2020 非参数统计--非参数密度估计3
非参数统计课件
什么是假设 检验?
假设检验用来判断 一个统计假设在给 定数据下是否成立。
非参数假设 检验的基本 思想
非参数假设检验不
依赖于总体参数的
具体分布。
U检验
U检验是一种常见的 非参数假设检验方 法。
KolmogorovSmirnov检验
KolmogorovSmirnov检验用来检 验样本是否符合给 定分布。
什么是核密度估计?
核密度估计是一种估计概率密度函数
概率密度函数和密度函数的区
2
的非参数方法。
别
概率密度函数是连续随机变量的密度
函数,而密度函数是离散随机变量的
3
高斯核密度估计
密度函数。
高斯核密度估计使用高斯核函数来估
计概率密度函数。
交叉验证方法
4
交叉验证方法可以用来选择合适的核 函数带宽。
分析?
回归分析用来建立变量之间的依赖关系。
Nadaraya-Watson核回归
Nadaraya-Watson核回归通过核函数加权来 估计回归函数。
非参数回归分析的基本思想
非参数回归分析不需要对回归函数做具体的 形式假设。
局部加权回归
局部加权回归在核回归的基础上引入了距离 权重来进一步提高估计精度。
非参数统计ppt课件
# 非参数统计PPT课件 ## 简介 - 什么是非参数统计? - 非参数统计和参数统计的区别
统计分布
什么是统计分布?
统计分布描述随机变量的不确定性和可能性。
常见的统计分布
包括正态分布、二项分布、泊松分布等。
经验分布函数
经验分布函数用样本数据来近似未知总体分布函数。
核密度估计
1
总结
1
非参数概率密度估计
非参数概率密度估计非参数概率密度估计是一种常用的统计方法,可以用来估计未知的概率密度函数。
在实际应用中,很多情况下我们不知道数据的概率分布,但是我们可以通过样本数据来对概率密度进行估计。
非参数概率密度估计的基本思路是通过样本数据来构造一个概率密度函数,使得这个函数能够较好地拟合数据。
与参数概率密度估计不同的是,非参数概率密度估计不需要对概率密度函数做出任何假设,因此更加灵活。
常见的非参数概率密度估计方法包括直方图法、核密度估计法、最邻近法等。
下面我们分别介绍一下这几种方法。
1. 直方图法直方图法是最简单的一种非参数概率密度估计方法。
它的基本思路是将数据按照一定的区间划分为若干个小区间,然后统计每个小区间中数据出现的频数,最后将频数除以样本总数和小区间的宽度,得到每个小区间的频率密度。
比如对于分布不均匀的数据,直方图法可能会得到不太准确的结果。
2. 核密度估计法核密度估计法是一种比较常用的非参数概率密度估计方法。
它的基本思路是将每个样本点周围的一定范围内加权平均起来,得到一个平滑的概率密度函数。
核密度估计法的优点是可以得到比较平滑的概率密度函数,适用于各种不同形状的分布。
但是它也有一些缺点,比如对于样本数量较少的情况,可能会得到不太准确的结果。
3. 最邻近法最邻近法是一种比较简单的非参数概率密度估计方法。
它的基本思路是对于每个样本点,找到离它最近的k个样本点,然后将这k个样本点按照距离远近进行加权平均,得到一个平滑的概率密度函数。
比如对于样本数量较少或者分布不均匀的情况,可能会得到不太准确的结果。
总之,非参数概率密度估计是一种非常有用的统计方法,在很多领域都有广泛应用。
当我们不知道数据的分布情况时,可以使用非参数概率密度估计来对数据进行分析和建模。
不同的方法适用于不同的情况,需要根据具体问题选择合适的方法。
非参数统计方法概览
非参数统计方法概览非参数统计方法是一种不依赖于总体分布形态的统计方法,它不对总体分布做出任何假设,而是通过对样本数据的排序、计数和排名等操作,来进行统计推断和假设检验。
非参数统计方法在实际应用中具有广泛的适用性和灵活性,能够处理各种类型的数据,包括连续型数据、离散型数据和顺序型数据等。
本文将对非参数统计方法进行概览,介绍其基本原理和常用方法。
一、基本原理非参数统计方法的基本原理是通过对样本数据的排序和计算,来推断总体的统计特征。
与参数统计方法相比,非参数统计方法不需要对总体分布形态做出任何假设,因此更加灵活和适用于各种情况。
非参数统计方法主要基于样本的秩次信息,通过比较和计算秩次差异来进行统计推断和假设检验。
二、常用方法1. Wilcoxon符号秩检验Wilcoxon符号秩检验是一种非参数的假设检验方法,用于比较两个相关样本的差异。
它基于样本的秩次信息,通过计算秩次差异的总和来判断两个样本是否存在显著差异。
Wilcoxon符号秩检验适用于小样本和非正态分布的情况。
2. Mann-Whitney U检验Mann-Whitney U检验是一种非参数的假设检验方法,用于比较两个独立样本的差异。
它基于样本的秩次信息,通过计算秩次和来判断两个样本是否存在显著差异。
Mann-Whitney U检验适用于小样本和非正态分布的情况。
3. Kruskal-Wallis单因素方差分析Kruskal-Wallis单因素方差分析是一种非参数的假设检验方法,用于比较多个独立样本的差异。
它基于样本的秩次信息,通过计算秩次和来判断多个样本是否存在显著差异。
Kruskal-Wallis单因素方差分析适用于小样本和非正态分布的情况。
4. Friedman多因素方差分析Friedman多因素方差分析是一种非参数的假设检验方法,用于比较多个相关样本的差异。
它基于样本的秩次信息,通过计算秩次和来判断多个样本是否存在显著差异。
Friedman多因素方差分析适用于小样本和非正态分布的情况。
数理统计中的非参数估计方法
数理统计中的非参数估计方法数理统计是应用数学原理和统计学方法来研究和解释现象、收集和分析数据的科学。
在统计学中,参数估计是一个重要的主题,它涉及根据样本数据推断总体参数的值。
而非参数估计方法则是一种不依赖于总体分布假设的参数估计方法,它在某些情况下比参数估计更加灵活和实用。
本文将介绍数理统计中的几种主要的非参数估计方法。
1. 核密度估计法核密度估计法用于估计未知概率密度函数。
它基于样本数据,通过在每个观测点周围放置一个核函数,来估计该点处的密度。
核函数通常是一个非负函数,且满足积分为1。
核密度估计法的优点是不需要对总体分布做出假设,而且可以适用于各种类型的数据。
然而,它对于样本数据的选择和参数的选择较为敏感。
2. 经验分布函数法经验分布函数法是一种常用的非参数估计方法,用于估计未知总体分布函数。
它通过对每个观测值赋予等概率的权重,构建一个经验分布函数。
经验分布函数在每个观测点处的取值是样本数据中小于等于该观测点的观测值的比例。
经验分布函数的优点是简单易懂,而且在大样本下收敛性较好。
然而,它对于极端值和离群点较为敏感。
3. 重抽样法重抽样法是一种基于重新选择样本数据的非参数估计方法。
它通过从样本中有放回地重新选择出新的样本,然后利用这些新的样本数据进行参数推断。
重抽样法的优点是可以直接利用原始样本数据进行估计,避免了对总体分布的假设,而且可以通过重复抽样来估计参数的分布。
然而,它需要大量的计算,适用于小样本数据。
4. 秩和秩差法秩和秩差法是一种用于估计总体位置参数的非参数方法。
它将样本数据转化为排序后的秩次,然后利用秩次来进行参数估计。
秩和秩差法的优点是对于总体分布的假设要求较低,而且对于离群值和稳健性较好。
然而,它可能对于分布偏态较大的数据不适用。
5. 分位数回归法分位数回归法是一种用于估计条件分布的非参数方法。
它基于分位数的概念,通过对分位数进行建模来估计条件分布。
分位数回归法的优点是可以灵活地处理不同分位数,适用于各种类型的数据。
非参数密度估计
非参数密度估计非参数密度估计是一种在概率论和统计学中非常重要的技术。
该技术旨在通过从样本数据中推断出其真实数据的概率密度函数,而无需在先验上做任何假设。
与参数化估计技术不同,非参数化技术仅使用可得到的数据,而不需要先假设数据的概率分布。
下面是关于非参数密度估计的一些步骤解析。
1. 理解非参数密度估计的概念在探讨非参数密度估计的各个方面之前,理解该方法的概念非常重要。
非参数密度估计旨在通过从已知数据集中推断出一个未知数据集的概率密度函数。
这种方法通常用于连续型和离散型数据的处理,特别是在数据量较大时使用较为广泛。
2. 特征评估为了进行非参数密度估计,首先需要评估样本数据的一些特征。
这些特征包括样本的平均值、方差、分布形状和分布密度等。
这些特征可以用来确定所需的估计方法的类型以及确定最佳估计量的标准。
3. 创建直方图在进行非参数密度估计时,首先需要创建一个直方图,以了解样本数据的分布形状以及密度。
直方图通过将样本数据分成若干等宽的区间,并计算每个区间中数据的数量来展现数据的分布情况。
在这种情况下,每个区间的高度表示该区间中数据的数量。
4. 核密度估计核密度估计是一种最广泛使用的非参数密度估计技术。
这种方法通过在每个数据点附近放置核心函数,并将它们相加来计算概率密度函数。
核心函数通常采用高斯分布,其平均值为所估计的数据点,方差由样本数据确定。
5. 交叉验证交叉验证是一种可以判断估计量性能优劣的方法。
该方法利用将数据集分成训练集和测试集来评估方法的泛化能力。
如果对测试数据的预测能力很强,那么我们可以确定该方法可以在其他未见数据上得到可靠的效果。
综上所述,非参数密度估计是一种有用的统计分析技术,其主要用途是从样本数据中推断出概率密度函数而无需考虑预先设定的概率分布。
然而,在应用该技术时,必须考虑到数据的特征,创建直方图,应用核密度估计,以及使用交叉验证来评估所用方法的效果。
非参数估计(完整)PPT演示课件
P p xdx p xV R
Pˆ k N
pˆ x k / N
V
对p(x) 在小区域内的平均值的估计
9
概率密度估计
当样本数量N固定时,体积V的大小对估计的 效果影响很大。
过大则平滑过多,不够精确; 过小则可能导致在此区域内无样本点,k=0。
此方法的有效性取决于样本数量的多少,以 及区域体积选择的合适。
11
概率密度估计
理论结果:
设有一系列包含x 的区域R1,R2,…,Rn,…,对 R1采用1个样本进行估计,对R2用2 个,…, Rn 包含kn个样本。Vn为Rn的体积。
pn
x
kn / N Vn
为p(x)的第n次估计
12
概率密度估计
如果要求 pn x 能够收敛到p(x),那么必须满足:
分布,而不必假设密度函数的形式已知。
2
主要内容
概率密度估计 Parzen窗估计 k-NN估计 最近邻分类器(NN) k-近邻分类器(k-NN)
3
概率密度估计
概率密度估计问题:
给定i.i.d.样本集: X x1, x2 , , xl
估计概率分布: p x
4
概率密度估计
10.0
h1 0.25
1.0
0.1
0.01
0.001 10.0
1.0
0.1
0.01
0.001 10.0
1.0
0.1
0.01
0.001 10.0
1.0
0.1
0.01
0.001 2 0 2
h1 1 2 0 2
h1 4 2 0 2 27
由图看出, PN(x)随N, h1的变化情况 ①当N=1时, PN(x)是一个以第一个样本为中心的正
非参数统计方法简介
非参数统计方法简介随着数据科学和统计学领域的不断发展,非参数统计方法作为一种灵活且强大的工具被广泛运用在各种领域中。
与参数统计方法相比,非参数统计方法不依赖于总体参数的具体分布,因此在数据分布未知或偏离常规分布时表现得更为优越。
本文将对非参数统计方法进行简要介绍,包括其基本原理、常用方法以及在实际应用中的一些典型场景。
基本原理非参数统计方法是一种基于数据本身特征进行推断的统计分析方法,不对总体参数作出具体的假设。
其核心思想是利用数据的排序、排名等非参数化的特征进行分析,从而得出统计推断结论。
以Wilcoxon秩和检验为例,该检验是一种常用的非参数假设检验方法,适用于样本数据不满足正态分布假设的情况。
它基于样本数据的秩次比较来判断两个总体的位置差异是否显著。
通过对数据进行排序、赋予秩次并计算秩和统计量,可以在不依赖于具体分布假设的情况下进行假设检验。
常用方法除了Wilcoxon秩和检验外,非参数统计方法还包括Mann-Whitney U检验、Kruskal-Wallis检验、Spearman相关性分析等多种常用方法。
这些方法在实际应用中具有广泛的适用性,能够有效应对不同数据类型和分布形态下的统计推断问题。
Mann-Whitney U检验适用于独立两样本的位置差异检验,Kruskal-Wallis检验则扩展至多样本情形。
Spearman相关性分析是一种用于衡量两变量之间非线性相关性的方法,通过秩次的计算来评估两变量的相关性程度。
实际应用非参数统计方法在各行业和领域中都有着重要的应用价值。
在医学领域,由于很多指标的分布并不服从正态分布假设,非参数统计方法成为临床研究中常用的工具之一。
在金融领域,对于涉及风险评估和收益分析的数据,非参数统计方法能够更准确地捕捉数据背后的规律,提供有效的决策支持。
总的来说,非参数统计方法以其灵活性和适用性在数据分析中发挥着重要的作用。
在实际应用中,了解不同非参数方法的原理和适用条件,能够更好地进行数据分析和推断,提高统计分析的准确性和效率。
非参数统计方法的介绍
非参数统计方法的介绍统计学是一门研究数据收集、分析和解释的学科,为了更好地理解和解释数据,统计学家们发展了各种各样的统计方法。
其中一类重要的方法就是非参数统计方法。
与参数统计方法相对,非参数统计方法不依赖于对总体分布的假设,更加灵活和广泛适用于各种情况。
一、非参数统计方法的概述非参数统计方法是基于数据的排序和秩次的分析方法,不需要对总体参数进行假设。
它的主要特点是:不依赖于总体的分布形式,适用于任意类型的数据;不需要对总体参数进行估计,不需要检验参数值;能够处理非连续型变量和偏态数据。
二、秩次统计法秩次统计法是非参数统计方法中的一种重要方法,主要用于比较两组数据的差异或相关性检验。
这种方法将原始数据转化成秩次或秩次差来进行统计分析,具有较好的稳健性和非正态分布数据的适应性。
三、Wilcoxon秩和检验Wilcoxon秩和检验是秩次统计法的一种常见应用,常用于比较两个相关样本或配对样本的差异。
它主要通过将配对观测值的差异转化为秩次,来判断两个总体是否存在差异。
四、Mann-Whitney U检验Mann-Whitney U检验是另一种常见的秩次统计方法,主要用于比较两个独立样本的差异。
该方法不依赖于总体分布的假设,适用于非正态分布和偏态数据。
它通过比较两个样本的秩次和来判断两个总体是否存在差异。
五、Kruskal-Wallis检验Kruskal-Wallis检验是一种非参数多样本比较方法,适用于三个以上独立样本的差异性检验。
该方法通过将原始数据转化为秩次和来判断不同样本组之间是否存在显著差异。
六、Friedman检验Friedman检验是非参数的配对多样本差异比较方法,用于比较同一组样本在不同条件下的差异。
该方法是将样本各组的观测值转化为秩次,再计算秩次和进行统计推断。
七、Bootstrap法Bootstrap法是一种利用从原始数据中随机抽样的方差估计方法,适用于样本较小或者未知分布的情况。
它通过有放回的抽样来生成多个样本,从而对样本的分布进行估计,并得出对总体参数的估计值。
非参数统计方法中的密度估计算法
非参数统计方法中的密度估计算法密度估计是非参数统计学中的一个非常基础的课题,它的核心是从一个数据集中推断出该数据集背后的分布情况。
在实际应用中,分布情况往往是未知的,但是我们可以通过样本数据来近似该分布。
因为密度是一个连续函数,所以密度估计通常也被称为连续分布估计。
由于非参数统计学不依赖于先验假设,所以密度估计算法非常灵活,有很多种不同的方法可以用来近似分布。
这些方法的目标是尽可能准确地估计分布,同时避免过拟合和欠拟合的问题。
本文将介绍一些常见的密度估计算法,包括直方图、核密度估计和K近邻密度估计。
一、直方图法直方图法是一种非常简单的密度估计算法,它将数据集分成若干个等宽的区间,对每个区间内的数据求和,得到该区间内的频数。
然后通过将每个区间内的频数除以数据总量来估计每个区间的密度。
最终的密度估计是由所有区间密度的柱状图组成的。
然而,直方图法的精确度受区间宽度的影响很大。
如果区间宽度太窄,会导致过拟合,而如果区间宽度太宽,会导致欠拟合。
因此,找到合适的区间宽度是直方图法中的一个重要问题。
二、核密度估计法核密度估计法是一种非常流行的密度估计算法,它采用核函数将每个样本点周围的密度贡献到密度估计中。
具体来说,核密度估计法将每个样本点周围的区域作为一个小尺寸的正态分布,将它们加权平均起来作为最后的密度估计结果。
核密度估计法有很多种不同的核函数,包括高斯核、矩形核、三角核等等。
核函数的形式通常是由使用者根据实际应用情况来决定的,核函数的形状会影响最终密度估计过程中的平滑程度和偏压程度。
核密度估计法的优点是可以自适应地适应数据的分布情况,而不需要手动调整区间大小。
但它的缺点是计算成本较高,而且导数可能不连续,使得图形样式不够吸引人。
三、K近邻密度估计法K近邻密度估计法是另一种非参数密度估计方法,它不需要认为数据服从某个特定的分布,它只需要使用一些已知的样本数值来进行估计。
K近邻密度估计法的思想是:一个点的密度应该是在它周围K个点的距离内的点数占总点数的比例。
非参数统计(non-parametricstatistics)又称任意分布检验(
例11.6(P195)。
(一)建立检验假设
H0:某中药治疗四种病型 的疗效总体分布相同 H1:四个总体的分布不同 或不全同
0.05
(二)计算统计量H值 (1)编秩:a、计算各等级的合计人数 b、确定秩次范围 c、计算平均秩次 (2)求各组秩和
R1 65(139.5) 18(304.0) 30(397.5) 13(504.5)
血浆总皮质醇含量有差别(不同或不全同)。
若还希望分析具体哪些组之间有差别,需进一步两两组 间比较。方法见《卫生统计学》第五版P196,《医学统计学》 第二版P183等。
当相同秩次较多(超过25%)时,需进行如下校正。
例11.4(P193),见表11-4。
(一)建立检验假设
H0:接种三种不同菌型伤 寒杆菌存活日数总体分 布相同 H1:三个总体的位置不同 或不全同
适用于完全随机设计分组的多个样本比较(即不满足参
数统计条件的),目的在于判断多个总体分布是否相同。
例11.3(P192),见表11-3。
(一)建立检验假设
H
:血浆总皮质醇含量的
0
三个总体分布相同
H1:血浆总皮质醇含量的 三个总体分布不同或不 全同
0.05
(二)计算统计量H值
1、编秩
先将各组数据分别由小到大排列,统一编秩,不同组的
注意:等级资料对程度的比较不应选检验。
例11.5(P194)。
(一)建立检验假设
H
:吸烟工人和不吸烟工
0
人的HbCO%含量总体分布位置相
同
H1:吸烟工人的HbCO%含量高于不吸烟工人 的HbCO%含量
0.0(5 单侧)
(二)计算统计量u值
(1)编秩:a、计算各等级的合计人数
非参数估计(完整)ppt课件
中心在原点的 单位超立方体
Parzen窗估计
落入以X为中心的立方体区域的样本数为:
x xi kn i 1 hn X处的密度估计为:
n
n k / n x x 1 1 n i ˆ p x n V n n V i 1 n h n
估计P(x|ω1)即PN(x) x6 0 1 2 x5 x3 x1 x2 3 4
1
x4 5 6
x
( u ) 解:选正态窗函数
12 exp( u ) 2 2
2
| x | | x | 1 1 x x i i ( ) ( u ) ( ) exp[ ] 2 2h h N N
P k 的期望值为: Ek N
对P的估计:
k ˆ P N
当 N 时, 估计是非 常精确的
概率密度估计
假设p(x)是连续的,且R足够小使得p(x)在R内几乎 没有变化。
令R是包含样本点x的一个区域,其体积为V,设有 N个训练样本,其中有k落在区域R中,则可对概率 密度作出一个估计: k ˆ P p x d x p x V P N R
可以验证: p ˆn x 0
ˆ x x1 d p
n
窗函数的要求
Parzen窗估计过程是一个内插过程,样本xi
距离x越近,对概率密度估计的贡献越大,越 远贡献越小。 只要满足如下条件,就可以作为窗函数:
u 0
u 1 u d
窗函数的形式
方窗函数
1 1, | u | (u ) 2 0.其他
非参数统计中的局部平滑方法介绍(Ⅲ)
非参数统计是一种不依赖于数据分布假设的统计方法,它在许多领域都有着广泛的应用。
在非参数统计方法中,局部平滑方法是一类重要的技术,它能够有效地处理数据中的噪声和非线性关系,适用于各种复杂的数据分布。
本文将介绍非参数统计中的局部平滑方法,包括核密度估计、局部线性回归和局部多项式回归等内容。
一、核密度估计核密度估计是一种常用的非参数密度估计方法,它能够通过对数据点周围的核函数进行加权平均来估计数据的密度分布。
核密度估计的基本思想是,每个数据点附近的密度可以通过将核函数在该点附近进行加权平均来估计,从而得到整个数据集的密度估计。
常用的核函数包括高斯核函数和矩形核函数等,通过调整核函数的带宽参数,可以控制估计得到的密度曲线的平滑程度。
二、局部线性回归局部线性回归是一种基于局部加权的线性回归方法,它通过对每个数据点进行加权线性回归来估计数据的非线性关系。
与传统的全局线性回归不同,局部线性回归在估计过程中对每个数据点赋予了不同的权重,从而能够更好地适应数据中的非线性关系。
局部线性回归的优点是能够有效地处理数据中的噪声和局部非线性,但在数据量较大时计算成本较高。
三、局部多项式回归局部多项式回归是一种基于局部加权的多项式回归方法,它通过对每个数据点进行加权多项式回归来估计数据的非线性关系。
与局部线性回归类似,局部多项式回归在估计过程中也对每个数据点赋予了不同的权重,从而能够更好地拟合数据中的非线性关系。
局部多项式回归的优点是能够灵活地适应数据中的非线性关系,但需要调节多项式的阶数和带宽参数。
总结非参数统计中的局部平滑方法是一类重要的数据分析技朮,它能够有效地处理数据中的噪声和非线性关系,适用于各种复杂的数据分布。
核密度估计、局部线性回归和局部多项式回归等方法在实际应用中都发挥着重要作用,能够为研究人员提供强有力的工具来分析和理解数据。
在实际应用中,研究人员需要根据具体问题的特点选择合适的局部平滑方法,并合理调节方法中的参数,以获得准确和可靠的分析结果。
非参数统计方法介绍
非参数统计方法介绍非参数统计方法是一种不依赖于总体分布形态的统计方法,它不对总体分布做出任何假设,而是直接利用样本数据进行统计推断。
非参数统计方法的优势在于适用范围广,可以处理各种类型的数据,不受总体分布形态的限制。
本文将介绍非参数统计方法的基本原理和常用的方法。
一、非参数统计方法的基本原理非参数统计方法是一种基于样本数据的统计推断方法,它不对总体分布形态做出任何假设,而是直接利用样本数据进行统计推断。
非参数统计方法的基本原理可以概括为以下几点:1. 无需对总体分布形态做出假设:非参数统计方法不对总体分布形态做出任何假设,可以处理各种类型的数据,包括连续型数据、离散型数据和顺序型数据等。
2. 依赖于样本数据:非参数统计方法主要依赖于样本数据进行统计推断,通过对样本数据的分析和比较,得出总体的统计特征。
3. 适用范围广:非参数统计方法适用范围广,不受总体分布形态的限制。
无论总体分布是正态分布、均匀分布还是其他分布形态,非参数统计方法都可以进行有效的统计推断。
二、常用的非参数统计方法非参数统计方法有很多种,常用的非参数统计方法包括:1. 秩和检验:秩和检验是一种用于比较两个独立样本的非参数统计方法。
它将两个样本的观测值按照大小排序,然后计算两个样本的秩和,通过比较秩和的大小来判断两个样本是否来自同一总体。
2. 秩和检验的扩展:秩和检验的扩展包括Wilcoxon秩和检验、Mann-Whitney U检验等。
这些方法在秩和检验的基础上进行了改进和扩展,适用于更复杂的统计问题。
3. 秩相关分析:秩相关分析是一种用于研究两个变量之间关系的非参数统计方法。
它将两个变量的观测值按照大小排序,然后计算秩次差,通过比较秩次差的大小来判断两个变量之间的相关性。
4. Kruskal-Wallis检验:Kruskal-Wallis检验是一种用于比较多个独立样本的非参数统计方法。
它将多个样本的观测值按照大小排序,然后计算秩和,通过比较秩和的大小来判断多个样本是否来自同一总体。
非参数统计方法介绍
非参数统计方法介绍非参数统计方法是一种在统计学中常用的方法,它不依赖于总体分布的具体形式,而是根据样本数据的秩次或距离来进行推断。
相比于参数统计方法,非参数统计方法更加灵活,适用范围更广,能够处理更为复杂的数据情况。
本文将介绍非参数统计方法的基本概念、常用技术和应用领域。
一、基本概念非参数统计方法是指在统计推断中,不对总体分布的形式做出任何假设,而是直接利用样本数据进行分析和推断的方法。
它主要基于样本数据的秩次或距离来进行统计推断,因此在数据分布未知或不满足正态分布假设的情况下具有很强的适用性。
二、常用技术1. 秩和检验:秩和检验是一种常见的非参数假设检验方法,适用于两组或多组样本的比较。
通过对样本数据进行排序,计算秩和的方式来进行假设检验,常用于中位数比较、方差齐性检验等情况。
2. 秩次检验:秩次检验是一种非参数的假设检验方法,适用于单样本或配对样本的比较。
通过对样本数据进行排序,比较秩次的大小来进行假设检验,常用于中位数检验、相关性检验等情况。
3. 核密度估计:核密度估计是一种非参数的密度估计方法,用于估计随机变量的概率密度函数。
通过在每个数据点周围放置核函数,计算出整体的密度估计结果,常用于数据分布的平滑和可视化。
4. 生存分析:生存分析是一种非参数的统计方法,用于分析时间数据和生存率之间的关系。
通过构建生存函数和危险函数来描述事件发生的概率和时间关系,常用于医学、生物学等领域的生存数据分析。
三、应用领域1. 医学研究:非参数统计方法在医学研究中得到广泛应用,如生存分析用于评估治疗效果、秩和检验用于比较不同治疗方案的效果等。
2. 金融领域:非参数统计方法在金融领域的风险管理、投资组合优化等方面有重要应用,如核密度估计用于风险度量、秩次检验用于资产收益率的比较等。
3. 社会科学:非参数统计方法在社会科学研究中也有广泛应用,如秩和检验用于比较不同群体的特征、核密度估计用于人口分布的分析等。
总之,非参数统计方法作为一种灵活、适用范围广泛的统计分析方法,在各个领域都有重要的应用。
非参数密度估计和函数估计
4 nσK
K 2 (x)dx [f (x)]2 dx
1 /5
,
(7.6)
但该结果用处并不很大, 因为它依赖于未知密度 f . 注意最优带宽有 h = O(n−1/5 ) , 这种情况 下 MISE = O(n−4/5 ). 该结果显示了随着样本量的增加带宽缩小的速度, 但对给定的数据集 来说它并未指明带宽具体取多少对密度估计是合适的. 下面给出出几种带宽选择策略. 在实 际应用中, 它们的表现随着 f 的性质以及观测数据的不同也有所不同, 通常没有一个绝对最 好的方法. 拇指法则: 简便起见, 我们定义 R(g ) =
fH (x) = 1 n
n i=1
1 K (H−1 (x − xi )). |H|
我们一般都会采用简单的带宽阵或K (·), 比如H = diag{h1 , . . . , hd }.
fH (x) = 1 nh1 · · · hd
n d
Kj
i=1 j =1
xj − xij hj
.
精确地来讲, (7.2) 的估计量称为固定带宽核密度估计, 因为 h 是常数. 上世纪90年代中 期, 有学者亦指出, 如果 h 依 i 而变化, 即所谓的 variable bandwidth, 则有一些很好的性质, 但我们这里不对这种方法给予详细的讨论, 有兴趣的同学可参见著作 Fan and Gijbels (1996). 带宽值的选择对估计量 fh 有很大的影响. 如果 h 太小, 那么密度估计偏向于把概率密度分配 得太局限于观测数据附近, 致使估计密度函数有很多错误的峰值. 如果 h 太大, 那么密度估计 就把概率密度贡献散得太开. 在很大的邻域里求平均会光滑掉 f 的一些重要特征的. 下面一 节讨论如何选取 h.
非参数核密度估计
非参数核密度估计非参数核密度估计(Non-parametricKernelDensityEstimation)被广泛应用于各种统计学研究中,是一种统计技术,可以提供对数据的非参数估计,它可以用来估计一维或二维数据的未知分布函数。
简单地说,非参数核密度估计就是一种无需既定参数但仍能估计未知数据分布情况的统计方法,它是基于一种半参数统计技术,即核密度估计(KDE)。
它能够捕捉数据中的不同特征,从而获得了准确而精确的数据分析结果。
非参数核密度估计的基本步骤通常包括:(1)给定观察数据的一个子集,利用其来估计未知的数据分布函数。
(2)在该子集上选择一种核函数,所谓核函数是一种带有一定宽度的窗口函数,用来表示样本点的分布。
(3)将各个样本点作为分母项,然后将核函数与样本点所形成的乘积作为分子项,最后进行积分,从而获得未知的数据分布函数。
(4)据此,可以求出该区域的密度函数,并用它来估计该区域内未知数据的分布情况。
非参数核密度估计的优势在于它的宽容性,也就是说,它不需要一个提前定义的参数模型就能估计数据的分布。
然而,由于它的宽容性,它在处理大规模数据时可能会受到计算拥挤的影响,所以,在进行大规模数据分析时,最好选择其他技术来处理。
此外,由于非参数核密度估计依赖于样本数据的窗口函数来表示样本点的分布,模型的结果也会受到样本数据窗口函数的影响。
如果样本数据的窗口函数与分布函数有很大出入,将得到不准确的结果。
总之,非参数核密度估计是一种可以用来估计一维或二维数据未知分布函数的有效统计技术。
它具有宽容性,能够捕捉数据中的不同特征,但也存在一些缺点,以及难以处理大规模数据的情况。
因此,在使用非参数核密度估计时,应当谨慎考量其各方面的优缺点,以得到更加可靠准确的结果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数值
19.6 22.3 14.07 8.5 17.3 7.6 6.3 6.5 22.1 2.0
P(ω1|x)
0.823 0.731 0.523 0.323 0.546 0.323 0.586 0.238 0.923 0.037
P(ω2|x)
0.177 0.269 0.477 0.677 0.454 0.677 0.414 0.762 0.077 0.963
pˆn (x)
1 nh
n i 1
K (|
xi
h
x
|)
(一维的情形)
k 近邻密度估计 :
pˆn (x)
k nR( x,
k)
其中R(x, k) max{| xi x |, xi是离x最近的k个观测点}
程序实现
1. 产生函数R(x,k) knear<-function(A,x,k) { na<-nrow(A) or<-1:na dis<-NULL for(i in 1:na) {dis<-c(dis,(abs(x-A[i,1])))} ra<-rank(dis) find.k<-or[ra<k+1] knear<-max(abs(A[find.k,1]-x)) #R(x,k)=max{|xi-x|, xi k} return(knear) }
7) 余弦 8) 指数
核函数
1 I (| u | 1) 2 (1 | u |)I (| u | 1)
3 (1 u2 )I (| u | 1) 4
15 (1 u4 )I (| u | 1) 16
35 (1 u2 )3 I (| u | 1) 32
1 exp( 1 u2 )
2
2
cos( u)I (| u | 1) 42
其中,hn是归一化参数,表示每组的组距,称为带宽 (窗宽)。
注意:针对连续型的总体X.
例7.1
鲑鱼和鲈鱼的身长(260条)
hist(A[,1], 20)
120
15
100
40
80
10
30
60
20
40
5
10
20
0
0
0
5
10
15
20
25
c1[, 1]
0
5
10
15
20
25
c1[, 1]
鲈鱼比鲑鱼的身长要长。
return(knear12)
}
2.0
R(x,y,5|ω1)
0.674 0.666 1.59 1.566 2.052 0.94 1.073 1.522 0.621 3.69
R(x,y,5|ω2) 实际类别 判断类别
3.7
1
1
2.845
1
1
0.86
0
0
0.472
0
0
4.8
1
1
0.298
0
0
0.538
0
0
0.675
1
0
2.273
1
1
0.389
R(x,5|ω2)
1.5 1.2 0.44 0.13 0.69 0.06 0.03 0.17 1 0.2 0.39 0.16
实际类别 判断类别
1
1
1
1
0
0
0
0
1
0
0
0
0
0
10110011
1
0
二维情形: k-近邻估计方法分类
序 长度 光泽 号 x 度y
113 19.6 9.2
112 22.3 9
250 14.0 4.6 219 7 4.8 123 8.5 9.8 197 17.3 3.8 170 7.6 3.3 32 6.3 4.8 92 6.5 8.3 137 22.1 1.55
实际类别 判断类别
1
1
1
1
0
1
0
0
1
1
0
0
0
0
1
0
1
1
0
0
分类问题
优缺点评价: 1. 样本量较大,才能保证一定的精度; 2. 分类精度的评价; 3. 分类方法.
k-近邻估计
在核密度估计方法的基础上,让体积随样本点的密集性
发生改变。
当样本点密集处,选取体积小;
当样本点稀疏时,选取体积大。
核密度估计 :
pˆ n
(x)
k nR( x,
k)
其中R(x, k) max{|| xi x ||, xi是离x最近的k个观测点}
p
|| xi x || ( (x ji x j )2 )1/2 j 1
思考:
k 近邻密度估计 :
pˆn (x)
1 nR(x, k)
n i 1
K (|
xi x R(x, k)
0
5
10
15
20
25
30
c1[, 1]
推广直方图的密度函数定义。X∈Rd
pˆ(x) ni / n V
1)若V很小,密度值局部变化很大,呈现多峰不稳定的 特点; 2)若V较大,从而使估计过于平滑。 如何在稳定与过度平滑之间寻找平衡? 方法(1)固定体积不变;(2)固定ni不变; 核估计和k-近邻估计。
nVn i1
hn
核密度估计的定义
定义8.1
假设数据x1,x2,…,xn取自连续分布p(x), 定义核密度估计
pˆn (x)
1 nVn
n K ( x xi )
i 1
hn
其中K ()为核函数
只要核函数满足:
K(x) 0, K(x)dx 1
R
本节主要讲一维的密度估计。
常用核函数
核函数的名称 1) Parzen窗 2) 三角 3) Epanechikov 4) 四次 5) 三权 6) 高斯
0.2
0.3
0.4
0.5
5
10
k=5
x
15
图形显示
20
25
0.0
0.1
0.2
z 0.3
0.4
0.5
5
10
x
k=3
15
20
25
0.05
0.10
z 0.15
0.20
0.25
5
10
k=10
x
15
20
图形显示
25
0.05
0.10
z 0.15
0.20
0.25
5
10
x
k=40
15
20
25
k-近邻估计
k 近邻密度估计 : (高维情况)
一维情形: k-近邻估计方法分类
序号
113 112 250 219 123 197 170 32 92 137 123
k=3 32
数值
19.6 22.3 14.07 8.5 17.3 7.6 6.3 6.5 22.1 2.0 17.3 6.5
R(x,5|ω1)
0.22 0.11 0.94 0.45 0.91 0.54 0.31 0.51 0.18 2.16 0.21 0.19
2) 建立高斯函数文件 Ga<-function(x,h,A) {(1/260*h)*sum((1/sqrt(2*pi))*exp(-0.5*((x-A[,1][1:260])/h)^2))}
以高斯核函数为例
3) 调用函数文件
source("d:\\S文件\\Ga.s") 4) 求函数值 > z<-Ga(1,1,A) >z [1] 0.01347425
pˆn (x)
1 nh
n i 1
1I 2
xi x h
1
带宽对估计量的影响
当带宽h=0.2时,密度函数曲线比较粗糙,噪声很多; 当带宽h=1时,密度函数曲线比较平滑,较为理想; 而带宽h=5时,密度函数曲线最平滑的,但信息损失很多; 如何选择合适的带宽,是核函数密度估计的关键. 考虑估计的均方误差.
0
0
二维情形的程序
knear12<-function(A1,x,y,k) { na<-nrow(A1) or<-1:na dis<-NULL for(i in 1:na)
k 近邻密度估计 : (高维情况)
pˆ n
(x)
k nR( x,
k)
其中R(x, k) max{|| xi x ||, xi是离x最
第七章 非参数密度估计
7.1 非参数密度估计
直方图是最基本的非参数密度估计。
假定有数据{x1,x2,…,xn}, 将它由小到大排序,得到数 据覆盖的区间(a, b),对该区间等间距地分为k组,记 为I1,I2,…,Ik,计算Ii中的频率ni/n,则密度估计为:
pˆ (x)
ni nhn
,
0,
x Ii ,i 1, 2,..., k 其他
7.2 核密度估计
设区域R是Rd空间上的d维立方体, 其体积为Vn, h是R的 边长, 对任意的x={x1,x2,…,xn}, 定义x的邻域函数:
(
x)
1,
|
xi
|
1 2
,
i
1,
2,...,
d
0,
其他
kn
n ( x - xi )
i 1
hn
落入x邻域的样本数
pˆ (x) 1 n ( x xi ) 称为Parzen窗密度估计
程序实现
2. k-近邻密度估计 x<-seq(min(A[,1]),max(A[,1]),length=k) z<-rep(0,k) for(i in 1:k){z[i]<-k/(n*knear(A,x[i],5))}#p=k/(nR(x,k)) plot(x,z,type="l")