物理数学物理法专项习题及答案解析及解析

合集下载

物理数学物理法专项习题及答案解析及解析

物理数学物理法专项习题及答案解析及解析

物理数学物理法专项习题及答案解析及解析一、数学物理法1.如图所示,在竖直分界线MN 的左侧有垂直纸面的匀强磁场,竖直屏与MN 之间有方向向上的匀强电场。

在O 处有两个带正电的小球A 和B ,两小球间不发生电荷转移。

若在两小球间放置一个被压缩且锁定的小型弹簧(不计弹簧长度),解锁弹簧后,两小球均获得沿水平方向的速度。

已知小球B 的质量是小球A 的1n 倍,电荷量是小球A 的2n 倍。

若测得小球A 在磁场中运动的半径为r ,小球B 击中屏的位置的竖直偏转位移也等于r 。

两小球重力均不计。

(1)将两球位置互换,解锁弹簧后,小球B 在磁场中运动,求两球在磁场中运动半径之比、时间之比;(2)若A 小球向左运动求A 、B 两小球打在屏上的位置之间的距离。

【答案】(1)2n ,21n n ;(2)123rr n n -【解析】 【详解】(1)两小球静止反向弹开过程,系统动量守恒有A 1B mv n mv =①小球A 、B 在磁场中做圆周运动,分别有2A A A mv qv B r =,21B2B Bn mv n qv B r =②解①②式得A2Br n r = 磁场运动周期分别为A 2πmT qB=,1B 22πn m T n qB =解得运动时间之比为AA2B B 122T t n T t n == (2)如图所示,小球A 经圆周运动后,在电场中做类平抛运动。

水平方向有A A L v t =③竖直方向有2A A A 12y a t =④ 由牛顿第二定律得A qE ma =⑤解③④⑤式得2A A()2qE L y m v =⑥ 小球B 在电场中做类平抛运动,同理有22B 1B()2n qE L y n m v =⑦ 由题意知B y r =⑧应用几何关系得B A 2y y r y ∆=+-⑨解①⑥⑦⑧⑨式得123r y r n n ∆=-2.质量为M 的木楔倾角为θ (θ < 45°),在水平面上保持静止,当将一质量为m 的木块放在木楔斜面上时,它正好匀速下滑.当用与木楔斜面成α角的力F 拉木块,木块匀速上升,如图所示(已知木楔在整个过程中始终静止).(1)当α=θ时,拉力F 有最小值,求此最小值; (2)求在(1)的情况下木楔对水平面的摩擦力是多少? 【答案】(1)min sin 2F mg θ= (2)1sin 42mg θ 【解析】 【分析】(1)对物块进行受力分析,根据共点力的平衡,利用正交分解,在沿斜面和垂直斜面两方向列方程,进行求解.(2)采用整体法,对整体受力分析,根据共点力的平衡,利用正交分解,分解为水平和竖直两方向列方程,进行求解. 【详解】木块在木楔斜面上匀速向下运动时,有mgsin mgcos θμθ=,即tan μθ= (1)木块在力F 的作用下沿斜面向上匀速运动,则:Fcos mgsin f αθ=+N Fsin F mgcos αθ+=N f F μ=联立解得:()2mgsin F cos θθα=-则当=αθ时,F 有最小值,2min F mgsin =θ(2)因为木块及木楔均处于平衡状态,整体受到地面的摩擦力等于F 的水平分力,即()f Fcos αθ='+当=αθ时,12242f mgsin cos mgsin θθθ='= 【点睛】木块放在斜面上时正好匀速下滑隐含动摩擦因数的值恰好等于斜面倾角的正切值,当有外力作用在物体上时,列平行于斜面方向的平衡方程,求出外力F 的表达式,讨论F 取最小值的条件.3.一玩具厂家设计了一款玩具,模型如下.游戏时玩家把压缩的弹簧释放后使得质量m =0.2kg 的小弹丸A 获得动能,弹丸A 再经过半径R 0=0.1m 的光滑半圆轨道后水平进入光滑水平平台,与静止的相同的小弹丸B 发生碰撞,并在粘性物质作用下合为一体.然后从平台O 点水平抛出,落于水平地面上设定的得分区域.已知压缩弹簧的弹性势能范围为p 04E ≤≤J ,距离抛出点正下方O 点右方0.4m 处的M 点为得分最大值处,小弹丸均看作质点.(1)要使得分最大,玩家释放弹簧时的弹性势能应为多少?(2)得分最大时,小弹丸A 经过圆弧最高点时对圆轨道的压力大小.(3)若半圆轨道半径R 可调(平台高度随之调节)弹簧的弹性势能范围为p 04E ≤≤J ,玩家要使得落地点离O 点最远,则半径应调为多少?最远距离多大? 【答案】(1)2J (2) 30N (3) 0.5m ,1m 【解析】 【分析】 【详解】(1)根据机械能守恒定律得:21p 0122E v mg R m =+⋅ A 、B 发生碰撞的过程,取向右为正方向,由动量守恒定律有:mv 1=2mv 2200122gt R =x =v 2t 0解得:E p =2J(2)小弹丸A 经过圆弧最高点时,由牛顿第二定律得:21N v F mg m R+=解得:F N =30N由牛顿第三定律知:F 压=F N =30N(3)根据2p 1122E mv mg R =+⋅ mv 1=2mv 2 2R =12gt 2,x =v 2t联立解得:(2)2p E x R R mg=-⋅其中E p 最大为4J ,得 R =0.5m 时落点离O ′点最远,为:x m =1m4.如图所示,在xoy 平面内y 轴右侧有一范围足够大的匀强磁场,磁感应强度大小为B ,磁场方向垂直纸面向外;分成I 和II 两个区域,I 区域的宽度为d ,右侧磁场II 区域还存在平行于xoy 平面的匀强电场,场强大小为E =22B qdm,电场方向沿y 轴正方向。

高中物理数学物理法专项训练100(附答案)及解析

高中物理数学物理法专项训练100(附答案)及解析

高中物理数学物理法专项训练100(附答案)及解析一、数学物理法1.如图所示,在竖直边界1、2间倾斜固定一内径较小的光滑绝缘直管道,其长度为L ,上端离地面高L ,下端离地面高2L.边界1左侧有水平向右的匀强电场,场强大小为E 1(未知),边界2右侧有竖直向上的场强大小为E 2(未知)的匀强电场和垂直纸面向里的匀强磁场(图中未画出).现将质量为m 、电荷量为q 的小球从距离管上端口2L 处无初速释放,小球恰好无碰撞进入管内(即小球以平行于管道的方向进入管内),离开管道后在边界2右侧的运动轨迹为圆弧,重力加速度为g . (1)计算E 1与E 2的比值;(2)若小球第一次过边界2后,小球运动的圆弧轨迹恰好与地面相切,计算满足条件的磁感应强度B 0;(3)若小球第一次过边界2后不落到地面上(即B >B 0),计算小球在磁场中运动到最高点时,小球在磁场中的位移与小球在磁场中运动时间的比值.(若计算结果中有非特殊角的三角函数,可以直接用三角函数表示)【答案】(131;(23(23)m gL -;(3)36gL︒【解析】 【分析】根据题意,粒子先经过电场,做匀加速直线运动,在进入管中,出来以后做匀速圆周运动,画出物体的运动轨迹,再根据相关的公式和定理即可求解。

【详解】(1)设管道与水平面的夹角为α,由几何关系得:/21sin 2L L L α-== 解得:30︒=α由题意,小球在边界1受力分析如下图所示,有:1tan mg qE α=因小球进入边界2右侧区域后的轨迹为圆弧,则有:mg =qE 2解得比值:E 1 :E 2=3:1(2)设小球刚进入边界2时速度大小为v ,由动能定理有:2113sin302cos302mg L E q L mv ︒︒⋅+⋅=联立上式解得:3v gL =设小球进入E 2后,圆弧轨迹恰好与地面相切时的轨道半径为R ,如下图,由几何关系得:cos30+2L R R ︒= 代入数据解得:(23)R L =+洛伦兹力提供向心力,由牛顿第二定律得:20v qvB m R=代入数据解得:03(23)m gLB -=(3)如下图,设此时圆周运动的半径为r ,小球在磁场中运动到最高点时的位移为:2cos15S r ︒=⋅圆周运动周期为:2rT vπ=则小球运动时间为:712t T =解得比值:362cos15cos15712gL S r t T︒==︒【点睛】考察粒子在复合场中的运动。

物理数学物理法练习全集含解析

物理数学物理法练习全集含解析

物理数学物理法练习全集含解析一、数学物理法1.如图所示,空间有场强E =1.0×102V/m 竖直向下的电场,长L =0.8m 不可伸长的轻绳固定于O 点.另一端系一质量m =0.5kg 带电q =+5×10-2C 的小球.拉起小球至绳水平后在A 点无初速度释放,当小球运动至O 点的正下方B 点时绳恰好断裂,小球继续运动并垂直打在同一竖直平面且与水平面成θ=53°、无限大的挡板MN 上的C 点.试求:(1)小球运动到B 点时速度大小及绳子的最大张力; (2)小球运动到C 点时速度大小及A 、C 两点的电势差;(3)当小球运动至C 点时,突然施加一恒力F 作用在小球上,同时把挡板迅速水平向右移至某处,若小球仍能垂直打在档板上,所加恒力F 的最小值。

【答案】(1)30N ; (2)125V ; (3)0~127︒︒ 【解析】 【分析】 【详解】(1)小球到B 点时速度为v ,A 到B 由动能定理21()2mg qE L mv +=2()v F mg qE m L-+=解得42/v m s =F=30N(2)高AC 高度为h AC ,C 点速度为v 1152m/s sin v v θ==211()2AC mg qE h mv +=U =Eh AC解得U =125V(3)加恒力后,小球做匀速直线运动或者匀加速直线运动,设F 与竖直方向夹角为α,当小球匀速直线运动时α=0,当小球匀加速直线运动时,F 的最小值为F 1,F 没有最大值1()sin 8N F mg qE θ=+=F 与竖直方向的最大夹角为180127αθ=︒-=︒ 0127α≤≤︒F ≥8N2.如图所示,在xoy 平面内y 轴右侧有一范围足够大的匀强磁场,磁感应强度大小为B ,磁场方向垂直纸面向外;分成I 和II 两个区域,I 区域的宽度为d ,右侧磁场II 区域还存在平行于xoy 平面的匀强电场,场强大小为E =22B qdm,电场方向沿y 轴正方向。

(物理)物理数学物理法题20套(带答案)含解析

(物理)物理数学物理法题20套(带答案)含解析

(物理)物理数学物理法题20套(带答案)含解析一、数学物理法1.如图所示,在竖直边界1、2间倾斜固定一内径较小的光滑绝缘直管道,其长度为L ,上端离地面高L ,下端离地面高2L.边界1左侧有水平向右的匀强电场,场强大小为E 1(未知),边界2右侧有竖直向上的场强大小为E 2(未知)的匀强电场和垂直纸面向里的匀强磁场(图中未画出).现将质量为m 、电荷量为q 的小球从距离管上端口2L 处无初速释放,小球恰好无碰撞进入管内(即小球以平行于管道的方向进入管内),离开管道后在边界2右侧的运动轨迹为圆弧,重力加速度为g . (1)计算E 1与E 2的比值;(2)若小球第一次过边界2后,小球运动的圆弧轨迹恰好与地面相切,计算满足条件的磁感应强度B 0;(3)若小球第一次过边界2后不落到地面上(即B >B 0),计算小球在磁场中运动到最高点时,小球在磁场中的位移与小球在磁场中运动时间的比值.(若计算结果中有非特殊角的三角函数,可以直接用三角函数表示)【答案】(131;(23(23)m gL -;(3)36gL︒【解析】 【分析】根据题意,粒子先经过电场,做匀加速直线运动,在进入管中,出来以后做匀速圆周运动,画出物体的运动轨迹,再根据相关的公式和定理即可求解。

【详解】(1)设管道与水平面的夹角为α,由几何关系得:/21sin 2L L L α-== 解得:30︒=α由题意,小球在边界1受力分析如下图所示,有:1tan mg qE α=因小球进入边界2右侧区域后的轨迹为圆弧,则有:mg =qE 2解得比值:E 1 :E 2=3:1(2)设小球刚进入边界2时速度大小为v ,由动能定理有:2113sin302cos302mg L E q L mv ︒︒⋅+⋅=联立上式解得:3v gL =设小球进入E 2后,圆弧轨迹恰好与地面相切时的轨道半径为R ,如下图,由几何关系得:cos30+2L R R ︒= 代入数据解得:(23)R L =+洛伦兹力提供向心力,由牛顿第二定律得:20v qvB m R=代入数据解得:03(23)m gLB -=(3)如下图,设此时圆周运动的半径为r ,小球在磁场中运动到最高点时的位移为:2cos15S r ︒=⋅圆周运动周期为:2rT vπ=则小球运动时间为:712t T =解得比值:362cos15cos15712gLS rt T︒==︒【点睛】考察粒子在复合场中的运动。

【物理】物理数学物理法题20套(带答案)含解析

【物理】物理数学物理法题20套(带答案)含解析

【物理】物理数学物理法题20套(带答案)含解析一、数学物理法1. 两块平行正对的水平金属板AB, 极板长 , 板间距离 , 在金属板右端竖直边界MN 的右侧有一区域足够大的匀强磁场, 磁感应强度 , 方向垂直纸面向里。

两极板间电势差UAB 随时间变化规律如右图所示。

现有带正电的粒子流以 的速度沿水平中线 连续射入电场中, 粒子的比荷 , 重力忽略不计, 在每个粒子通过电场的极短时间内, 电场视为匀强电场(两板外无电场)。

求:(1)要使带电粒子射出水平金属板, 两金属板间电势差UAB 取值范围;(2)若粒子在距 点下方0.05m 处射入磁场, 从MN 上某点射出磁场, 此过程出射点与入射点间的距离 ;(3)所有粒子在磁场中运动的最长时间t 。

【答案】(1)100V 100V AB U -≤≤;(2)0.4m ;(3) 69.4210s -⨯ 【解析】 【分析】 【详解】(1)带电粒子刚好穿过对应偏转电压最大为 , 此时粒子在电场中做类平抛运动, 加速大小为a,时间为t1。

水平方向上01L v t =①竖直方向上21122d at =② 又由于mU qma d=③ 联立①②③得m 100V U =由题意可知, 要使带电粒子射出水平金属板, 两板间电势差100V 100V AB U -≤≤(2)如图所示从 点下方0.05m 处射入磁场的粒子速度大小为v, 速度水平分量大小为 , 竖直分量大小为 , 速度偏向角为θ。

粒子在磁场中圆周运动的轨道半径为R, 则2mv qvB R=④ 0cos v v θ=⑤2cos y R θ∆=⑥联立④⑤⑥得20.4m mv y qB∆== (3)从极板下边界射入磁场的粒子在磁场中运动的时间最长。

如图所示粒子进入磁场速度大小为v1, 速度水平分量大小为 , 竖直分量大小为vy1, 速度偏向角为α, 则对粒子在电场中011L v t =⑦11022y v d t +=⑧ 联立⑦⑧得101y v v =101tan y v v α=得π4α=粒子在磁场中圆周运动的轨道半径为 , 则211mv qv B R ='⑨ 1mv R qB'=⑩ 带电粒子在磁场中圆周运动的周期为T12π2πR m T v qB'==⑪在磁场中运动时间2π(π2)2πt T α--=⑫联立⑪⑫得663π10s 9.4210s t --=⨯=⨯2. 如图, 在长方体玻璃砖内部有一半球形气泡, 球心为O, 半径为R, 其平面部分与玻璃砖表面平行, 球面部分与玻璃砖相切于O'点。

高中物理数学物理法题20套(带答案)及解析

高中物理数学物理法题20套(带答案)及解析
【答案】(1)600m
(2)8s
【解析】
试题分析:(1)轰炸机投下的炸弹在空中做平抛运动,时间为t,由
t=12s
炸弹从投下到击中汽车,水平位移为l
l= v0t
解得l =600m
(2)从发现汽车到击中汽车,炸弹在水平方向的位移为s
s= v0(△t+t)
汽车的位移为s'
s0+ s'=s
解得△t =8s
考点:平抛运动、匀变速直线运动的规律.
(1)物块运动初速度 的大小;
(2)物块与斜面间的动摩擦因数及最小上滑位移对应的斜面倾角 (可用反三角函数表示)。
【答案】(1) ;(2) ,
【解析】
【详解】
(1)物块沿斜面向上滑动时,由牛顿第二定律得
垂直斜面方向,由平衡条件得

三式联立解得物块的加速度大小为

解得



时,x有最小值,且
由 关系图象可知

即能打到收集板上的粒子数占总粒数的比值
2.如图所示,身高h=1.7 m的人以v=1 m/s的速度沿平直路面远离路灯而去,某时刻人的影长L1=1.3 m,2 s后人的影长L2=1.8 m.
(1)求路灯悬吊的高度H.
(2)人是远离路灯而去的,他的影子的顶端是匀速运动还是变速运动?
(3)在影长L1=1.3 m和L2=1.8 m时,影子顶端的速度各是多大?
a′=μg
根据 ,得
从C点做平抛运动,击中挡板所需时间为t′,则有
在竖直方向获得的速度为vy=gt′,击中挡板的速度为
当且仅当 ,v″取最小值,解得

10.在考古中为了测定古物的年代,可通过测定古物中碳14与碳12的比例,其物理过程可简化为如图所示,碳14与碳12经电离后的原子核带电量都为q,从容器A下方的小孔S不断飘入电压为U的加速电场,经过S正下方的小孔O后,沿SO方向垂直进入磁感应强度为B、方向垂直纸面向外的匀强磁场中,最后打在相机底片D上并被吸收。已知D与O在同一平面内,其中碳12在底片D上的落点到O的距离为x,不考虑粒子重力和粒子在小孔S处的初速度。

高考物理数学物理法专项训练100(附答案)含解析

高考物理数学物理法专项训练100(附答案)含解析

高考物理数学物理法专项训练100(附答案)含解析一、数学物理法1.如图所示,长为3l的不可伸长的轻绳,穿过一长为l的竖直轻质细管,两端拴着质量分别为m、2m的小球A和小物块B,开始时B先放在细管正下方的水平地面上.手握细管轻轻摇动一段时间后,B对地面的压力恰好为零,A在水平面内做匀速圆周运动.已知重力加速度为g,不计一切阻力.(1)求A做匀速圆周运动时绳与竖直方向夹角θ;(2)求摇动细管过程中手所做的功;(3)轻摇细管可使B在管口下的任意位置处于平衡,当B在某一位置平衡时,管内一触发装置使绳断开,求A做平抛运动的最大水平距离.【答案】(1)θ=45°;(2)2(1)mgl-;(3) 2l。

【解析】【分析】【详解】(1)B对地面刚好无压力,对B受力分析,得此时绳子的拉力为2T mg=对A受力分析,如图所示在竖直方向合力为零,故cosT mgθ=解得45θ=o(2)对A球,根据牛顿第二定律有2sin sin v T ml θθ=解得v =故摇动细管过程中手所做的功等于小球A 增加的机械能,故有()21cos 124W mv mg l l mgl θ⎛=+-=- ⎝⎭(3)设拉A 的绳长为x (l≤x≤2l ),根据牛顿第二定律有2sin sin v T mx θθ=解得v =A 球做平抛运动下落的时间为t ,则有212cos 2l x gt θ-=解得t =水平位移为S vt ==当x =时,位移最大,为m S =2.角反射器是由三个互相垂直的反射平面所组成,入射光束被它反射后,总能沿原方向返回,自行车尾灯也用到了这一装置。

如图所示,自行车尾灯左侧面切割成角反射器阵列,为简化起见,假设角反射器的一个平面平行于纸面,另两个平面均与尾灯右侧面夹45o 角,且只考虑纸面内的入射光线。

(1)为使垂直于尾灯右侧面入射的光线在左侧面发生两次全反射后沿原方向返回,尾灯材料的折射率要满足什么条件?(2)若尾灯材料的折射率2n =,光线从右侧面以θ角入射,且能在左侧面发生两次全反射,求sin θ满足的条件。

(物理)物理数学物理法练习题含答案含解析

(物理)物理数学物理法练习题含答案含解析
a′=μg
根据 ,得
从C点做平抛运动,击中挡板所需时间为t′,则有
4.一定质量的理想气体,由状态A沿直线变化到状态B,如图所示.已知在状态A时,温度为15℃,且1atm≈105Pa,求:
①状态B时的温度是多少开尔文?
②此过程中气体对外所做的功?
③此过程中气体的最高温度是多少开尔文?
【答案】① ② ③ =588K
【解析】
【详解】
① ,
解得:
②气体外所做的功可由P—V图的面积计算,
(1)若 , 的最大值
(2)若 , 的最大值
【答案】(1) (2)
【解析】
试题分析:(1)若 , 取最大值时,应该在抛出点处相遇
,则 最大值
(2)若 , 取最大值时,应该在第一个小球的上抛最高点相遇

解得 ,分析可知 ,所以舍去
最大值
考点:考查了匀变速直线运动规律的应用
【名师点睛】本题的解题是判断并确定出△t取得最大的条件,也可以运用函数法求极值分析.
在B点根据牛顿定律可得:
联立解得: 则:
(2)对赛车从A到B由动能定理得:
解得:t=4s
(3)对赛车从A到C由动能定理得:
赛车飞出C后有:
解得:
所以当R=0.3m时x最大,xmax=1.2m
考点:牛顿第二定律;动能定理;平抛物体的运动.
6.如图所示,一半径为R=30.0cm,横截面为六分之一圆的透明柱体水平放置,O为横截面的圆心,该柱体的BO面涂有反光物质,一束光竖直向下从A点射向柱体的BD面,入射角i=45°,进入柱体内部后,经过一次反射恰好从柱体的D点射出。已知光在真空中的速度为c=3.00×108m/s,sin37.5°=0.608,sin 45°=0.707,sin 15°=0.259,sin22.5°=0.383,试求:(结果保留3位有效数字)

(物理)物理数学物理法专项习题及答案解析及解析

(物理)物理数学物理法专项习题及答案解析及解析
Fsinα+N=mgcosθ…②
f=μN…③
联立①②③可得
则当α=θ时,F有最小值
Fmin=mgsin2θ.
(3)因为m及M均处于平衡状态,整体受到地面摩擦力等于F的水平分力,即:
fM=Fcos(α+θ)
12.水平射程:x=v0t=v0,即水平射程与初速度v0和下落高度h有关,与其他因素无关.
13.如图所示,质量 kg的木块A套在水平杆上,并用轻绳将木块与质量 kg的小球B相连。今用与水平方向成α=30°角的力 N,拉着球带动木块一起向右匀速运动,运动中M、m相对位置保持不变。求:
P点折射有
由几何关系得
解得
则有
又有

即Q点与玻璃砖上边缘相距 。
11.质量为M的木楔倾角为θ,在水平面上保持静止,当一质量为m的木块放在斜面上时恰好能匀速下滑,如果用与斜面成α角的力F拉着木块匀速上升,如图所示,求:
(1)木块与斜面间的动摩擦因数;
(2)拉力F与斜面的夹角α多大时,拉力F最小,拉力F的最小值是多少;
【详解】
木块在木楔斜面上匀速向下运动时,有 ,即
(1)木块在力F的作用下沿斜面向上匀速运动,则:
联立解得:
则当 时,F有最小值,
(2)因为木块及木楔均处于平衡状态,整体受到地面的摩擦力等于F的水平分力,即
当 时,
【点睛】
木块放在斜面上时正好匀速下滑隐含动摩擦因数的值恰好等于斜面倾角的正切值,当有外力作用在物体上时,列平行于斜面方向的平衡方程,求出外力F的表达式,讨论F取最小值的条件.
(i)若玻璃管足够长,缓慢地将管转过 ,求此时封闭气柱的长度;
(ii)若玻璃管长为L=1.00m,温度至少升到多高时,水银柱才能从管中全部溢出。

高考物理数学物理法专题训练答案及解析

高考物理数学物理法专题训练答案及解析

高考物理数学物理法专题训练答案及解析一、数学物理法1.如图所示,在竖直边界1、2间倾斜固定一内径较小的光滑绝缘直管道,其长度为L ,上端离地面高L ,下端离地面高2L.边界1左侧有水平向右的匀强电场,场强大小为E 1(未知),边界2右侧有竖直向上的场强大小为E 2(未知)的匀强电场和垂直纸面向里的匀强磁场(图中未画出).现将质量为m 、电荷量为q 的小球从距离管上端口2L 处无初速释放,小球恰好无碰撞进入管内(即小球以平行于管道的方向进入管内),离开管道后在边界2右侧的运动轨迹为圆弧,重力加速度为g . (1)计算E 1与E 2的比值;(2)若小球第一次过边界2后,小球运动的圆弧轨迹恰好与地面相切,计算满足条件的磁感应强度B 0;(3)若小球第一次过边界2后不落到地面上(即B >B 0),计算小球在磁场中运动到最高点时,小球在磁场中的位移与小球在磁场中运动时间的比值.(若计算结果中有非特殊角的三角函数,可以直接用三角函数表示)【答案】(131;(23(23)m gL -;(3)36gL︒【解析】 【分析】根据题意,粒子先经过电场,做匀加速直线运动,在进入管中,出来以后做匀速圆周运动,画出物体的运动轨迹,再根据相关的公式和定理即可求解。

【详解】(1)设管道与水平面的夹角为α,由几何关系得:/21sin 2L L L α-== 解得:30︒=α由题意,小球在边界1受力分析如下图所示,有:1tan mg qE α=因小球进入边界2右侧区域后的轨迹为圆弧,则有:mg =qE 2解得比值:E 1 :E 2=3:1(2)设小球刚进入边界2时速度大小为v ,由动能定理有:2113sin302cos302mg L E q L mv ︒︒⋅+⋅=联立上式解得:3v gL =设小球进入E 2后,圆弧轨迹恰好与地面相切时的轨道半径为R ,如下图,由几何关系得:cos30+2L R R ︒= 代入数据解得:(23)R L =+洛伦兹力提供向心力,由牛顿第二定律得:20v qvB m R=代入数据解得:03(23)m gLB -=(3)如下图,设此时圆周运动的半径为r ,小球在磁场中运动到最高点时的位移为:2cos15S r ︒=⋅圆周运动周期为:2rT vπ=则小球运动时间为:712t T =解得比值:362cos15cos15712gL S r t T︒==︒【点睛】考察粒子在复合场中的运动。

高考物理数学物理法题20套(带答案)及解析

高考物理数学物理法题20套(带答案)及解析

高考物理数学物理法题20套(带答案)及解析一、数学物理法1.两块平行正对的水平金属板AB ,极板长0.2m L =,板间距离0.2m d =,在金属板右端竖直边界MN 的右侧有一区域足够大的匀强磁场,磁感应强度3510T B -=⨯,方向垂直纸面向里。

两极板间电势差U AB 随时间变化规律如右图所示。

现有带正电的粒子流以5010m/s v =的速度沿水平中线OO '连续射入电场中,粒子的比荷810C/kg qm=,重力忽略不计,在每个粒子通过电场的极短时间内,电场视为匀强电场(两板外无电场)。

求: (1)要使带电粒子射出水平金属板,两金属板间电势差U AB 取值范围;(2)若粒子在距O '点下方0.05m 处射入磁场,从MN 上某点射出磁场,此过程出射点与入射点间的距离y ∆;(3)所有粒子在磁场中运动的最长时间t 。

【答案】(1)100V 100V AB U -≤≤;(2)0.4m ;(3) 69.4210s -⨯ 【解析】 【分析】 【详解】(1)带电粒子刚好穿过对应偏转电压最大为m U ,此时粒子在电场中做类平抛运动,加速大小为a ,时间为t 1。

水平方向上01L v t =①竖直方向上21122d at =② 又由于mU qma d=③ 联立①②③得m 100V U =由题意可知,要使带电粒子射出水平金属板,两板间电势差100V 100V AB U -≤≤(2)如图所示从O '点下方0.05m 处射入磁场的粒子速度大小为v ,速度水平分量大小为0v ,竖直分量大小为y v ,速度偏向角为θ。

粒子在磁场中圆周运动的轨道半径为R ,则2mv qvB R=④ 0cos v v θ=⑤2cos y R θ∆=⑥联立④⑤⑥得20.4m mv y qB∆== (3)从极板下边界射入磁场的粒子在磁场中运动的时间最长。

如图所示粒子进入磁场速度大小为v 1,速度水平分量大小为01v ,竖直分量大小为v y 1,速度偏向角为α,则对粒子在电场中011L v t =⑦11022y v d t +=⑧ 联立⑦⑧得101y v v =101tan y v v α=得π4α=粒子在磁场中圆周运动的轨道半径为R ',则211mv qv B R ='⑨ 1mv R qB'=⑩ 带电粒子在磁场中圆周运动的周期为T12π2πR m T v qB'==⑪在磁场中运动时间2π(π2)2πt T α--=⑫联立⑪⑫得663π10s 9.4210s t --=⨯=⨯2.如图所示,在x ≤0的区域内存在方向竖直向上、电场强度大小为E 的匀强电场,在x >0的区域内存在方向垂直纸面向外的匀强磁场。

【物理】物理数学物理法题20套(带答案)及解析

【物理】物理数学物理法题20套(带答案)及解析
由气态方程∶ ,有
代入数据得
T≈382.8K
7.半径为R的球形透明均匀介质,一束激光在过圆心O的平面内与一条直径成为60°角射向球表面,先经第一次折射,再经一次反射,最后经第二次折射射出,射出方向与最初入射方向平行。真空中光速为c。求:
(1)球形透明介质的折射率;
(2)激光在球内传播的时间。
【答案】(1) ;(2)
对 光,根据折射定律
解得
(2) 、 在玻璃砖中传播的速度分别为
、 在玻璃砖中传播的路程
则 、 在玻璃砖中传播的时间分别为
13.如图所示,在xOy坐标系平面内x轴上、下方分布有磁感应强度不同的匀强磁场,磁场方向均垂直纸面向里。一质量为m、电荷量为q的带正电粒子从y轴上的P点以一定的初速度沿y轴正方向射出,粒子经过时间t第一次从x轴上的Q点进入下方磁场,速度方向与x轴正方向成45°角,当粒子再次回到x轴时恰好经过坐标原点O。已知OP=L,不计粒子重力。求:
【解析】
【分析】
【详解】
(1)激光在球形透明介质里传播的光路如图所示:
其中A、C为折射点,B为反射点,连接A与C,作OD平行于入射光线,则
解得
设球形透明介质的折射率为n,根据折射定律
解得
(2)由于 ,所以AC垂直于入射光线,即
பைடு நூலகம்又由于
所以 为等边三角形,即激光在球内运动路程为
设激光在介质中传播速度为t,则
【物理】物理数学物理法题20套(带答案)及解析
一、数学物理法
1.如图所示,圆心为O1、半径 的圆形边界内有垂直纸面方向的匀强磁场B1,边界上的P点有一粒子源,能沿纸面同时向磁场内每个方向均匀发射比荷 、速率 的带负电的粒子,忽略粒子间的相互作用及重力。其中沿竖直方向PO1的粒子恰能从圆周上的C点沿水平方向进入板间的匀强电场(忽略边缘效应)。两平行板长 (厚度不计),位于圆形边界最高和最低两点的切线方向上,C点位于过两板左侧边缘的竖线上,上板接电源正极。距极板右侧 处有磁感应强度为 、垂直纸面向里的匀强磁场,EF、MN是其左右的竖直边界(上下无边界),两边界间距 ,O1C的延长线与两边界的交点分别为A和O2,下板板的延长线与边界交于D,在AD之间有一收集板,粒子打到板上即被吸收(不影响原有的电场和磁场)。求:

高考物理数学物理法专项训练100(附答案)及解析

高考物理数学物理法专项训练100(附答案)及解析

高考物理数学物理法专项训练100(附答案)及解析一、数学物理法1.如图所示,直角MNQ △为一个玻璃砖的横截面,其中90Q ︒∠=,30N ︒∠=,MQ 边的长度为a ,P 为MN 的中点。

一条光线从P 点射入玻璃砖,入射方向与NP 夹角为45°。

光线恰能从Q 点射出。

(1)求该玻璃的折射率;(2)若与NP 夹角90°的范围内均有上述同频率光线从P 点射入玻璃砖,分析计算光线不能从玻璃砖射出的范围。

【答案】(1)2;(2)312a - 【解析】 【详解】(1)如图甲,由几何关系知P 点的折射角为30°。

则有sin 452sin 30n ==o o(2)如图乙,由折射规律结合几何关系知,各方向的入射光线进入P 点后的折射光线分布在CQB 范围内,设在D 点全反射,则DQ 范围无光线射出。

D 点有1sin n α=解得45α=︒由几何关系知DQ EQ ED =-,12ED EP a ==,32EQ a = 解得31DQ a -=2.如右图所示,一位重600N 的演员,悬挂在绳上.若AO 绳与水平方向的夹角为37︒,BO 绳水平,则AO 、BO 两绳受到的力各为多大?若B 点位置往上移动,则BO 绳的拉力如何变化?(孩子:你可能需要用到的三角函数有:3375sin ︒=,4cos375︒=,3374tan ︒=,4373cot ︒=)【答案】AO 绳的拉力为1000N ,BO 绳的拉力为800N ,OB 绳的拉力先减小后增大. 【解析】试题分析:把人的拉力F 沿AO 方向和BO 方向分解成两个分力,AO 绳上受到的拉力等于沿着AO 绳方向的分力,BO 绳上受到的拉力等于沿着BO 绳方向的分力.根据平衡条件进行分析即可求解.把人的拉力F 沿AO 方向和BO 方向分解成两个分力.如图甲所示由平衡条件得:AO 绳上受到的拉力为21000sin 37OA GF F N ===oBO 绳上受到的拉力为1cot 37800OB F F G N ===o若B 点上移,人的拉力大小和方向一定不变,利用力的分解方法作出力的平行四边形,如图乙所示:由上图可判断出AO 绳上的拉力一直在减小、BO 绳上的拉力先减小后增大.3.如图所示,身高h =1.7 m 的人以v =1 m/s 的速度沿平直路面远离路灯而去,某时刻人的影长L 1=1.3 m ,2 s 后人的影长L 2=1.8 m .(1)求路灯悬吊的高度H .(2)人是远离路灯而去的,他的影子的顶端是匀速运动还是变速运动? (3)在影长L 1=1.3 m 和L 2=1.8 m 时,影子顶端的速度各是多大? 【答案】(1)8.5m (2)匀速运动(3)1.25/m s 【解析】 【分析】(1)匀匀速运动,画出运动图景,结合几何关系列式求解; (2)(3)根据比例法得到影子的顶端的速度的表达式进行分析即可. 【详解】(1)画出运动的情景图,如图所示:根据题意,有:CD=1.3m EF=1.8m CG=EH=1.7m ;CE=vt=2m ;BF=BC+3.8m 根据几何关系: 1.3CG CDAB BC +=3.8EH EFAB BC += 可得:H=AB=8.5m ;(2)设影子在t 时刻的位移为x ,则有:x vt hx H-=,得:x=HH h-vt , 影子的位移x 是时间t 的一次函数,则影子顶端是匀速直线运动; (3)由(2)问可知影子的速度都为v′= x Hv t H h=-=1.25m/s ; 【点睛】本题关键是结合光的直线传播,画出运动的图景,结合几何关系列式分析,注意光的传播时间是忽略不计的.4.如图所示,一束平行紫光垂直射向半径为1m R =的横截面为扇形的玻璃砖薄片(其右侧涂有吸光物质),经折射后在屏幕S 上形成一亮区,已知屏幕S 至球心距离为(21)m D =+,玻璃半球对紫光的折射率为2n =,不考虑光的干涉和衍射。

(物理)物理数学物理法专项习题及答案解析

(物理)物理数学物理法专项习题及答案解析

(物理)物理数学物理法专项习题及答案解析一、数学物理法1.如图所示,在竖直边界1、2间倾斜固定一内径较小的光滑绝缘直管道,其长度为L ,上端离地面高L ,下端离地面高2L.边界1左侧有水平向右的匀强电场,场强大小为E 1(未知),边界2右侧有竖直向上的场强大小为E 2(未知)的匀强电场和垂直纸面向里的匀强磁场(图中未画出).现将质量为m 、电荷量为q 的小球从距离管上端口2L 处无初速释放,小球恰好无碰撞进入管内(即小球以平行于管道的方向进入管内),离开管道后在边界2右侧的运动轨迹为圆弧,重力加速度为g . (1)计算E 1与E 2的比值;(2)若小球第一次过边界2后,小球运动的圆弧轨迹恰好与地面相切,计算满足条件的磁感应强度B 0;(3)若小球第一次过边界2后不落到地面上(即B >B 0),计算小球在磁场中运动到最高点时,小球在磁场中的位移与小球在磁场中运动时间的比值.(若计算结果中有非特殊角的三角函数,可以直接用三角函数表示)【答案】(131;(23(23)m gL -;(3)36gL︒【解析】 【分析】根据题意,粒子先经过电场,做匀加速直线运动,在进入管中,出来以后做匀速圆周运动,画出物体的运动轨迹,再根据相关的公式和定理即可求解。

【详解】(1)设管道与水平面的夹角为α,由几何关系得:/21sin 2L L L α-== 解得:30︒=α由题意,小球在边界1受力分析如下图所示,有:1tan mg qE α=因小球进入边界2右侧区域后的轨迹为圆弧,则有:mg =qE 2解得比值:E 1 :E 2=3:1(2)设小球刚进入边界2时速度大小为v ,由动能定理有:2113sin302cos302mg L E q L mv ︒︒⋅+⋅=联立上式解得:3v gL =设小球进入E 2后,圆弧轨迹恰好与地面相切时的轨道半径为R ,如下图,由几何关系得:cos30+2L R R ︒= 代入数据解得:(23)R L =+洛伦兹力提供向心力,由牛顿第二定律得:20v qvB m R=代入数据解得:03(23)m gLB -=(3)如下图,设此时圆周运动的半径为r ,小球在磁场中运动到最高点时的位移为:2cos15S r ︒=⋅圆周运动周期为:2rT vπ=则小球运动时间为:712t T =解得比值:362cos15cos15712gL S r t T︒==︒【点睛】考察粒子在复合场中的运动。

【物理】物理数学物理法专项习题及答案解析

【物理】物理数学物理法专项习题及答案解析

【物理】物理数学物理法专项习题及答案解析一、数学物理法1.质量为M 的木楔倾角为θ (θ < 45°),在水平面上保持静止,当将一质量为m 的木块放在木楔斜面上时,它正好匀速下滑.当用与木楔斜面成α角的力F 拉木块,木块匀速上升,如图所示(已知木楔在整个过程中始终静止).(1)当α=θ时,拉力F 有最小值,求此最小值; (2)求在(1)的情况下木楔对水平面的摩擦力是多少? 【答案】(1)min sin 2F mg θ= (2)1sin 42mg θ 【解析】 【分析】(1)对物块进行受力分析,根据共点力的平衡,利用正交分解,在沿斜面和垂直斜面两方向列方程,进行求解.(2)采用整体法,对整体受力分析,根据共点力的平衡,利用正交分解,分解为水平和竖直两方向列方程,进行求解. 【详解】木块在木楔斜面上匀速向下运动时,有mgsin mgcos θμθ=,即tan μθ= (1)木块在力F 的作用下沿斜面向上匀速运动,则:Fcos mgsin f αθ=+N Fsin F mgcos αθ+=N f F μ=联立解得:()2mgsin F cos θθα=-则当=αθ时,F 有最小值,2min F mgsin =θ(2)因为木块及木楔均处于平衡状态,整体受到地面的摩擦力等于F 的水平分力,即()f Fcos αθ='+当=αθ时,12242f mgsin cos mgsin θθθ='= 【点睛】木块放在斜面上时正好匀速下滑隐含动摩擦因数的值恰好等于斜面倾角的正切值,当有外力作用在物体上时,列平行于斜面方向的平衡方程,求出外力F 的表达式,讨论F 取最小值的条件.2.角反射器是由三个互相垂直的反射平面所组成,入射光束被它反射后,总能沿原方向返回,自行车尾灯也用到了这一装置。

如图所示,自行车尾灯左侧面切割成角反射器阵列,为简化起见,假设角反射器的一个平面平行于纸面,另两个平面均与尾灯右侧面夹45o 角,且只考虑纸面内的入射光线。

物理数学物理法专题练习(及答案)含解析

物理数学物理法专题练习(及答案)含解析

物理数学物理法专题练习(及答案)含解析一、数学物理法1.如图,在长方体玻璃砖内部有一半球形气泡,球心为O ,半径为R ,其平面部分与玻璃砖表面平行,球面部分与玻璃砖相切于O '点。

有-束单色光垂直玻璃砖下表面入射到气泡上的A 点,发现有一束光线垂直气泡平面从C 点射出,已知OA =32R ,光线进入气泡后第一次反射和折射的光线相互垂直,气泡内近似为真空,真空中光速为c ,求: (i )玻璃的折射率n ;(ii )光线从A 在气泡中多次反射到C 的时间。

【答案】(i )3n =;(ii )3t R c=【解析】 【分析】 【详解】(i )如图,作出光路图根据折射定律可得sin sin n θα=① 根据几何知识可得3sin 2OA R θ==② 90αθ+=︒ ③联立解得3n =玻璃的折射率为3。

(ii )光从A 经多次反射到C 点的路程322R Rs R R R =+++=⑤ 时间st c=⑥ 得3t R c=光线从A 在气泡中多次反射到C 的时间为3R c。

2.如图所示,质量为m=1kg 的物块与竖直墙面间动摩擦因数为=0.5,从t=0的时刻开始用恒力F 斜向上推物块,F 与墙面间夹角=37°,在t=0的时刻物块速度为0.(1)若F=12.5N ,墙面对物块的静摩擦力多大? (2)若F=30N ,物块沿墙面向上滑动的加速度多大?(3)若要物块保持静止,F 至少应为多大?(假设最大静摩擦力等于同样正压力时的滑动摩擦力,F 的计算结果保留两位有效数字)【答案】(1)0f =(2)25/a m s =(3)9.1F N = 【解析】试题分析:(1)设f 向上,37Fcos f mg ︒+=得0f =(2)根据牛顿第二定律可得cos37sin 37F F mg ma μ︒-︒-=,得25/a m s = (3)当物块即将下滑时,静摩擦最大且向上,cos37sin 37F F mg μ︒+︒=,得9.1F N =考点:考查了摩擦力,牛顿第二定律【名师点睛】在计算摩擦力时,首先需要弄清楚物体受到的是静摩擦力还是滑动摩擦力,如果是静摩擦力,其大小取决于与它反方向上的平衡力大小,与接触面间的正压力大小无关,如果是滑动摩擦力,则根据公式F N μ=去计算3.某校物理兴趣小组决定举行遥控赛车比赛,比赛路径如图所示.可视为质点的赛车从起点A 出发,沿水平直线轨道运动L 后,由B 点进入半径为R 的光滑竖直半圆轨道,并通过半圆轨道的最高点C ,才算完成比赛.B 是半圆轨道的最低点,水平直线轨道和半圆轨道相切于B 点.已知赛车质量m =0.5kg ,通电后以额定功率P =2W 工作,进入竖直圆轨道前受到的阻力恒为F f =0.4N ,随后在运动中受到的阻力均可不计,L =10.00m ,R =0.40m ,(g 取10m/s 2).求:(1)要使赛车能通过C 点完成比赛,通过C 点的速度至少多大? (2)赛车恰能完成比赛时,在半圆轨道的B 点对轨道的压力多大 (3)要使赛车完成比赛,电动机至少工作多长时间t ?(4)若电动机工作时间为t 0=5s ,当R 为多少时赛车既能完成比赛且飞出的水平距离又最大,水平距离最大是多少?【答案】(1)2m/s (2)25/m s ,30N (3)t =4.5s (4)R =0.3m ,1.2m 【解析】 【分析】赛车恰好通过最高点时,靠重力提供向心力,根据牛顿第二定律求出通过C 点的最小速度.根据机械能守恒定律求出赛车在B 点的最小速度,根据牛顿第二定律求出赛车对轨道的压力.对A 到B 过程运用动能定理,求出电动机从A 到B 至少工作的时间.根据动能定理求出赛车到达最高点的速度,结合平抛运动的规律求出水平位移,通过数学知识求出水平位移的最大值. 【详解】(1)当赛车恰好过C 点时在B 点对轨道压力最小,赛车在B 点对有:2Cv mg m R=解得:100.4m/s 2m/s C v gR ==⨯=...①(2)对赛车从B 到C 由机械能守恒得:2211222B C mv mv mg R =+⋅…② 赛车在B 处,由牛顿第二定律可得:2N Bv F mg m R-=…③由①②③得:525m/s B v gR ==N 630N F mg ==由牛顿第三定律知,对轨道的压力大小等于30N ; (3)对赛车从A 到B 由动能定理得:2102f B Pt F L mv -=- 解得:4.5s t =(4)对赛车从A 到C 由动能定理得:20012'2f Pt F L mg R mv --⋅=, 赛车飞出C 后有:212'2R gt =0x v t =解得:2316('')5x R R =--,所以当'0.3m R =时,x 最大:max 1.2m x =答:(1)要使赛车能通过C 点完成比赛,通过C 点的速度至少为2m/s ; (2)赛车恰能完成比赛时,在半圆轨道的B 点对轨道的压力等于30N ; (3)要使赛车完成比赛,电动机至少工作 4.5s t =;(4)若电动机工作时间为t 0=5s ,当R 为0.3m 时赛车既能完成比赛且飞出的水平距离又最大,最大水平距离max 1.2m x =.4.质量为M 的木楔倾角为θ,在水平面上保持静止,质量为m 的木块刚好可以在木楔上表面上匀速下滑.现在用与木楔上表面成α角的力F 拉着木块匀速上滑,如图所示,求:(1)当α=θ时,拉力F 有最小值,求此最小值; (2)拉力F 最小时,木楔对水平面的摩擦力. 【答案】(1)mg sin 2θ (2)12mg sin 4θ 【解析】 【分析】对物块进行受力分析,根据共点力平衡,利用正交分解,在沿斜面方向和垂直于斜面方向都平衡,进行求解采用整体法,对m 、M 构成的整体列平衡方程求解.【详解】(1)木块刚好可以沿木楔上表面匀速下滑时,mg sin θ=μmg cos θ,则μ=tan θ,用力F 拉着木块匀速上滑,受力分析如图甲所示,则有:F cos α=mg sin θ+F f ,F N +F sin α=mg cos θ, F f =μF N联立以上各式解得:()sin 2cos mg F θθα=-.当α=θ时,F 有最小值,F min =mg sin 2θ.(2)对木块和木楔整体受力分析如图乙所示,由平衡条件得,F f ′=F cos(θ+α),当拉力F 最小时,F f ′=F min ·cos 2θ=12mg sin 4θ. 【点睛】木块放在斜面上时正好匀速下滑隐含摩擦系数的数值恰好等于斜面倾角的正切值,当有外力作用在物体上时,列平行于斜面方向的平衡方程,结合数学知识即可解题.5.如图所示,一半径为R =30.0cm ,横截面为六分之一圆的透明柱体水平放置,O 为横截面的圆心,该柱体的BO 面涂有反光物质,一束光竖直向下从A 点射向柱体的BD 面,入射角i =45°,进入柱体内部后,经过一次反射恰好从柱体的D 点射出。

【物理】 物理数学物理法专题练习(及答案)及解析

【物理】 物理数学物理法专题练习(及答案)及解析

【物理】 物理数学物理法专题练习(及答案)及解析一、数学物理法1.一透明柱体的横截面如图所示,圆弧AED 的半径为R 、圆心为O ,BD ⊥AB ,半径OE ⊥AB 。

两细束平行的相同色光1、2与AB 面成θ=37°角分别从F 、O 点斜射向AB 面,光线1经AB 面折射的光线恰好通过E 点。

已知OF =34R ,OB =38R ,取sin370.6︒=,cos 370.8︒=。

求:(1)透明柱体对该色光的折射率n ;(2)光线2从射入柱体到第一次射出柱体的过程中传播的路程x 。

【答案】(1)43;(2)54R 【解析】 【分析】 【详解】(1)光路图如图:根据折射定律sin(90)sin n θα︒-=根据几何关系3tan 4OF OE α== 解得37α︒= 43n =(2)该色光在柱体中发生全反射时的临界角为C ,则13sin 4Cn == 由于sin sin(90)sin 530.8sin a C β︒︒=-==>光线2射到BD 面时发生全反射,根据几何关系3tan 82REH OE OH R R β=-=-=可见光线2射到BD 面时发生全反射后恰好从E 点射出柱体,有sin OBOGα= 根据对称性有2x OG =解得54x R =2.如图所示,在竖直分界线MN 的左侧有垂直纸面的匀强磁场,竖直屏与MN 之间有方向向上的匀强电场。

在O 处有两个带正电的小球A 和B ,两小球间不发生电荷转移。

若在两小球间放置一个被压缩且锁定的小型弹簧(不计弹簧长度),解锁弹簧后,两小球均获得沿水平方向的速度。

已知小球B 的质量是小球A 的1n 倍,电荷量是小球A 的2n 倍。

若测得小球A 在磁场中运动的半径为r ,小球B 击中屏的位置的竖直偏转位移也等于r 。

两小球重力均不计。

(1)将两球位置互换,解锁弹簧后,小球B 在磁场中运动,求两球在磁场中运动半径之比、时间之比;(2)若A 小球向左运动求A 、B 两小球打在屏上的位置之间的距离。

【物理】物理数学物理法练习题含答案及解析

【物理】物理数学物理法练习题含答案及解析

【物理】物理数学物理法练习题含答案及解析一、数学物理法1.一透明柱体的横截面如图所示,圆弧AED 的半径为R 、圆心为O ,BD ⊥AB ,半径OE ⊥AB 。

两细束平行的相同色光1、2与AB 面成θ=37°角分别从F 、O 点斜射向AB 面,光线1经AB 面折射的光线恰好通过E 点。

已知OF =34R ,OB =38R ,取sin370.6︒=,cos 370.8︒=。

求:(1)透明柱体对该色光的折射率n ;(2)光线2从射入柱体到第一次射出柱体的过程中传播的路程x 。

【答案】(1)43;(2)54R 【解析】 【分析】 【详解】(1)光路图如图:根据折射定律sin(90)sin n θα︒-=根据几何关系3tan 4OF OE α== 解得37α︒= 43n =(2)该色光在柱体中发生全反射时的临界角为C ,则13sin 4C n == 由于sin sin(90)sin 530.8sin a C β︒︒=-==>光线2射到BD 面时发生全反射,根据几何关系3tan 82REH OE OH R R β=-=-=可见光线2射到BD 面时发生全反射后恰好从E 点射出柱体,有sin OBOGα= 根据对称性有2x OG =解得54x R =2.如图所示,ABCD 是柱体玻璃棱镜的横截面,其中AE ⊥BD ,DB ⊥CB ,∠DAE=30°,∠BAE=45°,∠DCB=60°,一束单色细光束从AD 面入射,在棱镜中的折射光线如图中ab 所示,ab 与AD 面的夹角α=60°.已知玻璃的折射率n=1.5,求:(结果可用反三角函数表示)(1)这束入射光线的入射角多大?(2)该束光线第一次从棱镜出射时的折射角. 【答案】(1)这束入射光线的入射角为48.6°; (2)该束光线第一次从棱镜出射时的折射角为48.6° 【解析】试题分析:(1)设光在AD 面的入射角、折射角分别为i 、r ,其中r=30°, 根据n=,得: sini=nsinr=1.5×sin30°=0.75 故i=arcsin0.75=48.6° (2)光路如图所示:ab 光线在AB 面的入射角为45°,设玻璃的临界角为C ,则: sinC===0.67sin45°>0.67,因此光线ab 在AB 面会发生全反射 光线在CD 面的入射角r′=r=30°根据n=,光线在CD 面的出射光线与法线的夹角: i′="i=arcsin" 0.75=48.6°3.如右图所示,一位重600N 的演员,悬挂在绳上.若AO 绳与水平方向的夹角为37︒,BO 绳水平,则AO 、BO 两绳受到的力各为多大?若B 点位置往上移动,则BO 绳的拉力如何变化?(孩子:你可能需要用到的三角函数有:3375sin ︒=,4cos375︒=,3374tan ︒=,4373cot ︒=)【答案】AO 绳的拉力为1000N ,BO 绳的拉力为800N ,OB 绳的拉力先减小后增大. 【解析】试题分析:把人的拉力F 沿AO 方向和BO 方向分解成两个分力,AO 绳上受到的拉力等于沿着AO 绳方向的分力,BO 绳上受到的拉力等于沿着BO 绳方向的分力.根据平衡条件进行分析即可求解.把人的拉力F 沿AO 方向和BO 方向分解成两个分力.如图甲所示由平衡条件得:AO 绳上受到的拉力为21000sin 37OA GF F N ===oBO 绳上受到的拉力为1cot 37800OB F F G N ===o若B 点上移,人的拉力大小和方向一定不变,利用力的分解方法作出力的平行四边形,如图乙所示:由上图可判断出AO 绳上的拉力一直在减小、BO 绳上的拉力先减小后增大.4.如图所示,一束平行紫光垂直射向半径为1m R =的横截面为扇形的玻璃砖薄片(其右侧涂有吸光物质),经折射后在屏幕S 上形成一亮区,已知屏幕S 至球心距离为(21)m D =+,玻璃半球对紫光的折射率为2n =,不考虑光的干涉和衍射。

(物理) 高考物理数学物理法专题训练答案含解析

(物理) 高考物理数学物理法专题训练答案含解析

(物理) 高考物理数学物理法专题训练答案含解析一、数学物理法1.如右图所示,一位重600N 的演员,悬挂在绳上.若AO 绳与水平方向的夹角为37︒,BO 绳水平,则AO 、BO 两绳受到的力各为多大?若B 点位置往上移动,则BO 绳的拉力如何变化?(孩子:你可能需要用到的三角函数有:3375sin ︒=,4cos375︒=,3374tan ︒=,4373cot ︒=)【答案】AO 绳的拉力为1000N ,BO 绳的拉力为800N ,OB 绳的拉力先减小后增大. 【解析】试题分析:把人的拉力F 沿AO 方向和BO 方向分解成两个分力,AO 绳上受到的拉力等于沿着AO 绳方向的分力,BO 绳上受到的拉力等于沿着BO 绳方向的分力.根据平衡条件进行分析即可求解.把人的拉力F 沿AO 方向和BO 方向分解成两个分力.如图甲所示由平衡条件得:AO 绳上受到的拉力为21000sin 37OA GF F N ===oBO 绳上受到的拉力为1cot 37800OB F F G N ===o若B 点上移,人的拉力大小和方向一定不变,利用力的分解方法作出力的平行四边形,如图乙所示:由上图可判断出AO 绳上的拉力一直在减小、BO 绳上的拉力先减小后增大.2.质量为M 的木楔倾角为θ (θ < 45°),在水平面上保持静止,当将一质量为m 的木块放在木楔斜面上时,它正好匀速下滑.当用与木楔斜面成α角的力F 拉木块,木块匀速上升,如图所示(已知木楔在整个过程中始终静止).(1)当α=θ时,拉力F 有最小值,求此最小值; (2)求在(1)的情况下木楔对水平面的摩擦力是多少? 【答案】(1)min sin 2F mg θ= (2)1sin 42mg θ 【解析】 【分析】(1)对物块进行受力分析,根据共点力的平衡,利用正交分解,在沿斜面和垂直斜面两方向列方程,进行求解.(2)采用整体法,对整体受力分析,根据共点力的平衡,利用正交分解,分解为水平和竖直两方向列方程,进行求解. 【详解】木块在木楔斜面上匀速向下运动时,有mgsin mgcos θμθ=,即tan μθ= (1)木块在力F 的作用下沿斜面向上匀速运动,则:Fcos mgsin f αθ=+N Fsin F mgcos αθ+=N f F μ=联立解得:()2mgsin F cos θθα=-则当=αθ时,F 有最小值,2min F mgsin =θ(2)因为木块及木楔均处于平衡状态,整体受到地面的摩擦力等于F 的水平分力,即()f Fcos αθ='+当=αθ时,12242f mgsin cos mgsin θθθ='= 【点睛】木块放在斜面上时正好匀速下滑隐含动摩擦因数的值恰好等于斜面倾角的正切值,当有外力作用在物体上时,列平行于斜面方向的平衡方程,求出外力F 的表达式,讨论F 取最小值的条件.3.如图所示,空间有场强E =1.0×102V/m 竖直向下的电场,长L =0.8m 不可伸长的轻绳固定于O 点.另一端系一质量m =0.5kg 带电q =+5×10-2C 的小球.拉起小球至绳水平后在A 点无初速度释放,当小球运动至O 点的正下方B 点时绳恰好断裂,小球继续运动并垂直打在同一竖直平面且与水平面成θ=53°、无限大的挡板MN 上的C 点.试求:(1)小球运动到B 点时速度大小及绳子的最大张力; (2)小球运动到C 点时速度大小及A 、C 两点的电势差;(3)当小球运动至C 点时,突然施加一恒力F 作用在小球上,同时把挡板迅速水平向右移至某处,若小球仍能垂直打在档板上,所加恒力F 的最小值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
赛车飞出C后有:
解得:
所以当
R=0.3m
时x最大
xmax=1.2m
7.如图所示,半圆形玻璃砖的半径为R,圆心为O。一束单色光由玻璃砖上的P点垂直于半圆底面射入玻璃砖,其折射光线射向底面的Q点(图中未画出),折射率为 ,测得P点与半圆底面的距离为 。计算确定Q点的位置。
【答案】
【解析】
【详解】
如图所示
上的亮斑刚消失设紫光的临界角为 ,画出光路图
则有
当 时, 面上反射角 ,反射光线垂直射到 面上后入射到 上,则
解得
9.如图所示,木板B放在水平地面上,在木板B上放一重300N的A物体,物体A与木板B间,木板与地间的摩擦因数均为 ,木板B重力为1200N,当水平拉力F将木板B匀速拉出,绳与水平方向成30°时,问绳的拉力T多大?水平拉力多大?
【答案】(1) ;(2)
【解析】
【详解】
(1)如图甲,由几何关系知P点的折射角为30°。
则有
(2)如图乙,由折射规律结合几何关系知,各方向的入射光线进入P点后的折射光线分布在CQB范围内,设在D点全反射,则DQ范围无光线射出。
D点有
解得
由几何关系知
, ,
解得
4.图示为直角三角形棱镜的截面, , ,AB边长为20cm,D点到A点的距离为7cm,一束细单色光平行AC边从D点射入棱镜中,经AC边反射后从BC边上的F点射出,出射光线与BC边的夹角为 ,求:
(1)棱镜的折射率;
(2)F点到C点的距离。
【答案】(1) ;(2)
【解析】
【详解】
(1)由几何知识可知,光束从 点入射的入射角 ,做出光路图:
设对应折射角为 ,则光束在 边的入射角为
在 边上的入射角
在 边上的折射角
由折射定律,可知在 点入射时
在 点入射时
解得
折射率为
(2)由几何知识,可知
解得
5.如图所示,一根一端封闭的玻璃管,内有一段长h=0.25m的水银柱。当温度为t1=27 ,开口端竖直向上时,封闭空气柱h2=0.60m。已知外界大气压相当于L0=0.75m高的水银柱产生的压强,热力学温度T=273+t。
【解析】
【分析】
【详解】
(1)当赛车恰好过C点时,赛车在C点有:
解得:
(2)对赛车从B到C由机械能守恒定律得:
赛车在B处由牛顿第二定律得:
解得:
vB=4m/s,F=30N
由牛顿第三定律可知,赛车在B点对轨道的压力至少为
F′=F=30N
(3)对赛车从A到B由动能定理得:
解得:
t=4s
(4)对赛车从A到C由动能定理得:
(2)从图示位置开始计时,写出电源电动势的瞬时表达式。
【答案】(1) ;(2)
【解析】
【分析】
【详解】
(1)由题可知,电路中的电流为
线圈电动势为
则电动势的最大值为


(2)由图可知,此时线圈平面与磁场方向平行,所以电源电动势的瞬时表达式为
14.一根通有电流I,长为L,质量为m的导体棒静止在倾角为α的光滑斜面上,如图所示,重力加速度为g。
解得
(2)由几何关系可知当安培力沿斜面向上时安培力最小,磁感应强度最小
由力的三角函数关系可得
解得
当安培力大小一定时,磁感应强度方向垂直电流时,磁感应强度最小,由左手定则可知磁感应方向垂直斜面向下。
15.图甲为一种大型游乐项目“空中飞椅”,用不计重力的钢丝绳将座椅挂在水平悬臂边缘。设备工作时,悬臂升到离水平地面 高处,以 的角速度匀速转动时,座椅到竖直转轴中心线的距离为 (简化示意图乙),座椅和乘客(均视为质点)质量共计 ,钢丝绳长为 。忽略空气阻力,取重力加速度 。试计算此时

即能打到收集板上的粒子数占总粒数的比值
3.如图所示,直角 为一个玻璃砖的横截面,其中 , , 边的长度为 , 为 的中点。一条光线从 点射入玻璃砖,入射方向与 夹角为45°。光线恰能从 点射出。
(1)求该玻璃的折射率;
(2)若与 夹角90°的范围内均有上述同频率光线从 点射入玻璃砖,分析计算光线不能从玻璃砖射出的范围。
(1)如果磁场方向竖直向下,求满足条件的磁感应强度的大小;
(2)如果磁场方向可以随意调整,求满足条件的磁感应强度的最小值和方向。
【答案】(1) ;(2) ,磁感应强度的方向垂直斜面向下
【解析】
【分析】
【详解】
(1)取导体为研究对象,由左手定则可知安培力水平向右,受力分析如下图所示
由力的三角函数关系可得
(1)由题可知,粒子在圆形磁场区域内运动半径


方向垂直纸面向里。
(2)如图所示
且要出电场
在磁场B2中运动时

进入B2后返回到边界EF时,进出位置间距

代入得
说明与加速电场大小无关。要打到收集板上,设粒子从C点到EF边界上时所发生的侧移为y0,需满足




综上需满足
即两板所加电压U满足
(3)由(2)可知,两板间加最大电压2400V时,带电粒子出电场时的偏转距离为 cm,则要打到收集板上,粒子应从PO1左侧的θ角和右侧的β角之间出射,其中
(1)要使赛车完成比赛,赛车在半圆轨道的C点速度至少多大?
(2)要使赛车完成比赛,赛车在半圆轨道B点对轨道的压力至少多大?
(3)要使赛车完成比赛,电动机至少工作多长时间?
(4)若电动机工作时间为t0=5s,当R为多少时赛车既能完成比赛且飞出的水平距离又最大,水平距离最大是多少?
【答案】(1) (2)30N(3)2s(4)0.3m;1.2m
P点折射有
由几何关系得
解得
则有
又有

即Q点与玻璃砖上边缘相距 。
8.如图所示,MN是一个水平光屏,多边形ACBOA为某种透明介质的截面图。 为等腰直角三角形,BC为半径R=8cm的四分之一圆弧,AB与光屏MN垂直并接触于A点。一束紫光以入射角i射向AB面上的O点,能在光屏MN上出现两个亮斑,AN上的亮斑为P1(未画出),AM上的亮斑为P2(未画出),已知该介质对紫光的折射率为 。
则光线在球中传播的时间
13.如图为小型旋转电枢式交流发电机的原理图,其矩形线圈在匀强磁场中绕垂直于磁场方向的固定轴 匀速转动,线圈的匝数 匝、线圈所围面积 ,线圈电阻不计,线圈的两端经滑环和电刷与阻值 的电阻相连,匀强磁场的磁感应强度 ,测得电路中交流电流表的示数为5A。则:
(1)交流发电机的线圈转动的角速度是多少?
(i)若玻璃管足够长,缓慢地将管转过 ,求此时封闭气柱的长度;
(ii)若玻璃管长为L=1.00m,温度至少升到多高时,水银柱才能从管中全部溢出。
【答案】(i)0.80m;(ii)382.8K
【解析】
【分析】
【详解】
(i)设玻璃管内部横截面积为S,对水银柱分析可知,气体初状态的压强p1=1.00mHg,初状态的体积V1=0.60S,转过 后,气体的压强p2=0.75mHg,体积V2=hS,气体做等温变化,由玻意尔定律 ,解得
(ii)由气态方程 可知,pV乘积越大,对应的温度T越高,假设管中还有长为x的水银柱尚未溢出时,pV值最大,即
(L0+x)(L-x)S
值最大,因为
与x的大小无关,所以由数学知识可知∶两正数之和为一常数,则当这两数相等时其乘积最大,有∶
解得
x=0.125m
即管内水银柱由0.25m溢出到还剩下0.125m的过程中,pV的乘积越来越大,这一过程必须是升温的。此后,温度不必再升高(但要继续给气体加热),水银柱也将继续外溢,直至完全溢出。
【答案】 ,
【解析】
【分析】
【详解】
据题意,小球P在球面上做水平的匀速圆周运动,该圆周的圆心为O’.P受到向下的重力mg、球面对它沿OP方向的支持力N和磁场的洛仑兹力
f=qvB①
式中v为小球运动的速率.洛仑兹力f的方向指向O’.根据牛顿第二定律


由①②③式得

由于v是实数,必须满足

由此得

可见,为了使小球能够在该圆周上运动,磁感应强度大小的最小值为
(1)磁感应强度B1的方向和大小;
(2)为使从C点进入的粒子出电场后经磁场偏转能打到收集板上,两板所加电压U的范围;
(3)当两板所加电压为(2)中最大值时,打在收集板上的粒子数与总粒子数的比值η。(可用反三解函数表示,如 )
【答案】(1) T,方向垂直纸面向里;(2) ;(3)
【解析】
【分析】
【详解】
(1)求该天然透明矿石的折射率n;
(2)光在矿石中从B点到C点所需的时间t。
【答案】(1) ;(2)
【解析】
【分析】
【详解】
(1)设光线在 点界面的入射角与折射角分别为 、 ;光线在 点界面折射角为
根据几何关系

在界面 点
在界面 点
可得
由几何知识得

可得
由折射率得
(2)光在球体中传播的速度 得
间的距离
(1)钢丝绳的拉力大小;
(2)若游客身上的物品脱落,因惯性水平飞出直接落到地面,求落地点到竖直转轴中心线的距离。
【答案】(1)1000N;(2)16.8m
物理数学物理法专项习题及答案解析及解析
一、数学物理法
1.如图所示,一半径为R的光滑绝缘半球面开口向下,固定在水平面上.整个空间存在磁感应强度为B、方向竖直向下的匀强磁场.一电荷量为q(q>0)、质量为m的小球P在球面上做水平的匀速圆周运动,圆心为O′.球心O到该圆周上任一点的连线与竖直方向的夹角为θ( ).为了使小球能够在该圆周上运动,求磁感应强度B的最小值及小球P相应的速率.(已知重力加速度为g)
(1)小球落地点到O点的水平距离.
相关文档
最新文档