数学物理方程的基本知识
数学物理方程知识点归纳
数学物理方程知识点归纳数学和物理是息息相关的学科,数学在物理中起着重要的作用,许多物理规律都可以用数学方程式表达。
在学习物理时,掌握数学方程式是必不可少的,以下是数学物理方程知识点的归纳。
1.牛顿第一定律牛顿第一定律又称为惯性定律,它表明物体保持运动状态的惯性,只有外力才能改变物体的运动状态。
牛顿第一定律的数学表达式为F=ma,即力等于质量乘以加速度。
2.牛顿第二定律牛顿第二定律是物理学中最重要的定律之一,它描述了物体的运动状态和所受的力之间的关系。
牛顿第二定律的数学表达式为a=F/m,即加速度等于力除以质量。
3.牛顿第三定律牛顿第三定律又称为作用与反作用定律,它表明对于每一个作用力,都存在一个相等而反向的反作用力。
牛顿第三定律的数学表达式为F1=-F2,即作用力等于反作用力的相反数。
4.万有引力定律万有引力定律是描述物体之间万有引力作用的定律,它表明两个物体之间的引力与它们的质量成正比,与它们之间的距离的平方成反比。
万有引力定律的数学表达式为F=Gm1m2/d2,即引力等于万有引力常数乘以两个物体的质量除以它们之间的距离的平方。
5.波动方程波动方程是描述波动现象的方程,它可以用来描述声波、光波等波动现象。
波动方程的数学表达式为y(x,t)=Asin(kx-ωt+φ),即位移等于振幅乘以正弦函数,其中k是波数,ω是角频率,φ是初相位。
6.热传导方程热传导方程是描述热传导现象的方程,它可以用来描述物体内部的温度分布随时间的变化。
热传导方程的数学表达式为∂u/∂t=k∇2u,即温度变化率等于热扩散系数乘以温度梯度的二阶导数。
7.量子力学方程量子力学方程是描述微观粒子运动的方程,它可以用来描述电子、质子等粒子的运动和相互作用。
量子力学方程的数学表达式为Hψ=Eψ,即哈密顿算符作用于波函数等于能量乘以波函数。
8.电动力学方程电动力学方程是描述电场和磁场相互作用的方程,它可以用来描述电磁波、电荷运动等现象。
数学物理方程知识点
数学物理方程知识点
Chapter 1:绪论
1.偏微分方程的基本概念名词
2.三大类方程的典型物理模型:弦振动、热传导、
3.二阶方程的标准简化:用坐标变换化简二阶项、用v=ue!"!!"化简一次项
Chapter 2:波动方程
1.D’Alembert公式——Cauchy 初值问题:
半区域用延拓法或特征线法、非齐次方程右端用叠加原理、
2.分离变量法——矩形区域混合初边值问题:
方程分离、特征值与特征函数求解、初值用特征函数展开确定系数
非齐次方程右端用叠加原理、叠加原理一般公式
非齐次边界先化成齐次边界、边界条件最先考虑
3.三维波动方程球平均法——Cauchy 初值问题
三维积分公式的一般表达、极坐标表达
4.二维波动方程降维法——Cauchy 初值问题
二维积分公式的一般表达、极坐标表达
5.能量积分——解的唯一性和稳定性
6.解的无穷远渐进形态
Chapter 3:热传导方程
1.Fourier 变换法——Cauchy 初值问题:1 维或n 维公式
2.分离变量法——矩形混合初边值问题:
place 变换法
4.圆域上的热传导方程、极坐标、Bessel 函数
5.能量积分——解的唯一性和稳定性
6.极值原理——解的唯一性和稳定性
Chapter 4:调和方程
1.分离变量法——Drichlet 问题
圆域内外(内外Poisson 公式)、扇形区域、环形区域、矩形区域、球形区域
非齐次问题先齐次化,或用特征函数法
2.Green 公式、能量积分、变分原理、基本解、基本积分公式、平均值公式、极值原理、唯
一性和稳定性。
3.Green 函数:上班平面、球形区域。
数学物理方程的重点
一.无界问题的特征线法求解求解1.一维无界弦振动方程的达朗贝尔公式(特征线法在弦振动方程的应用)求解法 1.1齐次方程两端无界弦振动方程的求解 齐次弦振动方程及初始条件:⎩⎨⎧==+∞<<-∞>=-)()0,(),()0,(,0,02x x u x x u x t u a u t xx tt ψϕ其方程为+∞<<-∞>=-x t u a u xx tt ,0,02,其特征方程为022=-⎪⎭⎫⎝⎛a dt dx ,2,1c at x =±所以at x +=ξ,at x -=ηηξu u u x +=,ηξu a u a u t ⨯-⨯=,ηηξηξξu u u u xx ++=2,ηηξηξξu a u a u a u tt 2222+-=)()()()(),(0042at x G at x F G F t x u u u u a u xx tt -++=+=⇒=⇒=-=-ηξξηξη由初始条件)()(')(')0,(),()()()0,(x x aG x aF x u x x G x F x u t ψϕ=-==+=来确定⎰=---xx dbb x G x G a x F x F a 0)()]0()([)]0()([ψ)0()0()(1)()(0x G x F db b a x G x F xx -+=-⎰ψ)()()(x x G x F ϕ=+)(2)0()0()(21)(0x x G x F db b a x F xx ϕψ+-+=⎰)(212)0()0()(21)(0at x x G x F db b aat x F at x x ++-+=+⎰+ϕψ)(2)0()0()(21)(0x x G x F db b a x G xx ϕψ+---=⎰ )(2)()()(21)(0at x at x G at x F db b a at x G atx x -+-----=-⎰-ϕψ)()(),(at x G at x F t x u -++=⎰+-+-++=atx atx db b a at x at x t x u )(21)]()([21),(ψϕϕ(1)此公式为达朗贝尔公式 1.2单侧无界弦振动齐次方程的求解⎪⎩⎪⎨⎧>=>==>>=-0,0),0(),()0,(),()0,(0,0,02t t u t t x x u x x u x t u a u t xx tt ψϕ先求出对应双侧无界弦振动方程⎩⎨⎧ψ=Φ=+∞<<-∞>=-)()0,(),()0,(,0,02x x u x x u x t u a u t xx tt 其中要求)(),(x x ψΦ为奇函数又已知其右侧函数表达式可以求出求出左侧表达式⎩⎨⎧<--≥=Φ0),(0),()(x x x x x ϕϕ,⎩⎨⎧<--≥=ψ0),(0),()(x x x x x ψψ 将其带入达朗贝尔公式可求出对应双侧无界弦振动方程的解⎰+-ψ+-Φ++Φ=atx atx db b a at x at x t x u )(21)]()([21),( 只要令0)(21)]()([210),(,0=Φ+Φ-Φ⇒==⎰-db b a at at t x u x atat又令0>x ,⎪⎪⎩⎪⎪⎨⎧<+---+>+-++=⎰⎰+--+-atx at x atx at x at x db b a at x at a a at x db b a at x at x t x u )(,)(21))](()([21,)(21)]()([21),(ϕϕϕϕϕϕ 此),(t x u 即为单侧无界弦振动齐次方程的解 1.3零初始条件的非齐次弦振动方程的求解⎩⎨⎧==>=-0)0,(,0)0,(0),,(2x u x u t t x f u a u t xx tt 设);,(τt x w 为下面齐次方程的解⎩⎨⎧==>=-),(),(,0),(,02ττττx f x u x u t u a u t xx tt 则⎰=td t x w t x u 0);,(),(ττ为零初始条件的非齐次弦振动方程的解(将),(t x f 作用延时效果累积为将齐次化思想)转换计时器的初始时刻将齐次方程初始时刻换为0需要τ-=t t '可得0','>⇒>=t t dt dt τ 齐次方程可以化简为⎩⎨⎧===>=-0'),,()0,(,0)0,(0',0'2''t x f x w x w t w a w t xx t t τ 使用达朗贝尔公式可以求得⎰+-+-++='')(21)]'()'([21)',(at x at x db b a at x at x t x w ψϕϕ其中),()(,0)(τψϕx f x x ==则⎰-+--=)()(),(21),(τττt a x t a x db b f a t x w ⎰⎰⎰++--==t t a x t a x td db b f a d t x w t x u 0)()(0),(21),(),(τττττ 1.4有初始条件的非齐次无界弦波动方程的求解⎩⎨⎧==+∞<<-∞>=-)()0,(),()0,(,0),,(2x x u x x u x t t x f u a u t xx tt ψϕ 此方程要使用叠加原理进行求解设),(),(),(t x z t x v t x u +=其中分别满足以下方程⎩⎨⎧==+∞<<-∞>=-)()0,(),()0,(,0,02x x v x x v x t v a v t xx tt ψϕ(1)和⎩⎨⎧==+∞<<-∞>=-0)0,(,0)0,(,0),,(2x y x y x t t x f y a y t xx tt (2) 对于方程(1),使用达朗贝尔公式可以求得:其特征方程为022=+⎪⎭⎫⎝⎛a dt dx ,2,1c at x =±所以at x +=ξ,at x -=ηηξv v v x +=,ηξv a v a v t ⨯-⨯=,ηηξηξξv v v v xx ++=2,ηηξηξξv a v a v a v tt 2222+-=)()()()(),(0042at x G at x F G F t x v v v v a v xx tt -++=+=⇒=⇒=-=-ηξξηξη由初始条件)()(')(')0,(),()()()0,(x x aG x aF x v x x G x F x v t ψϕ=-==+=来确定⎰=---xx dbb x G x G a x F x F a 0)()]0()([)]0()([ψ)0()0()(1)()(0x G x F db b a x G x F xx -+=-⎰ψ)()()(x x G x F ϕ=+)(2)0()0()(21)(0x x G x F db b a x F xx ϕψ+-+=⎰)(212)0()0()(21)(0at x x G x F db b aat x F at x x ++-+=+⎰+ϕψ)(2)0()0()(21)(0x x G x F db b a x G xx ϕψ+---=⎰)(2)()()(21)(0at x at x G at x F db b a at x G atx x -+-----=-⎰-ϕψ)()(),(at x G at x F t x v -++=⎰+-+-++=atx atx db b a at x at x t x v )(21)]()([21),(ψϕϕ对于方程2,使用齐次化原理可以求得⎩⎨⎧==>=-0)0,(,0)0,(0),,(2x y x y t t x f y a y t xx tt 设);,(τt x w 为下面齐次方程的解⎩⎨⎧==>=-),(),(,0),(,02ττττx f x y x y t y a y t xx tt 则⎰=td t x w t x y 0);,(),(ττ为零初始条件的非齐次弦振动方程的解(将),(t x f 作用延时效果累积为将齐次化思想)转换计时器的初始时刻将齐次方程初始时刻换为0需要τ-=t t '可得0','>⇒>=t t dt dt τ 齐次方程可以化简为⎩⎨⎧===>=-0'),,()0,(,0)0,(0',0'2''t x f x w x w t w a w t xx t t τ 使用达朗贝尔公式可以求得⎰+-+-++='')(21)]'()'([21)',(at x at x db b a at x at x t x w ψϕϕ其中),()(,0)(τψϕx f x x ==则⎰-+--=)()(),(21),(τττt a x t a x db b f a t x w ⎰⎰⎰++--==t t a x t a x td db b f a d t x w t x y 0)()(0),(21),(),(τττττ最后,根据叠加原理求得⎰⎰⎰++--+-++-++=+=t t a x t a x at x at x d db b f a db b a at x at x t x y t x v t x u 0)()(),(21)(21)]()([21),(),(),(ττψϕϕττ1.5.无界弦振动方程的决定区域与影响区域 决定区域:对于特定u(x,t)依赖的(x,t)的取值范围对于(x,t )的取值能影响u(x,t)的取值范围为影响区域2.只含二阶导的2阶偏微分方程的特征线法求解 2.1只含二阶导的二阶偏微分方程的初步化简⎩⎨⎧===++)(),0(),(),0(0y y u y y u Cu Bu Au x yy xy xx ψϕ其特征方程为00,0222=+-⎪⎭⎫ ⎝⎛⇒-=⇒=+==++C dx dy B dx dy A dx dy dy dx d C B A y x y x y y x x ϕϕϕϕϕϕϕϕϕ根据特征方程解的三种不同情况将其进行进一步的化简 2.2特征方程存在两个不同实根时的化简 先用公式法求出特征方程两个不同的实根A ACB B dx dy 242-±=,g A AC B B dx dy =-+=⎪⎭⎫ ⎝⎛2421,e A AC B B dx dy =--=⎪⎭⎫⎝⎛24221c gx y +=2c ex y +=可以用换元法对此偏微分方程进行化简x A AC B B y 242-+-=ξxAACB B y 242---=η将其带入=++yy xy xx Cu Bu Au=ξηu例1.化简下列方程并求解⎩⎨⎧===-+σφ)0,(,)0,(032t u t u u u u x xx tx tt3/2)/(032032222=-+⇒=-+⇒=-+x t x t x x t t xx tx tt u u u ϕϕϕϕϕϕϕϕdtdx dx dt d x t x t //0-=⇒=+=ϕϕϕϕϕ03/2)/(03)/(2)/(22=--⇒=--+dt dx dt dx dt dx dt dx,0,0,3,10,0,0,1,13)2(,)2(22121242===-=======-=+-=+=--=+±=⇒±=+±=tt xt xx t x tt tx xx t x tx t t x t x t t x c t t x dt dx ηηηηηξξξξξηξηηξηξξηξηηηξξηξξηηξηξξηξηηηξξηξξηηξηξξηξηηξηξηξξηξηξηξηξηξηξηξηξηξηξηξu u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u xt xt x x tx xx xx x x xx tt tt tt tt x x x t t t 32)3()3(2)()(96)3(3)3(1,3--=++-+-=++=+++++=+-=++---=+=+=-=+=)()(),(00)369()646()321(32ηξξηηηξηξξg f t x u u u u u u u u xx tx tt +==⇒=--+---+-+=-+2.3当特征方程存在2个相等实根A B dx dy 2)(2,1=12c x AB y =-),0(,2≠=-=B y x A By ηξ 0,0·,0,00====⇒=xx yy u C u A B 或如例1化简下列方程44=++xx tx tt u u u4/4)/(044044222=++⇒=++⇒=++x t x t x x t t xx tx tt u u u ϕϕϕϕϕϕϕϕdtdx dx dt d x t x t //0-=⇒=+=ϕϕϕϕϕ2/,04/4)/(04)/(4)/(22==+-⇒=+-+dt dx dt dx dt dx dt dx dt dx,0,10,2,1,,2========-===-=xt xx tt t x tt xt xx t x x t x ηηηηηξξξξξηξηηξηξξηξηηξηξξηηξηξξηξηηξηξξξξηξηηξηξξηξηηηξηξξξηξηηξξηξηηξξu u u u u u u u u u u u u u u u u u u u u u u u u tx tx x t t x x t x t tx xx xx x x x x xx tt tt t t t t tt 222)(22422222---=+++++=++=++++==++++=0)480()880()4244(=⇒=+-++-+⨯-+ηηηηξηξξu u u u)2()2()()()(t x g t x xf g f u f u -+-=+=⇒=ξξηξη2.4当特征方程存在一对共轭复根时二.积分变换法求解无界一维波动方程、1维热传导方程和二维Laplace 方程 1.傅立叶变换的定义与性质 1.1傅立叶变换的定义)()())((w F dx e x f x f F iwx ==⎰+∞∞-1.2傅立叶变换的位移性质)()()()]([)(c x d ee c xf dx e c x f c x f F iwcRRc x iw iwx --=-=-----⎰⎰)()]([)()()]([)(w F e x f F e c x d e c x f e c x f F iwc Riwc c x iw iwc -----==--=-⎰1.3.傅立叶变换的相似性质dcx e cx f c dcx c ecx f dx ecx f cx f F Rcx c wi Rcx cw i Riwx⎰⎰⎰---===)(11)()()]([)(1)(1)]([1c wF c du e u f c cx f F u c wR ==-⎰1.3傅立叶变换的微分性质⎰⎰⎰-+∞∞-----===RiwxRiwx iwx Riwx dex f e x f x df e dx e x f x f F )(|)()()('))('( )())(()())((0))('(w iwF x f iwF dx e x f iw dx e iw x f x f F Riwx iwx R===--=⎰⎰--⎰⎰⎰-+∞∞-----===Riwx iwx Riwx Riwx dex f e x f x df e dx e x f x f F )('|)(')(')(''))(''( )()())(()())('())(''(22w F iw x f F iw x f iwF x f F ===dx e x f iw e x f x df e dx e x f x f F iwx Rn iwx n n Riwx Riwx n n -------⎰⎰⎰+===)()()()())(()1()1()1()()()()())(()())(())((1)(w F iw x f F iw x f iwF x f F n n n n ===-1.3.傅立叶变换的乘多项式性质⎰⎰⎰---=-==R Riwx iwx iwx Rdx e x f dw di dx e x f dw d i dx e x xf x xf F ))(())((1)())(( ))(())((())(())((w F dwdi x f F dw d i dx e x f dw d ix xf F R iwx ===⎰- ⎰⎰⎰---===R Riwx iwx Riwxdx e x f dw d i dx e x xf dw d i dx ex xxf x f x F ))(())(()())((2222)())(())(())((2222222222w F dw d i dx e x f dw d i dx e x f dw d i x f x F R iwx iwx R===⎰⎰-- dx e x f x dwd idx e x f xx dx e x f x x f x F iwx n RRiwx n Riwx n n ))(()()())((11-----⎰⎰⎰=== ⎰⎰====--Rn nn n n n R iwx n n n iwx n n nnw F dw d i x f F dw d i dx e x f dw d i dx e x f dw d i x f x F ))(()))((())(())(())((1.4傅立叶变换积分性质由傅立叶变换的微分性质)())((x f dt t f dx dx=⎰∞- ⎰∞-=xdt t f iw x f F )())(()(1))((1))((w F iwx f F iw dt t f F x==⎰∞- 1.5傅立叶变换的卷积性质卷积定义式⎰-=*Rdt t x g t f x g f )()()(卷积公式1)()()(w G w F g f F =*先做卷积再变换系数不变 证明:⎰⎰⎰⎰-----=-=*R iwt t x iw Riwx R Rdx e e dt t x g t f dx dte t x g t f x g f F )()()()()())((⎰⎰⎰⎰-----=-=*RRiwu iwt Rt x iw Riwt dt du e u g e t f dt dx e t x g e t f x g f F )()()()())(()()()())(())(())(()()(w G w F t f F u g F dt u g F e t f g f F Riwt ===*⎰-卷积公式2))()((2)()(x g x f F w G w F π=*先傅立叶变换再做卷积系数要乘系数2π 1.6 主要函数的傅立叶变换)(0,00,)(指数信号⎩⎨⎧<>=-x x e x f x β iw e iw dx e dx eex f F iw x iw x iwxx +=+-===∞++-+∞+-+∞--⎰⎰βββββ1|1))((0)(0)(02)(x ex f -=2.傅立叶变换法求解一维波动方程 2.1无界齐次波动方程的求解⎪⎩⎪⎨⎧==>∈=-)3)(()0,()2)(()0,()1(0,,02x x u x x u t R x u a u txx tt ψϕ 分别对(1)、(2)、(3)式进行傅立叶变换)4(0),()()),((0),()()),((22=+⇒=-t w F aw t w u F t w F iaw t w u F tt tt)5))((())0,((x F w u F ϕ=)6))((())0,((x F w u F t ψ=)7()()()),((21iawt iawt e w C e w C t w u F -+=将(5)、(6)代入(7)式⎩⎨⎧-=+=--iawtawt t iawtiawt e awiC e w awiC t w u F e w C e w C t w u F 2121)()),(()()()),(( ⎩⎨⎧=-=+))(()()())(()()(2121x F w awiC w awiC x F w C w C ψϕ ⎪⎩⎪⎨⎧-=+=)))((1))(((21)()))((1))(((21)(21x F iaw x F w C x F iaw x F w C ψϕψϕ iawt iawt e x F iawx F e x F iaw x F t w u F --++=)))((1))(((21)))((1))(((21)),((ψϕψϕ又由傅立叶变换的位移性质))(()())((x f F e dx e c x f c x f F iwc Riwx --=-=-⎰左边的项的位移系数可以求出at c iwat iwc -=⇒=-)8))(((21))((21at x F e x F iawt +=ϕϕ iwaw F w G at x G e w G e w G F e x F iwaiawt iawt iawt 2))(()()()())(())((21ψψ=+===用傅立叶变换的积分性质进一步化简))((1))(()())((x f F iw dy y f F x f dy x f dx d xx =⇒=⎰⎰∞-∞- ))((21))((1212))(()()(⎰+∞-===+=atx dy y F a w F iw a iwa w F at x G w G ψψψ右边第一项的系数也可以用位移性质求出at c iwat iwc =⇒-=-))((21))((21at x F e x F iwt -=-ϕϕ iwaw F w H at x H e w H e x F iwaiwat iwat 2))(()()()())((21ψψ=-==--继续用傅立叶变换积分性质来化简))((1))(()())((x f F iw dy y f F x f dy x f dx d xx =⇒=⎰⎰∞-∞-))((21))((1212))(()()(⎰-∞-===-=atx dy y F a w F iw a iwa w F at x H w H ψψψ 四项全部求和 )))((21))(((21)))((21))(((21)),((⎰⎰-∞-+∞---+++=atx at x dy y F a at x F dy y F a at x F t w u F ψϕψϕ ))((21))(()(((21)),((⎰+-+-++=atx atx dy y F a at x F at x F t w u F ψϕϕ 对此式施加傅立叶逆变换 ⎰+-+-++=at a at x dy y a at x at x t x u )(21))()((21),(ψϕϕ 2.2非齐次方程的无界波动方程(不用齐次化原理)2.3半无界波动方程的求解3.傅立叶变换法求解一维热传导方程4.傅立叶变换法求解2维Laplace 方程place 变换的定义与性质place 变换求解一维波动方程place 变换求解一维热传导方程place 变换求解2维Laplace 方程二.有限边界的分离变量法求解(正弦初始条件以及二次初始条件)1.第一类边界条件和第二类边界条件第三类边界条件的特征值问题2.齐次化方程(可以用傅里叶级数展开或用齐次化原理)3.齐次化边界条件4.齐次方程,齐次边界条件第一类边界条件和第二类边界条件的波动方程和热传导方程推导与例子5.齐次方程,非齐次边界条件第一类边界条件和第二类边界条件的波动方程和热传导方程推导与例子6.非齐次方程,非齐次边界条件第一类边界条件和第二类边界条件的波动方程和热传导方程推导与例子7.非齐次方程,非齐次边界条件第一类边界条件和第二类边界条件的波动方程和热传导方程推导与例子8.圆域LAPLACE 问题求解9.矩形域Laplace 方程。
数学物理方程
方程 uxx uyy A5ux B5uy C5u D5, 称为椭圆型方程的 标准形。
三、方程的化简
步骤:第一步:写出判别式 a122 a11a22 ,根据判别式判 断方程的类型;
第二步:根据方程(1)写如下方程
a11
(
dy dx
)
2
2a12
dy dx
a22
0
(2)
称为方程(1)的特征方
(2)当 0 时,特征线 (x, y) c. 令 (x, y), (x, y).
其中 (x, y)是与 (x, y)线性无关的任意函数,这样以, 为新变量方程(1)化为标准形 u Au Bu Cu D,
其中A,B,C,D都是 , 的已知函数。
(3)当 0 时,令 1 ( ), 1 ( ). 以 , 为新
程。方程(2)可分解为两个一次方程
dy a12 (3)
dx
a11
称为特征方程,其解为特征线。
设这两个特征线方程的特征线为 (x, y) c1, (x, y) c2.
令 (x, y), (x, y).
第三步(1)当 0 时,令 (x, y), (x, y). 以 , 为 新变量方程(1)化为标准形 u Au Bu Cu D, 其中A,B,C,D都是, 的已知函数。
(3)若在(x0, y0 ) 处 0, 称方程(1)在点 (x0, y0 ) 处为椭圆型方程。
例:波动方程 utt a2uxx f (x,t) a2 0 双曲型
热传导方程 ut a2uxx f (x,t) 0 抛物型
位势方程 uxx uyy f (x, y) 1
椭圆型
二、方程的标准形式
定义:方程
uxy A1ux B1uy C1u D1,
数学物理方程知识点归纳
数学物理方程知识点归纳
数学和物理是紧密相关的学科,数学物理方程是两个学科的交叉点。
下面将对数学物理方程的知识点进行归纳。
1. 微积分
微积分是数学物理方程中最基础的知识点之一。
微积分包括微分和积分两个部分。
微分是研究函数变化率的工具,积分是研究曲线下面积的工具。
微积分在物理学中有着广泛的应用,例如牛顿第二定律、万有引力定律等。
2. 偏微分方程
偏微分方程是数学物理方程中的重要知识点。
偏微分方程是描述物理现象的数学模型,例如热传导方程、波动方程等。
偏微分方程的求解需要使用到数学分析和数值计算等方法。
3. 矩阵和线性代数
矩阵和线性代数是数学物理方程中的另一个重要知识点。
矩阵是一种数学工具,可以用来表示线性方程组。
线性代数是研究向量空间和线性变换的学科。
矩阵和线性代数在物理学中有着广泛的应用,例如量子力学中的哈密顿算符等。
4. 微分方程
微分方程是数学物理方程中的重要知识点。
微分方程是描述物理现象的数学模型,例如运动方程、电路方程等。
微分方程的求解需要使用到微积分和数值计算等方法。
5. 概率论和统计学
概率论和统计学是数学物理方程中的另一个重要知识点。
概率论是研究随机事件的学科,统计学是研究数据分析和推断的学科。
概率论和统计学在物理学中有着广泛的应用,例如热力学中的熵等。
以上是数学物理方程的知识点归纳,这些知识点是物理学家和数学家研究物理现象和数学问题的基础。
数学物理方程知识点归纳
数学物理方程知识点归纳数学物理方程是数学和物理学两门学科的交叉领域,其涉及到许多重要的知识点。
本文将从微积分、向量、力学、热力学和波动等方面,总结归纳数学物理方程的主要知识点。
一、微积分微积分是数学和物理学中非常重要的一个分支。
其中,微分和积分是微积分的两个基本概念。
微分是研究函数在某一点的变化率,积分则是求解函数的面积、体积或长度等量的方法。
微积分的一些重要公式包括:牛顿-莱布尼茨公式、柯西-黎曼方程、拉普拉斯公式等。
二、向量向量是几何学和物理学中非常重要的概念。
向量具有大小和方向两个属性,可以表示物理量的大小和方向。
向量的一些重要知识点包括:向量的加法和减法、向量的数量积和向量积、向量的投影、向量的夹角等。
三、力学力学是物理学中研究物体运动和相互作用的学科。
其中,牛顿三大定律是力学的基础。
牛顿第一定律指出物体在外力作用下保持静止或匀速直线运动;牛顿第二定律则确定了物体受力的大小和方向与其加速度成正比;牛顿第三定律则描述了力的相互作用。
四、热力学热力学是物理学中研究热量和能量转化的学科。
其中,热力学的一些重要概念包括:热力学系统、热力学过程、热力学态函数、热力学循环等。
热力学中的一些重要公式包括:热力学第一定律、热力学第二定律、热力学方程等。
五、波动波动是物理学中研究波的传播和相互作用的学科。
其中,波动的一些重要概念包括:波长、频率、波速、干涉、衍射、折射等。
波动的一些重要公式包括:波动方程、费马原理、赫兹实验等。
数学物理方程中的知识点非常丰富,包括微积分、向量、力学、热力学和波动等方面。
这些知识点是理解和应用物理学中的方程和定律的基础,对于物理学的学习和科学研究都具有重要的意义。
数学物理方程
数学物理方程数学物理方程是描述物理现象的数学公式,它们是物理学研究的基础。
物理学家通过对物质运动的观察和实验,总结出了许多数学物理方程,这些方程具有预测和解释自然现象的能力。
在本文中,我们将介绍一些常见的数学物理方程,并讨论它们在现实生活中的应用。
牛顿第二定律牛顿第二定律是描述物体运动的基本定律之一。
它表明,物体的加速度与作用力成正比,与物体的质量成反比。
用数学公式表示为: F = ma其中,F表示作用力,m表示物体的质量,a表示物体的加速度。
牛顿第二定律可以解释许多物理现象,例如自由落体、弹性碰撞等。
在机械工程中,牛顿第二定律被广泛应用于设计和优化机械系统。
麦克斯韦方程组麦克斯韦方程组是描述电磁现象的数学公式。
它由四个方程组成,分别是:1. 麦克斯韦第一方程:电场的散度等于电荷密度。
2. 麦克斯韦第二方程:磁场的旋度等于电场随时间的变化率。
3. 麦克斯韦第三方程:电场的旋度等于磁场随时间的变化率和电流密度的叉积。
4. 麦克斯韦第四方程:磁场的散度等于零。
麦克斯韦方程组被广泛应用于电磁学、光学、通信等领域。
它可以解释电磁波的传播、电磁感应现象等。
热传导方程热传导方程是描述热传导现象的数学公式。
它表明,热量的传导速率与温度梯度成正比。
用数学公式表示为:T/t = αT其中,T表示温度,t表示时间,α表示热传导系数,表示拉普拉斯算子。
热传导方程可以用于解决许多热传导相关的问题,例如热传导率的计算、材料的热稳定性等。
薛定谔方程薛定谔方程是描述量子力学现象的数学公式。
它表明,量子系统的波函数随时间演化的规律。
用数学公式表示为:iψ/t = Hψ其中,i表示虚数单位,表示约化普朗克常数,H表示哈密顿算符,ψ表示波函数。
薛定谔方程可以用于计算量子系统的能量、波函数、概率等物理量。
总结数学物理方程是物理学研究的基础。
它们可以用于解释和预测自然现象,例如牛顿第二定律、麦克斯韦方程组、热传导方程、薛定谔方程等。
这些方程在现实生活中有广泛的应用,例如机械工程、电磁学、光学、热力学、量子力学等领域。
数学物理方程举例和基本概念讲解
① 弦振动方程和定解条件
物理模型(弦的微小横振动问题)
设有一根拉紧的均匀柔软细弦,其长为l,线密度为,且在单位长度上受到
垂直于弦向上的力F初始小扰动后,在平衡位置附近作微小横振动.
试确定该弦上各点的运动规律.
分析. 如图选择坐标系,设u x,t 表示弦上各点在时刻t沿垂直于x方向的位移.
利用微元法建立方程.
目录 上页 下页 返回 结束
定解问题的适定性
1923年,阿达马(J.S. Hadamard,法国)提出
定解问题是否能够反映实际, 或者,定解问题的提法是否适合? 从数学的 角度看主要从下面三个方面来验证:
解的存在性: 即在给定的定解条件下,定解问题是否有解存在?
解的唯一性: 即在给定的定解条件下,定解问题的解若存在,是否唯一?若 能确定问题解的存在唯一性,就能采用合适的方法去寻找它。
超星数字图书馆(注: 网络图书馆)
目录 上页 下页 返回 结束
㈡ 方程的几个基本概念 ⑴ 数学物理方程:
① 定义:
主要指从物理学以及其他自然科学、工程技术中所产生的偏微分方程,有 时也包括与此有关的一些常微分方程、积分方程、微分积分方程等。 例如:
1 描绘振动和波振动波,电磁波动特征的波动方程:
utt a2uxx f .
数学物理问题的研究繁荣起来是在十九世纪,许多数学家都对数学物理问题的 解决做出了贡献。如:Fourier( 1811年) ,在研究热的传播中,提出了三维 空间的热传导方程。他的研究对偏微分方程的发展产生了重大影响。Cauchy 给出了第一个关于解的存在定理,开创了PDE的现代理论。到19世纪末,二阶 线性PDE的一般理论已基本建立,PDE这门学科开始形成。
线性偏微分方 程可分为
数学物理方程
数学物理方程数学物理方程是科学研究中至关重要的一部分。
它们描述了自然界中发生的现象和规律,为我们解决实际问题提供了数学工具和理论基础。
本文将介绍数学物理方程的基本概念、应用领域和重要性。
一、基本概念数学物理方程是由数学符号和物理量组成的等式或方程组。
它们包含了数量关系和物理规律,可以用来描述自然界中各种现象,如运动、力学、电磁学等。
数学物理方程的推导和解析是物理学中理论发展和实验验证的重要一环。
数学物理方程通常由字母和数学符号组成,代表了各种物理量和运算符。
例如,牛顿第二定律可以用以下方程表示:F = ma其中 F 代表物体所受的力,m 代表物体的质量,a 代表加速度。
这个方程表达了物体受力与加速度之间的关系。
二、应用领域数学物理方程被广泛应用于科学研究和工程技术领域。
在物理学中,数学物理方程被用来推导和解释各种物理现象,如牛顿力学、量子力学和电磁学等。
在工程技术领域,数学物理方程被用来建立模型和进行仿真,比如流体力学、结构力学和电路设计等。
数学物理方程还在天文学、地球科学和生物学等学科中得到广泛应用。
例如,它们可以用来研究星际运动、地球的气候变化以及生物体的生长和发展等。
三、重要性数学物理方程对科学研究的重要性不言而喻。
它们提供了描述和预测自然现象的工具,为科学家和工程师解决问题提供了基础。
数学物理方程的推导和解析也推动了科学理论的发展,有助于我们更深入地理解自然界的运作规律。
此外,数学物理方程还在技术和工程领域发挥着至关重要的作用。
通过建立数学模型,研究人员可以预测和优化各种系统的行为,从而提高生产效率和产品质量。
例如,在航空航天工程中,数学物理方程被用来计算飞行器的轨迹和受力情况,以保证飞行器的安全性和性能。
总之,数学物理方程在科学研究、工程技术和应用领域中都扮演着重要角色。
它们不仅是数学和物理学交叉的产物,也是人类认识和探索自然的有力工具。
通过不断研究和应用数学物理方程,我们可以更好地理解和改善我们的世界。
数学物理方程知识点总结
数学物理方程知识点总结一、牛顿运动定律牛顿的运动定律是经典物理力学的基础,它描述了物体在力的作用下的运动规律。
牛顿的三大运动定律分别是:1. 第一定律:一个物体如果受力作用,将保持静止或匀速直线运动,直到受到外力的作用而改变其状态。
2. 第二定律:物体的加速度与作用力成正比,与质量成反比。
即F=ma。
3. 第三定律:作用力与反作用力大小相等,方向相反,且在同一直线上。
这三个定律描述了物体在受力作用下的运动规律,它们被广泛应用于物体的运动研究和工程设计中。
二、电磁场方程电磁场方程描述了电荷和电磁场之间的相互作用。
其中,麦克斯韦方程组是最基本的电磁场方程,它包括了电荷产生的电场和电流产生的磁场,并描述了它们随时间和空间的变化规律。
麦克斯韦方程组包括了4个方程,分别是:1. 静电场高斯定律:描述电荷产生的静电场。
2. 静磁场高斯定律:描述磁场的产生和分布。
3. 安培定律:描述电流产生的磁场。
4. 法拉第电磁感应定律:描述磁场的变化产生感应电场。
这些方程组成了电磁场的基本描述,它们被广泛应用于电磁场的研究和工程技术中。
三、热传导方程热传导方程描述了物体内部的热传导过程。
热传导方程可以描述物体内部温度分布和热量的传导规律。
通常情况下,热传导方程是一个偏微分方程,它描述了温度场随时间和空间的变化规律。
热传导方程一般形式为:δT/δt = αΔT其中,T表示温度场,t表示时间,α为热传导系数,ΔT为温度梯度。
这个方程被广泛应用于热传导问题的研究和工程设计中。
四、波动方程波动方程描述了机械波和电磁波在空间中的传播规律。
波动方程是一个偏微分方程,它描述了波动场随时间和空间的变化规律。
波动方程的一般形式为:∂^2ψ/∂t^2 = v^2∇^2ψ其中,ψ表示波动场,t表示时间,v为波速,∇^2为拉普拉斯算符。
波动方程描述了波动在空间中的传播和幅度变化规律,它被广泛应用于波动现象的研究和工程设计中。
总之,数学与物理方程是自然科学研究和工程技术发展的基础。
方程知识点简单总结初中
一、方程的基本概念1.方程的定义方程是由“=”(等号)连接的两个数学式子,其中至少包含一个未知数。
通常用字母表示未知数,例如:x、y、z等。
方程的一边是已知的数值或表达式,另一边是未知数与已知数之间的关系。
2.方程的组成一个简单的方程通常由两个数学式子和一个等号组成,例如:2x+3=7。
在这个方程中,“2x+3”和“7”分别是两个数学式子,等号“=”连接着这两个式子。
3.方程的解解方程就是求出方程中未知数的值,使得等号两边的值相等。
解方程的过程就是找到未知数的值,使得方程成立。
二、解方程的方法1.加减法解方程对于简单的一元一次方程,我们可以利用加减法的原理来解方程。
例如:2x+3=7,我们可以先将式子“3”移到等号右边,然后将式子“2x”除以2,从而求出x的值。
2.乘除法解方程对于包含乘除法的一元一次方程,我们需要利用乘除法的原理来解方程。
例如:3x=12,可以用除法将式子“3”移到等号右边,然后用乘法将式子“x”求出来。
3.方程两边同时加减一个数有时候,我们需要对方程两边同时加减一个数,来改变方程的形式。
例如:2x-5=7,我们可以将式子“-5”移到等号右边得到2x=12,然后再除以2得到x=6.4.方程两边同时乘除一个数类似地,我们也可以对方程两边同时乘除一个数,来改变方程的形式。
例如:4(x+2)=20,我们可以将式子“4”移到等号右边得到x+2=5,然后再减去2得到x=3.5.使用更高级的方法对于复杂的方程,我们可能需要使用更高级的方法来解方程,例如:配方法、因式分解、开方等。
1.数学问题中的应用解方程在解决数学问题中有着广泛的应用。
例如:求两数之和为15,两数之差为3的问题,就可以通过方程来表示并解决。
2.物理问题中的应用在物理学中,方程被广泛应用于描述物体的运动、力学、热力学等问题。
通过建立方程,可以更好地理解和描述物理世界的运动和相互作用。
3.经济问题中的应用在经济学中,方程被用来描述供求关系、成本收益等经济问题。
数学物理学中的数学物理方程
数学物理学中的数学物理方程数学物理学是一个将数学的方法应用于物理学中的领域。
它的出现始于历史上许多著名的科学家对宇宙和物质的深入研究,如牛顿的力学体系、爱因斯坦的相对论等。
在数学物理学中,数学和物理学之间的交叉与融合是不可避免的,一个核心的问题就是建立数学物理方程,这些方程既能描述物理世界的规律,又能通过数学符号进行求解和应用。
下面将从数学物理方程的角度来探究数学物理学的基本原理和应用。
一、数学物理方程的基本原理数学物理方程是指用数学语言描述物理现象的方程,它们通常具有高度的抽象性和复杂性。
从数学角度看,数学物理方程是各种数学方法的应用,如微积分、线性代数、拓扑学等。
这些数学方法用于求解物理学领域的各种问题,如描述物体的运动、能量的转化、电场的分布等。
数学物理方程通常具有以下特点:一是它们是描述自然规律的基本语言,物理学中的各种物理量都可以通过它们来描述。
二是它们具有高度的抽象和普遍性,可以描述非常广泛的物理现象。
三是它们具有强大的预测性,通过它们可以准确地预测物理现象的发生和变化。
在数学物理方程的研究中,常用的方法有微分方程、偏微分方程、变分法等。
微分方程是指含有未知函数及其导数的方程,它们通常用于描述一阶或高阶的物理过程。
偏微分方程则是包括偏导数的方程,常用于描述时间和空间的变化规律。
变分法则是通过对变量值的微小改变,来求解极值和边值问题的数学方法。
二、数学物理方程的应用在物理学研究中,数学物理方程是非常重要的工具。
它们被广泛应用于各个分支领域,如力学、电磁学、热学、光学等。
力学方面,著名的数学物理方程包括牛顿第二定律、拉格朗日方程、哈密顿方程等。
这些方程描述了物体的运动和力的作用,可以应用于机械、流体、弹性等领域的研究。
在电磁学中,麦克斯韦方程组是一个非常重要的数学物理方程,它描述了电场和磁场的变化规律和相互作用。
这些方程应用于电磁波、电路、电子学等方面的研究。
在热学中,热传导方程、热传递方程等是用于描述物体热力学性质的数学物理方程。
数学物理方程复习
数学物理方程复习一.三类方程及定解问题(一)方程1.波动方程(双曲型)Utt = a2Uxx+f; 0<x<l,t>0U(0,t)= Φ1(t);U(l,t)= Φ2(t);U(x,0)= Ψ1(x);Ut (x,0)=Ψ2(x)。
2.热传导方程(抛物型)Ut = a2Uxx+f; 0<x<l,t>0U(0,t)= Φ1(t);U(l,t)= Φ2(t);U(x,0)= Ψ1(x).3.稳态方程(椭圆型)Uxx +Uyy=f; 0<x<a;0<y<b;t>0.U(0,x)= Φ1(x);U(b,x)= Φ2(x);U(y,0)= Ψ1(y);Ut (y,a)=Ψ2(y)。
(二)解题的步骤1.建立数学模型,写出方程及定解条件2.解方程3.解的实定性问题(检验)(三)写方程的定解条件1.微元法:物理定理2.定解条件:初始条件及边界条件(四)解方程的方法1.分离变量法(有界区域内)2.行波法(针对波动方程,无界区域内)3.积分变换法(Fourier变换Laplace变换)Fourier变换:针对整个空间奇:正弦变换偶:余弦变换Laplace变换:针对半空间4.Green函数及基本解法5.Bessel函数及Legendre函数法例一:在弦的横震动问题中,若弦受到一与速度成正比的阻尼,试导出弦阻尼振动方程。
解:建立如图所示的直角坐标系,设位移函数为U(x,t),取任意一小段△x进行受力分析,由题设,单位弦所受阻力为b U t(b为常数),在振动过程中有△x所受纵向力为:(T2COSa2-T1COSa1)横向力为:(T2SINa2-T1SINa1-b U t(x+n△x))(0<n<1). T2,T1为△x弦两端所受的张力,又因为弦做横振动而无纵振动,由牛顿定律有T2COSa2-T1COSa1=0,T2SINa2-T1SINa1-b(x+n△x)U t=p U tt(x+n△x)△x在小的振动下SINa1≈TANa1=Ux(x,t), SINa2≈TANa2=Ux(x+△x,t),COSa2≈COSa1≈1,T=T1=T2.(ρ是密度)即(T/ρ)[ Ux (x+△x,t)- Ux(x,t)]/ △x-(b/ρ) U t(x+n△x,t)即令△x→0时有:U tt+ aU t=a2U xx例二:设扩散物质的源强(即单位时间内单位体积所产生的扩散物质)为F (x,y,z,t),试导出扩散方程。
现代数学物理方程
这就是微分方程的适定性问题。
2、验证
u( x , y, t )
2
1 t x y
2 2
在锥
t x y 0
2 2 2
中都满足波动方程
u
2
t
2
u
2
x
2
u
2
y
2
.
证明:在该锥内
u t
2
(t x y )
2 2 2
3 2
t
3 2 5 2
又
sin 1 tg 1 sin 2 tg 2
u( x x , t )
.
于是得运动方程
x
u
2
t
2
g [ l ( x x )]
u( x x , t ) x
[l x ]
u( x , t ) x
u
2
[ l ( x x )] g
u( x , 0) t aF '( x at ) aG '( x at ) t 0 aF '( x ) aG '( x ) ( x ).
aF '( x ) aG '( x ) ( x ).
两边对 x 积分:
aF ( x ) aG ( x ) C
u
2
t
2
c u
2
这里c 通常是一个固定常数,代表波的传播速率。 在针对实际问题的波动方程中,一般都将波速表 示成可随波的频率变化的量,这种处理对应真实 物理世界中的色散现象。
(2)方程的导出 均匀弦的微小横振动 理想化假设:
数学物理方程总复习
⎤ ⎥⎦
−
ρ
gdx
≈
ρ
∂ 2u ( x, ∂t 2
t)
dx
T
⎡ ⎢⎣
∂u(x + dx,t) ∂x
−
∂u( x, t ) ∂x
⎤ ⎥⎦
−
ρ
gdx
≈
ρ
∂ 2u( x, t ) ∂t 2
dx
∂u ( x,t )
由于x产生dx的变化而引起的 用微分近似代替,即
∂x
的改变量,可
∂u(x + dx,t) ∂x
现在考虑弧段MM’在t时刻的受力情况
由于假定弦是柔软的,所以在任一点张力 的方向总是沿着弦在该点的切线方向。
t时刻 位移NM记作u u(x,t)
弧段 Mq M ' 两端
所受的张力记作T,T’
根据牛顿第二定律 F = ma
在x轴方向弧段 Mq M ' 受力的总和为
T 'cos a '− T cos a = 0
行的外力,且假定在时刻t弦上x点处的外力密度为F(x,t),
显然
T 'cos a '− T cos a = 0
Fds
−
T
sin
a
+
T
'
sin
a
'−
ρ
gds
≈
ρ
ds
∂2u ∂t 2
弦的强迫振动方程
∂2u ∂t 2
=
a2
∂2u ∂x2
+
f
( x, t )
弦的强迫振动方程
∂2u ∂t 2
=
a2
∂2u ∂x2
dx
数学物理方程小结
解 法 二 : Fourier Fourier 法
数学物理方程小结
1.6‘定解问题
utt − a 2u xx = 0 (t > 0) u ( x, 0) = ϕ ( x), ut ( x, 0) = 0 (−∞ < x < +∞)
utt (λ , t ) − a 2 (iλ ) 2 u (λ , t ) = 0 % Fourier变换 % Fourier % % 定解问题: u (λ , 0) = ϕ (λ ), ut (λ , 0) = 0 %
方程具有傅立叶正弦级数解
nπ x u ( x, t ) = ∑ Tn (t ) sin l n =1
∞
nπ at nπ at nπ x u ( x, t ) = ∑ An cos + Bn sin sin l l l n =1
∞
数学物理方程小结
1.2定解问题
utt − a 2u xx = 0 u x (0, t ) = 0, u x (l , t ) = 0 (t > 0) u ( x, 0) = ϕ ( x), u ( x, 0) = ψ ( x) (0 < x < l ) t
数学物理方程小结
解 法 二 : Fourier Fourier 变 换 法 2.6’定解问题
ut − a 2u xx = 0 (t > 0) u ( x, 0) = ϕ ( x), (−∞ < x < +∞)
Fourier 定解问题 解 Fourier
ut (λ , t ) − a 2 (iλ ) 2 u (λ , t ) = 0 % % % % u (λ , 0) = ϕ (λ ),
数学物理方程复习资料
l0
l
0,1, 2,3, ).
3. Fourier 变换的微分性质
若函数 f (x) 的傅里叶变换为 f (x) ,且其导函数 f ′(x) 的傅里叶变换存在,则有 f ′(x) = iλ f (x) , 即导函数的傅里叶变换等于原函数的傅里叶变换乘以因子 iλ 。更一般地,若 f (x) 的 n 阶导数 f (n) (x)
x
)(x
∈
C),
其中
∫ = an
1= l f (x) cos nπ xdx (n
l −l
l
1, 2,3, ),
∫ = bn
1= l f (x) sin nπ xdx (n
l −l
l
1, 2,3,).
=C
= x f (x)
1[ 2
f
(x−) +
f
(x+ )]
∑ ∫ 当 f (x) 为奇= 函数时, f (x)
uxx = (iλ)2 u (x, t) = −λ 2U (λ, t)
∫ = [ ∂u ] = ∞ ∂u e−iλxdx ∂ [ u(x, t)]
∂t −∞ ∂t
∂t
同理,[ ∂∂2tu2 ]
=
∂2 ∂t 2
[ u( x, t )]
M3 特征线法 写出二阶偏微分方程的特征方程 解特征方程得到两族积分曲线 作特征变换,求通解 代入边界条件求解
二阶线性偏微分方程
A
∂2u ∂x2
+
2B
∂2u ∂x∂y
+
C
∂2u ∂y 2
+D
∂u ∂x
+E
∂u ∂y
+Fu
= 0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
定解问题
• 问题的提出
• 定解条件 – 初始条件 – 边界条件
• 定解问题 – 初值问题 – 边值问题 – 混合问题
初始条件
• 意义
– 反映系统的特定历史
• 分类 – 初始状态(位置),用 u |t=0 = f(x)表示; – 初始变化(速度),用 ut|t=0 = g(x)表示.
边界条件
• 意义 –反映特定环境对系统的影响
2元二阶线性微分方程的分类
• 一般形式:
a uxx+ b uxy+ c uyy+ d1ux+ d2uy + e u = f(x,y) • 特征方程:
a x2 + bxy + cy2 = 0 • 判别式
= b2 - 4ac
• 分类
> 0 为双曲型,如波动方程; = 0 为抛物线型,如热传导方程; < 0 为椭圆型,如泊松方程和Laplace方程.
• 定解问题的分类
–初值问题(Cauchy Problem) • 无边界条件(环境对问题的影响可以忽略不计)
–边值问题 • 无初始条件(历史对问题的影响可以忽略不计) –第一边值问题(Dirichlet Problem) –第二边值问题(Neumann Problem) –第三边值问题(Robin Problem)
• 分类 –按条件中未知函数及其导数的次数分: • 线性边界条件和非线性边界条件; –线性边界条件中 • 按给出的是函数值或导数值分: –第一、二、三类边界条件; • 按所给数值是否为零分: –齐次边界条件和非齐次边界条件.
定解问题
• 定解问题的组成
–泛定方程:反映同一类现象的普遍性; –定解条件:描述具体对象的特殊性.
–混合问题 • 同时有边界条件和初始条件.
定解问题
• 定解问题的适定性
–适定性的意义 • 定解问题是实际问题的数学模型,适定性是对模型 能否反映实际问题的一般要求.
–适定性的内容 • 存在性 • 唯一性 • 稳定性
–不适定问题举例 • 一般来说,方程的阶数对应于定解条件的个数; • 条件多了,将会破坏解的存在性; • 条件少了,将会破坏解的唯一性.
狄氏问题的解 (第4.4节)
u |t0 (x) x
2.半无限杆上的热传导问题-Laplace变换法
第3.3节 例2, 补充 Laplace变换
uut|t0a2u0x,x ,
0 x x 0,
,
t
0,
u |x0 f (t), t 0.
四、拉普拉斯方程的格林函数法 (第四章)
1. 拉普拉肆方程边值问题的提法 (第4.1节) 2. 格林公式 (第4.2节) 3. 格林函数 (第4.3节) 4. 两种特殊区域上的格林函数及其
补充 这个方程非齐次方程的解法(Duhamel原理).
2u
t
2
a2
2u x2
f
( x,x, t
0)
( x),
x ,t 0 x
三、积分变换法
1.无限杆上的热传导问题-Fourier变换法 第3.3节 例1, 补充 Fourier变换
ut a2uxx f (x,t), x , t 0
定解问题
泛定方程
演化方程 稳定方程
线性边界条件 边界条件
波动方程 输运方程 拉普拉斯方程 泊松方程 第一类 第二类 第三类
周期性
自然边界条件 有界性
初始条件 初始状态 初始速度
本课程的主要内容:
一、分离变量法
1.有界弦的自由振动 (第2.1节)
utt a2uxx , 0 x l,t 0, u |x0 0, u |xl 0,t 0,
数学物理方法 数学物理定解问题
数学物理方程的一般分类
• 一般分类 – 按自变量的个数,分为二元和多元方程; – 按未知函数及其导数的幂次,分为线性微分方程 和非线性微分方程; – 按方程中未知函数导数的最高阶数,分为一阶、 二阶和高阶微分方程.
• 线性偏微分方程的分类 – 按未知函数及其导数的系数是否变化分为常系数 和变系数微分方程 – 按自由项是否为零分为齐次方程和非齐次方程
utt a2uxx f (x,t),
0 x l,t 0,
u |x0 u |xl 0, t 0,
u |t 0 (x), ut (x), 0 x l.
二、行波法
1.一维波动方程的达朗贝尔公式 (第3.1节)
utt a2uxx 0, x
u |t0 (x), ut |t0 (x)
u |t0 (x), ut (x),0 x l.
2. 有限长杆上的热传导 (第2.2节)
ut a2uxx, 0 x L u |x0 0, u |xL 0
u |t0 (x)
3.拉普拉斯方程--圆形区域 (第2.3节)
2u uxx uyy 0,
u | 0 f ( ).
4. 非齐次方程的解法 (第2.4节)