隧道塌方原因及处理措施
浅析隧道塌方原因分析及一般处理方法

浅析隧道塌方原因分析及一般处理方法一、隧道塌方的原因分析1、不良地质及水文地质条件(1)隧道穿过断层及其破碎带,或在薄层岩体的小曲褶、错动发育地段,一经开挖,潜在应力释放快、围岩失稳,小则引起围岩掉块、坍落,大则引起坍方。
当通过各种堆积体时,由于结构松散,颗粒间无胶结或胶结差,开挖后引起坍塌。
在软弱结构面发育或泥质充填物过多,均易产生较大的坍塌。
(2)隧道穿越地层覆盖过薄地段,如在沿河傍山、偏压地段、沟谷凹地浅埋和丘陵浅埋地段极易发生坍方。
(3)水是造成坍方的重要原因之一。
地下水的软化、浸泡、冲蚀、溶解等作用加剧岩体的失稳和坍落。
岩层软硬相间或有软弱夹层的岩体,在地下水的作用下,软弱面的强度大为降低,因而发生滑坍。
2、隧道设计考虑不周(1)隧道选定位置时,地质调查不细,未能作详细的分析,或未能查明可能坍方的因素。
没有绕开可以绕避的不良地质地段。
(2)缺乏较详细的隧道所处位置的地质及水文地质资料,引起施工指导或施工方案的失误。
3、施工方法和措施不当(1)施工方法与地质条件不相适应;地质条件发生变化,没有及时改变施工方法;工序间距安排不当;施工支护不及时,支撑架立不合要求,或抽换不当“先拆后支”;地层暴露过久,引起围岩松动、风化、导致坍方。
(2)喷锚支护不及时,喷射混凝土的质量、厚度不符合要求。
(3)按新奥法施工的隧道,没有按规定进行量测,或信息反馈不及时,决策失误、措施不力。
(4)围岩爆破用药量过多,因震动引起坍塌。
(5)对危石检查不重视、不及时,处理危石措施不当,引起岩层坍塌。
4、隧道塌方的一般前兆(1)水文地质条件的变化,如干燥的围岩突然出水、地下水突然增多、水质由清变浊等都是可能发生塌方的前兆;(2)拱顶不断掉块,甚至较大的喷砼块相继掉落,预示着围岩即将发生塌方;(3)支护状态变形(拱架接头挤偏或压劈、喷射砼出现大量的明显裂纹或剥落等)、敲击发声清脆有力、甚至发出声响;(4)喷锚支护的水平收敛率大于0.2mm/d、拱顶下沉量大于0.1mm/d并继续增大时,说明围岩仍在发生变形,处于不稳定状态,有可能出现失稳塌方。
隧洞塌方的综合处理方案

隧洞塌方的综合处理方案隧道施工过程中,隧道塌方是一种常见的安全事故。
隧道塌方需要采取综合处理方案,处理方案的目的是保障工作人员的安全以及工程的顺利进行,下面将就隧洞塌方的综合处理方案进行介绍。
1、排水处理:如果隧洞塌方是由于山体地质条件差、地下水涌入等原因造成的,就要先做好排水工作。
隧洞在严重排水难度地段要先采取各种排水措施,保障施工的安全性。
要对洞内的排水系统进行全面排查,检查各类排水设备及管道是否有水损,及时修复。
2、支护加固:隧洞加固是降低隧道塌方风险的重要措施。
主要是通过加固隧洞结构的强度,提高隧道的承载能力和抗震能力。
加固方式可以包括预应力、矩形管廊加固、支架法等方案。
加固隧洞下部要优先考虑应加强的位置与方式,对已有的加固方式要剖析,查清其缺点,然后通过优化的方式弥补,确保施工效果的可靠性。
3、清理处理:隧洞下降导致施工材料混杂的情况要及时清理,防止垃圾和残渣堵塞洞道,影响工程的顺利进行。
洞内淤泥、松散石块等物质要及时地进行清理,对于深度较深的地方要采取人工或机械施工,确保杂物清理干净,通畅洞内的通风系统和排水系统。
4、重新设计:塌方事件一般不只是对工程和设备的部分损坏,也会对整体的工程造成一种不定性。
基于这一点,在改善设计方案的同时,要采取如改变隧道倾斜度、建设二次支撑等方案来确保施工顺利进行。
可能出现的新情况不断地改进施工方案,提高其安全性、稳妥性、便捷性和经济性。
5、提高安全关注度:一个好的安全管理是消除隧洞塌方的关键。
做好隧道塌方事故的管理,可以最大限度的保障工人和施工人员的生命安全。
压实安全责任,确保隧道作业人员正确使用防护设备,生产作业前要进行在岗教育和安全技能手续的审批,采取有效的安全防护措施,锻炼出人们关注安全的习惯。
综上所述,隧洞塌方综合处理方案需要根据具体情况进行定制,采取科学的施工方案必须要满足安全、环保、经济高效的要求,综合采用各种措施,通过融合的方式,将各个措施的优点发扬光大。
隧道坍塌处理方案

隧道坍塌处理方案目录一、前言 (2)1.1 编制目的 (2)1.2 编制依据 (3)二、隧道坍塌原因分析 (4)2.1 自然因素 (4)2.2 人为因素 (5)三、隧道坍塌预防措施 (6)3.1 加强地质勘探 (7)3.2 优化设计方案 (8)3.3 提高施工质量 (9)3.4 完善应急预案 (11)四、隧道坍塌应急处理流程 (12)4.1 应急响应 (13)4.2 现场处置 (13)4.3 救援与疏散 (14)4.4 事故调查与处理 (16)五、隧道坍塌处理技术 (17)5.1 堵塞物清除 (18)5.2 衬砌加固 (20)5.3 支护结构修复 (21)5.4 隧道排水 (22)六、案例分析 (23)七、总结与展望 (24)7.1 实践经验总结 (25)7.2 未来发展趋势 (26)一、前言随着城市建设的不断发展和交通需求的日益增长,隧道工程在现代社会中扮演着越来越重要的角色。
在隧道建设过程中,不可避免地会遇到各种地质和环境问题,其中隧道坍塌事故尤为严重。
制定一套科学、合理且实用的隧道坍塌处理方案至关重要。
本处理方案旨在针对隧道坍塌事故,明确应急处理原则和目标,为救援人员提供有效的技术支持和操作指南。
该方案还将对隧道坍塌原因进行深入分析,提出针对性的预防措施,降低类似事故的发生概率。
在本处理方案中,我们将充分考虑隧道坍塌的各种可能因素,包括地质条件、施工工艺、材料质量等,并结合国内外先进经验和技术,确保方案的实用性和可操作性。
我们还将在方案中强调应急救援的重要性,提高应对隧道坍塌事故的整体能力。
本处理方案将为隧道坍塌事故的处理提供有力的技术支持和操作指导,为保障人民生命财产安全和社会稳定做出贡献。
1.1 编制目的本处理方案的编制目的在于明确隧道坍塌事故的处理原则、步骤和措施,以确保在发生隧道坍塌事件时,能够迅速、有序、高效地开展应急处置工作,保障人民群众生命财产安全,最大程度地减少事故损失。
通过制定详细的处理方案,为现场指挥人员提供指导,确保各项救援措施的有效实施,也为后续的事故调查分析和经验总结提供重要的参考依据。
隧道塌方发生的原因及处理措施

隧道塌方发生的原因及处理措施摘要:隧道塌方是施工中较常发生的安全事故之一。
所谓隧道塌方是指施工过程中由于应力作用洞顶与两侧的部分岩石和泥沙土大量塌落的现象。
隧道塌方事故随时可能发生在整个隧道施工的过程中,隧道开挖、施工支护甚至在隧道衬砌之后都有可能发生塌方。
一旦发生隧道塌方事故,带来的后果不可谓不严重。
不仅对施工人员造成极大的人身安全威胁,还延长了隧道的施工工期、增大了工程预算、极大程度的破坏了机械设备和降低了施工单位的施工质量。
隧道塌方有高发性和高危性两大特点,除了了给施工安全带来严重的威胁,还给社会造成了不良的影响。
如何减少隧道塌方,是施工和设计都应该重视的问题。
文章介绍了隧道塌方的主要类型及发生机理,说明了隧道塌方发生的原因以及处理措施。
关键词:隧道塌方;发生原因了;处理措施;前言:提起隧道施工,对于大多数土木工程专业的行内人士来说并不会感到陌生。
然而对于业余人士来说,还是一片茫然。
“什么叫隧道?”隧道——以任何方式修建,最终用于表面以下的条形建筑物,其空洞内部净空断面在2m2以上者叫做隧道。
塌方一般是指在高地应力区,隧道开挖后的围岩应力调整过程中,由于岩体弹性应变能量释放,造成岩体发生一种带有塌方前声响的岩体开裂、岩块剥落的一种地质灾害现象。
一、隧道塌方的主要类型及发生机理1.洞口塌方由于洞口段一般为堆积层或风化严重、破碎的岩体,其自稳能力及整体稳定性均较差。
同时处于浅埋地段,若在进洞前未对边仰坡采取相应的技术措施或技术措施不到位时,进洞时或进洞后将可能引起洞口顶端的围岩发生应力重分布,在重力作用下出现下沉或开裂变形。
当这些变形发展到一定程度时,极限平衡就被打破,导致大面积的整体失稳,从而发生坍塌。
2.洞内塌方洞内塌方包括洞内岩质塌方和洞内土质塌方,分别针对的是岩石隧道和土质隧道。
当岩质隧道开挖时,其周边的岩石处于悬空状态,同时发生下沉或收敛变形,以释放其内部应力。
由于岩石体内存在层理及节理,使周边的部分岩块在重力作用下具有下落和挤出的趋势。
隧道塌方的原因分析、注意事项和处理措施方案

、注意事项和处理措
施方案
汇报人:
日期:
目录
• 隧道塌方现象概述 • 隧道塌方的原因分析 • 隧道塌方预防注意事项 • 隧道塌方处理措施方案 • 结论与展望
01
隧道塌方现象概述
隧道塌方的定义
• 隧道塌方是指隧道内顶部或侧壁土体、岩石等物料在外部或内部因素作用下,失去稳定性而 发生坍塌的现象。隧道塌方是隧道工程中严重的事故之一,对工程建设和运营安全都会造成 极大的影响。
施工监控
在施工过程中,加强对隧道围岩、支护结构等的 监控,及时发现异常情况,采取相应措施。
3
安全管理
加强施工现场的安全管理,提高施工人员的安全 意识和操作技能,确保施工过程中的安全。
处理措施方案
应急处理
在发生隧道塌方时,立即启动应急预 案,组织专业人员进行抢险救援,确
保人员安全。
排水处理
加强隧道排水处理,降低地下水位, 减少水文地质条件对隧道稳定性的影
对塌方区域进行加固处理 ,如采用钢支撑、喷射混 凝土等方法,确保隧道结 构稳定。
后期处理
隧道检测
对处理后的隧道进行全面检测, 确保隧道结构安全。
恢复工程
对受损的隧道设施进行恢复,如 照明、通风、排水等系统,确保
隧道正常运营。
总结经验教训
对塌方事件进行总结,分析原因 ,提出改进措施,防止类似事件
再次发生。
这些隧道塌方事故都 造成了巨大的人员伤 亡和财产损失,对于 隧道建设和运营安全 敲响了警钟。因此, 在隧道工程建设和运 营过程中,必须加强 对隧道塌方的防范和 处理工作,确保工程 建设和运营的安全。
02
隧道塌方的原因分析
地质因素
不良地质条件
隧道塌方事故应急措施

隧道塌方事故应急措施
施工的大部分隧道采用矿山钻爆法,由于隧道围岩地质变化或者爆破不当等原因,使隧道周边围岩破碎,导致塌方,造成人员伤亡或财产损失。
(1)当施工现场的监控人员发现土方或建筑物有裂纹或发出异常声音时,应立即报告给应急救援领导小组组长,并立即下令停止作业,并组织施工人员快速撤离到安全地点。
(2)当隧道坑洞、土方或建筑物发生坍塌后,造成人员被埋、被压的情况下,应急救援领导小组全员上岗,除应立即逐级报告给主管部门之外,应保护好现场,在确认不会再次发生同类事故的前提下,立即组织人员进行抢救受伤人员。
(3)当少部分土方坍塌时,现场抢救组专业救护人员要用铁锹进行撮土挖掘,并注意不要伤及被埋人员;当建筑物整体倒塌时,造成特大事故时,由现场应急救援领导小组统一领导和指挥,各有关部门协调作战,保证抢险工作有条不紊的进行。
要采用吊车、挖掘机进行抢救,现场要有人指挥并监护,防止机械伤及被埋或被压人员。
(4)被抢救出来的伤员,要由现场医疗室医生或急救组急救中心救护人员进行抢救,用担架把伤员抬到救护车上,对伤势严重的人员要立即进行吸氧和输液,到医院后组织医务人员全力救治伤员。
(5)当核实所有人员获救后,将受伤人员的位置进行拍照或录像,禁止无关人员进入事故现场,等待事故调查组进行调查处理。
隧道塌方冒顶处理措施及主要施工方法

隧道塌方冒顶处理措施及主要施工方法隧道工程是重大工程建设的重要组成部分,隧道塌方冒顶是隧道施工中常见的问题,一旦发生,不仅影响施工进度,还可能导致严重的安全事故。
隧道塌方冒顶处理措施及主要施工方法显得尤为重要。
一、隧道塌方冒顶的处理措施隧道塌方冒顶是指在隧道开挖施工过程中,地表或隧道壁出现塌方现象,导致顶部出现下陷甚至完全坍塌的情况。
针对这种情况,隧道塌方冒顶的处理措施主要包括以下几个方面:1. 紧急处理一旦发生隧道塌方冒顶,施工人员首先要保证自身的安全,迅速撤离现场。
然后立即向上级汇报,启动应急预案,组织相关专业人员进行现场勘查,评估冒顶的情况和严重程度。
2. 应急支护针对隧道塌方冒顶的现场情况,需要采取紧急支护措施,如加固支撑、临时加固顶板等,以防止冒顶加剧并对周边环境造成更大的影响。
3. 清理和修复隧道塌方冒顶发生后,需组织专业队伍对现场进行清理和修复,将塌方物清理干净,对隧道进行必要的加固和修复工作。
需要对周边环境进行评估,确保安全和环保。
4. 安全检查隧道塌方冒顶处理完毕后,需要进行安全检查,对隧道支护结构、地质情况等进行全面检测,排除安全隐患,确保隧道施工后续工作的顺利进行。
二、隧道塌方冒顶的主要施工方法隧道塌方冒顶的处理需要采取相应的施工方法,以保证施工质量和安全。
主要的施工方法包括:1. 加固支护在塌方冒顶处理过程中,加固支护是最关键的一环。
根据隧道的地质情况和塌方冒顶的特点,选择合适的支护方式,如喷锚、钢架支撑、混凝土喷射等。
通过加固支护,保证隧道的整体结构稳固,避免再次发生塌方冒顶。
2. 泥浆注浆对于隧道冒顶的泥土层,可以采用泥浆注浆的方式进行加固。
泥浆注浆是利用浆液充填和固化泥土层,提高地层的稳定性和承载能力,防止再次塌方。
3. 岩石锚杆加固在隧道岩层地质条件复杂的情况下,需要采用岩石锚杆加固的方法。
通过在岩石中插入锚杆,并注入混凝土浆液,将岩石固定在一起,增强其抗压和抗剪能力。
隧道塌方冒顶处理措施及主要施工方法

隧道塌方冒顶处理措施及主要施工方法
隧道塌方冒顶是指隧道施工或运营过程中,由于地质条件不稳定、强烈的地应力作用、长期吸水等因素影响导致隧道内部的土层垮塌或冒顶的现象。
为了保证隧道的施工和运营
安全,需要采取相应的处理措施和施工方法。
处理措施:
1. 加固支护:对隧道垮塌或冒顶的区域进行支护加固,采用钢拱架、锚杆、喷锚网
等支护措施,提高隧道的稳定性和承载能力。
2. 治理地下水:通过降低隧道周围地下水位,减少地下水对隧道稳定性的影响。
可
以采用井点排水、深层抽水、爆破疏浚等方法治理地下水。
3. 加固隧道结构:对已经存在垮塌或冒顶的隧道结构进行修复和加固处理,保证隧
道的结构安全。
4. 加强监测:对隧道的变形、应力等进行实时监测,及时发现异常情况并采取相应
的处理措施,保证隧道的安全运营。
主要施工方法:
1. 前作业法:通过在隧道前端进行开挖,同时进行支护加固,防止隧道的垮塌或冒顶。
4. 高压水喷射法:利用高压水喷射将隧道内的土层冲刷出来,同时进行支护加固。
5. 土压平衡法:通过在掌顶上设置控制气压,使土层的应力保持平衡,防止隧道的
塌方或冒顶。
隧道塌方冒顶处理措施及主要施工方法主要包括加固支护、治理地下水、加固隧道结
构和加强监测等措施,而主要施工方法包括前作业法、顶推法、钻爆法、高压水喷射法和
土压平衡法等。
这些措施和方法的选择和应用需要结合具体隧道的地质条件、工程要求和
实际情况来确定,以确保隧道工程的安全和可靠性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
隧道塌方原因及处理措施目录一、隧道塌方的原因 (1)二、塌方处理一般程序 (2)三、塌方处理实例 (3)(一)隧道概述 (3)(二)塌方过程 (4)(三)塌方段原设计情况 (5)(四)塌方可能原因分析 (5)(五)塌方处理措施 (6)(六)进度计划及人机配置 (9)(七)施工注意事项 (10)(八)处理效果 (10)四、经验教训总结 (10)隧道塌方原因及处理措施一、隧道塌方的原因目前国内在建和已建隧道工程中,均出现过不同程度的塌方现象,给建设和运营带来了较大的危害。
在此,根据新奥法原理分析隧道塌方形成的可能原因。
新奥法的主要原理是在岩体力学特征和变形规律以及莫尔理论的基础上,通过量测手段对开挖后围岩进行动态监测,并根据围岩自稳的时间和空间效应确定爆破强度、开挖速度、初支参数以及辅助施工方法等。
其力学机理是利用围岩自稳能力,及时施作初期支护和二次衬砌并与围岩形成整体受力结构。
从此原理分析隧道塌方的原因如下:(一)洞身工程地质条件差,围岩自稳能力低,施工时没来得及进行初期支护即发生坍塌。
如掌子面围岩软弱、岩体破碎、地下水发育、洞身埋深浅。
或隧区通过不良地质地段,如断层褶皱带、膨胀岩地区以及高应力岩层等。
这些复杂地质条件往往有不可预见性,给设计和施工的准确性和安全性带来较大困难。
见图1。
(二)设计过程中未能准确判断隧区地质条件,没有充分考虑不良地质对隧道的影响,特别是没有及时与现场实际地质条件进行跟踪分析,导致在围岩分级、支护参数设计以及开挖进尺要求等不合理。
(三)施工过程中没有对诸如软弱围岩、浅埋地层等不良地质体进行注浆、超前支护预处理,保证不了围岩足够的自稳能力和自稳时间;开挖爆破效果差,导致围岩应力集中,出现滑塌现象;没有按照设计和规范要求进行施工,如初支背后有空洞、初支厚度不够、锚杆的长度和数量不足以及钢架的间距过大等,致使围岩岩体间不能连成整体受力结构,保证不了支护强度与围岩滑移的力学平衡。
(四)新奥法施工是一个动态过程,对隧道进行实时监控是重要环节之一。
目前很多隧道塌方造成人员伤亡、财产损失的原因就是监控不到位。
不能在塌方隐患出现前掌握围岩变形规律,不能及时预报围岩变形情况,并进行必要的加强措施,最终导致塌方的形成。
图1 隧道塌方原因二、塌方处理一般程序总体施工原则为强加固、短清渣、快支护、实回填、勤量测。
对于小塌方可以直接进行塌体处理,对于塌方影响范围较大的分为初期处理和塌体处理两部分。
(一)初期处理1.封闭塌体面,对塌方露出的新岩面挂网喷射混凝土,防止岩体风化和继续塌落;2.必要时对塌方体实施注浆固结或设置混凝土封堵墙,以待下一步能更好的施工掘进;3.设置临时钢支撑,稳定塌方空腔;4.处理塌方影响段内侵限的初支,如注浆加固,抽换变形钢架、加设锚杆等;5.若塌方通顶,要在塌体地表修筑截排水设施,阻止地表水对塌方体的影响。
(二)塌方体处理1.加强超前支护,增设大管棚或双排小导管,保证开挖的安全性。
2.利用人工风镐,挖机配合,进行预留核心土台阶法开挖,控制好进尺长度,并及时施作初期支护。
3.利用可靠回填料对塌腔进行回填。
并尽快施作二次衬砌。
(三)监控量测全程做好地表沉降、拱顶下沉、洞内周边收敛的监控量测工作,并用数据指导施工。
三、塌方处理实例下面以新建兰新铁路元山隧道进口塌方处理为例进行总结。
(一)隧道概述图2 塌方段隧道纵断面图元山隧道位于军马一场西南方向祁连山中高山区,平均海拔3200~3800m,最高海拔为3292m。
地形起伏不大,相对高差约50m,隧道最大埋深70m。
起始里程为DK365+105~DK366+021,全长916m。
全隧位于R-10000m的平曲线上,纵坡为20‰的单面下坡。
隧道进口DK365+174~+184段于2011年3月19日晚22:00 左右发生塌方。
如图2所示。
(二)塌方过程2011年3月19日晚22:00许,DK365+180处拱顶开始掉渣,2分钟后出现塌方,现场无人员伤亡及机械破损,根据实际量测数据,塌方里程为DK365+174~+184段落,长度约为10m,塌方面积为15×15m,深度约为10m,塌方总方量约1500m3。
塌方现场形态为DK365+174~+184拱顶至地表岩土体垂直下沉,拱顶形成天窗,形状为椭圆形,如图3所示。
原施作的初支钢架在拱腰连接处被折断,边墙钢架受塌方影响变形。
塌方松散物沿隧道走向前后坡积范围约20米,塌方体多为块石、碎石及粗角砾土,岩性以砂岩为主,含少量炭质泥岩夹层。
塌方处周边岩层较为松动,可能出现再次塌方。
图3 塌方空腔形态塌方发生时,隧道掌子面开挖里程为DK365+250,仰拱里程为DK365+159,二次衬砌未施作。
塌方段初期支护施作时间为2010年9月~12月。
(三)塌方段原设计情况隧道通过区位于F8断层影响带,DK365+174~+184段地层为第四系全新统坡积粗角砾土(Q dl64),洞身为石炭系上统泥质砂岩(C Ss3),强风化,岩体破碎多呈碎块及砂砾状,埋深10~20m,隧道围岩分级为Ⅴ级,按Ⅴc-2型衬砌参数支护,超前支护为Φ42超前小导管注浆,全断面I22a型钢钢架,间距0.5m,全环30cm厚C30喷射混凝土。
采用三台阶七步开挖法施工。
(四)塌方可能原因分析1.地质因素A、该段处于F8断层影响带,岩体呈碎裂结构和松散结构,节理裂隙发育,大多数为张开节理,围岩完整性和稳定性较差;B、隧道穿越的地层岩性主要为泥质砂岩,硬度低且为强风化状态,掌子面及塌方体均出现厚度不等的炭质泥岩夹层,隧区工程地质条件差,见图4;C、塌方段拱顶距地表10~20m,属浅埋段,因高原季节性冻融现象,浅埋围岩受冻融水及反复冻胀的影响,降低自身稳定性。
图4 塌方空腔处围岩照片2.设计因素该段为已施作初支后塌方,塌方原因可能是设计未充分考虑隧区特殊地质条件如断层影响带围岩破碎,对隧道支护参数的影响,致使支护强度不够,设计参数不合理。
3.施工因数A、该段处于隧道浅埋段且围岩破碎,施工时没有进行地表注浆加固;B、洞身围岩为硬度较低的泥质砂岩,强风化,含炭质泥岩夹层,软弱围岩掌子面开挖未采用控制爆破技术,一方面光面爆破效果差,围岩应力集中,另一方面爆破装药量过大,震动效应强,可能对已初支段的稳定性造成影响;C、塌方段工程地质条件差,属于浅埋段,塌方前地表和洞内变形监测频率不够,信息反馈不及时,未能在塌方隐患出现前进行加强支护处理,如围岩径向注浆加固以防止塌方;D、施工过程未严格按照设计施工,特别是初支背后是否存在空洞,锚杆的长度及根数、钢架的型号及间距等是否符合设计还需要进一步确认。
(五)塌方处理措施塌方处理分三个阶段,先对塌方影响段围岩进行初步加固,然后处理塌方堆积体并重新施作该段初期支护,在完成塌方段二次衬砌后对塌方空腔进行回填。
塌方处理全过程实施监控量测,实时提供围岩变形情况,以指导施工。
1.塌方影响段处理A、洞内径向注浆加固:对塌方影响段DK365+169~+174实施径向注浆加固,防止塌方范围扩大。
注浆管采用Φ22打孔钢花管,长4m,间距1.5m,梅花形布置,注浆液采用水泥-水玻璃双液浆。
B、洞内空腔锁口:在洞内空腔边缘加设两榀I22a工字钢锁口,并在拱脚处分别打设4根锁脚锚管。
C、塌腔边坡喷砼加固:塌方体空腔周边坡度较陡,为防止边坡掉块,首先对边坡按1:0.5进行刷坡处理,然后喷射15cm厚C25混凝土封闭坡面。
施工时在边坡角预留踏步和施工平台。
2.塌方段处理A、采用环形开挖预留核心土法逐步开挖塌方堆积体,主要采用人工风镐掘进,小型挖机配合。
每开挖循环进尺控制在50cm,并及时换除损坏的钢架,架设新I22a工字钢,间距50cm。
钢架环向连接钢筋用Φ22钢筋,间距50cm。
铺设Φ8钢筋网,网格间距20cm×20cm。
在未塌方边墙初支面加设径向锚杆,规格按设计图处理。
B、掘进一段距离后,在钢架上部安装外模,模具采用木模,厚度不低于3cm,模板外侧利用钢筋固定稳固,模板之间缝隙要紧密,保证不漏浆。
然后初喷25cm厚C30混凝土。
C、当掘进到DK365+184时,为保证塌方前壁的稳定性,实施加强支护,即在拱顶140°范围增设双排Φ42超前小导管并注浆,长度4m,间距40cm,环向搭接1m,上层外插角控制在35°,下层外插角控制在5°~10°。
对原剥落的初支面进行复喷混凝土至设计厚度。
3.塌腔回填处理在该段围岩基本稳定后,及时施作仰拱、拱墙防排水设施和二次衬砌,待混凝土强度达到设计要求且未移动台车前,对塌腔进行回填处理。
回填料采用坍渣,对称分层回填夯实。
在接近表层应设置50cm 厚隔水粘土层,防止地表水下渗对岩土体及隧道结构的破坏,表层土应用腐殖土覆盖。
塌方空腔回填结束后,在塌方地表周边1m范围外修筑0.4m深,0.3m宽截水沟,防止地表水流入塌方空腔中的回填土体。
4.监控量测在塌方处理全过程对洞内、地表进行监控量测,及时反馈分析量测数据,指导施工。
A、洞内周边收敛、拱顶下沉量测隧道内共布置两条水平测线、两条斜测线、一条拱顶下沉线。
监控范围DK365+164~+194,纵向5m一个断面,每天观测一次。
如图5所示。
B、地表沉降观测1)塌方腔回填结束前:在DK365+154~+164和DK365+184~+204里程段纵向10m、横向5m布置测点,横向布置范围为隧道中线两侧15m范围,每天观测一次。
如图6所示。
图5 洞内收敛量测点布置示意图6 地表观测点布置示意2)塌方腔回填结束后:在DK365+174~+184里程段按上述方案布点观测。
C、监控要求监控量测严格按照有关规范和设计进行,每天测量完毕及时进行数据分析,向施工技术员和现场负责人反馈监测结论。
当洞内水平收敛值大于5mm/d或地表监测发现异常应立即通知现场人员撤离,并及时向上级回报。
当塌方段处理结束,洞内收敛小于0.2mm/d后方可停止监控。
(六)进度计划及人机配置1.进度计划(见表1)表1 进度计划2.人员安排(见表2)表2 人员安排计划3.设备配置(见表3)表3 设备配置计划(七)施工注意事项1、拱顶存在掉块可能,施工时必须佩戴安全帽。
2、洞内主要由机械作业,缩短作业时间。
现场有专人指挥,一有险情,立即组织撤离。
3、塌腔必须分层夯实,并设置隔水粘土层。
4、机械刷坡和回填土时,不得置于顺线路方向。
5、及时跟进仰拱和二衬,保证该段围岩稳定安全。
6、目前正在实施的掌子面开挖严格采用控制爆破。
(八)处理效果根据以上方案结合现场实际,安全有序的完成元山隧道塌方处理各项工作,目前洞内及地表仍在进行监控测量,围岩情况和初支变形处于安全可控状态。
四、经验教训总结1、软弱浅埋围岩段的隧道施工,须严格按照监控量测方案对洞内和地表实施动态监测,及时分析量测数据,反馈信息用以指导施工;2、对围岩破碎,自稳能力差的隧道开挖,应做到光面爆破,加大超前支护强度,即短进尺、弱爆破、强支护;3、确保初支混凝土与岩面的粘结力、初支的强度符合规范设计,使初支与岩体形成强有力的支撑系统;4、在隧道掘进前,分析研究浅埋段地表注浆加固的必要性。