人教版七年级下册数学第九章含参不等式以及含参不等式组的解法

合集下载

人教版数学七年级下册第9章不等式与不等式组教学设计

人教版数学七年级下册第9章不等式与不等式组教学设计
人教版数学七年级下册第9章不等式与不等式组教学设计
一、教学目标
(一)知识与技能
1.理解不等式的定义,掌握不等式的性质,能够运用不等式解决实际问题。
2.学会解一元一次不等式,包括移项、合并同类项、系数化等方法,并能够解决实际问题。
3.理解不等式组的定义,掌握解不等式组的方法,能够解决实际问题。
4.能够运用数轴表示不等式的解集,理解区间表示方法。
(3)采用讲练结合法,让学生在练习中掌握解不等式的方法,提高解题能力。
(4)小组合作学习,培养学生协作解决问题的能力,提高课堂互动性。
2.教学过程:
(1)导入:以实际情境导入,提出问题,引导学生思考,激发学习兴趣。
(2)新知:讲解不等式的性质,引导学生通过实例发现性质,加强理解。
(3)例题:讲解一元一次不等式的解法,通过典型例题,让学生掌握解题方法。
5.引导学生运用数轴表示不等式的解集,培养学生直观想象能力。
(三)情感态度与价值观
1.培养学生对待数学学习的积极态度,增强学生对数学学科的兴趣和信心。
2.引导学生认识到不等式在生活中的广泛应用,激发学生学习数学的积极性。
3.培养学生勇于探索、克服困难的精神,让学生在解决不等式问题的过程中,体验到成功的喜悦。
5.部分学生对数学学习存在恐惧心理,需要教师关注学生的情感需求,鼓励学生积极参与课堂,增强自信心。
在教学过程中,教师应充分了解学生的实际情况,针对不同层次的学生进行差异化教学,关注学生的个体发展,激发学生的学习兴趣,提高学生的数学素养。
三、教学重难点和教学设想
(一)教学重难点
1.理解并掌握不等式的性质,能够熟练运用性质解决实际问题。
3.拓展题:针对不等式组的内容,设计2-3道拓展题,要求学生运用所学知识解决问题,培养学生的综合应用能力。

人教版初中数学七年级下册第九章一元一次不等式(组)含参专题——有、无解问题课件(共12张PPT)

人教版初中数学七年级下册第九章一元一次不等式(组)含参专题——有、无解问题课件(共12张PPT)

问题反转,运用自如
问题3:如果不等式组
x x
2m 0 ① 有解,怎样确定
m 3②
m
的取值范围?
解不等式①得x≤2m 解不等式②得x≥3-m
自主操作:在数轴上画出有解的情况.
图⑧
自主分析:3-m和2m的大小关 系是?“=”能取?为什么.
2m 3-m 图⑨
3-m ≤ 2m
∴m的取值范围是:m ≥ 1
x x
2m 0 m3
你能确定不等式组的解集吗?请结合数轴分析.
析:由例题知两个不等式的解集分别为x<2m和x>3-m, 那么这两个解集在数轴上会有几种情况?
3-m
2m
图①
2m
3-m
图③
3-m 2m 图②
思考1:图①②③对应解集情况?
问题2:如果这个不等式组
x 2m 0 x m 3
无解,你能确定m
教学重点、难点
重点:
含参一元一次不等式组的分类解法.
难点:
1.一元一次不等式中字母参数的讨论, 2.一元一次不等式中运用数轴分析参数的范围.
温故知新,问题设疑
例1:解下列关于x两个不等式 (1)x-2m<0 (2)x+m>3
解:(1)得x<2m (2) 得x>3-m
问题引导,合作交流
问题1:如果将上述两个不等式联立成不等式组
x x
2m 0① m 3②
时,
不等式组无解,m的取值又会有改变吗?
解不等式①得x≤2m 解不等式②得x≥3-m
思考4:你能在数轴上画出无解的情况?
图⑥
2m 3-m 图⑦
同学们有没有画出图⑦这种情 况的?你认为不等式组无解, 会不会出现像图⑦3-m和2m两 个点重合的情况?

人教版七年级数学下册--第九章-一元一次不等式含参问题-(36PPT)

人教版七年级数学下册--第九章-一元一次不等式含参问题-(36PPT)

21、己知关于x、y的方程组
.
(1)求这个方程组的解;
(2)当m取何值时,这个方程组的解中,x大于1,y不小于-1.
解:
分析:
22、已知二元一次方程组
解:由题意得 ②+③得 代入①得k=3.
的解为
且m+n=2,求k的值.
23、已知关于x、y的二元一次方程组
(1)求这个方程组的解;(用含有m的代数式表示) (2)若这个方程组的解,x的值是负数,y的值是正数,求m的整数值.
4、已知关于x,y的二元一次方程组
,若x+y>3,则m的取值范围是( D )
A.m>1 B.m<2 C.m>3 D.m>5
5、若关于 的不等式组
A.
B.
的所有整数解的和是10,则m的取值范围是( B )
C
D.
解:
6、若方程组 A.
的解满足
B.
C.
,则a的取值是( A ) D. 不能确定
解:
7、已知关于x的不等式组
求满足条件的m的整数值.
课堂演练
1、 解:
2、 D
解:
3、 解:
4、 解:
5、 ①
结束语
谢谢大家聆听!!!
37
解:(1)

①+②得,2x=4m﹣2,解得x=2m﹣1,
①﹣②得,2y=2m+8,解得y=m+4,所以方程组的解是

(2)据题意得:
,解之得:﹣4<m< ,
所以,整数m的值为﹣3、﹣2、﹣1、0.
24、已知关于 、 的方程组
的解满足 ,求 的取值范围.
25、已知关于x,y的方程组
的解满足不等式组 解:
A.
B.

(完整版)人教版七年级数学(下册)第九章-不等式和不等式组教案

(完整版)人教版七年级数学(下册)第九章-不等式和不等式组教案

第九章《不等式与不等式组》章节计划教材分析:第一本章主要内容包括:不等式的有关概念,不等式的性质,一元一次不等式(组)的相关概念及其解法,利用一元一次不等式(组)分析与解决实际问题。

其中,以一元一次不等式(组)为工具分析解决实际问题是全章的重点,同时也是难点。

第二本章的编写思路第8章“二元一次方程组有大致相同。

类似于方程是解决具有相等关系的实际问题的数学模型一样,不等式(组)是解决具有不等关系的实际问题的数学模型。

本章也都是从丰富的实际问题出发,在分析解决实际问题的过程中,认识不等式(组)(主要是一元一次不等式(组)),学习解一元一次不等式(组)的方法。

这样的一种编排,就将利用一元一次不等式(组)分析解决实际问题贯穿于全章始终,突出重点,强调不等式(组)是解决实际问题的一种有效的数学模型。

第三本章首先从一个行程问题出发,通过分析问题中的不等关系列出不等式,由此引出不等式的概念,然后通过讨论满足不等式成立的x的取值,给出不等式的解集以及一元一次不等式的概念;接下去采用与等式的性质相类比的方式讨论了不等式的3条性质,这就为求出一元一次不等式的解集提供了依据;为了更好地体现不等式是解决实际问题的有效工具。

第四教课书安排了一节“实际问题与一元一次不等式”,探讨了商场购物、空气质量、知识竞赛等情景中的一些具有不等关系的问题,利用一元一次不等式解决这些实际问题,这里列出的不等式比以前见过的复杂,有需要去括号的,有需要去分母的等,这样就结合实际问题,在分析解决实际问题的过程中进一步学习一元一次不等式(组)的解法,最后类比一元一次方程的解法,归纳出求一元一次不等式解集的基本过程。

这样就将有关一元一次不等式的概念和解法融入到分析解决实际问题的过程中。

二元一次不等式组也是采用了这种方式进行编排。

第五本章内容主要是不等式的概念和一元一次不等式的解法,教学重点是不等式(组)的解法和用一元一次不等式解决实际问题。

通过本章学习,不仅使学生学会解一元一次不等式(组)的方法,更使学生体会不等式是解决实际问题的有效的数学模型不等式与不等式组课程标准(1)结合具体问题,了解不等式的意义,探索不等式的基本性质。

七下含参数的不等式组解法

七下含参数的不等式组解法

七下含参数的不等式组解法引言在数学中,不等式组是由多个不等式组成的集合。

解不等式组就是要找出满足所有不等式的变量取值范围。

在本文中,我们将探讨含有参数的不等式组,即其中存在一个或多个参数的情况。

含参数的一元一次不等式首先我们来看一元一次不等式,即只含有一个未知数和一个参数的不等式。

例子1:ax+b>0假设我们需要求解这个含有参数a和b的一元一次不等式。

为了方便起见,我们可以将它转化为一个方程来求解。

首先,我们将原始不等式转化为等价的方程:ax+b=0然后,我们找出使得方程成立的x值:x=−b a接下来,我们需要根据x值与a和b之间的关系来确定原始不等式的解集。

如果a>0,则当x<−ba 时,原始不等式成立;如果a<0,则当x>−ba时,原始不等式成立。

综上所述,对于给定的a和b值,在满足上述条件下,我们可以得到含参数的一元一次不等式的解集。

例子2:ax2+bx+c>0现在,我们来看一个稍微复杂一些的例子,含有参数a、b和c的二次不等式。

同样地,我们将这个不等式转化为等价的方程:ax2+bx+c=0然后,我们使用求根公式来找出方程的根:x=−b±√b2−4ac2a接下来,我们需要根据x 值与a 、b 和c 之间的关系来确定原始不等式的解集。

如果a >0,则当x <−b−√b 2−4ac 2a或x >−b+√b 2−4ac2a时,原始不等式成立;如果a <0,则当−b−√b 2−4ac2a<x <−b+√b 2−4ac2a时,原始不等式成立。

综上所述,在给定a 、b 和c 值的情况下,在满足上述条件下,我们可以得到含参数的二次不等式的解集。

含参数的多元一次不等式接下来我们将研究含有参数的多元一次不等式,即含有多个未知数和一个或多个参数的不等式。

例子1:ax +by >c假设我们需要求解这个含有参数a 、b 和c 的两个未知数x 和y 的一次不等式。

人教版数学七年级下册第九章不等式与不等式组基础知识点讲解+典型例题讲解.doc

人教版数学七年级下册第九章不等式与不等式组基础知识点讲解+典型例题讲解.doc

【本文档由书林工作坊整理发布,谢谢你的下载和关注!】不等式及其性质(基础)知识讲解【学习目标】1.了解不等式的意义,认识不等式和等式都可以用来刻画现实世界中的数量关系.2. 知道不等式解集的概念并会在数轴上表示解集.3. 理解不等式的三条基本性质,并会简单应用.【要点梳理】要点一、不等式的概念一般地,用“<”、“>”、“≤”或“≥”表示大小关系的式子,叫做不等式.用“≠”表示不等关系的式子也是不等式.要点诠释:(1)不等号“<”或“>”表示不等关系,它们具有方向性,不等号的开口所对的数较大.(2)符号读法意义“≠”读作“不等于”它说明两个量之间的关系是不相等的,但不能确定哪个大,哪个小“<”读作“小于”表示左边的量比右边的量小“>”读作“大于”表示左边的量比右边的量大“≤”读作“小于或等于”即“不大于”,表示左边的量不大于右边的量“≥”读作“大于或等于”即“不小于”,表示左边的量不小于右边的量(3)x表示未知数,对于含有未知数的不等式,当未知数取某些值时,不等式的左、右两边符合不等号所表示的大小关系,我们说不等式成立,否则,不等式不成立.要点二、不等式的解及解集1.不等式的解:能使不等式成立的未知数的值,叫做不等式的解.2.不等式的解集:对于一个含有未知数的不等式,它的所有解组成这个不等式的解集.不等式的解是具体的未知数的值,不是一个范围不等式的解集是一个集合,是一个范围.其含义:①解集中的每一个数值都能使不等式成立②能够使不等式成立的所有数值都在解集中3.不等式的解集的表示方法(1)用最简的不等式表示:一般地,一个含有未知数的不等式有无数个解,其解集是一个范围,这个范围可用最简单的不等式来表示.如:不等式x-2≤6的解集为x≤8.(2)用数轴表示:不等式的解集可以在数轴上直观地表示出来,形象地表明不等式的无限个解.如图所示:要点诠释:借助数轴可以将不等式的解集直观地表示出来,在应用数轴表示不等式的解集时,要注意两个“确定”:一是确定“边界点”,二是确定方向.(1)确定“边界点”:若边界点是不等式的解,则用实心圆点,若边界点不是不等式的解,则用空心圆圈;(2)确定“方向”:对边界点a 而言,x >a 或x ≥a 向右画;对边界点a 而言,x <a 或x ≤a 向左画. 注意:在表示a 的点上画空心圆圈,表示不包括这一点. 要点三、不等式的基本性质不等式的基本性质1:不等式两边加(或减)同一个数(或式子),不等号的方向不变.用式子表示:如果a >b ,那么a ±c >b ±c .不等式的基本性质2:不等式两边都乘(或除以)同一个正数,不等号的方向不变.用式子表示:如果a >b ,c >0,那么ac >bc (或a b c c >). 不等式的基本性质3:不等式两边乘(或除以)同一个负数,不等号的方向改变.用式子表示:如果a >b ,c <0,那么ac <bc (或a b c c<). 要点诠释:不等式的基本性质的掌握注意以下几点:(1)不等式的基本性质是对不等式变形的重要依据,是学习不等式的基础,它与等式的两条性质既有联系,又有区别,注意总结、比较、体会. (2)运用不等式的性质对不等式进行变形时,要特别注意性质2和性质3的区别,在乘(或除以)同一个数时,必须先弄清这个数是正数还是负数,如果是负数,不等号的方向要改变. 【典型例题】类型一、不等式的概念1.用不等式表示: (1)x 与-3的和是负数;(2)x 与5的和的28%不大于-6; (3)m 除以4的商加上3至多为5. 【思路点拨】列不等式时,应抓住“大于”、“不大于”、“不是”、“至多”、“非负数”等表示不等关系的关键性词语,进而根据这些关键词的内涵列出不等式. 【答案与解析】解:(1)x -3<0;(2)28%(x+5)≤-6;(3)34m+≤5. 【总结升华】在不等式及其应用的题目中,经常会出现一些表示不等关系的词语.正确理解这些关键词很重要.如:若x 是非负数,则x ≥0;若x 是非正数,则x ≤0;若x 大于y ,则有x -y >0;若x 小于y ,则有x -y <0等.举一反三: 【变式】(2015春•陕西校级期末)下列式子:①﹣2<0;②2x+3y <0;③x=3;④x+y 中,是不等式的个数有( ) A .1个 B .2个 C .3个 D .4个 【答案】B .类型二、不等式的解及解集2.对于不等式4x+7(x-2)>8不是它的解的是()A.5 B.4 C.3 D.2【思路点拨】根据不等式解的定义作答.【答案】D【解析】解:当x=5时,4x+7(x-2)=41>8,当x=4时,4x+7(x-2)=30>8,当x=3时,4x+7(x-2)=19>8,当x=2时,4x+7(x-2)=8.故知x=2不是原不等式的解.【总结升华】不等式的解的定义与方程的解的定义是类似的,其判定方法是相同的.3.不等式x>1在数轴上表示正确的是()【思路点拨】根据不等式的解集在数轴上表示出来的方法画数轴即可.【答案】C【解析】解:∵不等式x>1∴在数轴上表示为:故选C.【总结升华】用数轴表示解集时,应注意两点:一是“边界点”,如果边界点包含于解集,则用实心圆点;二是“方向”,相对于边界而言,大于向右,小于向左,同时还应善于逆向思维,通过读数轴写出对应不等式的解集.举一反三:【变式】如图,在数轴上表示的解集对应的是( ).A.-2<x<4 B.-2<x≤4 C.-2≤x<4 D.-2≤x≤4【答案】B类型三、不等式的性质4.(2015•浙江模拟)若x>y,则下列式子中错误的是()A.x﹣3>y﹣3 B.x+3>y+3 C.﹣3x>﹣3y D.>【思路点拨】根据不等式的性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.可得答案. 【答案】C . 【解析】解:A 、不等式的两边都减3,不等号的方向不变,故A 正确; B 、不等式的两边都加3,不等号方向不变,故B 正确; C 、不等式的两边都乘﹣3,不等号的方向改变,故C 错误; D 、不等式的两边都除以3,不等号的方向改变,故D 正确; 故选:C .【总结升华】主要考查了不等式的基本性质.“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变. 举一反三:【变式】三角形中任意两边之差与第三边有怎样的关系? 【答案】解:如图,设c ,b ,a 为任意一个三角形的三条边,则:b ac ,a c b ,c b a >+>+>+移项可得:a b c ,c a b ,b c a ->->-> 即:三角形两边的差小于第三边.【本文档由书林工作坊整理发布,谢谢你的下载和关注!】一元一次不等式的解法(基础)知识讲解【学习目标】1.理解一元一次不等式的概念; 2.会解一元一次不等式.【要点梳理】要点一、一元一次不等式的概念只含有一个未知数,未知数的次数是一次的不等式,叫做一元一次不等式,例如,2503x >是一个一元一次不等式.要点诠释:(1)一元一次不等式满足的条件:①左右两边都是整式(单项式或多项式);②只含有一个未知数; ③未知数的最高次数为1.(2) 一元一次不等式与一元一次方程既有区别又有联系: 相同点:二者都是只含有一个未知数,未知数的次数都是1,“左边”和“右边”都是整式. 不同点:一元一次不等式表示不等关系,由不等号“<”、“≤”、“≥”或“>”连接,不等号有方向;一元一次方程表示相等关系,由等号“=”连接,等号没有方向. 要点二、一元一次不等式的解法1.解不等式:求不等式解的过程叫做解不等式.2.一元一次不等式的解法:与一元一次方程的解法类似,其根据是不等式的基本性质,将不等式逐步化为:a x <(或a x >)的形式,解一元一次不等式的一般步骤为:(1)去分母;(2)去括号;(3)移项;(4)化为ax b >(或ax b <)的形式(其中0a ≠);(5)两边同除以未知数的系数,得到不等式的解集. 要点诠释:(1)在解一元一次不等式时,每个步骤并不一定都要用到,可根据具体问题灵活运用. (2)解不等式应注意:①去分母时,每一项都要乘同一个数,尤其不要漏乘常数项; ②移项时不要忘记变号;③去括号时,若括号前面是负号,括号里的每一项都要变号;④在不等式两边都乘(或除以)同一个负数时,不等号的方向要改变. 3.不等式的解集在数轴上表示:在数轴上可以直观地把不等式的解集表示出来,能形象地说明不等式有无限多个解,它对以后正确确定一元一次不等式组的解集有很大帮助.要点诠释: 在用数轴表示不等式的解集时,要确定边界和方向: (1)边界:有等号的是实心圆点,无等号的是空心圆圈; (2)方向:大向右,小向左. 【典型例题】类型一、一元一次不等式的概念1.下列式子中,是一元一次不等式的有哪些? (1)3x+5=0 (2)2x+3>5 (3)384x < (4)1x≥2 (5)2x+y ≤8 【思路点拨】根据一元一次不等式的定义判断,(1)是等式;(4)不等式的左边不是整式;(5)含有两个未知数. 【答案与解析】解:(2)、(3)是一元一次不等式. 【总结升华】一元一次不等式的定义主要由三部分组成:①不等式的左右两边分母不含未知数;②不等式中只含一个未知数;③未知数的最高次数是1,三个条件缺一不可.类型二、解一元一次不等式2.(2015•南京)解不等式2(x+1)﹣1≥3x+2,并把它的解集在数轴上表示出来. 【思路点拨】解不等式时去括号法则与解一元一次方程的去括号法则是一样的.【答案与解析】解:去括号,得2x+2﹣1≥3x +2, 移项,得2x ﹣3x≥2﹣2+1, 合并同类项,得﹣x≥1, 系数化为1,得x ≤﹣1,这个不等式的解集在数轴上表示为:【总结升华】在不等式的两边同乘以(或除以)负数时,必须改变不等号的方向. 举一反三:【变式】不等式2(x+1)<3x+1的解集在数轴上表示出来应为 ( )【答案】C3.(2015•巴中)解不等式:≤﹣1,并把解集表示在数轴上.【思路点拨】按基本步骤进行,注意避免漏乘、移项变号,特别注意当不等式两边同时乘以或除以一个负数时,不等号的方向要改变. 【答案与解析】解:去分母得,4(2x ﹣1)≤3(3x+2)﹣12, 去括号得,8x ﹣4≤9x+6﹣12, 移项得,8x ﹣9x≤6﹣12+4, 合并同类项得,﹣x≤﹣2, 把x 的系数化为1得,x≥2. 在数轴上表示为:.【总结升华】去分母时,不要漏乘没有分母的项. 举一反三: 【变式】若3511+-=x y ,14522--=x y ,问x 取何值时,21y y >. 【答案】 解:∵3511+-=x y ,14522--=x y , 若21y y >, 则有1452351-->+-x x即 6101<x ∴当6101<x 时,21y y >.4.关于x 的不等式2x -a ≤-1的解集为x ≤-1,则a 的值是_________.【思路点拨】首先把a 作为已知数求出不等式的解集,然后根据不等式的解集为x≤-1即可得到关于a 的方程,解方程即可求解. 【答案】-1【解析】由已知得:12a x -≤,由112a -=-,得1a =-. 【总结升华】解不等式要依据不等式的基本性质,注意移项要改变符号.举一反三:【变式1】如果关于x 的不等式(a+1)x <a+1的解集是x >l ,则a 的取值范围是________. 【答案】1a -<【变式2】已知关于x 的方程2233x m xx ---=的解是非负数,m 是正整数,求m 的值. 【答案】 解:由2233x m xx ---=,得x =22m -, 因为x 为非负数,所以22m-≥0,即m ≤2, 又m 是正整数,所以m 的值为1或2.【本文档由书林工作坊整理发布,谢谢你的下载和关注!】实际问题与一元一次不等式(基础)知识讲解责编:杜少波【学习目标】1.会从实际问题中抽象出不等的数量关系,会用一元一次不等式解决实际问题; 2. 熟悉常见一些应用题中的数量关系.【要点梳理】要点一、常见的一些等量关系 1.行程问题:路程=速度×时间2.工程问题:工作量=工作效率×工作时间,各部分劳动量之和=总量3.利润问题:商品利润=商品售价-商品进价,=100%⨯利润利润率进价4.和差倍分问题:增长量=原有量×增长率5.银行存贷款问题:本息和=本金+利息,利息=本金×利率6.数字问题:多位数的表示方法:例如:32101010abcd a b c d =⨯+⨯+⨯+.要点二、列不等式解决实际问题列一元一次不等式解应用题与列一元一次方程解应用题类似,通常也需要经过以下几个步骤:(1)审:认真审题,分清已知量、未知量及其关系,找出题中不等关系要抓住题中的关键字眼,如“大于”、“小于”、“不大于”、“至少”、“不超过”、“超过”等; (2)设:设出适当的未知数;(3)列:根据题中的不等关系,列出不等式; (4)解:解所列的不等式;(5)答:写出答案,并检验是否符合题意. 要点诠释:(1)列不等式的关键在于确定不等关系;(2)求得不等关系的解集后,应根据题意,把实际问题的解求出来; (3)构建不等关系解应用题的流程如图所示.(4)用不等式解决应用问题,有一点要特别注意:在设未知数时,表示不等关系的文字如“至少”不能出现,即应给出肯定的未知数的设法,然后在最后写答案时,应把表示不等关系的文字补上.如:若“设还需要B 型车x 辆 ”,而在答中应为“至少需要11辆 B 型车 ”.这一点应十分注意. 【典型例题】类型一、行程问题1.爆破施工时,导火索燃烧的速度是0.8cm/s ,人跑开的速度是5m/s ,为了使点火的战士在施工时能跑到100m 以外(包括100m )的安全地区,导火索至少需要多长? 【思路点拨】设导火索要xcm 长,根据导火索燃烧的速度为0.8cm/s ,人跑开的速度是5m/s ,为了使点导火索的战士在爆破时能跑到离爆破点100m 的安全地区,可列不等式求解. 【答案与解析】解:设导火索要xcm 长,根据题意得:1000.85x ≥解得:答:导火索至少要16cm 长.【总结升华】本题考查一元一次不等式在实际问题中的应用,关键是以100m 的安全距离作为不等量关系列不等式求解. 类型二、工程问题2.一个工程队规定要在6天内完成300土方的工程,第一天完成了60土方,现在要比原计划至少提前两天完成,则以后平均每天至少要完成多少土方? 【思路点拨】假设以后几天平均每天完成x 土方,一个工程队规定要在6天内完成300土方的工程,第一天完成了60土方,那么该土方工程还剩300-60=240土方,现在要比原计划至少提前两天完成任务,说明至多4天完成任务,用去一天,还剩4-1=3(天)则列不等式2403x≤ 解得x 即可知以后平均每天至少完成多少土方. 【答案与解析】解:设以后几天平均每天完成x 土方.由题意得:30060621x---≤ 解得: x≥80答:现在要比原计划至少提前两天完成任务,以后几天平均每天至少要完成80土方. 【总结升华】解本类工程问题,主要是找准正确的工程不等式,如本题,以天数作为基准列不等式.举一反三: 【变式】(2014春•常州期末)某人计划20天内至少加工400个零件,前5天平均每天加工了33个零件,此后,该工人平均每天至少需加工多少个零件,才能在规定的时间内完成任务?【答案】解:设以后平均每天加工x 个零件,由题意的:5×33+(20﹣5)x≥400,解得:x≥2153. ∵x 为正整数, ∴x 取16.答:该工人以后平均每天至少加工16个零件.类型三、利润问题3.水果店进了某种水果1t ,进价是7元/kg .售价定为10元/kg ,销售一半以后,为了尽快售完,准备打折出售.如果要使总利润不低于2000元,那么余下的水果至少可以按原定价的几折出售? 【答案与解析】解:设余下的水果可以按原定价的x 折出售,根据题意得:1t =1000kg10001000(107)(107)20001022x ⨯-⨯+-⨯≥ 解得:8x ≥ 答:余下的水果至少可以按原定价的8折出售.【总结升华】本题考查一元一次不等式的应用,关键以利润作为不等量关系列不等式. 举一反三: 【变式】某商品的进价为1000元,售价为2000元,由于销售状况不好,商店决定打折出售,但又要保证利润不低于20%,则商店最多打 折. 【答案】六.类型四、方案选择4.(2015•庆阳)某体育用品专卖店销售7个篮球和9个排球的总利润为355元,销售10个篮球和20个排球的总利润为650元.(1)求每个篮球和每个排球的销售利润;(2)已知每个篮球的进价为200元,每个排球的进价为160元,若该专卖店计划用不超过17400元购进篮球和排球共100个,且要求篮球数量不少于排球数量的一半,请你为专卖店设计符合要求的进货方案.【思路点拨】(1)设每个篮球和每个排球的销售利润分别为x元,y元,根据题意得到方程组;即可解得结果;(2)设购进篮球m个,排球(100﹣m)个,根据题意得不等式组即可得到结果.【答案与解析】解:(1)设每个篮球和每个排球的销售利润分别为x元,y元,根据题意得:,解得:,答:每个篮球和每个排球的销售利润分别为25元,20元;(2)设购进篮球m个,排球(100﹣m)个,根据题意得:,解得:≤m≤35,∴m=34或m=35,∴购进篮球34个排球66个,或购进篮球35个排球65个两种购买方案.【总结升华】本题考查了一元一次不等式的应用,二元一次方程组的应用,找准数量关系是解题的关键.【本文档由书林工作坊整理发布,谢谢你的下载和关注!】一元一次不等式组(基础)知识讲解【学习目标】1.理解不等式组的概念;2.会解一元一次不等式组,并会利用数轴正确表示出解集;3.会利用不等式组解决较为复杂的实际问题,感受不等式组在实际生活中的作用.【要点梳理】要点一、不等式组的概念定义:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组.如2562010xx->⎧⎨-<⎩,7021163159xxx->⎧⎪+>⎨⎪+<⎩等都是一元一次不等式组.要点诠释:(1)这里的“几个”不等式是两个、三个或三个以上.(2)这几个一元一次不等式必须含有同一个未知数.要点二、解一元一次不等式组1. 一元一次不等式组的解集:一元一次不等式组中几个不等式的解集的公共部分叫做这个一元一次不等式组的解集.要点诠释:(1)找几个不等式的解集的公共部分的方法是先将几个不等式的解集在同一数轴上表示出来,然后找出它们重叠的部分.(2)有的一元一次不等式组中的各不等式的解集可能没有公共部分,也就是说有的不等式组可能出现无解的情况.2.一元一次不等式组的解法解一元一次不等式组的方法步骤:(1)分别求出不等式组中各个不等式的解集.(2)利用数轴求出这些不等式的解集的公共部分即这个不等式组的解集.要点三、一元一次不等式组的应用列一元一次不等式组解应用题的步骤为:审题→设未知数→找不等关系→列不等式组→解不等式组→检验→答.要点诠释:(1)利用一元一次不等式组解应用题的关键是找不等关系.(2)列不等式组解决实际问题时,求出不等式组的解集后,要结合问题的实际背景,从解集中联系实际找出符合题意的答案,比如求人数或物品的数目、产品的件数等,只能取非负整数.【典型例题】类型一、不等式组的概念1.某小区前坪有一块空地,现想建成一块面积大于48平方米,周长小于34米的矩形绿化草地,已知一边长为8米,设其邻边为x,请你根据题意写出x必须满足的不等式.【思路点拨】由题意知,x必须满足两个条件①面积大于48平方米.②周长小于34米.故必须构建不等式组来体现其不等关系.【答案与解析】解:依题意得:8482(8)34. xx>⎧⎨+<⎩【总结升华】建立不等式组的条件是:当感知所求的量同时满足几个不等关系时,要建立不等式组,建立不等式组的意义与建立方程组的意义类似.举一反三:【变式】直接写出解集:(1)2,3xx>⎧⎨>-⎩的解集是______;(2)2,3xx<⎧⎨<-⎩的解集是______;(3)2,3xx<⎧⎨>-⎩的解集是_______;(4)2,3xx>⎧⎨<-⎩的解集是_______.【答案】(1)2x>;(2)3x<-;(3)32x-<<;(4)空集.类型二、解一元一次不等式组2. 解下列不等式组(1)313112123x xx x+<-⎧⎪⎨++≤+⎪⎩①②(2)213(1)4x x x+>-≥-.【思路点拨】解不等式组时,要先分别求出不等式组中每个不等式的解集,然后画数轴,找它们解集的公共部分,这个公共部分就是不等式组的解集.【答案与解析】解:(1)解不等式①,得x<-2解不等式②,得x≥-5故原不等式组的解集为-5≤x<-2.其解集在数轴上表示如图所示.(2)原不等式可变为:213(1)3(1)4x xx x+>-⎧⎨-≥-⎩①②解①得:4x<解②得:12x≥-故原不等式组的解集为142x-≤<.【总结升华】确定一元一次不等式组解集的常用方法有两种:(1)数轴法:运用数轴法确定不等式组的解集,就是将不等式组中的每一个不等式的解集在数轴上表示出来,然后找出它们的公共部分,这个公共部分就是此不等式组的解集;如果没有公共部分,则这个不等式组无解,这种方法体现了数形结合的思想,既直观又明了,易于掌握.(2)口诀法:为了便于快速找出不等式组的解集,结合数轴将其总结为朗朗上口的四句口诀:同大取大、同小取小、大小小大中间找,大大小小无解了.举一反三:【变式】(2015•江西样卷)解不等式组,并把解集在数轴上表示出来.【答案】解:,∵解不等式①得:x≤1,解不等式②得:x>﹣2,∴不等式组的解集为:﹣2<x≤1.在数轴上表示不等式组的解集为:类型三、一元一次不等式组的应用3. “六·一”儿童节,学校组织部分少先队员去植树.学校领到一批树苗,若每人植4棵树,还剩37棵;若每人植6棵树,则最后一人有树植,但不足3棵,这批树苗共有多少棵.【思路点拨】设有x名学生,则由第一种植树法,知道一共有(4x +37)棵树;第二种植树法中,前(x-1)名学生中共植6(x-1)棵树;最后一名学生植树的数量是:[(4x +37)- 6(x-1)]棵,这样,我们就探求到第一个不等量关系:最后一人有树植,说明第二种植树法中前(x-1)名学生植树的数量要比树木总数少,即(4x +37)>6(x-1);第二种植树法中,最后一名学生植树的数量不到3棵,也就是说[(4x +37)- 6(x-1)]<3,或者理解为:[(3x +8)- 5(x-1)]≤2,这样,我们就又找到了第二个不等量关系式.到此,不等式组即建立起来了,接下来就是解不等式组.【答案与解析】解:设有x名学生,根据题意,得:4376114376132x xx x+>-⎧⎨+--<⎩()()()()(),不等式(1)的解集是:x<2121;不等式(2)的解集是:x>20,所以,不等式组的解集是:20<x<2121,因为x是整数,所以,x=21,4×21+37=121(棵)答:这批树苗共有121棵.【总结升华】解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.【变式】一件商品的成本价是30元,若按原价的八八折销售,至少可获得10%的利润;若按原价的九折销售,可获得不足20%的利润,此商品原价在什么范围内? 【答案】解:设这件商品原价为x 元,根据题意可得:88%303010%90%303020%x x ≥+⨯⎧⎨<+⨯⎩ 解得:37.540x ≤<答:此商品的原价在37.5元(包括37.5元)至40元范围内.4.(2015•桂林)“全民阅读”深入人心,好读书,读好书,让人终身受益.为满足同学们的读书需求,学校图书馆准备到新华书店采购文学名著和动漫书两类图书.经了解,20本文学名著和40本动漫书共需1520元,20本文学名著比20本动漫书多440元(注:所采购的文学名著价格都一样,所采购的动漫书价格都一样). (1)求每本文学名著和动漫书各多少元?(2)若学校要求购买动漫书比文学名著多20本,动漫书和文学名著总数不低于72本,总费用不超过2000元,请求出所有符合条件的购书方案. 【思路点拨】(1)设每本文学名著x 元,动漫书y 元,根据题意列出方程组解答即可; (2)根据学校要求购买动漫书比文学名著多20本,动漫书和文学名著总数不低于72本,总费用不超过2000元,列出不等式组,解答即可. 【答案与解析】 解:(1)设每本文学名著x 元,动漫书y 元,可得:,解得:,答:每本文学名著和动漫书各为40元和18元;(2)设学校要求购买文学名著x 本,动漫书为(x+20)本,根据题意可得:,解得:,因为取整数,所以x 取26,27,28;方案一:文学名著26本,动漫书46本; 方案二:文学名著27本,动漫书47本; 方案三:文学名著28本,动漫书48本.【总结升华】此题主要考查了二元一次方程组的应用,不等式组的应用,关键是弄清题意,找出题目中的等量关系与不等关系,列出方程组与不等式组.【变式】A 地果农收获荔枝30吨,香蕉13吨,现计划租用甲、乙两种货车共10辆,将这批水果全部运往B 地. 已知甲种货车可装荔枝4吨和香蕉1吨,乙种货车可装荔枝香蕉各2吨.(1)若要安排甲、乙两种货车时有几种方案?请你帮助设计出来.(2)若甲种货车每辆要付运输费2000元,乙种货车每辆要付运输费1300元,那么选择哪种方案使运费最少?运费最少是多少? 【答案】解:(1)设租甲种货车x 辆,则租乙种货车(10x -)辆,依题意得:42(10)302(10)13x x x x +-≥⎧⎨+-≥⎩,解得57x ≤≤, 又x 为整数,所以5x =或6或7, ∴有三种方案:方案1:租甲种货车5辆,乙种货车5辆; 方案2:租甲种货车6辆,乙种货车4辆; 方案3:租甲种货车7辆,乙种货车3辆. (2)运输费用:方案1:2000×5+1300×5=16500(元); 方案2:2000×6+1300×4=17200(元); 方案3:2000×7+1300×3=17900(元). ∴方案1运费最少,应选方案1.【本文档由书林工作坊整理发布,谢谢你的下载和关注!】《不等式与一次不等式组》全章复习与巩固(基础)知识讲解【学习目标】1.理解不等式的有关概念,掌握不等式的三条基本性质;2.理解不等式的解(解集)的意义,掌握在数轴上表示不等式的解集的方法;3.会利用不等式的三个基本性质,熟练解一元一次不等式或不等式组;4.会根据题中的不等关系建立不等式(组),解决实际应用问题;5.通过对比方程与不等式、等式性质与不等式性质等一系列教学活动,理解类比的方法是学习数学的一种重要途径.【知识网络】。

七年级数学下册 第九章 不等式与不等式组知识点归纳 (新版)新人教版

七年级数学下册 第九章 不等式与不等式组知识点归纳 (新版)新人教版

学习资料第九章 不等式与不等式组一、知识结构图二、知识要点(一、)不等式的概念1、不等式:一般地,用不等符号(“<"“>”“≤"“≥”)表示大小关系的式子,叫做不等式,用“≠"表示不等关系的式子也是不等式.不等号主要包括: > 、 < 、 ≥ 、 ≤ 、 ≠ 。

2、不等式的解:使不等式左右两边成立的未知数的值,叫做不等式的解.3、不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集(即未知数的取值范围).4、解不等式:求不等式的解集的过程,叫做解不等式。

5、不等式的解集可以在数轴上表示,分三步进行:①画数轴②定界点③定方向。

规律:用数轴表示不等式的解集,应记住下面的规律:大于向右画,小于向左画,等于用实心圆点,不等于用空心圆圈。

(二、)不等式的基本性质不等式性质1:不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向 不变 。

用字母表示为:如果b a >,那么c b c a ±>±;如果b a <,那么c b c a ±<± ;⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧与实际问题组一元一次不等式法一元一次不等式组的解不等式组一元一次不等式组性质性质性质不等式的性质一元一次不等式不等式的解集不等式的解不等式不等式相关概念不等式与不等式组)(321不等式的性质2:不等式的两边同时乘以(或除以)同一个 正数 ,不等号的方向 不变 。

用字母表示为: 如果0,>>c b a ,那么bc ac >(或c b c a >);如果0,><c b a ,不等号那么bc ac <(或cb c a <); 不等式的性质3:不等式的两边同时乘以(或除以)同一个 负数 ,的方向 改变 。

用字母表示为: 如果0,<>c b a ,那么bc ac <(或c b c a <);如果0,<<c b a ,那么bc ac >(或cb c a >); 解不等式思想——就是要将不等式逐步转化为x a 或x <a 的形式。

人教版七年级数学下册第九章不等式与不等式组PPT课件全套

人教版七年级数学下册第九章不等式与不等式组PPT课件全套

2、继续观察下面这几个式子,完成下面的填空。
∵ab ∴ 3a 3b ∴
a b 4 4
等式的基本性质2:
同一个数 等式的两边都乘以(或除以) (除数不能为零),所得的结果仍是等式。
仿照下表,分组探讨
不等式
不等式的两边都加上 (或减去)同一个数
结果
与原不等式比较不 等号的方向是否改 变了
7>4
课后作业
上交作业:教科书习题9.1第1,2题.;
人教版 七年级 下册
第九章
不等式与不等式组
9.1.2 不等式的性质
讲授新课
1、观察下面这几个式子,完成下面的填空。 ∵
ab ∴ a3 b3 2 2 ∴ a ( x 2 y) b ( x 2 y)
等式的基本性质1:
同一个数 等式的两边都加上(或减去) 或 同一个式子,所得的结果仍是等式。
用“>”或“<”填空: ( 1) 4 > - 6 (2)-1 < 0 (3) -8< -3 (4) -4.5 < -4 (5) 7+3> 4+3 (6) 7+(-3)> 4+(-3) (7) 7×3> 4×3 (8) 7×(-3)< 4×(-3)
仿照下表,分组探讨
不等式的两边都乘以 不等式
(或除以)同一个
从路程上看,汽车要在12:00之前驶过A地,则以 这个速度行驶2/3小时的路程要超过50千米,即
50 2 x 3
2 x 50 3
讲授新课
一.不等式:
50 2 2 像 、 x 50 这样用“>”或“<”表示 x 3 3
大小关系的式子,叫做不等式.
如:-3>-5,2≠6,x≤1等等都是不等 式.
练习:下列说法正确的是( A ) A. x=3是2x>1的解

最新新人教版七年级下册数学第九章知识梳理

最新新人教版七年级下册数学第九章知识梳理

新人教版七年级下册数学第九章知识梳理第九章知识梳理1.不等式、不等式的解、不等式的解集、解不等式用符号“>”或“<”表示大小关系的式子叫做不等式;用“≠”“≥”“≤”表示不等关系的式子也叫不等式;使不等式成立的未知数的值叫做不等式的解;一般地,一个含有未知数的不等式的所有解,组成这个不等式的解集;求不等式的解集的过程叫做解不等式。

2.不等式的性质性质1:不等式两边加(或减)同一个数(或式子),不等号的方向不变; c b c a c b c a b a ->-+>+>或则若,,性质2:不等式两边乘(或除以)同一个正数,不等号的方向不变; 若)(,0,cb c a bc ac c b a >>>>或则 性质3:不等式两边乘(或除以)同一个负数,不等号的方向改变;)(,0,cb c a bc ac c b a <<<>或则若 3.一元一次不等式只含有一个未知数,并且未知数的最高次数是1,这样的不等式叫做一元一次不等式。

4.解一元一次不等式的步骤:与解一元一次方程相类似,基本步骤是:去分母、去括号、移项、合并同类项、系数化为1,特别注意:当系数化为1时,不等式两边乘(或除以)同一个负数,不等号的方向改变5.不等式解法与方程解法的对比从形式上看,一元一次不等式与一元一次方程是类似的。

求一元一次方程时利用等式的两个基本性质求得一元一次方程的解,解一元一次不等式解集利用不等式的三条性质 (类比思想) 例如:解下列方程和不等式是原方程的解系数化为合并同类项移向去括号去分母)(解:21.52.42.366243.262436.16)12(223131222=∴=-=--+-=-+-=++-=++-=+x x x x x x x x x x x 是原不等式的解)(解:22266243624366)12(223131222≤∴≤-≥--+-≥-+-≥++-≥++-≥+x x x x x x x x x x x 6.一元一次不等式组的解集一元一次不等式组的解集:一元一次不等式组中各不等式解集的公共部分,叫做这个不等式组的解集。

人教版初中数学七年级下册第9章一元一次不等式(组)含参专题——有、无解问题(专题课)教案

人教版初中数学七年级下册第9章一元一次不等式(组)含参专题——有、无解问题(专题课)教案

人教版初中数学七年级下册第九章一元一次不等式(组)含参专题——有、无解问题(专题课)教案核心素养:1.使学生加深对一元一次不等式组和它的解集的理解,会用数轴确定含参数的一元一次不等式组的参数范围;2.培养学生探究、独立思考的学习习惯,感受数形结合的作用,熟悉并掌握数形结合的思想方法,提高分析问题和解决的能力;3.提升学生之间合作与交流以及对问题的探讨能力,从中发现数学的乐趣.【教学重难点】重点:含参一元一次不等式组的分类解法难点:1.一元一次不等式中字母参数的讨论2.一元一次不等式中运用数轴分析参数的范围【教学过程】1.问题引导 合作交流出示问题:请同学们解下列两个不等式(1)x-2m<0,(2)x+m >3并思考m 的取值范围. 同学们不难得出不等式(1)的解为x <2m ;(2)的解为x >3-m.引导分析m 的取值范围. 师引导,生回答:任意实数.[问题1]如果将上述两个不等式联立成不等式组⎩⎨⎧>+<-302m x m x ,你能确定不等式组的解集吗? 师提示学生画数轴 ,问:能画几种情况[问题2]如果这个不等式组无解,你能确定m 的取值范围吗?(学生分组讨论)(借助数轴)师生一起分析:如果不等式组无解,则2m <3-m ,解得m <1。

确定一下“<”要不要添加“=”(这是参数取值问题中的难点)学生借助数轴讨论.师生总结:2m 和3-m 在两个不等式的解中都不包含,所以2m 可以等于3-m ,即m ≤1.2.变式拓展 强化理解变式1:若不等式组⎩⎨⎧⋅⋅⋅⋅⋅>+⋅⋅⋅≤-②①302m x m x 无解,这时m 的取值会有变化吗?解不等式①得x ≤2m 解不等式②得x >3-m(学生分组探究)引导:虽然第一个不等式“<”改成“≤”通过数轴可以看到由于和第二个不等式的解集不包含3-m ,所以2m ≤3-m ,m 的取值范围仍然是m ≤1.变式2:如果不等式组变化为⎩⎨⎧⋅⋅⋅⋅⋅≥+⋅⋅⋅≤-②①302m x m x ,这时m 的取值又会有改变吗?(学生分组探究)由于两个不等式都含有等号,这时2m 和3-m 可能是公共点,而要想使不等式组无解,2m 和3-m 不能重合,只能2m <3-m ,所以m 不能等于1,即m <1.3.问题反转[问题3]如果不等式组⎩⎨⎧⋅⋅⋅⋅⋅≥+⋅⋅⋅≤-②①302m x m x 有解,怎样确定 m 的取值范围?把两个不等式的解集在数轴上表示出,同学们观察数轴 ,不难得出要想使不等式组有解,只要2m ≥3-m ,即m ≥1这样两个不等式的解集有公共部分,不等式组有解,所以m 的取值范围m ≥14.方法小结 归纳步骤解含参一元一次不等式(组)有、无解问题时注意掌握四个步骤:一解 .解不等式组,用参数分别表示出两个不等式的解集;二画.借助数轴进行视觉观察,画出有无解的情况;三验:验证端点取舍判断等号是否可取;四:列出不等式,确定取值范围5,拓展演练 题型再变[问题4]下面这种类型的一元一次不等式组如何确定字母参数取值范围?例:已知不等式组⎩⎨⎧⋅⋅⋅-<⋅⋅⋅⋅⋅⋅⋅⋅≥-②①22-10x x a x 的解集是x >1,求a 的取值范围?学生分组解出每个不等式的解集:解①得:x ≥a 解②得:x >1因为不等式的解集是x >1,(学生分组探讨):a 的位置在数轴上应该在哪个位置? 分析得出:a 在数轴上的位置应该在1的左侧.把不等式组的解集在数轴上表示出来:即a <1,[思考3]a 可不可以等于1?因为a=1时不等式组的解集仍然是x >1.所以a 可以等于1,即a 的取值范围a ≤15.基础过关1.若不等式组⎩⎨⎧≤≥-m x x 062 无解,求m 的取值范围? 2.若不等式组⎩⎨⎧>+<--xx a x x 422)2(3有解,求a 的取值范围?3.若不等式组⎩⎨⎧+>+<+1137m x x x 的解集是x >3,求m 的取值范围?。

人教版七年级下册数学第9章 不等式与不等式组全章课件

人教版七年级下册数学第9章 不等式与不等式组全章课件
10天的工作量 < 500件
(2)“提前完成任务”是什么意思?
10天的工作量 ≥ 500件
(三)深入探究,阶段小结
解:每个小组每天生产x件产品,
依题意得: 3×10x<500, ① 3×10(x+1)>500. ②
①式解得:x
<
16
2 3
②式解得:x
>15
2 3
∴不等式组的解集为
15
2 3
<x
< 16
问题3:
从刚才的练习中你发现了什么?请你把你的发现和合作小组的同学 交流.
⑴ 5>3, 5+2 > 3+2, 5-2 > 3-2; ⑵ -1<3, -1+2 < 3+2,-1-3< 3-3; ⑶ 6<2, 6×5 < 2×5,
6×(-5) >2×(-5); ⑷ -2<3, (-2)×6 < 3×6,
依题意得:40x≤2400 且 40x≥2000
(二)概念认识
c>10-3 且 c<10+3
c >10-3 c <10+3
一元一次 不等式组
40x≤2400 且 40x≥2000
40x≤2400
【问题3】
40x≥2000
请大家判断一下,下列式子是一元一次不等式
组吗?一元一次不等式组有什么特点?
x - 3 >0
23 从图中可以找到两个不等式解集的公共部分, 得不等式组的解集是: x >3
(五)练习巩固
【问题 7】完成课本 140 页练习 1.
(六)课堂小结
【问题 8】本节课你学到了哪些知识?
第九章 不等式与不等式组

含参不等式(实数解问题)(人教版)

含参不等式(实数解问题)(人教版)

含参不等式(实数解问题)(人教版)一、简介本文档主要讨论含参不等式的实数解问题。

含参不等式是指在不等式中含有未知数的不等式,我们将通过实例详细介绍解决这类问题的方法和步骤。

二、解决方法解决含参不等式的实数解问题可以采取以下步骤:1. 确定不等式的范围:首先,要确定不等式的范围,即确定未知数的取值范围。

这可以通过对不等式进行变形和化简来实现。

2. 根据范围解不等式:根据确定的范围,将未知数代入不等式,并求解。

可以采用试探法、代入法或图像法等方法求解。

3. 验证解的有效性:求解出不等式的解之后,需要验证这些解是否满足原始的不等式。

通过将解代入不等式并判断不等式是否成立来验证解的有效性。

三、实例分析以下是一个实例分析,展示了如何解决含参不等式的实数解问题:例题:求解不等式 |x - a| < b,其中 a > 0,b > 0。

解:首先,根据不等式 |x - a| < b 的定义,可以得到两个不等式:1) x - a < b;2) -(x - a) < b。

将两个不等式进行化简:1) x < a + b;2) x > a - b。

因此,不等式的解是 a - b < x < a + b。

需要注意的是,这个解是根据 a > 0,b > 0 的条件得出的。

接下来,我们需要验证解的有效性。

将解代入原始不等式 |x - a| < b 可得:1) |(a - b) - a| = b,成立;2) |(a + b) - a| = b,成立。

因此,解 a - b < x < a + b 是原始不等式的实数解。

四、总结通过本文档的介绍,我们了解到解决含参不等式实数解问题的方法和步骤。

关键是确定范围、带入求解,并验证解的有效性。

通过实例的分析,我们可以更好地掌握和应用这些方法,解决含参不等式的实数解问题。

以上是对含参不等式(实数解问题)(人教版)的文档概述,希望对您有所帮助。

含参不等式(多项式解问题)(人教版)

含参不等式(多项式解问题)(人教版)

含参不等式(多项式解问题)(人教版)引言本文档旨在介绍并解决人教版教材中的含参不等式(多项式解问题)。

我们将探讨该类问题的基本概念、解题思路和解题方法。

基本概念含参不等式(多项式解问题)是指含有未知参数的不等式,其解集可以用一元多项式的形式表示。

通过求解该多项式,我们可以找到不等式的解集。

解题思路解决含参不等式(多项式解问题)的关键思路如下:1. 确定不等式的形式:根据题目给出的不等式关系,确定不等式的类型,如大于等于、小于等于等。

2. 求解多项式:将含有未知参数的不等式转化为一元多项式,然后通过求解多项式找到不等式的解集。

3. 分析解集的范围:根据题目要求,分析解集的范围并进行简化,去除不在范围内的解。

解题方法解决含参不等式(多项式解问题)的常用方法如下:1. 代入法:将含参不等式中的参数分别代入多项式,求解多项式得到解集。

2. 预估法:根据参数的取值范围,预估不等式解集的范围,然后逐个检验解集的合法性,得出最终解。

3. 图像法:利用图像、函数图像等工具,观察不等式解集的特点和变化趋势,进而得到解集。

以上方法可以根据具体题目的特点和要求选择合适的方法进行求解。

结论含参不等式(多项式解问题)是数学中常见的问题类型,在解题过程中需要准确把握不等式的类型、求解多项式和分析解集的范围。

通过代入法、预估法和图像法等解题方法,我们可以解决人教版教材中的含参不等式(多项式解问题)。

多练相关题目,加深对该类问题的理解和掌握。

感谢阅读本文档,希望能对你的研究和解题有所帮助!如有任何问题,请及时与我联系。

人教版七年级初中数学下册第九章不等式与不等式组-不等式及其解集PPT课件

人教版七年级初中数学下册第九章不等式与不等式组-不等式及其解集PPT课件

2.判断下列说法是否正确?
(1) x=2是不等式x+3<4的解;
(× )
(2) 不等式x+1<2的解有无穷多个; ( √ )
(3) x=3是不等式3x<9的解
( ×)
(4) x=2是不等式3x<7的解集; ( × )
新知探究
核心知识点四:在数轴上表示不等式的解集
问题5:如何在数轴上表示出不等式x>2的解集呢? 先在数轴上标出表示2的点A 则点A右边所有的点表示的数都大于2,而点A左边所有的
我们很容易知道圆球的质量 大于砝码的质量,即x > 50.
新知探究
问题2:一辆轿车在一条规定车速应高于60km/h,且低于100 km/h的高速
公路上行驶,如何用式子来表示轿车在该高速公路上行驶的路程s(km)与行
驶时间x(h)之间的关系呢?
根据路程与速度、时 间之间的关系可得: s>=3是2x-3<7
的一个解
联系
某个解定是解集中的一员
满足一个不等式的未 知数的所有值
全体
如:x<5是2x-3<7的解集
解集一定包括 了某个解
课堂练习
1.下列说法正确的是( A )
A. x=3是2x+1>5的解 B. x=3是2x+1>5的唯一解 C. x=3不是2x+1>5的解 D. x=3是2x+1>5的解集
点表示的数都小于2
因此可以像图那样表示不等式的解集x>2.
新知探究
-1 0
把表示2 的点A 画成空心
圆圈,表示解集不包括2.
A
123456
解集的表示方法:
第一种:用式子(如x>2),即用最简形式的不等式 (如x>a或 x<a)来表示。

【最新】人教版七年级数学下册第九章《不等式组的解集及求法》公开课课件.ppt

【最新】人教版七年级数学下册第九章《不等式组的解集及求法》公开课课件.ppt

指点迷津
• 9、春去春又回,新桃换旧符。在那桃花盛开的地方,在这醉人芬芳的季节,愿你生活像春天一样阳光,心情像桃花一样美丽,日子像桃子一样甜蜜。 2020/12/152020/12/15Tuesday, December 15, 2020
• 10、人的志向通常和他们的能力成正比例。2020/12/152020/12/152020/12/1512/15/2020 11:48:00 PM • 11、夫学须志也,才须学也,非学无以广才,非志无以成学。2020/12/152020/12/152020/12/15Dec-2015-Dec-20 • 12、越是无能的人,越喜欢挑剔别人的错儿。2020/12/152020/12/152020/12/15Tuesday, December 15, 2020 • 13、志不立,天下无可成之事。2020/12/152020/12/152020/12/152020/12/1512/15/2020
。2020年12月15日星期二2020/12/152020/12/152020/12/15
• 15、会当凌绝顶,一览众山小。2020年12月2020/12/152020/12/152020/12/1512/15/2020
• 16、如果一个人不知道他要驶向哪头,那么任何风都不是顺风。2020/12/152020/12/15December 15, 2020

THE END 17、一个人如果不到最高峰,他就没有片刻的安宁,他也就不会感到生命的恬静和光荣。2020/12/152020/12/152020/12/152020/12/15
谢谢观看
-2
4
【点拨】按照解一元一次不等式的方法求解,注意把解集表示在数轴上 .
把不等式①和②的解集在数轴上表 示出来:

人教版七年级数学(下册)第九章不等式和不等式组教案

人教版七年级数学(下册)第九章不等式和不等式组教案

第九章不等式与不等式组教材内容本章的主要内容包括:一元一次不等式(组)及其相关概念,不等式的性质,一元一次不等式(组)的解法及解集的几何表示,利用一元一次不等式分析、解决实际问题。

教材以实际问题为例引出不等式及其解集的概念,然后类比一元一次方程,引出一元一次不等式的概念。

为进一步讨论不等式的解法,接着讨论了不等式的性质,并运用它们解简单的不等式。

在此基础上,教材从一个选择购物商店问题入手,对列、解一元一次不等式作了进一步的讨论,并归纳一元一次不等式与一元一次方程的异同及应注意的问题。

最后,结合三角形三条边的大小关系,引进了一元一次不等式组及其解集,并讨论了一元一次不等式组的解法。

教学目标〔知识与技能〕1、了解一元一次不等式(组)及其相关概念;2、理解不等式的性质;3、掌握一元一次不等式(组)的解法并会在数轴上表示解集;4、学会应用一元一次不等式(组)解决有关的实际问题。

〔过程与方法〕1、通过观察、对比和归纳,探索不等式的性质,在利用它解一元一次不等式(组)的过程中,体会其中蕴涵的化归思想;2、经历“把实际问题抽象为一元一次不等式”的过程,体会一元一次不等式(组)是刻画现实世界中不等关糸的一种有效的数学模型.〔情感、态度与价值观〕1、通过类比一元一次方程的解法从而更好地去掌握一元一次不等式的解法,树立辩证唯物主义的思想方法;2、在利用一元一次不等式(组)解决问题的过程中,感受数学的应用价值,提高分析问题、解决问题的能力。

重点难点一元一次不等式(组)的解法及应用是重点;一元一次不等式(组)的解集和应用一元一次不等式(组)解决实际问题是难点。

课时分配9.1不等式………………………………………………………4课时9.2实际问题与一元一次不等式……………………………… 3课时9.3一元一次不等式组………………………………………… 2课时9.4课题学习利用不等式分析比赛……………………… 1课时本章小结……………………………………………………… 2课时9.1.1不等式及其解集[教学目标]1、了解不等式和一元一次不等式的概念;2、理解不等式的解和解集,能正确表示不等式的解集。

不等式含参题型及解题方法初一下册

不等式含参题型及解题方法初一下册

不等式含参题型及解题方法初一下册一、不等式含参题型介绍不等式含参题型是初中数学中的重要知识点,通常在初一下册的数学教学中进行学习和训练。

不等式含参题型是指含有未知数的不等式,通过对不等式进行变形求解未知数的取值范围。

二、不等式含参题型的解题方法1.确定不等式的类型和形式在解不等式含参题型时,首先要确定不等式的形式,包括一元一次不等式、一元二次不等式等等。

根据不等式形式的不同,采取相应的解题方法。

2.移项变形对于一元一次不等式,通常采用移项变形的方法进行求解。

通过在不等式两边进行加减运算,将含有未知数的项移到一边,将常数项移到另一边,从而得到未知数的取值范围。

3.化简并求解对于一元二次不等式,通常需要先将不等式进行化简,然后再通过代数方法或图像法求解。

化简包括合并同类项、配方等步骤,通过化简后的形式求解未知数的取值范围。

4.运用不等式性质在解不等式含参题型时,还可以运用不等式的性质进行求解。

常用的不等式性质包括加法性质、乘法性质等,通过这些性质对不等式进行变形和运算,从而得到未知数的取值范围。

5.综合运用在实际的不等式含参题型中,通常需要综合运用以上的方法进行求解。

需要根据具体的不等式形式和题目要求,选择合适的解题方法进行求解,从而得到正确的结果。

三、不等式含参题型的典型例题及解析题目一:已知不等式2x + 3 < 7,求x的取值范围。

解析:首先将不等式进行移项变形,得到2x < 4。

然后将不等式两边都除以2,得到x < 2。

所以不等式2x + 3 < 7的解集为x < 2。

题目二:已知不等式x^2 - 3x + 2 > 0,求x的取值范围。

解析:首先将不等式进行化简,得到(x-1)(x-2) > 0。

然后通过代数方法或图像法对不等式进行求解,得到x < 1或x > 2。

所以不等式x^2 - 3x + 2 > 0的解集为x < 1或x > 2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

含参不等式以及含参不等式组的解法
不等式在中考中的运用,往往掺杂参数来增加难度,我们只要读清楚题目找到解题思路便能迎刃而解了。

本节课我们就重点讲讲如何读题去寻找解题思路。

含参不等式:
解不等式5(x-1)<3x+1
通过去括号、移项、合并同类项等一系列运算可以求出解为:x<3 求不等式
57x -<3
2
-x 的最小整数解. 通过去括号、移项、合并同类项等一系列运算可以求出解为:x>8
31
,故可以得出最小整数为4.
在这些需要讨论的情况下,等号最后讨论才方便,不会讨论重合。

例题:1、求不等式kx+2>2x-3的解集 移项、合并同类项、讨论取值
2、(1)求不等式解集mx+a>nx+b 移项、合并同类项、讨论取值
(2)(m-1)x>a 2+1对于任意x 都成立,则参数m 的值为 练习 :1、求不等式kx+2>3的解集
2、(1)求不等式mx-2<-7-nx 的解集 (2)求不等式m 2x+1<-x+5的解集
3、关于x 的方程5x-2m=-4-x 的解满足2<x<10,求m 的取值范围。

2、解关于x 的不等式组⎩⎨⎧+->+-<-8
)21(563x m x mx mx
mx
3、如果一元一次不等式组⎪⎩⎪⎨⎧≥≤≤-a
x x 4
32
(1)有解,求a 的取值范围。

(2)无解,求a 的取值范围。

(3)有且只有一个解,求a 的取值范围。

(4)只有两个整数解,求a 的取值范围。

1、只要朝着一个方向奋斗,一切都会变得得心应手。

20.6.156.15.202021:5021:50:33Jun-2021:50
2、心不清则无以见道,志不确则无以定功。

二〇二〇年六月十五日2020年6月15日星期一
3、有勇气承担命运这才是英雄好汉。

21:506.15.202021:506.15.202021:5021:50:336.15.202021:506.15.2020
4、与肝胆人共事,无字句处读书。

6.15.20206.15.202021:5021:5021:50:3321:50:33
5、阅读使人充实,会谈使人敏捷,写作使人精确。

Monday, June 15, 2020June 20Monday, June 15, 20206/15/2020
6、最大的骄傲于最大的自卑都表示心灵的最软弱无力。

9时50分9时50分15-Jun-206.15.2020
7、自知之明是最难得的知识。

20.6.1520.6.1520.6.15。

2020年6月15日星期一二〇二〇年六月十五日
8、勇气通往天堂,怯懦通往地狱。

21:5021:50:336.15.2020Monday, June 15, 2020
亲爱的用户:
春去春又回,新桃换旧符。

在那桃花盛开的地方,在
这醉人芬芳的季节,愿你生活像春天一样阳光,心情像桃
花一样美丽,感谢你的阅读。

相关文档
最新文档