++= =, 解得13a c =− = , ∴该抛物线的解析式为223y x x =−−+, ∵()222314y x x x =−−+=−++,∴该抛物线的顶点坐标为()1,4−;【小问2详解】 解:设直线AC 的函数解析式为y kx b =+,把()3,0A −,()0,3C 代入得, 033k b b=−+ = ,解得13k b = =, ∴直线AC 的函数解析式为3y x ,把x t =代入3y x 得,3y t =+,∴(),3N t t +,∵点P 的横坐标为t ,∴PH y ∥轴,∴点H 的横坐标为t ,∴()2,23H t t t −−+, ∴()222333HN t t t t t =−−+−+=−−, ∴()22211393327332222228AHN CHNS S S HN OA t t t t t =+=××=×−−×=−−=−++ , ∵302−<, ∴当32t =−时,S 有最大值,最大值为278; 【小问3详解】解:存在,理由如下:把0y =代入223y x x =−−+得,2023x x =−−+,解得13x =−,21x =,∴()1,0B ,∴1OB =,如图,当CQ BP ∥时,四边形BCQP 为平行四边形,∴CQ PB =,把3y =代入223y x x =−−+得,2233x x −−+=,解得10x =,22x =−,∴()2,3Q −,∴2CQ =,∴2BP =,∴211OP =−=,∴()1,0P −;如图,当点P 在点A 的左侧,CP BQ ∥时,四边形BCPQ 是平行四边形,过点Q 作QM x ⊥轴于M ,则90∠=∠=°QMP COB , ∵四边形BCPQ 是平行四边形,∴PQ BC =,PQ BC ∥,∴QPM CBO ∠=∠, ∴()AAS QPM CBO ≌,∴1MP OB ==,3MQOC ==, ∴点Q 的纵坐标为3−,把=3y −代入223y x x =−−+得,2323x x −=−−+,解得11x =−21x =−(不符合,舍去),∴点P 的横坐标为2−−∴()2P −;如图,当点P 在点A 的右侧,CP BQ ∥时,四边形BCPQ 是平行四边形,过点Q 作QN x ⊥轴于N ,则90QNP COB ∠=∠=°,同理可得()2P −+;综上,点P 的坐标为()1,0−或()2−或()2−.【点睛】本题考查了用待定系数法求二次函数解析式,求二次函数图象的顶点坐标,二次函数与几何图形,二次函数的性质,平行四边形的性质,全等三角形的判定和性质,坐标与图形,正确画出图形并运用分类讨论思想解答是解题的关键.。
2021-2022学年广东省深圳市南山区九年级(上)月考数学试卷(10月份)(解析版)
2021-2022学年广东省深圳市南山区九年级第一学期月考数学试卷(10月份)注意事项:1.答题前,考生务必在试题卷、答题卡规定位置填写本人准考证号、姓名等信息.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名”与考生本人准考证号、姓名是否一致.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.非选择题答案用0.5 毫米黑色墨水签字笔在答题卡上相应位置书写作答,在试题卷上答题无效.3.作图可先使用2B 铅笔画出,确定后必须用0.5 毫米黑色墨水签字笔描黑.一、选择题(每题3分,共30分).1.已知xy=mn,则把它改写成比例式后,错误的是()A.=B.=C.=D.=2.用配方法解一元二次方程x2﹣8x+5=0,将其化成(x+a)2=b的形式,则变形正确的是()A.(x+4)2=11B.(x﹣4)2=21C.(x﹣8)2=11D.(x﹣4)2=11 3.九(1)班从小华、小琪、小明、小伟四人中随机抽出2人参加学校举行的乒乓球双打比赛,每人被抽到的可能性相等,则恰好抽到小华和小明的概率是()A.B.C.D.4.下列命题中错误的是()A.平行四边形的对边相等B.两组对边分别相等的四边形是平行四边形C.矩形的对角线相等D.对角线相等的四边形是矩形5.已知关于x的方程mx2﹣2x+1=0有两个不相等的实数根,则m的取值范围是()A.m<1B.m>1C.m<1,且m≠0D.m>1,且m≠0 6.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,若BF=6,AB =5,则AE的长为()A.10B.8C.6D.47.如图,在菱形ABCD中,M,N分别在AB,CD上,且AM=CN,MN与AC交于点O,连接BO.若∠DAC=28°,则∠OBC的度数为()A.28°B.52°C.62°D.72°8.九年级(5)班文学小组在举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,全组共互赠了132本图书,如果设全组共有x名同学,依题意,可列出的方程是()A.x(x+1)=132B.x(x﹣1)=132C.2x(x+1)=132D.x(x+1)=1329.定义:cx2+bx+a=0是一元二次方程ax2+bx+c=0的倒方程,下列四个结论中,错误的是()A.如果x=2是x2+2x+c=0的倒方程的解,则c=B.如果ac<0,那么这两个方程都有两个不相等的实数根C.如果一元二次方程ax2﹣2x+c=0无解,则它的倒方程也无解D.如果一元二次方程ax2+bx+c=0有两个不相等的实数根,则它的倒方程也有两个不相等的实数根10.如图,正方形ABCD的边长为2,点E从点A出发滑着线段AD向点D运动(不与点A,D重合),同时点F从点D出发沿着线段DC向点C运动(不与点D,C重合,点E与点F的运动速度相同.BE与AF相交于点G,H为BF中点、则有下列结论:①∠BGF是定值;②FB平分∠AFC;③当E运动到AD中点时,GH=;④当AG+BG=时,四边形GEDF的面积是.其中正确的是()A.①③B.①②③C.①③④D.①④二.填空题(每题3分,共15分)11.已知=2,则=.12.某地区为估计该地区黄羊的只数,先捕捉20只黄羊给它们分别作上标志,然后放回,待有标志的黄羊完全混合于黄羊群后,第二次捕捉40只黄羊,发现其中两只有标志.从而估计该地区有黄羊.13.如图,矩形ABCD中,AC,BD交于点O,M,N分别为BC,OC的中点,若MN=3,则BD=.14.一元二次方程x2+4x﹣2=0的两根为m、n,则m2+5m+n的值是.15.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AD平分∠CAB交BC于D点,E,F分别是AD,AC上的动点,则CE+EF的最小值为三、解答题(共55分,其中16题12分,17题5分,18题7分,19题7分,20题7分,21题8分,22题9分)16.解方程:(1)(x﹣3)2=4.(2)x(x﹣4)=x﹣4.(3)4(x+2)2﹣9(x﹣3)2=0.(4)2x2+4x﹣3=0.17.为庆祝中国共产党建党100周年,某校组织七、八、九年级学生参加了“颂党恩,跟党走”作文大赛.该校对参赛作文分年级进行了统计,并绘制了图1和图2不完整的统计图.请根据图中信息回答下面的问题:(1)参赛作文的篇数共篇;(2)图中:m=,扇形统计图中九年级所对应的圆心角度数为°;(3)把条形统计图补充完整;(4)经过评审,全校共有4篇作文获得特等奖,其中有一篇来自七年级,学校准备从特等奖作文中选取2篇刊登在学校校报上,请用树状图或列表法求七年级特等奖作文被刊登在校报上的概率.18.已知关于x的一元二次方程x2+(2k+3)x+k2=0有两个不相等的实数根x1,x2.(1)求k的取值范围;(2)若+=﹣1,求k的值.19.如图,在四边形ABCD中,∠BAC=90°,E是BC的中点,AD∥BC,AE∥DC,EF ⊥CD于点F.(1)求证:四边形AECD是菱形;(2)若AB=6,BC=10,求EF的长.20.某服装厂生产一批服装,2019年该类服装的出厂价是200元/件,2020年,2021年连续两年改进技术,降低成本,2021年该类服装的出厂价调整为162元/件.(1)这两年此类服装的出厂价下降的百分比相同,求平均下降率.(2)2021年某商场从该服装厂以出厂价购进若干件此类服装,以200元/件销售时,平均每天可销售20件.为了减少库存,商场决定降价销售.经调查发现,单价每降低5元,每天可多售出10件,如果每天盈利1150元,单价应降低多少元?21.阅读材料:(1)对于任意实数a和b,都有(a﹣b)2≥0,∴a2﹣2ab+b2≥0,于是得到a2+b2≥2ab,当且仅当a=b时,等号成立.(2)任意一个非负实数都可写成一个数的平方的形式.即:如果a≥0,则.如:2=,等.例:已知a>0,求证:.证明:∵a>0,∴∴,当且仅当时,等号成立.请解答下列问题:某园艺公司准备围建一个矩形花圃,其中一边靠墙(墙足够长),另外三边用篱笆围成(如图所示).设垂直于墙的一边长为x米.(1)若所用的篱笆长为36米,那么:①当花圃的面积为144平方米时,垂直于墙的一边的长为多少米?②设花圃的面积为S米2,求当垂直于墙的一边的长为多少米时,这个花圃的面积最大?并求出这个最大面积;(2)若要围成面积为200平方米的花圃,需要用的篱笆最少是多少米?22.如图,在平面直角坐标系中,直线l1:y=﹣x+4分别交x、y轴于B、A两点,将△AOB沿直线l2:y=2x折叠,点B落在y轴的点C处.(1)点C的坐标为;(2)若点D沿射线BA运动,连接OD,当△CDB与△CDO面积相等时,求直线OD的解析式;(3)在(2)的条件下,当点D在第一象限时,沿x轴平移直线OD,分别交x,y轴于点E,F,在平面直角坐标系中,是否存在点M(m,3)和点P,使四边形EFMP为正方形?若存在,求出点P的坐标;若不存在,说明理由.参考答案一、选择题(每题3分,共30分)1.已知xy=mn,则把它改写成比例式后,错误的是()A.=B.=C.=D.=【分析】利用等式的性质2:等式的两边同时乘以或除以同一个数(除数不为0),所得的结果仍是等式,可判断各选项正确与否.解:A、两边同时乘以最简公分母ny得xy=mn,与原式相等;B、两边同时乘以最简公分母mx得xy=mn,与原式相等;C、两边同时乘以最简公分母mn得xn=my,与原式不相等;D、两边同时乘以最简公分母my得xy=mn,与原式相等;故选:C.2.用配方法解一元二次方程x2﹣8x+5=0,将其化成(x+a)2=b的形式,则变形正确的是()A.(x+4)2=11B.(x﹣4)2=21C.(x﹣8)2=11D.(x﹣4)2=11【分析】方程移项后,利用完全平方公式配方得到结果,即可作出判断.解:方程x2﹣8x+5=0,移项得:x2﹣8x=﹣5,配方得:x2﹣8x+16=11,即(x﹣4)2=11.故选:D.3.九(1)班从小华、小琪、小明、小伟四人中随机抽出2人参加学校举行的乒乓球双打比赛,每人被抽到的可能性相等,则恰好抽到小华和小明的概率是()A.B.C.D.【分析】画出树状图,有12个等可能的结果,恰好抽到小华和小明的结果有2个,再由概率公式求解即可.解:把小华、小琪、小明、小伟分别记为A、B、C、D,画树状图如图:共有12个等可能的结果,恰好抽到小华和小明的结果有2个,∴恰好抽到小华和小明的概率为=,故选:C.4.下列命题中错误的是()A.平行四边形的对边相等B.两组对边分别相等的四边形是平行四边形C.矩形的对角线相等D.对角线相等的四边形是矩形【分析】根据平行四边形和矩形的性质和判定进行判定.解:根据平行四边形和矩形的性质和判定可知:选项A、B、C均正确.D中说法应为:对角线相等且互相平分的四边形是矩形.故选:D.5.已知关于x的方程mx2﹣2x+1=0有两个不相等的实数根,则m的取值范围是()A.m<1B.m>1C.m<1,且m≠0D.m>1,且m≠0【分析】由二次项系数非零及根的判别式Δ>0,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围.解:∵关于x的方程mx2﹣2x+1=0有两个不相等的实数根,∴,解得:m<1且m≠0.故选:C.6.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,若BF=6,AB =5,则AE的长为()A.10B.8C.6D.4【分析】先求AB=BE=5,利用勾股定理求AH=EH=4,得AE=8.解:∵AG平分∠BAD,∴∠BAG=∠DAG,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AEB=∠DAG,∴∠BAG=∠AEB,∴AB=BE=5,由作图可知:AB=AF,∠BAE=∠FAE,∵AH=AH∴△BAH≌△FAH(SAS),∴BH=FH=3,∴BF⊥AE,由勾股定理得:AH==4,∵AB=BE,BH⊥AE,∴AH=EH=4,∴AE=8,故选:B.7.如图,在菱形ABCD中,M,N分别在AB,CD上,且AM=CN,MN与AC交于点O,连接BO.若∠DAC=28°,则∠OBC的度数为()A.28°B.52°C.62°D.72°【分析】根据菱形的性质以及AM=CN,利用ASA可得△AMO≌△CNO,可得AO=CO,然后可得BO⊥AC,继而可求得∠OBC的度数.解:∵四边形ABCD为菱形,∴AB∥CD,AB=BC,∴∠MAO=∠NCO,∠AMO=∠CNO,在△AMO和△CNO中,∵,∴△AMO≌△CNO(ASA),∴AO=CO,∵AB=BC,∴BO⊥AC,∴∠BOC=90°,∵∠DAC=28°,∴∠BCA=∠DAC=28°,∴∠OBC=90°﹣28°=62°.故选:C.8.九年级(5)班文学小组在举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,全组共互赠了132本图书,如果设全组共有x名同学,依题意,可列出的方程是()A.x(x+1)=132B.x(x﹣1)=132C.2x(x+1)=132D.x(x+1)=132【分析】如果设全组共有x名同学,那么每名同学要赠送(x﹣1)本,有x名学生,那么总互共送x(x﹣1)本,根据全组共互赠了132本图书即可得出方程.解:设全组共有x名同学,那么每名同学送出的图书是(x﹣1)本;则总共送出的图书为x(x﹣1);又知实际互赠了132本图书,则x(x﹣1)=132.故选:B.9.定义:cx2+bx+a=0是一元二次方程ax2+bx+c=0的倒方程,下列四个结论中,错误的是()A.如果x=2是x2+2x+c=0的倒方程的解,则c=B.如果ac<0,那么这两个方程都有两个不相等的实数根C.如果一元二次方程ax2﹣2x+c=0无解,则它的倒方程也无解D.如果一元二次方程ax2+bx+c=0有两个不相等的实数根,则它的倒方程也有两个不相等的实数根【分析】根据一元二次方程的解,根的判别式分别判断即可.解:x2+2x+c=0的倒方程是cx2+2x+1=0,将x=2代入,得c=,故A正确;∵ac<0,∴b2﹣4ac>0,∴这两个方程都有两个不相等的实数根,故B正确;∵ax2﹣2x+c=0无解,∴4﹣ac<0,它的倒方程的根的判别式也为4﹣ac<0,∴它的倒方程也无解,故C正确;若c=0,则它的倒方程为一元一次方程,只有一个实数根,故D错误;故选:D.10.如图,正方形ABCD的边长为2,点E从点A出发滑着线段AD向点D运动(不与点A,D重合),同时点F从点D出发沿着线段DC向点C运动(不与点D,C重合,点E与点F的运动速度相同.BE与AF相交于点G,H为BF中点、则有下列结论:①∠BGF是定值;②FB平分∠AFC;③当E运动到AD中点时,GH=;④当AG+BG=时,四边形GEDF的面积是.其中正确的是()A.①③B.①②③C.①③④D.①④【分析】根据全等三角形的判定与性质,正方形的性质、勾股定理逐一进行判断即可.解:①∵四边形ABCD是正方形,∴AB=CD,∠BAE=∠D=90°,在△BAE和△ADF中,,∴△BAE≌△ADF(SAS),∴∠ABE=∠DAF,∵∠ABE+∠BAG=∠DAF+∠BAG=90°,∴∠AGB=90°,∴∠BGF=90°是定值;故①正确;②根据题意无法判断∠AFB与∠CFB的大小,FB平分∠AFC;故②错误;③当E运动到AD中点时,当F运动到DC中点,∴CF=CD=1,∴BF=,∵H为BF中点,∴GH=BF=;故③正确;④∵△BAE≌△ADF,∴四边形GEDF的面积=△ABG的面积,当AG+BG=时,(AG+BG)2=AG2+2AG•BG+BG2=6,∵AG2+BG2=AB2=4,∴2AG•BG=2,∴AG•BG=1,∴S△ABG=AG•BG=,∴四边形GEDF的面积是.故④正确.故其中正确的是①③④.故选:C.二.填空题(每题3分,共15分)11.已知=2,则=3.【分析】由=2,根据比例的性质,即可求得的值.解:∵=2,∴==3.故答案为:3.12.某地区为估计该地区黄羊的只数,先捕捉20只黄羊给它们分别作上标志,然后放回,待有标志的黄羊完全混合于黄羊群后,第二次捕捉40只黄羊,发现其中两只有标志.从而估计该地区有黄羊400只.【分析】捕捉40只黄羊,发现其中2只有标志.说明有标记的占到,而有标记的共有20只,根据所占比例解得.解:20÷=400(只).故答案为400只.13.如图,矩形ABCD中,AC,BD交于点O,M,N分别为BC,OC的中点,若MN=3,则BD=12.【分析】根据中位线的性质求出BO长度,再依据矩形的性质BD=2BO进行求解.解:∵M、N分别为BC、OC的中点,∴BO=2MN=6.∵四边形ABCD是矩形,∴BD=2BO=12.故答案为12.14.一元二次方程x2+4x﹣2=0的两根为m、n,则m2+5m+n的值是﹣2.【分析】利用一元二次方程解的定义和根与系数的关系得出m2+4m﹣2=0,m+n=﹣4,将所求式子变形后,把各自的值代入即可求出值.解:∵一元二次方程x2+4x﹣2=0的两根为m、n,∴m+n=﹣4,m2+4m﹣2=0,即m2+4m=2,则m2+5m+n=(m2+4m)+(m+n)=2﹣4=﹣2.故答案为﹣2.15.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AD平分∠CAB交BC于D点,E,F分别是AD,AC上的动点,则CE+EF的最小值为【分析】如图所示:在AB上取点F′,使AF′=AF,过点C作CH⊥AB,垂足为H.因为EF+CE=EF′+EC,推出当C、E、F′共线,且点F′与H重合时,FE+EC的值最小.解:如图所示:在AB上取点F′,使AF′=AF,过点C作CH⊥AB,垂足为H.在Rt△ABC中,依据勾股定理可知BA=10.CH=,∵EF+CE=EF′+EC,∴当C、E、F′共线,且点F′与H重合时,FE+EC的值最小,最小值为,故答案为:三、解答题(共55分,其中16题12分,17题5分,18题7分,19题7分,20题7分,21题8分,22题9分)16.解方程:(1)(x﹣3)2=4.(2)x(x﹣4)=x﹣4.(3)4(x+2)2﹣9(x﹣3)2=0.(4)2x2+4x﹣3=0.【分析】(1)利用直接开平方法解方程;(2)先移项得到x(x﹣4)﹣(x﹣4)=0,然后利用因式分解法解方程;(3)利用因式分解法解方程;(4)利用公式法解方程.解:(1)x﹣3=±2,所以x1=5,x2=1;(2)x(x﹣4)﹣(x﹣4)=0,(x﹣4)(x﹣1)=0,x﹣4=0或x﹣1=0,所以x1=4,x2=1;(3)[2(x+2)+3(x﹣3)][2(x+2)﹣3(x﹣3)]=0,2(x+2)+3(x﹣3)=0或2(x+2)﹣3(x﹣3)=0,所以x1=1,x2=13;(4)∵Δ=42﹣4×2×(﹣3)=40>0,∴x===,∴x1=,x2=.17.为庆祝中国共产党建党100周年,某校组织七、八、九年级学生参加了“颂党恩,跟党走”作文大赛.该校对参赛作文分年级进行了统计,并绘制了图1和图2不完整的统计图.请根据图中信息回答下面的问题:(1)参赛作文的篇数共100篇;(2)图中:m=45,扇形统计图中九年级所对应的圆心角度数为126°;(3)把条形统计图补充完整;(4)经过评审,全校共有4篇作文获得特等奖,其中有一篇来自七年级,学校准备从特等奖作文中选取2篇刊登在学校校报上,请用树状图或列表法求七年级特等奖作文被刊登在校报上的概率.【分析】(1)根据七年级的作文篇数和所占的百分比,可以计算出参赛作文的总篇数;(2)根据统计图中的数据,可以计算出m的值和扇形统计图中九年级所对应的圆心角度数;(3)根据(1)中的结果和条形统计图中的数据,可以计算出八年级参赛作文的篇数,从而可以将条形统计图补充完整;(4)根据题意,可以画出相应的树状图,从而可以求得七年级特等奖作文被刊登在校报上的概率.解:(1)参赛作文的篇数共20÷20%=100(篇),故答案为:100;(2)m%=×100%=45%,∴m=45,扇形统计图中九年级所对应的圆心角度数为:360°×=126°,故答案为:45,126;(3)八年级参加的作文篇数为:100﹣20﹣35=45,补全的条形统计图如右图所示;(4)设七年级的那一篇记为A,八年级和九年级的三篇记为B,树状图如下图所示:由上可得,一共有12种可能性,其中七年级特等奖作文被刊登在校报上的可能性有6种,故七年级特等奖作文被刊登在校报上的概率为.18.已知关于x的一元二次方程x2+(2k+3)x+k2=0有两个不相等的实数根x1,x2.(1)求k的取值范围;(2)若+=﹣1,求k的值.【分析】(1)根据方程的系数结合根的判别式Δ>0,即可得出关于k的一元一次不等式,解之即可得出k的取值范围;(2)根据根与系数的关系可得出x1+x2=﹣2k﹣3、x1x2=k2,结合+=﹣1即可得出关于k的分式方程,解之经检验即可得出结论.解:(1)∵关于x的一元二次方程x2+(2k+3)x+k2=0有两个不相等的实数根,∴Δ=(2k+3)2﹣4k2>0,解得:k>﹣.(2)∵x1、x2是方程x2+(2k+3)x+k2=0的实数根,∴x1+x2=﹣2k﹣3,x1x2=k2,∴+===﹣1,解得:k1=3,k2=﹣1,经检验,k1=3,k2=﹣1都是原分式方程的根.又∵k>﹣,∴k=3.19.如图,在四边形ABCD中,∠BAC=90°,E是BC的中点,AD∥BC,AE∥DC,EF ⊥CD于点F.(1)求证:四边形AECD是菱形;(2)若AB=6,BC=10,求EF的长.【分析】(1)根据平行四边形和菱形的判定证明即可;(2)根据菱形的性质和三角形的面积公式解答即可.【解答】证明:(1)∵AD∥BC,AE∥DC,∴四边形AECD是平行四边形,∵∠BAC=90°,E是BC的中点,∴AE=CE=BC,∴四边形AECD是菱形;(2)过A作AH⊥BC于点H,∵∠BAC=90°,AB=6,BC=10,∴AC=,∵,∴AH=,∵点E是BC的中点,BC=10,四边形AECD是菱形,∴CD=CE=5,∵S▱AECD=CE•AH=CD•EF,∴EF=AH=.法二:连接ED交AC于O,由题意得:AC=8,计算得ED=6..计算得5EF=6×4,EF=.20.某服装厂生产一批服装,2019年该类服装的出厂价是200元/件,2020年,2021年连续两年改进技术,降低成本,2021年该类服装的出厂价调整为162元/件.(1)这两年此类服装的出厂价下降的百分比相同,求平均下降率.(2)2021年某商场从该服装厂以出厂价购进若干件此类服装,以200元/件销售时,平均每天可销售20件.为了减少库存,商场决定降价销售.经调查发现,单价每降低5元,每天可多售出10件,如果每天盈利1150元,单价应降低多少元?【分析】(1)设平均下降率为x,利用2021年该类服装的出厂价=2019年该类服装的出厂价×(1﹣下降率)2,即可得出关于x的一元二次方程,解之取其符合题意的值即可得出结论;(2)设单价应降低m元,则每件的销售利润为(38﹣m)元,每天可售出(20+2m)件,利用每天销售该服装获得的利润=每件的销售利润×日销售量,即可得出关于m的一元二次方程,解之即可得出m的值,结合要减少库存即可得出结论.解:(1)设平均下降率为x,依题意得:200(1﹣x)2=162,解得:x1=0.1=10%,x2=1.9(不合题意,舍去).答:平均下降率为10%.(2)设单价应降低m元,则每件的销售利润为(200﹣m﹣162)=(38﹣m)元,每天可售出20+×10=(20+2m)件,依题意得:(38﹣m)(20+2m)=1150,整理得:m2﹣28m+195=0,解得:m1=15,m2=13.∵要减少库存,∴m=15.答:单价应降低15元.21.阅读材料:(1)对于任意实数a和b,都有(a﹣b)2≥0,∴a2﹣2ab+b2≥0,于是得到a2+b2≥2ab,当且仅当a=b时,等号成立.(2)任意一个非负实数都可写成一个数的平方的形式.即:如果a≥0,则.如:2=,等.例:已知a>0,求证:.证明:∵a>0,∴∴,当且仅当时,等号成立.请解答下列问题:某园艺公司准备围建一个矩形花圃,其中一边靠墙(墙足够长),另外三边用篱笆围成(如图所示).设垂直于墙的一边长为x米.(1)若所用的篱笆长为36米,那么:①当花圃的面积为144平方米时,垂直于墙的一边的长为多少米?②设花圃的面积为S米2,求当垂直于墙的一边的长为多少米时,这个花圃的面积最大?并求出这个最大面积;(2)若要围成面积为200平方米的花圃,需要用的篱笆最少是多少米?【分析】(1)①用含x的代数式表示出矩形的另一边的长,再根据矩形的面积公式即可建立方程,方程的解即为垂直于墙的一边的长;②利用二次函数的性质即可求出当垂直于墙的一边的长为多少米时,这个花圃的面积最大值和此时的面积;(2)设所需的篱笆长为L米,由题意得:,再根据给出的材料提示即可求出需要用的篱笆最少是多少米.【解答】(1)解:由题意得x(36﹣2x)=144,化简后得x2﹣18x+72=0解得:x1=6,x2=12,答:垂直于墙的一边长为6米或12米;(2)解:由题意得S=x(36﹣2x)=﹣2x2+36x,=﹣2(x﹣9)2+162,∵a=﹣2<0,∴当x=9时,S取得最大值是162,∴当垂直于墙的一边长为9米时,S取得最大值,最大面积是162m2;(3)解:设所需的篱笆长为L米,由题意得,即:,∴若要围成面积为200平方米的花圃,需要用的篱笆最少是40米.22.如图,在平面直角坐标系中,直线l1:y=﹣x+4分别交x、y轴于B、A两点,将△AOB沿直线l2:y=2x折叠,点B落在y轴的点C处.(1)点C的坐标为(0,3);(2)若点D沿射线BA运动,连接OD,当△CDB与△CDO面积相等时,求直线OD的解析式;(3)在(2)的条件下,当点D在第一象限时,沿x轴平移直线OD,分别交x,y轴于点E,F,在平面直角坐标系中,是否存在点M(m,3)和点P,使四边形EFMP为正方形?若存在,求出点P的坐标;若不存在,说明理由.【分析】(1)设直线l2与y轴交于点H(0,﹣),则BH==,则CH=BH=,即可求解;(2)分两种情况进行讨论:①点D在第一象限时,由△CDB与△CDO面积相等,得出CD∥OB,即可求解;②点D在第二象限时,由S△CDB=S△CDA+S△CAB,以及△CDB与△CDO面积相等,得出点D的横坐标,即可求解;(3)过点M作MN⊥y轴于N,过点P作PQ⊥x轴于Q,证明△MNF≌FOE≌△EQP,根据全等三角形的性质可得点M(m,3)和点P的坐标,即可求解.解:(1)直线l1:y=﹣x+4分别交x、y轴于B、A两点,则点A、B的坐标分别为:(0,4)、(6,0),设直线l2与y轴交于点H(0,﹣),则BH==,则CH=BH=,则OC=HC﹣OH=﹣=3,故答案为:(0,3);(2)①点D在第一象限时,∵△CDB与△CDO面积相等,∴CD∥OB,∴点D的纵坐标为3,当y=3时,﹣x+4=3,解得:x=,∴点D的坐标为(,3),∴直线OD的解析式为:y=2x;②点D在第二象限时,AC=4﹣3=1.设点D到y轴的距离为a,则S△CDB=S△CDA+S△CAB=×1•a+×1×6=a+3,∵△CDB与△CDO面积相等,∴a+3=×3a,解得a=3,∴点D的横坐标为﹣3,当x=﹣3时,y=﹣×(﹣3)+4=6,∴点D的坐标为(﹣3,6),∴直线OD的解析式为:y=﹣2x;(3)存在,理由:设直线OD平移后的解析式为y=2x+b,令y=0,则2x+b=0,解得x=﹣b,令x=0,则y=b,所以OE=﹣b,OF=b,过点M作MN⊥y轴于N,过点P作PQ⊥x轴于Q,∵四边形EFMP为正方形,∴△MNF≌FOE≌△EQP,∴MN=OF=EQ,NF=OE=PQ,M(m,3),∴ON=b+b=3,解得b=2∴OE=1,OF=2,∴OQ=OE+QE=1+2=3,∴M(﹣2,3),P(﹣3,1).故存在点M(﹣2,3)和点P(﹣3,1),使四边形EFMP为正方形.当直线在EF经过一,二,三象限时,如图3﹣1中,同法可得M(6,3),P(3,﹣3).综上所述,满足条件的点P的坐标为(﹣3,1)或(3,﹣3).。
武汉XX中学九年级上月考数学试卷(10月)含答案解析
2022-2023湖北省武汉九年级(上)月考数学试卷(10月份)一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个是正确的,请在答题卡上将正确答案的代号涂黑.1.将一元二次方程3x2﹣1=x化成一般形式后,二次项系数和一次项系数分别为()A.3,0 B.3,1 C.3,﹣1 D.3x2,﹣x2.对于抛物线y=﹣2(x+5)2+3,下列说法正确的是()A.开口向下,顶点坐标(5,3)B.开口向上,顶点坐标(5,3)C.开口向下,顶点坐标(﹣5,3) D.开口向上,顶点坐标(﹣5,3)3.如果2是方程x2+c=0的一个根,那么c的值是()A.4 B.﹣4 C.2 D.﹣24.对称轴是x=﹣2的抛物线的是()A.y=﹣2x2﹣2 B.y=2x2﹣2 C.y=(x+2)2D.y=2(x﹣2)25.方程x2+3=2x的根的情况为()A.没有实数根B.只有一个实数根C.有两个相等的实数根D.有两个不等的实数根6.把抛物线y=x2+bx+c向右平移3个单位,再向下平移2个单位,得到抛物线y=x2﹣3x+5,则有()A.b=3,c=7 B.b=﹣9,c=﹣15 C.b=3,c=3 D.b=﹣9,c=217.二次函数y=﹣x2+bx+c的图象如图所示:若点A(x1,y1),B(x2,y2)在此函数图象上,x1<x2<1,y1与y2的大小关系是()A.y1≤y2B.y1<y2C.y1≥y2D.y1>y28.在某次投篮中,球从出手到投中篮圈中心的运动路径是抛物线y=﹣x2+3.5的一部分(如图),则他与篮底的水平距离l(如图)是()A.3.5m B.4m C.4.5m D.4.6m9.设抛物线y=ax2(a>0)与直线y=kx+b相交于两点,它们的横坐标为x1,x2,而x3是直线与x轴交点的横坐标,那么x1、x2、x3的关系是()A.x3=x1+x2B.x3=+C.x1x2=x2x3+x3x1D.x1x3=x2x3+x1x210.如图,已知抛物线y1=x2﹣2x,直线y2=﹣2x+b相交于A、B两点,其中点A的横坐标为2,当x任取一值时,x对应的函数值分别为y1、y2,取m=(|y1﹣y2|+y1+y2)则()A.点B的坐标随b的值的变化而变化B.m随x的增大而减小C.当m=2时,x=0D.m≥﹣2二、填空题(共6小题,每小题3分,共18分)11.方程2x2﹣8=0的解是.12.某校准备组织一次排球比赛,参赛的每两个队之间都要比赛一场,赛程计划安排7天,每天安排4场比赛,共有多少个队参加?设有x个队参赛,则所列方程为.13.一个直角三角形的两条直角边相差5cm,面积是7cm2,则斜边的长是cm.14.已知抛物线y=(m2﹣2)x2﹣4mx+n的对称轴是x=2,且它的最高点在直线上,则它的顶点为,n=.15.如图,三孔桥横截面的三个孔都呈抛物线形,左右两个抛物线形是全等的.正常水位时,大孔水面宽度为20m,顶点距水面6m,小孔顶点距水面4.5m.当水位上涨刚好淹没小孔时,大孔的水面宽度为m.16.如图,以扇形OAB的顶点O为原点,半径OB所在的直线为x轴,建立平面直角坐标系,点B的坐标为(2,0),若抛物线y=x2+k与扇形OAB的边界总有两个公共点,则实数k的取值范围是.三、解答题(共8小题,共72分)17.解方程:4x2﹣x﹣9=0.18.已知二次函数y=x2﹣4x+3(1)直接写出函数图象的顶点坐标、与x轴交点的坐标;(2)在网格中建立坐标系,画函数的图象;(3)将图象先向左平移2个单位,再向下平移2个单位,得到新的函数图象,直接写出平移后的图象与y轴交点的坐标.19.用一条长40cm的绳子能否围成一个面积为101cm2的矩形?请说明理由.20.如图,某旅游景点要在长、宽分别为40m、24m的矩形水池的正建立一个与矩形的各边互相平行的正方形观赏亭,观赏亭的四边连接四条与矩形的边互相平行且宽度相等的道路,已知道路的宽为正方形边长的,若道路与观赏亭的面积之和是矩形水池面积的,求道路的宽.21.二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象解答下列问题:(1)写出方程ax2+bx+c=0的两个根;(2)写出y随x的增大而减小的自变量x的取值范围;(3)若方程ax2+bx+c=k有两个不相等的实数根,求k的取值范围.22.某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元).设每件商品的售价上涨x元(x为正整数),每个月的销售利润为y元.(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?(3)每件商品的售价定为多少元时,每个月的利润恰为2200元?根据以上结论,请你直接写出售价在什么范围时,每个月的利润不低于2200元?23.如图,E,F,G,H分别为矩形ABCD的四条边上的动点,AE=DH=CG=FB,连接EF,FG,GH,HE得到四边形EFGH.(1)求证:四边形EFGH为平行四边形;(2)如图2,若AB=m,AD=n(m>n),HM⊥FG,M为垂足,则GM的长是否为定值?若是,求其值;若不是,求其范围;(3)若AB=25,AD=15,设AE=x,四边形EFGH的面积为y,当x为何值时,y最大?24.已知抛物线y=ax2+2(a+1)x+(a≠0)与x轴交于A(x1,0)、B(x2,0)(x1<x2)两点,与y轴交于C点.经过第三象限中的定点D.(1)直接写出C、D两点的坐标.(2)当x=x0时,二次函数的值记住为y0,若存在点(x0,y0),使y0=x0成立,则称点(x0,y0)为抛物线上的不动点,求证:抛物线y=ax2+2(a+1)x+存在两个不动点.(3)当△ABD的面积等于△CBD时,求a的值.2022-2023湖北省武汉九年级(上)月考数学试卷(10月份)参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个是正确的,请在答题卡上将正确答案的代号涂黑.1.将一元二次方程3x2﹣1=x化成一般形式后,二次项系数和一次项系数分别为()A.3,0 B.3,1 C.3,﹣1 D.3x2,﹣x【考点】一元二次方程的一般形式.【分析】首先移项进而利用二次项系数和一次项系数的定义得出答案.【解答】解:整理得:3x2﹣x﹣1=0,故二次项系数为:3,一次项系数为:﹣1.故选:C.2.对于抛物线y=﹣2(x+5)2+3,下列说法正确的是()A.开口向下,顶点坐标(5,3)B.开口向上,顶点坐标(5,3)C.开口向下,顶点坐标(﹣5,3) D.开口向上,顶点坐标(﹣5,3)【考点】二次函数的性质.【分析】根据二次函数的图象与系数的关系及其顶点坐标进行解答即可.【解答】解:∵抛物线y=﹣2(x+5)2+3中k=﹣2<0,∴此抛物线开口向下,顶点坐标为:(﹣5,3),故选C.3.如果2是方程x2+c=0的一个根,那么c的值是()A.4 B.﹣4 C.2 D.﹣2【考点】一元二次方程的解.【分析】把x=2代入方程即可求解.【解答】解:∵x=2是方程的根,由一元二次方程的根的定义代入可得,4+c=0,∴c=﹣4.故选:B.4.对称轴是x=﹣2的抛物线的是()A.y=﹣2x2﹣2 B.y=2x2﹣2 C.y=(x+2)2D.y=2(x﹣2)2【考点】二次函数的性质.【分析】根据二次函数y=ax2+bx+c(a≠0)的图象为抛物线,对称轴为直线x=﹣可对A、B进行判断;利用抛物线的顶点式y=a(x+)2+,其对称轴为直线x=﹣可对C、D进行判断.【解答】解:A、抛物线y=﹣2x2﹣2的对称轴为直线x=0,所以A选项错误;B、抛物线y=2x2﹣2的对称轴为直线x=0,所以B选项错误;C、抛物线y=(x+2)2的对称轴为直线x=﹣2,所以C选项正确;D、抛物线y=2(x﹣2)2的对称轴为直线x=2,所以D选项错误.故选C.5.方程x2+3=2x的根的情况为()A.没有实数根B.只有一个实数根C.有两个相等的实数根D.有两个不等的实数根【考点】根的判别式.【分析】判断方程的根的情况,只要看根的判别式△=b2﹣4ac的值的符号就可以了.【解答】解:∵x2+3=2x,∴x2﹣2x+3=0,∵△=(﹣2)2﹣4×1×3=﹣8<0,∴方程没有实数根.故选:A.6.把抛物线y=x2+bx+c向右平移3个单位,再向下平移2个单位,得到抛物线y=x2﹣3x+5,则有()A.b=3,c=7 B.b=﹣9,c=﹣15 C.b=3,c=3 D.b=﹣9,c=21【考点】二次函数图象与几何变换.【分析】先求出y=x2﹣3x+5的顶点坐标,再根据“左加右减”求出平移前的抛物线的顶点坐标,然后利用顶点式解析式写出,整理成二次函数的一般形式,再根据对应项系数相等解答.【解答】解:∵y=x2﹣3x+5=(x﹣)2+,∴y=x2﹣3x+5的顶点坐标为(,),∵向右平移3个单位,向下平移2个单位,∴平移前的抛物线的顶点的横坐标为﹣3=﹣,纵坐标为+2=,∴平移前的抛物线的顶点坐标为(﹣,),∴平移前的抛物线为y=(x+)2+=x2+3x+7,∴b=3,c=7.故选:A.7.二次函数y=﹣x2+bx+c的图象如图所示:若点A(x1,y1),B(x2,y2)在此函数图象上,x1<x2<1,y1与y2的大小关系是()A.y1≤y2B.y1<y2C.y1≥y2D.y1>y2【考点】二次函数图象上点的坐标特征.【分析】对于二次函数y=﹣x2+bx+c,根据a<0,抛物线开口向下,在x<1的分支上y随x的增大而增大,故y1<y2.【解答】解:∵a<0,x1<x2<1,∴y随x的增大而增大∴y1<y2.故选:B.8.在某次投篮中,球从出手到投中篮圈中心的运动路径是抛物线y=﹣x2+3.5的一部分(如图),则他与篮底的水平距离l(如图)是()A.3.5m B.4m C.4.5m D.4.6m【考点】二次函数的应用.【分析】当y=3.05时,求出对应的横坐标,与2.5m相加即可.【解答】解:把y=3.05代入y=﹣x2+3.5中得:x1=1.5,x2=﹣1.5(舍去),∴L=2.5+1.5=4米,故选:B.9.设抛物线y=ax2(a>0)与直线y=kx+b相交于两点,它们的横坐标为x1,x2,而x3是直线与x轴交点的横坐标,那么x1、x2、x3的关系是()A.x3=x1+x2B.x3=+C.x1x2=x2x3+x3x1D.x1x3=x2x3+x1x2【考点】二次函数的性质.【分析】先将直线y=kx+b与抛物线y=ax2联立,构成一元二次方程,求出两根积与两根和的表达式;然后将欲证等式的左边通分,转化为两根积与两根和的形式,将以上两表达式代入得到等式左边的值;再根据直线解析式求出与x轴的交点横坐标,即可得出答案.【解答】解:由题意得x1和x2为方程kx+b=ax2的两个根,即ax2﹣kx﹣b=0,∴x1+x2=,x1x2=﹣;∴+===﹣;∵直线与x轴交点的横坐标为:x3=﹣,∴=+.∴x1x2=x2x3+x3x1.故选C.10.如图,已知抛物线y1=x2﹣2x,直线y2=﹣2x+b相交于A、B两点,其中点A的横坐标为2,当x任取一值时,x对应的函数值分别为y1、y2,取m=(|y1﹣y2|+y1+y2)则()A.点B的坐标随b的值的变化而变化B.m随x的增大而减小C.当m=2时,x=0D.m≥﹣2【考点】二次函数的性质.【分析】将点A的横坐标代入y1=x2﹣2x求得y1=﹣2,将x=2,y=﹣2代入y2=﹣2x+b求得b=2,然后将y1=x2﹣2x与y2=﹣2x+2联立求得点B的坐标,然后根据函数图形化简绝对值,最后根据函数的性质可求得m的范围.【解答】解:∵将x=2代入y1=x2﹣2x得y1=﹣2,∴点A的坐标为(2,﹣2).∵将x=2,y=﹣2代入y2=﹣2x+b得b=2,∴y2=﹣2x+2.将y1=x2﹣2x与y2=﹣2x+2联立,解得:x1=2,y1=﹣2或x2=﹣2,y2=6.∴点B的坐标为(﹣2,6).故A错误;∵当x<﹣2时,y1>y2,∴m=y1=x2﹣2x.∴m>6,且m随x的增大而减小.∵当﹣2≤x<2时,y1<y2∴m=y2=﹣2x+2.∴﹣2<m≤6且m随x的增大而减小.令m=0,求得x=0.∵当x≥2时,y1>y2,∴m=y1=x2﹣2x.∴m≥﹣2,m随x的增大而增大.故B错误;令m=2,求得:x=2+2.故C错误.综上所述,m≥﹣2.故选:D.二、填空题(共6小题,每小题3分,共18分)11.方程2x2﹣8=0的解是x1=2,x2=﹣2.【考点】解一元二次方程-直接开平方法.【分析】将方程的常数项移到方程右边,两边同时除以2变形后,利用平方根的定义开方转化为两个一元一次方程,即可得到原方程的解.【解答】解:方程2x2﹣8=0,移项得:2x2=8,即x2=4,可得x1=2,x2=﹣2.故答案为:x1=2,x2=﹣2.12.某校准备组织一次排球比赛,参赛的每两个队之间都要比赛一场,赛程计划安排7天,每天安排4场比赛,共有多少个队参加?设有x个队参赛,则所列方程为=28.【考点】由实际问题抽象出一元二次方程.【分析】设比赛组织者应邀请x队参赛,则每个队参加(x﹣1)场比赛,则共有场比赛,可以列出一个一元二次方程.【解答】解:∵赛程计划安排7天,每天安排4场比赛,∴共7×4=28场比赛.设比赛组织者应邀请x队参赛,则由题意可列方程为:=28.故答案为:=28.13.一个直角三角形的两条直角边相差5cm,面积是7cm2,则斜边的长是cm.【考点】勾股定理.【分析】设较短的直角边长是xcm,较长的就是(x+5)cm,根据面积是7cm2,求出直角边长,根据勾股定理求出斜边长.【解答】解:设较短的直角边长是xcm,较长的就是(x+5)cm,则x•(x+5)=7,整理得:x2+5x﹣14=0,∴(x+7)(x﹣2)=0,∴x=2或x=﹣7(舍去).∴5+2=7(cm),∴由勾股定理,得=,即斜边的长是cm.故答案是:.14.已知抛物线y=(m2﹣2)x2﹣4mx+n的对称轴是x=2,且它的最高点在直线上,则它的顶点为(2,2),n=﹣2.【考点】二次函数的最值;二次函数的性质.【分析】由于抛物线y=(m2﹣2)x2﹣4mx+n的对称轴是x=2,且它的最高点在直线上,则m2﹣2<0,顶点坐标为(2,2),由=2,=2求得m、n值.【解答】解:抛物线y=(m2﹣2)x2﹣4mx+n的对称轴是x=2,且它的最高点在直线上,则最高点即为顶点,把x=2代入直线得:y=1+1=2,得顶点坐标为(2,2),又m2﹣2<0,由=2,=2,代入求得:m=﹣1,n=﹣2.15.如图,三孔桥横截面的三个孔都呈抛物线形,左右两个抛物线形是全等的.正常水位时,大孔水面宽度为20m,顶点距水面6m,小孔顶点距水面4.5m.当水位上涨刚好淹没小孔时,大孔的水面宽度为10m.【考点】二次函数的应用.【分析】根据题意,建立如图所示的平面直角坐标系,可以得到A、B、M的坐标,设出函数关系式,待定系数求解函数式.根据NC的长度,得出函数的y坐标,代入解析式,即可得出E、F的坐标,进而得出答案.【解答】解:如图,建立如图所示的平面直角坐标系,由题意得,M点坐标为(0,6),A 点坐标为(﹣10,0),B点坐标为(10,0),设中间大抛物线的函数式为y=﹣ax2+bx+c,代入三点的坐标得到,解得.∴函数式为y=﹣x2+6.∵NC=4.5米,∴令y=4.5米,代入解析式得x1=5,x2=﹣5,∴可得EF=5﹣(﹣5)=10米.故答案为:10.16.如图,以扇形OAB的顶点O为原点,半径OB所在的直线为x轴,建立平面直角坐标系,点B的坐标为(2,0),若抛物线y=x2+k与扇形OAB的边界总有两个公共点,则实数k的取值范围是﹣2<k<.【考点】二次函数的性质.【分析】根据∠AOB=45°求出直线OA的解析式,然后与抛物线解析式联立求出有一个公共点时的k值,即为一个交点时的最大值,再求出抛物线经过点B时的k的值,即为一个交点时的最小值,然后写出k的取值范围即可.【解答】解:由图可知,∠AOB=45°,∴直线OA的解析式为y=x,联立消掉y得,x2﹣2x+2k=0,△=b2﹣4ac=(﹣2)2﹣4×1×2k=0,即k=时,抛物线与OA有一个交点,此交点的横坐标为1,∵点B的坐标为(2,0),∴OA=2,∴点A的坐标为(,),∴交点在线段AO上;当抛物线经过点B(2,0)时,×4+k=0,解得k=﹣2,∴要使抛物线y=x2+k与扇形OAB的边界总有两个公共点,实数k的取值范围是﹣2<k <.故答案为:﹣2<k<.三、解答题(共8小题,共72分)17.解方程:4x2﹣x﹣9=0.【考点】解一元二次方程-公式法.【分析】先求出b2﹣4ac的值,最后代入公式求出即可.【解答】解:4x2﹣x﹣9=0,b2﹣4ac=(﹣1)2﹣4×4×(﹣9)=145,x=,x1=,x2=.18.已知二次函数y=x2﹣4x+3(1)直接写出函数图象的顶点坐标、与x轴交点的坐标;(2)在网格中建立坐标系,画函数的图象;(3)将图象先向左平移2个单位,再向下平移2个单位,得到新的函数图象,直接写出平移后的图象与y轴交点的坐标.【考点】二次函数的性质;二次函数的图象;二次函数图象与几何变换.【分析】(1)根据配方法,可得顶点式解析式,根据函数值为零,可得相应自变量的值;(2)根据描点法,可得函数图象;(3)根据图象向左平移加,向右平移减,向上平移加,向下平移减,可得平移后的解析式,根据自变量与函数值的关系,可得答案.【解答】解:(1)y=(x﹣2)2﹣1,顶点坐标为(2,﹣1),当y=0时,x2﹣4x+3=0,解得x=1或x=3,即图象与x轴的交点坐标为(1,0),(3,0);(2)如图:(3)图象先向左平移2个单位,再向下平移2个单位,得y=(x+2)2﹣4(x+2)+3﹣2,化简得y=x2﹣5,当x=0时,y=﹣5,即平移后的图象与y轴交点的坐标(0,﹣5).19.用一条长40cm的绳子能否围成一个面积为101cm2的矩形?请说明理由.【考点】一元二次方程的应用.【分析】首先设矩形的长为xcm,则宽为(20﹣x)cm,再利用当x(20﹣x)=101时,得出△的符号,进而得出答案.【解答】解:不能.理由如下:设矩形的长为xcm,则宽为(20﹣x)cm,当x(20﹣x)=101时,x2﹣20x+101=0,△=b2﹣4ac=202﹣4×101=﹣4<0,所以此一元二次方程无实数根.故用一条长40cm的绳子不能围成一个面积为101cm2的矩形.20.如图,某旅游景点要在长、宽分别为40m、24m的矩形水池的正建立一个与矩形的各边互相平行的正方形观赏亭,观赏亭的四边连接四条与矩形的边互相平行且宽度相等的道路,已知道路的宽为正方形边长的,若道路与观赏亭的面积之和是矩形水池面积的,求道路的宽.【考点】一元二次方程的应用.【分析】首先假设道路的宽为x米,根据道路的宽为正方形边长的,得出正方形的边长以及道路与正方形的面积进而得出答案.【解答】解:设道路的宽为x米,则可列方程:x(24﹣4x)+x(40﹣4x)+16x2=×40×24,即:x2+4x﹣5=0,解得:x1=l,x2=﹣5(舍去).答:道路的宽为1米.21.二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象解答下列问题:(1)写出方程ax2+bx+c=0的两个根;(2)写出y随x的增大而减小的自变量x的取值范围;(3)若方程ax2+bx+c=k有两个不相等的实数根,求k的取值范围.【考点】抛物线与x轴的交点.【分析】(1)根据函数与方程的关系,当y=0时,函数图象与x轴的两个交点的横坐标即为方程ax2+bx+c=0的两个根;(2)根据函数的性质可知,在对称轴的右侧,y随x的增大而减小,找到函数的对称轴即可得到x的取值范围;(3)方程ax2+bx+c=k有两个不相等的实数根,即函数y=ax2+bx+c(a≠0)与y=k有两个交点,据此即可直接求出k的取值范围.【解答】解:(1)当y=0时,函数图象与x轴的两个交点的横坐标即为方程ax2+bx+c=0的两个根,由图可知,方程的两个根为x1=1,x2=3.(2)根据函数图象,在对称轴的右侧,y随x的增大而减小,此时,x>2.(3)如图:方程ax2+bx+c=k有两个不相等的实数根,即函数y=ax2+bx+c(a≠0)与y=k有两个交点,此时,k<2.22.某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元).设每件商品的售价上涨x元(x为正整数),每个月的销售利润为y元.(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?(3)每件商品的售价定为多少元时,每个月的利润恰为2200元?根据以上结论,请你直接写出售价在什么范围时,每个月的利润不低于2200元?【考点】二次函数的应用.【分析】(1)根据题意可知y与x的函数关系式.(2)根据题意可知y=﹣10﹣(x﹣5.5)2+2402.5,当x=5.5时y有最大值.(3)设y=2200,解得x的值.然后分情况讨论解.【解答】解:(1)由题意得:y=(50+x﹣40)=﹣10x2+110x+2100(0<x≤15且x为整数);(2)由(1)中的y与x的解析式配方得:y=﹣10(x﹣5.5)2+2402.5.∵a=﹣10<0,∴当x=5.5时,y有最大值2402.5.∵0<x≤15,且x为整数,当x=5时,50+x=55,y=2400(元),当x=6时,50+x=56,y=2400(元)∴当售价定为每件55或56元,每个月的利润最大,最大的月利润是2400元.(3)当y=2200时,﹣10x2+110x+2100=2200,解得:x1=1,x2=10.∴当x=1时,50+x=51,当x=10时,50+x=60.∴当售价定为每件51或60元,每个月的利润为2200元.当售价不低于51或60元,每个月的利润为2200元.当售价不低于51元且不高于60元且为整数时,每个月的利润不低于2200元(或当售价分别为51,52,53,54,55,56,57,58,59,60元时,每个月的利润不低于2200元).23.如图,E,F,G,H分别为矩形ABCD的四条边上的动点,AE=DH=CG=FB,连接EF,FG,GH,HE得到四边形EFGH.(1)求证:四边形EFGH为平行四边形;(2)如图2,若AB=m,AD=n(m>n),HM⊥FG,M为垂足,则GM的长是否为定值?若是,求其值;若不是,求其范围;(3)若AB=25,AD=15,设AE=x,四边形EFGH的面积为y,当x为何值时,y最大?【考点】四边形综合题.【分析】(1)只要证明△DEH≌△BFG,得到EH=FG,同理可证EF=HG,由此即可证明.(2)GM的长不是定值.取特殊位置解决问题,如图1中,当E与D重合时,B与G重合,得GM的最大值;如图2中,当E与A重合时,得GM的最小值.(3)构建二次函数,利用二次函数的性质解决问题.【解答】(1)证明:∵四边形ABCD是矩形,∴∠D=∠B=90°,AB=CD,AD=BC,∵AE=DH=CG=FB,∴DH=BF,DE=BG,在△DEH和△BFG中,,∴△DEH≌△BFG,∴EH=FG,同理可证EF=HG,∴四边形EFGH是平行三角形.(2)解:GM的长不是定值.如图1中,当E与D重合时,B与G重合,则四边形HMBC是矩形,所以GM=HC=m﹣n,如图2中,当E与A重合时,四边形EFGH是矩形,M与G重合,MG=0,综上所述,0≤MG≤m﹣n.(3)解:如图3中,∵AE=DH=CG=BF=x,AD=BC=15,AB=CD=25,∴DE=BG=15﹣x,CH=AF=25﹣x,∴S=15×25﹣2××x×(15﹣x)+2××x(25﹣x)=2x2﹣40x+375=2(x﹣10)2=2(x﹣10)2+175.∵2>0,∴x=10时,S有最大值,最大值为175.24.已知抛物线y=ax2+2(a+1)x+(a≠0)与x轴交于A(x1,0)、B(x2,0)(x1<x2)两点,与y轴交于C点.经过第三象限中的定点D.(1)直接写出C、D两点的坐标.(2)当x=x0时,二次函数的值记住为y0,若存在点(x0,y0),使y0=x0成立,则称点(x0,y0)为抛物线上的不动点,求证:抛物线y=ax2+2(a+1)x+存在两个不动点.(3)当△ABD的面积等于△CBD时,求a的值.【考点】二次函数综合题.【分析】(1)令x=0即可求出C点坐标,由定点可知在解析式中含有字母a的单项式之和为0,即可求出对应的x的值;进而求出点D坐标;(2)令x=y=x0,运用一元二次方程的根的判别式即可进行证明;(3)表示三角形面积根据题意列方程求解即可.【解答】解:(1)y=ax2+2(a+1)x+,令x=0,解得y=,∴C(0,),y=ax2+2(a+1)x+=,由题意可得:ax2+2ax=0,解得:x=﹣2,或x=0(舍去)当x=﹣2时,y=﹣,∴D(﹣2,﹣);(2)由题意可得:x0=,,△==4>0,所以方程总有两个不相等的实数根,抛物线y=ax2+2(a+1)x+存在两个不动点;(3)如图1连接AC,由△ABD的面积等于△CBD可知AC∥BD,y=ax2+2(a+1)x+(a≠0),令y=0,得x=或x=,可知A(,0),B(,0),又OC=,D(﹣2,﹣),由AC∥BD可得,=,解得:a=﹣2.11月21日。
辽宁省大连市2023-2024学年九年级上学期10月月考数学试题(含答案)
2023-2024学年(上)月考试卷(十月份)九年级数学2023.10注意事项:1.请在答题卡上作答,在试卷上作答无效。
2.本试卷共五大题,25小题,满分120分。
考试时间120分钟。
一、选择题(本题共10小题,每小题2分,共20分,在每小题给出的四个选项中,只有一个选项正确)1.下列方程中,一元二次方程是( )A .B .C .D .2.若关于的方程的一个根是2,则的值是( )A .B .C .1D .23.一元二次方程的根的情况为( )A .无实数根B .有两个不等的实数根C .有两个相等的实数根D .不能判定4.用配方法解方程时,配方后正确的是( )A .B .C .D .5.方程的根是( )A .B .C .D .6.抛物线的顶点是( )A .B .C .D .7.抛物线的对称轴是( )A .B .C .D .8.二次函数的最大值是( )A .7B .C .17D .9.将抛物线先向左平移2个单位,再向下平移3个单位,得到的抛物线是( )A .B .C .D .序号220x xy -=223x x -=()231x x x +=-10x x+=x 2240x bx +-=b 2-1-2450x x --=246x x -=2(2)2x +=2(2)6x +=2(2)2x -=2(2)10x -=27x x =-7x =0x =120,7x x ==-120,7x x ==23(1)2y x =---()1,2--()1,2-()1,2-()1,2216212y x x =-+3x =-3x =6x =21x =23125y x x =-+-7-17-214y x =21(2)34y x =--21(2)34y x =-+21(2)34y x =++21(2)34y x =+-10.点都在抛物线上.若,则的取值范围为()A .B .C .D.二、填空题(本题共6小题,每小题3分,共18分)11.抛物线与轴的两个交点坐标是和,则该抛物线的对称轴是______.12.关于的一元二次方程有两个不相等的实数根,则的取值范围是______.13.抛物线经过点,则代数式的值为______.14.要组织一次篮球比赛,赛制为单循环形式(每两队之间都赛一场),安排15场比赛,应邀请多少个球队参加比赛?设应邀请个球队参加比赛,可列方程为______.15.二次函数,当时,的取值范围是______.16.如图,抛物线与轴相交于两点,其中,当时,______0(填“”“”或“”号).第16题三、解答题(本题共4小题,其中17题6分、18、19、20各8分,共30分)17.解方程.18.抛物线的图象经过,(2,18)两点.求这个二次函数的解析式并写出图象的顶点.19.红星农机厂四月份生产某型号农机500台,第二季度共生产该型号农机1820台.求该农机厂五、六月份某型号农机产量的平均增长率.20.如图,抛物线与轴交于点,与轴交于点(0,3),抛物线的顶点为.()()121,,,A m y B m y -22(1)y x k =--+12y y >m 2m ≥32m >1m ≤322m <<2y ax bx c =++x ()6,0-()4,0x 2420ax x --=a 25y ax bx =++()2,9-26a b -+x 223y x x =--22x -≤≤y 22(0)y x x c c =-+<x ()()12,0,,0A x B x 120x x <<12x x =+y >=<22450x x --=24y ax bx =++()1,3-2y x bx c =-++x ()3,0,A B -y C D第20题(1)此二次函数的解析式为______;(2)当时,则的取值范围是______;(3)若二次函数图象的对称轴交于点,求线段的长;(4)直接写出的面积为______.四、解答题(本题共2小题,其中21题8分,22题10分,共18分)21.某商场销售一批衬衫,现在平均每天可售出20件,每件盈利40元,为减少库存,商场决定采用降价措施,经调查发现,如果每件衬衫的售价降低1元,那么商场平均每天可多售出2件.商场若要平均每天盈利1200元,每件衬衫应降价多少元?22.一个圆形喷水池的中心竖立一根高为顶端装有喷头的水管,喷头喷出的水柱呈抛物线形.当水柱与池中心的水平距离为时,水柱达到最高处,高度为.(第22题备用)(1)求水柱落地处与池中心的距离;(2)若将水柱的最大高度再增加,水柱的最高处与池中心的水平距离以及落地处与池中心的距离仍保持不变,水管的高度应为多少?五、解答题(本题共3小题,23、24题各11分,25题12分,共34分)23.抛物线与轴交于点,与轴交于点.第23题(1)求二次函数的解析式:0y <x AC E DE ACD △ 2.25m 1m 3m 1m 24y ax bx =++x ()()2,0,4,0A B -y C(2)若点为第一象限内抛物线上一动点,点的横坐标为m ,的面积为.求关于的函数解析式,并求出的最大值.24.如图,抛物线过点,点.第24题备用图(1)求二次函数的解析式.(2)作直线交抛物线于点,交线段于点,当为等腰三角形时,求的值.25.已知二次函数(b ,c 为常数).(1)当时,与其对应的的值分别是和3,求二次函数的最大值;(2)当时,抛物线的顶点在直线上,求二次函数的解析式;(3)当,且时,的最大值为20,求的值.M M BCM △S S m S 2y ax bx =+()5,0A ()4,4B x m =P OB Q PQB △m 2y x bx c =-++0y =x 1-5c =-2y x bx c =-++1y =2c b =3b x b ≤≤+2y x bx c =-++b月考九年级数学参考答案及评分标准2023.10说明:试题解法不唯一,其它方法备课组统一意见,酌情给分。
广东省深圳市龙岗区龙城天成学校2024-2025学年九年级上学期10月月考数学试卷(无答案)
2024—2025学年第一学期(10月)学情诊断九年级数学(第一章~第二章)说明:全卷共6页,满分100分,考试时长90分钟.请在答题卡上作答,在本卷上作答无效.一、选择题(本部分共8小题,每小题3分,共24分.每小题给出4个选项,其中只有一个选项是正确的,请将正确的选项填在答题卡上)1.下列图片中,能观察到菱形的是( )A .B .C .D . 2.菱形、正方形一定具有而矩形不一定具有的性质是( ) A .对边相等 B .对边平行 C .对角线互相平分D .对角线互相垂直 3.如图,矩形ABCD 的顶点A ,C 分别在直线a ,b 上.若a b ∥且140∠=︒,则2∠的度数为( )A .30°B .40°C .50°D .60°4.已知方程2560x x --=的一个根是6,则它的另一个根是( )A .1B .6-C .1-D .35.用配方法解方程2250x x +-=时,原方程应变形为( )A .()216x +=B .()216x -=C .()229x +=D .()229x -= 6.某校九年级组织一次乒乓球比赛,各班均组队参赛,赛制为单循环形式(每两个班之间都比赛一场),赛程计划7天,每天安排4场比赛.设有x 个队参赛,则x 满足的关系为( )A .()11282x x -=B .()11282x x +=C .()128x x -=D .()128x x +=7.小明和小颖同学交流学习心得,小明发现将一张长方形的纸对折、再对折,然后沿着图③中的虚线剪下,就能得到一个特殊的图形.这个特殊的图形是( )① ② ③A .矩形B .三角形C .菱形D .正方形8.如图,在矩形ABCD 中,30cm AB =,动点P 从点A 出发沿AB 边以5cm/s 的速度向点B 运动,动点Q 从点C 出发沿CD 边以1cm/s 的速度向点D 运动,点P 和点Q 同时出发,当其中一点到达终点时,另一点也随之停止运动,设运动时间为t ,则当t =( )s 时,四边形APQD 是矩形.A .3B .4C .5D .6二、填空题(本部分共5小题,每小题3分,共15分,请将正确的答案填在答题卡上)9.将方程()()223243x x +=-化成一般形式:__________.10.如图,将四根木条用钉子钉成一个矩形框架ABCD ,然后向右拉框架,观察所得四边形的变化,下列结论中:①四边形ABCD 由矩形变为平行四边形;②变形前后对角线BD 的长度不变;③四边形ABCD 的面积不变;④四边形ABCD 的周长不变.正确的有__________.(填序号)11.如图,从边长为2的正方形ABCD 内部取一点G ,使它与正方形两个相邻的顶点C ,D 及点G 到边AB 的距离都相等,则CG 等于__________.12.小新同学在《九章算术》“勾股”章中看到一题:“今有二人同所立.甲行率七,乙行率三.乙东行,甲南行十步而斜东北与乙会.问甲、乙行各几何.”他查阅资料了解到大意是说:已知甲、乙二人从同一地点同时出发,在单位时间内甲的速度为7步,乙的速度为3步.乙一直向东走,甲先向南走10步,然后向北偏东方向走了一段后与乙相遇.那么相遇时,甲、乙各走了多远?小新同学通过计算,算出了甲走了__________步.13.如图,将矩形沿图中虚线剪成四块图形,用这四块图形恰能拼一个正方形.若1x =,则y =__________.三、解答题(本部分共7小题.其中14题5分,15题7分,16题8分,17题8分,18题9分,19题12分,20题12分,共61分)14.(5分)解方程:24830x x ++=.15.(7分)如图,学校需要用绿竹围成周长为32m 的矩形ABCD 阅读空间,设AB 的长为x m .(1)若矩形ABCD 的面积为2m y ,用含x 的代数式表示y .(2)当矩形ABCD 的面积是260m 时,求它的边长.(3)矩形ABCD 的面积是否可以是270m 若能达到,求出边AB 的长;若不能达到,请说明理由.16.(8分)如图,两张等宽的矩形纸条交叉重叠在一起,重叠的部分为四边形ABCD .(1)判断四边形ABCD 的形状,并证明.(2)若测得四边形ABCD 的面积为216cm ,点B ,D 之间的距离为8cm ,求边AB 的长.17.(8分)某网商平台国庆期间从某公司以20元一盆的价格采购了一批盆栽,以每盆40元的价格售出,第一天销售了25盆.该商品十分畅销,在售价不变的基础上,第三天销售量就达到了64盆.(1)求第二、三两天每天销售量的平均增长率.(2)国庆假期临近结束时,盆栽还有较多剩余,为了尽快减少库存,网商平台打算降价销售.经调查发现,每降价1元,在第三天销售量的基础上每天可以多售出4盆,降价多少元时,每天可获得的利润为1292元?18.(9分)如图,在ABC △中,AB AC =.(1)尺规作图:(保留作图痕迹)①分别作BAC ∠的平分线AD 及BAC ∠的外角的平分线AN ,AD 交BC 于点D ;②过点C 作CE AN ⊥,垂足为E ;(2)连接DE 交AC 于点F ,猜想DF 与AB 的关系,并证明.19.(12分)【项目式学习】项目主题:高铁建设与运营中的数学挑战项目背景:随着中国经济的快速发展,高速铁路网络已经覆盖了全国大部分地区.假设某城市计划建设一条新的高铁线路,以缩短与邻近城市的旅行时间.数学小组的同学在查阅相关资料的情况下,开展了相关探究.素材一:为了保证安全,高铁列车从静止加速到最高速度以及从最高速度减速到停止,都需要一定的时间,假设加速度和减速度都是常数且加减速过程中,列车速度随时间变化的关系为:0v v at =+,其中v 是最终速度,0v 是初始速度,a 是加速度(或减速度),t 是时间.素材二:列车将保持以最高速度匀速行驶一段距离,已知列车从静止加速到最高速度以及从最高速度减速到停止所需的路程相同,均为d 千米,时间也相同,均为t 秒.素材三:匀加速(即加速度不变)或匀减速过程中,在单向行驶时,路程与运动时间的关系为:2012s v t at =+,其中:s 是路程,0v 是初始速度,a 是加速度(或减速度),t 是时间.任务—:理解与计算(1)如果高铁列车的最高速度360v =千米/小时,加速度0.5a =米/秒2,则从静止加速到最高速度所需的时间t =__________秒.(2)在(1)的条件下,列车从静止加速到最高速度所需的最小路程d =__________千米.任务二:应用与推理(3)在(1)的条件下,假设高铁线路全程x 千米中,除去两端的加减速路程d ,列车以最高速度行驶的距离为2x d -,请直接写出列车全程行驶的时间T 的表达式.(单位:小时)任务三:设计与分析(4)假设距某站台2千米有一辆高铁正以180千米/小时的速度驶来,由于某人从站台跳入轨道捡手机,列车需紧急停车,若减速度0.5a =-米/秒2,列车能否安全停车?分析计算后的答案,结合现实,说说你的想法.20.(12分)综合与实践【问题情境】我们定义:如图(a ),在ABC △中,把AB 绕点A 顺时针旋转()0180αα︒<<︒得到AB ',把AC 绕点A 逆时针旋转β得到AC ',连接B C ''.当180αβ+=︒时,我们称C AB ''△是ABC △的“旋补三角形”,C AB ''△的边B C ''上的中线AD 叫做ABC △的“旋补中线”,点A 叫做“旋补中心”. 【特例感知】(1)在图(b )和图(c )中,C AB ''△是ABC △的“旋补三角形”,AD 是ABC △的“旋补中线”.①如图(b ),当ABC △为等边三角形时,AD 与BC 的数量关系为AD =__________BC ;②如图(c ),当90BAC ∠=︒,16BC =时,则AD 长为__________.【猜想论证】(2)如图(a ),当ABC △为任意三角形时,猜想AD 与BC 的数量关系,并给予证明.【拓展应用】(3)如图(d ),在四边形ABCD 中,90C ∠=︒,150D ∠=︒,12BC =,CD =6AD =.在四边形内部是否存在点P ,使PDC △是PAB △的“旋补三角形”?若存在,给予证明,并求出PAB △的“旋补中线”长;若不存在,说明理由.(a ) (b ) (c ) (d )。
广东深圳罗湖外语初中学校2025届上学期九年级10月月考数学试卷+答案
罗湖外语初中学校2024-2025学年度第一学期九年级质量检测数学试题命题 审题:初三数学备课组说明:1.本学科试题从第1页至第4页,共4页。
满分100分,考试时间90分钟。
2.答题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目的指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
3.考生务必保持答题卡的整洁。
考试结束时,只交回答题卷,本卷自行保管。
一.选择题(共8小题,满分24分,每小题3分)1.下列方程中是一元二次方程的是( )A .220x x +=B .213x x +=C .30x +=D .3221x x += 2.下列四组线段中,是成比例线段的是( )A .4cm ,3cm ,4cm ,5cmB .10cm ,16cm ,5cm ,8cmC .2cm ,4cm ,6cm ,8cmD .9cm ,8cm ,15cm ,10cm 3.初三(1)班周同学拿了A ,B ,C ,D 四把钥匙去开教室门,只有A 能开门,任意取出一把钥匙能够一次打开教室门的概率是( ) A .12B .34C .1D .144.下列条件不能判定ADB ABC ∽△△的是( )A .ABD ACB ∠=∠B .ADB ABC ∠=∠ C .AD DB AC BC = D .2AB AD AC =⋅5.已知m 、n 为常数,点(),P m n 在第四象限,则关于x 的一元二次方程20mx x n ++=的根的情况为( ) A .有两个相等的实数根 B .有两个不相等的实数根 C .没有实数根 D .无法判断6.山西醋甲天下,为开拓醋的养生功能,某醋厂开发出樱桃醋.为打开市场,该樱桃醋经过两次降价,售价由原来的每瓶25元降至每瓶16元,已知两次降价的百分率相同,则每次降价的百分率为( )A .20%B .25%C .30%D .36%7.如图,四边形ABCD 是平行四边形,以点A 为圆心、AB 的长为半径画弧交AD 于点F ,再分别以点B ,F 为圆心、大于12BF 的长为半径画弧,两弧交于点M ,作射线AM 交BC 于点E ,连接EF .下列结论中不一定成立的是( )A .BE EF =B .EF CD ∥C .AE 平分BEF ∠D .AB AE =8.如图,在ABC △中,D 是ABC △的BC 边上的中点,:1:2,AF FD BF =的延长线交AC 于点E ,则:AE CE 的值为( )A .12 B .13 C .14 D .34二.填空题(共5小题,满分15分,每小题3分) 9.已知:643xy z ==(x 、y 、z 均不为零),则323x y y z+=−_______. 10.若关于x 的一元二次方程()2100ax bx a ++=≠的一个解是1x =,则2024a b −−的值是_______.11.某林业局将一种树苗移植成活的情况绘制成如图所示的折线统计图,由此可估计这种树苗移植1200棵,成活的大约有_______棵.12.如图,在边长为1的正方形网格中,A 、B 、C 、D 为格点,连接AB 、CD 相交于点E ,则AE 的长为_______.13.如图,ABC △中,60A ∠=°,6AC AB >>,点D ,E 分别在边AB ,AC 上,且6BD CE ==,连接DE ,点M 是DE 的中点,点N 是BC 的中点,线段MN 的长为______.三.解答题(共7小题,满分61分)14.(6分)解方程:(1)2260x x −−=;(2)()()2454x x +=+.15.(7分)先化简,再求值:2241244x x x x x − −÷ −−+,并从-2,2,4中选一个合适的数作为x 的值代入求值.16.(8分)为提高学生的综合素养,某校开设了四个兴趣小组,A “健美操”、B “跳绳”、C “剪纸”、D “书法”.为了了解学生对每个兴趣小组的喜爱情况,随机抽取了部分同学进行调查,并将调查结果绘制出下面不完整的统计图,请结合图中的信息解答下列问题:(1)本次共调查了_____名学生;并将条形统计图补充完整;(2)若该校共有学生1600人,则估计该校喜欢跳绳的学生人数约是_____人;(3)现选出了3名跳绳成绩最好的学生,其中有1名男生和2名女生.要从这3名学生中任意抽取2名学生去参加比赛,请用列表法或画树状图法,求刚好抽到1名男生与1名女生的概率.17.(8分)根据背景材料,探索问题.聪明果销售价格的探究素材1 校附近超市以每袋30元的价格购进了500袋真空包装的聪明果,第一周以每袋50元的价格销售了150袋.素材2 第二周如果价格不变,预计仍可售出150袋,该超市经理决定让利顾客,打算降价销售,据调查发现:每袋聪明果每降价1元,超市平均可多售出10袋,但最低每袋要盈利5元。