平面直角坐标系面积问题

合集下载

初中直角坐标面积问题教案

初中直角坐标面积问题教案

初中直角坐标面积问题教案【教学目标】1. 理解平面直角坐标系中图形的面积概念。

2. 学会使用分割法、填减法等方法求解平面直角坐标系中不规则图形的面积。

3. 培养学生的逻辑思维能力和解决问题的能力。

【教学内容】1. 平面直角坐标系的基本概念。

2. 图形的面积概念及求解方法。

3. 分割法、填减法在求解面积问题中的应用。

【教学过程】一、导入(5分钟)1. 引导学生回顾平面直角坐标系的基本概念,包括坐标轴、象限等。

2. 提问:同学们,你们知道图形的面积是什么意思吗?面积如何计算呢?二、新课讲解(15分钟)1. 讲解图形的面积概念,引导学生理解面积的意义。

2. 介绍分割法、填减法两种求解面积的方法。

3. 举例讲解如何使用分割法、填减法求解平面直角坐标系中的不规则图形面积。

三、课堂练习(15分钟)1. 布置练习题,让学生独立完成。

2. 选几位同学上台演示解题过程,并讲解解题思路。

四、巩固提高(15分钟)1. 引导学生总结本节课所学的知识点,巩固记忆。

2. 提问:同学们,你们能运用分割法、填减法解决实际问题吗?请大家举例说明。

五、课堂小结(5分钟)1. 回顾本节课所学的知识点,强调重点。

2. 提醒学生在日常生活中注意观察和运用平面直角坐标系中的面积问题。

【教学反思】本节课通过讲解平面直角坐标系中的面积问题,使学生掌握了图形的面积概念以及求解方法。

在教学过程中,注重引导学生主动思考、积极参与,提高了学生的逻辑思维能力和解决问题的能力。

同时,通过课堂练习和巩固提高环节,使学生能够将所学知识点运用到实际问题中。

总体来说,本节课达到了预期的教学目标,学生对平面直角坐标系中的面积问题有了更深入的理解。

在今后的教学中,要继续加强对学生思维能力的培养,鼓励学生主动探索、勇于创新。

此外,要注意调整教学节奏,保证课堂信息的充足和学生的积极参与。

通过不断改进教学方法,提高学生的数学素养,为后续学习打下坚实基础。

七下数学《平面直角坐标系》——【面积问题】

七下数学《平面直角坐标系》——【面积问题】

七下数学《平面直角坐标系》——【面积问题】学校:___________姓名:___________班级:___________考号:___________1.如图,在平面直角坐标系中,,A B 坐标分别是(0,),(,)A a B b a ,且,a b 满足()23|5|0a b -+-=,现同时将点,A B 分别向下平移3个单位,再向左平移1个单位,分别得到点,A B 的对应点,C D ,连接,,AC BD AB .(1)求点,C D 的坐标及四边形ACDB 的面积ACDB S ; (2)在y 轴上是否存在一点M ,连接,MC MD ,使13MCD ACDB S S ∆=?若存在这样的点,求出点M 的坐标,若不存在,试说明理由.2.如图10,在平面直角坐标系中,点A B ,的坐标分别为(),0A a ,(),0Bb ,且a b 、满足2(1)0a ++=.现同时将点A B ,分别向上平移2个单位,再向右平移1个单位,分别得到点A B ,的对应点C D ,,连接AC BD ,得ACBD .(1)直接写出点C D ,的坐标和四边形ABDC 的面积;(2)若在坐标轴上存在点M ,使MAC S S =△四边形ABDC ,求出点M 的坐标;(3)若点P 在直线BD 上运动,连接PC PO ,.请画出图形,写出CPO DCP BOP ∠∠∠、、的数量关系并证明.3.如图,在长方形ABCD 中,AB =8cm ,BC =6cm ,点E 是CD 边上的一点,且DE =2cm ,动点P 从A 点出发,以2c m/s 的速度沿A →B →C →E 运动,最终到达点E .设点P 运动的时间为t 秒.(1)请以A 点为原点,AB 所在直线为x 轴,1cm 为单位长度,建立一个平面直角坐标系,并用t 表示出点P 在不同线段上的坐标.(2)在(1)相同条件得到的结论下,是否存在P 点使△APE 的面积等于20cm 2时,若存在,请求出P 点坐标;若不存在,请说明理由.4.在平面直角坐标系中,A (a ,0),B (b ,0),C (−1,2),且|32a b +=0, (1)求a 、b 的值;(2)在y 轴上是否存在一点M ,使△COM 的面积为△ABC 面积的13,若存在,求出点M 的坐标;若不存在,请说明理由.5.如图1,长方形OABC 的边OA 在数轴上,O 为原点,长方形OABC 的面积为12,OC 边长为3(1)数轴上点A 表示的数为______.(2)将长方形OABC 沿数轴水平移动,移动后的长方形记为O A B C '''',移动后的长方形O A B C ''''与原长方形OABC 重叠部分(如图2中阴影部分)的面积记为S△设点A 的移动距离AA x '=.当4S =时,x =______.△当S 恰好等于原长方形OABC 面积的一半时,求数轴上点A '表示的数为多少.6.如图,在平面直角坐标系中,已知A (0,a ),B (b ,0),其中a ,b 满足|a ﹣2|+(b ﹣3)2=0. (1)a = ,b = ;(2)如果在第二象限内有一点M (m ,1),请用含m 的式子表示四边形ABOM 的面积; (3)在(2)条件下,当m =﹣32时,在坐标轴的负半轴上求点N (的坐标),使得△ABN 的面积与四边形ABOM 的面积相等.(直接写出答案)7.如图,在平面直角坐标系中,四边形OABC 各顶点的坐标分别是()0,0O ,()0,12A ,()10,8B -,()14,0C -,求四边形OABC 的面积.8.如图,平面直角坐标系中,点A在第一象限,AB△x轴于B,AC△y轴于C,A(4m,3m),且四边形ABOC的面积为48.(1)如图△,求A点的坐标;(2)如图△,点D从O出发以每秒1个单位的速度沿y轴正半轴运动,同时点E从A出发,以每秒2个单位的速度沿射线BA运动,DE交线段AC于F,设运动的时间为t,当S△AEF<S△CDF时,求t的取值范围.9.如图1,在平面直角坐标系中,点A坐标为(2,0),点B在x轴负半轴上,C在y轴正半轴上,△ACB=90°,△ABC=30°.(1)求点B坐标;(2)如图2,点P从B出发,沿线段BC运动,点P运动速度为每秒2个单位长度,设运动时间为t秒,用含t的式子表示三角形△OBP的面积S.10.在平面直角坐标系内,点()0,5A ,点()29,32M x x --在第三象限,(1)求x 的取值范围;(2)点M 到y 轴的距离是到x 轴的2倍,请求出M 点坐标;(3)在(2)的基础上,若y 轴上存在一点P 使得AMP 的面积为10,请求出P 点坐标.11.已知坐标平面内的三个点A(1,3),B(3,1),O(0,0). (1)求三角形AOB 的面积;(2)点P 是x 轴上的一个动点,当三角形AOP 的面积与三角形AOB 的面积相等时,求点P 的坐标.12.如图,在平面直角坐标系中,已知(,0)A a ,(,0)B b ,其中a ,b 满足|1|0a +=.(1)填空:a =______,b =______.(2)如果在第三象限内有一点(2,)M m -,请用含m 的式子表示ABM 的面积.的坐标.13.如图所示,在平面直角坐标系中点()30A -,,()5,0B ,()3,4C ,()2,3D -.(1)求四边形ABCD 的面积(2)点P 为y 轴上一点,且ABP △的面积等于四边形ABCD 的面积的一半,求点P 的坐标.14.如图1,在平面直角坐标系中,A (a ,0),C (b ,4),且满足(a+5)2,过C 作CB△x 轴于B .(1)a = ,b = ,三角形ABC 的面积= ;(2)若过B 作BD //AC 交y 轴于D ,且AE ,DE 分别平分△CAB ,△ODB ,如图2,求△AED 的度数;(3)在y 轴上是否存在点P ,使得三角形ABC 和三角形ACP 的面积相等?若存在,求出P 点坐标;若不存在,请说明理由.15.如图1,在平面直角坐标系中,A (a ,0)是x 轴正半轴上一点,C 是第四象限一点,CB △y 轴,交y 轴负半轴于B (0,b ),且(a ﹣3)2+|b +4|=0,S 四边形AOBC =16.(1)求C 点坐标;(2)如图2,设D 为线段OB 上一动点,当AD △AC 时,△ODA 的角平分线与△CAE 的角平分线的反向延长线交于点P ,求△APD 的度数.(3)如图3,当D 点在线段OB 上运动时,作DM △AD 交BC 于M 点,△BMD 、△DAO 的平分线交于N 点,则D 点在运动过程中,△N 的大小是否变化?若不变,求出其值,若变化,说明理由.16.如图,在平面直角坐标系中,已知A (a ,0),B (b ,0),C (﹣1,2),且221(24)0a b a b ++++-=. (1)求a ,b 的值;(2)y 轴上是否存在一点M ,使△COM 的面积是△ABC 的面积的一半,求点M 的坐标.17.如图,在平面直角坐标系xOy 中,点(,0)A a ,(,)B b b ,(0,)C b ,且满足2(8)0a +=,P 点从A 点出发沿x 轴正方向以每秒2个单位长度的速度匀速移动,Q 点从O 点出发沿y 轴负方向以每秒1个单位长度的速度匀速移动.(1)直接写出点A 的坐标 ,点B 的坐标 ,AO 和BC 位置关系是 ; (2)在P 、Q 的运动过程中,连接PB ,QB ,使S △PAB =4S △QBC ,求出点P 的坐标;(3)在P 、Q 的运动过程中,当△CBQ =30°时,请探究△OPQ 和△PQB 的数量关系,并说明理由.18.如图,在平面直角坐标系中,已知A(0,a),B(b ,0),C(b ,c)三点,其中a ,b ,c 满足关系式|a -2|+(b -3)2=0,(c -4)2≤0.(1)求a ,b ,c 的值;(2)如果在第二象限内有一点P(m ,12),请用含m 的式子表示四边形ABOP 的面积; (3)在(2)的条件下,是否存在点P ,使四边形ABOP 的面积与三角形ABC 的面积相等?若存在,求出点P 的坐标,若不存在,请说明理由.19.已知点()30A -,,点()0,3C ,且点B 的坐标为()1,4-,计算ABC 的面积.20.如图,在平面直角坐标系中,A 、B 、C 三点的坐标分别为(0,1)(2,0)(2,1.5), (1)求三角形ABC 的面积.(2)如果在第二象限内有一点P (a ),试用含a 的式子表示四边形ABOP 的面积.(3)在(2)的条件下,是否存在点P ,使得四边形ABOP 的面积与三角形ABC 的面积相等?若存在,请求出点P 的坐标?若不存在,请说明理由.。

在平面直角坐标系中求解三角形的面积问题

在平面直角坐标系中求解三角形的面积问题

在平面直角坐标系中求解三角形的面积资料编号:202205230029学完一次函数和反比例函数,我们经常会遇到在平面直角坐标系中求解三角形面积的问题,这类问题题型多变,考查知识点多样,常见于一次函数的综合题、一次函数与反比例函数的综合题以及其它问题,很好的体现了数形结合思想方法的重要性.解决这类问题的方法要么是三角形面积公式法,要么是整体与部分之间的关系法,且方法的规律性很强.下面,我们对在平面直角坐标系中求解三角形面积的问题从题型和解题策略两个方面进行比较系统的研究.经过抽象概括,求解三角形的面积问题常见的图形有以下几种情形:图 1 AB边在x 轴上图 2 AB边在y轴上图 3 AB // x轴图 4 AB // y 轴图 5 任意三角形ABC图 6 任意三角形AOB当三角形有一条边在坐标轴上或与坐标轴平行时,常用三角形面积公式进行求解.如图1、图2、图3、图4所示.当三角形为任意三角形时,常用整体与部分之间的面积关系进行求解.如图5 图6所示. 如图1所示.C A B C ABC y x x y AB S ⋅-=⋅=∆2121. 如图2所示.C B A C ABC x y y x AB S ⋅-=⋅=∆2121. 如图3所示.A AB A ABC y x x y AB S ⋅-=⋅=∆2121(图中B A y y =).(两平行线之间的距离处处相等)图 1 AB 边在x 轴上图 2 AB 边在y 轴上图 3 AB // x 轴如图4所示.C A B A C A ABC x x y y x x AB S -⋅-=-⋅=∆2121.(图中B A D x x x ==) 如图5所示.过点A 作y AE //轴,交BC 于点F .B C F A B C ACF ABF ABC x x y y x x AF S S S -⋅-=-⋅=+=∆∆∆2121.(这个问题往往需要求出直线BC 的解析式)如图6所示.设直线AB 与x 轴交于点C .B A BOC AOC AOB y OC y OC S S S ⋅+⋅=+=∆∆∆2121.图 4 AB // y 轴图 5 任意三角形ABC图 6 任意三角形AOB如图7所示.设直线AB 与x 轴交于点C .B A BOC AOC AOB y OC y OC S S S ⋅-⋅=-=∆∆∆2121.(这个问题往往需要求出直线AB 的解析式)图 7。

平面直角坐标系中的面积问题整合课ppt

平面直角坐标系中的面积问题整合课ppt

O
1
2 3 4x
11 S O4 A S B OA S D A4 D B 2 1 1 2 1 3 2
-
11
y
4
B4(4,4)

3

2
2
1
E(4,1)
A(2,1)
F(4,0)
O
1 2 3 4x
图(9)
S O4A 1S B O 444 F 1 S (梯 B 24A )1形 E 1S O 2 A 3F 4 EB
1
234
x
图(4)
-
6
2.(1)已知△ABC中 A(-1,) B(6,0 )
C(1,)
,
D
(
2 5
,0
)
,
, 求△AyBC的面积.
6
5
4
3
2C
A(1, 7)
B(6,0)2 C (1,3 )
2
1
-2
-1O -1
D1
2
3
4
B
56 7
8
x
-2
A -3
-
7
y
6
5
4
3
2C
1
-2
-1O -1
D1
23 4
B
56 7
割补法求面积 平移
2、今天我们学习了什么数学思想?
转化思想 化复杂为简单
-
24
谈谈我们的收获
1.等积变换
方法
2.割补法求面积
化复杂为简单
转化
化未知为已知
-
25
8x
-2
A -3
-
8
(2)若△ABC中 A(a,

中考复习题面积问题(解析版)

中考复习题面积问题(解析版)

专题04 面积问题求解平面直角坐标系中由动点生成的图形的面积问题,是初中数学一种重要的题型,它主要结合函数图形的相关知识点,在平面直角坐标中的框架中构建图形求面积,求图形面积常常转化为三角形、特殊的四边形,求面积常用的方法有以下几种:方法1:直接法,求出三角形底边和底边上的高,进而求出其面积;方法2:补形法,将三角形面积转化为若干个特殊的四边形和三角形的和或差;方法3:分割法,选择一种恰当的直线,将三角形分割成两个便于计算的面积的三角形。

一、填空题1.在平面直角坐标系中,,,若的面积为,且点在坐标轴上,则符合条件的点的坐标为__________.【答案】或或或【解析】解:①如图所示,若点C在x轴上,且在点A的左侧时,∵∴OB=3∴S△ABC=AC·OB=6 解得:AC=4∵,∴此时点C的坐标为:;②如图所示,若点C在x轴上,且在点A的右侧时,同理可得:AC=4 ∴此时点C的坐标为:;图①图②③如图所示,若点C在y轴上,且在点B的下方时,∵∴AO=2 ∴S△ABC=BC·AO=6 解得:BC=6∵∴此时点C的坐标为:;④如图所示,若点C在y轴上,且在点B的上方时,同理可得:BC=6 ∴此时点C的坐标为:. 故答案为:或或或.图③图④【点拨】此题考查的是平面直角坐标系中已知面积求点的坐标,根据C点的位置分类讨论是解决此题的关键.2.在平面直角坐标系中,的位置如图所示,则的面积是________.【答案】9.【解析】如图,.【点拨】利用网格特点,将所求的的面积转化为规则图形面积的差即可.本题考查了坐标系中三角形面积的计算,属于常考题型,掌握求解的方法是关键.二、解答题3.如图,在平面直角坐标系中,、.求的面积.【答案】【解析】如图,过点A、B分别作x轴的垂线交x轴于点C、D.根据面积公式求得S△BOD、S梯形ACDB、S△AOC的值,然后由图形可以求得S△AOB= S△AOC +S梯形ACDB- S△BOD.解:过点A、B分别作x轴的垂线交x轴于点C、D.∵A(3,4),B(5,1),∴OC=3,AC=4,OD=5,BD=1.∴S△AOC=×OC•AC=×3×4=6,S△BOD=OD•BD=×5×1=,S梯形ACDB=( BD+AC)•CD=×(1+4)×2=5,∴S△AOB= S△AOC +S梯形ACDB- S△BOD =6+5-=.【点拨】本题考查了三角形的面积、坐标与图形性质.通常采用“割补法”解答此类题目.4.在平面直角坐标系中描出点A(﹣2,0)、B(3,1)、C(2,3),将各点用线段依次连接起来,并解答如下问题:(1)在平面直角坐标系中画出△ A′B′C′,使它与△ ABC 关于x 轴对称,并直接写出△ A′B′C′三个顶点的坐标;(2)求△ABC的面积.【答案】(1)作图见解析;A'(-2,0)、B'(3,-1)C'(2,-3);(2)5.5【解析】(1)在坐标系内画出△ABC,再作出各点关于x轴的对称点,顺次连接各点即可;(2)利用矩形的面积减去三个顶点上三角形的面积即可.【详解】(1)如图所示,由图可知A'(-2,0)、B'(3,-1)C'(2,-3);2)由图可知,S△ABC=5×3-×5×1-×3×4-×2×1,=15--6-1=5.5.【点拨】本题考查的是作图-轴对称变换,熟知关于x轴对称的点的坐标特点是解答此题的关键.5.如图所示,在平面直角坐标系中,已知A(0,1)B(2,0)C(4,3),(1)在平面直角坐标系中画出△ABC,并求△ABC的面积(2)已知P为x轴上一点,若△ABP的面积为4,求点P的坐标。

平面直角坐标系中三角形面积的求法(例题及对应练习)

平面直角坐标系中三角形面积的求法(例题及对应练习)

.;.例析平面直角坐标系中面积的求法我们常常会遇到在平面直角坐标系中求三角形面积的问题.解题时我们要注意其中的解题方法和解题技巧.现举例说明如下.一、有一边在坐标轴上例1 如图1,平面直角坐标系中,△ABC的顶点坐标分别为(-3,0),(0,3),(0,-1),你能求出三角形ABC的面积吗?分析:根据三个顶点的坐标特征可以看出,△ABC的边BC在y轴上,由图形可得BC=4,点A到BC边的距离就是A点到y轴的距离,也就是A点横坐标的绝对值3,然后根据三角形的面积公式求解.解:因为B(0,3),C(0,-1),所以BC=3-(-1)=4.因为A(-3,0),所以A点到y轴的距离,即BC边上的高为3,二、有一边与坐标轴平行例2 如图2,三角形ABC三个顶点的坐标分别为A(4,1),B(4,5),C(-1,2),求三角形ABC的面积.分析:由A(4,1),B(4,5)两点的横坐标相同,可知边AB与y 轴平行,因而AB的长度易求.作AB边上的高CD,则D点的横坐标与A点的横坐标相同,也是4,这样就可求得线段CD的长,进而可求得三角形ABC的面积.解:因为A,B两点的横坐标相同,所以边AB∥y轴,所以AB=5-1=4. 作AB边上的高CD,则D点的横坐标为4,所以CD=4-(-1)=5,所以=.三、三边均不与坐标轴平行例3 如图2,平面直角坐标系中,已知点A(-3,-1),B(1,3),C(2,-3),你能求出三角形ABC的面积吗?分析:由于三边均不平行于坐标轴,所以我们无法直接求边长,也无法求高,因此得另想办法.根据平面直角坐标系的特点,可以将三角形围在一个梯形或长方形中,这个梯形(长方形)的上下底(长)与其中一坐标轴平行,高(宽)与另一坐标轴平行.这样,梯形(长方形)的面积容易求出,再减去围在梯形(长方形)内边缘部分的直角三角形的面积,即可求得原三角形的面积.解:如图,过点A、C分别作平行于y轴的直线,与过点B平行于x 轴的直线交于点D、E,则四边形ADEC为梯形.因为A(-3,-1),B(1,3),C(2,-3),所以AD=4,CE=6,DB=4,BE=1,DE=5.所以=(AD+CE)×DE-AD×DB-CE×BE=×(4+6)×5-×4×4-×6×1=14.平面直角坐标系中的面积问题(提高篇)“割补法”的应用一、已知点的坐标,求图形的面积。

平面直角坐标系中的面积问题(1)

平面直角坐标系中的面积问题(1)
D
①设直线 BC 的函数关系式为 y kx b
b 5, k 1, ∴ 解得 5k b 0. b 5.
C
E
∴ y x 5
A
O F
B
x
设 D(m,-m +4m+5),E(m,-m+5)
2
∴DE=-m +4m+5+m-5=-m +5m
2
2
1 5 2 25 2 ∴s= 5 (-m +5m)= - m + m (0<m<5) 2 2 2
Y轴。
y p yQ 1 2 ( x 2) ( x 2 x 2) 2
合作运用
当堂作业 合作指导
则线段PQ长可以表示为
合作预习
教学新课
结束教学
海南省农垦中学
知识改变人生 品质铸就未来
4、 如图,已知抛物线 y=-x2+2x+3 与x轴交于A(-1,0)、 E(3,0) 两点,与y轴交于点B(0,3). 设抛物线顶点为D,求四边形ABDE的面积; 你有几种求法?与大家交流。
C
A
O F
B
x
合作预习
教学新课
合作运用
当堂作业
合作指导
结束教学
海南省农垦中学
教学新课
知识改变人生 品质铸就未来
②当m为何值时,S有最大值,并求这个最大值
5 2 25 5 5 125 s= - m + m = m 2 2 2 2 8
5 5 ∵ 0 ,∴当 m= 时,S 有最大值, 2 2
F
S四边形ABDE SAOB S梯形FOED SFDB
海南省农垦中学

人教版七年级数学下册《平面直角坐标系中面积的计算问题》教学设计

人教版七年级数学下册《平面直角坐标系中面积的计算问题》教学设计

人教版七年级第二册第七章《平面直角坐标系中面积的计算问题》教学设计一、教学内容:平面直角坐标系中面积的计算问题。

二、设计理念:课堂中应该充分发挥学生的主体因素,让学生自主获取知识。

七年级学生的思维比较活跃,具有了一定的自主探究、分析问题和解决问题的能力,应培养学生的逻辑分析能力和准确语言表达能力,让学生通过操作、探究、讨论、总结得到平面直角坐标系中面积的计算方法。

教学中,教师是教学情景的设计着,是学生学习的引导者和促进者,应培养学生自主学习和探究学习的能力,培养学生良好的学习习惯和品质,培养学生的积极性、主动性、独立性和创造性。

三、教学目标:1.进一步认识平面直角坐标系,了解点、图形与坐标的对应关系,能求出给定坐标的点构成的图形的面积;2.通过对数学图形规律探究的过程中培养学生的数学思维;四、学情分析:本节课是一节复习课,在此之前,学生已经学习了平面直角坐标系的有关概念,了解了点的坐标意义以及学习了坐标的平移与应用,并且会计算三角形、正方形、长方形等简单图形的面积,本节课通过教师的引导,学生独立思考,将前面所学习的这些知识综合起来,逐步展开知识点,由简到难,让学生学会利用平面直角坐标系求解图形面积,进一步让学生体会数形结合、转化数学思想。

五、重、难点:学习重点:建立平面直角坐标系求解图形面积以及根据图形面积求点的坐标;学习难点:运用割补法求解平面直角坐标系中图形面积;六、教学课时:1课时七、教学准备:多媒体,PPT ,学案,三角板;八、教学过程:1.知识回顾:(1)平面直角坐标系中坐标点与线段之间的关系:①A (1x ,y ),B(2x ,y ) 纵坐标相等的两个点所形成的线段长度为: ②A (x ,1y ),B( x ,2y ) 横坐标相等的两个点所形成的线段长度为: 例1:1.若A(3,2),B(-1,2),则线段AB=2.若A(-2,-3),B(-2,-1),则线段AB=【设计意图:回顾平面直角坐标系中面积的计算问题中相关知识,结合坐标图形让学生更加直观明白平面直角坐标系中点坐标与线段长度之间联系】(2)平面直角坐标系中坐标点到坐标轴距离:①点A (x,y )到X 轴距离表示为:②点A (x,y )到Y 轴距离表示为:例2:若A(-3,2),则到X 轴的距离为: 到Y 轴的距离为:【设计意图:通过复习点到坐标轴的距离,进而为后面点到直线距离的理解铺垫,同时也让学生明白平面直角坐标中三角形的高是什么,高为多少】(3)思考:平面直角坐标系内的点与图形面积之间有何联系?【设计意图:进一步认识平面直角坐标系中坐标点、线段、图形面积之间对应关系,为在具体问题中应该如何规范解题提供依据】2.课堂探究:例3:在平面直角坐标系中,原点O(0,0),已知点A(0,3),B(4,0),求三角形OAB的面积;【设计意图:通过例题,引导学生利用数形结合思想解决此类问题,让学生感受求解三角形面积需要找到三角形的“底”和“高”对应线段,应用“底×高÷2”直接计算面积,同时规范学生作答,板书时紧扣思考3中平面直角坐标系内的点与图形面积联系】变式1:在平面直角坐标系中,已知点A(0,3),B(4,0),C(-2,0),求三角形CAB的面积;【设计意图:通过变式,让学生经历求平面直角直角坐标系中有关三角形面积问题,对此类问题的解决方案有一个系统的方法】练习1:在平面直角坐标系中,已知点A(3,4),B(4,0),C(-2,4),求三角形CAB的面积;【设计意图:由图形的差异,让学生明白三角形的底不一定在“下面”,引导学生去找钝角三角形的高,使学生更加熟练的掌握由点到线段再到三角形面积的求解过程】例4:已知A(-3,3),B(2,-2),C(6,1),求△ABC面积?思考1:此时△ABC的面积可以采用“底×高÷2”吗?为什么?思考2:那如何计算△ABC的面积?【设计意图:让学生明白平面直角坐标系内的三角形不是所有面积都可以用“底×高÷2”,让学生明白为什么此类三角形不能用直接法,进而让学生学会判断哪类图形不可以直接法求三角形面积,同时引出间接法“割补法”,将三角形问题转化为四边形问题进行解决。

初二数学平面直角坐标系面积问题

初二数学平面直角坐标系面积问题

初二数学平面直角坐标系面积问题一、概述在初中数学学习中,平面直角坐标系是一个重要的概念。

在这个坐标系中,我们可以通过两个数值来确定平面上的一个点的位置,进而计算出所需图形的面积。

本文将从初二数学的角度出发,探讨平面直角坐标系下的面积问题,并为大家解析面积问题的解题思路和方法。

希望能够对同学们的学习有所帮助。

二、平面直角坐标系下的基本概念1. 坐标系平面直角坐标系由两条相互垂直的直线,它们被称为坐标轴,通常用x 和y来表示。

这两条坐标轴把平面分成了四个部分,它们分别是第一象限、第二象限、第三象限和第四象限。

2. 点的坐标在平面直角坐标系中,我们可以用一个有序数对(x, y)来表示一个点P 的坐标,其中x为点P在x轴上的坐标,y为点P在y轴上的坐标。

3. 面积的计算在平面直角坐标系中,我们可以通过连接坐标轴上的点和直线,来确定一个图形的面积。

面积的计算方法有很多种,例如利用基本几何图形的面积公式进行计算,或者利用积分的方法进行计算。

三、常见的面积计算题型1. 长方形的面积计算我们来看一个简单的例子。

如果给出了一个长方形的两个顶点的坐标,我们要计算这个长方形的面积该怎么做呢?解题思路:(1)首先计算长方形的边长,可以利用坐标点之间的距离公式进行计算。

(2)根据长方形的面积公式S=长×宽,计算出长方形的面积。

2. 三角形的面积计算另外一个常见的题型是给出三角形的三个顶点的坐标,要求计算三角形的面积。

解题思路:(1)利用三角形的面积公式S=(1/2)×底边长度×高,计算出三角形的面积。

(2)可以利用向量运算的方法进行计算,例如计算三角形的两条边的向量,然后利用向量叉乘的方法得到三角形的面积。

3. 多边形的面积计算对于给出多边形的各个顶点的坐标,要求计算多边形的面积这样的题型,我们可以采用分割成若干个三角形,再分别计算每个三角形的面积,最后将各个三角形的面积相加来得到多边形的面积。

(完整版)平面直角坐标系中的面积问题

(完整版)平面直角坐标系中的面积问题
平面直角坐标系中的面积问题
陈玲萍
问题1 已知平面直角坐标系中,点A(1,-2), B(-4,-2),C(1,3).
则①线段AB与x轴的位置关系 平行,线段 AB的长度为 5 ; ②线段AC与y轴的位置关系 平行 ,线段 AC的长度为 5 。
平行x轴的直线上的AB两点间的距离为:AB= xA xB 平行y轴的直线上的AC两点间的距离为:AC= yA yC
AD
44 2
8
(2)A(0,5),B(0,3),C(3,1);
如图,过点C做CD⊥AB
∵A(0,5),B(0,3),C(3,1)
∴CD=3,AB=2

SABC
1 ABCD 1 23 3
2
2
小结
平面直角坐标系中,求三角形的面积, 关键在于找到平行x轴或平行y轴的线 段作为规则图形的底和高。
F
∴BE=3,CF=3
∴ SABC SABD SACD
1 AD• BE 1 AD• CF
E
2
2
1 33 1 33
2
2
9
F
E



问题4
在平面直角坐标系中,四边形OABC的顶点 坐标分别为O(0,0),A(5,0),B(3,4), C(0,3),计算这个四边形的面积。
方法总结





问题2
• 求下列三角形的面积: • (1)A(1,4),B(0,0),C(4,0); • (2)A(0,5),B(0,3),C(3,1);
(1)A(1,4),B(0,0),C(4,0); 由图,过点A作AD⊥BC
∵A(1,4),B(0,0),C(4,0)
∴AD=4,BC=4

专题07 一次函数中的面积问题精讲(解析版)

专题07 一次函数中的面积问题精讲(解析版)

专题07 一次函数中的面积问题精讲一、平面直角坐标系中面积的几种求法面积问题是中考的一个重点知识点,考查方式灵活多样,很多题目有创新性,能很好考查学生的灵活运用知识的能力.我们除了要熟知常见图形的面积公式外,在平面直角坐标系中还要懂得以下几种面积的方法: 方法一、割补法割补方法不仅仅只有一种,要灵活使用.方法二、铅垂高、水平宽法=21=2ABC ABC S CD OAS CE OB⨯⨯⨯⨯△△ 二、典型例题选讲题1. 如图1-1所示,把Rt △ABC 放在直角坐标系内,其中∠CAB =90°,BC =5,点A 、B 的坐标分别为(1,0)、(4,0).将△ABC 沿x 轴向右平移,当点C 落在直线y =2x ﹣6上时,线段BC 扫过的面积为( )图1-1A .4B .8C .16D .12 【答案】C .【解析】如图1-2所示.图1-2设C 点移动到直线y =2x ﹣6上的点为C ’. ∵点A 、B 的坐标分别为(1,0)、(4,0), ∴AB =3.∵∠CAB =90°,BC =5,∴在Rt △ABC 中,由勾股定理得:AC =4. ∴A ′C ′=4.∵点C ′在直线y =2x -6上, ∴2x -6=4,解得 x =5.即OA ′=5, ∴CC ′=5-1=4.∴四边形BB ’C ’C 是平行四边形,面积 =4×4=16. 即线段BC 扫过的面积为16,故答案为:C .题2. 已知一次函数2y x a =+与y x b =-+的图象都经过A (2-,0),且与y 轴分别交于B 、C 两点,则△ABC 的面积为 ( ).A . 4B . 5C . 6D . 7 【答案】C .【解析】因为y =2x +a 与y =-x +b 的图象都经过A (-2,0), 所以0=2×(-2)+a , 解得:a =4, 又因为0=2+b 解得:b =-2y =2x +4、y =-x -2与y 轴分别交于B 、C 两点 ∴B (0.4),C (0,-2),三角形ABC 的面积=2×6÷2=6. 故答案为:C .题3. (河北中考)如图3-1所示,在平面直角坐标系xOy 中,A (0,5),直线x =-5与x 轴交于点D ,直线y =-38x -398与x 轴及直线x =-5分别交于点C ,E .点B ,E 关于x 轴对称,连接AB . (1)求点C ,E 的坐标及直线AB 的解析式; (2)若S =S △CDE +S 四边形ABDO ,求S 的值;(3)在求(2)中S 时,嘉琪有个想法:“将△CDE 沿x 轴翻折到△CDB 的位置,而△CDB 与四边形ABDO 拼接后可看成△AOC ,这样求S 便转化为直接求△AOC 的面积,如此不更快捷吗?”但大家经反复验算,发现S △AOC ≠S ,请通过计算解释他的想法错在哪里.图3-1【答案】见解析【解析】解:(1)y =-38x -398,令y =0,有0=-38x -398,解得:x =-13,即C (-13,0).令x =-5,则有y =-38×(-5)-398=-3,即E (-5,-3).∵点B ,E 关于x 轴对称, ∵B (-5,3). ∵A (0,5),∵设直线AB 的解析式为y =kx +5, ∵-5k +5=3, ∵k =25,∵直线AB 的解析式为y =25x +5.(2)由(1)知E (-5,-3), ∵DE =3. ∵C (-13,0),∵CD =-5-(-13)=8, ∵S ∵CDE =12CD ·DE =12.由题意知OA =5,OD =5,BD =3, ∵S 四边形ABDO =12(BD +OA )·OD =20,∵S =S ∵CDE +S 四边形ABDO =12+20=32.(3)由(2)知S =32,在∵AOC 中,OA =5,OC =13, ∵S ∵AOC =12OA ·OC =652=32.5,∵S ≠S ∵AOC .理由:由(1)知直线AB 的解析式为y =25x +5,令y =0,则0=25x +5,∵x =-252≠-13,∵点C 不在直线AB 上,即点A ,B ,C 不在同一条直线上, ∵S ∵AOC ≠S .题4. 已知一次函数的图象过点(0,3),且与两坐标轴所围成的三角形面积为3, 则其表达式为( ) A . y =1.5x +3B . y =-1.5x +3C . y =1.5x +3或y =-1.5x +3D . y =1.5x -3或y =-1.5x -3【答案】C .【解析】解:设该一次函数与x 轴的交点坐标为(a ,0), 由题意得:1332a ⨯⨯=, 解得:a =±2, 当a =2时,设直线解析式为y =kx +3,将(2,0)代入,求得k =-1.5; 同理求得,当a =-2时,k =1.5.所以函数解析式为:y =1.5x +3或y =-1.5x +3,故答案为C .题5. 如图5-1所示,已知一次函数y =kx +b 的图象经过A (-2,-1),B (1,3)两点,并且交x 轴于点C ,交y 轴于点D .图5-1(1)求该一次函数的解析式;(2)求∵AOB 的面积. 【答案】见解析.【解析】解:(1)把A (-2,-1),B (1,3)代入y =kx +b ,得:⎩⎪⎨⎪⎧-2k +b =-1,k +b =3. 解得⎩⎨⎧k =43,b =53.∵一次函数的解析式为y =43x +53.(2)把x =0代入y =43x +53,得y =53,∵D 点坐标为(0,53).∵S ∵AOB =S ∵AOD +S ∵BOD =12×53×2+12×53×1=52.题6. 已知,一次函数y kx b =+的图像与正比例函数13y x =交于点A ,并与y 轴交于点(0,4)B -,△AOB 的面积为6,则kb = 【答案】203-或4. 【解析】解:因为一次函数y kx b =+的图像与y 轴交于点(0,4)B -, ∴b =-4,OB =4, 设A 点横坐标为a , 因为△AOB 的面积为6, 所以162a OB ⨯⨯=, 即a =3或-3,点A 的坐标为(3,1)或(-3,-1) 将A 点坐标代入4y kx =-,得: k =53或-1 所以kb = 203-或4. 故答案为:203-或4.题7. 如图7-1所示,点G ,D ,C 在直线a 上,点E ,F ,A ,B 在直线b 上,若a ∥b ,Rt △GEF 从如图所示的位置出发,沿直线b 向右匀速运动,直到EG 与BC 重合.运动过程中△GEF 与矩形ABCD 重合部分的面积(S )随时间(t )变化的图象大致是( )图7-1A B C D【解析】根据题意可得:①F、A重合之前没有重叠面积;②F、A重叠之后,重叠部分面积逐渐增大,且增加的速度越来越快;③△EFG完全进入且F与B重合之前,重叠部分的面积是三角形的面积,不变,④F与B重合之后,重叠部分的面积逐渐减小,减小的速度越来越慢,直至最后重叠部分的面积为0.综上所述,只有B选项图形符合.故答案为:B.题8. 如图8-1所示,已知直线y=2x+3与直线y=-2x-1.(1)求两直线交点C的坐标;(2)求∵ABC的面积.(3)在直线BC上能否找到点P,使得S∵APC=6,若能,请求出点P的坐标,若不能请说明理由。

平面直角坐标系中面积动点问题

平面直角坐标系中面积动点问题

平面直角坐标系提升练习热身题:如图,在长方形OABC中,O为平面直角坐标系的原点,点A坐标为a,0,点C的坐标为0,b,且a、b满足+|b﹣6|=0,点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O﹣C﹣B ﹣A﹣O的线路移动.1a= ,b= ,点B的坐标为;2当点P移动4秒时,请指出点P的位置,并求出点P的坐标;3在移动过程中,当点P到x轴的距离为5个单位长度时,求点P移动的时间.题型一:已知面积求点的坐标1.已知:A0,1,B2,0,C4,31在坐标系中描出各点,画出△ABC.2求△ABC的面积;3设点P在坐标轴上,且△ABP与△ABC的面积相等,求点P的坐标.2、已知:如图,△ABC的三个顶点位置分别是A1,0、B﹣2,3、C﹣3,0.1求△ABC的面积是多少2若点A、C的位置不变,当点P在y轴上时,且S△ACP =2S△ABC,求点P的坐标3若点B、C的位置不变,当点Q在x轴上时,且S△BCQ =2S△ABC,求点Q的坐标3、如图,在平面直角坐标系2、在平面直角坐标系中,O为坐标原点,过点A8,6分别作x轴、y轴的平行线,交y轴于点B,交x轴于点C,点P是从点B出发,沿B→A→C以2个单位长度/秒的速度向终点C 运动的一个动点,运动时间为t秒.1直接写出点B和点C的坐标B , 、C , ;2当点P运动时,用含t的式子表示线段AP的长,并写出t的取值范围;3点D2,0,连接PD、AD,在2条件下是否存在这样的t值,使S△APD =SABOC,若存在,请求出t值,若不存在,请说明理由.3、点Px,y在第一象限,且x+y=8,点A的坐标为6,0,设△OPA的面积为S.1用含x的式子表示S,写出x的取值范围;2当点P的横坐标为5时,△OPA的面积为多少3当S=12时,求点P的坐标;4△OPA的面积能大于24吗为什么4、如图,在平面直角坐标系中,已知A0,a,Bb,0,Cb,c三点,其中a、b、c满足关系式|a﹣2|+b﹣32=0,c ﹣42≤01求a、b、c的值;2如果在第二象限内有一点Pm,,请用含m的式子表示四边形ABOP的面积;3在2的条件下,是否存在点P,使四边形ABOP的面积与△ABC的面积相等若存在,求出点P的坐标,若不存在,请说明理由.题型二:坐标系中转化角度1、已知:P4x,x﹣3在平面直角坐标系中.1若点P在第三象限的角平分线上,求x的值;2若点P在第四象限,且到两坐标轴的距离之和为9,求x的值.2、在平面直角坐标系中,O为原点,B0,6,A8,0,以点B为旋转中心把△ABO逆时针旋转,得△A′BO′,点O,A旋转后的对应点为O′,A′,记旋转角为β.1如图1,若β=90°,求AA′的长;2如图2,若β=120°,求点O′的坐标.3、如图,平面直角坐标系中,将线段AB平移,使点A0,3平移到A′5,0,B平移到B′1,﹣31则B点的坐标为;2求△AB′B的面积:3A′B′的延长线交y轴于C,点D、E分别是x轴、射线A′,B′上的点.若∠ABD的平分线BF的反向延长线交CE于点H,∠ECO的平分线交BH于点G,求∠HGC的度数.4、如图,在平面直角坐标系中,Aa,0,D6,4,将线段AD平移得到BC,使B0,b,且a、b满足|a﹣2|+=0,延长BC交x轴于点E.1填空:点A , ,点B , ,∠DAE= °;2求点C和点E的坐标;3设点P是x轴上的一动点不与点A、E重合,且PA>AE,探究∠APC与∠PCB的数量关系写出你的结论并证明.题型三:规律题1、如图,在平面直角坐标系中,第一次将△OAB变换成△OA1B1,第二次将△OA1B1变换成△OA2B2,第三次将△OA2B2变换成△OA3B3.1观察每次变换前后的三角形的变化规律,若将△OA3B3变换成△OA4B4,则A4的坐标是,B4的坐标是.2若按第1题找到的规律将△OAB进行n次变换,得到△OAn Bn,比较每次变换中三角形顶点坐标有何变化,找出规律,推测An 的坐标是,Bn的坐标是.3若按第1题找到的规律将△OAB进行n次变换,得到△OAn Bn,则△OAnBn的面积S为 ;。

微专题三 平面直角坐标系中的三角形面积问题

微专题三 平面直角坐标系中的三角形面积问题

(2)(4,- 3)
作业
必做题: 练习本P24 1—5题 选做题:你还能用其他的方法完成例3吗?
课堂小结
1、你在知识上有哪些收获? 2、你在数学思想方法方面有何体会? 3、你还有哪些困惑?
小结:1,3,4
一种问题:平面直角坐标系中的三角形面积问 题
三种类型:一边在坐标轴上或平行于坐标轴 三边都不平行于坐标轴或不在坐标轴上 由平行线产生的等积变换
(1)求抛物线的解析式.
(2)如图,将直线BC沿y轴向上平移6个单位
长度后与抛物线交于D、E两点,交y轴于点G.
若P是抛物线上位于直线BC下方(不与点A,B
重合)的一个动点,连接PE,交直线BC于点
F,连接PD,DF,PB,PC.若 点P的坐标.
SPBC
10 21
SEDF
,求
(1) y x2 6x 5
四种思想:转化 、分类讨论 数形结合、函数与方程
的计算
方法一:铅垂高、水平宽法
SABC SACD SBCD
1 CD AF 1 CD BE
2
2
1 CD(AF BE) 2
1 2
CD( xB
xA)
铅垂高
水平宽
类型二 三边都不平行于坐标轴或不在坐标轴上的三角形面积
的计算
方法二:补全图形法
SABC SACD SABD SBCD
SABC S矩形ADEF SADC SBCE SABF
(或平行于坐标轴),h为AB边上 的高.

典例探究 例1 如图,一次函数 y
3 x m与反比例函数 y
3 的图象在第
一象限的交点为点A(1,n3).
x
(1)求m与n的值;
(2)设一次函数的图象与x轴交于点B,连接OA,求 AOB的面积.

专题05平面直角坐标系中求图形面积(解析版)

专题05平面直角坐标系中求图形面积(解析版)

专题05平面直角坐标系中求图形面积类型一、直接用公式求面积例1.如图,在平面直角坐标系中,点()0,4A b 为y 轴正半轴上一点,点()3,0B b 是x 轴正半轴上一点,其中b 满足()316b +=.(1)求点A ,B 的坐标.(2)点C 为x 轴上一点,且ABC 的面积为12,求C 点的坐标.【答案】(1)()0,4A ,()3,0B ;(2)点C 的坐标为()3,0-或()9,0【解析】(1)由()316b +=得1b =,∴()04A ,,()30B ,.(2)设点C 的坐标为()0x ,,则3BC x =-,由1()可知4OA =,∴1432ABC S x =⨯⨯-= 12,解得:9x =或3-.∴点C 的坐标为()30-,或()90,.【变式训练1】在平面直角坐标系中,已知点(),0A a ,(),0B b ,a 、b 满足方程组24a b a b +=-⎧⎨-=-⎩,(1)求A 、B 两点的坐标;(2)C 为y 轴正半轴上一点,且6ABC S = ,请求出C 的坐标.【答案】(1)A (-3,0),B (1,0);(2)C (0,3)【解析】(1)解方程组24a b a b +=-⎧⎨-=-⎩,解得:31a b =-⎧⎨=⎩,∴A (-3,0),B (1,0);(2)由(1)可知:AB =4,∵S △ABC =12AB •OC =6,∴12×4×OC =6,解得OC =3,∴C (0,3).故答案为:(1)A (-3,0),B (1,0);(2)C (0,3)类型二、割补法求面积例1.如图,三角形ABC 的面积等于()A .12B .1122C .13D .1132【答案】D【解析】过点A 作AD x ⊥轴于D ,如图所示:由题意可得,3BO =,3OC =,6AD =,3CD =,∴6OD =,∴ABC BOC ACDBODA S S S S ∆∆∆=--梯形111()222BO AD OD BO OC CD AD=+⋅-⋅⋅-⋅⋅111(36)63336222=+⨯-⨯⨯-⨯⨯54918222=--272=,即272ABC S ∆=,故选:D .【变式训练1】如图,连接AB 、BC 、AC ,则△ABC 的面积是()A .312B .3C .212D .2【答案】C【解析】长方形AGDE 的面积为:3×2=6,AGC 的面积:3×1÷2=1.5,CDB △的面积:2×1÷2=1,ABE △的面积:2×1÷2=1,故ABC 的面积为:6-1.5-1-1=2.5,故答案为:C ;【变式训练2】如图,三角形ABO 中,()2,3A --,()2,1B -,A B O ''' 是ABO 平移之后得到的图形,并且O 的对应点O '的坐标为()5,4.(1)作出ABO 平移之后的图形A B O ''' ,并写出A '、B '两点的坐标分别为A '______,B '_____;(2)()00,P x y 为ABO 中任意一点,则平移后对应点P 的坐标为______.(3)求ABO 的面积;【解析】(1)如图,△A 'B 'O '即为所求,A '、B '两点的坐标分别(3,1),(7,3).故答案为:(3,1),(7,3).(2)点P '的坐标为(x 0+5,y 0+4).故答案为:(x 0+5,y 0+4).(3)S △ABO =3×4-12×2×3-12×1×2-12×4×2=4.【变式训练3】在平面直角坐标系xoy 中,△ABC 的位置如图所示,点A ,B ,C 都在格点上.(1)分别写出下列顶点的坐标:A ________;B ________;(2)请在图中画出△ABC 关于y 轴对称的图形△A ′B ′C ′;(3)计算出△ABC 的面积.【答案】(1)(-1,6),(-2,0);(2)见解析;(3)152【解析】(1)由图知,点A 的坐标为(-1,6),点B 的坐标为(-2,0),故答案为:(-1,6),(-2,0)(2)由图得,点C 的坐标为(-4,3),则点A 、B 、C 关于y 轴的对称点A ′,B ′,C ′坐标分别为(1,6),(2,0),(4,3),依次连接A ′,B ′,C ′,即得△A ′B ′C ′,所得图形如图所示(3)过A 、C 作x 轴的垂线,垂足分别为D 、E则ABC AOD CED ADEC S S S S =-- 梯形111(36)31623222=⨯+⨯-⨯⨯-⨯⨯152=类型三、点的存在性问题例1.如图,在平面直角坐标系中,点B ,C 的坐标分别为(),2a a -、()3,2a a ,其中0a >,点A 为BC 的中点,若4BC =,解决下列问题:(1)BC 所在直线与x 轴的位置关系是;(2)求出a 的值,并写出点A ,C 的坐标;(3)在y 轴上是否存在一点P ,使得三角形PAC 的面积等于5?若存在,求出点P 的坐标;若不存在,请说明理由.【答案】(1)平行;(2)()1,2A ,()3,2C ;(3)存在,P 点坐标为()0,3-或()0,7【解析】(1)∵点B ,C 的坐标分别为(),2a a -、()3,2a a ,∴BC 所在直线与x 轴的位置关系是平行.故答案为:平行.(2)∵4BC =,∴()34a a --=,∴1a =,∴B (-1,2),C (3,2),∵A 为BC 的中点,∴()1,2A .(3)存在点P .设()0,P m ,∵2AC =,∴12252m ⨯⨯-=,∴3m =-或7.∴P 为()0,3-或()0,7.【变式训练1】如图,在直角坐标系中,已知()0,2A ,()3,0B ,()3,4C 三点.(1)求四边形AOBC 的面积;(2)是否存在点()0.5P x x ,,使2ABC AOBC S S = 四边形?若存在,求出点P 的坐标.若不存在,请说明理由.【答案】(1)9;(2)存在,()189P --,或(18,9)【解析】如图,∵34C (,),∴33CD ==.∵()34C ,,30B (,),∴404CB =-=,∴4312DCBO S =⨯=四边形.∵()04D ,,()02A ,,∴422DA =-=,∴11236322DCA S =⨯⨯=⨯= .∵DCA AOBC DCBO S S S =- 四边形四边形,∴1239AOBC S =-=四边形.(2)由(1)得1239AOBC S =-=四边形设存在点()0.5P x x ,,使△AOP 的面积为四边形AOBC 的面积的两倍.∵△AOP 的面积=122x x ⨯⨯=,∴29x =⨯,∴18x =±∴存在点P (18,9)或(-18,-9),使△AOP 的面积为四边形AOBC 的面积的两倍.【变式训练2】如图,A (0,3)是直角坐标系y 轴上一点,动点P 从原点O 出发,沿x 轴正半轴运动,速度为每秒2个单位长度,以P 为直角顶点在第一象限内作等腰Rt △APB .设P 点的运动时间为t 秒.(1)若AB ∥x 轴,求t 的值;(2)如图2,当t =2时,坐标平面内有一点M (不与A 重合)使得以M 、P 、B 为顶点的三角形和△ABP 全等,请直接写出点M 的坐标.【答案】(1)t 的值为1.5;(2)点M 的坐标为(3,7),(8,﹣3),(11,1).【解析】(1)过点B 作BC ⊥x 轴于点C ,如图所示.∵AO⊥x轴,BC⊥x轴,且AB∥x轴,∴四边形ABCO为矩形,∴AO=BC=3,∵△APB为等腰直角三角形,∴AP=BP,∠PAB=∠PBA=45°,∴∠OAP=90°-∠PAB=45°,∴△AOP为等腰直角三角形,∴OA=OP=3,∴t=3÷2=1.5(秒),故t的值为1.5;(2)当t=2时,OP=4,①如图3,若△ABP≌△MBP,则AP=PM,过点M作MD⊥OP于点D,∵∠AOP=∠PDM,∠APO=∠DPM,∴△AOP≌△MDP(AAS),∴OA=DM=3,OP=PD=4,∴M(8,-3);②如图,若△ABP≌△MPB,连接AM,则AP=PB=BM,∠APB=∠MBP=90︒,∴AP∥MB,且AP=MB,∴四边形APBM是平行四边形,y轴于点E,又∠APB=∠MBP=90︒,∴四边形APBM是正方形,∴AP=AM,过点M作ME⊥同理可证△AOP≌△MEA(AAS),∴OA=EM=3,OP=AE=4,∴M(3,7);③如图,若△ABP≌△MPB,则AP=BP=BM,过点M 、B 分别作x 轴的垂线,垂足分别为点F 、G ,过点M 作MH ⊥BF 于点H ,∴四边形FGMH 是矩形,∴MH =FG ,MG =HF ,同理可证△AOP ≌△PFB ≌△BHM (AAS ),∴OA =PF =BH =3,OP =BF =MH =4,∴MG =HF =BF -BH =1,OG =OP +PF +FG =11,∴M (11,1);综合以上可得点M 的坐标为(3,7),(8,-3),(11,1).【变式训练3】在平面直角坐标系中,正方形ABCD 的位置如图所示,点A 的坐标为()1,0,点D 的坐标为()0,2.延长CB 交x 轴于点1A ,作第1个正方形111A B C C ;延长11C B 交x 轴于点2A ,作第2个正方形2221A B C C ,…,按这样的规律进行下去,第2021个正方形的面积是______.【答案】404235(2⨯【解析】()()1,0,0,2,A D 正方形ABCD ,1,2OA OD ∴==,,AD AB ===190,DAO ADO DAO BAA ∠+∠=︒=∠+∠1,ADO BAA ∴∠=∠190,DOA ABA ∠=∠=︒ 1,AOD A BA ∴ ∽1,AO OD A B AB ∴=15,2AO AB A B OD ∴== 正方形111A B C C,1113222A B A C ∴====⨯同理可得:22232442A B ⎛⎫=+==⨯ ⎪⎝⎭33332A B ⎛⎫= ⎪⎝⎭······20212021202132A B ⎛⎫= ⎪⎝⎭所以第2021个正方形的面积是22021404233=5.22⎡⎛⎫⎛⎫⨯⎢ ⎪ ⎪⎝⎭⎝⎭⎢⎣⎦故答案为:404235.2⎛⎫⨯ ⎪⎝⎭。

求平面直角坐标系中三角形的面积

求平面直角坐标系中三角形的面积

求平面直角坐标系中三角形的面积一、一边平行于坐标轴或与坐标轴重合的三角形此类问题的求解,只需确定此边上的高即可.例1 如图1,在平面直角坐标系中,△ABC的顶点坐标分别为(-4,0),(0,4),(0,-1),求△ABC的面积.分析:根据三个顶点的坐标可以看出三角形ABC的边BC在y轴上,且BC边上的高就是点A的横坐标的绝对值,由此利用三角形的面积公式可直接求解.解:由点B,C的坐标可得BC=5,点A到BC边的距离就是点A到y轴的距离,所以S△ABC=12×BC×AO=12×5×4=10.温馨提示:当两点在平行于x轴的直线上时,两点之间的距离是两点的横坐标的差的绝对值;当两点在平行于y轴的直线上时,两点之间的距离是两点的纵坐标的差的绝对值.二、没有边与坐标轴平行或重合的三角形此类问题的求解一般是要通过转化,使之成为比较规则的图形.例2 如图2,在平面直角坐标系中,已知A(0,4),B(-3,-1),C(3,3),D(0,1),三角形ABC的边BC过点D,求△ABC的面积.分析:通过画图可以发现△ABC的每一条边都不与坐标轴重合,也不与坐标轴平行,因此,以△ABC的任意一边为底边都不容易求△ABC的面积.为了方便求解,可通过补形的方法,使之成为比较规则又易于求解的图形,从而利用相应的图形面积公式求解.解:方法一:将△ABC补成如图3所示的长方形GEFB或梯形BCEG.S△ABC=S长方形GEFB-S△AEC-S△BFC-S△BAG=BG·BF-12AE·EC-12CF·BF-12AG·BG=5×6-12×3×1-12×4×6-12×3×5=30-32-12-152=9.图3 图4方法二:如图4,分割成两个三角形,根据铅垂线与水平线求三角形的面积.S△ABC= S△ABD+ S△ACD=12AD·BE+12AD·CF=12×3×3+12×3×3=92+92=9.牛刀小试:如图5,在平面直角坐标系中,△ABC的顶点坐标分别为A(2,0),B(0,4),C(-3,2),求△ABC的面积.图5答案:如图6,过点C作CD⊥x轴于点D,则S△A BC=S梯形O BC D+S△O A B-S△A C D=12×(2+4)×3+12×2×4-12×5×2=8.图6。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档